
Developing TheStringPhone

David Stubbe Teglbjærg and Jesper Skovgaard Andersen

June 1, 2015

Abstract

This thesis describes the development of TheStringPhone, a physical mod-
eling based polyphonic digital musical instrument that uses the human voice
as excitation. The core parts of the instrument has been implemented by
the aurthors from scratch in C++ and is thoroughly explained in the the-
sis. This includes a Biquad Filter, FIFO delay, circular bu↵er delay, the
Karplus-Strong algorithm, Peak and RMS Compressor and a FDN Reverb.
The focus has primarily been on the sound generating part of the instrument
and TheStringPhone is only evaluated from an engineering perspective.

Contents

0.1 Introduction . 3
0.2 Thesis outline . 4

1 Scientific Background 5
1.1 Digital musical instruments 5

1.1.1 Gestures and the gestural controller 7
1.1.2 Mapping . 9

1.2 Interaction models . 11
1.3 The voice as a gestural controller 12

1.3.1 A survey of voice driven DMIs 12
1.3.2 The human voice apparatus 15
1.3.3 Signal processing methods for voice signal analysis . . 18

2 Designing TheStringPhone 21
2.1 Choosing a sound engine . 21
2.2 Choosing an input device . 22
2.3 Extending the timbre control 23
2.4 Adding compression and reverb 23
2.5 TheStringPhone - a system overview 24

3 Implementing TheStringPhone 26
3.1 The Karplus-Strong algorithm 26

3.1.1 The ideal vibrating string 26
3.1.2 Digital Waveguides - modelling a plucked string 29
3.1.3 Implementation . 30

3.2 Linear predictive coding and the formant filter 36
3.2.1 Linear prediction . 36
3.2.2 Autocorrelation method for LPC coeficcients 37
3.2.3 Implementation . 38

3.3 The ADSR-envelope . 43
3.3.1 Implementation . 44

3.4 The peak compressor . 46
3.4.1 Dynamic range control 46
3.4.2 Level detector . 49

1

3.4.3 Gain computer . 50
3.5 FDN Reverb . 53

3.5.1 Room acoustics and reverberation 53
3.5.2 Artificial Reverberation 54
3.5.3 Feedback delay networks 58
3.5.4 Implementation . 59

4 Conclusion and future perspectives 68
4.1 Conclusion . 68
4.2 HCI and aesthetic perspectives 69
4.3 Specific points of improvement 69

Appendices 77
.1 Digital filter theory . 78

.1.1 Finite and infinite filters 80

.1.2 Impulse response of a filter 81

.1.3 The transform function of a filter 81

.1.4 The z-transform . 83

.1.5 The one-zero filter . 85

.1.6 The one-pole filter . 86

.1.7 The second order pole-zero filter (BiQuad) 87

.1.8 The comb filter . 89

2

0.1 Introduction

”there are no theoretical limitations to the performance of the
computer as a source of musical sounds, in contrast to the per-
formance of ordinary instruments.” [49]

- Max Matthews (1963)

The decoupling of input device and sound engine in Digital Music Instru-
ments (DMI) present an expansive potential that empowers musicians with
novel sonic resources, beyond all the limits of acoustical instruments [65].
However, by giving developers the power of designing the causal relationship
between input and output, a lot of the feeling and natural elements - that are
the strength of the acoustic instrument - are easily missed [65][56][33]. If one
only focuses on a specific part of the interaction, say the control organ, one
might loose aspects crucial for the overall usage. This is a general problem
when constructing DMIs. For many years the prevailing research focused
on improving the sonic capabilities of the synthesis algorithms [19] while
interfacing has had a minor emphasis. In the 21st century times changed
and motivated a wide spectrum of works on New Interfaces for Musical
Expression (NIME). The design of musical interfaces gained a significant
importance and concepts from a broad range of fields - human-computer
interaction (HCI), electrical engineering, computer vision, digital signal pro-
cessing, machine learning and artificial intelligence - where integrated [33].
However, with this new trend a segregation has occurred and as Jorda puts
it:

”NIME people focus on the input-playing side while acousticians
and synthesists concentrate on the output-sounding one” [...]
”the fact is that very few attempts are being made at study-
ing the design of new musical instruments -tools for playing and
making music- as a conceptual whole.” [33]

Furthermore Jorda points out that the term ”musical instruments” is
often being employed instead of either input devices or sound generators. If
one utilizes a non-holistic approach to instrument development, one must
accept a high risk that the outcome might be too generic or non-specific
ending up being either too simple, mimetic or technology based. On the
other hand, a holistic approach can quickly become too cumbersome or
complex which also leads to inappropriate design choices.

The focus of our previous projects have been on designing the input-
playing side of DMIs. The approach have been to take a given sound engine
and then figure out how to design a more expressive way of controlling it.
Now, in order to get a better understanding of the design of DMIs we feel a
need for a better understanding of the design process from the perspective of

3

the acousticians and synthesists. In this way we will be in a better position
to approach the development of DMIs from a holistic point of view. Based
on this motivational ground we have spent our master thesis on developing
TheStringPhone, a physical modeling based polyphonic digital musical
instrument that uses the human voice as excitation. The core parts of the
instrument has been implemented from scratch in C++ and the focus has
primarily been on the sound generating part of the instrument.

0.2 Thesis outline

This thesis will explain the research and development of TheStringPhone
and is organized in 3 main chapters, followed by a conclusion and future
perspectives. A project folder containing a version of TheStringPhone
together with the source code and other relevant resources has been created
and can be downloaded from:

https://thestringphone.wordpress.com/resources

Throughout the thesis we will refer to audio examples that can all be found
in the project folder.

• Chapter 1 starts out by presenting the scientific background within
DMI’s. Since TheStringPhone uses the voice as excitation, a survey
of existing musical systems based on voice driven synthesis and control
will be presented.

• Chapter 2 will explain the design choices made and give an overview
of the TheStringPhone.

• Chapter 3 explains the implementation of each individual part of
TheStringPhone in detail. Each part will include both the theoret-
ical background as well as detailed descriptions of how each part has
been implemented in C++.

4

Chapter 1

Scientific Background

1.1 Digital musical instruments

An acoustic instrument consist of an excitation source and a resonating
system, that couples the vibrations from the excitator to the surrounding
atmosphere. In acoustic instruments excitation source and resonator are
chained together and a musician playing the instrument must therefore keep
supplying energy for both controlling and producing the sound. There are
however few exceptions, such as organs, where the control organ and the
sound generator are separated.

In contrast to acoustic instruments, DMIs can always be divided into an
input device and a sound generator thereby splitting the instrument chain
[15]. Figure 1.1 shows Wanderley and Depalle’s [82] representation of a
digital musical instrument. This model provides a good insight into the
various components of a DMI and how they interact.

Gestures refer to the movement of the player or user. The gestural con-
troller refers to the gestural acquisition system and can be everything from a
simple slider to a motion capturing system. The gestural controller typically
defines the possible gestures, creating constraints and thereby guiding the
user in how to use the instrument. The gestural controller gives feedback
depending on the action taken by the user. The sound production system
refers the sound engine or synthesis model. Mapping defines how parame-
ters of the gestural controller drives parameters of the sound engine. This
could be a slider controlling the amplitude of the sound engine or a rate
of a waving motion controlling pitch etc. Secondary feedback refers to the
change in sound caused by the gestural action of the player [82][37][33].

The division of input device and sound generator, frees constructors from
the natural constraints found in physical instruments. For example some in-
struments require more strength to play than others e.g. bass and baritone
saxophones. Certain acoustic instruments can be hard to play softly, while
others are di�cult to play loudly. Extraordinary e↵ort may be needed in

5

Figure 1.1: A representation of a digital instrument. (Illustration taken
from [82])

some instruments to play extremely high or low notes and tuning the in-
strument may be tedious. An instruments timbre is also predetermined by
its physical construction. These limitations can all be overcome by DMIs
thereby creating musical flexibility. With DMIs a single controller can sud-
denly create low bass sounds as easily as high pitched sounds, all with min-
imum e↵ort. Tuning can be done with the push of a button and timbre has
no physical limitations. Being able to transcend the physical can allow for
adding new expressiveness to already familiar timbre and is inviting from a
compositional standpoint.

This however all comes with a price, namely the reduction of the feel
associated with producing a certain kind of sound [65]. Magnusson [46] ar-
gues that the decoupling of sound engine and energy input makes the map-
pings between them arbitrary and thereby symbolic. This therefore defines
the digital instrument as a medium for hermeneutic relations whereas the
acoustic instrument is to be seen as a channel for embodiment relation since
we use our bodies to understand and learn acoustic instruments. Digital in-
struments, on the other hand, also require an understanding of the symbolic
mapping between input and output. Although a digital instrument can be
designed to be controlled by physical input, the mapping of sensors to sonic
output is still symbolic and one must therefore not only focus on learning
the motor skills, but also the symbolic mapping between input and output.
As Magnusson explains:

”To work with symbolic tools means that one has to continually
switch modes from focusing on the world to focusing on the tool
with regular intervals and to a more pronounced degree than in
acoustic instruments. This detachment from the terminus of our
activities could be paraphrased as a disruption in flow and is

6

present in the majority of existing digital music systems.” [46,
p. 173]

The gestural controller and the sound engine are two separate indepen-
dent systems and their relation relies on mapping of gestural parameters
to sound production parameters. However, the choice of mapping depends
very much on the choice of gestural controller and the choice of sound engine
influences what kind of gestures work most natural. This interdependence
between the components make the design of a digital musical instrument
a very complex process, and although a holistic approach may be best, it
can also be cumbersome. On the contrary, as mentioned in the motivation,
developing gestural controller and sound engine in conjunction, will most
likely yield the best results [37].

1.1.1 Gestures and the gestural controller

Gestural control of computer generated music can be seen as a specialized
branch of human-computer interaction and is a field that involves the com-
bined study of simultaneous control of multiple parameters, timing, rhythm
and training [81]. In the context of musical devices a gesture refers to per-
former actions produced by the instrumentalist and a gestural controller is
the input part of a digital musical instrument where physical interaction
with the player takes place. The most well known gestural controller must
be the MIDI keyboard, which only provides users with two parameters i.e.
velocity and pitch. Additionally most keyboards have modulation and or
pitch bend wheels (some also aftertouch), but they all imply making sepa-
rate actions from the traditional keyboard gesture. Controlling all sounds
(percussive as well as non percussive) with a keyboard controller is obviously
not optimum and faces inherent limitations [31]. Pressing [61], Roads [65]
and Paradiso [58] all explore the myriad of gestural controllers, important
parameters for controlling di↵erent types of instruments and their e↵ect on
music playing. The field is in a state of rapid progress and the interested
reader is referred to the recent NIME proceedings 1 for a complete list of
new developments in the field.

In the study of gestures there are di↵erent levels of detail that can be
analyzed. Some gestures are directly related to the production of sound
(functional gestures) while others may not be clearly connected to sound
production (physiological gestures) e.g. gestures present during professional
performance. When designing gestural acquisition systems for sound pro-
duction it is obviously the functional gestural characteristics that needs to
be identified.

Gestures need to be captured by an acquisition system for further use in
the system. Typically acquisition is performed in three di↵erent ways:

1
http://www.nime.org

7

• Direct acquisition, where sensors are used to monitor performer
actions. Usually each physical variable of the gesture is captured by a
separate sensor and the signals present isolated physical features, such
as pressure, linear or angular displacement, acceleration, etc.

• Indirect acquisition concentrates on gestures isolated from struc-
tural properties of the produced sound. By analyzing the fundamental
frequency or spectral envelope of the sound performer actions can be
derived. Such methods is usually constituted by signal processing.

• Physiological signal acquisition is the analysis of physiological sig-
nals, such as muscle signals (EMG) or brainwave signals (EEG). Sev-
eral systems have implemented this type of acquisition [75][76], but
such techniques are usually hard to master since it may be di�cult to
separate meaningful parts of the signal.

In general, direct acquisition has the advantage of simplicity compared
to indirect acquisition, however direct acquisition may sometimes underes-
timate the interdependency of variables.

When looking at sensor characteristics sensitivity, stability and repeata-
bility are often considered to be the most important [81]. In a musical
context the choice of sensor obviously needs to match the task at hand.
A sensor output that is precise, but not very accurate may be satisfactory
when mapped to loudness, but not if it is used to control pitch. In this case
the inaccuracy will probably be more noticeable.

When using sensors for gesture acquisition the signals obtained are usu-
ally analog in the form of voltage signals. Such signals need to be converted
in order to use them as input for the computer. This is done by sampling
the voltage signal and converting each sample into a suitable format, usually
MIDI.

When several sensors have been assembled as part of a device a gestu-
ral controller has been born. When classifying such controllers there is
typically distinguished between:

1. instrument-like controllers.

2. extended controllers.

3. alternate controllers.

A huge part of commercial controllers is MIDI controller versions of tra-
ditional instruments and thereby fit the first category. An advantage of
using traditional instruments as a model is adaptability. A musician who
is already familiar with the instrument mimicked can immediately apply
highly developed performance skills. One might fear that fewer virtuoso
musicians will come out of new devices, since there seems to be a tendency

8

towards a tradition-bound music education [65]. On the other hand tra-
ditional instruments might very well be limited when it comes to taking
full advantage of a specific synthesis method and the control capabilities
are mostly reduced when compared to their acoustic ancestors [33]. As a
counterpart instrument-like controllers o↵er an expanded sound palette.

The second category includes traditional instruments with extra sensors
as add-ons that a↵ord additional control possibilities.

Alternate controllers include everything that is not based on or is an ex-
tension of an instrument. Where adaptability is the advantage of instrument-
like controllers this category has the advantage of being tailored to fit a spe-
cific synthesis method, thereby exploiting its unique capabilities. As Collins
puts it:

”the possibilities inherent in digital synthesis, processing, and
playback call for new modes of control that require special input
devices and interaction styles.”[10]

The feedback given by the gestural input is another important aspect and
is traditionally divided into primary feedback and secondary feedback.

As explained, primary feedback refers to the feedback given by the gestu-
ral controller and includes visual, auditory, and tactile-kinesthetic feedback.
This could for example be the tactile feedback given when hitting the string
on a guitar or the visual feedback given when choosing oscillator on a syn-
thesizer. Most instruments include tactile-kinesthetic feedback of various
types and instruments without, such as the Theremin, can be extremely
hard to master. Primary feedback usually serves the purpose of guiding the
player when playing the instrument and can also be used to ease the process
of learning the instrument. For example, it takes a shorter time to reach a
moderate level of playing a guitar compared to a violin, partly because of
the tactile (and visual) feedback given by the frets on the guitar neck.

Secondary feedback focuses on the actual change in sound. The cru-
cial aspect of instrument design is to create a natural relationship between
gesture and output. This leads us to the area of mapping.

1.1.2 Mapping

Hunt and Wanderley define mapping as:

”[...] the act of taking real-time performance data from an in-
put device and using it to control the parameters of a synthesis
engine.” [27]

In other words, as Jorda writes in [33], mapping is

”[...] the connection between gestural parameters (input) and
sound control parameters or audible results (output).” [33]

9

So, mapping is simply the bridge between input device and synthesis
engine. As soon as you decouple input device and synthesis engine, the
mapping scheme becomes a crucial factor in determining the behaviour and
nature of the instrument [27][28][47][33].

There are overall two ways of implementing mapping:

• By use of generative mechanisms, such as neural networks to perform
mapping.

• By use of explicitly defined mapping strategies.

The first provides a mapping strategy by means of internal adaptations
of the system and the selection of most important features among the set of
signals, whereas the later is developed explicitly by the instrument designer.
Generative mapping use machine learning techniques to derive mapping
strategies and can be applied to user-adapted systems, where the system
is able to adapt to user behaviour based on user input examples.

Explicit mapping defines a fixed relationship between input parameters
and synthesis parameters and is usually divided into four categories:

• One-to-one, where one input parameter is controlling one synthesis
parameter.

• One-to-many, where one input parameter may influence several syn-
thesis parameters at the same.

• Many-to-one, where one synthesis parameter is driven by two or
more input parameters.

• Many-to-many, where many input parameters may influence several
synthesis parameters.

In [27] Hunt conducted a series of experiments focusing on how various
types of mapping influence the accuracy and quality of a player’s perfor-
mance. He focused not only on the di↵erence between the various types of
mapping, but also on the di↵erence between the user having to continuously
supplying energy in order to change parameters. This could for example be
mapping the rate of change of a slider to the pitch of the synthesis model.
In one of his experiments, he created interfaces implementing three mapping
strategies: (1) simple one-to-one connections between input and output, (2)
one-to-one requiring the user’s energy as an input and (3) many-to-many
connections from input to output also requiring the user’s energy as input.
In regards to (3) he concludes that:

”at first it seemed counter-intuitive to most users, but they
rapidly warmed to the fact that they could use complex gestu-
ral motions to control several simultaneous parameters without

10

having to ’de-code’ them into individual streams. Many users
remarked how ’like an instrument’ it was, or ’how expressive’
they felt they could be with it.” [27]

This observation correlates well with Serafin and Gelineck’s proposed
guideline in [25] about ”making the user work”. This is due to the fact that
mapping in acoustical instruments are often slightly non-linear and seldom
one-to-one mappings [33] and mimicking this summons the same feeling as
when playing a traditional instrument.

Many thoughts has been presented on how to design for and evaluate dig-
ital musical instruments and controllers of all kinds [7][25][24][11][12][56][33][65].

1.2 Interaction models

Interaction with DMIs has in many cases been described as a traditional HCI
communication loop, which regards the user as someone acting on a system,
the system then senses what the user is doing and produces feedback, which
is perceived by the user, who then acts accordingly [24]. In addition to
the traditional communication loop Paine [57] includes the audience in his
interaction model. He focus on issues related to the development of authentic
performance interfaces that provide su�ciently convincing gestural control
during performance.

Johnston et al. [32] developed an interaction strategy which uses on-
screen objects that respond to user actions thereby identifying three modes
of interaction i.e. instrumental, ornamental and conversational. The biggest
factor di↵erentiating the three modes of interaction is the issue of control.
In the instrument mode the musician is aiming for complete control, in the
ornamental mode the musician surrenders control and in the conversational
mode sharing of control is involved - seen as a continuous shift in the balance
of power between the instrument and the musician. Their study conclude
that the conversational mode is the most interesting, but also the most
di�cult mode to design for. In order to support this mode the musician
needs to have full instrument controllability while simultaneously being able
to introduce new, and occasionally surprising, musical material.

Likewise Chadabe [9] regards the interactive relationship between a musi-
cian and his instrument as conversational. He sees an interactive instrument
as a dynamic system that has its own identity e.g. make its own decisions
and produce unpredictable and distinctive output. For Chadabe Interactive
means mutually influential.

Drummond [18] argues that interactive systems have the potential for
variation and unpredictability and can be seen as a composition or struc-
tured improvisation of an instrument. Such systems blur the lines of the tra-
ditional distinction between composing, instrument building, systems design
and performance. This means that the performer can influence, a↵ect and

11

alter the underlying compositional structure and the instrument can take
on performer like qualities, thereby making the evolution of the instrument
into the composition. During the development of such interactive works the
composer may become instrument designer, programmer, performer, etc. all
at the same with the result that:

”the instrument is the music and the composer is the performer.”
[8]

It is a process in which the computer influences the performer as much
as the performer influences the computer.

1.3 The voice as a gestural controller

Most of the music controllers available today is based on tactile, haptic or
gestural interaction. This sets a physical limit that restricts the control
of processing parameters. Multiple interfaces would not solve the problem
since the musician is still limited in bandwidth as we only have two hands.
The human voice is however a spare bandwidth that is usually not exploited
in order to gain additional synthesis control, even though the voice is our
most proficient and prolific means of communication [19]. Why not use it
as an additional control palette?

1.3.1 A survey of voice driven DMIs

During the years there has been proposed several musical controllers driven
by the human voice. The probably most well known is the vocoder in-
vented in 1928 (under the name voder). Originally the vocoder were used in
telecommunications where it was used as an analysis/synthesis system for
speech coding, but in the 1960’s people started using it for musical appli-
cations. Basically the vocoder generate synthetic sound, which is driven by
the human voice. A source of musical sounds is used as the carrier and the
examined speech signal is then used as a modulator. During the analysis
stage the speech signal is split into a number of frequency bands and it is
the spectral envelope of these bands that are used as a modulation source.
An extension to The Vocoder is the Phase Vocoder [20], which is based on
the Short-Time Fourier Transform (STFT) and allows for many manipula-
tions in the spectral domain [17], such as high fidelity time-scaling and pitch
transposition. One application of the phase vocoder is cross synthesis, which
is a technique that is based on the fact that we can multiply the magnitude
spectrum of two analyzed sounds point by point [31] resulting in a source
sound (e.g. the voice) controlling another sound (e.g. a car).

Another application is voice-to-MIDI interfaces, such as digitalEar 2 and

2
http://www.digital-ear.com/digital-ear/index.asp

12

MIDI-voicer3, but they seem really restricted when it comes to accessing in-
teresting spectral features of the signal input. In the following we will there-
fore introduce some generic and more extended work that has been done.
Most of the work presented originates from the academic world. Also, this
overview is not intended to be an exhaustive walk-through of all existing
voice controlled musical applications, but more a selection of diverse appli-
cations that illustrate di↵erent perspectives on how to integrate the human
voice as a musical controller.

The first work to present a more extended idea of mapping was The
Singing Tree [53]. It was developed at MIT as a part their Brain Opera
installation and is a novel interactive musical interface that can respond to
vocal input with real time aural and visual input feedback. The Singing
Voice present a more extended mapping scheme where 10 di↵erent dynamic
parameters are extracted and mapped to an ensemble of di↵erent MIDI
instruments, each using a di↵erent sound source for re-synthesis. Thereby
each contribute to the overall character of the tree. Features used in this
project includes pitch, loudness, formants, cepstra and is for the most part
mapped to multiple parameters using probability and randomness.

Auracle [63] is an interactive environment, which is based on multiple
users simultaneous participation. It is a group based instrument that ana-
lyzes vocal input in order to control a synthesizer. The system works as a
distributed music making platform over the internet. The goal of Auricle
is to engage a broad public (i.e. non-specialized audience) in ’playing’ with
sound.

In 2006 Yamaha released their easy trumpet (EZ-TP) system, which
allows the user to synthesize sound either by singing or blowing into the
trumpet. The easy trumpet might also be used as a MIDI controller. Since
this product is commercial, it has not been possible to find any information
about the audio processing algorithms used.

The Larynxophone [43] use extracted voice features to drive a real-time
cross-synthesis engine (consisting of a wind instrument database and the
input voice signal). Pitch onset is used to query samples from the database,
while excitation gain is mapped to velocity, slope is mapped to modulation
and depth is mapped to aftertouch.

In [42] Loscos and Aussenac present The Wahwactor, which is a wah-wah
e↵ect controlled by the users voice. A wah-wah pedal consist of a resonant
bandpass filter with a variable center frequency fc that is changed by moving
a pedal back and forth with the foot. Instead of using a foot The Wahwactor
is instead controlled by the users voice, using [wa-wa] utterances. It is
explained that the wah-wah e↵ect resembles a [wa-wa] utterance because the
voice spectra characteristics of the phonemes [u] and [a] produce a modulated
sound that is perceived as the e↵ect of a resonant filter moving upwards in

3
http://expressor-midi-voicer.download-382-34020.datapicks.com

13

frequency [42]. They present and evaluate five di↵erent voice descriptors
as a candidate for The Wahwactor and concludes that LPC and the Low-
band Spectral Weighted Area are the best choices for the control parameter
since they are better linked to the phonetic evolution. However the area
descriptor is chosen since its found to be more robust.

The e↵ectivesness of vocal imitation of sound concepts has been the fo-
cus of several researchers lately [6][5][40][41]. In [6] Cartwright and Pardo
present a huge data set centered around crowd-sourced vocal imitation of
audio concepts, which they argue is a natural way of communicating an au-
dio concept. Their work is centered around collecting thousands of crowd-
sourced vocal imitations along with data on the ability to correctly label the
imitations. Being able to approximate an audio concept in this way would
be analogous to approximate a visual concept by a visual sketch. Cartwright
and Pardo’s driving motivation for collecting such data is to enable users to
communicate with software (e.g. programming a synthesizer) in a natural
way by having a computer that can understand vocal imitations. The au-
thors have also created SynthAssist [5], which is an audio production tool
that allows user to interact with synthesizers in a more natural way. In-
stead of programming a synthesizer through knobs and sliders users can
communicate sound ideas using samples like existing recordings or vocal
imitations. SynthAssist take such sample as input and comes up with sug-
gestions, which the user rate during an interactive search process. When
the target sound is found the user can play and edit it using a traditional
interface if desired. They argue that this approach is more similar to how
one might communicate sound ideas to another human.

Janer [30] presents an example of the singing voice used to drive the
synthesis of a plucked bass guitar. He experiments with two di↵erent syn-
thesis techniques; one is based on physical modelling and the other is based
on spectral morphing. Janer argues that the mapping encompasses two lay-
ers. The first layer concerns the interface while the second is related to the
synthesis parameters. In the case of physical modelling based synthesis the
string excitation is triggered by the voice energy envelope onset detection.
Janer concludes that the goal of real-time performance was achieved, but the
musical control was limited, and therefore further development is needed.
In his Ph.D thesis Singing-Driven Interfaces for Sound Synthesizers Janer
address the use of a singing voice as a controller for synthesizers. The system
proposed is based on imitating the sound of the instrument, mapping voice
pitch and loudness to corresponding instrument features. The outcome is a
real-time score and a continuous value parameter, which is derived from the
first two formants of the analyzed signal and is used for timbre modulation.
He concludes that by controlling a singing voice synthesizer, voice input to
voice synthesis mappings can be direct.

Deacon [16] proposes to use the voice as an additional control layer, which
without any hardware dependencies can be seen as an unused resource. He

14

demonstrates that vocal control can be extended to integrating words or
speech recognition to control non-musical parameters of a digital musical
instrument. His system has been developed using MaxMSP.

Fasciani [19] focus on developing vocal driven control for DMIs, which
is based on a generative and adaptive mapping scheme. Aiming at creating
a generic and adaptive method that allow for extraction and mapping of
gestural characteristics to an arbitrary number of parameters. The mapping
is algorithmically generated and do therefore not depend on prior decisions
or knowledge nor any user specification. From those aims he developed
the Voice-Controlled Interface for Digital Musical Instruments (VCI4DMI),
a vocal interface that minimize user involvement in the setup stage, but,
maximizes the breadth of explorable sonic space [19]. He concludes that his
interface is a significant advancement of the state of the art in automated
gesture mapping and vocal control of musical instruments.

1.3.2 The human voice apparatus

The act of speaking is a result of an incredible precise and complex me-
chanical process that can almost be seen as a hybrid of a wind instrument
and a string instrument. The voice apparatus (see Figure 1.2) includes a
source (wind pushed from the lungs by the diaphragm resulting in exci-
tation pulses), a component that vibrate (the vocal cords) and a series of
resonant chambers (the pharynx, the mouth and nasal cavity). The pitch of
the outputted sound is then determined by the frequency of the excitation
pulse.

Usually a distinction is made between voiced and unvoiced speech. In
phonetics voiced speech refer to speech sounds that is associated with vocal
chord vibration, which is the case during normal speaking/singing. The
latter refer to situations where the vocal folds do not vibrate as they are
kept open, but very close together, which result in an irregular and turbulent
airflow. Let’s first have a look at voiced speech.

When air stream passes through the vocal folds they start to vibrate. If
we denote the interval of the air pulses Tpulses then the frequency of these
vibrations corresponds to the frequency of a certain perceived tone in the
following way

freq =
1

Tpulses
(1.1)

with harmonics at its multiple. The vibration of the vocal folds is then
passed through the vocal tract, which acts as a resonant system. Here the
pulses are filtered thereby shaping the spectrum of the voiced output. This
shaping is what we usually refer to as articulation and the resonances of the
vocal tract are called formants. In most cases the first four or five formants

15

Figure 1.2: A representation of the human voice apparatus. (Illustration
taken from: http://www.jennysawer.com/Thesis/images/figure1.jpg)

are considered the most relevant [19]. The length and shape of the vocal
tract has an impact on the formant frequencies generated and when we speak
or sing the length of the vocal tract is varied continuously. The frequency
range together with the level of the harmonics is a↵ected by age, gender and
overall physiological condition, therefore it varies across individuals. When
we speak the range typically lie between 100Hz and 400Hz, while singing
range from 35Hz to 1500Hz [19]. In a single individual it is usually limited
to a maximum of two octaves.

Figure 1.3 compare spectrograms of the words hot, hat, hit and head
spoken with both a high pitched and a low pitched voice. The frequencies
with the most energy concentrated indicate the regularly spaced harmonics
(i.e. the red stribes), which originate from the pulses created by the vocal
chords as explained above. The regions that carry the most energy are the
formants.

During unvoiced speech (like whispering) the vocal folds do not generate
periodic pulses, but instead aperiodic sounds with a broad spectrum, thereby
resulting in the noisy perturbation that is the base of most unvoiced sounds.

Traditionally the speech system is simplified and modeled as a source/filter
system where an excitation is filtered by the resonances of the vocal tract
[31]. Because of this, human speech is usually approached as a subtractive
synthesis mechanism where the vocal cords generate a buzzy excitation and

16

Figure 1.3: Spectrograms of the words hot, hat, hit and head spoken with a
high pitched voice (top) and with a lower pitched voice (bottom). (Illustra-
tion taken from: https://auditoryneuroscience.com/sites/default/files/Fig1-
16color.jpg)

17

the vocal tract act as a filter that create resonances.

1.3.3 Signal processing methods for voice signal analysis

When doing voice signal analysis the signal is typically divided into over-
lapping blocks of samples where the size of a block is referred to as the
window or frame size and the overlap is the windows step size. Window size
and step size vary across signal processing applications, but in the domain
of automatic speech recognition (ASR) the signal is typically chunked into
overlapping windows, with a length in the range of 10-40 ms and a step
size of 10-20 ms. At this level the signal can be considered quasi-stationary
[19]. The processing typically result in a vector of low-level features that
can be seen as a compact representation compared to the original sequence.
In the following we will look into some of the di↵erent feature extraction
algorithms that all aim to capture either the state of the vocal apparatus or
characteristics relevant to the auditory system.

Root-mean square or short time energy

Describes the instantaneous power of the signal and can be used as an ex-
pression for voice activity. The Root-Mean Square (RMS) is defined as the
square root of the mean of the squares of a sample

RMS =
1

N

N�1X

n=0

[s(n)]2 (1.2)

Autocorrelation

Denotes the correlation of a function with itself and can be used to detect
deterministic signals that are masked by a random background signal. A
pure sine wave (deterministic signal) persists over all time displacements,
whereas random noise tends towards zero for large displacements. Autocor-
relation can be viewed as a signal convolved with a time-reversed version of
itself [13] and is usually denoted with the greek letter phi

�n = corr(f, f)(n) = f ? f =
1

N + 1� n

N�nX

m=0

f(m)f(n+m) (1.3)

where the term 1/(N+1-n) is a normalization factor.
Autocorrelation computes a time lag domain function that expresses the
similarity of a signal to lagged versions of itself and can be used to find a
signals periodicity.

18

Zero-crossing rate

Is the rate of sign changes in a signal and can be used as a rough estimation
of the signal brightness

ZCR =
1

N � 1

N�2X

n=0

I {s(n)s(n+ 1) < 0} (1.4)

where s is a signal of length T and the indicator function I {A} is 1 if its
argument A is true and 0 otherwise.

Linear predictive coding

Linear predictive coding (LPC) is one of the most powerful speech analysis
techniques and is typically used for encoding speech signals at low bit rates.
LPC can also be used to estimate speech parameters as it automatically
extract the gross spectral features of an input signal, designs a filter to
match those, and result in a source that can be used to drive the filter.
Since TheStringPhone makes use of LPC a more thorough explanation is
presented in section 3.2.

Short-Time Fourier Transform (STFT)

Is used to determine the frequency and phase content of local (i.e. small) sec-
tions of a signal as it changes over time. It is based on the Fourier Transform,
which models the input sound as a sum of harmonically related sinusoids
and can be seen either as a sequence of windowed Fourier transforms or as
a bank of filters [45].

Feature extraction

In the spectral domain a number of functions exist for extracting spectral
features. These can be used to find ’patterns’ in the signal that cannot be
achieved in the time domain [31]. In [60] Peeters enumerate a whole set of
spectral features that can be calculated from the STFT. To mention a few:

• Spectral centroid is a measure of the spectrums center of mass.

• Spectral spread is the spread of the spectrum around its mean value.

• Spectral skewness gives a measure of the asymmetry of a distribu-
tion around its mean value.

• Spectral slope is a representation of the amount of decrease in spec-
tral amplitude.

19

The above mentioned techniques are just some of all the signal processing
methods used for voice signal analysis and the interested reader is referred
to [19], [31] and [60] for a more detailed list.

20

Chapter 2

Designing TheStringPhone

Since the process of designing a DMI is complex there are many interde-
pendent choices one needs to make. What input device and which synthesis
engine should one use, and how can these two be related in a meaningful
way? Taking a holistic approach can be cumbersome resulting in the fact
that many take either an approach to design only the input device, while
others focus on the synthesis engine. As stated in the motivation our aim is
to move towards the holistic approach. However, before being able to do so,
we need a better understanding of the design process from the point of view
of the synthesists. Our focus will therefore be on designing and evaluating
TheStringPhone from an engineering standpoint, while lesser energy will
be used on the mapping and interaction design. Despite this, we will still
take advantage of the fact that we are developing TheStringPhone from
a low level perspective. This means taking advantage of the fact that we
are able to better tailor the sound engine so it fits the input device and vice
versa.

2.1 Choosing a sound engine

In the holistic approach the choice of where to start (i.e. with the gestu-
ral controller or the sound engine) is like the chicken and the egg and one
obviously needs to start somewhere. There are several synthesis techniques
to choose from, but in our case we find Physical Modeling synthesis (PhM)
an interesting alternative to common techniques, such as additive synthe-
sis, subtractive synthesis, FM synthesis and wavetable synthesis. This is
because PhM imitates the properties of sound - e.g. type of excitation and
resonant body [15] - in contrast to waveform and spectrum properties [79].
In comparison to the commonly used wavetable synthesis technique, PhM
can be a far more powerful approach: physical models lead to a wider range
of sounds and expressiveness, whereas each timbre or performance expres-
sion must be prerecorded when samples are used [7]. The parameters used in

21

PhM are directly related to physical properties of the real world. This means
that a user can capitalize on his/her fundamental understanding of physical
causality [25], thereby making the conceptual understanding of PhM more
intuitive. A fundamental principle of PhM synthesis is the interaction be-
tween exciter and resonator [15]. An excitation causes vibration and the
resonance is the response of the body of an instrument to the excitation
vibration. Since PhM synthesis can model this interaction it tends to com-
municate a sense of the gesture behind the emission of sound [65] in contrast
to abstract methods that are controlled by mathematical formulas with no
direct relation to gestural control.

PhM provides an acoustical sounding output, which is pleasing and we
find this to be a good choice of sound engine for TheStringPhone.

2.2 Choosing an input device

The Karplus-Strong algorithm needs an excitation source. Usually white
noise is used [36], but we find it interesting to experiment with the human
voice as an excitation source instead. We find the human voice to be one
of the most interesting forms of expression due to it’s versatility. The voice
can exhibit a broad range of extremely expressive variations beyond those
of pitch and loudness e.g. Mongolian throat singing, Inuit vocal games and
human beatboxing and the vocal apparatus is a rich source of information.
Voice-based musical interfaces has the potential to o↵er a huge level of ex-
pressiveness [74] that can be both intuitive and fulfilling for a performer.
Using a microphone as source input for TheStringPhone not only allows
the user to use his/her voice as excitation, but it also opens up to a wide
range of possibilities where one can use everyday sounds of the real world
to excite the instrument.

This is an interesting way of coupling the input device to the synthesis
engine, because it allows for a very coupled relationship between the input
energy and output energy. Whereas many other DMIs have only a symbolic
mapping, the input from the microphone is directly related to the synthesis
engine serving as a part of the sound engine. Furthermore, as explained
in section 1.1.2, the fact that one has to continuously supply energy to the
system, makes the instrument feel more natural mimicking a real instrument
[25].

Due to its simplicity the Karplus-Strong algorithm is not very musical
interesting in itself, but by using the voice as excitation we extend the
algorithm to produce a wider sound palette and at the same time allow
for more musical expressiveness.

We have chosen a traditional MIDI-keyboard as input device for deter-
mining the produced pitch of the Karplus-Strong. Although it faces inherent
limitations [31], there are several reasons for doing so. Firstly, because of

22

our focus on developing the sound production part of a DMI we have to limit
ourselves in experimenting with input gestures. Secondly, using traditional
instruments as a gestural controller has an advantage of adaptability. Using
a keyboard and a microphone as input devices, will make the use of the in-
strument very intuitive for the average musician. A musician who is already
familiar with a keyboard, would immediately be able to use the instrument
and apply highly developed performance skills [65].

By choosing a high decay time on the Karplus-Strong, TheString-
Phone allows for a conversational mode of interaction (as explained in sec-
tion 1.2), where the musician can make short vocal noises and then ”play”
the resulting sound by using the MIDI-keyboard.

2.3 Extending the timbre control

The most common way of performing simple timbre control in synthesizers
is probably by using an ADSR envelope generator. It mimics the way that
loudness and spectral of acoustic instruments change over time and has a
very influential role in a sounds timbre. We will therefore add an ADSR
envelope generator to TheStringPhone.

Since the voice is already used as an excitation source and the users hands
are used for manipulating the MIDI-keyboard we want to experiment with
using the voice as additional timbre control. Unlike the MIDI-keyboard,
the voice is a source of many parameters, which can be analyzed and used
for sound synthesis and control (as explained in section 1.3.1). Referencing
section 1.1.1, this would also extend the instrument to implement a form
of indirect acquisition, instead of just using the voice as an exciter and the
MIDI-keyboard, which are methods of direct acquisition. Along with ampli-
tude envelopes, filtering is a very common way of controlling a sounds timbre.
Since LPC analysis results in a set of filter coe�cients mimicking the vocal
tract, we can use this to filter the Karplus-Strong. In this a more expressive
instrument could arise. On the other hand, both the Karplus-Strong and
the vocal tract resembles comb filters, so using the LPC coe�cients as filter
for the Karplus-Strong could turn out to have too little influence on the re-
sulting sound. This is however uncertain due to the fact that the LPC filter
would continuously change according to the vocal input and might therefore
result in interesting and unexpected timbre variations that corresponds well
with the idea of interactive surprisal found in the conversational mode.

2.4 Adding compression and reverb

Dynamic range compression is often used in the process of sound recording
and production. It is used to reduce the dynamic range of sounds which
contains various parts of unequal amplitude. By applying compression to

23

TheStringPhone we want to have control over the sudden transients that
might arise during usage. Compression can also add a certain warmth and
character to a signal and make it sound fuller.

The Karplus-Strong algorithm sounds very dry on its own. A common
way to add life and warmth to a sound is to add reverberation. Adding a
reverb to the signal chain would therefore enhance the quality of the sound of
the instrument and make it sound more pleasing to listen to. Implementing
reverberation will also allow us to gain experience in designing audio e↵ects.

2.5 TheStringPhone - a system overview

Figure 2.1 shows a system diagram of TheStringPhone instrument as a
first prototype and is the version that has been developed during this project.

Figure 2.1: System diagram of TheStringPhone.

At its heart TheStringPhone has a Karplus-Strong plucked string al-
gorithm as a synthesis engine. It uses the human voice as an excitation
source and the instruments pitch is controlled via MIDI-keyboard. The out-
put signal is passed through a formant filter that is extracted from the users
input voice signal. In order to smooth the sound and place it in a space
TheStringPhone has a reverb built into it. The dotted lines Figure 2.1

24

represent the audio signal path and the solid lines represent control signals
(MIDI messages or other forms of communication).

25

Chapter 3

Implementing
TheStringPhone

This chapter describes the implementation of the TheStringPhone in
depth. For each part of the instrument we will describe the theory and
mathematics used, how the part was coded and what purpose it serves.
We will also describe how each part e↵ects the signal and what considera-
tions that has been made when going from theory to practice. The audio
examples used throughout this chapter can be found in the accompanying
resource folder under ’audio examples’. They are arranged so each section of
this chapter has a corresponding audio folder. It is assumed that the reader
has a working knowledge of digital filter theory. If this is not the case we
refer to Appendix .1 for a thorough introduction.

3.1 The Karplus-Strong algorithm

In order to have a better foundation for explaining the Karplus-Strong al-
gorithm, we will start by introducing the case of a simple vibrating string
as well as the concept of standing waves.

3.1.1 The ideal vibrating string

In air sound propagates as traveling waves. The rigid boundaries at the
edges of a string cause most energy to be reflected back into the string,
thereby preventing it from radiating away [44]. If we excite a string at a
regular interval we would get forward and backwards propagating waves,
traveling at the same time and causing interference (Figure 3.1). The result
of two traveling waves propagating in opposite directions on the same string
is that the traveling waves do not actually ’travel’ anymore, but stand still
vibrating vertically instead (this is called transverse motion and an example
can be seen in Figure 3.2).

26

Figure 3.1: Illustration of left and right travelling waves. (Illustration taken
from: http://demoweb.physics.ucla.edu)

Figure 3.2: Illustration of standing waves. (Illustration taken from:
http://demoweb.physics.ucla.edu)

In order to describe the motion of a vibrating string we use the following
equation

y(x, t) = yl(t+
x

c
) + yr(t�

x

c
) (3.1)

which says that any vibration of the string can be expressed as a com-
bination of two separate traveling waves, one going in the left direction (yl)
and one going in the right direction (yr) and the waves travel at the rate of
c (x is displacement). The speed of the traveling wave can be characterized
by the string’s tension and linear mass density ⇢:

c =

s
K

⇢
(3.2)

It turns out that a string tied at both ends of length L/2 causes natu-
ral resonances to occur at k · 2⇡/L radians/sec [59]. In a vibrating string

27

Figure 3.3: The di↵erent modes of a plucked string. (Illustration taken from:
http://demoweb.physics.ucla.edu)

Figure 3.4: Nodes and antinodes of a vibrating string. (Illustration taken
from: http://demoweb.physics.ucla.edu)

situation multiple vibrational modes occur (Figure 3.3) as well as corre-
sponding nodes and antinodes (Figure 3.4). The first mode is equivalent to
the fundamental frequency, the second mode vibrates twice as fast, which
is equivalent to the octave (i.e. second harmonic) and so on. In stringed
instruments modes and nodes can be thought of as harmonics which heavily
influence the instrument timbre. For an ideal string system where there
is no energy loss at all, the standing waves would never decay. For real
world instruments this is obviously not the case as energy dissipates in the
form of acoustic energy as well as thermal and friction-based energy due to
the bridge and nut part of the instrument [44]. Di↵erence equations (and
thereby digital filters) can be used to approximate and represent standing
waves and is exactly what digital waveguide synthesis is all about.

28

3.1.2 Digital Waveguides - modelling a plucked string

The Karplus-Strong algorithm was proposed in 1983 by Kevin Karplus and
Alex Strong [36], and later recognized as a specific case of the waveguide
model invented by Julius Smith as presented in [68]. At their heart waveg-
uide models consist of delay lines and filters making them ideal for imple-
menting using digital signal processing. The idea is to digitally represent
the left and right traveling waves as seen in Figure 3.1 as two delay lines
as seen in Figure 3.5. The inverting multipliers between the two delay lines
model the strings termination points (e.g. the bridge and nut of a guitar).

Figure 3.5: A simplified digital waveguide that models the left and right
traveling waves of a string. (Illustration taken from: [59])

As we are dealing with a linear time invariant system we can collapse
the two delay lines of length L/2 into a single delay line of length L. The
inverting multipliers of our termination points can be collapsed to a single
variable that takes care of all energy losses. The collapsed delay line can
be seen in Figure 3.6 where q does not only represent energy loss due to
termination points (as we have in our simplified model in Figure 3.5), but
also account for the energy loss due to internal friction within the string as
well as drag with the surrounding air [68].

Figure 3.6: A consolidated waveguide of length L with feedback component
q that mimic energy loss. (Illustration taken from: [59])

What we have at this point is a comb filter where our feedback com-
ponent q needs to be strictly below 1 for stability. However there is one
problem with this representation; all the vibrational modes are dampened
equally resulting in all the harmonics dying away with the same rate q. In
the real world the higher modes of a string die away faster than the lower

29

modes leaving the fundamental mode to die away last. In order to model
this high frequency decay Kevin Karplus and Alex Strong came up with the
idea of inserting a low-pass filter in the feedback chain. Since the low-pass
filter is a part of the feedback loop the high frequency content is repeatedly
filtered away as time passes, thereby modelling the decay rates of the vi-
brational modes in a natural way. The tone produced will be perceived by
the ear as a complex pitched tone with an exponential decay, suggestive of
a plucked string [45]. The Karplus-Strong model is depicted in Figure 3.7,
where x[n] is the input signal, y[n] the output signal, z�L is a delay line of
length L and LPF is a low-pass filter.

Figure 3.7: The Karplus-Strong model

The frequency of the tone produced by the model corresponds to:

f =
fs
L

(3.3)

where L is the length of the delay line and fs the sampling frequency.
One of the major problems with the Karplus-Strong model is that the fun-
damental frequency cannot be accurately controlled [79], due to the fact
that the model uses a non-fractional delay line. Furthermore, the model
does not allow one to specify a pluck position on the string. Extensions and
improvements have been done [29] since Karplus and Strong proposed their
basic model in 1983. By adding DSP blocks to the model it is not only
possible to model the pluck position and fine tune the instrument, but also
to model the instruments body and allow for decay time alterations, etc.

3.1.3 Implementation

As mentioned above the heart of the Karplus-Strong is a delay line. They
exist as basic components of many time domain based signal processes and
their basic function is to delay a sample by an amount of time, which can
be set in seconds, milliseconds or samples [39]. Delay lines with very short
delay can be used to implement filters. A first-in first-out (FIFO) structure
as shown in figure 3.8 is typically used in cases where a delay of only a few
samples is needed. However, since the samples are continuously copied from
one memory location to the next, FIFO is not an e�cient way when larger

30

Figure 3.8: First-in first-out delay line.

delay times are needed. In this case the most common data structure used
is a circular bu↵er as shown in figure 3.9. In this structure two pointers
are used. One to read the output sample and another to write the current
sample to the delay line. The distance between these two determine the
delay time. For example, if the write pointer is 10 samples in front of the
read pointer, the result is a delay of 10 samples.

Figure 3.9: A circular bu↵er. (Illustration taken from: http://luaview.esi-
cit.com/datalog˙manual.html)

In the implementation of TheStringPhone a FIFO delay is used to
implement the lowpass filter and a circular fixed delay is used to simulate the
traveling waves of the wave equation. The process function of the Karplus-
Strong is shown in Figure 3.10. The function first reads the delayed sample
from the delay line (line 63) which is returned as output. The sample is
hereafter filtered by a one zero lowpass filter (line 64). The filtered output
is then scaled and summed with the input (coming from the microphone)
and hereafter written to the delay line (line 65). Lastly, the pointers of the
delay are updated (line 66).

The circular bu↵er delay implementation used in the Karplus-Strong

31

Figure 3.10: Karplus-Strong process function.

process function can be seen in Figure 3.11. The essentials of the delay are
read(), write() and updatePointers() functions and rp and wp represent the
read and write pointer respectively. In line 55 the write pointer is advanced
(decremented) and in line 59 the read pointer is set as equal to the write
pointer plus the delay, which is specified by the variable called ”theDelay”.
The rest of the code makes sure the pointers warp around instead of going
out of bounds.

Figure 3.11: Circular bu↵er delay implementation.

The body of the one zero lowpass filter process function is shown in

32

Figure 3.12

Figure 3.12: One Zero lowpass filter process function.

This mode of implementation is called the Transposed Direct II Form
[70]. z1 is the delayed sample and b0, b1 and a1 are the filter coe�cients. It is
basically another way of implementing a FIFO delay line with a delay length
of one sample. Depending on the filter coe�cients, this implementation
can be used to implement a wide variety of filters. Figure 3.13 shows the
MATLAB code we have used in designing the one-zero low-pass filter.

Figure 3.13: MATLAB code for designing the one-zero low-pass filter used
in the Karplus-Strong loop.

The last two lines normalizes the gain of the filter by dividing the output
coe�cients with the maximum output of the transfer function. Figure 3.14
shows the frequency response of the filter.

Before being summed with the input and written to the delay, the out-
put of the filter is scaled by a feedback factor. This controls how strongly
the output is fed back into the delay and therefore how quickly the signal
attenuates. If the feedback factor is > 1 then the signal will continue to rise,
if the signal is < 1, then the signal will attenuate. Figure 3.15 shows the
impulse response of TheString Phone’s Karplus-Strong implementation
with three di↵erent feedback coe�cients. Please refer to the resource folder
for the sound files for each of the impulse responses.

With a feedback of 1 the full output signal is fed back into the delay.
The attenuation, seen in the left most plot in Figure 3.15, is therefore solely
caused by the lowpass filter in the loop. A longer decay means that one has
to be less active in exciting TheStringPhone with the voice. If the signal
is only attenuated by the lowpass filter a lot of low frequency energy can
quickly build up if the user keeps giving input to the microphone. causing the
signal to distort. This was in fact the case when testing TheStringPhone
using a feedback factor of 1. As can be seen in the right most plot of Figure

33

Figure 3.14: Frequency response of the one-zero filter used in the Karplus-
Strong.

Figure 3.15: Karplus Strong impulse response with feedback 1 (left), feed-
back 0.99 (center) and feedback 0.90 (right).

3.15 a feedback of 0.9 results in a much quicker decay thereby solving the
problem. However, while it is important that the user can scream into
TheStringPhone without it clipping, it is also important that he/she must
not have to use excessive energy to get a sound out of the instrument. One
therefore have to balance this relationship. The middle plot of Figure 3.15
shows the impulse response with feedback set to 0.99, which was found to
balance the relationship between feedback factor and vocal input activity
without causing distortion. This is of cause a subjective thing depending
on how the instrument is used. Sound files of the di↵erent Karplus-Strong
attenuations where input is given from the microphone can be found in the
resource folder.

An easy functional addition could be to allow the user to control how
fast the Karplus-Strong attenuates.

As explained by Equation 3.3 the frequency of the Karplus-Strong is
determined by the sample rate fs and the delay line length L. Solving
for the delay line length L allows us to specify a frequency and know the

34

delay length needed in order for the Karplus-Strong algorithm to output the
desired frequency:

L =
fs
f

(3.4)

In TheStringPhone, the pitch of the Karplus-Strong is controlled by a
MIDI keyboard. This is done by converting the MIDI note to frequency by
Equation 3.5 and then inserting it into Equation 3.4 to get the length of the
delay line.

f = 2(MIDI�69)/12) ⇤ 440 (3.5)

Figure 3.16: Frequency spectrum of the Karplus-Strong impulse response
with feedback = 0.99.

In Figure 3.15 the Karplus-Strong is tuned to 440 Hz (middle A) or MIDI
note 69 using Equation 3.5. Figure 3.16 shows the frequency spectrum of
the impulse response from Figure 3.15. Here one can see a clear fundamental
around 440Hz and an overtone series giving the sound the characteristics of
a plucked string. Due to the lack of non-fractional delay lines as mentioned
in Section 3.1.2 the fundamental is actually at 438, 8, which means the in-
strument is slightly out of tune in relation to the general pitch standard.
Inserting 44100 as fs and 440Hz as f in equation 3.4 give us a delay length
of 100.23. Since the delay length must be an integer value the delay length
is rounded o↵ to 100 therefore causing the instrument to be slightly out of
tune. This is a problem especially at high frequencies. For long delay lengths
(low pitches) a slight di↵erence in delay length does not cause a big change

35

in pitch. However, higher pitches sits much closer together frequency-wise
and a slight di↵erence in delay length therefore has a much bigger impact.

Introducing a filter that can contribute a small delay without altering
the loop gain into the loop is one solution to this [29]. This is important
to implement if the TheStringPhone is to be used in a setting with other
instruments, but not a necessity in this prototype.

3.2 Linear predictive coding and the formant filter

TheStringPhone uses linear predictive coding (LPC) to create a formant
filter which models the vocal tract of the user. It does so by decomposing
the input signal from the microphone into an excitation signal, commonly
referred to as the residual (the unfiltered pulses generated by the vocal
chords) and a set of filter coe�cients that models the formant e↵ect of the
vocal tract (formant filter) [62].

Originally LPC was applied in telecommunications as a means of data
reduction i.e. voice compression. The fundamental interest was to reproduce
speech at a distance using the representation requiring the least bandwidth
to transmit [45]. For musical applications however there is generally no
point in re-synthesizing the original signal. Here the usefulness lies in the
ability to modify the sound in ways that are either di�cult or impossible to
do otherwise. Obviously LPC can be used to model speaking and singing,
but also to model woodwind instruments, birds, whales and in theory any
resonant sound source can be modeled. The timing and pace of the analyzed
speech signal can also be altered or the spectral content can be modified.
The formant filter of one sound can also be cross-synthesized with another
sound to form a vocoder.

In general LPC works by first analyzing the speech signal by estimating
the formants. When a formant filter has been estimated the formants from
the speech signal is removed by inverting the formant filter (this process is
referred to as inverse filtering) in order to arrive at the original excitation
signal. This excitation function looks like an impulse train for vowels and
the sound is probably best characterized as a ’buzz’. For consonants the
source sounds like broadband noise [45]. The original signal can then be
re-synthesized by driving the residual signal through the estimated formant
filter.

3.2.1 Linear prediction

A prediction algorithm tries to find samples at positions outside a region
where one already has samples [65] and can therefore be seen as an extrap-
olation of a set of samples. Obviously prediction includes the possibility of
being wrong, therefore such algorithms also include an error estimation.

36

The process starts out with a linear predictor (a di↵erence equation)
that express each new sample as a linear combination of previous samples.
The coe�cients of our linear predictor is referred to as prediction coe�cients
and an estimation is found by solving a set of linear equations that result in
a filter that matches the frequency response of our input (the vocal tract). If
we can predict a signals behavior in the time domain we can characterize its
behavior in the frequency domain [45]. The di↵erence equation for a linear
predictor is

y(n) = x̂(n+ 1) =
mX

i=0

aix(n� i) (3.6)

where m is the number of past samples taken into consideration. This is
a standard FIR filter form, but the output is an estimate of the next sample
in time. At this point our basic problem is to determine the set of predictor
coe�cients ai directly from the speech signal so that the spectral properties
of our desired digital filter will match those of the speech waveform within
our analysis frame [62]. The spectral characteristics of speech vary over time
[77] therefore the predictor coe�cients at a given time must be estimated
from short segments of the incoming signal. This is done by finding a set
of predictor coe�cients that minimize the mean-squared prediction error
(MSE) for each frame

MSE =
1

N

N�1X

i=0

[x̂(n+ 1)� x(n+ 1)]2 (3.7)

When a set of prediction coe�cients has been computed it is easy to
compute the error signal by subtracting the real input from our estimated
value

✏(n+ 1) = x̂(n+ 1)� x(n+ 1) (3.8)

There exist several methods for arriving at the set of predictor coe�-
cients which yield a minimum MSE [13]. One method is the autocorrelation
method, which TheStringPhone make use of and will therefore be the
only one presented here.

3.2.2 Autocorrelation method for LPC coeficcients

As shown in section 1.3.3 the autocorrelation function holds information
about a signals self similarity at delayed times. We can therefore use it
to arrive at our linear prediction coe�cients by forming an autocorrelation
matrix denoted R [13]

37

R =

0

BBBBBBB@

x ? x(0) x ? x(1) x ? x(2) · · · x ? x(m)
x ? x(1) x ? x(0) x ? x(1) · · · x ? x(m� 1)
x ? x(2) x ? x(1) x ? x(0) · · · x ? x(m� 2)
x ? x(3) x ? x(2) x ? x(1) · · · x ? x(m� 3)

...
...

...
...

...
x ? x(m) x ? x(m� 1) x ? x(m� 2) · · · x ? x(0)

1

CCCCCCCA

(3.9)

This m x m matrix of autocorrelation values is symmetric with all di-
agonal elements equal (called a Toeplitz matrix) and can be solved through
several procedures [62]. We can get our least squares predictor coe�cients
by forming

A = [a0, a1, a2, a3...am] = PR�1 (3.10)

where P is a vector of prediction correlation coe�cients

P = [x ? x(1), x ? x(2), x ? x(3), ..., x ? x(m+ 1)] (3.11)

3.2.3 Implementation

The LPC main processing loop can be seen in Figure 3.17. This code is
written by Ge Wang for his rt lpc tool [83], but has been adapted and used
in TheStringPhone. Ge’s code is heavily based on code written by Perry
Cook.

Figure 3.17: Code implementing the LPC analysis

The signal is first autocorrelated in line 229 and the correlation matrix
is hereafter constructed in the double for-loop. In line 237 the matrix is

38

then inverted and the matrix equation is solved for A in the following for-
loop. The array coefs now hold the filter coe�cients. The last step of
predicting the residue is not done because only the coe�cients are used in
TheStringPhone. The coe�cients are used to design a formant filter that
filters the output of the Karplus-Strong. A Nth order LPC will result in N
coe�cients.

Figure 3.18: Formant filter process implementation

The process function of the formant filter is shown in figure 3.18. The
first for loop adds the delayed samples weighted by the filter coe�cients and
the second for loop shifts every sample by one in the delay line. This way of
implementing filtering is not as computationally e�cient as the Transposed
Direct II Form used in the one-zero lowpass filter for the Karplus-Strong
(see Figure 3.12). However, using this form allowed for a fast and easy way
of changing the filter order thereby making it easy for us to test di↵erent
LPC orders. Figures 3.19, 3.20 and 3.21 show the frequency responses of the
formant filter with an 8th order, 16th order and 30th order LPC respectively.
Here the input to the microphone is the author giving the vowel ”Ihh” as
input.

High frequency formants have less energy and is less prominent in the
filtering. Higher order LPC results in more formants and therefore in bet-
ter quality and accuracy, but it also requires more processing power. In a
musical application such as the TheStringPhone, where e�ciency is more
important than accuracy, a lower order makes sense. However, when com-
paring the frequency response of the 30th order formant filter with the 8th
and 16th order formant filters it is clear that these are not predicting the
formants very well. The 8th order filter is lacking a pole around 250Hz and
the 8th and 16th order filters have poles that are more prominent at 700Hz
and above compared to the 30th order. These errors stem from the fact that
the frequency response of the vocal tract is too complex to represent with
just a few poles. Even though you only need 4 formants (8 poles) to make
speech intelligible, more poles are needed to estimate the vocal tract from
a given speech signal. However, the term intelligibility does not make much
sense in relation to the TheStringPhone. Here it is much more important
that the filter responds e↵ectively to changes in the vocal input, soy the user
easily can understand the causality of what input leads to what output. De-

39

Figure 3.19: Formant filter from a 8th order LPC.

Figure 3.20: Formant filter from a 16th order LPC.

spite this, an order of 30 has been used as the di↵erence in latency of using
a 8th order versus a 30th order LPC is very little.

Due to the similarity of the formant filter’s all pole model and the

40

Figure 3.21: Formant filter from a 30th order LPC .

Karplus-Strong’s comb filter resemblance, we had initial concerns about
whether filtering the Karplus-Strong with a formant filter would give an
e↵ect prominent enough to be heard in the final output. While this does
not appear to be an issue, mostly due to the dynamic nature of the LPC
formant filter, other problems arose. Firstly, an absence of vocal input to
the microphone creates a situation where the LPC is trying to predict a filter
from little or no input. An example of a filter created from LPC coe�cients
predicted from such an input can be seen in Figure 3.22.

With peaks above 30dB this filter does not look good. Figure 3.23 shows
the pole zero plot of the filter and indeed we find poles outside the unit circle
confirming that the filter is not stable. This filter is going to create click and
pops in the output signal. This can be heard in the ’No voice input.wav’
found in the resource folder for this section.

The reason why re-synthesis normally works with LPC is that the output
signal is multiplied by the power of the input estimated by the LPC. This
means that the volume envelope of the signal is matched to the vocal input
making sure that the LPC only analyses meaningful input. This is however
not a suitable solution for the TheStringPhone because we do not want
the input energy to exactly match the output energy. In order to design for
the conversational mode, as explained in section 1.2, a longer decay is more
appropriate, because this allows the user to input energy and then listen to
the result and adjust his performance accordingly. A solution could be to
make sure that the filter coe�cients of the formant filter are only changed

41

Figure 3.22: Formant filter from 30th order LPC with no microphone input.

Figure 3.23: Pole zero plot of formant filter from 30th order LPC with no
microphone input.

when there is a vocal input signal for the LPC to analyze. A first step in
this direction is to detect whether there is any input to the microphone at

42

all. This could easily be done by calculating the RMS of the signal or use
the power prediction of the LPC as an estimate input level. This means
that when the signal goes below a certain threshold the filter becomes static
and the coe�cients are not changed. None of these completely solved the
problem. It is di�cult to find a suitable threshold as this is dependent on
the input gain as well as the type of microphone used. Furthermore, if the
estimated coe�cients are considerably di↵erent from the ”saved” coe�cients
the filter is going to jump, creating discontinuities which results in click and
pops in the output signal.

Because of the above mentioned problem we tried various other au-
dio chains to see if anything interesting popped up. One was to do a
LPC re-synthesis with white noise (audio example found in project folder:
’white noise resynthesis.wav’) and then use this as excitation for Karplus-
Strong. This basically created a more noisy Karplus-Strong, which did not
suite the direction we were going in (audio example found in project folder:
’white noise resynthesis karplus.wav’). Another approach was to mix the re-
synthesis signal with the microphone input. This made the output more in-
telligible, but not more musically interesting (audio example found in project
folder: ’resynthesis mixed with karplus.wav’). The most musically interest-
ing, from our point of view, is actually omitting the formant filter and then
experimenting with various inputs to the microphone. This can both be
vocal and non-vocal.

3.3 The ADSR-envelope

After the microphone input has been processed by the Karplus-Strong and
filtered by the formant filter it is sent through an ADSR envelope generator.
An ADSR is a four-stage envelope generator comprised of an attack period,
a decay period, a sustain portion and a release phase [39]. Figure 3.24
shows a graphical representation of the four stages. The envelope generator
works the following way: when a key is pressed a gate ON signal is sent,
starting the attack stage. The attack stage goes from 0 to 1 in the amount
of time defined by the attack rate. When the envelope generator reaches 1
it switches to the decay stage. Here the amplitude goes from 1 to the user-
defined sustain level (which can be anything from 0 to 1) in the amount of
time defined by the decay rate. The signal then stagnates at the sustain
level until the key is released. When this happens a gate OFF signal is sent
starting the release stage and the envelope generator begins to move towards
zero at the rate defined by the release control.

The curves of an envelope generator can be either linear or exponential.
The exponential generators are often found in hardware devices caused by
the charging and discharging of capacitors with current limited by resistors
[64]. Such exponential segments work well for amplitude envelopes, since

43

Figure 3.24: ADSR amplitude envelope. (Illustration taken from:
http://www.audiomulch.com/images/blog/southpole-expedition-part-3-
pattern-sequenced-adsr-envelopes-adsr-timing.png)

we hear on a log scale [45], thereby making the volume changes sound lin-
ear. Notice that the envelope generator depicted in Figure 3.24 make use
of exponential segments. Exponential segments can be implemented using a
one-pole filter, since these yield perfect exponential decay and work by sim-
ply feeding back a percentage of the previous output, where the percentage
value is controlling the rate of the resulting exponential curve. Such a filter
is also called a leaky integrator and is widely used in DSP applications to
create smooth transitions [64].

3.3.1 Implementation

Figure 3.25 shows the code for handling incoming MIDI note messages.

Figure 3.25: Set frequency and trigger ADSR on key press.

First a check is made for whether the velocity of the message is above
0. If this is true it means that the user has pressed a key and the ADSR
of the corresponding voice is gated ON. If the velocity on the other hand
is 0, the ADSR is gated OFF. The signal is then multiplied by the ADSR
value as can be seen in line 373 of Figure 3.26. The ADSR used is from the

44

Figure 3.26: Main processing loop of TheStringPhone.

Synthesis Tool Kit (STK) by Perry Cook 1. The code for the tick function
is shown in figure 3.27.

Figure 3.27: tick() function from the stk::adsr class.

1
https://ccrma.stanford.edu/software/stk/

45

The function is composed of switch-case statements with a case for each
of the four ADSR stages. One can see that this is a linear ADSR because of
the way the current value is incremented or decremented in the attack, decay
and release stages. This can be seen in line 120, 131 and 148 where the rate is
continuously added as a constant resulting in a linear increase/decrease. The
amount of increase/decrease is controlled by the attackRate, decayRate and
releaseRate variables, which are set by the user using sliders on the MIDI-
keyboard. Sound examples of two di↵erent ADSR settings can be found in
the resource folder (’long attack.wav’) and (’short attack.wav’)

3.4 The peak compressor

The output of the ADSR is sent to a compressor to limit the signals dynamic
range in order to make it sound fuller and louder.

3.4.1 Dynamic range control

Compression is a part of the family of dynamic range techniques, which
transform the amplitude of signals. An audio signals dynamic range refers
to the di↵erence between the softest and loudest parts of the signal. In
a compressor the amount of amplification is controlled by its signal input
and when the signal input rises above a specified threshold the compressor
attenuates it. We can graph the transform function of a compressor in
order to show the relationship between its input and output levels - once
the input signal exceeds a specified threshold it is attenuated according to a
chosen compression ratio. An example can be seen in Figure 3.28 and show
di↵erent input/output compression ratios, which determine the amount of
compression applied.

Instantaneous compressor response is usually not sought because it in-
troduces distortion to the signal [38]. Because of this a compressor usually
applies the gain reduction smoothly instead of instantaneously making it a
nonlinear time-dependent system [26]. Controls are provided for the time
constants; attack controls the time it takes the gain reduction to kick in and
release defines the time it takes to bring the gain back up to the normal level.
A compressor is usually also equipped with a make up gain control at the
compressor output, which allow for matching the input and output levels.
Without a make up gain the output signal will always sound quieter than
the uncompressed signal, because the compressor only attenuates a signal
and never boosts it. The threshold-determined point where the compression
kicks in is referred to as the the knee. If the transition is sharp we refer
to it as a hard knee and the result is a noticeable compression. A softer
transition where the ratio gradually grows is called a soft knee and result in
a less perceptible compression e↵ect.

Simplified speaking a compressor consist of three parts:

46

Figure 3.28: A compressor transfer function. (Illustration taken from:
http://www.practical-music-production.com/images/audio-compressor.jpg)

• a level detector that monitors the amplitude of the input signal and
reacts when the amplitude exceed the threshold point.

• a gain computer that determines the amount of gain reduction applied
to the incoming signal.

• a gain stage that is responsible for attenuating the input signal by a
varied amount of decibels, once it exceeds the threshold point.

When a signal enters the compressor it is split in two copies; one is sent
to the gain stage and the other to a side-chain where the gain computer
applies the required gain reduction to the gain stage.

There exist two di↵erent architectures for gain computing; feed-back and
feed-forward compression.

The feed-back architecture (Figure 3.29) derives a control signal from the
compressor output signal. Since the gain computer is fed with an already
compressed signal the gain computer only needs to be accurate over a small
range, however such a system cannot achieve true limiting, since this would
need infinite negative amplification to calculate the control voltage. Feed-
back compressors are desirable for their fast attack and release times [2] and
are often used for analog implementation.

The feed-forward system (Figure 3.30) derives its control signal from
the input signal and therefore the gain computer has to be accurate over
the whole dynamic range in contrast to a feed-back compressor. With this
architecture true limiting can be achieved.

47

Figure 3.29: Feed-back compression architecture.

Figure 3.30: Feed-forward compression architecture.

TheStringPhone uses feed-forward compression, as can be seen when
examining the code in Figure 3.31. Here the input signal is sent to the level
detector and not the output of the gain stage as in the feed-back architecture.

Figure 3.31: Feed-forward peak compressor code.

48

In the following we will have a look at the di↵erent stages involved in
the compressor and show how each of them has been implemented. We will
hereafter show how it e↵ects the signal.

3.4.2 Level detector

The detector determines the compressors ’dynamics’ [21] i.e. the way in
which the gain reduction follows the signal envelope. The attack and release
times are usually introduced through a smoothing filter [26], which can be
simulated as a digital one-pole filter

y(n) = ↵y(n� 1) + (1� ↵)x(n) (3.12)

where ↵ is the filter coe�cient, x(n) the input, and y(n) the output.
Note that this is the same digital one-pole filter mentioned in section 3.3
about exponential attack, decay and release curves of envelope generators.
The reason why it is typically used, is because it can be seen as an iterative
solution to an exponential function. This can be seen if one examines the
filter’s step response:

y(n) = 1� ↵n (3.13)

In the case of the compressor, the time constant ↵ is defined as the time
it takes the system to reach 1� 1

e of its final value (approx. 63%). Thus we
have

↵ = e�1/(⌧fs) (3.14)

The decay is usually defined as the time it takes the compressor to return
to 1� (1� 1

e) of its uncompressed state. Figure 3.32 shows the code which
calculates the attack and release time of the compressor.

Figure 3.32: Attack and release functions of the peak compressor.

The signal level may be determined by either peak sensing (the signals
absolute value) or based on a measurement of the RMS (RMS-sensing). The
compressor implemented in TheStringPhone makes use of peak sensing.

49

In analog peak compressors the attack and release rate are coupled [26].
This means that the release rate is influenced by the attack rate. In a digi-
tal design we can eliminate this problem by implementing separate smooth
filters for attack and release:

y(n) =

(
↵Ay[n� 1] + (1� ↵A)x[n] x[n] > y[n� 1]

↵Ry[n� 1] + (1� ↵R)x[n] x[n] y[n� 1]
(3.15)

This can be seen in Figure 3.33. Line 44 and 46 are more compact
ways of writing equation 3.15. for attack and release respectively. Line 43
check whether we are attacking or releasing. If the signal is larger than the
previous level estimate, then we are in the attack stage and if it is smaller
we are in the release stage.

Figure 3.33: Main processing loop for the level detector of the compressor.

If one wants to implement RMS compression, the following di↵erence
equation can be used:

y2L(n) = ↵y2L(n� 1) + (1� ↵)x2L(n) (3.16)

which is basically the same as equation 3.12, but with each sample
squared. The RMS detector is more related to the perceived signal loudness[48]
and is useful when we are interested in a smoothed average of the incoming
signal.

3.4.3 Gain computer

This is the stage that generates a control signal to determine the gain re-
duction that will be applied to the signal. Figure 3.34 shows the static
compression curve which relates input level to output level.

When the signal is below the threshold of compression the input signal
equals the output signal:

lO = lI (3.17)

When the input, on the other hand, exceeds the threshold of compression
the output signal is related to the input signal in the following way:

lO = lT +
lI � lT

⇢
(3.18)

50

Figure 3.34: Static compression curve of the compressor.

where ⇢ is the compression ratio. Note here that the values of l are in dB
and therefore in log space. Next we find the amount of gain we need to
reduce lO with:

g(lI) = lO � lI (3.19)

= lT +
lI � lT

⇢
� lI (3.20)

= lT � lI +
lI � lT

p
(3.21)

=
lI � lT
1/⇢� 1

(3.22)

Converting equation 3.22 to linear space yield the following equation for
a gain computer for a feed-forward compressor:

�F =

✓
�I

�T

◆ 1
⇢�1

(3.23)

where �I is the estimated input signal and �T is the threshold value and ⇢
is the compression ratio. Figure 3.35 shows the code for the gain computer
implemented in TheStringPhone. Recognize line 57 as equation 3.21.
The reason log space has been used is because it requires simpler arithmetic
operations, which makes it more e�cient for implementation.

Figure 3.31 shows the main process function of the peak compressor.
If one wanted to implement the feedback architecture a slightly di↵erent

approach must be taken:

lI = lT + (lO � lT)p (3.24)

g(lI) = lO � lI (3.25)

= lO � lT � (lO � lT)p (3.26)

= (lO � lT)(1� ⇢) (3.27)

51

Figure 3.35: Code for the compressor’s gain computer.

Converting equation 3.27 to linear space yields the following equation for a
gain computer for a feedback architecture:

�B =

✓
�O

�T

◆1�⇢

(3.28)

where �I from the feed-forward architecture has been replaced by �O,
which is the estimated output signal.

Figure 3.36: A vocal snippet sent through TheStringPhone with no com-
pression (top), with compression ratio 2.0, threshold 0.3, attack time 0.01
and release time 0.2 (center) and with compression ratio 5.0, threshold 0.1,
attack time 0.001 and release time 0.2 (bottom).

Figure 3.36 shows the same vocal snippet sent through the TheString-
Phone with its compressor having di↵erent settings. In the top one no com-
pression is done. The center shows the vocal snippet with a small amount of

52

compression and the bottom shows a more heavy compression. The sound
files for each compression setting can be found in the resource folder. Due to
its faster attack time, the compressor in the bottom figure, kicks in faster af-
ter each peak, making the dynamic range smaller. When applying a makeup
gain, it keeps the peaks the same level, while enhancing the lower parts. This
makes TheStringPhone sound louder and fuller which was the original in-
tend.

3.5 FDN Reverb

After the signal has been compressed it is processed by a feedback delay
network (FDN) reverberator. This section will explain the theory of digital
reverberation and filter delay networks.

3.5.1 Room acoustics and reverberation

Reverberation is a naturally occurring acoustical e↵ect that becomes evident
when listening to sound in spaces with ceilings and reflective surfaces. Such
spaces reinforce the sound emitted by thousands of closely spaced echoes
bouncing o↵ the surfaces. Therefore sound arrives at the listener in stages.
A sound source will have a direct path where it propagates in a straight
line from source to listener [35]. The direct path will be followed by early
reflections from nearby objects and surfaces (such as first and second order
reflections). The direct path reveals the direction of the source, whereas the
early reflections convey a sense of the geometry and materials of the space
[78]. The time delay of each reflection is proportional to the time it takes
the impulse to travel from the sound source to the walls and then to the
microphone [44]. The amplitude of the reflection is inversely proportional to
the distance traveled and directly proportional to the size of the reflecting
surface, and inversely proportional to the material the surface is made of.
Over time, there are so many reflections that the sound ends up being com-
posed of plane waves distributed with uniform randomness in all directions.
This stage is called the late reverberation and forms the tail of the reverb
impulse response which is arguably indistinguishable from Gaussian noise
with an evolving color and level[3]. Late reverberation tells us something
about the size of the reverberant space together with the absorbing power of
the materials present [65]. The decay time of the late reverberation is called
the reverberation time (denoted t60), and refers to the time it takes the re-
sponse to exponentially reach a 60-dB decay level from its peak amplitude
(1/1000 of its peak energy). The sound quality of a specific architecture de-
pends on the details of its reverberation impulse response [55]. The impulse
response of a room is its output when presented with a brief input signal
e.g. the unit impulse �(n). The impulse response is also used to measure the
reverberation of a room and Figure 3.37 shows an example of a reverberant

53

impulse response with an indication of the direct signal, the early reflections
and the random distributed late reverberation. It is these three stages that
artificial reverberation tries to simulate.

Figure 3.37: Schematic example of a room impulse response. (Illustration
taken from: [22])

3.5.2 Artificial Reverberation

There are overall two approaches to artificial reverberation; a physical ap-
proach (convolution based algorithms and physical room models) and a per-
ceptual approach (delay networks) [78]. The first tries to recreate artificially
the exact reverberation of a room. This approach has the advantage of of-
fering a direct relation between physical specifications of the room and the
resulting reverberation [23]. The physical approach is usually achieved by
convolving the impulse response of a room with a dry source signal. The
impulse response can be a recording from a real room or simulated from a
geometric model of a virtual one. This approach is typically very computa-
tional expensive and is not well suited for real time computation. However,
with the increasing computational power real time convolution is possible
as can be seen in a project such as the recreation of the acoustics of Ha-
gia Sophia in the Bing Concert Hall at Stanford[1]. Several convolution
based commercial reverberation units have also emerged the last years e.g.
the convolution reverb2 e↵ect of Ableton Live and IR-L convolution reverb3

developed by waves. Despite this, convolution is still computationally ex-
pensive and rather inflexible [23] as it does not allow for an easy way to
achieve real-time parametric control of the resulting reverberation’s percep-
tual characteristics. Therefore most artificial reverberation algorithms take
the approach which attempts to model real room reverberation by reproduc-
ing only the salient characteristics of the room [22]. The idea here is that
each perceptual attribute can be associated with a physical feature of the
impulse response and what we want is to construct a filter that reproduces
these attributes. With this approach the algorithm will provide real-time
control of the perceptually relevant parameters. TheStringPhone uses

2
https://www.ableton.com/en/packs/max-live-essentials/

3
http://www.waves.com/plugins/ir-l-convolution-reverb

54

a Feedback Delay Network reverberator, which belongs to the category of
perceptual oriented reverberators and we will therefore only focus on this
approach in the following.

The hardest problem in creating inexpensive artificial reverberation is to
simulate the desired qualities of the late reverberation, which is a smooth
(but not too smooth) decay and a smooth (but not too regular) frequency
response. Acquiring a exponential decay is no problem. The hard issue lies
in making it smooth and free of ”flutter”, ”beating” or other unnatural ir-
regularities, which happens when the echo density is too low. Echo density
is a measure of echoes per second and, in general, a smooth decay results
when the echo density is su�ciently high. Focus of much of the research in
artificial reverberation has been to achieve a high enough echo density. Feed-
back delay networks are presently considered to be among the best choices
for high-quality artificial reverberation [71] and has therefore been used in
TheStringPhone. The subject of artificial reverberation was initiated by
Manfred Schroeder in the 1960s and in the following we will briefly describe
Schroeders original algorithms based on recursive comb and allpass filters
before we dive into feedback delay networks.

Schroeder’s unit reverberators

During the 20th century a number of electro-mechanical reverberation de-
vices were developed. These included tape delays, spring reverberators and
reverberation plates. These typically had a comb filter like response which
introduced an undesired color to the reverberation. Then in 1961 Schroeder
introduced the first idea of artificial reverberation based on digital comb fil-
ters and allpass filters [67]. He introduced allpass filters in order to solve the
problem of the comb filters’ frequency response not being flat. He proposed
various designs using both these filters which he referred to as unit rever-
berators. Figure 3.38 shows the comb filter used, which has the following
transfer function

H(z) =
z�⌧

1� gz�⌧
(3.29)

The filter contains a feedback loop in which an input signal is delayed
by ⌧ samples and scaled by a gain g, and then routed back to be added to
the latest input signal. A small delay time (typically below 10 ms) results in
spectral e↵ects where the delayed version is not heard as a separate delay.
This is due to the integration time of the ear. However, when the delay time
is larger than 10 ms the filter creates a series of exponentially decaying echoes
instead. This filter introduces coloration to the output of the reverberator
due to the fact that the amplitude-frequency response is not flat [67]. In
order to solve this, Schroeder added �g times the input into the output of

55

Figure 3.38: Shroeder’s comb filter. (Illustration taken from: [67])

the delay and changed the comb filter into an allpass filter [4] obtaining the
following transfer function:

H(z) =
z�⌧ � g

1� gz�⌧
(3.30)

The spectral result can be seen in Figure 3.39.
Allpass filters transmit all frequencies equally well, but sharp transient

signals are colored by the filter because it introduces frequency-dependent
delays [50]. With a delay time between 5 and 100 ms the allpass filter
results in a series of exponentially decaying echo pulses just like a comb filter
[65]. Since both the comb filter and the allpass filter are able to generate a
series of decaying echoes they can be used in seriel or parallel to create echo
densities. When connected in parallel their echoes will add together, but
when connected in series each echo generated in one unit triggers a series
of echoes in the next (with the total number of echoes being the product of
the number of echoes of each unit), which is just what we need for creating

56

Figure 3.39: Schroeder’s allpass filter. (Illustration taken from: [67])

echo density.

Figure 3.40: Schroeder’s original reverberator, which consist of parallel comb
filters fed into two allpass filters.

Schroeder connected comb filters in parallel in order to avoid spectral
anomalies. Comb filters are not good for connecting in series because the
only frequencies that will pass are those that correspond to peaks in both

57

comb filter responses. The parallel comb filter architecture initiate a train
of echoes that are summed and fed to a series of two allpass filters in order
to form the reverberated output signal (as can be seen in Figure 3.40).
The serial connection of allpass filters is due to the phase distortion they
introduce [65]. Nonuniform amplitude response due to phase cancellation
may occur by connecting them in parallel.

The output is obviously dependent on the delay times used, which deter-
mine the spacing of the echoes and the amplitude factors, which determine
the decay rate. Note that it is important to choose delay times that are rel-
atively prime to one another for natural sounding reverberation [51]. This
is because delay line lengths that are divisible by any number N will have
coinciding echoes at multiples of N causing a sensation of discrete echoes in
the decay. The idea of using comb filters and allpass filters for reverberation
is e�cient in creating reasonable simulation of global reverberation, but it
lacks the detailed acoustic properties of an actual space.

3.5.3 Feedback delay networks

In [72] J. Stautner and M. Puckette introduced the idea of feedback delay net-
works (FDN) as structures for artificial reverberation, which can be seen as
a generalization of Schroeder’s parallel comb filter design[23]. The strongest
limitation of a parallel comb filter architecture lies in the di�culty of ob-
taining su�cient echo density [23] with a reasonable number of unit filters
[34][22]. Feedback delay networks on the other hand are able to generate
much higher echo densities, given a su�cient number of non-zero feedback
coe�cients and pure delay lengths [14].

The structure the FDN is based on a set of N delay lines connected in a
feedback loop through a feedback matrix A (Figure 3.41).

Figure 3.41: Stautner and Puckettes four channel feedback delay network.
(Illustration taken from: [72])

Each coe�cient amn corresponds to the amount of signal coming out of

58

delay line n sent to the input of delay line m. Some important points they
make about the system is:

• Stability is guaranteed if the feedback matrix A is chosen to be the
product of a unitary matrix and a gain coe�cient g, where g < 1. The
matrix they suggest is

A = g
1p
2

0

BB@

0 1 1 0
�1 0 0 �1
1 0 0 �1
0 1 �1 0

1

CCA (3.31)

where g control the reverberation time.

• Absorptive losses can be simulated by placing a lowpass filter in series
with each delay line.

• It is possible to customize the early reverberant response by injecting
the input signal appropriately into the interior of the delay lines.

They note that tonal coloration is present in the late decay and suggest
randomly varying the delay lengths to reduce the coloration. In [34] Jot and
Chaigne further generalize Stautner and Puckettes system to the one seen
in Figure 3.42. Their structure has two important properties

• The reverberator can be designed with arbitrary time and frequency
density while simultaneously guaranteeing absence of tonal coloration
in the late decay [23].

• The reverberator can be specified in terms of the desired reverberation
time Tr(!) and frequency response envelope G(!).

3.5.4 Implementation

When an input is given to the Jots General Delay Network, it is split in
N copies. Each of these copies are sent to a delay line and an absorption
filter. The output is hereby mixed by a mixing matrix and fed back into the
input of the filter delay network. The following sections will describe the
implementation of each step in depth.

59

Figure 3.42: Jots general feedback delay network. (Illustration taken from:
[34])

Figure 3.43: Array of the delay lengths of each delay line of the FDN Reverb.

Delay lines

The implementation of the delay line is the same as the one used in the
implementation of the Karplus-Strong algorithm. Please refer to section
3.1.3 for any further description. The delay lines are stored in an array and
when the FDN reverb is initialized the delay length of each delay is set as
defined by an array of delay lengths as shown in Figure 3.43.

The delay lengths are typically mutually prime [67], as this reduces the
e↵ect of many peaks piling up on the same frequency, leading to a more
dense and uniform decay [52]. The delay lengths should be chosen to ensure
a su�ciently high modal density in all frequency bands [71]. This makes
sure that no specific frequencies are accentuated which would cause ”ringing
tones”, ”flutter” or uneven amplitude modulation in the late reverberation
impulse response.

Absorption filter

Absorptive filters are associated with each delay in the system in order to
e↵ect a frequency dependent reverberation time [34].

The filters serve the purpose of simulating the absorption caused by
walls and other absorbent objects found in rooms. Because shelf filters
allows separate gain control for both high and low frequencies, using these

60

instead of simple lowpass filters is an easy way of giving extra control over
the reverb [71]. An analog shelf filter can be constructed by combining the
transfer function of an analog lowpass filter:

h(s) = g
1

s/⇢+ 1
(3.32)

and an analog highpass filter:

h(s) = g
s

s+ ⇢
(3.33)

Figure 3.44: Bode plot of an analog lowpass filter with gain g = 1 and cuto↵
frequency ⇢ = 1rad/s (left) and an analog highpass filter with gain g = 1
and cuto↵ frequency ⇢ = 1rad/s (right).

Figure 3.45: Bode plot for a shelf filter with gl = 0.1, gh = 1 and ⇢ = 1rad/s
(left) and a shelf filter with gl = 1, gh = 0.1 and ⇢ = 1rad/s (right).

61

where ⇢ is the cuto↵ radian frequency and g is the gain. Bode plots of
these two filters can be seen in Figure 3.44. By combining the two filters one
can generate a shelf filter. This is done by simply adding a lowpass filter of
gain gl and transition frequency ⇢ and a highpass filter of gain gh:

h(s) =
ghs/⇢+ gl
s/⇢+ 1

(3.34)

Figure 3.45 shows a bode plot for a shelf filter with gl = 0.1, gh = 1 and
⇢ = 1rad/s (left) and a shelf filter with gl = 1, gh = 0.1 and ⇢ = 1rad/s
(right).

In order to go from the analog to the digital domain the transfer function
of the shelf filter needs to be transformed from a continuous-time system
representation to a discrete-time representation. In other words the transfer
function of the shelf filter needs to be converted from the s-domain to the
z-domain. This can be done using the bilinear transform, where one replaces
s in Equation 3.34 by:

s =
2

Td

1� z�1

1 + z�1
(3.35)

where T is the sample period 1/fs. So given a continuous-time transfer
function H(s) we apply the bilinear transform as:

H(z) = Hc

✓
2

Td

1� z�1

1 + z�1

◆
(3.36)

where H(z) denotes the discrete time-transfer function and Hc denotes
the continuous-time transfer function. This maps the entire j!-axis in the
s-plane onto one revolution of the unit circle in the z-plane. One must
note that this results in a non-linear mapping from �1 ⌦ 1 to
�⇡ ! ⇡, which means that the frequency axis is going to su↵er from a
nonlinear compression [54] as shown in Figure 3.46.

In order to compensate for this it is common to do pre-warping which
ensures that the cuto↵ frequency is correct after the transformation. This
can be done using the following equation:

! = 2arctan(⌦T/2) (3.37)

where ! is the frequency in the digital domain and ⌦ is the frequency
in the analog domain. Figure 3.47 shows the code for implementing the
bilinear transform.

The variables g0, g1 and transition in line 314, 318 and 319, are the low
frequency gain (gl), high frequency gain (gh) and the transition frequency
(⇢). g0 and g1 is calculated based on the desired decay times for low fre-
quencies (T 0

60) and high frequencies (T1
60), which is specified by the user. In

62

Figure 3.46: Mapping of the continuous-time frequency axis onto the
discrete-time frequency axis by bilinear transformation. [54]

Figure 3.47: Code implementing the bilinear transformation.

order to be able to specify a desired decay time for low and high frequencies
we need an expression for gl and gh as a function of T 0

60 and T1
60 .

In general the decay time can be written as e�t/⌧ . Since T60 is defined
as the time needed for the signal to reach �60dB, i.e 0.001 in amplitude we
have:

e�T60/⌧ = 0.001 ! T60 = �⌧ log(0.001) (3.38)

Now, we want to take into account the whole feedback loop which in-

63

cludes both a delay line of length T and a shelf filter h. For each loop
the signal is passed through the filter. This means that for a wave of fre-
quency !, it will have a gain of h(!) every T seconds. So after nT seconds
the gain is h(!)n. The decay time t can then be extrapolated as being
h(!)�t/T = etlog(h(!))/T , which in turn leads to

⌧ = �T/log(h(!)) or h(w) = e�T/⌧ (3.39)

If we take the values at ! = 0 and ! ! 1 we get

gl = elog0.001T/T
0
60 (3.40)

gh = elog0.001T/T
1
60 (3.41)

Figure 3.48 shows the code for calculating gl and gh.

Figure 3.48: Code for calculating the gain of the shelf filters.

where roundTrip is delaylength/sampleRate in seconds. These are then
used to define the coe�cients of the shelf filter as can be seen in Figure 3.49

Figure 3.49: Code for defining the coe�cients of the shelf filter.

where rho is the transition frequency, g0 is the low frequency gain and
g1 is the high frequency gain. The shelf filters are designed each time the
T 0
60, T

1
60 or the transition frequency is changed as can be seen in Figure 3.50

Figure 3.50: For loop which designs the shelf filters.

Where fbfilt[i] is an array containing all the filters.

Mixing matrix

The mixing matrix serves the purpose of simulating the mixing of all the
reflections found in a room. The choice of matrix will influence the echo

64

density and general sound of the reverb. In general we want a matrix which
creates a rapidly increasing echo density. Mixing matrices with the most
o↵-diagonal energy will do this. In order to see why we can inspect Figure
3.42. We see that each delay line is sent through the mixing matrix. The
first column in the matrix determines the amount of the first delay line that
is fed back to each of the delay lines. So a11 is fed back to the first delay
line, a21 is fed to the second delay line and so on. Having a matrix with
a lot of o↵ diagonal energy ensures that energy from one delay line is sent
to the other delay lines. Having a mixing matrix with only diagonal entries
(like the identity matrix) will on the other hand result in no mixing. This is
because each delay line will only be fed back to itself resulting in a parallel
allpass structure.

Evaluating the reverb

In order to evaluate the reverb from a engineering point of view, it is useful to
measure the echo density of the reverberation with a given matrix and delay
lengths. As explained, echo density, is commonly expressed in terms of the
number of reflections per second. This measurement is however not always
meaningful. It is unclear how to best define a reflection, and sampling rate
becomes a limiting factor in counting reflections. This has been as addressed
by Abel and Huang in [3] and they propose another measure, which uses the
fact that once a reverberator is su�ciently mixed the impulse response taps
takes on Gaussian distribution. Using a sliding window over the impulse
response of the reverberator, one can therefore count the number of taps
outside the standard deviation for the window. This count is normalized by
the count expected for Gaussian noise and the result is referred to as the
echo density profile:

⌘(t) =
1/erfc(1/

p
2)

2� + 1

t+�X

⌧=t��

1{|h(⌧)| > � (3.42)

where h(t) is the impulse response of the reverberator, 2� + 1 is the
window length in samples, � is the standard deviation:

� =

"
1

2� + 1

t+�X

⌧=t��

h2(⌧)

#1/2

(3.43)

1{·} is a function returning 1 when its argument is true and 0 otherwise,
and erfc(1/

p
2) = 0.3173 is the expected fraction of samples lying outside a

standard deviation from the mean for a Gaussian distribution [3].

65

Figure 3.51 show MATLAB code for calculating the normalized echo
density profile. Line 11 calculates the standard deviation and corresponds
to Equation 3.43 and line 12 corresponds to Equation 3.42.

Figure 3.51: MATLAB code for calculating the normalized echo density
profile.

Figure 3.52 shows the echo density profile of our FDN reverberator using
four di↵erent mixing matrices. These are a hadamard mixing matrix, 2 ran-
domly generated skew-hermitian matrices (one with more diagonal energy
than the other) and for reference the identity matrix. For all four plots the
T 0
60 is set to 2 seconds and T1

60 is set to 0.5 seconds. A window length of 20
milliseconds has been used.

We want to choose a feedback matrix for TheStringPhone with a lot
of o↵-diagonal energy, since this results in a smooth decay. We see that the
skew-Hermitian matrix with a decay of 0.5 (the one with most o↵ diagonal
energy) and the Hadamard matrix have the fastest growing echo densities.
It relates to the fact that the o↵ diagonal energy in their respective mixing
matrices are more energetic, encouraging the mixing of the FDN channels
and the randomization of the echoes. The skew-Hermitian matrix with
a decay of 1 has more diagonal energy, which result in a slower mixing.
The identity matrix does not mix the channels at all thereby resulting in
no mixing. When inspecting the normalized echo density function of the
identity matrix there is still a slow increase and is due to the smearing of
the echoes rather than mixing.

If we were to base our choice of mixing matrix on the echo density profile
we want to choose either the skew-Hermitian matrix with a decay of 0.5 or
the Hadamard matrix. However, when listening to their impulse response
we hear that the Hadamard matrix produces a late reverberation, which
contains a beating that is not desirable. This beating is not present when
using the skew-Hermitian matrix because it produces a more randomized
mixing of the echoes. Audio examples of the impulse response of the reverb
with the di↵erent mixing matrices can be found in the resource folder. Audio
examples of TheStringPhone with and without the FDN reverb is given

66

as well.

Figure 3.52: Normalized echo density functions of an identity mixing matrix
(indentity), a randomized skew-Hermitian matrix with decay 0.5 (ortho 0.5),
a randomized skew-Hermitian matrix with decay 1 (ortho 1) and a hadamard
matrix (hadamard).

67

Chapter 4

Conclusion and future
perspectives

4.1 Conclusion

We have designed a new digital musical instrument calledTheStringPhone
and evaluated the di↵erent parts from an engineering perspective. In this
process we successfully implemented a Biquad Filter, a FIFO delay, a circu-
lar bu↵er delay, the Karplus-Strong algorithm, a peak and RMS compressor
and a FDN reverb from scratch in C++. We also used the coe�cients from
a linear predictive coding analysis of the vocal input to design a formant
filter, which filters the output from the Karplus-Strong algorithm. This,
however, did not work properly due to fact that the input from the micro-
phone is not limited to vocal input. The instrument did however work well
without the formant filter and we found this to be a very interesting com-
bination of input device and sound engine. This was due to the fact that a
microphone input allows for a wide range of instrument usages due to the
complex and unpredictable nature of ”input from the real world”. However,
the instrument was only evaluated from an engineering perspective and fur-
ther testing within an human computer interaction framework is needed in
order to conclude further on the usages of the instrument.

The purpose of the thesis was to extend our knowledge to a more holistic
understanding of the process of designing digital musical instruments. We
now have a good foundation for implementing DMIs from an interaction
design perspective, but also from an engineering point of view. While this
is good, the holistic approach is very complex and there are so many pa-
rameters to take into account when designing for these. Designing a DMI
from scratch is a long process and each part has to be tested from several
di↵erent perspectives. Focusing on the engineering part of the process let
us to make assumptions about the interaction part of the instrument, which
does not necessarily hold true. This is in fact the pitfall of not taking an

68

holistic approach to designing DMIs.

4.2 HCI and aesthetic perspectives

This thesis can be seen as the first iteration in developing TheString-
Phone. In order to move towards a holistic approach, the next step would
be to evaluate TheStringPhone from a HCI perspective as well as from an
aesthetic perspective. The HCI perspective would indicate what could be
improved in terms of gestural control and mapping. This means, through
user testing, trying to answer questions like: is there a better way to control
the pitch than using the MIDI-keyboard? Is the sonic palette of the instru-
ment wide enough? Does the current parameter settings, such as decay on
the Karplus-Strong, work for the majority or just for us? Or should one be
able to adjust this parameter? Testing in terms of the aesthetic dimension
would give insight into how well the instrument serves as a tool for artistic
expression. This means answering question like: does the musician feel he
can express himself through the instrument or does he feel any limitation?
Is the instrument capable of moving an audience? And so forth. Each of
these tests would point to corrections, which could be made.

4.3 Specific points of improvement

When using input from the microphone low frequencies can tend to influence
the signal in a bad way. It is therefore always a good idea to high pass the
input signal. In the next version of TheStringPhone a high pass filter will
be added before the signal is sent to the Karplus-Strong.

As the the formant filter did not work properly extra timbre control
is needed in order to give the instrument a wider sonic palette. Future
studies could be made in what other vocal parameters could be interesting
to analyze and what control parameter on the instrument they could control.
This could for example be to map di↵erent phonemes from the voice to the
cuto↵ frequency on a low pass filter.

The Karplus-Strong algorithm is the most simple case of a waveguide.
A natural future step is to extend TheStringPhone to use more com-
plex waveguides. This would allow for additional control and a wider sonic
palette.

69

Bibliography

[1] Abel, J. S., e. a. Recreation of the acoustics of hagia sophia in
stanford’s bing concert hall for the concert performance and recording
of cappella romana. Presented at the International Symposium on Room
Acoustics, Toronto, Canada (2013).

[2] Abel, J. S., and Berners, D. P. On peak-detecting and rms feed-
back and feedforward compressors. In Audio Engineering Society Con-
vention 115 (Oct 2003).

[3] Abel, J. S., and Huang, P. A simple, robust measure of reverber-
ation echo density. Audio Engineering Society, Presenting at the 121st
Convention (2006).

[4] Alfred, R. Digital Filters for Everyone, 3 ed. Creative Arts and
Sciences House, 2013.

[5] Cartwright, M., and Pardo, B. Synthassist: Querying an audio
synthesizer by vocal imitation. In Proceedings of the International Con-
ference on New Interfaces for Musical Expression (2014), pp. 363–366.

[6] Cartwright, M., and Pardo, B. Vocalsketch: Vocally imitating au-
dio concepts. CHI ’15 Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (2015).

[7] Castagne, N., and Cadoz, C. 10 criteria for evaluating physical
modelling schemes for music creation. Proc. of the 6th Int. Conference
on Digital Audio E↵ects (DAFX-03) (2003).

[8] Chadabe, J. Electric Sound: The Past and Promise of Electronic
Music. Upper Saddle River. NJ: Prentice Hall, 1997.

[9] Chadabe, J. Electronic music and life. Organised Sound 9 (2004),
3–6.

[10] Collins, N. Cargo cult instruments. Contemporary Music Review 6
(1991), 73–84.

70

[11] Cook, P. Principles for designing computer music controllers. Pro-
ceedings of the New Interfaces for Musical Expression (NIME) (2001).

[12] Cook, P. Re-designing principles for computer music controllers: a
case study of squeezevox maggie. Proceedings of the New Interfaces for
Musical Expression (NIME) (2009).

[13] Cook, P. R. Real Sound Synthesis for Interactive Applications, 1 ed.
A K Peters/CRC Press, 2002.

[14] de Lima, A. A., Netto, S. L., Biscainho, L. W., Freeland,
F. P., Bispo, B. C., de Jesus, R. A., Schafer, R., Said, A., Lee,
B., and Kalker, T. Quality evaluation of reverberation in audioband
speech signals. In e-Business and Telecommunications. Springer, 2009,
pp. 384–396.

[15] De Poli, G., and Rocchesso, D. Physically based sound modelling.
Organised Sound 3, 1 (1998), 61–76.

[16] Deacon, J. The development of a software tool that employs vocals for
the control of musical elements in a live performance. Master’s thesis,
University of Limerick, 2014.

[17] Dolson, M. The phase vocoder: A tutorial. Computer Music Journal
10, 4 (1986), 14–27.

[18] Drummond, J. Understanding interactive systems. Organised Sound
14(2) (2009), 124–133.

[19] Fasciani, S. Voice Controlled interface for Digital Musical Instrument.
PhD thesis, National University of Singapore, 2014.

[20] Flanagan, J. L., and Golden, R. M. Phase vocoder. Bell System
Technical Journal 4 (1966), 1493–1509.

[21] Floru, F. Attack and release time constants in rms-based feedback
compressors. J. Audio Eng. Soc. 47 (1999), 788–804.

[22] Frenette, J. Reducing artificial reverberation requirements using
time-variant feedback delay networks. Master’s thesis, University of
Miami, 2000.

[23] Gardner, W. Applications of Digital Signal Processing to Audio and
Acoustics, 1 ed. Springer US, 1998.

[24] Gelineck, S. Exploratory and creative properties of physical-
modeling-based musical instruments. PhD. Thesis. Aalborg University
Copenhagen (2012).

71

[25] Gelineck, S., and Serafin, S. A practical approach towards an
exploratory framework for physical modeling. Computer Music Journal
32, 2 (2010), 51–65.

[26] Giannoulis, D., Massberg, M., and Reiss, J. Digital dynamic
range compressor design - a tutorial and analysis. J. Audio Eng. Soc.
60, 6 (2012).

[27] Hunt, A., and Wanderley, M. M. Mapping performer parameters
to synthesis engines. Organised Sound 7(2) (2002), 97–108.

[28] Hunt, A., Wanderley, M. M., and Paradis, M. The importance
of parameter mapping in electronic instrument design. In procedings of
the 2002 conference on New interfaces for musical expression (NIME),
Dublin, Ireland (2002).

[29] Jaffe, D., and Smith, J. O. Extensions of the karplus-strong
plucked-string algorithm. Computer Music Journal 7 (1983).

[30] Janer, J. Voice-controlled plucked bass guitar through two synthesis
techniques. In Proceedings of the 5th international conference on New
Interfaces for Musical Expression (2005), 132–135.

[31] Janer, J. Singing-driven interfaces for sound synthesizers. PhD thesis,
Universitat Pompeu Fabra, Barcelona, 2008.

[32] Johnston, A., Candy, L., and Edmonds, E. Designing and eval-
uating virtual musical instruments: facilitating conversational user in-
teraction. Design Studies 29(6) (2008), 556–571.

[33] Jorda, S. Instruments and players: Some thoughts on digital lutherie.
Journal of New Music Research (2005).

[34] Jot, J., and Chaigne, A. Digital delay networks for designing arti-
ficial reverberators. In Audio Engineering Society Convention 90 (Feb
1991).

[35] Kadis, J. The Science of Sound Recording, 1 ed. Focal Press, 2012.

[36] Karplus, K., and Strong, A. Digital synthesis of plucked-string
and drum timbres. Computer Music Journal 7, 2 (1983), 43–55.

[37] Kvifte, T., and Jensenius, A. R. Towards a coherent terminol-
ogy and model of instrument description and design. In procedings of
the 2006 conference on New interfaces for musical expression (NIME)
(2006), 220–225.

72

[38] Lachaise, B., and Daudet, L. Inverting dynamics compression with
minimal side information. Proc. of the 11th Int. Conference on Digital
Audio E↵ects (2008).

[39] Lazzarini, V., and Boulaner, R. The Audio Programming Book.
The MIT Press, 2011.

[40] Lemaitre, G., and Rochesso, D. On the e↵ectiveness of vocal imi-
tations and verbal descriptions of sounds. The Journal of the Acoustical
Society of America 135, 2 (2014).

[41] Lemaitre, G. e. a. Vocal imitations and the identification of sound
events. Ecological Psychology 23 4 (2011).

[42] Loscos, A., and Aussenac, T. The wahwactor: a voice controlled
wah-wah pedal. In Proceedings of the 5th international conference on
New Interfaces for Musical Expression (2005), 172–175.

[43] Loscos, A., and Celma, O. Larynxophone: using voice as a wind
controller. In Proceedings of the 2005 International Computer Music
Conference (2005).

[44] Loy, G. Musimathics: The Mathematical Foundations of Music (Vol-
ume 1). The MIT Press, 2007.

[45] Loy, G. Musimathics: The Mathematical Foundations of Music (Vol-
ume 2). The MIT Press, 2007.

[46] Magnusson, T. Of epistemic tools: Musical instruments as cognitive
extensions. Organised Sound 14(2) (2009), 168–176.

[47] Magnusson, T. Designing constraints: Composing and performing
with digital musical systems. Computer Music Journal, 34:4 (2010),
62–73.

[48] Massberg, M. Investigating dynamic range compression. Master’s
thesis, Queen Mary University of London, 2009.

[49] Mathews, M. The digital computer as a musical instrument. Science,
New Series, pp. 553-557 142, 3592 (1963).

[50] Moore, F. Elements of Computer Music, 1 ed. Prentice Hall, 1990.

[51] Moorer, J. Signal processing aspects of computer music: A survey.
Proceedings of the IEEE 65, 8 (1977).

[52] Moorer, J. A. About this reverberation business. Computer Music
Journal 3, 2 (1979), 13–18.

73

[53] Oliver, W., Yu, J., and Metois, E. The singing tree: design of
an interactive musical interface. In Proceedings of the 2nd conference
on Designing interactive systems: processes, practices, methods, and
techniques (1997).

[54] Oppenheim, A. V., and Schafer, W. R. Discrete-Time Signal
Processing, 2 ed. Prentice Hall, 1999.

[55] Orfanidis, S. Introduction to Signal Processing, us ed. Prentice Hall,
1995.

[56] Overholt, D. The musical interface technology design space. Organ-
ised Sound 14(2) (2009), 217–226.

[57] Paine, G. Interactivity, where to from here? Organised Sound 7(3)
(2002), 295–304.

[58] Paradiso, J. Electronic music: New ways to play. IEEE Spectrum,
34(12):18–30 (1997).

[59] Park, T. H. Introduction to Digital Signal Processing: Computer
Musically Speaking. World Scientific Publishing Company, 2009.

[60] Peeters, G. A large set of audio features for sound description (sim-
ilarity and classification) in the cuidado project. Tech. rep., Ircam,
Analysis/Synthesis Team, 2003.

[61] Pressing, J. Synthesizer performance and real-time techniques. Ox-
ford Uninversity Press, 1992.

[62] Rabiner, L. R., and Juang, B. H. Fundamentals of Speech Recog-
nition, 1 ed. Prentice Hall, 1993.

[63] Ramakrishnan, C., Freeman, J., and Varnik, K. The architecture
of auracle: A real-time, distributed, collaborative instrument. In Int.
Conf. on New Interfaces for Musical Expression (2004).

[64] Redmon, N. Envelope generators-adsr.
http://www.earlevel.com/main/2013/06/01/envelope-generators/,
2013. Accessed: 2015-05-01.

[65] Roads, C. The Computer Music Tutorial, 1 ed. The MIT Press, 1996.

[66] Schilling, R. J., and H., S. L. Fundamentals of Digital Signal
Processing Using MATLAB, 2 ed. Cengage Learning, 2011.

[67] Schroeder, M., and Logan, B. Colorless artificial reverberation.
Audio Engineering Society 9, 3 (1961), 192–197.

74

[68] Smith, J. O. Physical modeling using digital waveguides. The Com-
puter Music Journal 16, 4 (1992).

[69] Smith, J. O. Physical modeling synthesis update. The Computer
Music Journal 20, 2 (1996), 44–56.

[70] Smith, J. O. Introduction to digital filters with audio applications,
2007.

[71] Smith, J. O. Physical audio signal processing: for virtual musical
instruments and digital audio e↵ects. W3K Publishing (2010).

[72] Stautner, J., and Puckette, M. Designing multi-channel rever-
berators. Computer Music Journal 5, 1 (1982), 52–65.

[73] Steiglitz, K. A Digital Signal Processing Primer: With Applications
to Digital Audio and Computer Music, 1 ed. Prentice Hall, 1996.

[74] Stowell, D. Making music through real-time voice timbre analysis:
machine learning and timbral control. PhD thesis, Queen Mary Univer-
sity of London, 2010.

[75] Tanaka, A. Musical technical issues in using interactive instrument
technology with application to the biomuse. Proc. of the 1993 Inter-
national Computer Music Conference. San Francisco, Calif.: Interna-
tional Computer Music Association (1993), 124–126.

[76] Tanaka, A. Trends in gestural control of music, chapter musical per-
formance practice on sensor-based instruments. Ircam - Centre Pom-
pidou (2000).

[77] Vaidyanathan, P. P. The Theory of Linear Prediction - Synthesis
Lectures on Signal Processing. Morgan and Claypool publishers, 2007.

[78] Valimaki, V., and Smith, J. O. Fifty years of artificial reverberation.
IEEE Transactions on Audio, Speech and Language Processing 20, 5
(2012).

[79] Valimaki, V., and Takala, T. Tutorial article: Virtual musical
instruments - natural sound using physical models. Organised Sound 1,
2 (1996), 75–86.

[80] Vaseghi, S. V. Multimedia Signal Processing - Theory and Applica-
tions in Speech, Music and Communications. Wiley, 2007.

[81] Wanderley, M. M. Gestural control of music. Accessed: 2015-05-27.

[82] Wanderley, M. M., and Depalle, P. Gestural control of sound
synthesis. Organised Sound 14 (2009), 188–196.

75

[83] Wang, G. rt lpc: real-time lpc analysis, synthesis, and visualization,
2003.

[84] Zölzer, U. Reverberation algorithms. In DAFX: Digital Audio E↵ects,
U. Zölzer, Ed., 2 ed. Wiley, 2011.

76

Appendices

77

.1 Digital filter theory

Digital filters operate on numerical data and do what their physical name-
sakes do in co↵ee makers or water systems i.e. modifying the output - ideally
in a beneficial way - with respect to its inputs. This is done by forming linear
combinations of past input and output samples that are uniformly sampled
in time [13]. Current and past inputs are usually denoted as

x(n), x(n� 1), x(n� 2), ...

where n is the current time, n-1 is the time one sampling period before the
current one and so on. Current and past output are usually denoted as

y(n), y(n� 1), y(n� 2), ...

Probably the most common and easy accessible way to characterize a
filter is to plot its amplitude-versus-frequency response (commonly referred
to as the filters frequency response). Each type of filter has its own
characteristic frequency response curve. The most common filters can be
seen on Figure 1 and are lowpass, highpass, bandpass and bandstop (also
called notch) filters.

Figure 1: An illustration of the simple filters; lowpass, highpass, bandpass
and bandstop (also called notch)

An important property of a filter is its cuto↵ frequency (fc). This is
defined as the point in the frequency range at which the filter reduces the
signal to 0.707 of its maximum value [65]. This is so because the power
of the signal at the cuto↵ frequency is proportional to the amplitude of
the signal squared, since 0.7072 = 0.5. Therefore the cuto↵ frequency is

78

also called the half-power point. Another common term is the 3 dB point,
because 0.707 relative to 1 is close to �3dB. The area above the half-power
point is referred to as the passband and the area below is referred to as the
stopband. In addition the width of a bandpass and bandstop/notch filter is
defined by the bandwidth (BW).

The center frequency (also referred to as f0 or fc) of a bandpass filter
is the maximum point of amplitude and the center frequency of a band reject
filter is the minimum point of amplitude (see Figure 2 for a simple bandpass
filter).

Figure 2: A simple bandpass filter with center frequency f0 and bandwidth
B together with low and high cuto↵ frequencies (fL and fH)

Ideal filters have a sharp transition which results in everything outside
being maximally attenuated. These abrupt transitions are however not re-
alizable and the area between the passband and the stopband is called the
transition band. In non-ideal filters the slope is not linear leading up to
the cuto↵ frequency. The steepness of a filter’s slope is specified in terms of
decibels of attenuation or boost per octave (usually referred to as dB/octave)
[65].

Bandpass filters typically also has a Q factor, which represents the
degree of resonance within a bandpass filter. Q can be found by dividing
center frequency with the bandwidth

Q = fc/BW

notice that when the center frequency is constant, adjusting Q is the same
as adjusting the bandwidth.

Another property of a bandpass or band reject filter is its gain and refers
to the amount of boost or cut of a frequency band. Say that the frequency
response of a filter is H(k), where k is frequency, then its gain is

79

H(k) =
O(k)

I(K)

where O(k) and I(k) are the amplitudes at frequency k of the output and
input signals, respectively [45].

.1.1 Finite and infinite filters

Digital filters can be either Finite Impulse Response (FIR) filters or
Infinite Impulse Response (IIR) filters. The di↵erence is on whether the
filter only operates on current and past inputs (FIR) or if it also operates
on past outputs (IIR). A simple two-point moving average filter can be
written as the simple di↵erence equation

y(n) = 0.5(x(n) + x(n� 1)) (1)

Such a filter is a FIR filter, because it only operates on a finite number
of delayed versions of its inputs. The number of delayed inputs is referred
to as the filter ’order’. Filters of the form of Equation 1 are also called
nonrecursive or all zero [13]. The di↵erence equation for the general FIR is

y(n) =
NX

i=0

aix(n� i) (2)

= a0x(n) + a1x(n� 1) + a2x(n� 2) + ...+ aNx(n�N)

where N is the order, a is a set of N coe�cients, and y is the output.

Now consider the simple IIR filter

y(n) =
NX

r=1

bry(n� r) (3)

= b1y(n� 1) + b2y(n� 2) + b3y(n� 3) + ...+ bNy(n�N)

Such a filter sum scaled delayed copies of the filter’s output signal y
and are therefore called an infinite impulse response filter. But in order to
be useful a filter obviously must be able to receive a input from somewhere.
How do we give such a filter an input? The solution is to couple an IIR filter
to an FIR filter. By doing so we end up with a canonical filter that operates
on both its inputs and outputs, with the general di↵erence equation

80

y(n) =
NX

i=0

aix(n� i)�
MX

s=1

bsy(m� s) (4)

In this case there is a feedback loop on the output. The output will be
fed back and appear in scaled form again at the output in the next time
step and so on. Since general filters have IIR components, such filters are
also called IIR filters. Other terms used for this type of filter is pole-zero
filter or Aoto-Regressive moving Average [13].

.1.2 Impulse response of a filter

The e↵ects of a filter can be viewed in either the time domain or the fre-
quency domain and the e↵ects of filtration can be shown by ’before’ and
’after’ images of the signal. But not all inputs reveal the e↵ect in an opti-
mum way. It is therefore desirable to find an ideal signal that will clearly
show the characterization of a given filter. White noise can tell us how the
filter responds in the frequency domain, but an equally important measure
of a filter is how the filter responds to transients [65]. In order to do this we
need a measure of the filters response in the time domain. For this we use
the unit impulse function �(n) which is defined as a single 1 located at
n = 0, and all other indexed values are 0

�(n) =

⇢
1, n = 0
0, n 6= 0

�

The output signal generated by a filter that is fed a unit impulse is
called the impulse response (IR) of the filter and is the filter’s signature
in the time domain (see Figure 3) and corresponds exactly to the system’s
amplitude-versus-frequency response [65]. It is a characteristic of FIR filters
that the impulse response will always be a replica of the filter coe�cients
[4]. Such impulse response will be finite in duration, just as there is a finite
number of coe�cients. The impulse response length of IIR filters is however
not tied to the order of the filter [45]. For such filters the impulse response
may die out, remain constant, or even grow over time.

.1.3 The transform function of a filter

Besides a di↵erence equation a filter can also be represented in a mathe-
matical form called the filter’s transfer function. It is the filters spectral
equivalent to the the impulse respons and for much filter analysis it turns
out to be mathematically convenient [4]. By describing the filter in the fre-
quency domain we can reveal valuable insight into the behavior and stability
of a filter in response to di↵erent input frequencies. The transfer function

81

Figure 3: Impulse response of a comb filter

is a mathematical relationship between the input and output of a filter and
is denoted H(z) and is written in what is called z-transform notation

H(z) =
Y (z)

X(z)
(5)

A filters transfer function can be obtained by convolving the filters im-
pulse response h(n) with its input x(n). By evaluating the filters transfer
function at z = ei! we obtain the filters frequency response H(!) [80]. The
frequency response of a filter is typically defined as the characteristics of the
filters output in terms of its magnitude and phase response when excited
by an input signal [59]. These two characteristics are usually graphed as
a bode plot and are plotted against a horizontal axis proportional to the
logarithm of frequency. An example of a bode plot of a simple lowpass filter
can be seen in figure 4. The magnitude plot shows how the filter amplifies
or attenuates a signal as a function of frequency and the phase plot shows
how phase changes as a function of frequency.

The magnitude response is commonly referred to as the filters gain G(!)
and can be found by taking the magnitude of the transfer function

G(!) = kH(!)k

A filters phase response ⇥(!) indicates how much each frequency component
gets advanced in phase by the system [66] and can be calculated by taking
arctan2 to the real and imaginary parts of the signal

⇥(!) = arctan

✓
�Im[H(!)]

Re[H(!)]

◆
= arctan2(Im[H(!)], Re[H(!)])

82

Figure 4: Bode plot of a simple lowpass filter

If a feedforward filter has coe�cients that are symmetric about their
center the phase response is proportional to !, and that results in a fixed
time delay [73].

.1.4 The z-transform

This transform is a analytical tool for digital filters, which maps the e↵ects of
sample delays into a two-dimensional image of the frequency domain called
the complex z plane [65] and allows insight into the transient behaviour,
the steady state behaviour, and the stability of a discrete-time system [80]
(such as a digital filter). The two dimensional complex z-plane can be seen in
figure 5 and consist of an imaginary (Im) and real (Re) axis. We can draw
the unit circle by sweeping the digital frequency ! in a counterclockwise
direction from 0 to ⇡ (DC to Nyqvist) with unity gain.

We must have a working knowledge of the z-transform in order to be
able to understand the behavior of discrete-time filters (and systems in gen-
eral). The z-transform represents a system in the complex z-plane in terms
of the locations of the poles and zeros (i.e. the roots of the polynomial) of
the filter transfer function. We can attain the poles and zeroes by setting
the denominator and numerator of the transfer function equal to zero and
then find the solutions with respect to z. Via the solution we can quickly
determine the frequency response characteristics of the system as they di-
rectly reflect the resonant and dampening characteristics [59]. The poles
reinforce and amplify the magnitude values at specific frequency locations
(i.e. resonant locations) and the zeroes dampen or reduce the magnitude

83

values of a frequency response (dampening frequencies). By having one pole
or one zero you cannot get complex response curves such as bandpass, peak
and shelving filters. For this you need two poles and two zeroes (this type
of filter is called a biquad filter and will be explained later). With a single
point of change it is only possible to get lowpass and highpass responses.

Figure 5: The complex z-plane

A pole corresponds to the root of the denominator, resulting in

H(z) =
Y (z)

0

By dividing by zero H(z) will go to infinity and will result in the magni-
tude response of the filter to resemble a tent proppep up at the pole location,
thus creating a resonant location. Similar a zero take the form

H(z) =
0

X(z)

thus pulling down the frequencies at the location of the zero.

To transform a filter using the Z-transform, simply capitalize all variables
x and y, and replace all time indices (n-a) with the appropriate time delay
operator Z�1 [13]. Thus the Z transformed version of Equation 1 would look
like this

84

Y (z) = 0.5(X(z) +X(z)z�1)

and the z-transform of the general filter as described in Equation 4 looks
like this

H(z) =
Y (z)

X(z)
=

1 + a1z�1 + a2z�2 + ...+ aNz�N

1 + b1z�1 + b2z�2 + ...+ bMz�m
(6)

.1.5 The one-zero filter

With this added flexibility for manipulation and understanding let us con-
sider the idea of the transfer function by looking at our averaging filter
(Equation 1) with gain coe�cients a0 and a1

y(n) = a0x(n) + a1x(n� 1)

in z-transform this equation becomes

Y (z) = a0X(z)z0 + a1X(z)z�1

The transfer function of this filter then becomes

H(z) =
Y (z)

X(z)

=
a0X(z)z0 + a1X(z)z�1

X(z)

=
X(z)(a0z0 + a1z�1)

X(z)

= a0 + a1z
�1

We thus obtain the frequency responseH(!) by evaluating the z-transform
on the unit circle i.e. by setting z = ei!, so that H(z) = a0 + a1e�i!. Lets
see how this filter responds to low frequencies by setting ! = 0. If we set
our gain coe�cients to 1 the transfer function becomes

1 + 1 · e0 = 2

which means the filter amplifies energy a 0 Hz by a gain of factor 2.
Conversely, if we set ! = ⇡ in order to see how the filter responds to high
frequencies (and keep our gain coe�cients at 1) the frequency response be-
comes

85

1 + 1 · e�i⇡ = 1 + 1(�1) = 0

So when ! = ⇡ (half the sampling rate, which is the highest frequency
representable without aliasing) the filter blocks the input. So clearly this is
a lowpass filter. If we swept ! from 0 to ⇡ the values would gradually move
from from 2 to 0.

But if we let our gain coe�cient a1 < 0 we create a highpass filter instead.
This can be seen by setting a1 = �1, and a0 = 1. Now if we set ! = 0 we
get

1 + [(�1)e0] = 0

and when ! = ⇡ we get

1 + [(�1)(�1)]] = 2

So depending upon the sign of a1 this filter can act as a lowpass or a
highpass. The first order one-zero filter has a single zero located at z = �a,
and exhibits a maximum gain of a0 · (1 + kak) [13].

.1.6 The one-pole filter

As we just saw the one-zero filter forms the weighted average of two input
samples to produce its output, but the one-pole filter forms its output by
computing the weighted sum of the current input sample and the most recent
output sample. Its di↵erence equation is

y(n) = ax(n) + by(n� 1)

Since this filter refers to its previous output it is recursive. What does
this mean for the filter’s response to an impulse? If we set a = 1 and x = �
the impulse response of the filter simply becomes

h(n) = bn

This means the impulse response is infinite in length, asymptotically ap-
proaching zero without ever reaching it [45] i.e. an infinite impulse response
(IIR) filter.

If we perform a z-transform of the impulse response in order to derive
the frequency response of the one-pole filter we get an infinite z-transform.
In order to circumvent this we keep b and z in the range �1 to 1, so the

86

values of later terms in the summation will become vanishingly small as n
grows towards infinity.

The transfer function of our IIR filter in examination is

H(z) =
a

1� bz�1
=

z

z

a

(1� bz�1)
=

za

z � b

by equating the denominator and numerator to zero we get the following
two equations for the pole and zero respectively

z � b = 0 ! z = b

z = 0

since our zero is located at the origin we can neglect it as it a↵ects all
frequencies equally. We now have a filter with a single pole located at b.
Since b must be a real number, the pole will always lie on the real axis of the
z-plane. When b > 0 the pole will amplify frequencies near 0 Hz and when
b < 0 the pole will amplify high frequencies. The closer the pole comes to
the unit circle the greater the amplification (note that if b is not less than
1 we will get an unstable filter). If both a and b are set to 1, the first order
one-pole filter becomes a digital integrator, which simply sums all prior input
signals [13].

.1.7 The second order pole-zero filter (BiQuad)

If we want to implement a filter with more complex frequency response, such
as something similar to a band-pass or band-stop filter, we need more than
one pole or one zero. A BiQuad filter is a two-pole and two-zero IIR filter.
In the time domain the BiQuad filter is

y(n) = x(n) + a1x(n� 1) + a2x(n� 2)� b1y(n� 1)� b2y(n� 2) (7)

and in the z-domain the BiQuad transfer function becomes

Y

X
=

1 + a1z�1 + a2z�2

1 + b1z�1 + b2z�2
(8)

From the transfer function it is easy to see that the BiQuad filter is so
named because its numerator and denominator consist of quadratic polyno-
mials. It turns out that any polynomial can be factored into first and second
order polynomials [13] therefore no matter the order the transfer function
of the general filter (Equation 6) can always be decomposed into first and

87

second order filter building blocks. As seen in section .1.5 and .1.6 the sec-
ond order two-pole blocks correspond to resonators and the second order
two-zero components are anti-resonators, capable of placing a complex pair
of zeros anywhere in the z-plane. The poles and zeroes can more or less be
placed anywhere in the z-plane as long as coe�cients a and b are complex.
Equation 8 can also be written in the more common form by multiplying z2

to both numerator and denominator

Y

X
=

z2 + a1z1 + a2
z2 + b1z1 + b2

(9)

Let’s try to put this into a more compact form by finding the roots. The
roots of the zeroes can be found by

z =
�a1 ±

p
a21 � 4 · a2
2

and similarly for the poles

z =
�b1 ±

p
b21 � 4 · b2
2

For complex roots the positions will always end up as a complex conju-
gate pair [59] of the form

z = Re± Im

or represented in polar form

z = R · e±i�

where R is the Euclidian distance defined by the real (Re) and imaginary
(Im) components

R =
p
Re2 + Im2

and � is found by

� = tan�1 Im

Re

88

By using the Euler identities we can represent the transfer function from
Equation 9 as

H(z) =
z2 � 2 ·Rz · cos�z ·+R2

z

z2 � 2 ·Rp · cos�p ·+R2
p

where the subscript z refers to the zeroes and p refer to the poles. If we
multiply the numerator and denominator by z�2 we get

H(z) =
1� 2 ·Rz · cos�z · z�1 +R2

z · z�2

1� 2 ·Rp · cos�p · z�1 +R2
p · z�2

from the above transfer function we can write the di↵erential equation

y(n) =x(n)� 2 ·Rz · cos�z · x(n� 1) +R2
z · x(n� 2)

+ 2 ·Rp · cos�p · y(n� 1) R2
p · y(n� 2) (10)

Equation 10 describes the filter coe�cients in terms of an exponential
damping parameter (Rz for the zeroes and Rp for the poles) and a center
frequency f0 of resonance/anti-resonance [13], which is defined by the digital
frequency �

� = 2 · ⇡ · f · T

f0 =
�p

2 · ⇡ · T

Moving Rp towards 1 increases the gain at a particular resonant frequency f0
(remember that R has to be strictly smaller than 1 in order for the filter to
be stable). At the same time Rp acts as a dampening coe�cient, and when
Rp = 0, the filter becomes an FIR filter. Because of the zeros anti-resonance
we can make a bandpass filter by placing the two zeros at DC and Nyquist
as seen in Figure 6.

.1.8 The comb filter

This filter is very musical e↵ective and has its name due to the shape of
the filters magnitude response as seen in Figures 7 and 8. Comb filters are
used in both digital reverberation processors and in the design of periodic
waveform generators [55]. A comb filter can either be modeled via poles or
zeroes i.e. as a FIR or IIR filter and the filter has two tuning parameters:
amount of delay time (⌧) and relative amplitude of the delayed signal to

89

Figure 6: A pole-zero plot of a simple bandpass filter

that of the reference signal [84]. Comb filters have an e↵ect in both the
time and frequency domain. If we have a large value for ⌧ the e↵ect will
be a distinct echo, but if ⌧ is set below our perceptual threshold for time
event segregation the comb filter will have a spectral e↵ect instead. The
sharpness of the valleys (zeroes of the FIR version) and peaks (poles for the
IIR version) are a direct function of the filter coe�cients [59] i.e. the closer
to the unit circle the more pronounced e↵ect. The di↵erence equation of a
FIR filter is given by

y(n) = x(n) + b1 · x(n� L)

where L = ⌧/fs. This filter amplifies all frequencies that are multiples
of 1/⌧ and attenuates alle frequencies in between (note that b1 has to bee
positive). If b1 is negative we have the opposite situation.

The di↵erence equation for the IIR comb filter is

y(n) = x(n) + a1 · y(n� L)

where y has to be strictly smaller than one as a stability criterion (as
it is with all IIR filters). After each time delay the filter outputs a copy of
the input signal with an amplitude of ap1, where p refers to the number of
cycles that the original signal has gone through [84]. In e↵ect the FIR and
IIR versions are similar i.e. they a↵ect the same frequencies, however the
gain grows very high in the IIR filter resulting in narrower frequency peaks
as |a| comes closer to 1.

90

Figure 7: Bode plot of an FIR comb filter

Figure 8: Bode plot of an IIR comb filter

So, unlike the FIR version the IIR version of a comb filter keeps an
attenuated echo of the input in its feedback path, which gets accentuated
every Lth sample and can result in a perceivable pitched output (as long as
the output lies in the pitch range of course). Because of this it is possible to
use a comb filter to filter signals with no pitch characteristics into pitched
material.

91

	Introduction
	Thesis outline
	Scientific Background
	Digital musical instruments
	Gestures and the gestural controller
	Mapping

	Interaction models
	The voice as a gestural controller
	A survey of voice driven DMIs
	The human voice apparatus
	Signal processing methods for voice signal analysis

	Designing TheStringPhone
	Choosing a sound engine
	Choosing an input device
	Extending the timbre control
	Adding compression and reverb
	TheStringPhone - a system overview

	Implementing TheStringPhone
	The Karplus-Strong algorithm
	The ideal vibrating string
	Digital Waveguides - modelling a plucked string
	Implementation

	Linear predictive coding and the formant filter
	Linear prediction
	Autocorrelation method for LPC coeficcients
	Implementation

	The ADSR-envelope
	Implementation

	The peak compressor
	Dynamic range control
	Level detector
	Gain computer

	FDN Reverb
	Room acoustics and reverberation
	Artificial Reverberation
	Feedback delay networks
	Implementation

	Conclusion and future perspectives
	Conclusion
	HCI and aesthetic perspectives
	Specific points of improvement

	Appendices
	Digital filter theory
	Finite and infinite filters
	Impulse response of a filter
	The transform function of a filter
	The z-transform
	The one-zero filter
	The one-pole filter
	The second order pole-zero filter (BiQuad)
	The comb filter

