
Drone Phone Home
GSM Localization in Disaster Scenarios

June 2015

DES906F15

Barbara Albertine Flindt

Jeppe Blicher Tarp

Aalborg University
Department of Computer Science

Software





Title:
Drone Phone Home - GSM Localization in Disaster Scenarios

Theme:
Embedded Systems

Project Period:
SW10, Spring Semester 2015

Project Group:
DES906F15

Authors:
Barbara Albertine Flindt

Jeppe Blicher Tarp

Supervisor:
René Rydhof Hansen, Mads Christian Olesen, Andrea Fabio Cattoni

Page Count:
68

Finished:
June 2015

Signatures:

Barbara Flindt:

Jeppe Tarp:





Resume

When natural disasters strike in urban areas hundreds or thousands of people
die, many of them in the days following the disaster. Collapsed buildings
bury people and finding and extracting them is a time-consuming and often
dangerous undertaking. Given that 80% of people pulled out from debris have
their cell phone on them, using GSM localization could be a faster, safer way
to help locate buried victims.

This report details the development of a module for GSM localization
which can be attached to a UAV to help USAR workers locate buried vic-
tims. This solution was first presented in the pre-specialization project. We
first present preliminary knowledge required to understand our solution such
as knowledge about GSM networks, OpenBTS and USAR as well as prelim-
inary testing of the solution. We also describe our use case scenario. Then
we present relevant tools and techniques, such as triangulation, directional
antennae and more.

After detailing our revised hardware architecture, we describe the soft-
ware architecture to support the module and the reasoning behind our route
planning system, which is focused on maximising localization accuracy when
performing angle of arrival measurements. We also describe our mathematical
reasoning behind how triangulation with inaccurate angle of arrival measure-
ments affects the accuracy.

After explaining the design and implementation of the software system we
detail the development of a software simulation to test the system, seeing as
we did not have all the hardware necessary to perform live testing.

Finally we reflect on scalability, limitations and future work for this project
and conclude.

I





Preface

This report documents the development by the group des906F15 of a proto-
type of a module to be used on UAVs for GSM localization in disaster areas.
The reader is expected to have technical knowledge equivalent to that of a
4th semester master’s student of Software Engineering at AAU. As well, the
reader is expected to have read the pre-specialization report from the previous
semester and have a basic understanding of GSM and radio signals. The report
focuses especially on a control system for the UAV, including route planning
and localization using angle of arrival measurements. A list of acronyms used
is provided at the start of the report and acronyms will also be defined in
footnotes the first time they appear in the text.

Acknowledgements

The group would like to thank Anders Friis, Chief Technology Officer at Sky-
Watch A/S, for procuring hardware, and for providing information about
UAVs and the initial idea for the project. The group would also like to thank
René Rydhof Hansen, Mads Chr. Olesen and Andrea Fabio Cattoni for excel-
lent supervision and guidance during the semester. Finally, the group would
like to thank the OpenBTS community for their quick and helpful responses
in regards to the use of OpenBTS.

III





Contents

1 Introduction 3

2 Preliminaries 5
2.1 Urban Search and Rescue . . . . . . . . . . . . . . . . . . . . . 5
2.2 GSM Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 I-LOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 RESCUECELL . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Testing of Setup . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Tools and Techniques 15
3.1 OpenBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 USRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Antennae . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Effects of Inaccurate Angle Measurements . . . . . . . . 20
3.5 Tangent Plane Projection . . . . . . . . . . . . . . . . . . . . . 23
3.6 ZeroMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Publisher-Subscriber Pattern . . . . . . . . . . . . . . . 25

4 Solution 27
4.1 Revised Hardware Architecture . . . . . . . . . . . . . . . . . . 27
4.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Localization . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Usage of OpenBTS . . . . . . . . . . . . . . . . . . . . . . . . . 31

V



CONTENTS

4.3.1 The Message Tier . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 The Group Tier . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 The Manager Tier . . . . . . . . . . . . . . . . . . . . . 34

4.4 Determining Angle of Arrival . . . . . . . . . . . . . . . . . . . 35
4.4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Triangulating Location . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.1 Triangulation Calculations . . . . . . . . . . . . . . . . . 38
4.5.2 Computing Inaccuracy . . . . . . . . . . . . . . . . . . . 40

4.6 Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Optimization and Evaluation . . . . . . . . . . . . . . . 44

4.7 Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7.1 Delegation of Commands . . . . . . . . . . . . . . . . . 47
4.7.2 The START State . . . . . . . . . . . . . . . . . . . . . 48
4.7.3 The TRANSIT State . . . . . . . . . . . . . . . . . . . . 49
4.7.4 The TURNING State . . . . . . . . . . . . . . . . . . . 50
4.7.5 The READING State . . . . . . . . . . . . . . . . . . . 50

4.8 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Testing 53
5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Updating the Simulation . . . . . . . . . . . . . . . . . . 54
5.1.2 Generating Physical Channel API Messages . . . . . . . 56
5.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Tests and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Simulation with 500 Metre Area Radius . . . . . . . . . 58
5.2.2 Simulation with 1000 Metre Area Radius . . . . . . . . 59

6 Reflection 61
6.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

VI



CONTENTS

List of Acronyms

AoA Angle of Arrival

API Application Programming Interface

BSC Base Station Controller

BTS Base Transceiver Station

CLI Command Line Interface

CPU Central Processing Unit

FDMA Frequency Division Multiple Access

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

IMSI International Mobile Subscriber Identity

IP Internet Protocol

I-LOV Intelligentes sicherndes Lokalisierungssystem für die Rettung und
Bergung von Verschütteten

JSON JavaScript Object Notation

LoS Line of Sight

LUR Location Update Request

MS Mobile Station

MSC Mobile Switching Center

MTC Mobile Terminated Call

RSSP Received Signal Strength Power

SAR Search and Rescue

SIM Subscriber Identity Module

SMS Short Message Service

TDMA Time Division Multiple Access

TDoA Time Difference of Arrival

1



CONTENTS

UAV Unmanned Aerial Vehicle

USAR Urban Search and Rescue

USRP Universal Software Radio Peripheral

VOIP Voice over IP

2



Chapter 1

Introduction

Natural disasters hitting urban areas often carry a high death toll. Many of
these deaths do not occur at the time of the disaster but in the days following,
when rescue workers race against time to locate and extract victims from the
rubble. After 48 hours a buried victim’s chances of survival are very slim.
Statistics from the 1995 earthquake in Kobe, Japan showed that although
the survival rate of people extracted was 80.5% on the first day, this number
plummeted to 28.5% on the second day and 5.8% on the third day of the relief
efforts [1]. As these numbers indicate, time is of the essence during USAR1,
but extraction of buried victims is time consuming work and thus it is vital to
locate places with many buried victims as quickly as possible. Additionally,
natural disasters wreak havoc on established infrastructure in urban areas
and thus navigating a disaster area is slow and sometimes even dangerous for
rescue workers. Already, UAVs2 are being utilized to make the navigation
of disaster areas safer and quicker so using these further in the USAR work
is an option that needs to be explored. Seeing as a survey by the German
Federal Agency for Technical Relief showed that 80% of buried victims had
their phone on them when rescued this opens up the possibility of using GSM3

localization to figure out the best places to start the rescue operations.

Problem Statement

Previously we have described the problem of finding people buried in debris
after natural disasters [2]. This is an important issue for rescue workers and
relatives of buried victims and currently locating people in debris is a cum-
bersome task, which costs human lives. In this report we will describe the
development of a module that can be attached to a UAV and which will facil-
itate rough localization of cell phones in a disaster area.

1Urban Search and Rescue
2Unmanned Aerial Vehicles
3Global System for Mobile Communications

3



CHAPTER 1. INTRODUCTION

In this first prototype of the module the focus will been on:

� Prototype of our suggested architecture wrt. software and hardware.

� Control system and communications for the module.

� Mathematical reasoning about triangulation with inaccurate data, see-
ing as our research has not brought up any sources for this.

� A route planning algorithm to maximise localization accuracy.

� Optimization measures for scalability and efficiency.

4



Chapter 2

Preliminaries

This chapter covers preliminary testing of the solution’s hardware architecture
as well as theoretical knowledge needed to fully understand the system and its
application. All subjects mentioned in this chapter, save architecture testing,
are covered more in-depth in the previous semester report [2].

2.1 Urban Search and Rescue

This section provides an overview of what USAR entails. USAR is the term
used for SAR1 operations in urban environments, which usually means a large
amount of rubble and debris and many people buried in the ruins of buildings.

USAR has 5 stages:

� Preparedness - time between disasters. USAR teams maintain prepared-
ness by training crew and maintaining gear. Organizations should be
able to respond to calls for assistance 24/7.

� Mobilization - time immediately following a disaster. Local teams assess
damage and communicate needs for international assistance.

� Operations - rescue operations. The stage at which teams perform rescue
operations.

� Demobilization - ceasing operations. Teams pack up and leave the dis-
aster site.

� Post Mission - evaluation. Review of operations and discussion of pos-
sible improvements. Teams then return to preparedness stage.

During operations, using technological aids for localization of buried vic-
tims falls under what is known as technical SAR. The technology is useful
for medium and heavy USAR teams, that perform extractions from collapsed
buildings and other structures.

1Search and Rescue

5



CHAPTER 2. PRELIMINARIES

2.2 GSM Networks

GSM is the most widely used standard for mobile communications. It facili-
tates voice calls, SMS2 and basic data communication.

From ”GSM Localization in Disaster Scenarios” [2]:

GSM is a cellular network [3] where coverage is achieved by hav-
ing a large quantity of cells. Each cell is given a globally unique
identifier, and is served by a BTS3. Every cell is assigned to a num-
ber of channels which consists of two frequencies, one for downlink
and one for uplink, within the same frequency band. Cells which
are geographically close are assigned to different channels, such
that handsets communicating with different BTS’s create minimal
interference. This is known as FDMA4.

Each BTS is controlled by a BSC5 which has several base sta-
tions under its control. The BSC manages assigning channels to
each BTS and handing of connected handsets from one BTS to an-
other. Additionally, the BSC relays all communication from each
BTS under its control to an MSC6 and vice versa. The MSC is re-
sponsible for routing calls and other services to the recipient, and
invoking other GSM elements, such as SIM7 identification, which
will not be described in this report, as they are not relevant to this
project. An illustration of the network can be seen in Figure 2.1

From the same source on handset to BTS communication[2]:

As mentioned, GSM handsets communicate with a given BTS
through a number of channels. These channels are a pair of fre-
quencies in a frequency band, for example, the GSM-1800 band
uses frequencies 1710-1785 MHz for uplink and 1805-1880 MHz
for downlink. The difference between the uplink and downlink fre-
quency for a channel is always the same within a frequency band,
so for channels in the GSM-1800, the downlink frequency will al-
ways be 95 MHz higher than uplink. This difference is called the
duplex spacing of a band. A channel uses 200 KHz, so the GSM-
1800 band contains more than 350 different channels, specifically
the channels numbered 512 to 885 in the GSM specification[4].
To allow multiple handsets to communicate with a base station,

2Short Message Service
3Base Transceiver Station
4Frequency Division Multiple Access
5Base Station Controller
6Mobile Switching Center
7Subscriber Identity Module

6



2.3. LOCALIZATION

Figure 2.1: GSM Network

TDMA8 is used. In TDMA time is divided into timeslots, which
are clustered together in groups of eight called frames. Each device
will be assigned to a time slot in which it is allowed to transmit to
the BTS. This synchronization is achieved by enabling the BTS,
when it starts receiving transmissions from the handset, to reply
with how much earlier the handset needs to transmit next time to
meet its assigned time slot [4].

2.3 Localization

Several GSM localization techniques exist, here AoA9 will be explained. Lo-
calization by AoA is quite simple in theory: the angle of arrival of the signal
from the MS10 is determined from at least two BTS and the intersection of
those angles is the location of the MS. An illustration of this can be found
in Figure 2.2. The accuracy of this localization technique is dependent on

8Time Division Multiple Access
9Angle of Arrival

10Mobile Station

7



CHAPTER 2. PRELIMINARIES

whether there is a clear LoS11 or not. For further explanation of GSM local-
ization techniques, see the previous project report[2].

Figure 2.2: Positioning via Angle of Arrival [5]

2.4 Existing Solutions

Currently a few projects exist that utilize GSM localization in SAR operations.
A quick overview of these will be given in this section.

2.4.1 I-LOV

The I-LOV12 research project was a German research project endorsed by the
Federal Ministry of Education and Research in Germany. Their solution to
finding people trapped in debris was a five layer architecture, seen in Figure 2.3
and summarised below:

1. A mobile handset to be located and any existing GSM networks.

2. A special BTS equipped with a jammer.

3. Handheld scanners used to measure signal strength and angle of arrival.

4. Infrastructure layer handling communication, synchronization and orga-
nization.

5. A PC providing the needed computation powers for analysis.

11Line of Sight
12Intelligentes sicherndes Lokalisierungssystem für die Rettung und

Bergung von Verschütteten

8



2.4. EXISTING SOLUTIONS

Figure 2.3: I-LOV Architecture [6]

The general idea is that the rescue team upon arrival will set up the I-LOV
base station and turn on the jammer to ensure that all mobile handsets in the
area connect to their system. The special BTS will then connect to handsets
and initiate a modified MTC13 which makes the handset transmit with full
power. Rescue workers will then walk around with a field strength measuring
device utilizing AoA and RSSP14, which is the strength of the received signal,
to locate the handsets.

2.4.2 RESCUECELL

RESCUECELL is a project funded by the European Union, finished in late
2014, which utilizes GSM to assist with SAR missions. The architecture in-
cludes three different types of devices:

� Static Nodes, which are a type of BTS that should be placed around the
affected area.

� Mobile Nodes, which are handheld devices carried around the disaster
area by SAR personnel.

� Command Centre, which is a single node handling data collection and
system management of static and mobile nodes.

Information about the RESCUECELL system is, at the time of writing,
still very sparse and as such not much more information can be given about
it.

13Mobile Terminated Call
14Received Signal Strength Power

9



CHAPTER 2. PRELIMINARIES

2.5 Architecture

The initial hardware architecture of this project is shown in Figure 2.4. A
module with a USRP15 and a small computer is attached to the UAV which
relays information to a control station set up in the SAR headquarters.

Figure 2.4: Overall Architecture[2]

The USRP acts as a BTS and allows handsets in the area to connect to
it in order to start locating them. The USRP is equipped with two antennae:
a directional receiving antenna and an omnidirectional transmission antenna,
which will allow for AoA measurements. The on-board computer runs the
BTS software and handles data management of incoming handset information
as well as flight pattern calculations to facilitate localization of connected
handsets. The UAV has a GPS16 which provides location coordinates for the

15Universal Software Radio Peripheral
16Global Positioning System

10



2.5. ARCHITECTURE

localization algorithm. The USRP can possibly allow two-way communication
between buried victims and rescue personnel.

The control station receives information from the UAV module and creates
a visual representation of the located handsets in the area. As well, the control
station facilitates manual operation of the UAV if need be.

2.5.1 Testing of Setup

To determine if the architecture was viable a small test was performed. A
B200 USRP with a directional receiver and an omnidirectional transmitter,
connected to a laptop which recorded the results, was placed on top of a 10
metres tall hill. 50 metres away, at the foot of the hill, a single MS, con-
nected to the BTS, was left on the ground. The laptop runs the BTS software
OpenBTS which has a Physical Channel API17 providing RSSP measure-
ments. OpenBTS will be explained further in Section 3.1. With the receiving,
directional, antenna being turned clockwise in 45 deg steps two SMS were
sent to the MS at every step and the RSSP was recorded. The test setup is
illustrated in Figure 2.5, and the result can be seen in Figure 2.6.

Figure 2.5: Test Setup

As can be seen in the result only the three RSSP measurements closest
to pointing directly towards the handset resulted in a received signal. This
confirms information that the tested receiving antenna should have a direc-
tionality of around 120°[7] and that there is a significant decrease in signal

17Application Programming Interface

11



CHAPTER 2. PRELIMINARIES

Direction Received RSSP (dBfullscale)

0 -40

45 & 315 -45

90 through 270 -71 (Only noise)

Figure 2.6: Test Results

power as the antenna is faced away from the source. This has both positive
and negative consequences; the positive consequence is that using an AoA
localization method is indeed possible, the negative consequence is that this
hardware setup is not enough to implement such a system, as any handsets
not in front of the UAV would simply be disconnected from the network, in
which case it would stop generating messages on the Physical Channel API.
A revised architecture for the implementation of the system will be described
in Section 4.1

2.6 Use Case

With the preliminaries covered, this section will describe the use case for this
project. In the use case an earthquake has hit a major city. Local USAR
teams have communicated their need for medium and heavy USAR teams to
extract victims from the rubble. The teams arrive on the disaster site and set
up their headquarters. Once they have set up, a technical SAR worker scans
the area to see if any GSM networks are still functioning and if so, jams these
signals in the area where USAR work is being done.

Once this has been achieved, one or several UAVs equipped with the Drone-
PhoneHome localization module are switched on and given information about
the size and location of the area they need to cover. The UAVs first connect
with nearby handsets (rescue worker phones are excluded from the network at
this point) and after a suitable number of handsets have connected, the UAVs
plan their route and take off. The UAVs fly over the area that the team is
supposed to cover and find buried handsets. These findings are relayed back to
the headquarters where a technical SAR worker monitors the UAVs and their
gathered results together with the person(s) responsible for choosing where to
start extracting buried victims.

If the UAVs need manual control, the technical SAR workers will handle
this so that operation of the module is not dependent on the UAVs being
autonomous. Once the UAVs are running low on battery they return and
a new UAV can either be deployed, or the UAVs can be called back and
extraction work in the chosen site can begin. During extraction the UAVs can
be utilized to help rescue workers navigate the rubble and find the safest and
shortest route to their destination as well as facilitate communication via the

12



2.6. USE CASE

GSM network.
Figure 2.7 is an image to illustrate the use of the product as well as the

primary concerns of the users.

Figure 2.7: Illustration of Use Case

Localization of the buried handsets is done using AoA to triangulate the
location. This is achieved using the OpenBTS Physical Channel API and
turning the UAVs around to measure signal strength with the directional
antennae. The GUI18 shows the located handset in a way that allows the
technical SAR worker to easily spot good sites to begin work. The UAVs fly
following individual pre-planned routes which maximise the number of sites
they can visit and the amount of readings they can perform. An illustration
can be seen in Figure 2.8.

18Graphical User Interface

13



CHAPTER 2. PRELIMINARIES

Figure 2.8: Illustration of Use Case

14



Chapter 3

Tools and Techniques

This chapter describes the tools and techniques used in the project, some of
which are part of our contribution to the solution of the problem.

3.1 OpenBTS

OpenBTS is a free, open source, software based GSM access point. It utilizes
IP1 connectivity to deploy a GSM network that can allow connected hand-
sets to send SMS and make voice calls over VOIP2. Additionally, through
the Physical Channel API, OpenBTS provides information about connected
handsets such as RSSP, connected channel, time delay and more. This infor-
mation is relayed approximately every half second during data communication
and voice calls as well as LUR3. This API in conjunction with a directional
antenna enables AoA determination with OpenBTS. In Listing 3.1 an example
of a message from the Physical Channel API can be seen.

1 {
2 "name" : "PhysicalStatus",
3 "timestamp" : "18446744072283447705",
4 "version" : "0.1",
5 "data" : {
6 "burst" : {
7 "RSSI" : -49.4808,
8 "RSSP" : -27.4808,
9 "actualMSPower" : 11,

10 "actualMSTimingAdvance" : 0,
11 "timingError" : 1.59709
12 },
13 "channel" : {
14 "ARFCN" : 153,
15 "IMSI" : "001010000000001",
16 "carrierNumber" : 0,

1Internet Protocol
2Voice over IP
3Location Update Request

15



CHAPTER 3. TOOLS AND TECHNIQUES

17 "timeslotNumber" : 0,
18 "typeAndOffset" : "SDCCH/4-1",
19 "uplinkFrameErrorRate" :
20 },
21 "reports" : {
22 "neighboringCells" : [],
23 "servingCell" : {
24 "RXLEVEL_FULL_dBm" : -67,
25 "RXLEVEL_SUB_dBm" : -67,
26 "RXQUALITY_FULL_BER" : 0,
27 "RXQUALITY_SUB_BER" : 0
28 }
29 }
30 }
31 }

Listing 3.1: Physical Channel API Message Example

The information relevant to this project is the IMSI, the unique identifier
for each SIM, timestamp, RSSP, actualMSPower and actualMSTimingAdvance.
The actualMSTimingAdvance gives a very rough estimation of the distance
between the MS and the BTS, within 550 metres. This is useful for filtering
out handsets that are too far away to be considered for the current sweep per-
formed by the UAV. RSSP is the raw signal strength reading which depends
on the direction of the antenna. The actualMSPower is the transmission
power of the MS during that burst and it is used to ensure that the RSSP
readings are consistent. The reason for using OpenBTS is that it is free and
open-source, unlike other GSM access point software.

3.2 USRP

The USRP setup is comprised of a board and up to two antennae: a transmit-
ter and a receiver. The B200 USRP[8] is a software defined radio, i.e. a radio
where signal generation and modulation is handled digitally. The B200 board
has a frequency range of 70 MHz to 6 GHz, which means it can generate and
receive radio signals within this range. The actual output and input ranges
of the setup is dependent on the overlap between the frequency ranges of the
board and the antennae. As the antennae have ranges of 850 MHz to 6.5 GHz
for the receiver and 824 MHz to 960 MHz (or 1710 MHz to 1990 MHz as it
is a dualband antenna) for the transmitter the frequency range is perfect for
GSM signals. The B200 USRP can be seen in Figure 3.1. The weight of a
single B200 is 94 grams.

3.2.1 Antennae

The receiving antenna is a so-called log-periodic directional antenna. The
antenna is constructed as a series of dipole antennae spaced in a logarithmic

16



3.2. USRP

Figure 3.1: B200 USRP

function of the frequency, called σ, with the length of each element correspond-
ing to resonance at different frequencies within the bandwidth of the antenna
[9]. The resulting radiation pattern of this construction is shown in Figure 3.2.
The radiation pattern of the omnidirectional antenna is a torus. The weight of
the omnidirectional antenna is 21 grams and 34 grams for directional antenna.

Moving the antenna around and monitoring the drop and increases in
signal strength gives an indication of the direction of the signal, as the signal
will be received better when the tip of the antenna is pointed at the source.
The antennae used are shown in Figure 3.3.

17



CHAPTER 3. TOOLS AND TECHNIQUES

Figure 3.2: Radiation Pattern of a Log-Periodic Antenna [10]

Figure 3.3: Omnidirectional and Directional Antennae

18



3.3. COMPUTER

3.3 Computer

In order to perform localization, run OpenBTS and take readings from the
Physical Channel API a computer is required. Seeing as the hardware is going
to be placed on a UAV the computer needs to be very lightweight, yet still
powerful enough to perform the needed computations. An option for this is
the BeagleBone Black, a credit-card-sized computer with 512MB RAM, 4GB
storage and 2x PRU 32-bit microcontrollers. The BeagleBone weighs only 42
grams and can be seen in Figure 3.4

Figure 3.4: BeagleBone Black

19



CHAPTER 3. TOOLS AND TECHNIQUES

3.4 Triangulation

Triangulation is a technique for locating an unknown point using measure-
ments of angles. In Euclidean geometry, the location of the point C can be
found by measuring the angle towards it from two known points A and B.
These angles are relative to the angle of the line between the known points.
We describe the angles measured at A and B as α and β respectively, and
the distance between A and B as l. In Figure 3.5 a triangle has been created
from lines going through the three points, with angles α and β. The distance
between A and C can then be found using the law of sines:

|AC|
sinβ

=
l

sin(180− (α+ β))
⇔ |AC| = l

sin(180− (α+ β))
sinβ (3.1)

Knowing the distance and angle from A to C allows us to find the exact
location.

Figure 3.5: Triangulation

3.4.1 Effects of Inaccurate Angle Measurements

If triangulation is performed with inaccurate angle measurements, this will of
course have a negative effect on the accuracy of the triangulation. To find
out how much this inaccuracy affects the result, a model was created. In
this model, we describe the maximum inaccuracy of a measured angle as E.
Instead of using α and β as angles of lines, they are used as the facing of a flat
cone (or an infinite height triangle) with an angle at the top of 2E. Within this
model, the target object can be anywhere within the area of overlap of these
two cones. This leaves us with two other parameters affecting the accuracy of
the triangulation: The distance from the target object, and the difference of
α and β. This is shown in Figure 3.6.

20



3.4. TRIANGULATION

Figure 3.6: Triangulation Accuracy

To calculate the accuracy of a triangulation, we compute the values shown
in Figure 3.7, where triangulate(A,B, α, β) is a function returning the point C
using the method of triangulation described earlier in this section. C1 through
C4 describes the intersections of the edges of the two cones. The maximum er-
ror of the location of C can then be described as Eloc = max(|C1C|, ..., |C4C|).
A test of the inaccuracy based on distance and a test based on directions was
performed, and the results are presented in Figure 3.8 and Figure 3.9 where
the distance from C to A and B are named da and db respectively. The
difference of direction is described as Θ = (180− (α+ β)).

Looking at the results in Figure 3.8, we see that the inaccuracy is roughly
proportional to the average distance between measuring sites and target, which
is intuitively consistent, since the width of a cone is proportional to the dis-
tance from the top. The reason for the results only being roughly proportional,
is that as the cone widens, the shape of the other cone has a greater effect on
the results.

The results in Figure 3.9 are more interesting. We see that the optimal
difference of angle is around 90°, and worsens as we get closer to 0° and 180°.
The reason why 0 ≤ θ ≤ 10° does not yield a result, is the fact that for any
θ <= 2E the cones will overlap and two of the intersections will be undefined,
in essence leading to a possible inaccuracy that is infinite. Similarly, when

21



CHAPTER 3. TOOLS AND TECHNIQUES

Name Value

α1 α− E
α2 α+ E

β1 β − E
β2 β + E

C triangulate(A,B, α, β)

C1 triangulate(A,B, α1, β1)

C2 triangulate(A,B, α1, β2)

C3 triangulate(A,B, α2, β1)

C4 triangulate(A,B, α2, β2)

Figure 3.7: Values for Inaccuracy Computation

da db (da + db)/2 Θ E Eloc
10 10 10 90° 5° 1.36

20 10 15 90° 5° 2.11

30 10 20 90° 5° 2.94

40 10 25 90° 5° 3.80

50 10 30 90° 5° 4.66

50 20 35 90° 5° 5.04

50 30 40 90° 5° 5.54

50 40 45 90° 5° 6.13

50 50 50 90° 5° 6.78

Figure 3.8: Triangulation Localization Inaccuracies wrt. Distance

θ ≥ 180°−2E the cones face each other and contain the top of the other cone
within their area. This also leads to undefined intersections, however in this
case the inaccuracy is not infinite, but la + lb as the target will be somewhere
between the two points.

We also see a slight bias towards larger θs rather than smaller. This
happens because of the fact that when the two cones face slightly away from
each other, distance is exaggerated by the error in angle, much more so than
when they are facing slightly towards each other. This effect is visible from
the last illustration in Figure 3.6.

22



3.5. TANGENT PLANE PROJECTION

da db Θ E Eloc
20 20 0° 5° N/A

20 20 10° 5° N/A

20 20 20° 5° 20.00

20 20 30° 5° 10.04

20 20 40° 5° 6.73

20 20 50° 5° 5.10

20 20 60° 5° 4.12

20 20 70° 5° 3.49

20 20 80° 5° 3.04

20 20 90° 5° 2.71

20 20 100° 5° 2.71

20 20 110° 5° 3.04

20 20 120° 5° 3.49

20 20 130° 5° 4.12

20 20 140° 5° 5.10

20 20 150° 5° 6.73

20 20 160° 5° 10.04

20 20 170° 5° N/A

20 20 180° 5° N/A

Figure 3.9: Triangulation Localization Inaccuracies wrt. Direction

3.5 Tangent Plane Projection

This section is based on the technical report on latitude and longitude tangent
plane projection by Ivan S. Ashcraft[11].

When performing triangulation in a small area it is computationally and
mathematically simpler to work with Cartesian (x, y) coordinates rather than
latitude and longitude. In order to achieve this, the latitude and longitude
of the desired area is projected onto a tangent plane centred on the point of
tangency, illustrated in Figure 3.10. The tangent plane is oriented with the
positive y-axis going North. To achieve the projection, the following equations
are used:

Rφ = REcos(φ) (3.2)

where RE is the local radius of the Earth at the centre of the tangent plane
and φ is the latitude.

A = REsin(∆φ) (3.3)

23



CHAPTER 3. TOOLS AND TECHNIQUES

B = Rφ(1− cos(∆θ))sin(φ0) (3.4)

where θ is the longitude and φ0 is the latitude at the point of tangency.

C = Rφsin(∆θ) (3.5)

x = C (3.6)

y = A+B (3.7)

It should be noted that x and y are in the same units as the radius of the
Earth.

Conversion from tangent grid to latitude and longitude carries the com-
plication that Rφ is needed, but is also an unknown in the calculation. Thus,
φ ≈ φ0 is used, and accuracy can be improved by iteration with the result.
For the conversion the following equations are used:

∆θ = arcsin

(
x

Rφ

)
. (3.8)

∆φ = arcsin

(
y − (1− cos(∆θ))sin(φ0)Rφ

RE

)
. (3.9)

The latitude is given by φ = φ0 + ∆φ and longitude is given by θ = θ0 + ∆θ,
where φ0 and θ0 is the latitude and longitude at the point of tangency.

24



3.6. ZEROMQ

Figure 3.10: Tangent Plane Graphics: Wikipedia, public domain

3.6 ZeroMQ

ZeroMQ (also written ∅MQ) is a lightweight, scalable communications library
supporting communication both between threads or processes on a single ma-
chine but also across different platforms and protocols, such as TCP. The
messaging can be done with various patterns such as publisher-subscriber,
explained below. The library is what allows OpenBTS to publish messages
from the Physical Channel API and for consistency in this project all socket
communication is done via ZeroMQ. The library is supported in every major
language which means porting this project is easy in this regard [12].

3.6.1 Publisher-Subscriber Pattern

Publisher-subscriber is a messaging pattern where, instead of sending a spe-
cific message, characterized in classes, to a specific receiver, the publisher sim-
ply publishes the messages without knowing if there are any subscribers and
what they want. Many subscribers can subscribe to the same publisher. The
subscriber, much like the publisher, subscribes to a certain class of messages
without knowing if there are any publishers of this message class.

25





Chapter 4

Solution

This chapter details analysis, design and implementation of the system proto-
type.

4.1 Revised Hardware Architecture

As described in Section 2.5, the previously proposed architecture would not be
usable in an actual implementation of the system, meaning the architecture
had to be revised. The changes to the proposed architecture are as follows:

� Two receiving channels are needed, one with the directional antenna for
taking RSSP readings, and one omnidirectional antenna for communica-
tion between BTS and MS. However, as the USRP only has two antenna
connections two USRPs with synchronized clocks should be connected
to the BTS computer. Clock synchronizations can be achieved on a
hardware level on the B200 USRPs by connecting them with a cable[8].
The desired hardware setup is listed in Figure 4.1.

� The RSSP from the OpenBTS Physical Channel API can no longer be
used, instead the RSSP from the reading USRP at the time of the GSM
burst should be used. To realize this, a feature should be added to
OpenBTS such that it receives signal data from the second USRP, and
replaces the RSSP published in the Physical Channel API with that of
the directional antenna.

These changes mean that the architecture overview shown in Figure 2.4
from Section 2.5 no longer accurately illustrates the system, and a revised
overview can be seen in Figure 4.2.

It should be mentioned that we did not have access to a second USRP at
the time of this project, so development has been completed with the original
architecture, using software simulations instead of real world testing where
necessary.

27



CHAPTER 4. SOLUTION

USRP Frontend Antenna Designation

USRP 1
RX Omni Uplink
TX Omni Downlink

USRP 2 RX Directional Readings

Figure 4.1: Final USRP Setup

Figure 4.2: Revised Architecture

The weight of the required hardware components can be seen in Figure 4.3.

28



4.2. SOFTWARE ARCHITECTURE

Item Weight(g) Quantity Total (g)

BeagleBone 42 1 42

Omni Antenna 21 2 42

Dir Antenna 34 1 34

SMA-SMA Cable 35 2 70

B200 94 2 188

USB Cable 60 2 120

Total 496

Figure 4.3: Architecture Payload

4.2 Software Architecture

The software for the prototype implementation of the system has been written
in Python, and split into five modules, as seen in Figure 4.4. This distribution
of modules is based on the type of operations implemented in each module,
rather than the subject matter of those operations, for example, there is func-
tionality related to UAV communication in both the input and output module.
An overview of each module will be given in this section, and in-depth expla-
nation of the design and implementation of the most interesting parts will be
presented later in the chapter.

Figure 4.4: Software Modules

4.2.1 Geometry

The geometry module contains data structures and functionality pertaining
to coordinates. It is split up in two main parts: world, which contains the
LatLng class and calculations done on these latitude and longitude sets, and
Cartesian, which is home to the Vector class, as well as calculations re-

29



CHAPTER 4. SOLUTION

lated to geometry on a two dimensional plane. Finally, the geometry module
contains the TangentPlane class, which implements the math described in
Section 3.5, to convert between LatLng instances and Cartesian coordinate
sets.

The geometry module is the base for a lot of the functionality in this
system, and is referenced by all other modules.

4.2.2 Input

The input module relates, as the name implies, to obtaining data from outside
the system. Two main sources of information are present: The UAV itself,
and the OpenBTS process running alongside the system. The UAV is simply
expected to publish physical data about itself, such as its latitude, longitude,
facing and battery level.

The communication with OpenBTS is more involved. The input module
contains a system for receiving and sorting messages posted by the OpenBTS
Physical Channel API, as well as functionality to run commands in the
OpenBTS CLI1 and parse the results of those. These commands include
getting a list of connected handsets, reading the background noise level as well
as sending SMS messages. Sending messages might have been more logically
placed in the output module, but it is the only CLI command that is not
used for retrieving data, so it was allowed to be grouped with the other CLI
functionality.

4.2.3 Output

The output module handles communication from the system to other pro-
cesses. The system needs to send data to two destinations: The UAV needs
to be told about desired destinations and facings, so that the built-in software
on the UAV can move to and maintain these. Additionally, the system needs
to send data to the GUI being monitored by the USAR worker operating the
system.

In this prototype GUI communication is simply handled by a websocket
server where any number of GUI clients can connect. This requires a direct
network connection from the UAV to the computer running the GUI, and in
a final version, some other way of relaying this information should be created.
A possibility could be transmitting the information through a mobile data
connection using OpenBTS.

4.2.4 Localization

The localization module contains algorithms for three purposes:

1Command Line Interface

30



4.3. USAGE OF OPENBTS

� Route planning for the UAV, to give the system the greatest possible
chance to accurately locate as many handsets as possible, before running
out of battery for flight.

� Calculations of AoA from data retrieved in the input module, and tri-
angulation of handset locations using the calculated angles.

� A system for managing the calculated angles and location per handset,
and determining whether the accuracy of a given handset’s location can
be improved.

We have tried to keep the localization module and the input module as de-
coupled as possible, to make either replaceable if a better option should be
discovered.

4.2.5 Control

This module contains the control system. The control system is responsible
for employing the other modules, figuring out when the UAV should move
to the next point in the route, when OpenBTS should be told to send SMS
messages to which handsets, how often to receive data from input systems etc.
In essence, while the other modules determine the functionality of the system,
the control module determines its behaviour.

4.3 Usage of OpenBTS

A central element of the solution is the usage of the OpenBTS Physical Chan-
nel API, as described in Section 3.1. A large number of messages are gener-
ated, and they need to be processed and stored. The system responsible for
this is a part of the input module described in Section 4.2. We decided to
create the system for managing these messages in three tiers:

1. The message tier - where each individual message is represented.

2. The group tier - where messages are grouped by handset and timestamp.

3. The manager tier - which is a single manager that can be queried for
groups matching certain parameters.

Each of these tiers were implemented as a class, the functionality of which
will be described in the following sections.

31



CHAPTER 4. SOLUTION

4.3.1 The Message Tier

The message tier was implemented in a class called PhysicalAPIReading.
In hindsight, the naming of this class could have been better, as when we refer
to a “reading” in the rest of the report, we actually refer to the data available
in the group tier, not the message tier. With that said, the class can be seen
in Listing 4.1.

1 class PhysicalAPIReading(object):
2 def __init__(self, message, location, noise):
3 self.location = location
4 self.noise = noise
5 self.process_message(message)
6
7 def process_message(self, message):
8 data = message[’data’]
9 burst = data[’burst’]

10
11 self.timestamp = int(message[’timestamp’])
12 self.imsi = int(data[’channel’][’IMSI’])
13 self.ms_power = burst[’actualMSPower’]
14 self.rssp = float(burst[’RSSP’])

Listing 4.1: The PhysicalAPIReading class

The constructor takes three parameters:

� message, a JSON2 message from the API as described in Section 3.1.

� location, a structure containing latitude, longitude and facing of the
UAV at the time the message was received.

� noise, the noise level at the time.

The process message function, called from the constructor at line 5,
extracts the data from the message that is needed for the system and the rest
is discarded. The necessary data has been described in Section 3.1.

4.3.2 The Group Tier

The group tier is represented by a class called PhysicalAPIGroup. In-
stances of this class are what represents a “reading” when talking about the
system as a whole, and contain a list of PhysicalAPIReading instances.
These instances are added to the group by the manager, and are required to
satisfy two conditions:

� Each message must originate from the same IMSI3

2JavaScript Object Notation
3International Mobile Subscriber Identity

32



4.3. USAGE OF OPENBTS

� Each message must have been generated from the same data transaction
with the handset.

It is up to the manager to make sure these conditions are satisfied. How-
ever, when this is the case, a PhysicalAPIGroup has a number of useful
properties.

� It contains messages related to a single IMSI.

� It contains messages generated while the UAV was at a single location,
which can be compared to the location of other groups.

� The messages in the group can be sorted by timestamp, giving the group
a start time and end time.

� A full group can be generated by sending an SMS to a handset.

The group additionally exposes functionality to filter the messages contained
in it. The implementation of this filtering can be seen in Listing 4.2. The
purpose of the filtering is to remove messages which had a different UAV
facing than the others, since these are likely to be messages that were received
after the UAV started turning, and as such might have the wrong RSSP.
Additionally, it removes readings where the handset transmitted with a power
that was too different from the median power, to ensure that all RSSP values
are on the same scale.

The weighted direction method called in line 10, works by taking a
list of angles and creating a unit vector with each angle. These vectors are
then summed, and the angle of the resulting vector is returned. In lines 13-15
the list comprehension completes the actual filtering of the list, creating a
copy with only the desired elements.

1 class PhysicalAPIGroup(object):
2 #...
3 def filtered_readings(self):
4 facings = []
5 powers = []
6 for r in self.readings:
7 facings.append(r.get_facing())
8 powers.append(r.get_ms_power())
9

10 facing = weighted_direction(*facings)
11 power = powers[int(len(powers) / 2)]
12
13 result = [r for r in self.readings if
14 (abs(r.get_facing() - facing) <= 10 and
15 abs(r.get_ms_power() - power) <= 2)]
16 return result

Listing 4.2: Filtering messages from a group

33



CHAPTER 4. SOLUTION

4.3.3 The Manager Tier

The manager is represented by the class PhysicalAPIManager. Only one
instance of this class should be created, and it contains a list of groups. The
manager has two important functions: It must be able to place a message into
the correct group, and it should be possible to query the manager for groups
satisfying certain conditions.

The function for placing messages, as seen in Listing 4.3, goes through
each existing group and finds matches for the new reading. A group is a
match for a message if their IMSI matches, and the message timestamp is
within a threshold of the timespan between the start and end time of the
group. Finding matches happens in the list comprehension in lines 8-11, and
has three possible results:

� If no matches were found, a new group is created for the reading.

� If one match was found, the message is added to that group.

� If two matches were found, it means that the message would bridge
the gap in those groups’ timespans, so the groups are merged and the
message is added to the resulting group.

1 class PhysicalAPIManager(object):
2 #...
3 def add_reading(self, reading):
4 time = float(reading.get_timestamp())
5 imsi = reading.get_imsi()
6 target = None
7 # Check if the reading fits in any current group(s)
8 matches = [group for group in self.groups if
9 (imsi == group.imsi

10 and time > group.start_time() - self.threshold
11 and time < group.end_time() + self.threshold)]
12 # If no groups matched, create a new one
13 if len(matches) == 0:
14 target = PhysicalAPIGroup(imsi)
15 self.groups.append(target)
16 else:
17 target = matches[0]
18 # If multiple groups were matched, the new
19 # reading would make this groups too similar
20 # in timestamps, therefore they should be merged
21 for m in matches[1:]:
22 target.merge(m)
23 self.groups.remove(m)
24 target.add_reading(reading)

Listing 4.3: Placing a message in the correct group

The querying function can be seen in Listing 4.4. The primary use for
this function is to find all groups referring to the same handset generated at

34



4.4. DETERMINING ANGLE OF ARRIVAL

a specific point, as this is the set of groups necessary to compute the AoA for
the handset at that location. The function is designed to work with keyword
arguments, so a call to the function might look like:

manager.filter groups(imsi=12345678,
near=LatLng(57.029308, 9.979909))

Additional keyword arguments available are distance, which determines
how far from the desired point a group is allowed to be, and remove, which
can be set to true to have the manager remove the resulting groups from its
list. The if statement at line 7-9 makes sure a keyword argument is actually
present before using it for filtering, for example, if no IMSI was specified,
groups with all IMSIs are returned.

1 class PhysicalAPIManager(object):
2 #...
3 def filter_groups(self, imsi = None, distance = 10,
4 near = None, remove = False):
5 result = []
6 for group in self.groups:
7 if ((imsi is None or imsi == group.imsi)
8 and (distance is None or near is None or
9 group.is_near(near, distance))

10 ):
11 result.append(group)
12
13 if remove:
14 for group in result:
15 self.groups.remove(group)
16
17 return result

Listing 4.4: Querying for specific groups

All in all, this structure allows for easy access to the necessary readings
for whichever task they are needed.

4.4 Determining Angle of Arrival

To determine the AoA of a signal from a handset, several readings are needed
at the same location, with the directional antenna facing in different directions.
Optimally, you would turn the antenna smoothly in a 360° turn and consider
the angle with the greatest RSSP the correct angle. However, as OpenBTS
Physical Channel API is the source of the RSSP measurement, only discrete
readings are available, whenever communication with a handset is in progress.

The solution to this is to pick a number of readings, n, to make at each
site, initiate communication with each handset that is currently being tracked,
for example by sending an SMS to each of them, and waiting for the API to
publish channel information. Then, the UAV should turn the antenna 360°/n
and repeat the procedure, until n readings have been obtained.

35



CHAPTER 4. SOLUTION

To calculate a direction from these discrete readings, take the readings
made for each handset at each direction and define a vector with direction
equal to the facing of the antenna at the time of that reading, and magnitude
equal to some function of the RSSP of the reading. Then, each of these
vectors are summed, and the direction of the resulting vector is considered
the AoA. Examples of this approach can be seen in Figure 4.5. As illustrated,
this approach allows us to have a better granularity in results than the angle
turned between each reading.

All that is left to do is to define the function from RSSP to magnitude.
Two considerations apply here: First, the RSSP is measured in dB relative
to the maximum receiving power of the USRP, i.e. a negative number, where
the noise level in the area is a lower number. Second, measuring in dB means
that an increase of ten in RSSP is a signal one order of magnitude greater.
Given these facts, we define the function as:

mag = 10(RSSP−NOISE)/10 (4.1)

This approach means that noise level readings will produce unit vectors, and
the relation between the magnitude of the other vectors will be proportional
to the actual power received.

RSSP vectors Determined AoAVector sum

SET 1

SET 2

Figure 4.5: Example AoA calculations

36



4.4. DETERMINING ANGLE OF ARRIVAL

4.4.1 Evaluation

To test the accuracy of this method, we created a model for RSSP at different
directions, based on our testing, described in Section 2.5.1. In this model we
assume that full power, ω is received at an angle, θ, of zero, compared to the
direction towards the handset. We assume that the power drops linearly by
5dB every 45° up to 60° (the directionality of the antenna) where it drops to
noise level, α, and that no signal less than noise level is received. The model
is as follows:

RSSP =

{
MAX(ω − 5/45× θ, α) if θ < 60

α otherwise
(4.2)

This test was run with three different ω values, with θ at 5° intervals, and
assuming eight readings to determine an angle (i.e. a reading every 45°). The
results are shown in Figure 4.6. These results show that, assuming the model
is consistent with reality, this method is able to detect the correct angle of
arrival with maximum inaccuracy of 5°. The results are naturally best if a
reading is made pointing directly at the handset, and nearly as good if the
angle is directly between two readings.

ω α+ 20 α+ 30 α+ 40
θ

0 0.00 0.00 0.00

5 2.51 2.47 2.47

10 5.45 5.36 5.35

15 17.93 18.00 18.01

20 20.96 20.98 20.98

25 24.04 24.01 24.02

30 27.07 27.00 27.00

35 39.55 39.64 39.65

40 42.49 42.52 42.53

45 45.00 45.00 45.00

Figure 4.6: AoA test using model

4.4.2 Implementation

The AoA calculations are implemented in the localization module mentioned
in Section 4.2. The results of the calculations are stored in a class called
AngleOfArrival which has the IMSI, location in latitude and longitude
and, naturally, the calculated angle. The actual computation is performed in
the function compute aoa, seen in Listing 4.5

37



CHAPTER 4. SOLUTION

1 def compute_aoa(groups, imsi, point):
2 sets = [[r for r in group.filtered_readings()] for group in groups]
3 result = Vector()
4 for set in sets:
5 directions = []
6 power = 0
7 noise = 0
8 for reading in set:
9 directions.append(reading.get_facing())

10 power += reading.get_rssp()
11 noise += reading.get_noise()
12 power /= len(set)
13 noise /= len(set)
14 mag = 10 ** ((power - noise) / 10)
15 v = Vector.DM(weighted_direction(*directions), mag)
16 result += v
17
18 return AngleOfArrival(imsi, point, result.direction(),
19 result.magnitude())

Listing 4.5: Determining Angle of Arrival

The parameter groups is a list of PhysicalAPIGroup instances, which
is described in Section 4.3. The function is a direct implementation of the
method illustrated in Figure 4.5 and the calculation described in Equation 4.1.
This function is one of the only instances in the system where the modules
are not decoupled, seeing as Listing 4.5 is dependent on the implementation
of PhysicalAPIGroup, from the input module.

4.5 Triangulating Location

In Section 3.4 the math for triangulating the position of a handset based on
the AoA calculations is explained. This is implemented in the localization
module mentioned in Section 4.2. The triangulation is implemented in a class
called Triangulator, which is instantiated with a tangent plane.

4.5.1 Triangulation Calculations

The triangulation and error calculation is split into three functions:
triangulate, triangulate aoa and triangulate eval. The function
triangulate aoa can be seen in Listing 4.6.

1 class Triangulator(object):
2 #...
3 def triangulate_aoa(self, first, second):
4 a = self.plane.to_cartesian(first.point)
5 b = self.plane.to_cartesian(second.point)
6 theta = Vector.XY(b[0] - a[0], b[1] - a[1]).direction()
7 alpha = first.direction - theta
8 beta = 180 - (second.direction - theta)
9 c = self.triangulate(a, alpha, b, beta)

38



4.5. TRIANGULATING LOCATION

10 return c

Listing 4.6: Triangulation with AngleOfArrival Instances

As shown, triangulate aoa takes as its parameters two instances of
the AngleOfArrival class which, as explained in Section 4.4, has both
direction and position (in latitude and longitude) as attributes. The positions
are converted to Cartesian coordinates and in line 6 a variable, theta is
calculated. This variable will be used to convert the angle measurements
of the two points from being relative to the global 0 degrees (due East) to
being relative to the line through the location of the two measurements. An
illustration of this can be found in Figure 4.7. The two angle measurements are
adjusted and the triangulate function is called and the resulting Cartesian
coordinate returned.

Global Space

135°

90°

Local Space & Inner Angles

72°

63°

72°

Θ = 27°

A

B

A

B

Figure 4.7: Illustration of conversion from global to relative angles

The triangulate function, seen in Listing 4.7, is a direct implementa-
tion of the math for basic triangulation described in Section 3.4.

1 class Triangulator(object):
2 #...
3 def triangulate(self, a, alpha, b, beta):
4 v = Vector.XY(b[0] - a[0], b[1] - a[1])
5 l = v.magnitude()
6 ac = l / sin(radians(180 - alpha - beta)) * sin(radians(beta))

39



CHAPTER 4. SOLUTION

7 d = v.direction() + alpha
8 return a[0] + cos(radians(d)) * ac, a[1] + sin(radians(d)) * ac

Listing 4.7: The Triangulation Function

4.5.2 Computing Inaccuracy

In order to calculate the eror of the measurement the triangulate eval
function has been implemented and can be seen in Listing 4.8.

1 class Triangulator(object):
2 #...
3 def triangulate_eval(self, first, second, error = 5):
4 try:
5 c = self.triangulate_aoa(first, second)
6 except:
7 return 0, 0, float(’inf’)
8 f1 = AngleOfArrival(None, first.point,
9 first.direction - error, None)

10 f2 = AngleOfArrival(None, first.point,
11 first.direction + error, None)
12 s1 = AngleOfArrival(None, second.point,
13 second.direction - error, None)
14 s2 = AngleOfArrival(None, second.point,
15 second.direction + error, None)
16 try:
17 Cx = [self.triangulate_aoa(f1, s1),
18 self.triangulate_aoa(f2, s1),
19 self.triangulate_aoa(f1, s2),
20 self.triangulate_aoa(f2, s2)]
21
22 Dx = [sqrt((c[0] - Ci[0]) ** 2 + (c[1] - Ci[1]) ** 2)
23 for Ci in Cx]
24 except:
25 Dx = [float(’inf’)]
26
27 return c[0], c[1], max(Dx)

Listing 4.8: Finding Error in Triangulation

This function implements the math for triangulation with inaccurate mea-
surements, described in Section 3.4.1. The list Cx in line 17 contains all the
triangulation measurements of the intersections of the cones resulting from
the inaccuracy. The list Dx in line 22 contains the distances from these to the
triangulated result. The return values are the Cartesian coordinates for the
triangulation as well as the maximum error in metres.

4.6 Route Planning

When planning the flight route of the UAV, it is desirable to perform readings
in as many sites as possible. Since we will be using a triangulation technique

40



4.6. ROUTE PLANNING

with AoA information, the best accuracy will be achieved with readings from
different sides of the target handsets, so the chosen sites additionally have to
be spaced far enough apart that it is likely that each handset is surrounded,
but still close enough that inaccuracies in the AoA have only minimal effect.
An algorithm was designed to maximize the number of sites based on a number
of parameters. The necessary parameters can be split into three categories,
pertaining to the UAV hardware, the target area and algorithm preferences,
and are listed in Figure 4.8.

Parameter Description

UAV / Hardware

tflight UAV flight time (s)

treading Time needed to complete a directional reading (s)

tturn Time for the UAV to turn 360°(s)

vflight UAV flight velocity (m/s)

Target Area

Ltarget Center of the target area (lat,lng)

Lstart Location of the UAV before starting (lat,lng)

rtarget Desired radius around Ltarget (m)

Algorithm

nreadings Number of directional readings per site

Figure 4.8: Route Planning Parameters

Given these parameters, we want the algorithm to return a route as a series
of n sites {L1, ...Ln}. We define a route as valid, if the UAV can complete travel
and readings within its flight time, described as troute ≤ tflight. A number of
calculations are necessary to find troute. As described in Section 3.5, it is
possible to convert latitude/longitude coordinates to Cartesian coordinates
and back. In this case we use a tangent plane centred on Ltarget, such that
any point can be described by Li in latitude and longitude or Pi in x and y
coordinates, and Ptarget = (0, 0). This means we can use Euclidean geometry
in calculations regarding routes. With this in place the following equations
are used:

tsite = tturn + treading × nreadings (4.3)

troute = n× tsite +

|
−−−−−→
PstartP1|+

n−1∑
i=1
|
−−−−→
PiPi+1|

vflight
(4.4)

Knowing how to validate a proposed route, it is also necessary to be able
to compare the quality of a route. The quality of a route is defined as the
ease of accurately triangulating an arbitrary point within the target area. As

41



CHAPTER 4. SOLUTION

described in Section 3.4, inaccuracies double when the average distance from
the sites of measurement doubles. Additionally, angle differences, θ, close to
90° are optimal, while angle differences approaching 0° or 180° are nearly
useless. This means we can approximate the accuracy to be proportional with
sin(θ). Therefore we define the accuracy when locating an arbitrary point Pa
as:

accPa = max

(
sin(θ)

(|
−−→
PaPi|+ |

−−−→
PaPj |)/2

)
for each Pi ∈ route, Pj ∈ route (4.5)

The quality of a route can then be described as the route which produces
the highest average accP for all possible points within rtarget meters of Ptarget.
Since the number of points within the area of this circle is infinite, some
method of choosing a representative set of points should be decided on. An
example could be using Bridson’s algorithm, to create a natural distribution
of tightly packed points within the area[13][14].

Knowing how to compute both the validity and quality of a given route, an
algorithm to find a good route should be described. Three different approaches
to this were considered:

1. Find a way to generate the optimal route.

2. Generate a number of routes that are known to be valid and select the
highest quality one.

3. Generate a number of routes where the relation between their quality is
known, and select the best one that is valid.

The first option is obviously the most attractive. However, there are an infinite
amount of possible routes, and no obvious way in which to calculate the best
one. Even if the area is segmented into discrete points which are used as
candidates for measuring sites within a route, the obvious solution is still
to generate each possible route and check the quality and validity of each,
turning this into a variation of the Travelling Salesman Problem, which is NP-
complete, and therefore likely not an option in a time-critical circumstance
such as SAR[15].

The concession that finding the optimal route is not feasible leaves the two
heuristic approaches. Considering that computing the validity of a route is a
lot simpler than the quality, we decided to focus on option three. This leaves
us with the problem of generating a route that intuitively has a high quality.
We decided to create the routes in the following manner:

1. Place a site in the center of the area. This has a few advantages: First,
we limit the maximum distance to at least one measuring point to be the
radius of the area. Second, if the UAV has to be recalled prematurely,
having angle measurements in the center of the area at least gives a
rough idea of where the most handsets can be found.

42



4.6. ROUTE PLANNING

2. Place a number of sites on the circumference of the target area, having
equal angles between each.

3. Validate the route. If it is valid, remember this route as the suggested
route. If not, return the previous suggestion (if no previous suggestion,
the size of target area should be decreased, or the UAV should be moved
closer to the area.)

4. Start the process over, but place one more site during step 2.

Given that the parameters for the route planning algorithm comes from
a variety of sources and are split across multiple functions, we decided to
present pseudo-code for the implementation instead of the actual code. This
can be seen in Algorithm 1. In Figure 4.9 an example of a route generated
this way is shown, with a few handsets and their optimal triangulation sites.
As can be seen from this, if the handset is on a line between the center and
an edge site, it will have a useful angle with the center and a different edge
site. Additionally, if it is on a line between two edge sites, it will have a useful
angle between the center and one of those edges.

Input : A UAV, uav, which contains physical information, such as
velocity, as well as its offset from the center of the area

Input : A number, radius, describing the size of the target area
Output: The resulting route, result

1 done ← false;
2 n ← 2;
3 result ← null;
4 while !done do
5 route ←emptyList;
6 append(route, (0, 0));
7 for i← 0 to n do
8 dir ← i× (2π/n );
9 append(route, (cos (dir )× radius, sin (dir )× radius));

10 end
11 if isValid(uav, route) then
12 result ←route;
13 else
14 done ← true;
15 end
16 n ←n +1;

17 end

Algorithm 1: Route Planning Pseudocode

43



CHAPTER 4. SOLUTION

Measuring site

Handset

Triangulation Line

Figure 4.9: Example of Triangulation Angles in Suggested Route

4.6.1 Optimization and Evaluation

One of the biggest limitations of the proposed algorithm is the fact that the
UAV has to start close to the center of the target area for the flight time to
be spent optimally. To mitigate this, a simple optimization to the algorithm
was made: If the UAV is more than two thirds of the radius away from the
center, the first and second site in the route are swapped, and the route is
rotated such that the new first site is in the same direction as the start point.
This is illustrated in Figure 4.10.

When evaluating the route planning, we assumed a vflight of six metres per
second, tturn and treading both at six seconds, nreadings at eight and a tflight
of 12 minutes. Given these parameters, it is possible to cover an area with a
radius of 500 metres with the center site and four additional sites, assuming
the UAV is launched from somewhere within the area. If tflight is increased
to 20 minutes, a radius of 1000 metres can be covered with the same number
of sites.

44



4.7. CONTROL SYSTEM

Before

d a

e

b

c

Before After

b

a

c d

e

Swap

Rotate

Figure 4.10: Route Optimization

4.7 Control System

The control system is, as mentioned in Section 4.2, responsible for the be-
haviour of the system. A rough description of the desired behaviour is as
follows:

1. When starting up, make sure all dependencies are functional, i.e. make
sure that the UAV communicates and that OpenBTS is running. Then
the UAV system should wait for a target area, and plan a route.

2. Pop the next destination from the list of sites in the route, and tell the
UAV to move to that location. While in transit, collect information
about connected handsets from OpenBTS.

3. When a destination is reached, determine which handsets should be
contacted and how many readings should be performed for each at this
point.

4. Tell the UAV to turn to the desired facing for the next reading.

5. When the facing has been achieved, send SMS to the desired handsets,
and collect API messages from OpenBTS.

6. If more readings are needed at this site, go to step 4, otherwise continue.

7. If there are more destinations in the route, go to step 2, otherwise shut
the system down.

While this seems like a sensible behaviour for the system, looking at it from the
outside, one important thing is missing: When to run the actual localization
computations. One thing to consider is that the control system is sharing
a processor with OpenBTS, a system that is very time critical, so it would

45



CHAPTER 4. SOLUTION

make sense to perform the computations at times where OpenBTS puts the
least amount of strain on the CPU4. For this reason we decided to have the
system compute and relay handset locations to the GUI during travel from one
destination to the next. Additionally, when reaching the end of the route and
“shutting down” the system should continue doing any pending computations
and relaying data until the UAV is retrieved or battery is depleted. This
desired behaviour is illustrated in Figure 4.11.

Figure 4.11: Flowchart of System Behaviour

An important observation of this system is that it is going to be performing
radically different tasks at different points in time. These tasks are equivalent
to the named areas in the flowchart, and are implemented in the system as an
enumeration of behavioural states, shown in Listing 4.9, of which the system
can be in one at a time.

1 States = type(’Enum’, (), dict(START = 0, TRANSIT = 1,
2 READING = 2, TURNING = 3))

Listing 4.9: System States

4Central Processing Unit

46



4.7. CONTROL SYSTEM

The implementation of these states is realized by using a variation of the
command pattern [16]. The commands are a data structure, seen in List-
ing 4.10. Instead of naming the exact function to be called, it contains the
next desired state of the system, as well as the parameters of that state, and a
delay, which denotes how long the system should at most wait before running
code related to that state. No target is specifically mentioned either, since
the invoker and target are both the same instance of a central class called
Control.

This class contains references to each other module, a number of handler
functions for each state, and an invoker function, determining which handler
should be called. In addition to having a handler for general operation, called
the “step” handler, each state can optionally specify a handler for entering
and exiting the state. Each handler must return a Command instance, which
is passed to the invoker next. The functionality within each state is described
in this section. However, as most of the code in the handlers revolve around
calling functions from other modules, a minimal amount of the source code
will be presented here. Before getting to the states, though, the invoker system
will be presented.

1 class Command(object):
2 def __init__(self, nextstate, nextparam, delay):
3 self.nextstate = nextstate
4 self.nextparam = nextparam
5 self.delay = delay

Listing 4.10: The Command Structure

4.7.1 Delegation of Commands

Commands are invoked through two functions, seen in Listing 4.11. These
functions assume a state structure which contains information about the pre-
vious state, current state as well as parameters to be passed to the next
handler. The delegate function checks if the current state is different from
the previous. If this is the case it calls the run delegation function twice,
with the leave and enter parameters, before updating the previous state. It
always finishes by calling run delegation with the step parameter.

The run delegation function is what actually invokes the handlers.
The first part of the function, lines 12-18 finds the correct handler in a lookup
table, depending on previous and current state, as well as the parameter passed
to run delegation from the delegate function. If no handler was found,
the function returns here. This check is done as the entry and leaving handlers
for each state are optional. Then, in line 23, the chosen handler is called with
the desired parameters, returning a Command instance. The parameter from
the returned command is then saved into the state structure. However, as the
leave and enter handlers are only called when a state transition is already
in progress, they are not allowed to change which state is being transferred

47



CHAPTER 4. SOLUTION

to. The return value of both of these functions is the delay before the next
delegation should take place.

The delegate function is called in a loop for as long as the control system
is running, causing the control process to sleep for the desired delay between
each call.

1 class Control(object):
2 #...
3 def delegate(self):
4 if self.state.current != self.state.previous:
5 self.run_delegation(’leave’)
6 self.run_delegation(’enter’)
7 self.state.previous = self.state.current
8
9 return self.run_delegation(’step’)

10
11 def run_delegation(self, type):
12 handler = None
13 if type == ’leave’:
14 handler = self.handlers[self.state.previous][’leave’]
15 elif type == ’enter’:
16 handler = self.handlers[self.state.current][’enter’]
17 else:
18 handler = self.handlers[self.state.current][’step’]
19
20 if handler is None:
21 return 0
22
23 result = handler(self.state.param)
24 self.state.param = result.nextparam
25
26 if type == ’step’:
27 self.state.current = result.nextstate
28 return result.delay
29 return 0

Listing 4.11: The Command Delegation Functions

4.7.2 The START State

In this state initialization happens. The system will enter this state upon start
up, and once left, will never enter it again.

Entry

On entry, the system initializes all other modules, opening sockets and prepar-
ing singleton instances such as PhysicalAPIManager described in Sec-
tion 4.3.

48



4.7. CONTROL SYSTEM

Step

In the step handler, three things are checked: Whether the UAV has started
reporting information, including its location, whether any handsets have con-
nected to OpenBTS, and whether a target area has been defined. If all these
are true, the system enters the TRANSIT state. The step handler is invoked
once per second until the state is changed.

Leaving

Upon leaving the state, the route planning algorithm described in Section 4.6
is run.

4.7.3 The TRANSIT State

The system remains in this state whenever the UAV is travelling from one
place to another. This is where localization calculations are done. When the
system is “shut down” it stays in the transit state without a destination, to
keep running calculations and relaying data to the GUI. The TRANSIT step
has no handler for leaving the state.

Entry

On entry, the next site from the planned route, if any, is chosen as the desti-
nation, and the UAV output module is told to move the UAV to this location.
If no more destinations are planned, the UAV will hold position.

Step

In the step state the following actions happen in order:

1. If there are any groups pending in the OpenBTS input module, these
are converted to angles of arrival, as described in Section 4.4 and stored
in the localization module.

2. If there are any pairs of AngleOfArrival instances related to the
same IMSI which have not been triangulated, the triangulation is done
as described in Section 4.5.

a) A maximum number of total AoA and triangulation computations
to be done in each step can be defined, to limit the amount of
time and processor power spent here. If that limit is reached, any
pending calculations carry over to the next step.

3. Any located handsets are transmitted to the GUI through the output
module.

49



CHAPTER 4. SOLUTION

4. If no destination is set, the system is in shutdown mode, and no further
action will be taken in this step.

5. The location of the UAV is received through the input module, and
relayed to the GUI

6. If the UAV has reached the destination, it enters the TURNING step with
parameter p = 0.

While in this state, the step handler is run every second.

4.7.4 The TURNING State

This is the simplest state. The system is in this state when it needs to face a
specific angle before a reading. It uses a parameter, p, the number of reading
sets which has been completed at the current site. It has no leaving handler.

Entry

In this step, the desired facing is calculated as 360°/nreadings × p. This facing
is relayed to the UAV through the output module.

Step

With each step the facing of the UAV is retrieved from the input module, and
compared to the desired facing. If it has been reached, the system enters the
READING state, with parameters p = p and t = 0. As turning is relatively
fast, this step is run five times per second until the target is reached.

4.7.5 The READING State

The reading state is when the system receives data from the OpenBTS Phys-
ical Channel API. It uses two parameters, p, which as in the turning state
is the number of reading sets which have been completed at the current site,
and t which is the duration in which the system has been in this state. No
handler for leaving the state is specified.

Entry

On entry, the OpenBTS CLI is queried for connected handsets. A specified
number of these are picked out for reading, since “thousands” of handsets can
be connected at a time, but only “hundreds” can have ongoing communication
(more testing is needed to find exact numbers) [17]. An SMS is sent to the
selected handsets.

50



4.8. USER INTERFACE

Step

This step is run two times per second, as that is the approximate frequency
with which the OpenBTS API publishes messages. During the step,
PhysicalAPIReading instances are generated from the input module, and
added to the PhysicalAPIManager as described in Section 4.3. Then, the
system checks if t >= treading, i.e. if the system has been in the reading state
for the time designated per reading. If not, the system stays in this state, but
increments t by 0.5 before the next step.

If the system has been in this state for long enough, two things can happen.
If p+ 1 >= nreadings, all readings at this site are done, and the system enters
the TRANSIT step. If not, it returns to the TURNING step, with parameter
p = p+ 1.

4.8 User Interface

As described in Section 4.2 the GUI communication is handled by a websocket
server. In the prototype, the interface is a website utilizing the Google Maps
API to show the position of the UAV as well as the located handsets. Handsets
are shown as semi-transparent blue circles with radius equal to the maximum
error of the triangulation. If handsets overlap the colour intensifies within this
overlap. An example of the interface in action can be seen in Figure 4.12. In
the picture, the red pin is the UAV and the blue circles are located handsets.
Below the map is a log showing which handsets have updated positions. Seeing
as the interface is completely decoupled from the rest of the system, updating
the look or changing which data is displayed is very easy, the interface in this
report is mainly developed for demonstration purposes.

A simple message protocol was designed for the messages from the control
system to the GUI. Each message is in the form <id>:<type>:<payload>,
where <id> is a number unique to each instance of the control system if the
message relates specifically to that instance, for example location updates. If
the message concerns the system in general, for example if it is a list of located
handsets, the <id> is left out. <type> is simply the textual representation
of the message type, and <payload> varies with each type. Following is
an explanation of the four types of messages which are implemented, and an
example of each can be seen in Listing 4.12 as a Python string.

� LOCATION update messages, sent by a UAV in transit so that it can be
tracked on the GUI. The payload of this message is <lat>,<lng>.

� IMSIS messages. The control system sends a list of each IMSI connected
to that specific system. The payload is a comma separated list of IMSIs.

51



CHAPTER 4. SOLUTION

Figure 4.12: Graphical User Interface

� TARGET messages contain information about the target search area for
a UAV. The payload of this message type is in the form
<center-lat>,<center-lng>,<radius>.

� FIXES messages. These messages are the most important, as they
relay information about located handsets. The payload of these mes-
sages is a comma separated list of fixes, where each fix is in the form
<imsi>;<lat>;<lng>;<accuracy>. No <id> is sent with these
messages, as it does not matter which UAV computed the fix. If it be-
comes important, an extension to the GUI could compare the IMSIs to
those received from each system in an IMSIS message.

1 ’1:LOCATION:57.029308,9.979909’
2 ’1:IMSIS:348576348756,484567912832’
3 ’1:TARGET:57.029308,9.979909,500’
4 ’:FIXES:348576348756;57.029444;9.979301;45.1,’ +
5 ’484567912832;57.028000;9.970101;60.7’

Listing 4.12: GUI Message Examples

52



Chapter 5

Testing

In this chapter the testing of our solution is described along with results.

5.1 Simulation

Given that testing in real life with the current hardware is not doable, a
software simulation was developed. The simulation consists of a testing envi-
ronment representing the disaster area. This environment is populated with
handset clusters, i.e. a random number of handsets (currently a maximum of
10) located at random coordinates within a certain distance (maximum 50m)
from a randomly selected centre of the cluster. The testing environment also
contains a UAV, of course.

The environment is constructed to act as everything outside of the UAV
control system. It simulates OpenBTS by generating Physical Channel API
messages for the handsets connected to the BTS and sending SMS and it
moves the UAV around in the simulated world.

The class World handles the outer environment factors such as size of the
site. Instances are initialized with the following attributes:

� Width and height, which are both set to the global constant
ENVIRONMENT SIZE.

� A base noise level for the area, set to the global constant
ENVIRONMENT NOISE.

� A list of handsets.

� A list of UAVs.

� A ZeroMQ publisher for information from OpenBTS.

� A ZeroMQ publisher for information about the UAV.

� A ZeroMQ subscriber for the messages from the UAV control system.

53



CHAPTER 5. TESTING

� A tangent plane centred on the area, for conversion between Cartesian
coordinates and latitude and longitude.

The implementation of the handsets is done in a class called
MobileHandset. The handsets have the following attributes:

� Location stored in Cartesian x and y coordinates

� Power level which is randomly set to between 0.5 and 1.5 upon instan-
tiation

� An IMSI which is randomly generated.

The UAV is implemented in a class appropriately named UAV and has the
following attributes:

� Location in the same way as the MobileHandset class.

� Battery in %.

� A facing in degrees.

� A speed in m/s.

� A destination in Cartesian coordinates, which is initially the same as
the current location.

� A target facing which is initially the current facing.

� A list of connected handsets.

� A control system.

Finally, a small class called SpoofCLI simulates the OpenBTS CLI, it has
functions to return the noise level of the environment, return an IMSI list and
send an SMS. While no actual SMS is sent it tells the environment to generate
readings for the target handset for a number of seconds corresponding to the
time there would be traffic between the BTS and the handset in the real world
if an SMS was sent.

5.1.1 Updating the Simulation

The simulation is run via the update function, which is called every 0.5
seconds. The function can be seen in Listing 5.1

1 class World(object):
2 #...
3 def update(self):
4 #get controller messages and set uav target destination/facing
5 while True:
6 message = self.uav_input.poll()

54



5.1. SIMULATION

7 if message is None:
8 break
9

10 if message[’type’] == ’move’:
11 #convert to cartesian coordinates
12 latlng = LatLng(message[’data’][’lat’],
13 message[’data’][’lng’])
14 self.uavs[0].destination_x, self.uavs[0].destination_y =
15 self.tangent_plane.to_cartesian(latlng)
16 else:
17 self.uavs[0].target_facing = message[’data’]
18
19 #update drone locations/turn/generate readings
20 for uav in self.uavs:
21 distance = sqrt((uav.x - uav.destination_x)**2 +
22 (uav.y - uav.destination_y)**2)
23 if distance > 1:
24 travel = min(distance, 0.5*uav.speed)
25 uav_travel_vector =(Vector.XY(uav.destination_x -
26 uav.x, uav.destination_y - uav.y))
27 uav.x += cos(radians(uav_travel_vector.direction()))*travel
28 uav.y += sin(radians(uav_travel_vector.direction()))*travel
29 uav.facing = uav_travel_vector.direction()
30
31 #turn drone
32 else:
33 direction_offset = uav.target_facing - uav.facing
34 if direction_offset < -180:
35 direction_offset += 360.0
36 elif direction_offset > 180:
37 direction_offset -= 360.0
38 if abs(direction_offset) > 2.0:
39 turn = min(abs(direction_offset), UAV_TURNSPEED*0.5)
40 uav.facing += sign(direction_offset)*turn
41 uav.facing %= 360
42
43 #generate readings for phones the UAV is connected to
44 reading_next = []
45 for handset in uav.reading_from:
46 imsi, count = handset
47 reading = self.generate_handset_reading(uav,
48 self.get_handset(imsi),
49 int(time.clock()*1000))
50 if reading is not None:
51 self.openBTS.send_reading(reading)
52 if count > 0:
53 reading_next.append((imsi, count-1))
54 uav.reading_from = reading_next
55
56 #convert from cartesian coordinates to lat/lng
57 latlng = self.tangent_plane.from_cartesian(uav.x, uav.y, 2)
58 #publish updated UAV information
59 lat, lng = latlng.degrees()

55



CHAPTER 5. TESTING

60 self.uav_output.send_data(uav.battery, lat, lng, uav.facing)

Listing 5.1: The update Function

First, the incoming messages from the UAV’s control system are handled
in the loop starting on line 3. Only the most recent messages are used, the
loop goes through the message queue until it is empty and updates either
destination coordinates (in case of a move message) or target facing (in case
of a turn message) for the UAV. Once the message queue is empty each
UAV is updated with a new location, calculated from the speed of the UAV,
if the UAV is in transit (i.e. destination and location are not the same, within
a certain margin of inaccuracy). If the UAV is currently turning (i.e. target
facing and current facing are not the same within a margin of error) the facing
is updated. Starting on line 42 any OpenBTS readings needed are generated
and finally the new location of the UAV is published to the control system of
the UAV.

5.1.2 Generating Physical Channel API Messages

As mentioned in Section 4.3 readings from OpenBTS Physical API is not the
same in the implementation as it is in the text of this report. This function
generates a single OpenBTS Physical API message. This is done by calculating
what the RSSP value would be for a given handset in relation to where the UAV
is located and facing when taking the reading. The attenuation model used is
described in Section 4.4. Seeing as this is a simulation only the important parts
of the message are generated. The implementation can be seen in Listing 5.2.

1 class World(object):
2 #...
3 def generate_handset_reading(self, uav, handset, timestamp):
4 if handset is None:
5 return
6 #Vectors for UAV and handset
7 uav_handset_vector = Vector.XY((handset.x - uav.x),
8 (handset.y - uav.y))
9 uav_facing_vector = Vector.DM(uav.facing, 1)

10
11 #Find angle between UAV and handset vector
12 direction_offset = abs(uav_handset_vector.direction() -
13 uav_facing_vector.direction())
14 if direction_offset > 180:
15 direction_offset -= 360
16 if direction_offset < -180:
17 direction_offset += 360
18
19 #Calculate RSSP based on dir. of antenna relative to handset
20 attenuation = generate_attenuation(direction_offset)
21 rssp = handset.base_rssp() - attenuation
22 rssp = max(rssp, self.noise)
23

56



5.1. SIMULATION

24 #Generate Physical API reading data
25 return json.dumps(
26 {
27 "data":
28 {
29 "channel":
30 {
31 "IMSI": str(handset.imsi)
32 },
33 "burst":
34 {
35 "RSSP": rssp,
36 "actualMSTimingAdvance": uav_handset_vector.magnitude()/550,
37 "actualMSPower": ACTUAL_MS_POWER
38 }
39 },
40 "timestamp": str(timestamp),
41 })

Listing 5.2: Generating a Physical Channel API Message

First, the functions checks that there is an actual handset to generate a
message for. Then, starting on line 5 a vector between the handset and the
UAV as well as a unit vector representing the facing of the UAV is created.
The angle between these two is then calculated in order to generate a proper
attenuation for the signal, which is used in lines 16-18 where the RSSP value
is calculated. Finally, the JSON object is created and returned.

5.1.3 Limitations

The simulation, of course, is not a perfect replacement for the real world. The
scenario the environment describes is the absolute optimal scenario, which
makes sense given that this is a first prototype and thus if it does not work
under optimal conditions, testing under any other condition is pointless. The
limitations of the simulation are as follows:

� The UAV accelerates and decelerates instantly in the simulation. This
could be significant in relation to how fast we can reach a target location
as well as impact when readings begin being taken.

� The readings generated in the environment are ”perfect”, i.e. they never
deviate from the mathematical model of signal attenuation we have de-
veloped. The simulated UAV also picks up readings directly beneath it,
where a real world UAV would not pick these up as the directionality of
the receiving antenna does not allow it.

� There is no risk of signal loss for the handsets or the BTS. The environ-
ment presents absolutely optimal circumstances for the connection and
thus the handling of lost connections cannot be tested in this simulation.

57



CHAPTER 5. TESTING

� There is no risk of multipath signals, which might affect the accuracy of
the localization.

� OpenBTS does not run, it is spoofed in the simulation, which means that
anything that is dependent on OpenBTS implementation is not tested.

� The environment is the perfect area for navigating the UAV, there are
no physical obstacles of any kind, no wind etc.

� The noise level of the area is consistent in the entire area, there are
no pockets of lower or higher background noise which could impact the
signal strength and thus the readings.

5.2 Tests and Results

The accuracy of the system has been tested with the following setups:

1. Area radius of 500 metres, 5 measurement sites, 8 measurements per site
(requires minimum flight time of 12 minutes)

2. Area radius of 1000 metres, 5 measurement sites, 8 measurements per
site (requires minimum flight time of 20 minutes)

The simulation environments have each time been populated with 4 clus-
ters of a random number (maximum 10) of handsets, placed randomly within
environment. Only one UAV has been deployed. The simulation was run 5
times for each setup and the best, worst, average and median error recorded.

5.2.1 Simulation with 500 Metre Area Radius

The results of this simulation setup can be seen in Figure 5.1. The best,
i.e. the lowest, error measurements are fairly consistent, all falling within 0.5
metres of each other. The worst cases are slightly more erratic falling within
8.74 metres of each other. This indicates that while some handset locations
are quite bad for localization, all the good locations are equally good. The
average measurements are also very consistent, at least with a higher number
of handsets. The last simulation run is somewhat of an outlier with few
connected handsets and a markedly higher worst, average and median error.
However, again, the best case is consistent with the other simulations, which
indicates that 44m is the best case accuracy for this simulation setup. It is also
noteworthy that even in the last simulation where the average error is roughly
60m. the search radius has gone down from 500m2 to 60m2, an 88% decrease
in search radius and a 98.56% decrease in search area for each handset.

58



5.2. TESTS AND RESULTS

Simulation Index

Measurement 1 2 3 4 5

Handsets # 20 22 33 20 13

Best (m) 43.88 43.79 44.26 43.74 44.08

Worst (m) 70.88 62.14 66.01 66.10 67.55

Average (m) 50.43 50.73 49.68 49.34 57.78

Median (m) 46.36 48.34 47.98 47.57 66.02

Figure 5.1: Results of Simulations with 500m Area Radius

Simulation Index

Measurement 1 2 3 4 5

Handsets # 19 23 20 15 29

Best (m) 87.52 87.53 88.56 90.02 87.73

Worst (m) 97.10 143.38 129.57 145.58 129.74

Average (m) 91.72 106.98 104.10 111.58 98.73

Median (m) 92.09 98.88 100.34 97.19 96.57

Figure 5.2: Results of Simulations with 1000m Area Radius

5.2.2 Simulation with 1000 Metre Area Radius

The results of this simulation setup can be seen in Figure 5.2. As can be
expected, when the area is quadrupled but the number of measurement sites
stay the same, the accuracy decreases. Compared to the results in Figure 5.1
the error has roughly doubled for all measurements. Again, the best mea-
surements are fairly consistent, falling within 2.5 metres of each other while
the worst are erratic (48.5 metres difference between lowest and highest worst
measurement). This is consistent with the ”good locations are all equally
good” sentiment. For a search area with a radius of 1000m the average error
of a handset location is roughly 105m. This is a decrease in search radius of
89.5% and a decrease in search area of 98.9% for each handset.

59





Chapter 6

Reflection

Here, we reflect on the final product, its limitations and detail what we consider
the most important future improvements.

6.1 Scalability

With the base functionality implemented, this prototype is now working as
intended, as seen in Section 5.2. With the functionality in place we now
present our arguments for the scalability of our solution:

� To decrease the time spent on locating a single handset, bearing in mind
that the directional antenna completely loses connection to the handset
once the handset is outside of its directionality, the system could, once
this happens, start generating “fake” Physical API messages with the
RSSP set to the noise level of the area. This will allow the system to
communicate with more handsets at a time, seeing as the faked readings
do not take up time slots on the frequency channel.

� If there are too many handsets for a single BTS in a search area, multiple
UAVs could be deployed and the system should then divide the handsets
between the UAVs. This could be done by giving each instance of the
system an ID as well as the total number of deployed system instances,
n. Since each handset has a unique numerical IMSI each system would
only handle handsets where IMSI modulo n = ID.

� An observation made in Section 5.2, namely that the accuracy is propor-
tional to the size of the area, means that while the system may be less
accurate in large areas, the reduction in percentage of the search area
remains the same. This means that, with the right UAV, this system
could be deployed in very large areas and still be useful.

� To increase accuracy two systems could be deployed on two UAVs and
produce readings for the same handsets. This would give the same effect

61



CHAPTER 6. REFLECTION

as having more reading sites for a single system, but would be possible
with UAVs with shorter flight times. The systems could share the hand-
sets by utilizing the handover procedure native to the GSM standard.
However, this would require a route planning algorithm that takes the
number of UAVs into account.

While none of the methods mentioned are tested as of yet, if one or more
of these are feasible the system could easily scale to large areas as well as the
collaboration of several UAVs.

6.2 Limitations

Given that this is a prototype project, several limitations to both the prototype
implementation and the methods used exist. Below, we describe these and
their impact on the system.

� A major limiting factor at this point is the flight time of present UAVs
given the payload presented by the hardware. Flight time directly affects
how many measuring sites the UAV can reach and this is a deciding
factor in the accuracy of the measurements. Modern UAVs such as
the Huginn X1, developed by Sky-Watch A/S, have a flight time of
approximately 25 minutes without payload, but given the weight of the
hardware (500g without outer casing), this time will be reduced by a
significant amount [18]. As such reducing the weight of the payload
would directly improve the accuracy of the system. Given that the
cables supplied with the hardware are quite long this is definitely an
option.

� In the simulation developed for the testing of the prototype, as well as
in the preliminary tests of the hardware equipment there is a direct LoS
between the handset and the antennae. Our sources indicate that this
impacts the accuracy of the measurements greatly, however our research
has not turned up any AoA applications where measurements are taken
from high in the air. This means that the AoA measurements we have
may not have realistic accuracy, however in order to determine this more
testing is required.

� On the topic of AoA it should also be noted that the RSSP in the current
simulation is based on a model developed without extensive tests. In the
real world directional readings may not behave as the model suggests,
which could impact AoA computations. In that case, it would especially
affect those where no readings are made with the directional antenna
pointing directly at the handset.

62



6.3. FUTURE WORK

� As mentioned, we did not have the hardware necessary to implement the
revised hardware architecture, thus the system has only been tested in
simulation. For the revised hardware architecture the two USRPs need
to be synchronized and a modification to OpenBTS has to be made
to allow the system to generate Physical API readings with data from
one USRP and RSSP from the other. Given that we did not have the
hardware, we have not looked into the complexity of this modification
though we do know that clock synchronization of the USRPs is possible
on a hardware level.

� Currently the GUI requires an Internet connection in order to receive up-
dates from the system. This communication could possibly be converted
to GSM data traffic as suggested in Section 4.2. Another possibility is
transmitting the data through the control channel that the UAV uses to
communicate with its handler.

� The system is not tested on the limited computer power that will be
available to it when deployed, however preliminary tests of our system
suggests that it will not be a problem. As well, OpenBTS is already
running on small computers in other applications. One important issue
in this case is that the computer will handle signal processing for not
one, but two USRPs which will present a significantly larger load on the
processor. However, lightweight parallel computers exist that could pos-
sibly take the place of the BeagleBone if necessary. One such computer
is the Parallella board [19].

� Naturally there is a limit to how many handsets can be connected and
communicating via a single BTS at any one time, however we only have
anecdotal evidence for what this upper limit is. Determining this is
subject to further testing, but we have not had enough handsets available
to perform this load test ourselves.

� The simulation developed is of course a very limited representation of
the real world and the list of its limitations mentioned in Section 5.1.3
and in previous items in this section may impact the accuracy greatly.
However, even with some loss of accuracy when applied to a real world
scenario, the simulation has a 98% decrease in search area which is
significant enough that we hold this as a feasible solution.

6.3 Future Work

The developed product is, of course, only a first prototype of the system. For
future development we would perform the following improvements:

63



CHAPTER 6. REFLECTION

� The most important future task is to assemble the hardware architecture
and make the required change to the OpenBTS system, such that the
system is testable in a real world setting.

� Currently the system is only operating with a simulated UAV so the
input and output modules are not consistent with how communication
with a real UAV would be. As such the implementation of these modules
should be changed to reflect an actual UAV API.

� Change the communication between the system and the GUI to allow
data transfer while the UAV is in operation.

� Testing of the current implementation of the system without direct LoS
to the handsets should be performed in order to determine if AoA is a
feasible technique in the context of USAR.

� Implement and test the methods described in Section 6.1 in order to
determine if this system is indeed scalable to the degree that we expect.

� Test, and if necessary refine, the model described for RSSP with relation
to the directionality of the antenna to ensure that it is consistent with
the real world.

� Perform load test of OpenBTS to determine how many handsets can
be connected and communicating concurrently. This is important to
determine how many instances of the system are needed for a disaster
area.

� Decrease the weight of the system as much as possible in order to maxi-
mize flight time. As mentioned in Section 6.2 this is vital to the accuracy
of the localization. This could be done by using lightweight cables and
exploring alternative hardware options.

� Experiment with other localization techniques (e.g. TDoA1) to deter-
mine if AoA provides the best accuracy. The reason AoA is the only
method tested during this project is that other techniques require a
much greater familiarity with digital signal processing.

� To ensure that all handsets in the disaster area connect to the Drone-
PhoneHome module a GSM jammer should be developed. The jammer
should identify any GSM networks still operational in the area and pre-
vent communication with these.

� The GUI should be implemented with functionality to allow the USAR
worker to ban rescue workers’ handsets from the DronePhoneHome net-
work. This is done to ensure that localization is only performed on the
relevant handsets in the area.

1Time Difference of Arrival

64



6.4. CONCLUSION

� The system should be modified to support manual control of the UAV
and still be able to operate as intended.

� The connected handsets should be filtered by their timing advance so
that localization is not attempted on the handsets that are far outside
the search area of the UAV.

� For improved performance the system should be implemented in C++
or another compiled language.

6.4 Conclusion

We set out to develop a module for use with a UAV to aid USAR workers,
by locating people buried in debris, through GSM localization of their cell
phones. We designed a hardware architecture for such a module, and even
though we did not have access to all the components necessary to assemble this
architecture, we had access to enough that we were able to perform preliminary
tests enabling us to reason about the effectiveness of this architecture.

For the system we designed and implemented several software modules
necessary for its operation, namely:

� A geometry module allowing us to convert between Euclidean and Earth
geometry.

� An input and an output module for communicating with other systems,
such as the UAV, OpenBTS and a GUI.

� A localization module for calculating the locations of cell phones through
the use of AoA and triangulation, as well as planning a route for the
UAV to follow.

Finally we implemented a control system to tie these modules together
and ensure correct behaviour of the system.

We made several theoretical contributions as well, namely mathematical
reasoning about the effect of attempting triangulation with inaccurate angle
measurements, as well as a heuristic route planning algorithm, including ways
to compute the validity and quality of a given route.

As we did not have the hardware to test the system under realistic condi-
tions, we developed a software simulation using models based on our testing,
which emulates the environment in which the system should be deployed, as
well as the input the system might receive during operations. Additionally we
created a prototype of the GUI that an operator might be presented with.

In these simulated conditions, we achieved a best case accuracy of 44
metres in our localization. In the average case, the accuracy was one tenth of
the radius of the area covered. This amounts to an area of around 1.5% of the
total area.

65



CHAPTER 6. REFLECTION

Finally, we reflected upon the limitations and scalability of the developed
system, and presented suggestions on how development can be continued,
first to make the system usable in a real world scenario, as well as improve
the accuracy.

All in all, the problem statement described in the introduction of this
report was fulfilled.

66



Bibliography

[1] H. Rodriguez, W.A. Anderson, P.J. Kennedy, E.L. Quarantelli,
E. Ressler, and R. Dynes. Handbook of Disaster Research. Handbooks of
Sociology and Social Research. Springer, 2009.

[2] Barbara Flindt Jeppe Tarp. Gsm localization in diaster scenarios, 2015.

[3] Gsm architecture. http://www.radio-electronics.com/info/
cellulartelecomms/gsm_technical/gsm_architecture.php,
cited 2014.

[4] ETSI. Etsi ts 100 910. http://www.etsi.org/deliver/etsi_ts/
100900_100999/100910/08.20.00_60/ts_100910v082000p.
pdf, 2005.

[5] CartouCHe. Positioning. http://www.e-cartouche.ch/content_
reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.
html, cited 2015.

[6] S. Zorn, R. Rose, A. Goetz, and R. Weigel. A novel technique for mobile
phone localization for search and rescue applications. In Indoor Position-
ing and Indoor Navigation (IPIN), 2010 International Conference on,
pages 1–4, Sept 2010.

[7] Ettus Research. Usrp-users mailing list. http://lists.ettus.com/
pipermail/usrp-users_lists.ettus.com/, cited 2015.

[8] Ettus Research. Usrp b200-b210 spec sheet. http://www.ettus.com/
content/files/kb/b200-b210_spec_sheet.pdf, cited 2015.

[9] Wikipedia. Log-periodic antenna. http://en.wikipedia.org/
wiki/Log-periodic_antenna, cited 2015.

[10] Sukru B. Bilgin Halil I. Gok Tayfun Nesimoglu Volkan Turgul,
Meltem Dirim. Broadband signal search and direction finding
at uhf frequencies. http://www.academia.edu/2448501/
Broadband_signal_search_and_direction_finding_at_
UHF_frequencies, 2010.

67

http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/gsm_architecture.php
http://www.radio-electronics.com/info/cellulartelecomms/gsm_technical/gsm_architecture.php
http://www.etsi.org/deliver/etsi_ts/100900_100999/100910/08.20.00_60/ts_100910v082000p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100910/08.20.00_60/ts_100910v082000p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100910/08.20.00_60/ts_100910v082000p.pdf
http://www.e-cartouche.ch/content_reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.html
http://www.e-cartouche.ch/content_reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.html
http://www.e-cartouche.ch/content_reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.html
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/
http://www.ettus.com/content/files/kb/b200-b210_spec_sheet.pdf
http://www.ettus.com/content/files/kb/b200-b210_spec_sheet.pdf
http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
http://www.academia.edu/2448501/Broadband_signal_search_and_direction_finding_at_UHF_frequencies
http://www.academia.edu/2448501/Broadband_signal_search_and_direction_finding_at_UHF_frequencies
http://www.academia.edu/2448501/Broadband_signal_search_and_direction_finding_at_UHF_frequencies


BIBLIOGRAPHY

[11] Ivan S. Ashcraft. Projecting an arbitrary latitude and longitude onto a
tangent plane. Technical Report MERS 99-04, Brigham Young University,
459 Clyde Building, Provo, Utah 84502, January 1999.

[12] iMatix Corporation. http://zeromq.org/, cited 2015.

[13] Robert Bridson. Fast poisson disk sampling in arbitrary di-
mensions. http://www.cs.ubc.ca/˜rbridson/docs/
bridson-siggraph07-poissondisk.pdf, cited 2015.

[14] Jason Davies. Poisson-disc sampling. https://www.jasondavies.
com/poisson-disc/, cited 2015.

[15] Wikipedia. Traveling salesman problem. http://en.wikipedia.
org/wiki/Travelling_salesman_problem, cited 2015.

[16] Wikipedia. Command pattern. http://en.wikipedia.org/wiki/
Command_pattern, cited 2015.

[17] Various authors. Openbts-discuss mailing list. http://sourceforge.
net/p/openbts/mailman/openbts-discuss/, cited 2015.

[18] Anthea Technologies. Huginn x1. http://www.
antheatechnologies.com/sky-watch-huginn-x1/
huginn-x1-information/product-information.aspx, cited
2015.

[19] Parallella. Parallella - the board. https://www.parallella.org/
board/, cited 2015.

68

http://zeromq.org/
http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
https://www.jasondavies.com/poisson-disc/
https://www.jasondavies.com/poisson-disc/
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://sourceforge.net/p/openbts/mailman/openbts-discuss/
http://sourceforge.net/p/openbts/mailman/openbts-discuss/
http://www.antheatechnologies.com/sky-watch-huginn-x1/huginn-x1-information/product-information.aspx
http://www.antheatechnologies.com/sky-watch-huginn-x1/huginn-x1-information/product-information.aspx
http://www.antheatechnologies.com/sky-watch-huginn-x1/huginn-x1-information/product-information.aspx
https://www.parallella.org/board/
https://www.parallella.org/board/

	Introduction
	Preliminaries
	Urban Search and Rescue
	GSM Networks
	Localization
	Existing Solutions
	I-LOV
	RESCUECELL

	Architecture
	Testing of Setup

	Use Case

	Tools and Techniques
	OpenBTS
	USRP
	Antennae

	Computer
	Triangulation
	Effects of Inaccurate Angle Measurements

	Tangent Plane Projection
	ZeroMQ
	Publisher-Subscriber Pattern


	Solution
	Revised Hardware Architecture
	Software Architecture
	Geometry
	Input
	Output
	Localization
	Control

	Usage of OpenBTS
	The Message Tier
	The Group Tier
	The Manager Tier

	Determining Angle of Arrival
	Evaluation
	Implementation

	Triangulating Location
	Triangulation Calculations
	Computing Inaccuracy

	Route Planning
	Optimization and Evaluation

	Control System
	Delegation of Commands
	The START State
	The TRANSIT State
	The TURNING State
	The READING State

	User Interface

	Testing
	Simulation
	Updating the Simulation
	Generating Physical Channel API Messages
	Limitations

	Tests and Results
	Simulation with 500 Metre Area Radius
	Simulation with 1000 Metre Area Radius


	Reflection
	Scalability
	Limitations
	Future Work
	Conclusion

	Bibliography
	Bibliography

