
Test–Driven Development:
15 years later

Aalborg University
Department of Computer Science
Group SWD103F14 • Spring 2014

Department of Computer Science

Aalborg University

Selma Lagerlöfs Vej 300

http://www.cs.aau.dk

Student project

Title: Test–Driven Development: 15 years later

Topic: Master’s Thesis

Project period:
SWD10, Spring 2014

Project group:
SWD103F14

Group members:
Petr Jasek

Supervisor:
Ivan Aaen

Number of pages: 51

Total pages: 59

Appendices: 1

Finished on: 10-09-2014

Abstract:

The topic of the thesis is research of Test-
Driven Development (TDD) and how it
changed in last 15 years. It was done us-
ing descriptive and later exploratory re-
search.
The thesis aims to explain TDD with all
its benefits and shortcomings. It focuses
on detail facts that are sometimes mis-
understood and it lists some of the most
widely spread myths and misconceptions
and tries to explain or disprove them.
The thesis also examines the idea of
“TDD is dead”. Which was created by
David Heinemeier Hansson and stirred
somehow quiet discussion about TDD.

In conclusion, the thesis lists the valid

critiques of TDD and proposes some

ways how could TDD address the crit-

icized problems.

The content of this report is freely available, but publication (with source indication) may

only be done with the agreement of the authors.

Preface

This report was written by group SWD103F14 in the Spring 2014 as a
master’s thesis project in the 10th semester of the Software Development
program at the Aalborg University.

The motivation for the thesis was author’s interest in the topic of Test–
Driven Development (TDD), popular yet quite controversial software devel-
opment process, and its usefulness and applicability in software development.
The main purpose of the thesis was to research the current state of TDD
and understand why it people have such diverse opinion on it.

The thesis describes the TDD and its properties, discusses benefits and
shortcomings, gives an overview of different opinions based on experience
and presents some facts from empirical researches on TDD. The thesis also
describes the relationship of TDD and processes like refactoring and modi-
fiability in software design.

The research was based on available literature, including Internet arti-
cles, discussions, videos and also on personal experience with TDD.

I hope the thesis can be useful to anyone interested in TDD whether for
the purpose of introduction to TDD, better understanding or as a pool for
both positives data and drawbacks regarding TDD.

Author:

Petr Jasek

I

II

Table of Contents

Summary 1

1 Introduction 3

2 Research methods 5
2.1 Descriptive research . 5
2.2 Exploratory research . 6

3 What is TDD 9
3.1 TDD cycle . 9
3.2 Other aspects of TDD . 12
3.3 History of TDD . 14
3.4 Research of TDD . 15

4 TDD under microscope 19
4.1 Importance of testing . 19
4.2 Cost of defects . 21
4.3 Code refactoring . 22
4.4 Code modifiability . 24

5 Myths and misconceptions about TDD 27
5.1 There is no design in TDD 27
5.2 TDD wastes developers’ time 28
5.3 You have to test everything 29
5.4 Code coverage and quality assurance myths 30

6 Benefits, shortcomings and challenges of TDD 31
6.1 Benefits . 31
6.2 Shortcomings . 32
6.3 Challenges . 33

III

7 Is TDD dead? 35
7.1 Mocking . 36
7.2 Red, Green, Refactor . 37
7.3 Tests . 38
7.4 Effects of TDD . 40
7.5 Conclusion on the debate . 42

8 Conclusion 43

Bibliography 49

Appendices 51

A Refactored classes and fault–prone classes (among those
subject to refactoring) 51

IV

Summary

The thesis aims to give a solid overview of Test-Driven Development (TDD).
How it was (re)discovered and how it evolved through the time until this
point. It shows and explains some of the burdens that TDD involuntarily
picked up on its way in form of myths and misunderstandings that gave rise
to variety of criticism.

The thesis hopes to serve as an reference for the correct way how to
practice TDD together with the rationale for it.

It uses descriptive research to create the current definitions (there are
more definitions) of TDD and then it uses exploratory research to find what
the correct one. Based on this, justified criticism can be assessed.

Some of the most important yet neglected facts about TDD are explained
thoroughly in the thesis.

The myths and misconception are explained and their validity hopefully
disproved throughout the thesis. The thesis also lists benefits, shortcomings
and challenges of TDD based on current academic research.

The thesis also analyses the debate about TDD being dead that was
started by David Heinemeier Hansson and resulted into series of video dis-
cussions between Hansson, Kent Beck and Martin Fowler.

In the conclusion the thesis lists the critiques that I consider eligible.
Some proposes for addressing the critiques are also made in the conclusion.

1

2

Chapter 1

Introduction

It is 15 years since Kent Beck released his book Extreme Programming Ex-
plained: Embrace Change [BECK, 1999]. In the book he Beck presents
his methodology eXtreme Programming. On of the things the methodol-
ogy suggests is that we should write our tests before we write production
code. This is considered the starting point of (re)discovering of Test–Driven
Development (TDD).

TDD is a software development process that has been both highly praised
and criticized in the past years. It is very controversial topic and often re-
sults into heated discussions between its promoters and adversaries. Sadly,
reasonable portion of the argument is based on misinterpreted or misunder-
stood facts and also myths about TDD.

Unfortunately, it is not only the critics who understand TDD incorrectly.
Often TDD proponents presents TDD incorrectly. The critics then denounce
TDD because of poor understanding of some TDD promoters. This can be
partly seen as TDD’s fault as its most common definition is summed up as
this [BECK, 2002]:

1. Write a test. Think about how you would like the operation in your
mind to appear in your code. Invent the interface you wish you had.

2. Make it run. Quickly getting that bar to go to green dominates every-
thing else. If a clean, simple solution is obvious, then type it in. If the
clean, simple solution is obvious but it will take you a minute, then
make a note of it and get back to the main problem, which is getting
the bar green in seconds.

3. Make it right. Now that the system is behaving, put the sinful ways
of the recent past behind you. Step back onto the straight and narrow

3

path of software righteousness. Remove the duplication that you have
introduced, and get to green quickly.

This definition is very simple yet its vagueness leaves a lot of space for
own interpretation. Therefore TDD implementations vary from developer to
developer and unfortunately those variations are not always cosmetic. Some
of the incorrect interpretations of TDD will be discussed in chapter 7.

In the thesis I will try to present my view of the correct way to practice
TDD. I will try to give the rationale for it through a descriptive research
together with an exploratory research.

In the second chapter I explain how I did the research and why I chose to
do it this way. In chapter 3, I describe what is TDD, how it was discovered
by Kent Beck and what was going on in research areas after TDD started to
be used. Chapter 4 looks more closely at details of TDD. In chapter 5, I take
a look at the myths and misconceptions about TDD. Chapter 6 talks about
benefits and shortcomings of TDD and explains challenges that TDD faces.
Chapter 7 is analysis of recent debate that spread through the Internet on
the topic of “TDD is dead”.

The research question I give myself is: Which criticism of TDD is
justified and is there a way TDD can eliminate it?. My main goal,
though, is to gain better understanding of TDD and all that has relation to
it but the thesis should also help others to achieve the same.

4

Chapter 2

Research methods

In the beginning of working on the thesis, I first did a small informal ex-
ploratory research in academic papers to see what are the topics discussed
regarding TDD.

I did the research in the IEEE Xplore Digital Library1. I tried to find
all papers on TDD to see what has been researcher. I used the following
pattern for the search:

("test driven" or "test-driven") AND (development OR design)

I found 224 papers since year 2003 (figure 2.1). I ordered them by the
year and than by the number of citations of the paper so I can find the most
cited papers each year. My goal was to discover some patters that can be
later examined more closely. It should be said that not all of the papers
focus directly on TDD.

Moreover when I started read through the papers (starting from the most
cited ones) I found that there is slight diversity in understanding what TDD
means. And that was not only problem I had with portion of the researches.
I discuss the main problems in the end of the next chapter.

When I was thinking how to best tackle the ambiguity of TDD (or at
least in the understanding of it) I concluded that first, I have to understand
it myself. I also need to understand the rationale behind every part of TDD.

2.1 Descriptive research

I used descriptive research to gain better understanding of TDD. I was
doing it absentmindedly in an informal way, driven only by the desire to

1http://ieeexplore.ieee.org/

5

http://ieeexplore.ieee.org/

Figure 2.1: Publications in years that consider TDD in some way

find out what are the different views on TDD. I collected various opinions
from literature (including Internet).

I started from the roots. I read books written by the author of TDD,
Kent Beck. I was looking for his opinions and his rationale for it. This way I
got pointed towards other resources but those were mainly TDD supportive
resources.

Therefore, I searched the Internet for opinions against TDD to have
comprehensive set of data from both TDD promoters and adversaries. At
this point I saw that the interpretations of some parts of TDD differ not only
among developers but also same people through time refine their definition
of TDD. At that point, I could see why TDD is such a problematic topic.

My goal at that moment was to state the different opinions and conclude
how TDD should look like in the present time. On top of that I wanted to
research the rationale behind it. What are the reasons TDD should be that
way.

2.2 Exploratory research

I had collected various data on TDD. Many different opinions from many
different people. What I needed to do was find the correct definition of TDD
so I can assess which critique of TDD is justifiable.

From this point I was not looking at TDD as a property of Kent Beck.
I considered it to be so public and widely used that the definition given by
Kent Beck don’t have to be necessary the right ones. I was looking for the
claims and proves that will make TDD more viable development process.

6

This way, I hoped, the definition of TDD will become simpler and more
understandable. I wanted to find the right questions to ask. Such questions,
that the answers for should silence the critics.

Looking for these questions lead me to myths and misconceptions about
TDD. I’ve discovered that a portion of the critiques arises from myths that
spread both between TDD critiques and practitioners. I also found out
that some of the TDD claims, like increased quality or productivity, are
examined in papers and some of the papers confirm them. This made me
check academic research again for empirical studies with some conclusive
results. I drew from it some of the benefits, shortcomings and challenges of
TDD.

Lastly, when I discovered the “Is TDD dead?” debate [HANSSON et al.,
2014], I knew I have to analyze it and compare it to my findings because it
was debate between people that greatly affect the TDD topic. The debate
had probably the biggest impact on my understanding TDD.

7

8

Chapter 3

What is TDD

In this chapter we will talk about TDD as it is today, about the aspects that
define TDD, about its history and also about the research that was done
with regards to TDD. The history is not discussed at first because it needs
some explanations and definition of TDD, first.

3.1 TDD cycle

TDD is a software development process that relies on the repetition of a
very short development cycle. The cycle is sometimes called the red, green,
refactor cycle 3.1. You repeat it until you have tests for all the functionality
your software needs and all of the tests pass. The three steps of the cycle
were shortly described in the first chapter. Now we will look at the cycle
more closely. The description is based on [BECK, 2002; MARTIN, 2007;
JEFFRIES & MELNIK, 2007] and personal experience.

Figure 3.1: Red, green, refactor cycle

9

3.1.1 Step 1 – Red

In the first step, your task is to write a test that should be focused on a new
capability of your software. The test should fail showing that this capability
is not implemented yet. This doesn’t always happen and sometimes you
write a test that should fail but it passes. There can be two main reasons
for it and they are both considered as positive feedback.

First, probably the most common reason, is that you made a mistake
while writing the test. This is an example of how the tests work as double
checking (discussed in the next chapter). Your tests checks your code as
well as the code checks your tests. Here the code discovered that you made
a mistake in your test because it passed even though it shouldn’t.

Second reason, why a test might pass, is that you are testing functionality
that is already implemented. Maybe the functionality was implemented as a
side effect of something else or it was implemented without your knowledge.
In either case, you gain a better understanding of your software when you
have to examine why test passes when it shouldn’t.

Of course, there are also situations where you get false positives or false
negatives results of tests. You might, for example, try to test a feature that
is already implemented but make a mistake in the test. The test then fails
even though it should pass.

You should never write more of a unit test than is sufficient to fail and
you should never write more than one failing test. When you write a failing
test you should move to the next phase.

3.1.2 Step 2 – Green

In the second phase, you write production code. The key is that you should
write only enough code that is sufficient for the test to pass. This is some-
times very hard because you are forced to write a code that, you know, will
change. You often already know what you want to test next and how will
you make the next test pass. I will give simplified example.

Imagine you are making a function that calculates factorial. You already
know the algorithm how to calculate factorial but to follow TDD you first
write a test that factorial of 0 is 1. To pass this test you should implement
the function in a most simple way possible. So its only line of code can be
return 1. This will make your test pass. Kent Beck calls this practice Fake
It (’Til You Make It) [BECK, 2002].

Your second test could be that factorial of 1 is 1. When you write the test
it will actually pass because your factorial function already returns 1. The

10

frustrating thing is that you know that the function shouldn’t just return 1.
You know it will change and you even know how it should change because
the algorithm to calculate factorial is well known. There is a reason why
TDD is so strict about doing it this way.

It is hard do set a boundary what is a well known algorithm that doesn’t
have to be tested. The solution for calculating factorial is well known and
writing tests for it might seem unnecessary. But we don’t want to test only
the validity of the algorithm. We should also test for programmer errors like
typos and such. In practice, most programmers, who follow TDD, would
write test then implement the known algorithm, then write all other tests
where. They will check after every test whether it really passes. Then they
can write tests for special cases like exceptions and those will fail once again
returning them tu classical TDD cycle. This approach can turn against you
because you are not coding ‘test–first’ and you lose some advantages of it.
Your tests suite can be incomplete because it is usually more demanding to
write tests when your implementation is already done.

3.1.3 Step 3 – Refactor

Last step of the TDD cycle is refactoring. Once your test runs you should
clean up after yourself. Because the TDD in the green phase suggests to
implement things the most simple way to only past their test, the solution
is often ‘dirty’. In the refactoring phase you should deal with this problem.

While refactoring you should never add new functionality. Sometimes,
you might be tempted to do it because refactoring shows you some smart
way how to accomplish something but you shouldn’t.

Focus should be put on removing duplications, increasing readability and
expressiveness of your code but also refactor to reduce coupling and increase
cohesion. To sum up, you should improve the design of your code. That
relates both to the tests and implementation. Sometimes people forget that
they should also refactor tests.

Refactoring doesn’t address only the test and production code written
in the last iteration of the cycle. You should refactor any part of the code
that needs it. There is an unwritten suggestion that you don’t need to fully
refactor your code in each iteration. You proceed so rapidly that to refactor
something that you know will change in the next iteration is wasting. This
should, however, not be excuse to postpone refactoring when it is truly
needed.

Once you refactor your code or even during the refactoring you should
run your test suite. The tests should all pass. This way you know that you

11

didn’t brake anything. If you broke something and you don’t know how you
can always revert all the changes that you did during the refactoring. Once
you done refactoring, you can proceed to next iteration (test) of the red,
green, refactor cycle.

3.1.4 Three laws of TDD

The cycle is sometimes summed up into the three laws of TDD [MARTIN,
2007] that the TDD practitioners follow. This laws make sure that you are
locked in the red, green, refactor cycle:

1. You may not write production code unless you’ve first written a failing
unit test.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to make
the failing unit test pass.

Following these laws perfectly doesn’t always make sense. Sometimes
you’ll write a larger test. Sometimes you’ll write extra production code.
Sometimes you’ll write tests after you’ve written the code to make them pass.
Sometimes it’ll take more than two minutes to go around the loop. The goal
isn’t perfect adherence to the laws — it’s to decrease the interval between
writing tests and production code to a matter of minutes. [MARTIN, 2007]

3.2 Other aspects of TDD

There are plenty other aspects to using TDD than red, green, refactor cy-
cle. We will talk about the ones I consider most important or not enough
understood.

3.2.1 TDD is more than Test-First programing

There is a notation problem going on in the TDD territory. TDD used to be
called Test-First development. Kent Beck changed the name while writing
the book Test-Driven Development: By Example [BECK, 2002]. It was to
address the fact that the tests in TDD are not for the purpose of testing
itself but more for the purpose of driving the design.

The problem from my point of view is that you can practice Test-First
without doing TDD. You can have the whole design of your system done

12

but during the implementation you will write your tests first. That is not
TDD. Although TDD uses Test-First, it adds on top of it. In TDD your
tests should drive the design of your system. I mention this problem because
I have witnessed teams claiming that they are doing TDD but all they were
doing was just writing their tests first ignoring the design.

I talk more about the design part of TDD in chapter 5.

3.2.2 Keep it small and simple

There are several principles in TDD (sometimes coming from XP) that ex-
press the idea of keeping things small and as simple as possible.

‘Keep it simple stupid’ (KISS) principle states that most systems work
best if they are kept simple rather than made complicated; therefore sim-
plicity should be a key goal in design and unnecessary complexity should be
avoided [WIKI, 2014a].

‘You aren’t gonna need it’ (YAGNI) is a principle of eXtreme Program-
ming (XP) that states that a programmer should not add functionality until
deemed necessary. XP co-founder Ron Jeffries has written: “Always imple-
ment things when you actually need them, never when you just foresee that
you need them.” [JEFFRIES et al., 2000]

TDD makes great use of unit testing. By unit is usually meant a piece
of code that can be tested separately from its surrounding. Keeping units
relatively small is claimed to provide critical benefits, including [Pathfinder
Solutions, 2012]:

� Reduced debugging effort – When test failures are detected, having
smaller units aids in tracking down errors.

� Self-documenting tests – Small test cases have improved readability
and facilitate rapid understandability.

3.2.3 TDD is not only about unit testing

Even thought TDD literature mainly uses unit tests for demonstrations,
those are not the only tests used in TDD. TDD can incorporate all kinds of
tests you need to use. Integration tests, functional tests, acceptance tests1,
system tests and other.

1Acceptance Test-Driven Development (ATDD) is related to TDD but the main design
driver are the acceptance tests. The tests are more oriented on communication with users
whereas in TDD the tests are oriented on developers.[POGH, 2011]

13

The high focus on unit tests affects TDD in negative way because the use
of unit tests is criticized among some developers [COPLIEN, COPLIEN].

3.3 History of TDD

Lets look shortly at the history of Test–Driven Development and the things
that affected it. I will mention talk about things that had some effect on
TDD.

In the 1960’s, programmers for the Mercury Space Program use a form of
TDD while programming punched cards. With punched cards, people had
to be very sure that what they write actually does what it should because
they had only few runs on the actual machine. Therefore they first wrote the
expected output and then they wrote the ‘code’ [FEATHERS & FREEMAN,
2009].

Kent Beck read about this in one of his father’s books (his father was
a programmer). He tried it out and found out it is a great idea. [BECK,
2012] Beck says about it:

I was finally able to separate logical from physical design. I’d
always been told to do that but no one ever explained how.

You are able to make such a separation because tests specify what you
want before you think how you want to do it. And so the modern TDD was
rediscovered by Kent Beck. It started as a part of the eXtreme Programing
(XP) methodology in 1999 that was also created by Kent Beck. In the
book eXtreme Programing Explained: Embrace Change [BECK, 2004] Beck
doesn’t mention TDD yet but the XP methodology puts great focus on
testing. It even encourages to practice Test–First development:

Code and tests can be written in either order. In XP, when
possible, tests are written in advance of implementation.

The book also strongly emphasize the importance of testing by quoting
one of the most controversial mottoes of TDD:

Testing is as important as programming.

In year 2000 the JUnit.org website is launched. JUnit is a unit testing
framework for Java programming language. It was developed by Kent Beck
and Erich Gamma. It is part of the xUnit2 family of unit testing frameworks.

2Another xUnit framework, the Nunit, was registered also in year 2000

14

Unit testing plays significant role in TDD and easy to use frameworks thus
made TDD more accessible to programmers.

The same year Beck and Gamma write article Test Infected: Program-
mers love writing tests [BECK & GAMMA, 2000]. In the article they show
high enthusiasm for testing and they use it to promote JUnit:

Testing is not closely integrated with development. This pre-
vents you from measuring the progress of development – you
can’t tell when something starts working or when something stops
working. Using JUnit you can cheaply and incrementally build
a test suite that will help you measure your progress, spot unin-
tended side effects, and focus your development efforts.

They proceed to build on the fact that testing is important and they show
and example of a programming task that they solve while using testing and
JUnit. They also touch the subject of Test–First development:

The style here is to write a few lines of code, then a test that
should run, or even better, to write a test that won’t run, then
write the code that will make it run.

In the same year another topic closely related to TDD was introduced.
At the XP 2000 conference a first paper regarding Mocks was presented
[MACKINNON et al., 2000]. Mocks are one of the controversial topics that
are related to TDD (discussed in chapter 7). From this point frameworks
for mocking are created.

In 2002, Kent Beck publishes the TDD book – Test Driven Development:
By Example [BECK, 2002]. Obviously one of the most important milestones
regarding TDD. In the book, Beck presents TDD on two examples. He also
dedicates part of the book to patterns for TDD where he presents solutions
for various testing problems that can occur when practicing TDD.

From this point TDD starts, in a way, its own journey and research
papers on the topic of TDD start to emerge.

3.4 Research of TDD

In this section I will talk about TDD from the point of view of research
papers. I went through reasonable portion of papers but the amount of
things I could conclude from them was disappointing.

I will start with problems I found in academic papers. First of all, in
some papers the understanding of TDD was not sufficient for me to accept

15

their results. There were a lot of studies that used students and/or very
small scale projects. Even further in some of the studies people were using
TDD for the first time. This facts can radically skew the results.

Some papers were confusing Test-First development and TDD. Because
of the fact that Test-First is part of TDD, the results of such a paper could
still be used but not as result for TDD but result for Test-First. In one such
a paper authors write:

Our qualitative survey indicates that developers may favor a
modified TDD in which some upfront designing is done before de-
veloping the code using the test first style. [GUPTA & JALOTE,
2007]

TDD doesn’t dictate no design up front. I talk more about this in chapter
5.

Another problem with academic papers is that drawing general conclu-
sions from empirical studies in software engineering is difficult because any
process depends to a large degree on a potentially large number of relevant
context variables [WRIGHT et al., 2010].

Also, the results of empirical studies are not sparingly in opposition, at
least the studies regarding TDD, I did examine. As an example can serve
following extract from [SINIAALTO & ABRAHAMSSON, 2008]:

The results provide some warning that the benefits of TDD
are not automatic and as self-evident as expected.Some of the
findings imply that TDD may produce a less complex code while
other findings indicate the opposite. The existing empirical evi-
dence supports the claim that TDD yields improve external qual-
ity, especially when employed in an industrial context. This find-
ing clearly conflicts with the case study which identifies certain
risks in the adoption of TDD.

From articles from an issue of journal IEEE Software [IEEE Software,
2007] that focused on TDD, some conclusion could be made:

� TDD developers apply more effort but achieve better quality.

� Effects of TDD are more visible on real projects.

� It is very hard to get meaningful results.

� There is some dissent about the results.

16

It should be acknowledged that even though the results in many articles
cannot be fully trusted, most of the articles mention this in the “Threats
to validity” section. These were the main reasons that concerned me about
empirical research in the TDD area.

17

18

Chapter 4

TDD under microscope

In this chapter we will look at TDD more in detail. There are some parts
and effects of TDD that are under–emphasized or not enough understood
yet very important. I tried to pick the most important ones.

4.1 Importance of testing

In the eXtreme Programing book [BECK, 2004], Beck emphasize (among
other things) how important it is to test. He makes several statements
regarding testing. For example, he expresses that it is important to test
early. He claims:

Defects in software are expensive but eliminating them is also
expensive. However, most defects end up costing more than it
would cost to prevent them.

He introduces two principles for testing in XP. In the first, he explains
that software testing is double-checking. The test says what you want to
achieve and the implementation should fulfill it. And he follows:

If the two expressions of the computation match, the code and
the tests are in harmony and likely to be both correct.

As a second principle, Beck mentions the Defect Cost Increase (DCI)
which is according to him one of the few empirically verified truths about
software development. He expresses it in a drawing (figure 4.1 and says:

The sooner you find a defect, the cheaper it is to fix. Catch
a defect the minute it is created and the cost to fix it will be
minimal.

19

(a) Late testing (b) Frequent testing

Figure 4.1: Difference between late and frequent testing

XP says that testing should be done early, often and the tests should be
automated. People sometimes test on the fly while debugging by making
some assertions in their code to see where the actual bug occurs. Problem
with such testing is that it is done after you have discovered a bug, it is not
automated and it will be most likely removed after the bug is found and
fixed. If it will be removed it is not repeatable and if such a testing is left
in the code it pollutes it because it is not really part of the code. It is a
test. You might as well write a unit tests. You can keep them and it will
test your software continuously whenever you run your test suite.

In TDD you write your tests first so in theory you should avoid defects
completely. That is of course not possible. Also the approach to fixing bugs
is different from the traditional. In TDD, when bug is found, you write a
test or tests that should reproduce this bug. This test must fail, showing
that they really simulate the bug. Then you change the code for the test to
pass. This should fix the bug.

Convince the development team to add new tests every time a problem
is found, no matter when the problem is found. By doing so, the unit test
suites improve during the development and test phases. [NAGAPPAN et al.,
2008]

TDD considers tests equally important as the code. This point will be
further discussed in chapter 7 as one of the controversial topics. Tests are
not just tests in TDD. They are considered also the API documentation and
designing ‘assistants’ [MARTIN, 2008; BECK, 2014].

The importance of tests does not mean that they cannot be removed.
If you find you have tests that test the same functionality or tests that
become invalid (maybe the interface has to change) you can remove them.
Nevertheless, it is often difficult to be sure that you can remove tests safely.
The rule is, if you are not 100% sure the test is worthless, don’t delete it
[BECK, 2002].

20

One last thing about tests is that they can be a way how to measure your
progress. Whenever you make a test pass you made a progress. Whenever
you have tests for all functionalities of a feature and all of those tests pass,
the feature is implemented.

4.2 Cost of defects

As mentioned earlier in this chapter, one of the reasons why people want
to test early is that they are aware of the increase of the cost of defect per
time. That is, later discovered bugs are more costly to fix. But is it true?
And if it is true, how big is the increase in the cost.

The original idea probably comes from Barry Boehm. In his paper,
Understanding and Controlling Software Costs [BOEHM & PAPACCIO,
1988], he suggests that the defects found ‘in the field’ cost 50–200 times more
to correct than those corrected earlier. The 50–200 increase is staggering but
it must be taken into account that this was 25 years ago. In that time, most
software products were developed with waterfall–like processes. Therefore
fixing a defect found in the testing phase caused by incorrect analysis of
problem domain could indeed present large cost increase.

In paper from 2001 [BOEHM & BASILI, BOEHM & BASILI] Boehm
indicates that for small non-critical systems, the cost increase ratio is much
smaller. But does it apply to all defects?

This question is mentioned by critics of the Defect Cost Increase (DCI)
idea. Naturally there are some types of bugs whose fixing cost might seem
invariant. I would use an anecdotal example from blog article The Tyranny
of Always [BOLTON, 2009]. In it, the author writes:

This has happened dozens of times for me, and I rather sus-
pect that this has happened at least once for large numbers of
testers: just before release, you find a bug, you show it to a de-
veloper, and she says, “Oh. Cool. Just a second. [type, type,
type]. Fixed.” That didn’t cost 10,000 to one.

I agree with the author in this but I have a thought to add and I think
it is quite important thought. The DCI is not the same for all defects. The
defect might be easy to fix as long as you don’t build on top of them. So
maybe you can fix the defect now with the same cost as you would a year
before. That doesn’t mean that the DCI doesn’t apply. The cost just might
increase later in the development if the bug is not fixed. The DCI is also
tightly coupled with the ‘quality of code’. If the code is clean and objects,

21

modules, etc. are well isolated the bugs will also be isolated and will most
likely affect less code. DCI won’t be so high in such a software.

The main problem I see with DCI is that it is viewed too much as a
dogma and there has to be some number that defines how big is the Defect
Cost Increase instead of just accepting that if you are not fixing your bugs
they might cost you much more later.

DCI is also used as a metric for a software but as such it has many faults.
One issue connected to DCI as a metric is that it penalizes quality [JONES,
2012]). Considering that you spend 10 hours for writing tests. Lets imagine
two situations. In the first one your code is bad and your tests discover 10
bugs and you spend 10 hours on fixing them. That is you spend two hours
for a finding and fixing a bug. In the second situation your code quality is
very high. Your tests discover one bug and you spend one hour on fixing
this bug. But now you spend 11 hours to find and fix one bug. The better
the quality of your code is the more costly your tests might look.

People then might argue that good programmers could write less tests
because they are less likely to make mistakes but there is another reason
why you should have tests for your code and that is, to lower the fear of
changing the code.

4.3 Code refactoring

Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor you are improving the
design of the code after it has been written. [FOWLER et al., 1999]

The code should be ‘clean’ because by continuously improving the design
of code, we make it easier and easier to work with. This is in sharp contrast
to what typically happens: little refactoring and a great deal of attention
paid to expediently adding new features. If you get into the hygienic habit of
refactoring continuously, you’ll find that it is easier to extend and maintain
code. [KERIEVSKY, 2004]

A study on refactoring [BAVOTA et al., 2012] examines its relation
to newly induced bugs into the software on three Java software systems:
Apache Ant, Xerces, and ArgoUML.

The study finds that in general, there is no significant difference between
classes involved or not in refactoring in the proportion of bug–fixing. Such
differences occur in some specific cases, and in all of them classes involved in

22

refactoring have a higher chance of being involved in bug-inducing changes.
The study also finds that some kinds of refactoring, namely pulling-up

method or inlining a temporary variable, are much more likely to induce
bug fixes. The table from the study can be found in Appendix A.

In another study, from 2014 [KIM et al., 2014], developers were asked
about the benefits they observe from refactoring. Results (figure 4.2) show
that developers indeed associate refactoring with some improvements in their
software of which the most beneficial are improved readability and maintain-
ability. Refactoring also decreases the number of bugs and makes adding
new features easier.

Figure 4.2: Benefits of refactoring

In the same study, the developers were asked about the risk factors that
they associate with refactoring (figure 4.3). This result shows that most
developers consider regression bugs and build breaks the biggest problem.
To quote one developer’s response from the study:

The primary risk is regression, mostly from misunderstanding
subtle corner cases in the original code and not accounting for
them in the refactored code.

This point is understandable and it makes complete sense. If you are
refactoring someone else’s code you might not know all its implications.
Therefore you can misunderstand it and break it while refactoring. There is
a well known solution to this problem, though. Tests! Martin Fowler writes
in his book on refactoring [FOWLER et al., 1999]:

Whenever I do refactoring, the first step is always the same. I
need to build a solid set of tests for that section of code. The tests

23

Figure 4.3: The risk factors associated with refactoring

are essential because even though I follow refactoring structures
to avoid most of the opportunities for introducing bugs, I’m still
human and still make mistakes.

Developers perceive that there is no safety net for checking the correct-
ness of refactoring edits when the test adequacy is low [KIM et al., 2014].
The fear of changing the code is one of the strongest points for TDD. In the-
ory, with TDD you should have 100% test code coverage because you cannot
write production code without having a failing test. This is unrealistic as-
sumption as there are always things slipping through that are not tested.
Nevertheless, by using TDD you should achieve very high code coverage.

High code coverage means that your code is safe to refactor because if
you break some functionality, some tests will fail and inform you about that.
This increases the confidence of developers in refactoring the code. The fear
of introducing bugs is lessened by the tests.

To sum up the refactoring should be the way to well designed system
(regardless of TDD). There are two ways. First, you have a system and you
want to improve the design. To do it you want to refactor but to refactor
you should have tests. TDD goes from the other side. You write tests so
you can refactor so you can improve the design of your system.

4.4 Code modifiability

Modifiability is a quality attribute of the software architecture that relates
to the cost of change and refers to the ease with which a software system
can accommodate changes [BACHMANN et al., 2007]. In other words it is
a quality that reduces cost of changing (including adding) requirements of
the software.

24

It is important quality because 40 to 80 percent of software cost is con-
sumed by maintenance. Further, enhancements are responsible for roughly
60 percent of software maintenance costs. So, software maintenance is
largely about adding new capability to old software, not about fixing it.
[GLASS, 2001]

One of the reasons for the high cost of software maintenance is that pro-
ductivity of changing existing code is at least an order of magnitude lower
than developing new software. Incorporating anticipated changes, changes
for which the software system has been prepared, requires generally consid-
erably less effort than including unanticipated changes. [PerOlof BENGTS-
SON, 2000]

For reasons mentioned above, the software should be designed to be
modifiable. Modifiability is connected to coupling. Less coupled system
should be easier to modify because the changes you make should have only
local impact. As discussed further (in chapter 7) there are always trade–offs.
When you are designing you should be aware of it.

For example, when pushing low coupling to the boundaries you can intro-
duce level of abstraction that might not be needed. It improves modifiability
but for the cost of harder to understand, less cohesive code.

TDD supports modifiability in the way it supports modularity. By hav-
ing tests first, you automatically have a user of your code. You have to think
first how you will use your code. This, however, does not secure modifiabil-
ity. Good design is very important for modifiability and that is not achieved
by TDD itself. The developer, even when practicing TDD, has to take the
design into account. More about this in chapter 5.

For the software to be modifiable, the developers also have to think
ahead. You have to design for modifiability and you should put focus on it
in parts of the software that are likely to change.

There are four concerns regarding modifiability [BACHMANN et al.,
2007]:

1. Who makes the change?

2. When is the change made?

3. What can be changed?

4. How is the cost of change measured?

The advantage of TDD is reliable (to some extent) test suite. Because
of that you don’t have to worry to much if you are changing some else’s

25

software. There are tests that should warn you in case you misunderstand
something and brake the code. Therefore, it should not matter who is
making the changes.

The time in software life cycle, when the change is made, can be impor-
tant to some extent depending on the severity of the change. Most software
tends to deteriorate in terms of quality and therefore modifiability. Never-
theless, TDD is an incremental, iterative practice and it should not matter
much how far in the development are you.

The answer to the question “what can be changed?” should be every-
thing, especially in well designed systems. Nevertheless, I can see situation
where software is working in cooperation with some hardware that has some
physical limits. The software might be bound by these limits and therefore
not modifiable in this way.

How can you say, how costly will some change be. To find the answer
might be very complex problem that requires great amount of developers
experience as well as knowledge of the code. I believe that tests can help as
a documentation in a way that you can see the API of your software and
you can better guess how much will need to be change to implement the
new functionality.

To sum up, my opinion is that TDD fosters modifiability but cannot
be considered as a way to achieve it because there is still requirement for
experienced developers that can foresee areas in the software that are likely
to change.

26

Chapter 5

Myths and misconceptions
about TDD

When you browse the Internet discussions about TDD you can encounter
many myths and misinterpretations of TDD. The myths are spread equally
between followers and opponents of TDD. Let’s look at the most harmful
myths about TDD.

5.1 There is no design in TDD

There are different variation of this ‘problem’ and it is both myth and mis-
conception. As written before, TDD is not only “write your tests first”. Yes,
TDD requires developers to write tests before the implementation but that
doesn’t mean there is no design.

TDD developers should design their software with the help of their tests.
The test should make you think about how will you use the implementation
before you write it. But that is not all.

TDD was never saying you cannot design before you start coding. It
merely follows the path of agile practices that you shouldn’t spend a lot of
time on designing up front because your design is likely to change as you
gain better understanding about your domain. That usually happens during
coding as you discover issues with the design.

There is related misconception that a great design (architecture) will
magically appear just from the tests. That is, naturally, not true. Even in
TDD you should think about your design. But you should let the tests guide
you by ‘listening’ to them. If something becomes hard to test it means it
is hard to use. That usually means that there is a design problem and you

27

should refactor. This is the way tests should improve your design.
TDD shortens the feedback loop on design decisions [BECK, 2002]. So

it is you who makes design decisions. After or during that, by writing a test,
you examine how it would the design decision affect your software. So before
you write a test you should think about it in its context. You should always
take the context into account. It would be foolish to think that standard
design principles can be ignored just because you are doing TDD.

5.2 TDD wastes developers’ time

It is true that if you won’t write any tests for you software, it will probably
take you less time to write. That, however, depends highly on the amount
of bugs you introduce into your software. More bugs you make, the more
time it will take you to find them and fix them. If you write tests for your
software it should not matter very much whether you write them first, last
or as a combination of both ways.

A study about effectiveness of test-first programming [ERDOGMUS,
2005] concluded that Test-First programmers write more tests per unit of
programming effort. In turn, a higher number of programmer tests lead to
proportionally higher levels of productivity. Thus, through a chain effect,
Test-First appears to improve productivity. The study also speculates that
Test-First might give developers better understanding of the software:

We believe that advancing development one test at a time and
writing tests before implementation encourages better decompo-
sition, improves understanding of the underlying requirements,
and reduces the scope of the tasks to be performed.

Another study’s [NAGAPPAN et al., 2008] findings suggest that even
though TDD increases the time of development it lowers the defect density
(figure 5.1). From an efficacy perspective the increase in development time is
offset by the reduced maintenance costs due to the improvement in quality.

The study also mentions that further releases of a software developed
with TDD experience low defect densities due to the presence of the tests.
So whether TDD ‘wastes’ time depends on how long will the software’s
lifespan. Longer the software’s lifetime the more useful the tests will be as
they will lower the defect rate.

28

Figure 5.1: TDD – Defect density and time increase

5.3 You have to test everything

This misconception is mainly represented by the argument whether or how
you should test private members of your class but there is no easy answer for
it. It has a lot to do with the design of your code or so called code visibility.

In TDD you shouldn’t encounter a situation in which you write a test and
cannot access what you want to test because the implementation shouldn’t
exist yet. To test a method you have to use it as some other part of your
software or user of your API would use it. Therefore it cannot be private.
You can still have private methods but as said in the book Pragmatic Unit
Testing [HUNT & THOMAS, 2003]:

In general, you don’t want to break any encapsulation for
the sake of testing (or as Mom used to say, “don’t expose your
privates!”). Most of the time, you should be able to test a class by
exercising its public methods. If there is significant functionality
that is hidden behind private or protected access, that might be a
warning sign that there’s another class in there struggling to get
out.

A problem can occur if you want to decompose, for example, more com-
plicated algorithm into smaller functions. While developing, you write tests
for the individual parts to help you make sure that each part does what it
should. Once you are done, you find out that you are exposing the details
of the algorithm. You want to change the methods that are implementation
details to be private but that would break your tests. The dilemma now
is whether to keep your implementation details exposed or delete the tests
for them. Removing the tests shouldn’t lower the confidence about the cor-
rectness of the algorithm because it should be tested as a whole in the first
place but it isn’t always trivial decision whether tests can be removed.

There are other parts of software that you don’t have to test or at least
don’t have to Test-First. The parts include external frameworks and libraries

29

you are using, code that has non–deterministic results and code that deals
only with user interfaces [KAPELONIS, 2013]. Also code that contains
facts with no logic like files with constants or configuration files shouldn’t
be tested [HALL, 2010].

5.4 Code coverage and quality assurance myths

There is a common myth about test code coverage. If you do TDD right
you will achieve 100% code coverage. That is not only unrealistic but it can
be also dangerous. Code coverage is often considered a reasonable metrics
for the quality of your software but mostly, it is misleading metric. It can
even turn against you if you chase code coverage just for the sake of having
it as high as possible.

Code coverage takes into account only different paths in code. If you have
two tests of a function, each test with different input values, the second test
might not increase the code coverage. It might, however, test whether your
function gives correct results for two different inputs. Some execution paths
should be tested literally dozens of times with different edge values, unusual
cases, and so on [BINSTOCK, 2011a].

There are also parts of software that cannot be properly cover, for ex-
ample, the user interfaces. Also, there are things you implemented without
writing a test for it first (either knowingly or unknowingly). Also there
might be hidden requirements you didn’t consider so you don’t have tests
for it, therefore also no code for it. You can still have 100% code coverage
but you are not testing something you should.

The fact is that you can never fully trust your tests. There is several
reasons for that. First, as mention above, you might not have all tests that
are needed. In reality, for complex software, you never do have all the tests.
It is one of the problems of unit testing. People are lured into feeling false
security. Because I have tests and all are green, my software has no defects.

When all your tests are passing, your code is not ready for production.
It is ready for some kind of quality assurance. An extra layer of testing by
people who don’t have the same assumptions as the developer who wrote the
code [Let’s Code, 2014]. TDD does not replace quality assurance [PAMIO,
2012].

30

Chapter 6

Benefits, shortcomings and
challenges of TDD

In this chapter I will talk about the benefits, shortcomings and challenges of
TDD. TDD has many benefits and shortcomings. Some of them are proven
by empirical studies (with varying level of reliability). Sometimes a benefit
or shortcoming of TDD is more related to the tests and testing alone but
as TDD is build around tests I consider it still relevant. Also some benefits
when overused can be considered as a shortcoming.

6.1 Benefits

High code coverage is one of the biggest and easiest to prove benefits of
TDD. If you cannot write code without having a test for it, all your code
has to be tested (in theory). For example, for a TDD developer to add an
else branch to an existing if statement, the developer would first have to
write a failing test case that motivates the branch [WIKI, 2014b].

Thanks to high code coverage TDD reduces the fear of changing
the code. Developers are more confident to play with their code if they
know they have a robust test suite to support them.

In TDD, the developer can focus on the task at hand. He moves forward
one small step at a time. TDD helps articulate next small step/problem.
You can focus on what you want before you know how to do it.
This kind of approach helps to avoid ‘analysis – paralysis’.

In TDD you can implement only what you write test for and you should
write tests only for functionalities that you need. This helps avoid over–
engineering.

31

TDD can help to create more modularized, flexible, and extensible code.
This comes from unit testing because you are thinking about the code in
terms of small units that can be tested separately. This leads to smaller,
more focused classes, looser coupling, and cleaner interfaces. BUT
pushing this technique to extreme can lead to over–engineering, lost of co-
hesion and introduction of unnecessary layers of complexity [HANSSON,
2014]. It is very hard, however, to decide when is the point that you are
over–engineering and it requires some experience. To tests a unit in a iso-
lation also sometimes requires mocks and those are frowned upon by some
people [OSHEROVE, 2008].

TDD can help drive the design of the software. That does not
mean that TDD will design the software for you. Rather it can help you
find design problems, for example, when you find some tests hard to write.
[PAREKH, 2014]

Tests will give you feedback on your API while also documenting it.
Moreover tests can be used to record what you are thinking during develop-
ment. [BECK, 2014]

A 2013 study [SHAWETA & SANJEEV, 2013] found that TDD im-
proves quality of software through unit testing and decreased defect
rate. The decrease in defect density was also observed in [NAGAPPAN
et al., 2008].

Several articles report increased productivity [ERDOGMUS, 2005;
KAUFMANN & JANZEN, 2003; SHAWETA & SANJEEV, 2013; JANZEN
& SAIEDIAN, 2006] According to [SHAWETA & SANJEEV, 2013] the rel-
ative productivity increases with time and at start, TDD can be less pro-
ductive than traditional ways of developing.

Study from 2006 [MÜLLER, 2006] suggests that TDD produces more
testable software than conventional projects.

Other study from 2007 suggest that TDD approach is more efficient
than conventional approach because it requires less development effort
[GUPTA & JALOTE, 2007].

TDD also tends to create less complex modules, classes and meth-
ods because they are usually smaller than when developed by conventional
development processes [JANZEN & SAIEDIAN, 2008].

6.2 Shortcomings

The whole team has to practice TDD. With shared code–base if only
some people practice TDD, is loses sense. Also, it is often hard to justify

32

TDD to the management. Consultants sometimes say that it is better not
to explain TDD to management. Only tell them that you test the code
thoroughly.

A high number of passing unit tests may bring a false sense of security,
resulting in fewer additional software testing activities, such as integration
testing and acceptance testing [WIKI, 2014b]. Your code can be valid from
the tests’ point of view but can be invalid from the users’ point of view.
The tests are written by the same person who writes the implementation.
Therefore the tests and implementation can share the same blind spots.

TDD is not easy to adopt and master. People consider it to be a
myth but it is true. Simple confirmation is the fact that so many developers
do it wrong. You have to gain experience to be able to understand the
design feedback from your tests. You are also more likely to be slowed down
by TDD at first before you gain some experience. TDD also puts very high
demands on code refactoring skills [BINSTOCK, 2011b]. Also, the impact
of TDD on program design is not necessarily a positive one in the hands of
less experienced developers [SINIAALTO & ABRAHAMSSON, 2007].

Another issue is that writing and maintaining an excessive number of
tests costs time and this is magnified by the fact that TDD developers
tend to over–test their software. This is however not problem only in
TDD it is more general unit testing issue [COPLIEN, COPLIEN]. Moreover,
overzealous testing can actually damage your design [HANSSON, 2014].

The tests are part of your code. If you design them poorly tests mainte-
nance cost could overweight their usefulness. Developers often forget
that the tests should be equally important as the code and they should
be refactor as well as the code [BECK, 2002]. An example of a bad tests
are fragile tests [MESZAROS, 2007]. Such a tests are tightly coupled to
implementation details.

With TDD you don’t have to arrive to an optimal solution. When try-
ing to implement algorithm TDD can help you to do it but there is no
assurance of arriving to an optimal solution.

6.3 Challenges

There are many challenges that are related to TDD. From industry point
of view, where industry are people who really apply TDD in real big scale
software development, from academic point of view, that concerns research,
and also from the consultant point of view, where consultants are people
who talk about TDD mainly from their experience.

33

There is need for some data from the industry on TDD but mainly for
some large leading software project that was developed with TDD. I think
people need to see that it actually can work in a large scale projects (if it
can work).

Some studies use industry data about TDD but it is hard to make definite
conclusion because the studies usually compare some metrics measured in
the TDD team with metrics from not TDD team. Those teams, however,
work on different projects. Also having two teams usually means having two
sets of people. Different people equals different experience.

Prove or disprove some of the metrics like increased quality, decrease in
complexity, higher maintainability might be close to impossible. I think that
there are just too many uncontrollable variables to produce some significant
results.

Another challenge for TDD is to drop some of the religiousness that is
now connected with it. I think it is really hurting TDD not acknowledging
that good code can be written even without TDD. Instead TDD should be
viewed more as an optional path that you can choose. Even Kent Beck
admits that he doesn’t blindly always follow TDD.

Developers are reluctant to try TDD because they consider it difficult
process to implement (and they are not wrong). The fact is that usually,
programmers perceive TDD more positively after exposure to it, and par-
ticularly they are much more likely to adopt TDD after having tried it
[JANZEN & SAIEDIAN, 2006].

There is also the fact that TDD is intertwined with other processes
mainly from XP and it is sometimes hard to distinguish what is part of
TDD and what is not. What is a problem of TDD and what is a problem
of some of the techniques that TDD uses. There is lot of light that has to
be shed on this. It is one of the things I’m trying to accomplish with this
thesis.

34

Chapter 7

Is TDD dead?

On April 23, 2014 David Heinemeier Hansson, the creator of Ruby on Rails,
wrote an article “TDD is dead. Long live testing.” [Hansson, 2014]. This
article caused that TDD became very hot topic once again. It causing
outburst of discussions and reactions both positive and negative. Supporters
of TDD didn’t take nicely that Hansson’s starts his blog post with:

Test–first fundamentalism is like abstinence–only sex ed: An
unrealistic, ineffective morality campaign for self–loathing and
shaming.

Even though he expresses his strong feeling against TDD, in the article
Hansson acknowledges the contribution of TDD but also claims that it is not
the right way and we should move on from TDD. He suggests that people
should move from unit test oriented testing to system–wise testing.

One of the most interesting reactions that followed this article was a
series of video conversations between Kent Beck, David Heinemeier Hansson
and Martin Fowler [HANSSON et al., 2014]. In these conversations the
participants discuss all aspects of TDD from very different points of view.
The discussion consists of 5 sessions that altogether took 3 hours.

I believe it is not only very recent and therefore actual debate, but it
also includes Kent Beck (the father of TDD), David Heinemeier Hansson
(together with James Coplien and Rich Hickey one of the most respected
critics of TDD), and Martin Fowler (the author of the most known book on
refactoring).

In this chapter I will look in detail on the main points of the discussion.
I will not go through the debate chronologically because some of the topics
were scattered throughout the discussion. I will attempt to separate the

35

discussion into topics and write all the important that was said about that
specific topic.

7.1 Mocking

Hansson expresses that he has problem with mocks1. According to him, the
mocks introduce extra layers of unnecessary complexity and that only for
the reason to test units separately.

He ‘accuses’ TDD of nudging people in this direction because isolation is
kind of a goal in unit testing because you want to test each unit separately.
This can be wrong when overused. He acknowledges that TDD is good for
cases where you have very clear input and very clear output but in real work
that is not always the case. You can achieve it, however, by mocking but
that is too big of a sacrifice for the sake of testing, thinks Hansson.

Fowler replies that it is not TDD neither unit testing that forces you
to isolate your classes. You might end up with the same design even with
no tests at all. Beck adds that it is a design decision the developer makes
that specifies how isolated a class should be. There are many good reasons
for making your classes isolated (decoupled) but applying some design ideas
every time and to everything is obviously wrong. Beck then makes one
strong point:

Design (and TDD) is a question of trade–offs. They should
never be ignored. You should always be aware of the trade–offs
you make. You have to be a good designer to make the right
ones.

Beck further says that if you have mocks returning mocks, returning
mocks, you are coupled to exact implementation “three streets away”. Then,
of course, if you change something you will break the tests. But this is just
bad design and has nothing to do with TDD.

Hansson then expresses that it is the attempt to isolate from outer things
like database that bothers him most. He talks about the examples where
people explain that if you are isolated from your database (via interfaces and
mocks) you can later switch the database for a file system. This is a dream,
Hansson says. For most cases such a transition is never trivial because the

1Meaning all kinds of objects that should mimic behavior of a real object (mocks, fakes,
stubs, etc.). http://en.wikipedia.org/wiki/Mock_object

36

http://en.wikipedia.org/wiki/Mock_object

subjects in question usually have completely different specifications. More-
over according to his experience, it rarely happens that you need to make
such a transition.

Hansson also says that people always think about cohesion and coupling
as two separated things. In some cases, however, they are opposite to each
other. If you are having better (lower) coupling you have worse (lower)
cohesion. He gives the isolation of classes as an example. To isolate, you
separate the related code into more classes making it harder to understand
for the sake of testing. All this he considers to be a test–induced damage
because the desire to test drives you this way.

Fowler acknowledges that isolation can cause problems if it introduces
extra layers that are unnecessary. It can be considered as over–engineering
but Beck ads that decoupling is sometimes worth the hassle.

Another problem related to mocking is the requirement often associated
with TDD and XP that your tests should run fast. If they do not run fast,
you will be less likely to run them often. To achieve this, you have to mock
everything that can slow down your tests e.g. database or file system. This
annoys Hansson because creating additional interfaces and mocks for the
sake of running your tests fast makes no sense to him.

Hansson also thinks that some of the effort to make the code testable is
wasted because easily testable code doesn’t make it better designed. It also
usually means that to isolate your classes you have to write more but more
code doing the same thing is bad code (not always, though), Hansson thinks.
The unnecessary changes to design for the sake of testing he considers yet
another example of test–induced damage.

People, according to Hansson, cannot comprehend the test–induced dam-
age. They are saying: “How could the tests cause any damage? The higher
the number of tests, the better. The faster the tests run, the better.” Hans-
son disagrees with this opinion. He thinks that TDD, on some scale, en-
courages you to do things that don’t have to be done and even things that
shouldn’t be done.

Beck understands the argument but doesn’t consider it so much to be
argument against TDD. It is not TDD but developer’s design decision that
can induce the damage into your software, he says.

7.2 Red, Green, Refactor

The red, green, refactor cycle is more like a mandate than an option and
that is wrong, says Hansson. He explains that the cycle is not bad on its

37

own and he used it several times and even now sometimes uses it when he
feels it is helpful. He is, however, strongly against the “you have to use it all
the time” point of view that is promoted by most of the TDD supporters.

Beck answers by a question, whether a programmer deserves to feel con-
fident. He explains his own relation to doing red, green, refactor. He says
that it makes him confident and happy to move forward by doing the small
incremental steps with tests and therefore he applies this practice wherever
he can. He adds however, that there are some parts of software he cannot
write tests for first but it doesn’t bother him. He says:

If I can play both classical music and jazz, I have a better
chance to be a good musician.

Hansson agrees with this point of view. That TDD is more like a tool
that you should have in your toolbox and you can use it if you need it. His
problem is more connected to the fact that TDD purists want you to do it
all the time and he does not have the same feelings about it as Beck.

Seeing failure is not pleasurable for him. He feels like he is doing some-
thing wrong when he cannot think about how to write a test but has some
kind of implementation in his head. He explains that he doesn’t think
through his code by proposing hypothesis and then filling it in. He likes to
work his way to the test rather than from the test. He thinks that it should
be all right as long as both ways arrive to the same destination.

Fowler response to it was, that the main goal should be self–testing
code. System should be able to test itself. TDD is one way to approach this
problem. He also acknowledges, however, that some context might be more
suitable for TDD than other.

Another problem of TDD is that people tend to under–refactor their
code, says Hansson. Fowler replies that the red, green refactor cycle is
matter of skill. More skilled developers usually refactor more because they
can find a better design. It is not easy. When you refactor it can take a long
time but you are not making any ‘real’ progress. It should not be overlooked,
he adds, that your tests make it easier for you to refactor, whether you are
skilled programmer or beginner.

7.3 Tests

During the debate both Beck and Fowler bring up a feedback as an important
topic. TDD gives you frequent feedback. How else will you get the feedback,
asks Fowler and presents three types of feedback:

38

� Is the software doing what the user wants/needs?

� Have I broken anything?

� Is my code base healthy?

Hansson acknowledges usefulness of such a feedback but says that it
comes with a cost and this cost is often not well understood. As said before,
TDD comes with the trade–offs and sometimes it just not pays back to follow
TDD. Whenever you try to achieve ideal in some statistics you encounter
following issue, Hansson says.

He gives an example. If you achieve 95% uptime of your system but you
want to achieve 99% or even 99.99%, the effort to move to the next step
grows exponentially. Of course it can make sense for critical systems to go
for the highest possible uptime but we don’t build such systems most of the
time.

From this point of view is the approach in TDD weird for Hansson be-
cause you are suppose to write tests before production code which should
in theory mean near 100% coverage. Yet, the 100% coverage is much more
costly than say 99% and drastically more costly for 95% coverage. TDD de-
velopers don’t take this into account much, concludes Hansson. Beck agrees
on the fact that it is trade–off how much are you willing to invest into fidelity
of your tests.

Another problem with testing that Hansson sees is that they cause over-
confidence. There are teams that discarded quality assurance because they
don’t need it. They have tests. They don’t see value in exploratory tests or
anything that quality assurance can offer. They are blinded by their ‘green’
tests but the fact is that the real world feedback loop is missing.

This is the complete opposite of what was happening before programmers
started to write tests themselves. They just wrote the code and then threw
it to the quality assurance team. Neither of these extremes is good. With
this statement both Beck and Fowler agree. Beck adds:

If you think you are not making mistakes anymore, you are
making mistake.

Next issue Hansson brings to the fore is over–testing. He claims that
TDD pushes you towards over–testing. He can see it when you have to
change four lines of the test code because you need to change one line of the
implementation code. He then asks Beck and Fowler when do they think
the code suffers from over–testing or under–testing.

39

Beck gives as an example of well tested software developed with TDD his
JUnit2. The code coverage of JUnit is 100% and he doesn’t consider it over–
tested. He considers the test–to–code ratio as an incorrect measurement.
Some complex algorithm may require a lots of test, even though it takes up
ten lines of code. On the other hand some class with no logic can have the
exact opposite ratio.

A better metric is delta coverage, says Beck. Delta coverage reports how
much of unique code (code that is not covered by other tests) does a test
cover. 0% delta coverage can be indicator of unnecessary test. These tests
can be deleted if they don’t have any documentary purpose.

Fowler says that he sometimes experiments with the code to see if a
test will fail. For example, he will comment out a line of code. You don’t
have enough tests or good enough tests, if you cannot confidently change
the code. You have too many tests if you have feeling you spend much
more time changing tests over code. You can find the right amount from
experience, says Fowler.

As the last thing that bothers him about tests, Hansson mentions that
test should be the documentation and the top authority. Some TDD ad-
vocates even puts tests above the code. This he thinks is also a reason
why some developers neglect refactoring. It is more important to have the
next test running so the design becomes less important and code becomes
under–refactored.

Beck replies to it with statement that if you throw away the implemen-
tation and you have a good test suite you can rebuild the implementation
with confidence. On the other hand, if you throw away the tests you have
much less confidence that you will recreate all the tests you had before.

For Fowler the tests are equally valuable as implementation because they
are pair used for double–checking.

7.4 Effects of TDD

During the debate Hansson acknowledges one thing. It is very hard to find
out whether a software development technique is really working. You cannot
repeat experiments because there are too many incontrollable variables. You
have to combine experience and arrive to some conclusion.

For Hansson, the most interesting things on TDD come from the regres-
sion suite not the designing driven part. As said before, he just considers it
as a tool. Fowler replies, that this actually is how people should be thinking

2http://en.wikipedia.org/wiki/JUnit

40

http://en.wikipedia.org/wiki/JUnit

about it but Beck adds that TDD also solves some problems for him [BECK,
2014].

One effect of TDD is that people get sucked into it, thinks Hansson. It is
addictive and if people see it work they try to forcefully apply it everywhere.
Positive thing about TDD, says Hansson, is that it is ‘gateway drug’ for
self–testing regression code, so people will see the usefulness of regression
testing.

In the discussion, Fowler answers question what effect has TDD on in-
experienced developers in comparison with experienced developers. Fowler
answers that the question shouldn’t be aimed at inexperienced vs. expe-
rienced developers but rather on (in)experienced developers that use TDD
and not use TDD.

He assumes that for inexperienced developer TDD helps by having very
small increments. You can think about the pieces separately. That does
not guarantee good software design. It takes some experience to make good
design, regardless of TDD. Experienced developers will most likely arrive at
good design, regardless of TDD.

Hansson’s another issue is the atmosphere around TDD. People are way
too moralistic about TDD, he says. There is almost religious approach
to TDD by some of the promoters and they tie it to professionalism [He
probably has Robert C. Martin in mind [MARTIN, 2007, 2014]].

Hansson says that one of the reason why he wrote the article TDD is
dead was that he has seen people who reported that TDD doesn’t work
for them but they were just told that they are not doing it right and they
hadn’t learn it right. They didn’t feel confident with TDD but they were
still pressured to develop that way because “that’s how we do it”. Because
“TDD is the right way how to do it”, these people were usually ‘scared’ of
saying out loud that TDD doesn’t work for them. If doing TDD hurts when
it shouldn’t don’t do it. Don’t feel bad about yourself, concludes Hansson.

Fowler agrees that the dogmatism is hurting TDD and compares TDD
to Agile development. Agile has won the ‘label’. Everyone claims being
Agile but people rarely practice true Agile development. That is similar to
what is happening to TDD but TDD has smaller scale. Successful ideas are
very likely to be misused, concludes Fowler.

Hansson adds that people cannot leave good ideas alone. They always
want to build on top of it at any cost. That’s why TDD’s current version
accumulated some bad stuff on it.

Beck replies that he never thought about it that way because he reinvents
the TDD every time he programs. He still thinks, though, that portion of
the problems connected with TDD are related more to poor design decisions.

41

He concludes:

TDD is not dead for me but maybe, like phoenix, it has to
raise from the ashes. So thanks for setting fire to it, David [Hans-
son].

7.5 Conclusion on the debate

My description of the debate might seem as it was a heated debate with a lot
of arguments but it was not. I think it gave all the participants and viewers
great insight into different mindsets. You could see some TDD myths to be
mentioned, explained and also torn apart.

Problem of TDD is that there is more interpretations of it. Even though
it is wrong to think that design will magically appear from the tests, there
are many people who practice TDD this way. They understand it this way
and maybe it even works for them in their projects. Hansson himself talked
about TDD as it was suppose to be responsible for the design. It is important
to understand what Beck said several times during the debate: “TDD does
not make the design decisions. Developer does.”

However, from my point of view Hansson’s main frustration came from
the people who were abusing TDD. Using TDD as a panacea and talking
about it as it is the only way to write a code. That is obviously wrong.
The notion, that TDD is a tool that does not have to be used for all tasks,
should be put into awareness.

Hansson’s argument that not everyone thought process is the same and
some people might have problems with red, green, refactor, seems to be
valid arguments as well. People have different mindsets so some can have
troubles when thinking first about test that should fail.

Overall, I think the debate significantly increased my understanding of
TDD, its benefits and pitfalls and whoever is interested in TDD should
watch it.

42

Chapter 8

Conclusion

So 15 years has passed but the heart of TDD didn’t change much. We still
need to write the tests first, we still should follow the red, green, refactor
cycle and we still should let the tests to drive our design. What changed
about TDD is the number of people that apply it.

With increased number of people that use TDD, ambiguity has spread
between developers about what TDD is really about. Many myths has
polluted the area of TDD. Critics start to denounce TDD based on false
assumptions. For example, TDD was incorrectly accused of ignoring de-
sign while it was actually the developers who ignored the design but still
presented their practice as TDD.

The problem of TDD is that it is intertwined with other process and it
is sometimes hard to detach it from them. Nevertheless, from my point of
view, Kent Beck managed to defend TDD from ‘being dead’. The debate
between him David Hansson and Martin Fowler showed, though, that it
might be necessary to spread the word how people should really practice
TDD.

The research question I asked was: Which criticism of TDD is jus-
tified and is there a way TDD can eliminate it? Now I will try to
answer it based on my findings.

A thing that harmed TDD quite significantly was dogmatism of some of
its proponents. Programming is highly intellectual discipline. You cannot
expect everyone to be able to work certain way. Moreover, you cannot force
people into something they are not comfortable with. From my research,
the thing that had possibly the strongest impact on me was the thought
that TDD is more like a tool that you can use when you need it.

In my mind, I imagined it as a hammer. Hammer is very useful tool

43

but there are jobs that you cannot do with hammer properly. Maybe you
need, say, screwdriver. It is wrong to use hammer when you should use
screwdriver. Some people use it because they don’t have a screwdriver in
their toolbox. That can be understandable. Some use it, however, because
they’ve been told that if they cannot do it with hammer, it’s because they
are not banging with it hard enough. That is definitely wrong approach.

I would propose that this is an area to which researchers could pay some
attention. What types of software tasks are suited for TDD? I think the
results of such study could be actually really useful for better understanding
of the strengths and weaknesses of TDD.

Another finding of my thesis was that it is extremely hard to put a
number (metric) on TDD (or for that matter any software development
technique) and try to evaluate it that way. The results will be almost always
questionable because they are just too many incontrollable variables. Taking
this into account, the critics of the strong claims that TDD produces better
code had a point. Nevertheless, I still see value in this kinds of research,
though, I just think that it has to be very carefully and thoroughly thought
through.

TDD is also party responsible for giving false sense of security. When
developers see their tests pass they forget that the tests are not bulletproof.
Some quality assurance is still needed because sometimes it takes a person
from outside of developer team to break your code. You never know what
the user will do with your software. TDD should try to raise awareness
about it.

The thesis aimed to examine Test-Driven Development. I hope the read-
ers will find it useful and it will help them in understanding TDD. I also
hope that it can be used as a reference to the right way TDD should be
practiced, for instance, for future research studies.

44

Bibliography

BACHMANN, F., BASS, L., & NORD, R. (2007). Modifiability tactics.
Software Engineering Institute.

BAVOTA, G., CARLUCCIO, B. D., LUCIA, A. D., PENTA, M. D.,
OLIVETO, R., & STROLLO, O. (2012). When does a refactoring
induce bugs? an empirical study. 2012 IEEE 12th International
Working Conference on Source Code Analysis and Manipulation
(SCAM), 104–113.

BECK, K. (1999). Extreme Programming Explained: Embrace Change (1st
ed.). Addison-Wesley Professional.

BECK, K. (2002). Test-Driven Development By Example. Addison-Wesley.

BECK, K. (2004). Extreme Programming Explained: Embrace Change (2st
ed.). Addison-Wesley Professional.

BECK, K. (2012). Test-driven development: Why does kent beck refer to
the ‘rediscovery’ of test-driven development?
http://www.quora.com/Test-Driven-Development/Why-does-Kent-

Beck-refer-to-the-rediscovery-of-test-driven-development.

BECK, K. (2014). Rip tdd. https://www.facebook.com/notes/kent-
beck/rip-tdd/750840194948847.

BECK, K. & GAMMA, E. (2000). Test-infected: programmers love
writing tests.

BINSTOCK, A. (2011a). Chasing code-coverage baubles.
http://www.drdobbs.com/architecture-and-design/chasing-code-

coverage-baubles/231601779.

BINSTOCK, A. (2011b). Tdd is about design, not testing. http:
//www.drdobbs.com/tdd-is-about-design-not-testing/229218691.

45

 http://www.quora.com/Test-Driven-Development/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development
 http://www.quora.com/Test-Driven-Development/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development
https://www.facebook.com/notes/kent-beck/rip-tdd/750840194948847
https://www.facebook.com/notes/kent-beck/rip-tdd/750840194948847
http://www.drdobbs.com/architecture-and-design/chasing-code-coverage-baubles/231601779
http://www.drdobbs.com/architecture-and-design/chasing-code-coverage-baubles/231601779
http://www.drdobbs.com/tdd-is-about-design-not-testing/229218691
http://www.drdobbs.com/tdd-is-about-design-not-testing/229218691

BOEHM, B. & BASILI, V. Software defect reduction top 10 list.
Computer, Vol. 34:1.

BOEHM, B. & PAPACCIO, P. (1988). Understanding and controlling
software costs. IEEE Transactions on Software Engineering, Vol. 14:10,
1462–1477.

BOLTON, M. (2009). The tyranny of always.
http://www.developsense.com/blog/2009/08/tyranny-of-always/.

COPLIEN, J. O. Why most unit testing is waste. RBCS-US.
http://www.rbcs-us.com/documents/Why-Most-Unit-Testing-is-

Waste.pdf.

ERDOGMUS, H. (2005). On the effectiveness of test-first approach to
programming. IEEE Transactions on Software Engineering, Vol. 31:3,
226–237.

FEATHERS, M. & FREEMAN, S. (2009). Test driven development: Ten
years later.
http://www.infoq.com/presentations/tdd-ten-years-later.

FOWLER, M., BECK, K., JohnBRANT, OPDYKE, W., & ROBERTS, D.
(1999). Refactoring: Improving the Design of Existing Code (1st ed.).
Addison-Wesley Professional.

GLASS, R. L. (2001). Frequently forgotten fundamental facts about
software engineering. IEEE Software, Vol. 18:3.

GUPTA, A. & JALOTE, P. (2007). An experimental evaluation of the
effectiveness and efficiency of the test driven development. First
International Symposium on Empirical Software Engineering and
Measurement, 2007. ESEM 2007, 285–294.

HALL, A. (2010). Anti-test-driven development arguments and myths.
http://compositecode.com/2010/06/18/anti-test-driven-

development-arguments-and-myths/.

Hansson, D. H. (2014). Tdd is dead. long live testing.
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-

live-testing.html.

HANSSON, D. H. (2014). Test-induced design damage.
http://david.heinemeierhansson.com/2014/test-induced-design-

damage.html.

46

http://www.developsense.com/blog/2009/08/tyranny-of-always/
http://www.rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf
http://www.rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf
http://www.infoq.com/presentations/tdd-ten-years-later
http://compositecode.com/2010/06/18/anti-test-driven-development-arguments-and-myths/
http://compositecode.com/2010/06/18/anti-test-driven-development-arguments-and-myths/
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/2014/test-induced-design-damage.html
http://david.heinemeierhansson.com/2014/test-induced-design-damage.html

HANSSON, D. H., BECK, K., & FOWLER, M. (2014). Is tdd dead?
http://martinfowler.com/articles/is-tdd-dead/.

HUNT, A. & THOMAS, D. (2003). Pragmatic Unit Testing in Java with
JUnit (1st ed.). The Pragmatic Programmers.

IEEE Software (2007). Ieee software. Vol. 24: 3.

JANZEN, D. S. & SAIEDIAN, H. (2006). On the influence of test-driven
development on software design. Proceedings of 19th Conference on
Software Engineering Education and Training, 2006, 141–148.

JANZEN, D. S. & SAIEDIAN, H. (2008). Does test-driven development
really improve software design quality? IEEE SOFTWARE, Vol. 25:2,
77–84.

JEFFRIES, R., ANDERSON, A., & HENDRICKSON, C. (2000). Extreme
Programming Installed (1st ed.). Addison-Wesley Professional.

JEFFRIES, R. & MELNIK, G. (2007). Guest editors’ introduction:
Tdd–the art of fearless programming. IEEE Software, Vol. 24:3, 24–30.

JONES, C. (2012). A short history of the cost per defect metric. version
4.0. David Consulting Group.
http://www.davidconsultinggroup.com/insights/publications/a-

short-history-of-the-cost-per-defect-metric/.

KAPELONIS, K. (2013). Don’t test blindly: The right methods for unit
testing your java apps.
http://zeroturnaround.com/rebellabs/dont-test-blindly-the-

right-methods-for-unit-testing-your-java-apps/.

KAUFMANN, R. & JANZEN, D. (2003). Implications of test-driven
development: a pilot study. Proceeding OOPSLA ’03 Companion of the
18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, 298–299.

KERIEVSKY, J. (2004). Refactoring to Patterns (1st ed.).
Addison-Wesley Professional.

KIM, M., ZIMMERMANN, T., & NAGAPPAN, N. (2014). An empirical
study of refactoring challenges and benefits at microsoft. IEEE
transactions on software engineering, Vol. 40:7. http:
//www.computer.org/csdl/trans/ts/2014/07/06802406-abs.html.

47

http://martinfowler.com/articles/is-tdd-dead/
http://www.davidconsultinggroup.com/insights/publications/a-short-history-of-the-cost-per-defect-metric/
http://www.davidconsultinggroup.com/insights/publications/a-short-history-of-the-cost-per-defect-metric/
http://zeroturnaround.com/rebellabs/dont-test-blindly-the-right-methods-for-unit-testing-your-java-apps/
http://zeroturnaround.com/rebellabs/dont-test-blindly-the-right-methods-for-unit-testing-your-java-apps/
http://www.computer.org/csdl/trans/ts/2014/07/06802406-abs.html
http://www.computer.org/csdl/trans/ts/2014/07/06802406-abs.html

Let’s Code (2014). How does tdd change qa?
http://www.letscodejavascript.com/v3/blog/2014/02/how_does_

tdd_change_qa.

MACKINNON, T., FREEMAN, S., & CRAIG, P. (2000). Endo-testing:
Unit testing with mock objects. XP Two Thousand Conference.
http://www.ccs.neu.edu/research/demeter/related-

work/extreme-programming/MockObjectsFinal.PDF.

MARTIN, R. C. (2007). Professionalism and test-driven development.
IEEE Software, Vol. 24:3, 32–36.

MARTIN, R. C. (2008). Clean Code: A Handbook of Agile Software
Craftsmanship (1st ed.). Prentice Hall.

MARTIN, R. C. (2014). Professionalism and tdd (reprise).
http://blog.8thlight.com/uncle-

bob/2014/05/02/ProfessionalismAndTDD.html.

MESZAROS, G. (2007). xUnit Test Patterns: Refactoring Test Code (1st
ed.). Addison-Wesley.

MÜLLER, M. M. (2006). The effect of test-driven development on
program code. Extreme Programming and Agile Processes in Software
Engineering, XP 2006, 94–103.

NAGAPPAN, N., MAXIMILIEN, M. E., BHAT, T., & WILLIAMS, L.
(2008). Realizing quality improvement through test driven development:
results and experiences of four industrial teams. Empirical Software
Engineering, Vol. 13:3, 289–302.

OSHEROVE, R. (2008). Over-testable systems, and mocks as bad test
smells. http://osherove.com/blog/2008/7/3/over-testable-
systems-and-mocks-as-bad-test-smells.html.

PAMIO, D. (2012). Is test driven development a replacement for qa?
http://experiencesonsoftwaretesting.blogspot.dk/2012/02/is-

test-driven-development-replacement.html.

PAREKH, S. (2014). Using tdd to influence design.
http://www.thoughtworks.com/insights/blog/using-tdd-

influence-design.

48

http://www.letscodejavascript.com/v3/blog/2014/02/how_does_tdd_change_qa
http://www.letscodejavascript.com/v3/blog/2014/02/how_does_tdd_change_qa
http://www.ccs.neu.edu/research/demeter/related-work/extreme-programming/MockObjectsFinal.PDF
http://www.ccs.neu.edu/research/demeter/related-work/extreme-programming/MockObjectsFinal.PDF
http://blog.8thlight.com/uncle-bob/2014/05/02/ProfessionalismAndTDD.html
http://blog.8thlight.com/uncle-bob/2014/05/02/ProfessionalismAndTDD.html
http://osherove.com/blog/2008/7/3/over-testable-systems-and-mocks-as-bad-test-smells.html
http://osherove.com/blog/2008/7/3/over-testable-systems-and-mocks-as-bad-test-smells.html
http://experiencesonsoftwaretesting.blogspot.dk/2012/02/is-test-driven-development-replacement.html
http://experiencesonsoftwaretesting.blogspot.dk/2012/02/is-test-driven-development-replacement.html
http://www.thoughtworks.com/insights/blog/using-tdd-influence-design
http://www.thoughtworks.com/insights/blog/using-tdd-influence-design

Pathfinder Solutions (2012). Effective tdd for complex embedded systems.
http://www.pathfindersolns.com/wp-

content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf.

PerOlof BENGTSSON, Nico LASSING, J. B. H. v. V. (2000). Analyzing
software architectures for modifiability.

POGH, K. (2011). Lean-Agile Acceptance Test-Driven Development:
Better Software Through Collaboration. Addison-Wesley Professional.

SHAWETA, K. & SANJEEV, B. (2013). Comparative study of test driven
development with traditional techniques. International Journal of Soft
Computing and Engineering, Vol. 3:1, 352–360.

SINIAALTO, M. & ABRAHAMSSON, P. (2007). A comparative case
study on the impact of test-driven development on program design and
test coverage. First International Symposium on Empirical Software
Engineering and Measurement, 2007. ESEM 2007, 275–284.

SINIAALTO, M. & ABRAHAMSSON, P. (2008). Does test-driven
development improve the program code? alarming results from a
comparative case study. Balancing Agility and Formalism in Software
Engineering, 143–156.

WIKI (2014a). Kiss principle. http://en.wikipedia.org/w/index.php?
title=KISS_principle&oldid=620990465.

WIKI (2014b). Test-driven development.
http://en.wikipedia.org/w/index.php?title=Test-

driven_development&oldid=623040492.

WRIGHT, H. K., KIM, M., & PERRY, D. E. (2010). Validity concerns in
software engineering research. Proceedings of the FSE/SDP workshop on
Future of software engineering research. FoSER ’10, 411–414.

49

http://www.pathfindersolns.com/wp-content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf
http://www.pathfindersolns.com/wp-content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf
http://en.wikipedia.org/w/index.php?title=KISS_principle&oldid=620990465
http://en.wikipedia.org/w/index.php?title=KISS_principle&oldid=620990465
http://en.wikipedia.org/w/index.php?title=Test-driven_development&oldid=623040492
http://en.wikipedia.org/w/index.php?title=Test-driven_development&oldid=623040492

Appendices

50

Appendix A

Refactored classes and
fault–prone classes (among
those subject to refactoring)

51

	Summary
	Introduction
	Research methods
	Descriptive research
	Exploratory research

	What is TDD
	TDD cycle
	Other aspects of TDD
	History of TDD
	Research of TDD

	TDD under microscope
	Importance of testing
	Cost of defects
	Code refactoring
	Code modifiability

	Myths and misconceptions about TDD
	There is no design in TDD
	TDD wastes developers' time
	You have to test everything
	Code coverage and quality assurance myths

	Benefits, shortcomings and challenges of TDD
	Benefits
	Shortcomings
	Challenges

	Is TDD dead?
	Mocking
	Red, Green, Refactor
	Tests
	Effects of TDD
	Conclusion on the debate

	Conclusion
	Bibliography
	Appendices
	Refactored classes and fault–prone classes (among those subject to refactoring)

