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0.1 Preface

The thesis work was carried out as a part of the M.Sc. in Structural and Civil Engineering
at Aalborg University Esbjerg, under supervision of Prof. L. Damkilde.

The reader is assumed to have basic knowledge within the �elds of continuum mechanics,
fracture mechanics and �nite element method.

References are made by [Author] and in the PDF version, it is linking to the position
within the bibliography.

The attached DVD include the following:

� Matlab codes

� Computational framework for fatigue crack growth algorithm

� Fatigue crack growth addon for variable amplitude cycle counting

� ANSYS

� APDL

* Numerical validation of stress intensity factors

� Workbench

* Crack tip plastic zone analysis (Elastic-plastic analysis)

* Transformation matrix (A method for determining the transfer function)

� Appendix - Script

Erik Bouvin Pedersen

Morten Eggert Nielsen
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Introduction 1
1.1 Problem description

During the latest decades, o�shore wind energy has been a main topic within the renewable
energy section. O�shore wind energy is one of the most expensive, based on the levelized
cost of energy.

Figure 1.1. Optimization of stress gradients in cast nodes in comparison to welded nodes.

In search for cost-e�ciency, the o�shore structures are innovatively revised by the
designers, trying to develop new cost optimized designs. Therefore, advantages and
opportunities, related to cast members, are of great interest to the industry. This may
o�er possibilities of new methods for manufacturing and commissioning.

Figure 1.2. Fatigue limit state design veri�cation process based on either S-N curves or fracture

mechanics.
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Certifying bodies, e.g. DNV, allow for the use of fracture mechanics instead of S-N based
lifetime prediction, as sketched in �gure 1.2. [DNV-RP-C203]

As casting defects are an inherent part of cast components, the crack initiation may
assumed to be over, making fracture mechanics analyses preferable over the S-N method.

Hence, this thesis investigates and tests the possibilities within fatigue analysis based on
linear-elastic fracture mechanics, in a generalized loading environment. For this, a general
algorithm for lifetime estimation of multiaxially variable loaded cast metals is proposed
and tested.

1.2 Literature review

The key references for the thesis are listed below:

� Crack growth models
Three di�erent crack growth models are tested and evaluated in relation to each
other. The three models are Paris' law [M.P.Gomez & E.Anderson 1961] , Forman
equation [E.Kearney & Engle 1967] and the NASGRO [G. & R. 1992].

� Crack propagation direction
The plane maximum tangential stress criterion proposed by Erdogan and Sih
[F. Erdogan 1963] is tested relatively to the three-dimensional criterion of Richard
[H.A. Richard M. Fulland 2005].

� Mixed mode fracture and fatigue crack growth
The fracture criterion of Richard is used to de�ne an equivalent mode I stress
intensity factor.

� Case study: mixed mode I + II [M 1990]
A simply supported, centrally loaded beam, with di�erent initial edge cracks
positioned away from the beam center. The o� center crack position induces mixed
mode I + II behaviour.

� Case study mixed mode I + III [Omidvar 2013]
A numerical and experimental study of fatigue crack growth under mixed mode I
+ III loading of a modi�ed CT specimens with inclined initial edge cracks. The
inclinations induce mixed mode I + III behaviour.

10



1.3 Thesis objectives

Based on linear-elastic fracture mechanics, a generalized algorithm for lifetime estimations
of multiaxially variable loaded cast metal components is proposed. The proposed
algorithm is schematized in �gure 1.3.

The thesis objectives are outlined below:

� Consider important aspects in relation to cast metals and discuss methods for
assesment of acceptable casting defects and initial cracks.

� Consider important theoretical aspects of linear-elastic fracture mechanics

� Test the in�uence of mean stress level using appropriate crack growth models

� Test and validate a numerical method for calculating stress intensity factors for
various cracks

� Test and evaluate crack propagation direction criterions

� Test and evaluate mixed mode fracture criterions

� Test and evaluate mixed mode fatigue crack growth

11
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Figure 1.3. Proposed generalized algorithm for multiaxial loading.
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Cast metals - Failure and defects 2
2.1 Cast metals and material properties

Cast metal is a generic term covering metals such as iron, steel and aluminum. Cast
iron and cast steel are promising material in o�shore structures, as they have desirable
material properties and costs. Cast iron and cast steel are broad terms, which cover many
materials. Cast iron has a carbon content above 2% where cast steel has a carbon content
below 2%. The materials are similar, but have distinctive mechanical properties. This
section will explain the primary characteristics and di�erences between cast irons and cast
steels.

Production characteristics

Cast iron generally has 30% to 40% lower production cost compared to cast steel. The
lower cost has origin in lower melting temperatures, better machinability and lower
shrinkage. The melting point of cast iron is 300◦ − 350◦ lower than cast steel, which
reduces cost in the melting process. The high carbon content in cast iron act lubricating,
making cast iron more wear resistant, making cast iron more machinable. The high carbon
content also reduces shrinkage giving shrinkage of about 1% compared to 4% of cast steel.
The lower shrinkage makes precision casting a simpler process. The high carbon content
is not purely positive for production characteristics, as it decreases the weldability of cast
iron compared to cast steel.

Mechanical characteristics

Cast iron has better vibration damping than cast steel, which is desirable in dynamically
loaded structures. Cast iron has, as previously mentioned, high content of free carbon. The
high carbon content leads to lower fatigue performance, fracture toughness and ductility.

The e�ect of carbon on the fatigue performance varies greatly among di�erent types of
cast iron, as illustrated on �gure 2.1.

Figure 2.1. Fatigue performance of di�erent types of cast iron.
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The di�erences of fatigue performance can be explained by studying the microstructure
of di�erent types of cast iron. The microstructure of cast irons is illustrated on �gure 2.2.

Figure 2.2. Microstructure of gray iron(left) and nodular iron(right).

From �gure 2.2 it can be seen that for grey cast iron the carbon accumulates in large
�akes, where nodular iron it gathers into small spheres. The large �akes acts as notches
and decrease the fatigue performance and fracture toughness. The large �akes also make
grey iron less notch sensitive. Even though gray iron has lower fracture toughness, it does
not decrease with temperature, which is illustrated on �gure 2.3.

Figure 2.3. Fracture toughness varying with temperature.

The ductility also varies among di�erent types of cast iron, gray iron has Charpy V-notch
energy between 1-6 J where ductile iron has between 14-24 J.

Cast iron and cast steel are also a�ected di�erently by loading. Retarding e�ects, which
are desirable in fatigue, have been observed in cast steels when subjected to overloads.
This is not observed to the same extend in cast iron.[Biermann 2007]
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2.2 Crack growth and fracture mechanisms in metals

In this thesis, the emphasized failure mechanism is fracture, caused by fatigue crack
growth. Relevant fracture mechanical aspects are brie�y presented.

The fracture may act ductile or brittle depending on the material, geometry and loading.
Ahead of fracture, crack growth may be present, leading to change in geometry and thereby
change in capacity.

In the following the concept of crack growth mechanisms are introduced along with
mechanical descriptions of fracture mechanisms.

2.2.1 Crack growth mechanisms

Several crack growth mechanisms are able to occur in cast metallic structures. The main
focus in this thesis is fatigue crack growth, why only attention is paid to this concept.

2.2.1.1 Fatigue

Repetitive loading of initial �awed/cracked members may lead to failure. At stress levels
far below the ultimate material strength the crack may initiate, and by stable fracture,
grow into a considerable size. Over time the crack may cause failure induced by unstable
fracture. The concept of fatigue crack growth is seen in �gure 2.4.

Figure 2.4. Macroscopic fracture surface characterics: crack initiation, fatigue crack growth

(with beach marks induced by noncontinuous loading) and lastly fast fracture(either

ductile or brittle).

The three di�erent situations, stated in �gure 2.4, is often referred to as region I (crack
initiation), II(stable fracture) and III(unstable fracture), an is the governing mechanisms
considered in this thesis.

Fatigue cracks in cast metals, may initiate at the surface where stress concentrations
exist due to rapid changes in geometry or surface �aws, but can also initiate within a
member due to e.g. inclusions or porosities. [Maahn 2009] Dealing with relatively large
casted components �aws of a size, which can be found by NDT methods(0.05-0.5mm), is
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reasonable to assume, as they often exist in several locations at/within the component.
[Maahn 2009] Usually cracks initiates as a shear fracture with a direction of 45◦ with the
maximum principal stress direction, but directs towards 90◦.

As the crack reaches a considerable size, the crack grows by stable fracture. The crack
growth depends on number of applied load cycles and crack growth rate, where the crack
growth rate is a function of material, amplitude and stress level. The direction of crack
growth is still approximately perpendicular to the maximum prinpical stress.[Maahn 2009]

Figure 2.5. Fatigue crack growth may induce striations, due to the shear slip planes at the

crack-tip. The generation of striations is illustrated in steps from a to f.

Microscopic parallel lines, called striations(see �gure 2.5), may develop e.g. in between
the beach marks in �gure 2.4. At every load cycle a new striation is developed. The
distance between the striations is a measure of the crack growth rate, if load cycle periods
are known. The distinction of striations, increase with deformation capacity of the fatigue
loaded material.

Figure 2.6. Fatigue crack propagation for a) high and b) low applied stress level.
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At a point the crack reaches a critical size, where unstable fracture begins, which inevitable
fails by a fast �nal fracture. The fracture mechanism of the �nal fracture is governed by
the level of stresses and is illustrated in �gure 2.6. At high stress levels (a), the specimen
fails by fracture after relatively short fatigue crack growth. At low stress levels (b), the
specimen fails by fracture after relatively long fatigue crack growth. Dependent on the
ultimate yield strength, and fracture toughness of the remaining material, the �nal fracture
will either be ductile or brittle.

The brittle and ductile fracture mechanisms are introduced in the following section.

2.2.2 Fracture mechanisms

As explained previously, failure may occur due to ductile or brittle fracture. Both fracture
mechnisms can be either transgranular or intergranular. The main focus is to describe the
transgranular fracture mechanisms, as the stable fracture may be described as a form of
incremental transgranular brittle fracture.

2.2.2.1 Ductile fracture

Ductile fracture only occur for ductile materials. The ductility enables redistribution
of localized stress and do not introduce any immediate critical e�ect because of plastic
deformation and hardening. Hence, the energy is consumed in the area of localized stresses,
i.e. at a crack-tip.

The two types of ductile fracture is presented in individual sections, where transgranular
ductile fracture is emphasized.

Transgranular ductile fracture

The development of ductile fracture is illustrated in �gure 2.7 along with a fractography
of a ductile fracture surface. At the fractography dimples are noticed and even inclusions
within the dimples may be present. The dimpled fracture surface is a microscopic
characteristic of ductile fractures.

Figure 2.7. Ductile fracture mechanism and fractography of ductile fractured low-alloy steel

casting.[International 2009]
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The ductile fracture may be described in the following steps:

1. Void nucleation (debonding of inclusions and matrix material)

2. Void growth

3. Matrix necking

4. Relatively large �nal fracture

The voids are generated because of the debonding between included particles and the
matrix material. Growth of the voids, caused by decreased e�ective area between voids,
leads to necking of the matrix material. In the end the e�ective area is fully yielding and
fractures at 45◦ against the load direction.

Intergranular ductile fracture

At relative high temperatures the grain boundaries become weaker than the actual grains.
Thus, at relative high temperatures grain boundaries, and especially if skewed 45◦ in
relation to the loading direction, intergranular creep can occur. This may in the end lead
to intergranular ductile fracture.

2.2.2.2 Brittle fracture

As for ductile fractures, brittle fracture can occur transgranular or intergranular.
Brittle fracture occur by cleavage of the grains(transgranular) or in between the
grains(intergranular).

Brittle intergranular fracture

The transgranular cleavage propagates grainwise through preferred crystalographic planes,
which not neccesarily is equal to the slip planes. At each grain boundary, the propagation
direction is redirected based on the new preferred crystalographic plane, which is
illustrated in �gure 2.8.

Figure 2.8. Brittle transgranular fracture path (full line), preferred crystalographic planes

(dotted lines) and fractography of ductile iron, exposed to transgranular brittle

fracture.[International 2009]
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In modeling of crack simulation, the grains preferred crystalographic planes are not
explicitly needed. As the grain size of cast metals are signi�cantly smaller than the
component dimensions, the governing direction is approximately perpendicular to the
maximum principal stress direction.

Brittle intergranular fracture

Brittle intergranular fracture can occur if the cast metal is improperly heat treated and
�lm of brittle material components may arise. However, this is a rather rare event.

2.3 Casting defects and residual stresses

Casting defects are a complex and component individual problem. Today's manufacturers
have the capabilities of casting components in quality almost equal to non-cast
components.[International 2009] However, the quality is inevitably connected to the
manufacturing costs, why casting defects are often accepted in order to obtain the most
cost-e�ective casting.

In practice the level and types of accepted casting defects are stated explicitly in a contract,
in relation to a known society's casting defect classi�cation, as illustrated in �gure 2.3.

Because of the present casting defects casted components must not only be designed
properly in accordance to structural requirements, but also the accepted casting defects.

In addition to casting defects, residual stresses also e�ect the fatigue strength of casted
components. Omitting the residual tensile stresses in lifetime predictions, lead to non-
conservative results. Thus, residual stresses, and how the component's load spectrum
e�ects these, is also important to include in the design considerations.

Beside theoretical and practical knowledge about casting procedures, numerical methods
are available for simulation of castings. By this any given cast geometry may be tested
and evaluated for the most severe defects.
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Method for de�ning acceptable casting defects

The possibility of in�uencing casting defects, in a favorable manner, should be considered
previous to the manufacturing of the casted component/member. A combination
of important aspects should be considered, in order to �nd the most cost-e�cient
acceptable casting defects, expressed as an inital crack. In �gure 2.9 the most important
considerations are illustrated.

Figure 2.9. Important considerations regarding the accepted casting defects.

Available NDT methods

Casting defects may be interpreted as initial cracks of a size equal to the accepted, or
assumed equal to the size possible to �nd by non-destructive testing (NDT) methods.
This size is often between 0.05-0.5mm [Maahn 2009].

Casting procedure and cast geometry

In collaboration with manufacturers, the quality capabilities and expected di�culties must
be clari�ed in relation to casting of a given geometry.

Figure 2.10. Design recommendations - Revised T- to Y-junctions which reduce mass by 26%

and improvement of L-junction design in relation to casting defects. [International

2009]
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In order to evaluate the most cost-e�cient solution, geometry speci�c advantages must be
discussed with an expert, in relation to the structural requirements.

Lifetime considerations

The structural designer must verify that the casted component/member has the capacity
to ful�ll its structural requirements. The structural veri�cation principle either follow the
fail safe or the safe life principle.

In structural components where the fail safe principle is not applicable, the safe fail
principle is applied. In corrosive environments safe, as o�shore, either scheduled NDT
inspections, replacements on regular basis or design for unlimited lifetime may be
considered.

In order to schedule the NDT inspections, replacements or even design for unlimited
lifetime, the impact of the accepted casting defects must be considered. Based on fracture
mechanics and the structural lifetime requirements, an theoretical acceptable crack may
be determined.

Figure 2.11. The importance of the defect shape, location and orientation in a fracture

mechanical analysis. For the cantilever beamwith almost equal crack lengths,

crack (a) is more critical than (b), due to its location and orientation.

As illustrated in �gure 2.11, important geometrical defect parameters are needed in order
to carry out the analyses based on fracture mechanics.

Next to the structural principle, obviously the cast component fatigue life should be
balanced in relation to adjacent structural components. Di�erent methods have been
suggested for balanced fatigue life methods in relation to casted joints in o�shore structures
[Dong & Li 2013].

Initial crack

An structural and economical optimum for the accepted initial crack should be determined
based on the considerations stated above and illustrated in �gure 2.9.
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Linear-elastic fracture mechanics 3
3.1 Application of linear-elastic fracture mechancis

Stress/strain-based approaches and fracture mechanics have been proposed for estimation
of structural fatigue life behavior. For structures containing �aws/cracks fracture
mechanics has its advantages. As described thoroughly in 2.3 cast metals contain casting
defects. Hence, a fracture mechanical approach is emphasized in this thesis. In fracture
mechanics there are two primary methods; linear-elastic fracture mechanics (LEFM) and
elastic-plastic fracture mechanics (EPFM). In �gure 3.1 the scope of LEFM and EPFM
is schematized.

In the early days of fracture mechanics, it was only intended for brittle materials. However,
as knowledge about fracture was developed, fracture mechanics became applicable for
ductile materials too. In appropriate circumstances ductile materials also exhibit brittle
fracture. Hence, as knowledge about fracture was developed, fracture mechanics became
applicable for ductile material under linear-elastic as well elasto-plastic conditions.

Figure 3.1. An example of application regions of LEFM for a fracture problem. [Anderson 2005]

Materials with relatively low fracture toughness, loaded primarily in the linear-elastic
region (σ < 0.8σY ), are well suited for LEFM (Figure 3.1). Material with intermediate
fracture toughness which experiences plasticity violates the assumption of LEFM and
EPFM is better suited.

Materials with high fracture toughness are not suited for fracture mechanics while they
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exhibit very ductile failure mechanisms and a simple limit load analysis is su�cient.

The focus of this thesis is cast iron/steel structures exposed to high cycle fatigue loading
for which the working stress is far below the yield stress the vast majority of the time.
Hence, by looking at �gure 3.1 LEFM shows to be applicable for the investigated problem
in this thesis.

3.2 Energy approach

In strength or fatigue analysis of structures containing �aws, the application of fracture
mechanics is often required. Fracture mechanics o�ers the possibility to take internal or
external �aws into consideration. Fracture mechanics have been developed by experience
from spectacular failures in the 20th century and research from around 2nd World War
until present day.

The fundamentals of fracture mechanics will be explained brie�y and attention will be
drawn to important aspects in context to fracture in cast metals.

3.2.1 From brittle to ductile materials

Gri�th introduced the energy balance approach to describe the requirement for a crack
to form or grow in brittle materials. The energy balance is mathematically stated as:

dE

dA
=
dΠ

dA
+
dWs

dA
= 0 (3.1)

Where:

Π = U −Wext Potential energy from external forces and internal strain
U =

∫
V

U0dV Strain energy (general formulation)

U0 =
∫
σijdεij Strain energy density

Wext = Fi · ui Work done by external forces
Ws = f(γ) Energy required for the formation of two new surfaces
γ = γs Surface energy before any subjection to plastic deformations
A Crack area

The change in total energy equals the summation of change in potential energy and
surface energy. At the point where the change in total energy is zero, unstable fracture
occurs. A graphical representation of the development from incremental crack growth to
catastrophically failure is seen in �gure 3.2. The catastrophic failure occurs when (3.1) is
true.
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Figure 3.2. Schematized energy balance of test specimen applied a constant displacement where

all energies are reset before crack growth.

Later knowledge about ductile materials ability to fail in a brittle manner was established.
Irwin [Anderson 2005] extended Gri�th's energy balance approach to include ductile
materials as they also can exhibit brittle fracture near the crack tip.

This was implemented by including the surface energy, caused by plastic deformation near
the crack surfaces. By adding an extra term to the previously mentioned surface energy,
ductile materials are included:

γ = γs + γp (3.2)

For brittle material γ ≈ γs and for ductile materials γ ≈ γp is the case. Thus, fracture
mechanics can be applicable to ductile cast metals under the conditions that they exhibit
brittle fracture behaviour.
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3.2.2 Relation between K and G

On basis of Gri�th's work an extensive near crack tip stress �eld research, Irwin [Anderson
2005] successively established the practical relation between the stress intensity factor and
the energy release rate, as stated in (3.3), for linear-elastic materials loaded in plane.

G =
K2

E′
(3.3)

Where:

G = −∂Π
∂A Energy release rate

K = σ ·
√
πa · α Stress intensity factor

α Boundary correction factor

E′ =

{
E (plane stress)
E

1−v2 (plane strain)
Modulus of elasticity

ν Poisson's ratio

This conceptual step was further developed, as the energy release rate was later to be
proven equal to the J-integral in LEFM:

G = J (3.4)

Where:

J J-integral

The J-integral is well implemented in numerical solutions which makes it a powerful tool

in fracture mechanics. The critical energy release rate is Gc =
K2

c
E′ where Kc is de�ned as

fracture toughness of the material. A further discussion and the mathematical formulation
of the J-integral is given in connection with numerical validation in 4.1.

Energy release rate

Energy release rate is an important concept in the understanding and simulation of stable
fracture. The energy release rate is equal to the change in dissipated energy per unit crack
surface.

Because of the relation in (3.3) the stress intensity factor is utilized as the driving
parameter in linear-elastic fracture mechanics. For physical interpretation, �gure 3.3
graphically represents the relation between given energy release rate and the material
resistance for a given crack.
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Figure 3.3. Resistance (R) and driving force (G) curves for (a) brittle material, (b) ductile

material in plane strain and (c) ductile material in plane stress. At Gi = Ri the

crack grows incrementally by stable fracture. However, if ∂Gi

∂ai
< ∂Ri

∂a
i
the crack

resistance increases faster than the crack driving force as the crack grows. Thus,

no further crack growth occurs. Once ∂Gi

∂ai
= ∂Ri

∂a
i
instability occurs and the crack

develops rapidly by unstable fracture. [Anderson 2005]

Expectedly, unstable fracture of the brittle material is observed in �gure 3.3 (a). Similarity
is noticed in plane strain conditions for the ductile material. In �gure 3.3 (b) the resistance
curve increases slightly which only shortly introduces stable fracture before unstable
fracture. Comparatively to the plane strain, the stable fracture is signi�cant under plane
stress conditions as seen in �gure 3.3 (c).

Hence, in design the di�erence between the fracture process under plane strain and plane
stress conditions has to be considered. This concept will be discussed further in 3.4.2.
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3.3 Stress intensity factors

Before Irwin introduced the relation in (3.3) a great e�ort was made, to describe the stress
distributions in the vicinity of cracks.

3.3.1 Application of photoelasticity

In �gure 3.4 photoelasticity is utilized to visualize the impact of di�erent discontinuities
in a plate.

Figure 3.4. Photoelastic plots of isochromatic fringes for di�erent geometries. An isochromatic

fringe is a contour of constant stress equal to σ1 − σ2 under plane conditions.

The application of photoelasticity was very important in the derivation of the stress �eld
solutions, as photoelastic experiments as seen in �gure 3.4 was used as benchmarks for
the analytical solutions.

3.3.2 Stress �eld solutions

Mainly Westergaard, Irwin and R.J. Sanford contributed with conceptual steps in the
progress towards a stress �eld solution. However, it was Williams who came up with a
solution which was validated experimentally.
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Figure 3.5. De�nition of polar coordinate system for the plane stress, near crack-tip stress �eld

solutions in (3.5). Corresponding fracture modes; mode I - opening mode, mode II

- sliding and mode III - tearing.

For concise formulation of this section, mathematical derivation of the stress �eld solutions
is omitted, and reference is made to literature, e.g. [Williams 1956], [Anderson 2005].

The near crack-tip stress, strain and displacement �eld solutions for a linear-elastic
isotropic material, loaded in mode I and II are listed in (3.5) and graphically represented
in �gure 3.5.

σij =
KI√
2πr

f Iij(θ) +
KII√
2πr

f IIij (θ) +
KIII√

2πr
f IIIij (θ)

uij =
KI

2µ

√
r

2π
gj
I(θ, ν) +

KII

2µ

√
r

2π
gIIj (θ, ν) +

2KIII

µ
gIIIj (θ, ν)

εij =
1

2
(ui,j + uj,i)

(3.5)

As expected the stress intensity factor controls the amplitude of stress which the crack-
tips are exposed to. The singular term 1√

r
→∞ as the solution approaches the crack-tip.

However, when the solution goes away from the crack-tip 1√
r
→ 0. Thus, the solutions in

(3.5) are only valid in the proximity of the crack-tip. Limitations of linear-elastic fracture
mechanics, induced by the plastic zone size, are discussed in 3.5.4.

3.3.3 Geometry dependence

The boundary correction factor α is introduced in order to take the geometrical in�uence
on stress intensities into account. The following section discusses some di�erent aspects
of the geometry dependence.
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Figure 3.6. Di�erent two dimensional crack problems; (a) edge crack and (b) center crack

witha = 2mm , W = 100mm and σ = 100MPa. For analytical solution see

"APP 1".xx

Expectedly �gure 3.6a is the most critical case. The presence of a free surface near the
crack decreases sti�ness in the proximity of the edge crack. Hence, the geometrical factor
increases and thereby the stress intensity increases. Therefore, generally are cracks near
free surfaces often more critical than internal cracks.

An elliptical embedded crack is considered in �gure 3.7. The crack shape in�uence on the
stress intensity factor is discussed in the following.

Figure 3.7. Geometry de�nitions of an elliptical crack embedded in an in�nite body. For

analytical solution see "APP. 1".xx
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A normalized stress intensity factor is evaluated by means of the analytical solutions given
in "APP. 1"xx, see �gure 3.8. The normalized stress intensity factor depicts the in�uence
of the a

c ratio or crack shape.

Figure 3.8. Graphical representation of the crack shape in�uence on the stress intensity factors.

The circular embedded crack a
c = 1.0 is constant along the crack front. As the ellipse

forms and narrows in, the normalized stress intensities peak at 90◦ and keep increasing
with decreasing a

c ratio. Therefore, two concepts are observed: A crack will tend to grow
towards a circular shape; and the narrower or sharp the crack is the more critical.

The crack problem, evaluated above, was embedded in an in�nite body. Hence, no
boundary corrections were introduced. However, for surface �aws boundary corrections
are introduced and are evaluated in the following.

Surface cracks can be in the proximity of more than one surface, which can cause more
critical crack geometry. For the analytical solution of a semi-elliptical surface crack
subjected to tensile and bending stresses, see "APP. 1"xx.
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Figure 3.9. Geometry de�nitions of semi-elliptical surface crack. For analytical solution see

"APP. 1".

Before the in�uence of crack shape was evaluated by considering a normalized stress
intensity factor for di�erent a

c ratios. Now, instead the a
t ratio (see �gure 3.9) is tested.

Normalized stress intensity factors are calculated for di�erent a
t ratios in �gure 3.10.

Figure 3.10. Graphical representation of the thickness in�uence on the stress intensity factors.

In �gure 3.10 it is noticed that the normalized stress intensity factors increase as the
surface crack depth approaches the plate thickness.
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Considering a
t = 1.0 the normalized stress intensity factors for φ =

{
0◦

180◦
are almost

equal to φ = 90◦ which means the crack tends to grow equally.

Figure 3.11. Semi-elliptical surface crack which has the ratio a
t = 1.0.

Considering �gure 3.11 point a, c1 and c2 are all positioned at a free surface. Thus, it
makes sense that the normalized stress intensity factors, seen in �gure 3.10, are almost
equal. Hence, surface cracks of constant shape becomes more critical as they approach
through cracks.

3.3.4 Summary

From analytical considerations it is concluded that cracks criticality depends on distance
to free surfaces, crack shape and how deep the crack is.

3.3.5 Superposition principles for stress intensity factors

As illustrated in �gure 3.5, a crack-tip can su�er from three di�erent fracture modes. A
solution for a fracture mechanical problem should depend on stress intensity factors for all
activated fracture modes. Dealing with linear-elastic material superposition of equal-mode
stress intensity factors is valid as:

KI = KI,tension +KI,bending (3.6)

Hence, one focused on mathematical e�ciency could erroneously think that superposition
of stress components would still valid.

KI 6= (σtension + σbending) ·
√
πa · α (3.7)

However, for (3.7) to be valid both of the stress components should be corrected by the
same α-value. This is not the case.
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3.3.6 Mixed mode loading

By considering the formulation in (3.1) by Gri�th and the relation eqrefeq:enrel1 by Irwin,
the energy release rate for mixed mode loading [Anderson 2005] can be expressed as:

G = GI +GII +GIII =
KI

2

E′
+
KII

2

E′
+

(1 + v) ·KIII
2

E
(3.8)

Where:

E′ =

{
E (plane stress)
E

1−v2 (plane strain)
Modulus of elasticity

By means of isolation, an equivalent stress intensity factor can be expressed as:

Keq = (KI
2 +KII

2 + (1 + v) ·KIII
2)

1/2
(3.9)

However, the expressions (3.8) and (3.9) assume self-similar crack growth[Anderson 2005]
which is illustrated in �gure 3.12.a.

Figure 3.12. Graphical schematization of (a) self-similar, (b) biaxial and (c) multi-axial crack

growth.

In reality not all cracks can be assumed to grow in a self-similar manner. Instead, biaxial
and multi-axial crack growth is noticed. Therefore, an alternative approach to (3.9) is
needed for simulation of cracks which do not tend to grow in a self-similar manner.

3.4 Experimental derivation and crack growth models

In fracture mechanics material parameters, obtained from experiments, are necessary. This
section provides a brief introduction of the derivation of the material parameters used in
linear-elastic fracture mechanic. The brief introduction is intended to substantiate the
following presentation of three crack growth models. Lastly, important aspects of fracture
toughness will be discussed.
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In limit state analysis the yield stress is used as the material resistance parameter. In
fracture mechanical analysis the material resistance parameter is thefracture toughness.
The fracture toughness is a measure of a material's ability to resist fracture.

Figure 3.13. Graphical representation of crack growth life behavior.

Experiments as illustrated in �gure 3.13 are carried out in order to predict the fracture
toughness. Basically the experiments are done by measuring crack growth in relation
to the number of applied load cycles. Loading is applied until failure and the graphical
representation of the experiment is illustrated by the plot in �gure 3.13.

In �gure 3.14 a common used SEN(B) specimen illustrated.

Figure 3.14. SEN(B) specimen used for fracture toughness testing.

The stress intensity for the SEN(B) specimen is given as:

K =
4P

B

√
π

W
[1.6(

a

W
)
1
2 − 2.6(

a

W
)
3
2

+ 12.3(
a

W
)
5
2 − 21.2(

a

W
)
7
2

+ 21.8(
a

W
)
9
2
] (3.10)
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The experiments are not only used for determination of the fracture toughness of certain
materials but also to model the crack growth rate behavior. By means of the analytical
expression (3.10) for the SENB specimen in �gure 3.14, and the established data from
experiments in �gure 3.13, the crack growth rate behavior is illustrated in �gure 3.15.

Figure 3.15. Schematized crack growth rate behavior. The threshold stress intensity factor Kth

de�nes where the crack initiates. The critical stress intensity factor Kc de�nes

where failure occurs, also known as a given materials fracture toughness.

Region 1 contains relatively small crack growth rates whereas region 3 contains a low
number of cycles due to high crack growth rates. Region 2 shows a linear crack growth rate
behavior, which was noticed by Paris. Paris [M.P.Gomez & E.Anderson 1961] proposed a
simple crack growth model which only considers cycles contained in region 2, see (3.11).

By �tting a curve to the line in �gure 3.15, an empirical formula for the given crack
growth behavior is established in (3.11). Because the empirical formula is �tted to the
crack growth rate behavior, the formula is in literature known as a crack growth model.

da

dN
= C · (∆K)n (3.11)

Where:

da
dN Crack growth rate
C, n Experimental material parameter for Paris' law
∆K = ∆σ ·

√
πa · α Stress intensity factor range
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As di�erent load cases were carried out, dependency of applied mean stress was realized.
In �gure 3.16 increasing crack growth rate behaviors is noticed as the applied mean stress
increases.

Figure 3.16. Crack growth rate dependency on mean stress.

By considering experimental results like those in �gure 3.16, Forman [E.Kearney & Engle
1967] proposed an alternative crack growth model considering the dependency of the
applied mean stress and region 3. The Forman equation is expressed as:

da

dN
=

C ′ · (∆K)n
′

(1−R) ·Kc −∆K
(3.12)

Where:

C, n Experimental material parameter for Forman equation
R = σmin

σmax
Stress ratio (ratio between minimum and maximum applied stress)

Kc = σc ·
√
πac · αc Fracture toughness

Kmax = σmax ·
√
πa · α Maximum stress intensity factor in a cycle
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Region 2 in �gure 3.16 is only slightly shifted. However, when considering region 1 and
3 a larger di�erence is noticed. As seen in (3.12) Forman considered the importance of
applied means stress, but he also tried to capture the behavior in region 3 by bringing the
fracture toughness into the equation.

For a more general case, NASGRO (3.13) considers all three regions, applied mean stress
and crack closure. The concept of crack closure is further explained and discussed in ??.
The Forman/Mettu equation is given as:

da

dN
= C · [( 1− f

1−R
) · (∆K)]

n

·
(1− ∆Kth

∆K )
p

(1− Kmax
∆Kc

)
q (3.13)

Where:

C, n, p, q Experimental material parameters for Forman/Mettu
f =

Kop

Kmax
Crack opening function

By looking at (3.11), (3.12) and (3.13) it is noticed that the number of needed experimental
parameters increases with the number of considered regions. In 3.4.1 the three crack
growth models are evaluated with respect to crack growth modelling of cast metals.

3.4.1 Evaluation of crack growth models

In this section three di�erent crack growth models are tested, namely Paris-Erdogan,
Forman and NASGRO.

NASGRO can predict all three crack growth regions where Forman can predict Region II
and III and Paris-Erdogan is restricted to region II. NASGRO and Forman also have the
ability to consider load ratio. NAGRO being the most advanced growth model, requires
the most crack growth parameters. It requires 9 parameters, where Forman requires 3
and Paris-Erdogan 2. These parameters are not always easily available, so for a given
situation one must evaluate the cost/bene�t relation of each model.

To evaluate the crack growth models, the crack growth models have been �tted to
experimental results[NASA 1959], to investigate their accuracy and the impact of stress
ratio. In the experiment, the test specimens were loaded uniaxially, corresponding to mode
1, and subjected to a wide range of load-ratios ranging from -1.0 to 0.8. The specimens
where thin plates with centered through-cracks. The geometry and dimensions of the
specimens are given on �gure 3.17.
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Figure 3.17. Test specimen of crack growth rate behavior experiments.

It should be noted that the material of the specimens is the aluminum alloy, 7075-T6, and
not cast metals, which is the main focus in this thesis. The goal is to make some general
remarks of crack growth models, and for this, the aluminum alloy serves the purpose.

The results from the experiment are illustrated as crack growth rate behavior on �gure
3.18. The material parameters C and n has been determined by �tting the crack growth
models to the case where the stress ratio is equal to zero. The remaining material
parameters, necessary for Forman and NASGRO, have been found in the NASGRO
material catalog. The material parameters, which have been used, are given in table
3.1.

Model C n Kc p q ∆K1 C+
th C−th α

Paris-Erdogan 9.33 · 10−12 3.21 - - - - - -
Forman 9.07 · 10−9 3.21 1460
Nasgro 2.24 · 10−11 3.23 1460 0.5 1.0 26.06 2.5 0.1 2.0

Table 3.1. Crack growth parameters.
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Figure 3.18. Crack growth rate behavior curves for load-ratio from 0.00-0.80.

From �gure 3.18, is it evident that all three models are able to predict the crack growth
with reasonable accuracy when the load ratio is zero. When the load ratio increases
Forman and NASGRO are still able to predict the crack growth rate accurately, where
Paris-Erdogan becomes increasingly inaccurate. This is expected since Forman and
NASGRO takes the load ratio into account but Paris-Erdogan does not. This can make
Paris-Erdogan impractical since it requires new material parameters for each load ratio.
Forman and NASGRO seem to predict the results equally well and are very similar in
region II and III. The di�erence between Forman and NASGRO becomes apparent in
region I. Forman can not predict the crack growth rate region I and is quite similar to
Paris-Erdogan in this region. NASGRO should be able predict crack growth in region I,
but these results can not be used to verify the accuracy, since crack propagation in region
I, was not recorded.

To determine if NASGRO accurate can describe region I, an experiment [Biermann 2007],
were crack growth rates in region I was recorded, will be used to prove or disprove
NASGRO's ability to describe region I. The specimen in the experiment is a single edge
notch specimen(SENB), which is illustrated on �gure 4.1. The specimen has the following
measurements B=10mm, W=20mm. The specimen is made of a nodular cast iron,
speci�cally EN-GJS-400-18LT. The crack growth parameters for NASGRO were given
in the experiment, were the crack growth parameters for Forman has been determined by
evaluating the best �t. The crack growth parameters are given in table 4.2.
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Figure 3.19. SENB specimen geometry.

Model C n Kc p q ∆K1 C+
th C−th α

Forman 7.00 · 10−12 2.49 1049.88
Nasgro 6.19 · 10−15 3.80 1049.88 0.40 0.40 111.5 2.6 0.1 2.5

Table 3.2. Crack growth parameters.

The results from the comparison between Forman, NASGRO and the experiment is
illustrated on �gure 3.20.

Figure 3.20. Crack growth rate behavior in all three regions.

From �gure 3.20 can it be seen that NASGRO generally does a good job of describing
the crack growth rates in all three regions. In region I is it clear Forman over estimates
the crack growth which could lead to a conservative estimation of lifetime. To illustrate
how Forman's overestimation of the crack growth in�uences the estimation of lifetime, an
analytical example has been carried out. The test specimen is a SENB specimen with
the following measurements B = 10mm, W = 20mm, ai = 5mm. The crack growth
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parameters are given in table 4.2. The applied load is ∆P = 2750N with a load ratio of
R = 0.1, this ensures that region I will be present, as illustrated on �gure 3.21.

Figure 3.21. The presence of region I at the initial stress intensity.

The result from the analytical example is illustrated on �gure 3.22.

Figure 3.22. Di�erence in crack life behavior curves for Forman and NASGRO.

From �gure 3.22 is clear that Forman's omission of region I has a signi�cant in�uence
of estimation on lifetime. Forman underestimates the lifetime by 39.6 % compared to
NASGRO, making Forman very conservative when region I is present. However, in cast
metals initial cracks may be large enough to already be in region II from birth.

3.4.2 Fracture toughness

Before any fracture mechanical analyses are carried out, a number of important aspects of
the fracture toughness have to be considered. In the following temperature and thickness
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dependencies will be discussed.

In 1940's the catastrophic number of failing Liberty ships formed the basis of interest in
brittle fracture of ductile materials. The ships were observed to fail in a brittle manner,
although they were constructed from ductile steels. Additionally, the failures mainly
occurred in the northern seas where temperatures were relatively low.

Figure 3.23. Yield strength and fracture toughness dependence on temperature.

It was later discovered that depending on the temperature, ductile materials exhibits
brittle or ductile behavior. As illustrated in �gure 3.23, the fracture toughness should not
be considered proportional to the yield strength. Hence, it is important to determine the
temperature range at which a given component is used. If structures/vessels are travelling
around the world, brittle and ductile fracture could be a possibility. Therefore, both
situations need to be taken into consideration in order to design appropriately.

Another important aspect is the fact that fracture toughness depends on the component
thickness. A graphical representation of the dependency is seen in �gure 3.24.
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Figure 3.24. Fracture toughness dependence of component thickness for a ductile material for

which the crack propagates in a ductile manner. The angled slip planes introduced,

also referred to as shear lips, is caused by low triaxial stress state near the free

surface in plane stress. [Anderson 2005]

The fracture toughness needs to be determined, not only as a function of temperature,
but also component thickness. In �gure 3.24 it is noticed that increasing thickness leads
to decrease in fracture toughness. Eventually, the fracture becomes constant and is
denotedKIc, which is the fracture toughness for plane strain components. In practice,
the fracture toughness is often referred to as KIc for the sake of conservatism. Assuming
the fracture toughness equal to KIc, many load cycles could be incorrectly excluded from
an optimization point of view.
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Figure 3.25. Tri-axial stress states in a (a) edge-cracked test specimen (b) surface cracked

component. [Anderson 2005]

However, fracture toughness' from tests are not always applicable. The triaxial stress state
in a through edge specimen depends on the thickness (�gure 3.25.a). In contradiction to
this, a surface crack's triaxial stress state depends on the crack front length which not
necessarily depends on the thickness (�gure 3.25.b). Hence, equal fracture morphology
is not guaranteed and the fracture toughness is not directly related to the same kind of
situation.

Hence, the structural application has to be considered, when carrying out the fracture
toughness testing, for the fracture toughness to be a valid material parameter.

3.5 Crack tip plasticity

The fracture toughness is, in linear-elastic fracture mechanics, supposed to be an applicable
material parameter expressed as a critical stress intensity factor. Thus, it has to be
independent of a cracked body's geometry and overall dimensions. In order for this to be
true, the plastic zone size is for monotonic and cyclic loading suggested to be restricted
to ry ≤ a

8 and ry ≤ a
4 respectively.

In the following section important aspects of the plastic zone are discussed.
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3.5.1 Plastic zone size

The triaxial stress state is di�erent in plane stress and plane strain, see �gure 3.26. The
out-of-plane compressive stress, σz, reduces the plastic zone size in plane strain situations.
However, due to low triaxial stress states near the surface (see �gure 3.25), the plastic
zone size near the surface will always be approximately the plane stress plastic zone size.

Figure 3.26. Plastic zone size at the crack-tip of a through crack. [Anderson 2005]

A �rst-order estimate of the plastic zone size is for plane stress conditions given as:

σyy = σY =
KI√
2πry

→ ry =
1

2π
(
KI

σY
)
2

(3.14)

The plain strain plastic zone size is recommended to be taken as 1/3 of the plane stress
plastic zone size in (3.14).

However, by reconsidering the elastic stress �eld solutions, corrections might be necessary
due to the singular stresses at the crack-tip, predicted by the elastic solution.

3.5.2 Irwin's approach

Irwin stated that the plastic zone in 3.26 is too small, because the stresses above the
yield limit are not considered. The problem is illustrated in �gure 3.27. Stresses must
be redistributed in order to satisfy equilibrium and still physically make sense. Every
material fails before reaching an in�nite state of stress, and even small loadings results in
in�nite stresses.
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Figure 3.27. Graphical representation of Irwin's approach. The elastic stress �eld solutions

introduce stresses above the material's yield limit, at a distance ry from the origin.

These stresses are in reality not possible, but indeed required to obtain equilibrium.

Hence, the elastic stress region above σy are redistributed by increasing the plastic

zone size from ry to rp. [Anderson 2005]

The redistribution of stresses introduces an increased plastic zone at the crack-tip. From
this perspective Irwin came up with a second-order estimate of the plastic zone size
expressed in (3.15) under plane stress conditions.

rp = 2ry =
1

π
(
KI

σY
)
2

(3.15)

Irwin proposed an e�ective crack length due to the relatively soft behavior of the plastic
zone. The e�ective crack length is expressed as:

aeff = ai + ry (3.16)

Then the e�ective stress intensity factor is stated in (3.17) and requires iterations in order
to converge.

Keff = σ · √πaeff · αeff (3.17)

Where:

αeff = f (aeff ) E�ective geometrical factor
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3.5.3 Strip yield model by Dugdale

Figure 3.28. Strip yield model by Dugdale. The plastic zone is estimated by considering

the required distance of yield magnitude compressive stresses at the crack-tips.

[Anderson 2005]

Dugdale proposed the strip yield model, illustrated in �gure 3.28. The plastic zone, under
plane stress conditions, estimated by the strip yield model is expressed as:

ρ =
π

8
(
KI

σY
)
2

≈ 1.23

π
(
KI

σY
)
2

(3.18)

Dugdale's strip yield model is relatively close to the plastic zone proposed by Irwin in
(3.15). Burdekin and Stone [F.M. & Stone 1966] proposed a formulation of Dugdale's
strip yield model as:

Keff = σY ·
√
πa · [ 8

π2
ln(sec(

πσ

2σY
))]

1/2

(3.19)
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3.5.4 Plastic zone limitations

To illustrate how the stress intensity factor is corrected in relation to the applied stress,
a graphical representation is given in �gure 3.29.

Figure 3.29. Example of plastic zone corrections for a through crack, in a mode I loaded plate,

under plane stress conditions.

Looking at �gure 3.29, linear-elastic fracture mechanics need corrections when σ ≈ 0.45σY .
Thus, linear-elastic fracture mechanics is well suited while σ << σY , but need corrections
when 0.4σY < σ < 0.8σY . [Anderson 2005]

Load-bearing o�shore structures are considered to be loaded mainly in σ << σY because
of the ultimate limit state requirement. Hence, are neglected in the algorithm proposed
in this thesis.

For extensive yielding at the crack-tip, elastic-plastic fracture mechanics is available.
However, only linear-elastic fracture mechanics is emphasized in this thesis.
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3.5.5 Load interaction e�ects

3.5.5.1 Crack closure

During fatigue crack growth cracks exhibit what is known as crack closure. The crack
closure mechanisms are introduced in order to account for a crack which tends to close
before it is fully unloaded. A number of di�erent crack closure mechanisms are illustrated
in �gure 3.30.

Figure 3.30. Illustrations of fatigue crack closure mechanisms which occur in metals, as well

as cast metals. (a) Plasticity-induced closure (b) roughness-induced closure (c)

oxide-induced closure (d) closure induced by a viscous �uid and (d) transformation-

induced closure. [Suresh & Ritchie 1984]

By considering the crack closure concepts, less conservative crack growth behavior can be
formulated, which leads to increased fatigue life. The crack closure concept was proposed
by [Elber 1977] and after years of research, �nally accepted. In �gure 3.31 plasticity-
induced closure is graphically explained.

Figure 3.31. De�nition of e�ective stress intensity range, closed crack region and load-

displacement behavior for plasticity-induced closure.
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The loaded crack-tip is exposed to plasticity in order to obtain equilibrium, as discussed
previously. Therefore, the unloaded crack-tip contains compressive residual stresses near
the crack-tip. Thus, the crack closes before the crack-tip is fully unloaded, as seen in
�gure 3.31.

To explain it more carefully, a test case (�gure 3.32) of plasticity-induced closure is given
in �gure 3.33. An elastic-plastic analysis is carried out with the purpose of visualizing the
residual compressive stresses which occurs near the crack-tip.

Figure 3.32. Through edge cracked test case carried out with elastic-plastic material with

E = 200GPa and σY = 235MPa (von mises yield criterion).
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The result for each load step is plotted in �gure 3.33 along with contour plots of y-direction
normal stress.

Figure 3.33. Elastic-plastic analysis (Ansys WB15.0) showing the compressive residual stresses

around the crack-tip, which causes the crack to close before reaching minimum

loading.

The crack closure concept is therefore used to determine an e�ective stress intensity factor
which is less conservative. For variable loadings additional retardation is able to occur.
These e�ects are related to overloads.
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3.5.5.2 Crack growth retardation due to overloads

Fatigue loaded structures are not always perfectly cyclic loaded. In reality almost any
fatigue loaded structure will be exposed to variable loading. Load history e�ects in
homogeneous materials, like cast steel and aluminum, are graphically illustrated in �gure
3.34.

Figure 3.34. Crack growth life behavior of 2024-T3 aluminum for a (a) cyclic load, (b) cyclic

load with reversed overload and (c) cyclic load with single overloading.

As discussed in the previous section, the crack closure concept a�ects the crack growth
behavior. In �gure 3.34 the single overloads retards the fatigue process, which could
be rather unexpected if crack-tip plasticity was not considered. However, not all cast
metals retards due to overloads. Crack growth retardation is not observed for ductile cast
[Biermann 2007].

As mentioned in 3.4.1, the NASGRO equation o�ers the possibility of taking crack closure
into consideration.
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Numerical validation of stress

intensity factors 4
The stress intensity factor is the governing input parameter in crack simulation algorithms.
Crack propagation direction is determined based on ratios of the stress intensity factors for
the three fracture modes. Additionally the incremental crack growth is also determined by
the magnitude of the stress intensity factors. Thus, crack simulations are highly dependent
on the accuracy of the numerical determined stress intensity factors.

In this thesis, the stress intensity factors are determined by use of a numerical method
in the commercial software Ansys. The numerical method is tested against multiple
theoretical problems, which serves the purpose of evaluating the solution accuracy of
KI , to ensure acceptable accuracy in crack simulation.

The following methods are used and presented individually from test case I-IV:

� Contour integral method (analytical)

I SENB specimen

� Analytical solution [ASTM]

I SENB specimen

II Single edge notch tension specimen

III Semi-circular surface crack

IV Embedded circular crack

� Domain integral method (numerical)

I SENB specimen

II Single edge notch tension specimen

III Semi-circular surface crack

IV Embedded circular crack

The numerical method is �rst tested against a single edge notch bending (SENB) specimen,
using three di�erent methods. The individual calculation methods are brie�y presented
in the start of the corresponding sections.
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4.1 Contour integral method

The contour integral method can be suitable for hand calculation and often employs
certain assumptions to ease calculations. As stated previously, the J-integral can be used
to compute stress intensity factors for pure mode I, II and III loadings. The J-integral is
expressed as:

J =

∫
Γ

(Wdy − Ti
∂ui
∂x

ds) (4.1)

Where:

W is the strain energy density.
Ti is the traction vector.
∂ui
∂x is the change in displacement.

The line integral is performed in a counter clockwise manner from one crack face to the
other, as illustrated below:

Figure 4.1. Contour path on SENB specimen.

The J-integral is a summation of the J-integrals of all the surfaces:

J = JBC + JCD + JDE + JEF + JFG (4.2)
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The integration is path independent, which can be exploited to simplify calculations. By
choosing the contour illustrated on �gure 4.1, a number of assumptions can be made:

� The traction on surface BC and FG is zero because they are free surfaces.

� The traction on surface DE is negligible because the load is concentrated.

� The strain energy density on all surfaces is negligible.

These assumptions reduce the J-integral to J = JCD + JEF . Since the surfaces CD and
EF are symmetric, both in terms of geometry and loading, the J-integral can further be
reduced to J = 2JCD. Explicitly written as:

J = 2

D∫
C

(Wdy − T ∂uy
∂x

ds) (4.3)

The strain energy density on surface CD is zero reducing (4.3), to:

J = −2

D∫
C

T
∂uy
∂x

ds (4.4)

Both the traction and the slope is constant on surface CD leading to:

J = −2

(W−a)∫
−a

T
∂uy
∂x

ds = −2T
∂uy
∂x

W (4.5)

The displacement of surface CD is illustrated below:

Figure 4.2. Displacement of surface CD.
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As illustrated on �gure 4.2, can it be seen that the displacement of surface CD has a
constant slope. The specimen is regarded as a simply supported beam with a concentrated
load applied at midspan. This leads to an expression of the slope on surface CD of
θ =

∂uy
∂x = − 1

16
Pl2

EI = −3
4

Pl2

EB(W−a)3
. The traction on surface CD is T = 1

2
P
bh . These two

expressions are substituted into expression (4.5), leading to the �nal expression of the
J-integral for the specimen:

J =
P

bh

3

4

Pl2

EB(W − a)3h =
3

4

P 2l2

EB2(W − a)3 (4.6)

Recaptured from 3.2.2 the following relation is true for linear-elastic fracture mechanics:

J =
K2

E
for plane stress

J =
K2

E

(
1− ν2

)
for plane strain

Hence, geometry of B = 10mm, W = 20mm, a = 5mm and P = 1000N leads to a
corresponding stress intensity of K =

√
JE = 119.26MPa

√
mm.

4.2 Analytical solution

For a SENB specimen the stress intensity can be determined using the following expression
[Bower 2009]:

K =
4P

B

√
π

W
[1.6(

a

W
)
1
2 − 2.6(

a

W
)
3
2

+ 12.3(
a

W
)
5
2 − 21.2(

a

W
)
7
2

+ 21.8(
a

W
)
9
2
] (4.7)

A geometry of B = 10mm, W = 20mm, a = 5mm and P = 1000N gives a corresponding
stress intensity of K = 116.73MPa

√
mm .

4.3 Domain integral method

The stress intensity factors are calculated by means of a domain integral method,
speci�cally the interaction integral formulation, in Ansys. The domain integral method
uses area integrals for 2D problems and volume integrals for 3D problems. A typical
domain de�nition is seen in �gure 4.3.
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Figure 4.3. A segmental crack-front domain for computing area and volume integrals at point

s = b along the crack-front. The domain extends from point s = a to point s = c

equal to the length Lc.

The idea of the interaction integral is to superimpose two equilibrium states near the
crack-tip, an actual and auxiliary �eld. Equilibrium of the two superimposed equilibrium
states leads to an interaction between the two states, which can be determined by the
interaction integral as:

J(s)(act+aux) = J(s)(act) + J(s)(aux) + I(s) (4.8)

where by assuming slowly varying energy release rates within the crack front segment
Lc, the same constitutive tensor couples the actual and auxiliary stress and strain
components, leads to the following expressions (omitting thermal strains and crack face
surface tractions):

J-integral in domain form:

J(s) =
J(s)∫

s δq(s)ds
=

∫
V (σijuj,1 −Wδ1i)q,idV∫

s δq(s)ds
(4.9)

Interaction integral in domain form:

I(s) =
I(s)∫

s δq(s)ds
=

∫
V

(
σiju

aux
j,1 + σauxij uj,1 − σjkεauxjk δ1i

)
q,idV∫

s δq(s)ds
(4.10)
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Where:

σij , εij , ui stress, strain and displacement components in the actual con�guration
J(s) Energy released per unit advance of crack front domain Lc
∂ui
∂x is the traction vector.
σauxij , εauxij , uauxi Stress, strain and displacement components in the auxiliary con�guration
q,i Weight function
δq(s) Virtual crack advance along crack front (see �gure 4.3)
s Crack front

By introducing an auxiliary solution (e.g. the near crack-tip solutions by William, the
mixed mode stress intensity factors can be extracted from the following relation:

I(s) =
2

E′
(KIK

aux
I +KIIK

aux
II ) +

1

µ
KIIIK

aux
III (4.11)

by activating the auxiliary stress intensity factors once at the time, e.g.:

Kaux
I = 1,Kaux

II = 0,Kaux
III = 0 (4.12)

the individual activation leads to solutions of the activated mode as (4.11) simpli�es to:

KI(s) =
E′

2
I(s) (4.13)

By this approach the individual stress intensity factors can be calculated by solving (4.10)
using the input from (4.12) and inputting the solution into (4.13) for which:

E′ =

{
E (plane stress)
E

1−v2 (plane strain)
(4.14)

Numerical implementation

In numerical calculations the same procedure, as just explained, is used. However, the
interaction integral is evaluated numerically at each gauss point p, of every element volume
V , in the considered domain segment Lc along s (illustrated in �gure 4.4) by:

I(s) =

elems∑
V

gpts∑
p

[(
σiju

aux
j,1 + σauxij uj,1 − σjkεauxjk δ1i

)
q,i det(J)

]
p

wp (4.15)
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Where:

elems Elements within the considered domain
gpts Gauss points within the elements of the considered domain
J Coordinate Jacobian matrix
wp Gauss integration weight factor for point p

The �rst calculated domain, which Ansys names contour 1, is within the elements
connected to the crack-tip node(s), see �gure 4.4. The second domain, or contour 2,
is within the elements adjacent to the elements within contour 1. This principle proceeds
until the requested number of contours are reached.

Figure 4.4. The �rst three contours related to the crack-tip node.

Using the near crack-tip 2D solution by Williams, as the auxiliary equilibrium state may
lead to incorrect solutions. For curved crack fronts these solutions do not hold, as they
are determined for a straight crack front. However, calculating the interaction integral in
small enough segments Lc along the crack front s, the solutions are acceptable.

The complex nature of high stress gradients, near the crack-tip, requires considerations
regarding the crack-tip mesh, which are discussed in the following.

4.3.1 Mesh considerations

Adaptive meshing, o�ered by many commercial codes, may lead to problems near
discontinuities. Hence, considerations regarding crack-tip mesh con�gurations are to some
extent needed. A re�ned adaptive mesh yields acceptable solutions, but two other mesh
con�gurations are tested in order to lower the total amount of elements used.
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4.3.1.1 Crack-tip singularity

The crack-tip singularity may be well described by using modi�ed quadratic elements,
also known as singularity elements or quarter point elements (QPEs). See �gure 4.5.

To obtain an improved solution of the �rst contour, the singularity elements are
introduced. In plane problems straight sided quadratic triangles with skewed
midside nodes and element edge length L < a

8 are recommended [FERNANDO C.
M. MENANDRO & LIEBOWITZ]. The rest part of the specimen is recommended to
be meshed by quadratic triangles.

Figure 4.5. Geometrical description of the singularity elements.

By skewing the midside nodes of the quadratic isoparametric elements to a distance of
x = l/4 from the crack-tip, the stress and strain �eld varies with 1√

x
. This is equal to the

1√
r
singularity predicted by the near crack-tip stress �eld solutions (3.5).

Using QPEs the K solution is at the �rst contour is improved. The impact of using
singularity elements are tested in combination with a validation of a standardized crack-
tip mesh con�guration, proposed for the crack simulation algorithm.

4.3.2 Numerical validation of mode I stress intensity factors

A brief evaluation of three di�erent crack-tip mesh con�gurations are presented in
this section. The objective is to test the accuracy of the proposed crack-tip mesh
con�gurations. The SENB specimen, seen in �gure 4.6, is used again for comparison
reasons.
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Figure 4.6. SENB specimen whereW = 20mm, B = 10mm, and a = 5mm P = 1000N .

The mode I stress intensity factor is determined by means of domain integral method,
executed by CINT in Ansys MAPDL. Results are plotted at six contours around the
crack-tip. Before discussing the results, the di�erent mesh con�gurations are illustrated
in �gure 4.7 and 4.8.

4.3.2.1 Re�ned mesh con�guration

Figure 4.7. SENB specimen meshed by AMESH and then re�ned by SMRT in Ansys MAPDL.

A great number of quadratic quadrilaterals are used in the re�ned mesh con�guration in
�gure 4.7, which is expected be able to predict the singular behaviour rather accurate.
The stress intensity factors determined with the re�ned mesh is plotted in �gure 4.7.
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4.3.2.2 Modi�ed mesh con�guration

The base mesh of the modi�ed mesh con�guration is seen in 4.8.

Figure 4.8. SENB specimen meshed with singularity elements by KSCON and adaptive meshing

AMESH with quadratic triangles.

As noticed in �gure 4.8 the amount of elements are decreased signi�cantly compared to
the re�ned base mesh in �gure 4.7.

The modi�ed crack-tip mesh is geometrically schematized in �gure 4.9.

Figure 4.9. Geometrical schematization of the modi�ed crack-tip mesh pattern, where L is the

triangular element edge length, r is the crack-tip mesh pattern radius, is the spacing

ratio and n is the total number of radial element layers.
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In this test the crack-tip mesh, which is schematized in �gure 4.9, have the following
geometrical layout:

� L = 0.0075mm

� r = 0.03mm

� α = 18.75◦(16 divisions)

� n = 5

The layout of the crack-tip mesh, illustrated in �gure 4.10 and 4.11, is generated on basis of
recommended crack-tip mesh design [FERNANDO C. M. MENANDRO & LIEBOWITZ].

With quarter point elements

Figure 4.10. The crack-tip mesh for the modi�ed mesh con�guration and corresponding nodal

points for the mesh with quarter point elements.

Noticing the inner midside nodes are shifted towards the crack-tip.
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Without quarter point elements

Figure 4.11. The crack-tip mesh for the modi�ed mesh con�guration and corresponding nodal

points for the mesh without quarter point elements.

Here the midside nodes of the inner triangles are kept in the middle.

The mode I stress intensity factors for the SENB specimen are plotted in �gure 4.12.

4.3.2.3 Discussion

The results are plotted in �gure 4.12 and the deviation of the averaged stress intensity
factors (neglecting the �rst contour) are listed in table 4.1.

Figure 4.12. Numerical KI solutions for the SENB specimen in relation to the analytical

solution.

Noticing the �rst contour in �gure 4.12 is the most inaccurate solution for all three mesh
con�gurations. Expectedly the mesh con�guration with quarter point elements are closest
to the analytical solution at the �rst contour.
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The inaccurate solution occur due to crack-tip singularity. Hence, the solutions of �rst
contour is neglected.

Mesh con�guration Deviation from analytical solution [%] Number of elements
Re�ned adaptive mesh 1.39 1769
Modi�ed mesh (with QPEs) -1.64 1098
Modi�ed mesh (without QPEs) -1.56 1098

Table 4.1. Comparison of averaged (contour two to six) KI results for the SENB specimen.

All three mesh con�gurations show solutions within 2% of the analytical solution as seen
in table 4.1, which validates the numerical solutions of all three mesh con�gurations. Next
to this, the result obtained with the re�ned adaptive mesh con�guration utilizes 60% more
elements. Hence, in the following numerical models the modi�ed mesh without QPEs are
used and the �rst contour is neglected.

Numerical validation of 2D problem solved by a numerical 3D model

In the present section, a theoretical 2D problem is solved by means of a �nite element
model in 3D. The purpose is to test if the numerical solution, in 3D, results in reasonable
magnitudes of KI . The evaluated problem is illustrated in �gure 4.13.

Figure 4.13. Single edge notch specimen with E = 2.1 · 105MPa and ν = 0.3.
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Mode I stress intensity factor is determined through thickness by the domain integral
method in ANSYS Mechanical APDL and compared to the analytical solution. The base
mesh is illustrated in �gure 5.5 and the local crack-tip mesh in �gure 5.14.

Figure 4.14. Base mesh and closeup of the crack-tip mesh connected to the base mesh.

Quadratic tetrahedrons are used for the base mesh.

The crack-tip mesh con�guration, presented in the previous chapter, is extruded and tested
for di�erent number of element divisions through specimen thickness.

Figure 4.15. Crack-tip mesh con�guration with r = 0.25mm, n = 5, α = 18.75◦ and L is

automatically determined by the VSWEEP command. The discretized crack-tip

volume, to the right, is with 60 element divisions in the thickness direction.
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The solutions of KI are plotted in �gure 4.16.

Figure 4.16. Analytical solution versus numerical solutions with di�erent element divisions in

the thickness direction (z) and close up of the near edge results of the single edge

notch specimen.

The numerical solutions of KI is converged at 60 element divisions through thickness and
has magnitudes of reasonsable level comparatived to the analytical solution in 2D.

Numerical validation of semi-circular surface crack

A semi-circular surface crack problem is tested with the �nite element method and
compared to an analytical solution proposed by Newman and Raju[appendix 1]xx. The
problem is illustrated in �gure 4.17.

Figure 4.17. Semi-circular surface crack in a body with geometrical parameters a
c = 1 ,at = 0.3

and c
b = 0.03. The material parameters are assumed to be E = 2.1 · 105MPa and

ν = 0.3.

The body is meshed with quadratic tetrahedrons, whereas the crack-tip mesh is a
combination of quadratic hexa- and tetrahedrons. Base mesh is illustrated in �gure 4.18.
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Figure 4.18. Base mesh of semi-circular crack problem and implemented semi-circular crack

geometry.

A close up of the crack-tip mesh is shown in �gure 4.19. Di�erent number of element
divisions are tested along the crack front.

Figure 4.19. Crack-tip mesh con�guration with r=1.5mm, n=5, α = 18.75◦ and L=0.3mm.

The tested crack-tip mesh con�gurations are illustrated in �gure 4.20.

Figure 4.20. Di�erent number of element divisions around the circumference of the semi-circular

surface crack. The three tested number of element divisions are 30, 60 and 90,

which is shown from left to right.
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The mode I stress intensity factor is numerically solved for the di�erent crack-tip mesh
layouts in �gure 4.20 and plotted in �gure 4.21 in relation to the analytical solution.

Figure 4.21. Analytical solution of KI compared to numerical solutions.

The numerical solution is converged at 60 element divisions around the semi-circular crack
front. By plotting the KI solution close to the free surface, in �gure 4.22, a drift is noticed
towards the free surface.

Figure 4.22. The numerical solution drifts away from the analytical solution near the free

surface.
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Linear extrapolation can be introduced in order to obtain more accurate solutions near
the free edges, in order to use the results in a crack propagation simulation.

An example is given in �gure 4.23, where the numerical solution(90 divisions) from �gure
4.22 is extrapolated.

Figure 4.23. Linear extrapolation of the numerical solution.

As noticed in �gure 4.23, the extrapolated numerical solution is close to the analytical.
The deviation is graphically illustrated in �gure 4.24.

Figure 4.24. Deviation of extrapolated numerical solution in relation to the analytical solution.
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The extrapolated numerical solution is within 3% of the analytical solution. Hence, mode
I stress intensity factors for a semi-circular crack, is acceptably determined by the domain
integral method used in this thesis.

For simulation of surface cracks with the domain integral method used in this thesis, linear
extrapolation is recommended.

Numerical validation of embedded circular crack

The mode I stress intensity factors of a embedded circular crack are determined
numerically and compared to the analytical solution proposed by Irwin[REF APPENDIX
1]xx. The evaluated problem is illustrated in �gure 4.25.

Figure 4.25. Embedded circular crack in a body with geometrical parameters a, c� t, h, b and
a
c < 1. The material parameters are assumed to be E = 2.1 ·105MPa and ν = 0.3.

The numerical model is illustrated in �gure 4.26, which shows the base mesh and the
embedded circular crack by a wireframe plot of the volumes.

Figure 4.26. Base mesh and wireframe plot of volumes used to model the embedded circular

crack problem.

73



As in the previous three-dimensional numerical models, a crack-tip mesh con�guration
was introduced and extruded around the crack front. This is illustrated in �gure 4.27.

Figure 4.27. Crack-tip mesh con�guration with r=1.5mm, n=5, α = 18.75◦, L=0.3mm and 90

element divisions along the crack front (illustrated from φ = 0◦ → 270◦).

The stress intensity factors for mode I are plotted in �gure 4.28. The numerical solutions
seams reasonable, but has spikes at each end node of the evaluated crack front path. This
tendency was shown no matter if KI was calculated along 90◦ , 180◦ or 270◦, always at
the end nodes of the evaluated crack front path.

Figure 4.28. Analytical solution of KI compared to numerical solution.

These spikes makes no physical sense, and therefore the numerical solution can be
extrapolated in order to obtain realistic results. The �rst and last node is extrapolated on
basis of the solution gradient of the adjacent node. The extrapolated solution is plotted
in �gure 4.29.
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Figure 4.29. Linear extrapolation of the numerical solution.

The extrapolated numerical solution is evaluated in percentage against the analytical
solution in �gure 4.30.

Figure 4.30. Deviation of extrapolated numerical solution in relation to the analytical solution.

The extrapolated numerical solution is, as expected, almost constant and within 2% of
the analytical solution. Hence, mode I stress intensity factors for an embedded circular
crack, is acceptably determined by the interaction integral used in this thesis.
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4.3.2.4 Discussion of numerically determined stress intensities

Errors in calculation of stress intensity factors have the potential of making lifetime
estimations imprecise.

In �gure 4.31 is the impact of numerical calculation errors on a lifetime prediction
illustrated. A numerical model is tested against an analytical solution on a problem,
for which the crack is assumed to grow in a self-similar manner. [Biermann 2007]. The
the tested specimen is a SENB specimen with the following measurements B = 10mm,
W = 20mm, ai = 5mm. The crack growth parameters are given in table 4.2.

Model C n Kc p q ∆K1 C+
th C−th α

Forman 7.00 · 10−12 2.49 1049.88
Nasgro 6.19 · 10−15 3.80 1049.88 0.40 0.40 111.5 2.6 0.1 2.5

Table 4.2. Crack growth parameters.

The applied load is ∆P = 1719Nwith a load ratio of R = 3089
4808 = 0.6425. The results are

illustrated on �gure 4.31.

Figure 4.31. Comparison of experimental crack growth against analytical and numerical

determined crack growth. [Biermann 2007]

From �gure 4.31 is it clear that the lifetime simulations from the analytical and
numerical model, are very close to the experimental result, with a deviation from the
experimental result of 1.4% and 3.9% respectively. The numerical prediction is slightly
more conservative than the analytical, which is expected since the stress intensities,
produced by the numerical model, is higher than the analytical solution.

The results emphasize that the domain integral method, in Ansys, is a reasonable method
for determining stress intensities.
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Crack propagation direction 5
In this section crack direction models are reviewed on basis of experiments.

5.1 Crack propagation criterions

The crack direction models in focus, is the maximum tangential stress(MTS) [F. Erdogan
1963] criterion and Richard's criterion [H.A. Richard M. Fulland 2005]. MTS is a well-
established criterion for mode I + II, where Richards's criterion is a relatively new criterion,
which is able to take all three modes into account and is easy to implement in numerical
solutions.

5.1.1 Maximum tangential stress criterion

The MTS criterion is derived from observations of the complex stress situation near the
crack-tip. The near-�eld stress situation is illustrated on �gure 5.1.

Figure 5.1. Near-�eld stress situation.

The near-�eld stresses are given as:

σr =
KI√
2πr

fr
I(ϕ)− KII√

2πr
fr
II(ϕ) (5.1)

σϕ =
KI√
2πr

fϕ
I(ϕ)− KII√

2πr
fϕ

II(ϕ) (5.2)

The MTS criterion is based on the assumption that the crack will propagate in the direction
perpendicular to the maximum tangential stress. By maximizing (5.2) as:
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∂σϕ
∂ϕ

= 0
∂2σϕ
∂ϕ2

< 0 (5.3)

The crack propagation angle can be determined by isolation of φ :

ϕ = − arccos

3K2
II +KI

√
K2
I + 8K2

II

K2
I + 9K2

II

 (5.4)

Where ϕ > 0 for KII < 0 and ϕ < 0 for KII > 0.

5.1.2 Richard's criterion

Richard's criterion

Figure 5.2. Angles predicted by Richard's criterion.

The angles from Richard's criterion are given as:

ϕ =

[
140◦

|KII |
KI + |KII |+ |KIII |

− 70◦
(

|KII |
KI + |KII |+ |KIII |

)2
]

(5.5)

Where ϕ > 0 for KII < 0 and ϕ < 0 for KII > 0.

ψ =

[
78◦

|KIII |
KI + |KII |+ |KIII |

− 33◦
(

|KIII |
KI + |KII |+ |KIII |

)2
]

(5.6)

Where ψ > 0 for KIII < 0 and ψ < 0 for KIII > 0.

5.2 Case study: Mode I and II

The purpose of this experiment is to test the usage of MTS and Richard's criterion for
a mode I + II situation. The main area of focus is to compare Richard's criterion with
MTS, and validate the usage of Richard's criterion.
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Three specimens have been tested, they are illustrated on �gure 6.1. The overall
dimensions and boundary conditions are identical but the position and length of the
initial crack is varying. The crack has a width of 0.05 in. The cracks are o�set from
the centerline, which causes both mode I + II be activated. The crack growth path is
in�uenced by the holes in the plate, as the decreased sti�ness act as an attractor for the
cracks propagation.

Figure 5.3. Dimensions of specimens. t=0.5 in.

The material data of the specimens are given in table 5.1.

Material type Plexiglas Poly(methyl methacrylate)
Young's modulus 473.000psi

Poisson's ratio 0.3

Fracture toughness 944lbf · in3/2

Table 5.1. Material data.

The specimens were loaded monotonically with crack mouth opening displacement(CMOD)
control using very small increments.

To describe the behavior of the three specimens, 2D and 3D FEM models have been set
up in Ansys. The 2D model employ the MTS criterion where the 3D model employs
Richard's criterion.

The boundary conditions have been setup to emulate the experiments as close as possible.
To avoid stress singularities at the supports in�uencing the stresses at the crack tip, the
boundary conditions have been applied on the entire height of the specimen. The boundary
conditions are illustrated on �gure 5.4.
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Figure 5.4. Boundary conditions of specimens.

The models have been subjected to a unit load, as the analysis is linear elastic and only
the relation between KI and KII is of interest.

The models are discretized in accordance with section 4.3.1 and the mesh is illustrated on
�gure 5.5.

Figure 5.5. Example of mesh.

The crack path has been simulated, with increments of 0.1 in. The results from the
simulations are illustrated on �gure 5.6, 5.7 and 5.8.
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5.2.1 Test results

Specimen 1

Figure 5.6. Crack path for experimental, MTS and Richard's criterion.
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Specimen 2

Figure 5.7. Crack path for experimental, MTS and Richard's criterion.
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Specimen 3

Figure 5.8. Crack path for experimental, MTS and Richard's criterion.

83



5.2.2 Discussion of results

From the three simulations is it clear that the 2D and 3D analyses are very similar, which
implies that MTS and Richard's criterion are practically identical.

It is also evident that the numerical results have a tendency to drift to the right, compared
to the experiments. The deviation is the almost the same for the two independent crack
propagation criterions and is therefore probably caused by the stress intensities. The
deviation is explained by observing the stress intensities on �gure 5.9.

Figure 5.9. KI(left) and KII(right).

The contours related toKI are acceptable equal, neglecting contour 1. ForKIIthe contours
have a relative wide scatter, which indicates lack of accuracy in the numerical prediction
of KII .

The accuracy of KII is not satisfactory and further work should be directed towards
improving the numerical model or exploration of other methods to determine the stress
intensities. Even though it has not been possible to determine KII with satisfactory
accuracy, the main purpose of the test has been ful�lled. MTS and Richard's criterion
produces almost identical results. MTS is a well-established and trusted criterion and
therefore has Richard's criterion been validated by producing almost identical results.

5.3 Case study: Mode I and III

The purpose of this experiment[Omidvar 2013] is to act as an extension of the previous
experiment. In the previous experiment Richard's criterion where validated for a mode
I+II situation. This experiment will test the validity of Richard's criterion in a mainly
mode I+III situation, to further examine the capabilities of Richard's criterion as a crack
direction criterion for all three modes.

Richard's criterion will as for the previous experiment, be validated using three di�erent
specimens. All three specimen have the same overall dimensions, which are illustrated on
�gure 5.10.
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Figure 5.10. Specimen dimensions in mm. t=8.

The variation of the three specimens is the initial slope of the crack front. The tested
specimens have slopes of 30◦, 45◦ and 60◦, which is illustrated on �gure 5.11.

Figure 5.11. Initial twist angles of crack front.
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All specimens consists of the aluminum alloy Al-7017. The material data are given in
table 5.2.

Material type Aluminum Al-7017
Young's modulus 70.0GPa

Poisson's ratio 0.32

Fracture toughness 34MPa ·
√
m

Table 5.2. Material data.

The specimens were, in the experiments , subjected to a cyclic load of 5 Hz with maximum
tension of 10 kN and a load ratio of R = 0.2. The load situation causes the crack to grow
and the slope of the crack front to diminish, going from a mode I+III situation to a pure
mode I situation. This is illustrated on �gure 5.12.

Figure 5.12. Development of crack.

The boundary conditions, in the FEM models, are setup to emulate the boundary
conditions of the experiment as close as possible. The boundary conditions are illustrated
on �gure 5.13.
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Figure 5.13. Boundary conditions.

The loads are applied as line loads and will inevitably lead stress singularities, but their
distance to the crack is large enough for them not to in�uence the crack propagation.

The FEM models have been discretized in accordance with section 4.3.1. The mesh is
illustrated on �gure 5.14.

Figure 5.14. Discretized model.
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The crack path has been simulated using, increments of 1 mm. The results from the
numerical analysis and experiments are illustrated on �gure 5.16, 5.17 and 5.18. The
experimental results have been obtained by digitizing the crack growth path from pictures
similar to �gure 5.15.

Figure 5.15. Fractured specimen.

When digitizing results from a picture certain sources of error arise. The picture should
ideally be 100 % level but from �gure 5.15, it is evident that the picture is skewed.
Before digitization, the pictures were processed to avoid as much skewing as possible.
Direct measurements would have been preferred, but the digitization should be su�ciently
accurate, as 100% compliance is not expected between the numerical models and the
experiments. The numerical and experimental results in �gure 5.16, 5.17 and 5.18 have
been overlayed using the initial crack as reference.
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Specimen 1

Figure 5.16. Experimental and numerical crack growth path. Θ = 30◦.
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Specimen 2

Figure 5.17. Experimental and numerical crack growth path. Θ = 45◦.
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Specimen 3

Figure 5.18. Experimental and numerical crack growth path. Θ = 60◦.
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From �gure 5.16, 5.17 and 5.18 is it evident that the numerical and experimental results
are very close. The results seem identical, but this can not �nally be concluded, because of
the sources of error in the digitization process. A clear deviation between experiment and
the numerical solution for specimen 3 is noticed. The deviation is caused by an abnormal
crack path in the experiment. This is clearly seen in �gure 5.15.

The results illustrated on �gure 5.16, 5.17 and 5.18 show that Richard's criterion is capable
of describing a mode I+III situation.

5.4 Conclusion

From the experiments it can be concluded that Richard's criterion is capable of describing
mode I+II and mode I+III situations. A mixed-mode situation where all three modes
are dominating have not been tested. The performance of Richard's criterion in the two
experiments gives con�dence to the use of Richard's criterion in a mode I+II+III situation.

From the �rst experiment concern about the accuracy of KII have arisen. The source of
the inaccuracies have not been determined, but possibly stems from KII calculation in
the numerical model.

Further investigation of the accuracy of KII should be carried out and other SIF
calculation methods could be tested as well.
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Lifetime estimation 6
In this section all the algorithm components are tested in order to make lifetime predictions
of the mode I+III test specimens in the previous section. The numerical determined
stress intensities and crack propagation direction, and thereby the relation between stress
intensities, have been tested in previous sections. Now the combined e�ect of stress
intensity factor magnitude and ratio is tested and evaluated.

6.1 Test case

The SEN specimens, and the experimental results, from the previous section is tested once
more. A brief recap of the specimen geometry and material parameters, are speci�ed in
�gure 6.1 and table 6.1. The specimen is subjected to cyclic loading at f = 5Hz with
maximum load Pmax = 10kN and load ratio R = 0.2.

Figure 6.1. Geometry of the tested SEN specimen in mm, wheret = 8mm, a0 = 20mm

andθ = 30◦, 45◦, 60◦

Material type Aluminum Al-7017
Young's modulus 70.0GPa

Poisson's ratio 0.32

Fracture toughness 34MPa ·
√
m

C 6.8 · 10−11

n 4

Table 6.1. Material parameters for the tested SEN specimen.

As relative high CPU time is required per every crack growth increment, only simulations
of �rst 20mm crack growth are carried out, for the three di�erent specimens. The
simulations are �nally compared to the experimental results until 20mm of crack growth.
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6.2 Application of crack growth model and mixed mode

fracture criterion

The crack growth model of Paris' was chosen, based on the concepts discussed in section
3.4. The justi�cation of choice is outlined below:

� Region II primarily of interest.
In these tests the crack has already been initiated and therefore is region I irrelevant.
The crack will only brie�y be in region III and therefore is region II primarily of
interest.

� Constant amplitude loading
The test specimens are subjected to constant amplitude loading, which leads to
constant load ratio. Paris' law do not take changing load ratios into account, without
updating the material parameters C and n. The test specimens are subjected to
constant amplitude loading, which leads to constant load ratio. Paris' law do not
take changing load ratios into account, without updating the material parameters
C and n.

� Available material parameters
The material parameters for Paris' law are given in the experimental paper [Omidvar
2013]. By using Paris' law a minimum of variations, between the experiment and
this thesis, is ensured.

Crack growth is simulated in incremental steps da = 1mm in which, the actual crack
length a and geometrical factor α are assumed to be constant. The number of applied
cycles dN is determined by post-processing, using Paris' law as:

da

dN
= C ·∆Keq

n ↔ dN =
da

C ·∆Keq
n (6.1)

Where:

∆Keq = f(∆KI ,∆KII ,∆KIII) Equivalent mode I stress intensity
da = 1mm Number of required cycles to obtain a crack growth of 1mm

The equivalent mode I stress intensity is a combination of mode I, II and III stress
intensities, expressing a fracture limit surface as illustrated in �gure 6.2.
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Figure 6.2. Concept of equivalent mode I fracture criterions.

A set of stress intensities positions a point in space at �gure 6.2 by using (6.2). Related
to crack growth, stable fracture occurs when the point is in between the threshold limit
surface and the fracture limit surface. For problems where only one or two modes are
activated, the fracture surfaces change to a line or plane respectively.

Several equivalent mode I fracture criterions have been proposed. As explained in ??,
the criterion of Richard is an empirical formulation based on developed approximation
functions [H.A. Richard M. Fulland 2005].

The equivalent mode I fracture criterion of Richard is expressed as:

∆Keq =
∆KI

2
+

1

2

√
∆K2

I + 4(α1∆KII)
2 + 4(α2∆KIII)

2 (6.2)

Where:

α1 = KIc
KIIc

Material parameter depending on mode I+II fracture toughness ratio

α2 = KIc
KIIIc

Material parameter depending on mode I+III fracture toughness ratio

By using α1 = 1.155 and α2 = 1.0, the criterion of Richard equals the fracture criterion
of Schöllmann. The fracture criterion of Schöllmann is based on the assumption of crack
growth along the special maximum principal stress σ1

,, de�ned on �gure 6.3.
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Figure 6.3. Fracture criterions of Schöllmann and Richard, where α1 = 1.155 and α2 = 1.0.

In �gure 6.3 the equivalent fracture surface of the criterion of Schöllmann and Richard is
illustrated. Due to the solution equivalence, and high numerical applicability, the fracture
criterion of Richard is preferred.

6.3 Test results

The results from the experiment and the numerical simulations are illustrated on �gure
6.4.

Figure 6.4. Crack growth behavior of the numerical simulations in relation to the experimental

results. (Only compared for a crack extension until 20mm)
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From �gure 6.4 an evident deviation is noticed between the numerical and experimental
results. The numerical results show too conservative results with deviations between 32.3-
37.8%, as listed in table 6.2.

Specimen Numerical result [N] Experimental result [N] Deviation [%]
1 16,194 26,035 -37.8
2 25,346 38,699 -34.5
3 30,469 45,034 -32.3

Table 6.2. Comparison of numerical and experimental lifetime predictions for 20mm of crack

extension.

No clear tendencies in deviation is noticed at the initial crack growth life in �gure
6.4, as specimen 1 shows conservative estimation, whereas specimen 2 and 3 show non-
conservative estimations.

The crack growth rates are equal for a short amount of cycles, but as the cracks extend, a
great di�erence in crack growth rates are noticed between the numerical and experimental
results.

Method N1,20mm/N3,20mm N2,20mm/N3,20mm N3,20mm/N3,20mm

Numerical simulation 0.53 0.83 1.0
Experiment 0.58 0.86 1.0

Table 6.3. Relation between the individual results.

At a crack extension of 20mm the deviations are signi�cant, but a similitude between the
numerical and experimental results is noticed. The relations between results at a crack
extend of 20mm, normalized by the specimen 3 result of the respective analysis method,
is listed in table 6.3.

6.4 Discussion of results

It should be noted that predicted number of cycles may deviate by magnitudes, due to
scatter in crack growth life behavior. However, the ratios in table 6.3 are very similar for
the numerical and experimental results, indicating a scaling deviation.

In relation to the test results, the topics outlined below, are discussed:

� Magnitude of stress intensities
A similar crack growth rate is noticed between the numerical and experimental
results, in the start of the crack growth, which may con�rm a reasonable magnitude
of the stress intensities. However, explicit analyses validating the magnitudes of
KII and KIII have not been carried out. These validations are suggested in further
work. Additionally accuracy testing benchmarked against other calculation methods
for mixed mode stress intensity factors may lead to optimized accuracy.
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� Factory roof phenomenon
In situations where KI and KIII are dominating, the factory roof phenomenon may
occur. A factory roof has been observed, in early stages of the crack growth, for
all the specimens [Omidvar 2013]. The factory roofs on specimen 2 are illustrated
noticed on �gure 6.5.

Figure 6.5. Factory roof occurrence on specimen 2.

According to experiments [Masanori Kikuchi & Suga], the presence of KIII lowers
the equivalent stress intensity, when factory roofs are present. The equivalent stress
intenstiy by Richard [keq], increase with the presence of KIII and do not consider
the e�ect of factory roofs. A modi�ed criterion of Richard have been proposed
[Masanori Kikuchi & Suga], in order to take the e�ect of factory roofs into account.

The implementation of the modi�ed criterion of Richard e�ect the may e�ect the
crack growth shortly, as the factory roofs are only present in the beginning of the
crack growth. The in�uence of the modi�ed criterion of Richard is positive for
specimen 1 and negative for specimen 2 and 3.

� Plasticity induced crack closure

Because of crack-tip yielding a residual compressive stress is introduced at the crack-
tip, when unloading. The load is applied again and has to overcome the residual
pressure before the crack surfaces displaces and cause crack growth. Therefore, the
residual pressure acts retarding on the crack growth this is called plasticity induced
crack closure. If the e�ect of plasticity induced crack closure is not taken into
account, it may lead to conservative numerical results.

The e�ect of plasticity induced crack closure increase as the crack grows. Since the
e�ect becomes increasingly larger, which is similar to the result deviations, the crack
closure may be origin of the deviations.
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Discussion 7
An overall discussion regarding �ndings within the thesis work. Furthermore, a number
of proposed algorithm improvements are highlighted.

7.1 Findings

7.1.1 Numerical accuracy of the mixed mode stress intensity factors

For both of the experimental benchmark tests the mixed mode stress intensities showed
a lack of accuracy. The inaccuracy of KII may have caused the inconsistent crack
propagation directions in the I+II benchmark test. Also the lifetime prediction results,
may improve with more accurate KI and KIII magnitudes.

7.1.2 Assumption of constant crack length a and geometrical factor α

In the lifetime prediction test, the actual crack length a and geometrical factor αwas
assumed constant within every crack growth increment da = 1mm. Expressed by the
number of cycles post-processed as:

da

dN
= C ·∆Keq

n ↔ dN =
da

C ·∆Keq
n (7.1)

where ∆Keq = f(∆KI ,∆KII ,∆KIII) and ∆Ki = σii ·
√
πa · α.

The impact of this assumption has not been explicitly tested and potentially could lead
to non-conservative lifetime predictions. However, the tested geometries had initial cracks
of several millimeters. Thus, updating the crack length and geometry is expected not to
result in any signi�cant increase of the crack growth rates, as the geometry is relatively
unchanged and da� a→ ai ≈ ai+1.

7.1.3 E�ect of plasticity induced crack closure

In the lifetime prediction test, signi�cant di�erences was noticed between the crack growth
rates of the numerical simulation and the benchmark experiment. The e�ect of plasticity
induced crack closure is suspected to be the origin of deviations, based on the similiraties
between crack growth deviation and the expected decrease of crack growth rates due to
plasticity induced crack closure.

7.1.4 The relation between cast metals and the tested materials

None of the benchmark tests was carried out with cast metals, which is not really what
would have been aspected in accordance with the thesis description. However, in order
to ensure similitude, experiments with materials showing approximately same material
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behavior, as cast metals, was used. The used materials was plexiglass and aluminum
alloy.

7.2 Proposals for improvements and future/further work

Based on the �ndings in the thesis work, a number of proposals for further work is
highligted and brie�y described.

7.2.1 Validation of numerically determined mode II + III stress

intensity factors and comparison with other numerical methods

to ensure accuracy

An explicit evaluation and validation of KII and KIII , in order to con�rm or refute their
accuracy, and thereby evaluate their impact on the crack growth simulation.

Other numerical methods for determination of the stress intensities may lead to improved
accuracy and thereby optimization of the crack growth algorithm.

7.2.2 Plasticity induced crack closure

The e�ect of plasticity induced crack closure can be implemented by various proposed
methods. The crack growth model NASGRO, may include plasticity induced crack closure,
by a crack opening function by Newman.

Also numerical methods have been proposed with acceptable results [Maitireyimu 2009].
By means of elastic-plastic analyses the e�ect of plasticity induced crack closure e�ect can
be approximated.

The concept of both methods is to de�ne an e�ective stress intensity for each mode, e.g.
expressed as:

∆Ki,eff = Ui∆Ki (7.2)

where the plasticity induced crack closure e�ect U is de�ned as the fraction of relative
displacement between two adjacent crack face points. The adjacent displacements may
be found as e.g. nodal displacements, making it very applicable to the already made
computational framework. The accuracy of the crack closure e�ect should be tested and
validated after implementation.
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7.2.3 Factory roof e�ects by use of the modi�ed criterion of Richard

The e�ect of factory roofs is easily implemented by using the modi�ed criterion of Richard
in [Masanori Kikuchi & Suga]. The modi�ed criterion of Richard is, in 3D, expressed as:

∆Keq(I,II,III) =
∆Keq(I,III)

2
+

1

2

√
∆Keq(I,III)

2 + 4(1.155∆KII)
2 (7.3)

Where:

∆Keq(I,III) =

√
(∆KI−

√
2|∆KIII |)

2
+∆KI

2

√
2

As noticed, the expression for the equivalent mode I fracture criterion is more lengthy,
but still very applicable in numerical solutions. The robustness and applicability of the
modi�ed criterion of Richard should be tested and validated after implementation.

7.2.4 Variable amplitude loading and load proportionality

By means of cycle post-processed cycle counting, tests of variable amplitude loading needs
to be carried out. Instead of just isolating dN in (7.1) each individual cycle should
be considered, and weightedly in�uence the direction of propagation. Based on cyclic
equivalent mode I stress intensities ∆Keq,iand load ratios Ri, a variable amplitude crack
growth increment da could be determined by summarizing cyclic crack growth increments
until the maximum allowable value:

da =
n∑
i=1

ai =
n∑
i=1

dNi · f (∆Keq,i, Ri) (7.4)

and crack propagation directions as:

dϕ =
n∑
i

dϕi =
n∑
i=1

f(∆KI,i,∆KII,i,∆KIII,i) (7.5)

dψ =
n∑
i

dψi =
n∑
i=1

f(∆KI,i,∆KII,i,∆KIII,i) (7.6)

A Matlab code was generated in order to evaluate these cyclic values, but due to time
constraints, the code has not been tested yet.

Attention should be paid to the e�ect of non-proportional loading, which may in�uence
the results of variable amplitude loading[P. Zerres 2014]. In relation to non-proportional
loading, shortcomings of equivalent mode I criterions have been found.
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7.2.5 Additional testing of various three-dimensional crack shapes

As the numerical is improved, a further validation is suggested. This validation should
include other 3D cracks with curved crack fronts, e.g. surface cracks and embedded cracks.

7.2.6 Automatic identi�cation of maximum allowed crack increment

An automaticly determined maximum crack growth increment, still leading to acceptable
accuracy, would optimize the crack growth simulations in relation to CPU time. The
simulation time of the lifetime prediction tests was around 5 hours per 20mm of crack
extension.

7.2.7 Experiments of cast metals and �nd material parameters

As mentioned, the available experimental data for cast metals are rather poor. Hence,
fracture toughness testing of cast metals and experimental crack growth is of major interest
in computational crack growth simulations of cast metals.
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Conclusion 8
Great e�ort was spend automating a fatigue crack growth algorithm, which was
successfully obtained by the developed computational framework in Matlab and Ansys
APDL. Implemented crack growth models, crack propagation direction and fracture
criterions were individually tested, and evaluated against relevant case studies. Numerical
solutions was obtained, by successful implementation of the aforementioned fracture
mechanics. The numerical simulation led to promising, but also sometimes, deviating
results in comparison to the experimental case studies. Based on the deviations a number
of tests and improvements for further work have been proposed.

A number of concluding remarks, in relation to the outlined thesis objectives, are
highlighted below:

� Considerations regarding acceptable casting defects, and thereby initial crack
de�nitions in casted components/members, have been presented in section 2.1.

� Important theoretical aspects of linear-elastic fracture mechanics was presented and
discussed in 3.1

� The in�uence of mean stress level was tested in section ?? by comparison of Paris'
law, Forman equation and NASGRO. Signi�cant in�uence in crack growth rates was
noticed in region I and III, but only moderate in region II.

� Mixed mode stress intensity factors were calculated numerically by a domain integral
method, speci�cally the interaction integral, in section 4.

� The magnitude KI was tested and evaluated against various analytical solutions in
4. The accuracy of KI was acceptable in relation to the analytical solutions.

� Based on KI and KII ratios, the similarity between maximum tangential stress
criterion and the criterion of Richard was proven in 5.1.

� Deviations between numerical and experimental crack propagation directions was
noticed in the mode I+II test, in section 5.1. These may have been caused by
inaccuracy of the numerically calculated KII values.

� Acceptable crack propagation directions was found in the mode I+III test in section
5.1., as the numerical and experimental crack propagation directions were very
similar.
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� Incremental fatigue crack growth was tested in section 6, applying the crack growth
model of Paris' along with equivalent mode I and crack propagation direction of
Richard. A similarity between conservative numerical deviation in crack growth
rates and the retarding e�ect of plasticity induced crack closure was noticed. Hence,
this may be origin of deviations between numerical and experimental fatigue crack
growth predictions.

� Based on �ndings throughout the thesis work, several improvements have been
suggested for further work in section 7. In addition to these, the performance of
the computational framework may also be highly optimized.
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AppendixA
A.1 Analytical solutions for stress intensity factors

This appendix serves the purpose of presenting analytical crack problem solutions used
for validation of the numerical models proposed in the algorithm.

Flaws arising from casting can be considered equal to a crack. Hence, the expression
â¿÷crackâ¿ is consistently used in the following.

A.1.1 Stress intensity - two-dimensional cracks

A general formulation of the stress intensity factor, under plane conditions, is expressed
as:

K = σ ·
√
πa · α (A.1)

Where:

σ Nominal stress
a Crack length
α Geometrical factor

A modi�cation of the geometrical factor adjusts the stress intensity factor to �t for any
plane problem with an equally sized crack which is loaded similar. This is illustrated
below for two plane crack problems.

Figure A.1. (a) Two dimensional crack problems; center cracked plate, (b) single through edge

crack and (c) double edge cracked plate.
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The analytical solutions for the two dimensional crack problems, illustrated in �gure ??,
are expressed as:

KI = σ ·
√
πa · 1− a/2W + 0.326a2/W 2√

1− a/W
for all

a

W
(A.2)

KI = σ ·
√
πa ·

(
1.12− 0.23

a

W
+ 10.6

a2

W 2
− 21.7

a3

W 3
+ 30.4

a4

W 4

)
for

a

W
< 0.7 (A.3)

KI = σ ·
√
πa · 1.12− 0.61a/W + 0.13a3/W 3√

1− a/W
for all

a

W
(A.4)

The crack problems above, are considered to be plane problems and geometrical variation
in the depth is not accounted for. Considering reality more complex geometry exists and
therefore three-dimensional formulation of the cracks has to be considered in order to
capture important fracture mechanical aspects.

A.1.2 Stress intensity - three-dimensional cracks

A.1.2.1 Embedded cracks

Cracks are now considered in the three-dimensional space. An exact solution for an
embedded penny-shape crack, as seen in �gure ??a, was developed by Sneddon.

Figure A.2. Embedded cracks in an in�nite body; (a) circular crack (b) elliptical crack (c)

angular coordinates.

Hence, for practical purpose, Irwin introduced a solution for an embedded elliptical crack
as seen in �gure ??.b. Irwin's solution for a small embedded elliptical crack compared to
plate dimensions anda ≤ c, is expressed as:

KI = σ ·
√
πa

Q
· f(φ) (A.5)
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Where:

KI Mode I stress intensity factor

Q = 1 + 1.464
(
a
c

)1.65 Flaw shape parameter

fφ =
(

sin2 (φ) +
(
a
c

)2 · cos2 (φ)
)1/4

Angular function of location

a Major crack radius
φ Parametric angle

Q = 1 + 1.464
(
a
c

)1.65 Flaw shape parameter

Because the stress intensity assumes the crack small comparatively to plate dimensions,
boundary corrections for external boundaries is negligible. Therefore, another solution is
needed in order to approximate stress intensity factors for cracks near the surface.

A.1.2.2 Surface cracks

Newman and Raju introduced an solution for a semi-elliptical surface cracks in a �nite
plate under tension and bending loads.

Figure A.3. Loading and geometry de�nitions for a semi-elliptical surface crack in a plate.

Stand Sbcorresponds to remote uniform tension stress and outer �ber bending

stress respectively.

The empirical equation proposed by Newman and Raju for stress intensity factor KI is
an extended version of Irwin. Newman and Raju proposed the following solution:

KI = (σt +H · σb) ·
√
πa

Q
· F (A.6)
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for crack shape0 < a
c ≤ 1, crack size 0 ≤ a

t < 1, plate width cb < 0.5 and 0 ≤ φ ≤ π.

Where:

F =
[
M1 +M2

(
a
t

)2
+M3

(
a
t

)4] · fφ · g · fw Boundary correction factor

H = H1 + (H2 −H1) · sinp(φ) Parametric angle

Q = 1 + 1.464
(
a
c

)1.65 Additional boundary correction factor for bending

The extended solution includes bending stress Sb and also boundary correction factors.
The boundary correction factor for tension is equal to F expressed by the additional
parameters: M1 = 1.13− 0.09

(
a
c

)
M2 = −0.54 + 0.89

0.2+a
c
M3 = 0.5− 1

0.65+a
c

+ 14 ·
(
1− a

c

)24

g = 1 +

[
0.1 + 0.35

(a
t

)2
]
· (1− sin(φ))2

fw =
[
sec
(
πc
2b

√
a
t

)]1/2
Finite width correction factor

The boundary correction factor for bending is equal to H · F for which the additional
parameters of H are expressed as: p = 0.2 + a

c + 0.6at

H1 = 1− 0.34
a

t
− 0.11

a

c

(a
t

)
H2 = 1 +G1

(a
t

)
+G2

(a
t

)2

G1 = −1.22− 0.12
a

c

G2 = 0.55− 1.05
(a
c

)3/4
+ 0.47

(a
c

)2/1

For a given three-dimensional case, the stress intensity factors will vary with

φ

and the maximum stress intensity factor is located at φ = 90◦ and minimum at φ =

{
0◦

180◦
.

The solution of surface cracks ] provides acceptable solutions for cylinders with large radius
to thickness ratios.
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