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Abstract - Overblik

Dette speciale behandler først og fremmest estimering af en Spatiel Auto Regres-
sions (SAR) model vha. Integrerede Nestede Laplace Approximationer (INLA).
Specielt fokuseres der p̊a specifikationen af den spatielle vægt matrix, som er en
nøgle ingrediens i SAR modellen, og p̊a hvordan parameter estimater opfører sig
afhængigt af specifikationen.

Der bruges ogs̊a en del energi p̊a den spatielle spill-over parameter ρ. Især de
restriktioner der p̊alægges ρ bliver grundigt behandlet. Forfatteren bemærker en
forskellighed i m̊aden hvorp̊a netop dette emne bliver behandlet i literaturen, og
det forsøges forklaret hvorfor visse forfattere foretrækker andre restriktioner frem
for de der er strengt nødvendige.

Under databehandlingen specificeres hundredevis af vægtmatricer p̊a en m̊ade
der s̊a vidt vides aldrig er set før. Disse forskellige specifikationer testes og sam-
menlignes. I eftersøgningen af en ”optimal” model, bemærker forfatteren nogle
bekymrende resultater, der stiller spørgsm̊alstegn ved den m̊ade resultater fra
SAR modeller traditionelt rapporteres og fortolkes.
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Chapter 1

Introduction

This master’s thesis is written within the Statistics branch of the Department of
Mathematical Sciences at Aalborg University. The thesis principally deals with es-
timation of a Spatial Auto Regressive (SAR) Model by Integrated Nested Laplace
Approximations (INLA). Special attention is paid to the specification of the spa-
tial weight matrix, which is a key component in the SAR model, and to how the
estimates of parameters behave depending on the particular specification.

The thesis is partially an extension of a project written in the previous semester.
The Chapters 3, 4, 5 and 6 deal with the theoretical framework for INLA, and
are, with the exception of some minor corrections and improvements, identical
to those of the 9th semester project, which can be found in AAUs project li-
brary[Vestergaard, December 2013]1. These chapters are brought over to this
thesis since they remain highly relevant to the subject. The aforementioned chap-
ters were written in cooperation with fellow students Anne Louise Nielsen and
Peter Enemark Lund under the supervision of then supervisor Poul Svante Erik-
sen.

Much attention is given to the spatial spill-over parameter ρ. In Chapter 8 the
restrictions on ρ are rigorously dealt with. The author perceives a discrepancy
in how ρ i restricted in existing literature, and attempts to explain why different
mathematicians prefer different restrictions than those strictly necessary.

During the data processing hundreds of different specifications of the weight ma-
trix W is specified, in a way that possibly breaks new ground. These specifications
are tested and their results compared. In the search for an ”optimal” model the
author notices troubling results that asks serious question about how results from
SAR models are reported and interpreted.

1Sections 4.2.2 and 4.2.3 do not feature in the 9th semester project. They have been added
specifically for this thesis.
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Chapter 2

Preliminaries

[Rue and Held, 2005, p. 19]

2.1 Undirected graphs

An undirected graph G is specified by a set of nodes V and a set of edges E , and
is denoted G = (V, E). An edge E is denoted by an unordered pair {i, j}, i 6= j of
nodes in V and we say that there is an undirected edge between node i and node
j. A graph is fully connected if {i, j} ∈ E for all i, j ∈ V with i 6= j.
Let A be a subset of V and let GA denote the graph restricted to A, then GA is
called a subgraph of G. If {i, j} ∈ E then i and j are called neighbors, and this is
denoted by i ∼ j. The neighbors of a node i is the set of nodes in G having an
edge to i, so ne(i) = {j ∈ V|{i, j} ∈ E}.

2.2 Properties of the normal distribution

The normal distribution exhibits various useful properties some of which are pre-
sented in the following. Let the random variable x = (x1, . . . , xn)T be normally
distributed with mean µ (n× 1 vector) and covariance matrix Σ (n× n matrix).
The density of x is

π(x) = (2π)−n/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rn

This is written as x ∼ N (µ,Σ). Also, µi = E[xi], Σij = Cov[xi, xj ], Σii =
Var[xi] > 0 and Corr[xi, xj ] = Σij/(ΣiiΣjj)

1/2.
Sometimes it is convenient to split x into two parts x = (xTA,x

T
B)T and split µ

and Σ according to

µ =

(
µA
µB

)
and Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
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2.2.1 Conditional properties of the normal distribution

According to Azzalini [1996] p. 290 the conditional distribution of π(xA|xB) is
N (µA|B,ΣA|B) where

µA|B = µA + ΣABΣ−1BB(xB − µB), (2.1)

ΣA|B = ΣAA −ΣABΣ−1BBΣBA. (2.2)

2.2.2 Canonical Parameterization

Definition 2.1 (Canonical Parameterization)
Let x be normally distributed with mean µ = Q−1b and symmetric positive definite
(SPD) precision matrix Q = Σ−1. Then its canonical parameterization is x ∼
NC(b,Q) with density

π(x) ∝ exp

(
−1

2
xTQx+ bTx

)
.

From this it can be seen that N (µ,Q−1) = NC(Qµ,Q).

6



Chapter 3

Gaussian Markov Random
Fields

3.1 Markov Random Fields

[Rue and Held, 2005, p. 24]

Let G = (V, E) be an undirected graph and x a stochastic vector indexed by V.
Furthermore let x−i = {xj}j∈V\{i}. A Random Field x is a finite space, where
each point xi of x is a random variable. Then x is a Markov Random Field if it
obeys the local Markov property, i.e.

π(xi|x−i) = π(xi|ne(i)).

In other words: if the distribution of xi is independent of the rest of the graph
except its neighbors.

3.2 Definition of GMRF

[Rue and Held, 2005, section 2.2.1]

Definition 3.1
Let π(x) be a Markov Random Field and multivariate normally distributed. Then
π(x) is a Gaussian Markov Random Field (GMRF).

Let x = (x1, . . . , xn) be an n-dimensional random vector, G = (V, E) an undirected
graph and x−ij = {xk}k∈V\{i,j}. The set of edges E is constructed such that
{i, j} /∈ E iff xi and xj obey the pairwise Markov property, i.e.

xi ⊥ xj | x−ij . (3.1)

7



In other words: xi and xj are independent given the rest of the graph.
When π(x) is Gaussian the local and pairwise Markov properties are equivalent,
[Rue and Held, 2005, p. 24]. Therefore we know that a GMRF must obey the
pairwise Markov property as well as the local Markov property. This means that
the pairwise Markov property now can be used to define the independence prop-
erties of the GMRF.

As it turns out in the following theorem, the precision matrix Q plays a key role
with regard to (wrt) this conditional independence property, when x is normally
distributed.

Theorem 3.2
Let x be normally distributed with mean µ and SPD precision matrix Q. Then
for i 6= j

xi ⊥ xj | x−ij ⇔ Qij = 0.

Now the definition of a GMRF can be stated as:

Definition 3.3 (Gaussian Markov Random Field)
A random vector x is called a Gaussian Markov Random Field with regard to the
graph G = (V, E) with mean µ and SPD precision matrix Q if and only if its
density has the form

π(x) = (2π)−n/2|Q|1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
and

Qij = 0⇐ {i, j} /∈ E for all i 6= j.

As it turns out, the elements in Q have the following interpretations.

Theorem 3.4
Let x be a GMRF wrt a graph G = (V, E) with mean µ and SPD precision matrix.
Then

E[xi|x−i] = µi −
1

Qii

∑
j:j∼i

Qij(xj − µj) (3.2)

Prec[xi|x−i] = Qii (3.3)

Corr[xi, xj |x−ij ] = − Qij√
QiiQjj

, i 6= j (3.4)

This theorem will not be proven. A more general proof of (3.2) and (3.3) will be
presented in Section 3.3.
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3.3 Conditional distribution

[Rue and Held, 2005, section 2.2.3]

When dealing with conditional distributions of GMRF s the canonical parameter-
ization is useful, as updating it under successive conditioning is computationally
simple, [Rue and Held, 2005] p. 26.

In the following x is split into two nonempty subsets A and B so

x =

(
xA
xB

)
, µ =

(
µA
µB

)
, Q =

(
QAA QAB

QBA QBB

)
The following is a generalization of Theorem 3.4 and an application of a general
result for the normal distribution.

Theorem 3.5
Let A ⊂ V and B = V \A where A,B 6= ∅. Given a GMRF x wrt G = (V, E) with
mean µ and SPD precision matrix Q then the conditional distribution xA|xB is
a GMRF wrt GA and have mean and precision matrix as follows

µA|B = µA −Q−1AAQAB(xB − µB) (3.5)

and
QA|B = QAA (3.6)

This result shows that without computation the conditional precision matrix can
be obtained since QA|B is a sub-matrix of Q. It also shows that the conditional
mean only depends on the mean µ and Q, through Qij where j ∈ ne(i).

Proof. (Theorem 3.5)
Let x̃A = xA − µA and x̃B = xB − µB, so the mean of x̃ is 0. Using that

QAB = QT
BA the conditional density comes to

π(x̃A|x̃B) ∝ exp

(
−1

2
(x̃TA, x̃

T
B)

(
QAA QAB

QBA QBB

)(
x̃A
x̃B

))
= exp

(
−1

2
(x̃TAQAAx̃A + x̃TAQABx̃B + x̃TBQBAx̃A + x̃TBQBBx̃B)

)
∝ exp

(
−1

2
(x̃TAQAAx̃A + (QABx̃B)T x̃A + (QT

BAx̃B)T x̃A)

)
= exp

(
−1

2
x̃TAQAAx̃A − (QABx̃B)T x̃A

)
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Looking at the last line and the density of a normal N (ν,P−1)

π(z) ∝ exp

(
−1

2
zTPz + (Pν)Tz

)
,

it follows that QAA is the conditional precision matrix of the conditional density
and that

QAAµ̃A|B = −QABx̃B (3.7)

Now using that x̃B = xB − µB and

µ̃A|B = E[x̃A|x̃B]

= E[xA − µA|xB − µB]

= E[xA − µA|xB]

= E[xA|xB]− µA
= µA|B − µA

and applying it to (3.7) we get

QAA(µA|B − µA) = −QAB(xB − µB).

From this (3.5) follows. The subgraph GA comes from QA|B = QAA.

Notions on Canonical Parametrization

Partitioning {1, 2, . . . , n} into two nonempty subsets A and B yields(
bA
bB

)
=

(
QAA QAB

QBA QBB

)(
µA
µB

)
. (3.8)

From Theorem 3.5 a lemma regarding the canonical parametrisation, presented
in Section 2.2.2, follows.

Lemma 3.6
Let x ∼ NC(b,Q) then

xA|xB ∼ NC(bA −QABxB,QAA). (3.9)

Proof.
Let xA|xB ∼ N (µA|B,Q

−1
A|B) then the canonical parameterization of this is

NC(QA|BµA|B,QA|B). Below, the first equality is obtained from (3.5) and (3.6)
and the fourth is from (3.8).

NC(QA|BµA|B,QA|B) = NC
(
QAA

(
µA −Q−1AAQAB (xB − µB)

)
,QAA

)
= NC (QAAµA −QAB (xB − µB) ,QAA)

= NC (QAAµA −QABxB +QABµB,QAA)

= NC (bA −QABxB,QAA)

10



3.4 Specification through full conditionals

Up until this point the GMRF has been specified by its mean vector µ and
its precision matrix Q. As an alternative we can specify the model by its full
conditionals π(xi|x−i) i.e. the distribution of xi given every other point. In what
follows we will construct a candidate for the specification and then prove this
candidate to be unique. Suppose we specify the full conditionals as normally
distributed with mean and precision

E[xi|x−i] = µi −
n∑
j=1

βij(xj − µj) (3.10)

Prec[xi|x−i] = κi > 0, (3.11)

for i = 1, . . . , n and βij where i 6= j, and vectors µ and κ, i.e.

π(xi|x−i) =
1√
2π
κi

exp

−κi
2

xi − (µi −
n∑
j=1

βij(xj − µj))

2 . (3.12)

Note that β takes into account the desired Markov property

βij = 0 if i � j.

Recalling Theorem 3.5 and comparing (3.10) and (3.11) to (3.5) and (3.6) we see
that if we choose

Qii = κi

Qij = κiβij

and require symmetry i.e.

Qij = κiβij = κjβji = Qji, (3.13)

then we have a candidate for a joint density giving the specified full conditionals
given that Q is SPD.

Theorem 3.7
Define

Qij =

{
κiβij for i 6= j
κi for i = j,

and assume that κiβij = κjβji and that Q is SPD.

Then there exists an unique GMRF with regard to a graph G = (V, E) with mean
µ and precision matrix Q with the full conditionals defined in (3.12).
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In order to prove the existence and uniqueness of this candidate, Brook’s lemma
is required.

Lemma 3.8 (Brook’s lemma)
Let π(x) be the density for x ∈ Rn and define S = {x ∈ Rn|π(x) > 0}. Let
x,x′ ∈ S, then

π(x)

π(x′)
=

n∏
i=1

π(xp(i)|xp(1), . . . , xp(i−1), x′p(i+1), . . . , x
′
n)

π(x′p(i)|xp(1), . . . , xp(i−1), x
′
p(i+1), . . . , x

′
p(n))

. (3.14)

for any permutation p = (p(1), . . . , p(n)) of (1, . . . , n).

Furthermore, if x′ is fixed, then (3.15) represents π(x) up to a constant.

It will be useful to note that one possible permutation of (3.14) is

π(x)

π(x′)
=

n∏
i=1

π(xi|x1, . . . , xi−1, x′i+1, . . . , x
′
n)

π(x′i|x1, . . . , xi−1, x′i+1, . . . , x
′
p(n))

. (3.15)

Proof. (Theorem 3.7)
Assume µ = 0 and fix x′ = 0. Then the log of (3.15) equals

log
π(x)

π(0)
= log

n∏
i=1

π(xi|x1, . . . , xi−1, 0, . . . , 0)

π(0|x1, . . . , xi−1, 0, . . . , 0)

=
n∑
i=1

log
π(xi|x1, . . . , xi−1, 0, . . . , 0)

π(0|x1, . . . , xi−1, 0, . . . , 0)

=
n∑
i=1

log
exp(−κi

2 (xi − (µi −
∑i−1

j=1 βij(xj − µj)))2)
exp(−κi

2 (0− (µi −
∑i−1

j=1 βij(xj − µj)))2)

=

n∑
i=1

−κi
2

(xi +

i−1∑
j=1

βijxj)
2 +

κi
2

(

i−1∑
j=1

βijxj)
2


=

n∑
i=1

−κix2i
2
− κi

2
(

i−1∑
j=1

βijxj)
2 − κixi

i−1∑
j=1

βijxj +
κi
2

(

i−1∑
j=1

βijxj)
2


=

n∑
i=1

−κix2i
2
− κixi

i−1∑
j=1

βijxj


= −1

2

n∑
i=1

κix
2
i −

n∑
i=2

i−1∑
j=1

κiβijxixj . (3.16)

The second to last sum is changed from
∑n

i=1 to
∑n

i=2 since the last term of (3.16)
does not make sense for i = 1. Note that the last term in (3.16) sums the rows

12



of the lower triangle of the (i, j)-matrix except for the diagonal. In the following
it is shown that this is equivalent to summing the upper triangle except for the
diagonal. Summing the upper triangle is equivalent to summing

n−1∑
i=1

n∑
j=i+1

κiβijxixj =

n−1∑
i=1

n∑
j=i+1

κjβjixjxi (3.17)

=
n∑
j=2

j−1∑
i=1

κjβjixjxi

=
n∑
i=2

i−1∑
j=1

κjβjixixj ,

where the equality in (3.17) comes from the symmetry property in (3.13). This
shows that summing the upper triangle is equal to summing the lower triangle.
This means that it is possible to write

log
π(x)

π(0)
=

1

2

n∑
i=1

κix
2
i −

1

2

n∑
i 6=j

κiβijxixj (3.18)

⇔ log π(x) = c− 1

2

n∑
i=1

κix
2
i −

1

2

n∑
i 6=j

κiβijxixj . (3.19)

We now see that x is a normally distributed vector with zero mean and precision
Q as the distribution in (3.3), provided that Q is SPD.

13
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Chapter 4

Bayesian Inference

4.1 Introduction to Bayesian Inference

[Gelman et al., 2003]

In the Bayesian framework, we are generally interested in determining the dis-
tribution of the model’s parameters, θ, given the set of data at hand, y. We
denote this distribution π(θ|y) and call it the posterior distribution. Consider
the following equality

π(θ|y) =
π(θ,y)

π(y)
=
π(y|θ)π(θ)

π(y)
. (4.1)

Since y is given π(y) can be considered a constant. Therefore we write the
unnormalized posterior distribution

π(θ|y) ∝ π(y|θ)π(θ), (4.2)

which, in words, says that the posterior distribution is proportional to the likeli-
hood function times the prior distribution.
So in order to get to the posterior, we must first assume a prior on the parameters.
This prior can reflect a pre-exsisting knowledge of the parameters, perhaps results
from an earlier study is available, maybe the data must satisfy a law of nature of
some sort, maybe the sign of the parameter is known and so on.
If we do not have any prior knowledge about the distribution of the parameter,
or if we want to ”let the data speak for itself”, we can choose a so-called non-
informative prior. A non-informative prior reflects no pre-existing knowledge such
that π(θ) ∝ 1 i.e. constant, which means that all θ are equally likely. If, say,
θ ∈ [0, 1] then unif(0, 1) would be a non-informative prior, or if θ ∈ R then
N (0,∞) would work as a non-informative prior. If we choose a non-informative
prior we see that the posterior is proportional to the likelihood only.

π(θ|y) ∝ π(y|θ)× 1 = π(y|θ). (4.3)

15



We also assume a certain structure of the data in order to determine a likelihood
function. Say we assume the data is normally i.i.d. distributed, then π(y|θ)
gives us the likelihood of the data given the mean and variance. We consider the
likelihood as a function of θ: Rdimθ → R.
Typically what we are interested in is the marginal distributions π(θi|y), in order
to produce plots and calculate central posterior interval (CPI) etc. Calculating
these marginals however is easier said than done. Consider that computing the
marginals from the following equation

π(θi|y) =

∫
π(y, θi,θ−i)dθ−i∫

π(y,θ)dθ
,

involves integration in multiple dimensions which can be a very computationally
demanding task. Therefore it is more convenient to study the marginals of θ e.g.
by using a Gibbs sampler.

4.2 Model selection and model checks

In this section we will discuss methods for model selection and model checking.

4.2.1 Deviance Information Criterion

[Gelman et al., 2003, p. 182].

The Deviance Information Criterion (DIC) is a measure of the ’quality’ of a model
in terms of quality of fit and model complexity. A penalty for model complexity
is included, since any level of fit can be obtained if enough parameters are added.
DIC is a hierarchical model generalization of the Akaike information crition, and
is only valid if the posterior is approximately normal.
First define the deviance as

D(θ) = −2 log(π(y|θ)),

and the expectation

D̄ = E[D(θ)|y].

If the likelihood π(y|θ) is large, i.e. the model fits the data well, the log-likelihood
is large as well, which would mean that −2 log(p(y|θ)) is small. So a model with
small expectation is preferable to a model with large expectation. Define now the
effective number of parameters

pD = D̄ −D(θ̄),

16



where θ̄ = E[θ|y] =
∫
θp(θ|y) i.e. the posterior mean. According to Spiegelhalter

et al. [2002] pD is a good measure of the effective number of parameters in the
hierarchical model. We now define the DIC as

DIC = D̄ + pD = D(θ̄) + 2pD.

In effect then D̄ works as a penalty for poor fit and pD acts as a penalty for model
complexity. So a model leading to a low DIC is preferable to a model leading to
a high DIC.

4.2.2 CPO

The conditional predictive ordinate or CPO, is a method of detecting outliers in
a data set given some model. Formally we have that

CPOi = π
(
yi|y−i

)
,

which is computed for all i ∈ 1, . . . , n. If yi is an outlier, CPOi will be small. If
a choice of model leads to many small CPOs, the model may be flawed in some
way. This is similar to investigating the residuals of a model, but is a certain
sense better: Whereas a residuals only measure the distance between the data
and the model, the CPO measures the probability of that distance, i.e. this takes
the distribution of the model into account.

4.2.3 PIT measure

The probability integral transform relies on the fact that a cumulative distribu-
tion function applied to a probability distribution function results in a uniform
distribution, i.e. if y is a random variable with a continuous distribution and cdf
Fy, then the random variable

U = Fy(y),

is uniformly distributed. This holds exactly if the correct distribution is used.
Formally the PITi is defined as

PITi = p (Yi ≤ yi|y−i)

So if the model is ’true’ the PITis will be uniformly distributed.
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Chapter 5

Latent Gaussian Models

[Baio, 2013]

This section presents the Latent Gaussian Model (LGM) combined with Gaussian
Markov Random Fields.
The GMRF x takes the form

x|θ ∼ N (0,Σ(θ))

xi ⊥ xj | x−ij , i � j

where an undirected graph G = (V, E) denotes the conditional independence prop-
erties of x, see Section 3.2 for clarification.

GMRFs are frequently used in hierarchical modeling, and these are specified in
terms of the hyperprior π(θ), a “GMRF prior” π(x|θ) and the likelihood (or data
model) π(y|x,θ) accordingly

θ ∼ π(θ)

x|θ ∼ π(x|θ) = N (0,Σ(θ1))

y|x,θ ∼
∏
i∈I

π(yi|xi,θ2), (5.1)

where θ = (θT1 ,θ
T
2 )T and I ⊆ V is a set of indices. Additional covariates z are

omitted in (5.1) as they do not influence the following considerations.

Regarding the dimensions of the parameters, it is worth to notice that the hyper-
parameter θ normally has low dimensionality e.g. 1-6 [Rue and Martino, 2009],
while the latent field x often has the same dimension as the data vector y, in the
case where each observation yi corresponds to the ith element xi in x. Concern-
ing the hyperparameters θ, θ1 is regarded as the hyperparameter connected to
the latent field x while θ2 is connected to the data model. In practice θ1 often
consists of an unknown precision τ of one or more dimensions. θ2 is comprised by
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one or more hyperparameters in direct connection to the data model, for example
if the data is assumed negative binomial distributed, the hyper parameter would
be the dispersion parameter denoted by κ. In many applications, θ2 is zero.

The posterior of the LGM is

π(x,θ|y) ∝ π(θ)π(x|θ)

n∏
i=1

π(yi|xi,θ2), (5.2)

where x is a GMRF in this case. This leads to the marginals

π(xi|y) =

∫
π(xi,θ|y)dθ =

∫
π(θ|y)π(xi|θ,y)dθ (5.3)

π(θk|y) =

∫
π(θ|y)dθ−k (5.4)

These marginals are the required distributions for inference in the LGM. It is
seen that the distributions π(θ|y) and π(xi|θ,y) are needed to compute these
marginals, which is why they are of certain interest.
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Chapter 6

Integrated Nested Laplace
Approximation

Integrated Nested Laplace Approximation (INLA) is a novel alternative to MCMC
that has become increasingly used over the past years. The main attractive feature
is that it, in contrast to the iterative MCMC method, is an analytic approxima-
tion.

6.1 The INLA approach

[Rue and Martino, 2009]

Recall from Chapter 5 that the posterior marginals of interest reads

π(xi|y) =

∫
π(xi|θ,y)π(θ|y)dθ,

π(θj |y) =

∫
π(θ|y)dθ−j . (6.1)

The INLA approach is based on the following approximation to π(θ|y):

π̃(θ|y) =
π(x,θ|y)

π̃G(x|θ,y)
evaluated in x = x̂(θ)

∝ π(x,θ,y)

π̃G(x|θ,y)
evaluated in x = x̂(θ), (6.2)

where x̂(θ) is the mode and π̃G(x|θ,y) is the Gaussian approximation to
π(x|θ,y).
The posterior of the Latent Gaussian Model from (5.2) reads

π(θ)π(x|θ)

n∏
i=1

π(yi|xi,θ2)
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From this it follows that

log π(x,θ) = k(θ)− 1

2
xTQ(θ1)x+

∑
i∈I

gi(xi,θ2)

where k(θ) is constant wrt to x and gi(xi,θ2) = log π(yi|xi,θ2).

The Gaussian approximation is based on the following. Since y is fixed, the short-
hand notation π(x,θ) = π(x,θ|y) is used. The idea is to make a second order
Taylor expansion of π(x,θ) in the mode x̂(θ) such that

log π̃(x,θ) = log π(x̂(θ),θ) +D(x̂(θ))(x− x̂(θ)) +
1

2
(x− x̂(θ))TD2(x̂(θ))(x− x̂(θ))

= log π(x̂(θ),θ) +
1

2
(x− x̂(θ))TD2(x̂(θ))(x− x̂(θ))

m

π̃(x,θ) = π(x̂(θ),θ) exp

(
1

2
(x− x̂(θ))TD2(x̂(θ))(x− x̂(θ))

)
(6.3)

where D = ∂
∂x log π(x,θ) and D2 = ∂2

∂x∂xT log π(x,θ). Furthermore we exploit
that D(x̂(θ)) = 0. We now recognize an unnormalized normal distribution in
(6.3) with mean µ = x̂(θ) and precision −D2. It is noted that

∂2

∂xi∂xj
log π(x,θ) = Qij(θ1) if, i 6= j

and

∂2

∂x2i
log π(x,θ) =

{
Qii(θ1) if i /∈ I

Qii(θ1) + ∂2gi
∂x2i

if i ∈ I,

Hence,

−D2 = diag(c) +Q

where Q is the precision matrix and ci = ∂2gi
∂x2i

if i ∈ I and zero otherwise. Since Q

in our setting is sparse computing D and its higher derivatives does not demand
heavy computations.
Proceeding by integrating out x in (6.3), yields

π̃(θ) = π(x̂(θ),θ)k

∫
1

k
exp

(
1

2
(x− x̂(θ))TD2(x̂(θ))(x− x̂(θ))

)
dx (6.4)

= π(x̂(θ),θ)(2π)(dimθ)/2|D2(x̂(θ))|−1/2. (6.5)

where k in (6.4) refers to the normalizing constant in the normal distribution.
This means that the Gaussian approximation is x|θ ∼ N (x̂(θ), (−D2)−1)
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6.2 The INLA algorithm

We now have an approximation of the posterior, π̃(θ|y). In order to determine
the posterior marginal distributions π̃(θj |y) one would, intuitively, proceed by
integrating over θ−j as in 6.1. This, however, is rather time consuming even
for θ of low dimensionality. In the following it will be described how the INLA
algorithm circumvents this problem.

6.2.1 Exploring π̃(θ|y)

The INLA algorithm’s first step is to compute the univariate posterior marginals
of θ, that is, π(θj |y). To do this we explore the posterior for the hyperparameters
π(θ|y).

i) Locate the mode θ̂ by optimizing log π̃(θ|y). This can be done via Newton-
Raphson or other similar methods.

ii) The Hessian matrix H of π̃(θ̂|y) must be be negative since θ̂ is a maximum.
Compute therefore the negative definite Hessian such that H is SPD. H−1

corresponds to Σ in a normal distribution. In order to ease computations
we standardize θ as z as follows:

θ(z) = θ̂ + V Λ1/2z,

where Σ = V ΛV T is the eigendecomposition of Σ. This means that z ∼
N (0, I) provided that π̃(θ|y) is normal. This reparametrization corrects
for scale and rotation which is convenient as it accommodates the standard
normal distribution.

iii) Now the exploration of π̃(θ|y) takes place. Starting from (0, 0) in the repa-
rameterized coordinate system and with step size δz the difference

log[π̃(θ(0|y))]− log[π̃(θ(z)|y)] (6.6)

is calculated. Each difference below a certain value, say δπ, is marked in
Figure 6.1 with a filled dot. Thereafter the intermediate points between the
black points are evaluated as well, by including them if their value exeeds
δπ. In this way, the heaviest part of the density is identified.

iv) The goal is to approximate the posterior marginal π(θj |y). A numerically
feasible approach is to use the points from step (iii) to interpolate a poly-
nomium and use it to compute the marginals. Higher accuracy can be
obtained by taking smaller steps.
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Figure 6.1: Adapted from [Rue and Martino, 2009]. (a) The mode is located
and the z-parametrization is found. (b) With step size δπ z is explored and filled
dots (•) indicates a sufficiently high log-density (see text) and grey dots indicates
points filled in from exploration of the values between the black points.

6.2.2 Approximating π(xi|θ,y)

In Section 6.1 π̃G(x|θ,y) has already been estimated, so an obvious approach
to estimate π(xi|θ,y) would be to marginalize xi in π̃G. According to Rue and
Martino [2009] the Gaussian approximation is known to give reasonable results,
but this approximation has the disadvantage that it does not correct for skewness
due to the properties of the normal distribution.

The Laplace approximation of π(xi|θ,y)

A way to improve the Gaussian approximation, is to correct for skewness. The
idea is that a Laplace approximation of π(xi|θ,y), similar to the one in (6.2) is
made.
The Laplace approximation of π(xi|θ,y) is

π̃LA(xi|θ,y) ∝ π(x,θ,y)

π̃GG(x−i|xi,θ,y)
evaluated in x−i = x̂−i(xi,θ). (6.7)

where π̃GG(x−i|xi,θ,y) is the Gaussian approximation to x−i|xi,θ,y. π̃GG is
infeasible to compute since it must be computed for each observation i. Thus,
modifications to (6.7) are needed. The first modification is to approximate the
modal configuration with

x̂−i(xi,θ) ≈ EπG [x−i|xi] (6.8)

where the right hand side can be derived from the distribution π̃G that has already
been found. It is reasonable to approximate the mode of x−i with the mean of
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π̃G(x−i|xi) since for fixed xi:

π̃G(xi,x−i) = π̃G(x−i|xi)π(xi)

∝ π̃G(x−i|xi)

∝ exp

(
−1

2
(x−i − E[x−i|xi])TΣ−1(x−i − E[x−i|xi])

)
(6.9)

where (6.9) is defined in (3.12). And since (6.9) is maximized by E[x−i|xi] it is a
reasonable choice in (6.8).

The second modification is based on the idea that only xj ’s that are sufficiently
“connected” to xi in the graph should influence xi. A simple way of doing this is
to define a “region of interest” around i, Ri(θ), that defines the marginal of xi:

Ri(θ) = {j : |ρij(θ)| > 0.001}, (6.10)

where ρij is the correlation coefficient ρij = Corr[xi, xj ].

The Simplified Laplace Approximation of π(xi|θ,y)

The most efficient algorithm in terms of both precision and speed is the simplified
Laplace approximation, which will now be presented.
The simplified Laplace approximation is based on the idea doing a Taylor series
expansion of the numerator and denominator in π̃LA(xi|θ,y) around xi = µi(θ).
The correction for skewness is obtained by using the skew normal distribution
πSN (z) introduced by Azzalini and Capitanio [1999],

πSN (z) =
2

ω
φ

(
z − ξ
ω

)
Φ

(
a
z − ξ
ω

)
where φ() and Φ() are the density and distribution function of the standard normal
distribution, and ξ, ω > 0 and a are the location, scale and skewness parameters,
respectively.
This skew normal distribution is fitted to the third order expansion of the log
of the Laplace approximation log[π̃SLA(xi|θ,y)]. According to Rue and Martino
[2009] it appears that the simplified Laplace approximation is a highly accurate
method to compute the posteriors in many observational models.
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Chapter 7

Method of Instrumental
Variables

The Method of Instrumental Variables is used as a way to combat common prob-
lems with OLS estimation. These problems all lead to a violation of the first
Gauss-Markov assumption, namely the one that states that E(ε|X) = 0 where
X are the regressors and ε is the error term1. If ignored these problems lead to
biased and inconsistent estimates.

7.1 Three motivations for the use of Instrumental
Variables

In this section the use of instrumental variables is motivated by three examples,
all of which are common obstacles to the conventional OLS estimation.

• Measurement error on one or more of the regressors.

• Endogeneity of one or more of the regressors.

• Omitted variable bias.

7.1.1 Measurement error on one or more of the regressors

Consider the simple univariate regression:

y = β0 + β1x
∗
1 + ε, (7.1)

which satisfies all the Gauss-Markov assumptions. Suppose now that x1 can be
expressed as follows

x1 = x∗1 + e, (7.2)

1This is equivalent to stating Cov(ε,X) = 0, which will become useful later on.
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where e is white noise. If (7.2) satisfies the Gauss-Markov assumptions, specifi-
cally the first one, we have that Cov(x∗1, e) = E(x∗1e) = 0. Therefore the covariance
between the new regressor and the error term must be:

Cov(x1, e) = E(x1e)− E(x1) E(e) = E(x1e) = E((x∗1 + e)e)

= E(x∗1e) + E(e2) = Var(e) = σ2e .

This leads to a biased OLS estimate of β1

β̂1
p→ Cov(y, x1)

Var(x1)
=

Cov(β0 + β1(x1 − e) + ε, x1)

Var(x1)

=
Cov(β0, x1) + Cov(β1x1, x1)− Cov(β1e, x1) + Cov(ε, x1)

Var(x1)

=
β1 Cov(x1, x1)− β1 Cov(e, x1)

Var(x1)

=
β1 Var(x1)− β1σ2e

Var(x1)

=β1 −
β1σ

2
e

Var(x1)

=β1

(
1− σ2e

Var(x1)

)
.

So if a measurement error on the regressor is introduced, the OLS estimator is no
longer unbiased. In this case of measurement error on a single regressor it can be

shown that 0 < 1 − σ2
e

Var(x1)
< 1. However in the case of multiple regression very

little can in general be said about the direction of the bias of β̂.

7.1.2 Endogeneity of one or more of the regressors

The problem of endogeneity of one or more of the covariates, sometimes referred
to as simultaneity, is illustrated by the following example.

Consider the simple model known from Keynesian economics:

Ct = βYt + εt, (7.3)

ie. consumption is proportional to income except noise. Meanwhile we also have
this

Yt = Ct + It. (7.4)
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This is a definition, there are no additional parameters, no room for error. Within
the context of this simple model it is a fact that income, over time, equals con-
sumption plus investment. Consider now a disturbance of εt. This would, due
to (7.3), mean a disturbance in Ct, which in turn would mean a change in Yt
due to (7.4). Thus a change in εt leads to a change in Yt, which means that
Cov(Yt, εt) 6= 0. This was shown in Section 7.1.1 to lead to biased estimation of
β.

7.1.3 Omitted variable bias

Suppose that y is properly modelled like this:

y = Xβ + zδ + ε.

Since an intercept is included in the model (by a column of 1’s in X), it is without
loss of generality assumed that E(z) = 0. Suppose that z is unobservable or
otherwise unavailable. If one were to omit z, it would essentially be included in
the error term, like so:

y = Xβ + ε. where ε = ε+ δz

If the omitted z is uncorrelated with all the other regressors, this works fine
(remember z has zero mean, so the ε is also zero mean). However trouble arises
if z in fact is partially correlated2 with one or more of the regressors, which
essentially means that

Corr(z,xTi ) 6= 0, for one or more i (7.5)

where xi is a column of X. In this case Corr(xTi , ε) 6= 0 for some i, which exactly
is the endogeneity problem of Section 7.1.2.

7.2 Instrumental Variables

To summarize Section 7.1; if you dig a little deeper, it turns out that all three of
these challenges essentially boil down to the same underlying problem. Whether
you’re dealing with measurement error on a variable, an endogenous or an omitted
variable, the source of the bias or inconsistency of the parameter estimates is that
there is correlation between a variable and the error term.

Consider, then, a model on the familiar form.

y = β0 + β1x1 + . . .+ βpxp + ε.

2The concept of partial correlation will elaborated in Section 7.2.
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Since the three challenges of Section 7.1 are essentially the same, it’s useful to
think of ε as containing an error term plus an omitted variable, that is ε = z + e.
Recall from Section 7.1.3 that this is not, in and of itself, problematic. It is how-
ever problematic if this omitted variable is correlated with one of the regressors,
say, xp.

If that’s the case, the problem can be solved by finding an instrumental variable
to use instead of xp, or plainly an instrument of xp. The first, and rather obvious,
requirement for such an instrument, xIV , must be that

Corr(xIV , ε) = 0, (7.6)

or we might say that xIV must be exogenous. Another condition is that if xp is
expressed by a least squares linear predictor of all the covariates

xp = δ0 + δ1x1 + . . .+ δp−1xp−1 + θxIV + ν,

with E(ν) = 0 and ν uncorrelated with x0, . . . , xp−1, xIV then θ must be non-zero.
In other words: If you run a least squares regression of the endogenous xp onto
all the exogenous variables, the parameter for xIV must be different from zero.
In the case of p = 1 this is equivalent to saying that xp and xIV are correlated.

It should be noted that even though an instrumental variable intuitively seems
similar to a proxy variable the two are very different. Condition (7.6) requires
that xIV and the omitted variable z are uncorrelated, whereas a good proxy is
highly correlated with the omitted variable.

Testing whether or not the second condition is true is easy; it’s simply a standard
t-test of the null hypothesis on the parameter θ after running a standard OLS
regression. The first condition, though, is impossible to test directly. Since z
is omitted for a reason, namely unavailability, one cannot actually calculate the
correlation coefficient between the instrument and the omitted variable. Usually
preexisting knowledge of the specific instrumental variable is used to justify the
uncorrelatedness of the instrument and error term.

Example 7.1
We saw in Section 7.1.2 that the covariate Yt was correlated with the error term
et. An obvious choice as instrument for Yt would be Yt−1. Clearly the two are
correlated (second condition), and it is very reasonable to assume that the error
term at a given time is uncorrelated with the income of the previous period, Yt−1,
i.e. Corr(Yt−1, et) = 0 (first condition) 3.

?

3This is possible since, counter intuitively, Corr(·, ·) is not transitive, i.e. Corr(a, b) 6= 0 and
Corr(b, c) 6= 0 6⇒ Corr(a, c) 6= 0.
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All of this leads to the formal definition of instrumental variables.

Definition 7.2 (Instrumental Variable)
Let the regressor xp be correlated with the omitted variable z, i.e. Cov(xp, z) 6= 0.
An intrumental variable xIV for xp satisfies the following two conditions

1. Cov(xIV , z) = 0

2. Cov(xIV , xp) 6= 0

We say that xIV is an instrument of xp.
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Chapter 8

The Spatial Autoregression
model

Let’s now turn to the matter of spatial correlation. It would be useful for the
model to take into account any latent spatial structure. We will do so by the the
Spatial Autoregression (SAR) model:

yt = Xtβ + ρWyt + ε, ε ∼ Nn

(
0, τ2I

)
(8.1)

where Xt is a n× p matrix of covariates, β is a p× 1 vector of regression param-
eters, ρ is the socalled spatial spillover effect1 and W is a spatial weight matrix.

8.1 Designing the spatial weight matrix W

The spatial weight matrix W is n× n and defined as follows:

W(i,j) = wij =


0 if i � j
φ(i,j)
φ(i,·) if i ∼ j,
0 if i = j

(8.2)

where φ(i, ·) =
∑

j φ(i, j), and φ(i, j) is a function describing the relative position
of i and j in the graph. This function could be as simple as φ(i, j) = 1 for all i ∼ j
or something more complicated like a function of the distance between i and j.
Note that the model implicitly assumes that every region has at least one neigh-
bor to avoid dividing by zero. This function and indeed the concept of neighbors
are somewhat user defined, and a number of different definitions of neighborhood
structure and distance functions will be discussed later on in Chapter 9 and briefly
in examples 8.1 and 8.2.

1Some restrictions on ρ are neccesary, which will be discussed in Section 8.3.
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Figure 8.1

Example 8.1
Assume for these examples that Xtβ = 0. Consider the simple graph of Figure
8.1. Two vertices that are connected by an edge are said to be neighbors. If we
define φ(i, j) = 1 for all i ∼ j we get the following weight matrix

W =


0 1/3 1/3 0 1/3
1 0 0 0 0

1/2 0 0 1/2 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0

 . (8.3)

If values are assigned to each point in the graph, say yt = (y1t . . . y5t) =
(4, 11, 5, 8, 8), we see that in this simple case Wyt is simply the average of the
neighbors.

yt = ρWyt = ρ


0 1/3 1/3 0 1/3
1 0 0 0 0

1/2 0 0 1/2 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0




4
11
5
8
8

 = ρ


8
4
6

6.5
6

 . (8.4)

This is also known as the Besag model for spatial correlation.

?

In the above example every neighbor is considered equally important, i.e. each
neighbor of region i has equal impact on yit. Often it makes sense to define
different weights to each neighbor. Suppose, for example, the value of your house
is related to the values of the neighboring houses. If one neighbor is located
100 yards from your house and another neighbor is located 1000 yards from your
house, it seems unrealistic to assign equal weight to both neighbors: Clearly the
nearer neighbor should be weighted more heavily.

Example 8.2
Continuing with the graph in Figure 8.1. If we want close neighbors to have large
weights and distant neighbors to have small weights, we could define φ(i, j) by
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inverse distance, so that φ(i, j) = dist(i, j)−1:

Φij = dist(i, j)−1 =


0 1 1/2 0 1/3
1 0 0 0 0

1/2 0 0 1/2 0
0 0 1/2 0 1/5

1/3 0 0 1/5 0

 , (8.5)

which (after dividing by the row sums of Φ) leads to the weight matrix

W =


0 6/11 3/11 0 2/11
1 0 0 0 0

1/2 0 0 1/2 0
0 0 5/7 0 2/7

5/8 0 0 3/8 0

 . (8.6)

Now we calculate y

yt = ρWyt = ρ


0 6/11 3/11 0 2/11
1 0 0 0 0

1/2 0 0 1/2 0
0 0 5/7 0 2/7

5/8 0 0 3/8 0




4
11
5
8
8

 = ρ


8.82

4
6

5.85
5.5

 . (8.7)

?

This, then, illustrates that the design of W is very flexible. Specifically the user
can, depending on the available data, define a long array of different weight ma-
trices. In Section 9.2 a number of different weight matrices based on different
definitions of neighbor structure will be tested against each other.

8.2 The GMRF properties of the SAR model

To check if this model constitutes a GMRF, we must check to see if this model
satisfies the conditions of Definition 3.3. First isolate yt to arrive at the so-called
data generating function of yt.

yt = Xtβ + ρWyt + ε⇔
yt − ρWyt = Xtβ + ε⇔

(In − ρW )yt = Xtβ + ε⇔
yt = (In − ρW )−1 (Xtβ + ε) .
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Clearly this means that

E(yt) = (In − ρW )−1Xtβ

Var(yt) = Var
(

(In − ρW )−1 ε
)

= (In − ρW )−1 τ2
(

(In − ρW )T
)−1

=
(

(I − ρW )T (I − ρW )
)−1

τ2

Prec(yt) = (I − ρW )T (I − ρW )
1

τ2
=
(
I − ρ

(
W +W T

)
+ ρ2W TW

) 1

τ2
= Q.

Immediately we see that Q is symmetrical. Since Q is symmetrical
and can be written as a product of a matrix and its transpose Q =(

1
τ2
I − 1

τ2
ρW

)T ( 1
τ2
I − 1

τ2
ρW

)
we also have that Q is positive semi definite2.

According to Definition 3.3, Q must also be positive definite. To see when this is
the case, consider the following theorem.

Theorem 8.3
The precision matrix of the SAR model, Q, is positive definite if and only if
ργi 6= 1 for all i where γ1, . . . , γn are the eigenvalues of W .

Proof.
Since we already know that Q is positive semi definite, i.e. |Q| ≥ 0, we only have
to prove that |Q| 6= 0. Since |Q| 6= 0 is equivalent to |τ2Q| 6= 0, we throw out
1/τ2 without loss of generality. We now have

τ2|Q| = | (I − ρW )T (I − ρW ) | = |I − ρW |2. (8.8)

So if λ1, . . . , λn are the eigenvalues of (I − ρW ) we have that |Q| 6= 0 iff λi 6= 0
for all i. The characteristic equation corresponding to the matrix I − ρW is

|I − ρW − Iλ| = | − ρW − (λ− 1n)I| = 0.

This means that (λ − 1n) are the eigenvalues of −ρW which means that γ =
(λ− 1n)/− ρ are the eigenvalues of W . So if λi 6= 0 we see that γi 6= 1/ρ, which
demonstrates that Q is positively definite if and only if ργi 6= 1 for all i.

This means that for any continuous prior on ρ, Q is almost surely positive definite,
making the SAR-model a GMRF.[Mukherjee et al., 2014, p.4]

2For Q to be positive semi definite xTQx must be ≥ 0.
To check, xTQx = xT (I−ρW )T (I−ρW )x = ((I−ρW )x)T (I−ρW )x = (I−ρW )x•(I−ρW )x ≥
0, since the dot product is a norm.
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However obvious it may be, it is important to note that Q is less sparse than W .
This is, at first glance, worrisome, since this means that Qij 6= 0 even if regions i
and j aren’t neighbors. Specifically it means that Qij 6= 0 if i and j are neighbors
or if they have a common neighbor, which suggests a second-order dependence
between i and j. This would seem to be in conflict with the Markov assumption,
that specifically says that Qij = 0⇐ i � j.

This, however, illustrates that there are essentially two graphs at play. On one
hand we have the actual graph, the W-graph. This the one with the n regions,
i.e. the one φ(i, j) is defined on. On the other hand we have the more abstract
graph, the Q-graph. This can be thought of as a graph induced by the choice of
Q i.e. the choice of model. There is no assumption that Qij must be zero if i
and j are not W-neighbors. The Markov assumption only relates to the Q-graph.
This means that if i and j are not neighbors, while sharing a common neighbor,
they are Q-neighbors but not W -neighbors.[Mukherjee et al., 2014, p.4]

This then is a feature, not a flaw, of the GMRF setup, since this allows for much
more complex dependence structures than it would seem at first glance. It does
however mean that for very connected W -graphs, Q may be relatively dense,
which could slow down the calculations in INLA.

8.3 Restrictions on ρ

So far we have only made one assumption on ρ namely that ρ 6= 1/γi for all i.
This, as mentioned in Section 8.2, is not much of a restriction since any continuous
prior on ρ guarantees this to be true with probability 1. This, however, doesn’t
mean that ρ can roam freely on Rn. Recall that the eigenvectors of W are given
by

γi =
λi − 1

−ρ
,

where λi is the ith eigenvector of the matrix (In − ρW ). We know that

λi = 1− ργi (8.9)

must be positive, otherwise Q couldn’t be positive definite (see (8.8)). So in order
to guarantee that |Q| > 0 we must have that

λi = 1− ργi > 0 ∀i.

If γi > 0 this means that −∞ < ρ < 1/γi, and if γi < 0 then −1/γi < ρ <∞. In
other words

1

γ−max
< ρ <

1

γ+max
, (8.10)
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where γ+max is the largest positive eigenvalue, and γ−max is the numerically largest
negative eigenvalue. So in addition to ρ 6= 1/γi we must also have that 1/ρ is
between the largest and smallest eigenvalue of W .

The smallest possible interval is given by ρ ∈]− 1, 1[. This is equivalent to saying
that the γi ∈ [−1, 1] per (8.10). To see this consider the following definition and
theorem.

Definition 8.4 (Gersghorin discs)
Let A be a complex n × n matrix with entries aij. For i = 1, . . . , n let Ri =∑

j 6=i |aij |. The circle C(aii, Ri) is then called a Gersghorin disc.[Varga, 2004,
p.1]

In other words, Gersghorin discs are n circles in the complex plane centered in
each diagonal element with radius equaling the sum of the absolute values of the
off-diagonals.

Theorem 8.5 (Gersghorin’s circle theorem)
Let A be a complex n× n matrix. Every eigenvalue of A falls within at least one
of the Gersghorin discs.[Varga, 2004, p.4]

Recall that W always has zeroes along the main diagonal, and that the rows of
W all sum to 1. This makes all the Gersghorin discs for W the same, namely
C(0, 1). All eigenvalues must lie within this circle, which means that γi ∈ [−1, 1].

Furthermore we can prove that at least one of the eigenvalues of W must be ex-
actly 1. Which is to say that at least one of |γ−max| = 1 and |γ+max| = 1 must be
true. This can be proven by the Perron-Frobenius theorem for irreducible matri-
ces.[Per, July 2014]

In some literature ρ is, without further ado restricted to 0 ≤ ρ ≤ 1. With the
above argument in mind, this seems dangerous. This restriction, however, is surely
motivated by a need for proper interpretation of ρ. Consider the following simple
example.

Example 8.6
Assume that ρ < 0 and regions i and j are neighbors. This would mean a rise in
yj would lead to a fall in yi. Suppose j is also neighbor to k. A fall i yk would
then lead to a rise in yj , which in turn would lead to a fall in yi. All is OK so
far. In a spatial setting however it is possible for i and k to be neighbors as well
see Figure 8.2. This would suggest that a fall in yk would lead to a rise in yi. We
now have a contradiction.

?
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Figure 8.2

This example illustrates that if ρ < 0 we may end up inferring that two vari-
ables yi and yk are positively and negatively correlated at the same time. So for
interpretations of ρ to make sense it must be positive.

8.4 The temporal case

At this point the model can only handle cross-sectional data, i.e. data that only
concerns one time period. The model can quite easily be extended to handle
panel data i.e. spatial-temporal data. In the case of panel data the same region
is measured repeatedly. Lets say we have n regions and t measurements of each
region. The data vector y then is on the form

y = (y(1,1), y(2,1), . . . , y(n,1), y(1,2), . . . , y(n,2), . . . , y(1,t), . . . , y(n,t))
T ,

which is to say that the data is sorted by time and then region. This vector has
length nt and is clearly too long to be multiplied with W which is only n × n.
Define now the new weight matrix

Ŵ = It ⊗W, (8.11)

where ⊗ is the Kronecker product. Then Ŵ is nt×nt and can be multiplied with
y.

This changes none of the considerations in the previous sections. It’s clear that
Ŵ and therefore Q is vary large in many cases. Because of the extreme sparseness
of Ŵ however, this is only slightly more expensive that the non-temporal case to
run in INLA.

39



40



Chapter 9

Data processing

This chapter deals with the processing of a large data set1. The focus of the data
processing will be on the design of the spatial weight matrix W and its impact
on the overall quality of the model and the estimate of ρ in the SAR model, see
Chapter 8 for theoretical details. So even though the model includes a long list of
covariates, the coefficients of these will consequently be of very little interest. For
an analysis of the sign and magnitude of the coefficients see [Bech and Lauridsen,
2009].

9.1 Preparing the data

The data set consists of 270 time series, one for each municipality m1, . . . ,m270

in Denmark2. Each time series covers 8 years from 1997 to 2004. Actually we
have partial data for more years, but the data for outpatient hospital admissions
is only complete for 1997 and onwards. So in order to get a balanced data set
we consider only that time period. The dependent variable is in this case each
mi’s expenditure on general physicians (GPs). The independent variables is a
collection of 78 economic, socio-economic, geographic and demographic variables
recorded for each mi every year. These covariates and their corresponding param-
eters are of no interest to this project. Results are given in[Bech and Lauridsen,
2009], along with economic arguments for the inclusion of the 78 covariates.

The data is lagged once relative to the dependent variable. This of course takes
us down to 7 years worth of data, leaving us with 7 measurements of 270 munici-
palities, i.e. we have 270× 7 = 1890 observations.

1The data was graciously supplied by Jørgen T. Lauridsen at the Institute of Public Health
at University of Southern Denmark.

2The five municipalities of Bornholm are ignored because of the remoteness of this particular
region
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Bech and Lauridsen argue that three covariates are endogenous, namely the vari-
ables describing the number of GPs, the number of inpatient hospital admissions
paid for by the municipality and the number of outpatient hospital admissions
paid for by the municipality. According to Section 7.2 on page 29 we can solve
the issues associated with this endogeniety by lagging those variables one more
time. Since the outpatient variable is the one limiting the size of the data set,
another lagging of this variable would mean losing another year of data, or at the
very least losing the balancedness of the data.

The solution that has been settled for is lagging the three covariates, and replac-
ing the missing values for outpatient admissions with a set of predicted values.
The predicted values are obtained by regressing outpatient admissions linearly
on two other variables: The year and a factor for municipality id. This yields
a model with extremely significant coefficients and a coefficient of determination
R2 = 0.89. The fitted values from this model is used as substitutes for the missing
values. The predicted year is year 0 (corresponding to the year 1998) in the plot
in Figure 9.1.
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Figure 9.1: The data for year 0 is predicted

In addition to all of this we also have two matrices containing spatial information
for the 270 municipalities. One matrix describes which municipalities share a
border, and the other is a dense matrix with the distance between each pair of
municipalities in kilometers. These enable us to design a huge number of different
W s, as we shall see in the following sections.
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9.2 Regressions with four different W

There are, as mentioned, in Section 8.1, different ways to design the spatial weight
matrix W . Recall from Section 8.1 that W is generally defined by

W(i,j) = wij =


0 if i � j
φ(i,j)
φ(i,·) if i ∼ j,
0 if i = j

(9.1)

where φ(i, ·) =
∑

j φ(i, j), and φ(i, j) is a function describing the relative position
of i and j in the graph. One way of doing this is to define φ(i, j) to be equal to
one if and only if the municipalities i and j share a border on the map. We might
call this scheme 1. Under scheme 1 we then have that

W s1
(i,j) = ws1ij =


0 if i � j
1
ni

if i ∼ j,
0 if i = j

(9.2)

where ni is the number of municipalities sharing a border with mi.

Another scheme is to substitute the ∼-operator for a measure of distance. Lets
define that i ∼ j if and only if mi and mj are located within d kilometers of each
other. We call d the radius of interest. This scheme, scheme 2 say, obviously leads
to a different weight matrix:

W s2
(i,j)(d) = ws2ij =


0 if δ(i, j) ≥ d
1
ni

if δ(i, j) < d,

0 if i = j

(9.3)

where δ(i, j) is the distance between mi and mj .

A third scheme is to define the weight matrix as seen below

W s3
(i,j) = ws3ij =


0 if i � j
1

δ(i,j) if i ∼ j,
0 if i = j

(9.4)

i.e. weight by inverse distance if mi and mj share a border on the map.

The fourth scheme follows intuitively from the previous two:

W s4
(i,j)(d) = ws4ij =


0 if δ(i, j) ≥ d
1

δ(i,j) if δ(i, j) < d.

0 if i = j

(9.5)
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9.2.1 Results

We now run the four models in INLA, and report DIC, the estimate ρ̂ and the
standard deviation on ρ̂. In order to avoid dividing by zero during the construction
of W s2 and W s4, the radius of interest d must be larger than 403. For the purposes
of these runs d has arbitrarily been set to 60. The results are presented in table
9.1. CPO and PIT are also calculated and plotted in Appendix A. None of the
CPO and PIT plots are critical for our choice of mode: The PITs are fairly close
to uniformly distributed, and relatively few of the CPOs have low probability i.e.
there are relatively few outliers in the data.

Scheme DIC ρ̂ sd

s1 -5785 0.30 0.026
s2 -5304 0.41 0.038
s3 -6376 0.29 0.031
s4 -6195 0.41 0.042

Table 9.1: Results from INLA runs for each of the four weighting schemes.

DIC fairly clearly suggests that scheme 3 does the better job modeling the data.

Two questions comes to mind. First the obvious question: Will a change in d
improve the models s2 and s4? Secondly: By weighting by inverse distance in
s3 and s4, we assume that the ”importance” of a neighbor declines like 1/x by
distance. Maybe the decline is faster or maybe it is slower. To try and answer
these questions we go to the next section.

9.3 Tuning of the model

In this section we will discuss how to best choose the radius of interest d and how
quickly the importance of neighbors should decline as a function of distance. For
this investigation a fifth and final weighting scheme is introduced.

W s5
(i,j)(d, k) = ws5ij =


0 if δ(i, j) ≥ d

1
δ(i,j)k

if δ(i, j) < d.

0 if i = j

(9.6)

This gives us two tuning parameters: d and k. So really this s5 is really a family
of infinitely many schemes, since there’s a new scheme for each pair of d and k.
Note that s4 is really a special case of s5 with k = 1. For example, by choosing
a large value of k, we assume that the importance declines very quickly, i.e. the

3We divide by the row sums of W , during the construction of W s2 and W s4, so in order to
avoid dividing by zero, every region must have at least one neighbor. Skagen is the most isolated
municipality, so since it’s nearest neighbor is 40 kilometers away, we must have d > 40.
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distant neighbors of mi is given a small weight. We therefor name k the distance
penalty parameter.

To the author’s knowledge no such weighting scheme has previously been contem-
plated in any existing literature. Most literature consider only s1. Some discuss
briefly the possibility of using schemes s3, i.e. weighting by inverse distance, but
none of the reviewed literature mentions weighting by a different function of δ.

This model has been run for every combination of 21 values of d =
{40.1, 45, 50, 55, . . . , 140} and 26 values of k = {0.5, 0.6, . . . , 2.9, 3}, resulting in
21× 26 = 546 runs.

If we plot DIC vs. d and k in a 3D plot, we would expect, or at least hope, to see
an up-side-down cone, with a global minimum at some point (d, k). The thinking
here is that if a large enough range of values d and k are tested, we’d expect
DIC to converge towards some ”optimal” combination of d and k. As can be seen
in Figure 9.2 the results are inconclusive in the sense that there is seemingly no
pattern to which values of d and k yields the better model, i.e. lower DIC. There
might be a slight tilt towards higher values of k, but the difference is tiny.

k

d

D
IC

Figure 9.2: DIC vs. d and k.

Things do not improve much if we look at the marginal plots as in Figure 9.3.
The two plots have been fitted with a second-order ploynomial, since we would
expect a cone-shape. The parameters for the polynomial fitted to d are barely
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significant (p = 0.067 and p = 0.095), and the polynomial, as seen on the plot,
has the unexpected sign. This does not help us in choosing d at all.

The polynomial fitted to k however is slightly more interesting. First of all it
has the expected sign. Second of all the estimates of the parameters are much
more significant: Both have p-values < 10−11. The polynomial has its minimum
at k = 1.86. Even if it seems the consequence of choosing k incorrectly is small,
it at least seems reasonable to choose this value of k.

If we choose k = 1.86 and, in lack of a better suggestion, d = 70, we get a DIC of
−6634 and an estimate of the spatial spill-over ρ̂ = 0.34 (sd = 0.026). CPO and
PIT are plotted for this model in Figure 9.4 and a histogram of the residuals is
plotted in Figure 9.5.

9.4 Sensitivity of ρ̂

If ρ̂ is plotted vs. d and k as in Figure 9.6, we observe a very interesting phe-
nomenon. First off we see that ρ̂ fluctuates seemingly at random as a function
of d, suggesting, yet again that the the output from the model is sensitive to the
choice of weighting scheme for W . But plotting ρ̂ by k is more interesting. There
seems to be a clear connection between k and ρ̂.

This suggests that, not only is ρ̂ sensitive to the choice of scheme, it is also sen-
sitive in a systematic way - at least for the class of models utilizing scheme 5.

This calls the use of ρ̂ into question. We may be able to construct confidence
intervals and significans tests for ρ̂, but those are measures of confidence for the
estimates for a new set of data. These measures say nothing about the robustness
of ρ̂ as a function of W .

Not only does ρ̂ fluctuate wildly as a function of d, the pattern in the dependence
on k essentially allows the user to choose ρ̂, by making seemingly innocent changes
in k.

It seems that ρ̂ is somewhere in the interval between 0.20 and 0.45, but which
one of these is the best one? Presumably the one resulting from the ”optimal”
k = 1.86. Since no one, to my knowledge, has tried weighting scheme 5, any other
statistician would’ve picked s4, i.e. k = 1. This imaginary analyst would, with
great confidence, report ρ̂ = 0.39 with a standard deviation of 0.024, whereas we
would, with equally great confidence, report ρ̂ = 0.34 with a standard deviation
of 0.026. In this example the difference may seem negligible, but the difference
could be much larger depending on what value of d is chosen by the user. Very
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Figure 9.3: DIC vs. d and k respectively.

little, if any at all, of the existing literature discuss this problem.
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Figure 9.4: CPO and PIT of the model utilizing scheme 5, with k = 1.86 and
d = 70.
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Figure 9.5: Histogram of the residuals of the model utilizing scheme 5, with
k = 1.86 and d = 70.

9.5 Illustrations of the restrictions on ρ

As we discussed at great length in Section 8.3, we know a few things about the
extreme eigenvalues of W . We know that these extremes γ−max and γ+max must be
in the interval [−1, 1] and that at least one of them must be on the boundary of
that interval.

It turns out that all the γ+max of the 546 model runs equaled 14. The smallest
eigenvalues are plotted in Figure 9.7, and it shows a rather beautiful connection
between γ−max, k and d. Beyond the fact that none of them are below -1, it is not

4Or at least so close to 1, that .R runs out of precision and rounds up to 1.
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Figure 9.6: ρ̂ vs. k and d respectively.

entirely clear why this aesthetically pleasing connection holds, so it only serves as
an illustration that beyond what Gersghorin and Perron-Frobenius tells us about
the eigenvalues of W there is still something to be learned.
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Figure 9.7: The smallest eigenvalue of W for each of the 546 model runs.

9.6 Summarizing the data processing

In summary, this chapter shows some discouraging results regarding the SAR
model. First we see that the quality of the model, as measured by DIC, is very
sensitive to the choice of weighting scheme, as it fluctuates wildly, and without
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pattern, as a function of the tuning parameters k and d. The lack of pattern is
worrisome since it means that DIC provides little help choosing an ”optimal” pair
of parameters d and k.

Secondly, and perhaps even more worrisome, we see that ρ̂ is also sensitive to the
choice of weighting scheme. This means that a slightly different W may result in a
vastly different ρ̂. There is some pattern to be found, since ρ̂ is closely connected
to k. This sensitivity of ρ̂, is problematic since the significance tests we use for
ρ̂ fail to take variation in weighting scheme into account, i.e. even if we report
a ρ̂ with a very narrow confidence interval, a small change in d may completely
change the estimate.

Lastly we note that the eigenvalues of W behave as expected, but with a very
interesting pattern structure.
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Chapter 10

Conclusion

During this thesis, the INLA approach has been introduced and applied to a SAR
model. The SAR model has been introduced and a number of results has been
shown for this type of spatial model.

Particularly a lot of attention was paid to the spatial spill-over parameter ρ and
the restrictions placed on it - both those necessary from an algebraic standpoint,
and the more convenient ones that arises from the need to consistently inter-
pret the parameter. The author also notes the discrepancy in how this subject is
treated in the literature, and attempts to explain why different statisticians prefer
to assume different restrictions on ρ.

The data processing set off as an exercise in model choice, without much success.
It turned out that model quality (as measured by DIC) fluctuates wildly and
unpredictably as a function of the two parameters radius of interest d and the
distance penalty parameter k.

The data processing then turned into an illustration of a particular weakness of ρ,
namely its dependence on the specification of the spatial weight matrix W . This
weakness raises serious questions about how we report and interpret the estimated
parameter ρ̂. To the author’s knowledge no such problem has been pointed out
before. This is certainly an area, that needs more research.
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Appendix A

INLA output

Here are the CPO and PIT plots supplied by INLA for each of the four schemes.
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Figure A.1: Plots of CPO and PIT for scheme 1
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Figure A.2: Plots of CPO and PIT for scheme 2
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Figure A.3: Plots of CPO and PIT for scheme 3
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Figure A.4: Plots of CPO and PIT for scheme 4
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