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Prologue
This document includes the master’s thesis made by Søren Holm and Andreas Elkjær Riis.
The master’s thesis is titled ’Dynamic amplification of deformations in railways due to
high-speed traffic on soft ground ’ and are presented in two articles.

In this document a review of the project is given, including a description of the problem
considered and the main points from the two articles, which is also included in this
document. The two articles are based on numerical simulations performed by the authors
and the overall steps in the code forming the calculations are presented.

Theory without practice is fantasy, .
practice without theory is chaos.

— Unknown





Project Review





Definition of project
Traditional geotechnics deals with static problems or slowly varying stresses in the soil,
e.g. the consolidation theory. This project deals with geotechnics related to dynamics —
geodynamics. Here focus is accelerations of the soil, which means that static equilibrium
are not fulfilled. Acceleration of the soil may be caused by dynamic loads introducing
wave propagation in the soil. Wave propagation in the soil can, for example introduced
by earthquakes or traffic. Traffic induced vibration may be caused by the trains moving
along a track on the ground surface. The vibrations generated by a moving train consist
of airborne vibration, known as sound, and ground borne vibration. The ground borne
vibration travels through the ground and may generate vibration in stuctures supported
by the soil, and this may be felt by humans and can lead to damage on structures.
Trains moving at high speeds may in special cases cause excessive vibrations, which raises
concerns about the operation safety of the train, degradation of the embankment and the
subsoil, and fatigue failure of the rails.

 

The background for this project is that an upgrade of the Danish railway lines is
forthcoming. The lines should be upgraded in order to handle high-speed trains with
a considerably higher speed compared to the trains operation today. Excessive vibrations
may be induced if the operation speed of the train approaches the characteristic speeds
for the wave propagation in the soil. The main topic in the project is related to the
amplification of the vibration levels, a phenomenon which has been observed at several
locations in other countries, due to an increase in the operation speed of the trains.
Throughout this project, the amplification is denoted the dynamic amplification since it
is introduced by means of dynamic effects.

Investigation of the dynamic amplification by an experimental apprroach is difficult and
expensive. Thus, a numerical model may be preferable in order to clarify the phenomenon
and investigate the influence of several parameters.



In this project a numerical model is developed and used for a parameter study. The
configuration of the numerical model forms the background for the first part of the project.
Numerical models can be very expensive in relation to computer power. Hence, in order
to be able to perform calculations in a satisfactory amount of time, the simplicity of the
model and the size of the model is an important consideration. The numerical model
should be as simple as possible, but without ignoring the important features regarding
wave propagation and the dynamic amplification. These challenges are treated in the first
part of the project. Secondly, when a suitable numerical model is established, the inputs
are very important in relation to obtain reliable results. This completes the first part of
the project and forms the background for the second part of the project. The second part
has focus on the importance of different input parameters. By this, the necessary effort to
determine these parameters in a reasonable way is clarified. The effect of different input
parameters are investigated through a parameter study.



Summary
The substance of the project is presented in two articles. The first article deals with
the development of a numerical model, which is able to simulate the ground response to
a train moving upon an embankment along its surface. The second article deals with a
parameter study, where the sensitivity of the ground response to different input parameters
is investigated.

Article #1 is titled ‘Modelling of dynamic amplification of deformations in railways
due to high-speed traffic on soft ground ’. In the first section an introduction to the
phenomenon of dynamic amplification is given. A few locations where experimental
measurements have been performed are mentioned and used to show the potential effects
due of train speeds. The measurements performed at Ledsgaard are described in more
details, due to the fact that the measurements are used as a validation tool for the
numerical model. The second section is based on a litterature study of models used for
similar simulations, where the concepts of modelling are outlined. Inspired by this, three
different models are proposed in the third section, see Figure 0.1. The first model is widely
used in situations of loads moving along a track. In the model, the track and embankment
are represented by a Euler-Bernoulli beam and the soil is modelled as an elastic half-
space. The two other models consider more advanced considerations regarding modelling
of the track and embankment stucture. The two models are extended by application of
Timoshenko beam elements, 2D continuum elements and continuous as well as discrete
spring/damper systems. Numerical simulations performed using the three different models
are presented in the fourth section. The simulations are compared to each other and to
the measurements from Ledsgaard. In the fifth section, the conclusions regarding the
numerical modelling and the simulations are outlined.
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Figure 0.1. The track-embankment system on the soil in the numerical models.



Article #2 is titled ‘Parameter study of dynamic amplification of deformations in
railways due to high-speed traffic on soft ground ’. In the first section, a generel introduction
is given. This includes a slightly more detailed description of some of the observations
made from experiment as well as computational models regarding dynamic amplification.
A brief introduction to some of the effects being important in relation to wave propagation
in homogeneous and layered soil media are presented. Finally, the first section contains a
short litterature study regarding numerical models which are verifed using the data from
the Ledsgaard site.

The most simple model outlined in the first article is adopted in order to perform the
parameter study. In the second section, the model is briefly described. In the third section
some reference cases are set up. The reference cases are used as a basis for comparing the
results from the parameter study, and they contain homogenous soil profiles as well as
two-layered soil profiles. The soil profiles are based on materials of peat, clay and sand.
The parameter study is performed in the fourth section. Some of the input parameters
for the soil in the numerical model are varied as well as the influence of the stiffness of the
embankment is investigated. For the situation of a two-layered soil profile, the thickness
of the top layer is studied. Comparisons and comments to the results are also presented
in this section. The main observations includes the importance of the stiffness of the soil
layers and the above struture and also the height of the top-layers, whereas other soil
parameters are of minor importance in relation to the dynamic amplification. Finally, the
conclusion of the parameter study is given in the fifth section.

Conclusion
It is a challenging task to construct a numerical model that reproduces the measurement
from Ledsgaard. However, constructing a model with the potential to reproduce the
measurement is successfully achieved in this project. A number of assumptions are made
in the numerical model, and the information regarding some of the input parameters in
the model is inadequate. However, two of the three models succeeded reproducing the
pattern of response in a satisfactory way, providing the belief that the amplitude of the
displacement response can be reproduced more correctly by calibrating the model.

The first model is the most simple with the smallest number of inputs. The first and the
second model produces the same results, whereas the third model does not reproduces the
phenomenon of dynamic amplification in a satisfactory manner. Hence, the most advanced
model is not neccessarily the best model. It might have the potential to reproduce the
measurements, but due to the fact that the number of input parameters are greater than
in the simple model, the calibration would be a more challenging process.

During the parameter study it is found that the dynamic amplification is highly dependent
on the soil stratification. A homogeneous soil profile is preferable compared to a layered soil
profile with a soft soil in the top layer. Studying the influence of the soil parameters reveals
that the stiffness of the material is an important parameter, whereas the damping ratio and
Poisson’s ratio are of minor importance regarding the dynamic amplification. However, the
damping ratio influences the response considerably when the train has passed. A higher
damping ratio, obviously, results in higher damping, i.e. the free oscillations produced by



the passing train are damped more quickly.

The final conclusion is that, in order to reproduce the measurements from the Ledsgaard
site more accurately, a calibration process should be performed regarding the numerical
models. Furthermore, in studies of the dynamic amplification the focus should be on
determination of the stiffness of the soil and the soil stratification, as the parameter study
reveals that this is the most important parameters regarding the behaviour of the soil.

Program Review
The simulations performed during this project are made by use of a numerical code
designed by the authors. The code is established in MATLAB using a FORTRAN
execution. The steps in the numerical simulations are as follows:

1. The inputs to the model are defined.
2. The topology of the system is established.
3. The loads are established and the time series are converted from time domain to

frequency domain by means of Fourier transformation.
4. From the topology of the system, the Green’s function is calculated in the points

of interaction between the track-embankment structure and the ground. It is
calculated at the frequencies corresponding to the transformed load. This part of
the calculations is conducted using FORTRAN.

5. The finite element matrices of the track-embankment elements are calculated and
assembled into the global system.

6. Utilizing the formulation in frequency domain the system matrices are transformed
to a dynamic stiffness and the stiffness of the soil, obtained by means of Green’s
function, are added to the dynamic stiffness of the system.

7. From the dynamic stiffness and the transformed load, the displacements in the
frequency domain are calculated.

8. The response in time domain are obtained from the inverse Fourier transformation.

The numerical models have some limitations; the trian has constant velocity, the dynamic
of the train is not inclued since the train is models as a series of single loads decoupled
from the track. The track-embankment structure is modelled as a straight and horizontal
structure, and motions across the embankment are not included. The loads from
the embankment to the soil are assumed as a Gaussian formed distribution in the
longitudinal as well as the transverse direction. Regarding the soil, the model only
accounts for horizontal layers and isotropic and homogeneous materials having a linear
elastic behaviour.

Future steps in the improvement of the model might be a more realistic modelling of the
train and the loads, where the interacting between the rails and the trainis accounted for.
Modelling the train as part of the model could also be used to estimate the vibration levels
in the train. The load distribution from the embankment to the soil could form the basis
of an exhaustive investigation. An interesting improvement would be the development of
a 3D model, in order to asses the quality of the assumption made in the 2D formulation.
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Modelling of dynamic amplification of deformations in railways due

to high-speed traffic on soft ground

Søren Holm◦ Andreas Elkjær Riis◦

Lars Vabbersgaard Andersen•

Master students◦ and associate professor• at

Department of Civil Engineering, Aalborg University, Denmark

Abstract

Three numerical models to analyse ground vibrations due to high-speed trains are presented. In the
numerical models, the rails, the embankment and the ground are considered. The ground is modelled as
a half-space in all the models and the transfer-matrix method is applied to obtain the Green’s functions.
In the first model, the rail-embankment system is modelled using a Euler-Bernoulli beam. In the second
model, the rails are modelled as a Euler-Bernoulli beam and the embankment is modelled as a Timoshenko
beam, where spring/damper systems are applied as coupling between the different parts of the system. In
the third model, the rails are modelled as a Euler-Bernoulli beam and the embankment is modelled as a
continuum. The case at Ledsgaard in Sweden, where large increases in vibration level were observed due
to an increase in train speed, are used for validation of the models. In the simulations performed, model
three is a comparatively unaccurate model, whereas the two other models follow the same pattern as the
measurements, however, overestimating the displacement amplitudes. The influence of modelling the train
with either bogie loads or axle loads is investigated, and finally it is demonstrated that the dynamic effects
are also generated in the case of a single load moving along the railway track.

1 Introduction

The first railway line in Denmark opened in 1847
and was serviced by a steam locomotive at a speed
of 50 km/h. In 1860 a law on railway tracks was
adopted and within 10 years, Denmark was covered
with a network of railway tracks. These are roughly
the tracks which represent the location of the rail-
way lines today (Jernbanen.dk).

Due to the limited speed of the trains, the orig-
inal location of the railway tracks did not consider
the recently discovered effects of high-speed trains.
Further, today’s demands for higher train speeds to
shorten travel times call for straight railway lines.
Due to these circumstances, crossing of soft soil ar-
eas are unavoidable and soft-soil sites are partic-
ularly susceptible to excessive vibration from high-
speed trains. Thus, an important consideration is to
investigate the dynamic effect of a high-speed train
because there is little experience of the phenomenon
in Denmark.

Significant increase has been observed in the ver-
tical movement of the track by railway companies
throughout Europe for increasing train speeds. Un-
fortunately, the amount of data from performed
measurements are hardly available in the literature.

However, Woldringh and New (1999) report on data
from a few measurements. The data is from mea-
surements at Stilton Fen in the United Kingdom,
Amsterdam-Utrecht in the Netherlands and Leds-
gaard in Sweden. From the measurements it is evi-
dent that the increase in vertical movement at high
speed can be at least two or three times the vertical
movement at low speeds.

1.1 The Ledsgaard site

At the Ledsgaard site in Sweden, high vibration lev-
els were observed in 1997 in connection with main-
tenance work close to the track, and comprehensive
investigations were performed in order to clarify the
phenomenon and understand the mechanism of the
behaviour. The investigations consisted of a test run
programme regarding the train loads and a charac-
terization programme with respect to the soil prop-
erties at the location.

The characterization programme was performed
to establish the soil profile and the geodynamic pa-
rameters of the soil layers and the embankment. The
embankment is 1.4 m thick and consists of 0.5 m
crushed bedrock and 0.9 m gravel. The site can be
characterized by a 1.5 m dry weathered crust layer
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over a 3.0 m thick layer of soft organic clay. Under
the soft organic clay, a deposit of soft marine clay is
present, having a thickness of more than 50 m and
beneath this bedrock is present (Adolfsson et al.,
1999).

The test run programme was performed by the
Swedish National Rail Administration (BANVER-
KET) using an X2000 passenger train consisting of
an engine and four cars, having a total length of ap-
proximately 109 m. A total of 20 test runs was per-
formed, including northward as well as southward
runs. In each test run the speed of the train was
constant and ranging from 10 to 204 km/h. Elec-
tronic displacement transducers were placed along
the track, and accelerometers, seismometers and
pore pressure sensors were located at various depths
and distances from the track in order to measure
the displacements, accelerations, velocities and pore
pressure. Details on the instrumentation are re-
ported in the work by Adolfsson et al. (1999).

1.2 Dynamic amplification due to moving loads

From an analysis of the recorded data, Madshus and
Kaynia (2000) and Kaynia et al. (2000) decompose
the diplacement field into a quasi-static and a dy-
namic field, which is stationary relative to the train.
The quasi-static field contains only downward mo-
tion and its pattern does not change with the train
speed. The dynamic field contains both upward and
downward motions, having equal displacement am-
plitude. It has a tail of free oscillation following
the train, and the propagation speed of this field is
identical to the train speed. For high-speed train
passages, the dynamic field dominates the response,
and the embankment and the ground behave non-
linearly due to large strains.

According to Krylov (1995) the large increase
in ground vibration is due to the effect of moving
sources approaching the velocity of the Rayleigh sur-
face waves propagating through the ground. In a soil
medium both compression and shear waves propa-
gate, having the following phase velocities, respec-
tively:

cP =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
,

where ρ is the mass density and λ and µ are the
Lamé constants given by

λ =
νE

(1 + ν) (1 − 2ν)
, µ =

E

2 (1 + ν)
.

Here E is Young’s modulus and ν is Poisson’s ra-
tio. Since the Lamé constants and the mass den-
sity are positive, cP > cS . For a moving load on a
medium the apparent wave propagation velocity as
observed from the source will be different in different

directions. This is the so called Dobbler effect (Bal-
lard, 2010). The significance of the effect depends
on the phase speed of the waves in the medium and
the speed of the moving load. The speed of the
moving load in relation to the phase speeds leads
to three different cases: subsonic motion (v < cs),
transonic motion (cs < v < cp) and supersonic mo-
tion (cp < v). When an interface or a free sur-
face is present, mixing of the two basic wave types
takes place. Rayleigh waves is an example of this
and is a wave front propagating along the surface
of the medium. According to Andersen (2006) the
Rayleigh wave speed is 0.862-0.955 times cS depend-
ing on the Poisson ratio.

When a train moves on the surface of a homoge-
neous half-space at a speed equal to or higher, than
the Rayleigh wave speed, a Mach cone forms behind
the train. Further, as the train speed approaches the
Rayleigh wave speed, large dynamic amplification of
the displacement response occurs. However, for a
train moving on a track and embankment over a ho-
mogeneous or layered ground, the problem appears
to be more complicated. Based on the assumption,
that the track-embankment system and the ground
can be modelled as a beam interacting with a homo-
geneous half-space Dieterman and Metrikine (1996)
found that there should be two critical speeds, one
equal to the Rayleigh wave velocity of the ground,
and the other, fairly close to the first, depending
on the stiffness and mass of the track-embankment
system and the ground properties. The report on
data by Woldringh and New (1999) indicates that
the dynamic effects are introduced when the train
speed is around 60% of the critical speed at the loca-
tion, and that the effects increase as the train speed
is approaching the critical speed.

Soft sandy soils may have Rayleigh wave veloci-
ties as low as 320-470 km/h, (Krylov, 1995). For
peat, organic clays, and soft clays it can be as low
as 110-180 km/h, (Woldringh and New (1999) and
Madshus and Kaynia (2000)). Due to the fact that
the velocity of Rayleigh surface waves in soft soils
can be considerably lower than the design speed of
the railway lines nowadays, problems regarding train
speeds approaching or even exceeding the critical
speed can be expected to an increasing amount.

1.3 Paper summary

The aim of the paper is to make a numerical model
which is capable of predicting ground vibrations due
to a series of moving loads. In Section 2 concepts
of modelling are presented and this forms the basis
in the proposal of a numerical model. In Section
3 the governing system of equations are introduced
and the solution procedure is outlined. The numer-
ical model consist of a series of loads corresponding
to a train, the track and embankment and finally
the ground. The modelling of the train loads are
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discribed in Section 3.1 while the modelling of the
track-embankment system and the soil are presented
in Section 3.2 and Section 3.3, respectively. In Sec-
tion 3.2 three different proposals for a numerical
model are presented. Field measurement from the
Ledsgaard site in Sweden are used as a validation
tool for the models. The results from the simula-
tions are presented in Section 4 and the accordance
between the simulations and the measurements are
discussed.

2 Concepts of modelling

The comprehensive investigations at the Ledsgaard
site has provided an excellent opportunity to vali-
date numerical models simulating a series of loads
moving along the ground surface. The dynamic in-
teraction of train, track and soil is a complicated
problem and generally several simplifying assump-
tions are made in numerical models. The modeling
of the system is often performed using a beam on
elastic foundation bacause of simplicity and avail-
ability of analytical solutions for loads moving at
constant velocity. Winkler and Kelvin foundations
are widely applied elastic foundations, e.g. by An-
dersen et al. (2001) and Paolucci et al. (2003), but
the fact that they are unable to transfer the energy
along the track makes them inadequate for mod-
elling tracks resting on soils. Modelling the soil as
an elastic layer or a half space, as done by e.g. Kay-
nia et al. (2000) and Takemiya (2003), seems as a
more realistic approach.

Modelling the soil as an elastic layer can e.g.
be achieved through the finite element method, cf.
(Zienkiewicz et al., 2005), (Bathe, 2007) and (Cook
et al., 2001), or the boundary element method, ef.
(Dominguez, 1993) and (Beskos and Manolis, 1988).
The finite element method may advantageously be
applied in analyses of wave propagation in media
with complex material behaviour and local inhomo-
geneities. However, by applying finite elements only
a limited area/volume can be modelled, thus the ra-
diation damping cannot be accurately accounted for.
This can be mended by use of transmitting bound-
ary conditions, e.g. (Zhenpeng, 2001), infinitesimal
finite element cell method, e.g. (Wolf and Song,
1998) or semi-infinite elements, e.g. (Bettess, 1992).
Alternatively, the boundary element method pro-
vides the capacity of accurately modelling the radi-
ation damping, thus it may advantageously be ap-
plied for analysis of large open domains, e.g. (Galv́ın
and Domı́nguez, 2007) and (Andersen and Nielsen,
2003).

Due to, for example, transient loading or non-
linear material behaviour, the variation in time is
an important consideration in the analysis. How-
ever, making the analysis in the time domain is ex-
pensive in terms of computation time. Fortunately,

in the case of linear response Fourier transforma-
tion provides an alternative, namely the frequency-
domain solution, which concerns steady state re-
sponse. The time-domain solution can be ob-
tained from the frequency-domain solution by in-
verse Fourier transformation without loss of general-
ity. In the frequency-domain solution a set of equa-
tions appear, which can be handled individually and
analytically in a computationally efficient manner.
Similarly, the spatial domain can be transformed
utilizing the Fourier transformation given that the
ground can be treated as a horizontally layered half-
space. This way the partial differential equation of
motion for the soil may be reduced to an ordinary
differential equation in terms of the depth coordi-
nate, making an analytical solution accesible. The
transfer-matrix method, which has been widely ap-
plied in the analysis of loads moving on the surface
of horizontally layered soil, utilizes this formulation
(Thomson (1950), Haskell (1953) and Sheng et al.
(1999)).

Several authors have used the data from Leds-
gaard to validate their numerical models. Only au-
thors using the domain transformation method fol-
lowed by inverse Fourier transformation will be cited
in this section. Kaynia et al. (2000) and Paolucci
et al. (2003) modeled the track-embankment system
and the ground as a beam interacting with a hori-
zontally layered viscoelastic half-space and a beam
interacting with an elastic foundation, respectively.
For points located on the track, the simulations re-
produce the measurements regarding pattern as well
as amplitude. Madshus and Kaynia (2000) use the
same model as Kaynia et al. (2000) exept from using
an equivalent linear approach to account for the ma-
terials to behave nonlinearly. The simulations agree
largely with the measurenment; particularly the pat-
tern of the response has good agreement. Takemiya
(2003) modelled the track-embankment system as a
Euler-Bernoulli beam and the ground as a layered
viscoelastic half-space also using an equivalent linear
approach to account for the materials to behave non-
linearly. For train speeds well below the critical ve-
locity the model predictions and the measurements
fits very closely, but for train speeds approaching
the critical velocity, the deviation increases highly.
Karlström and Boström (2006) modelled the rails as
Euler-Bernoulli beams and the sleepers are modelled
with an anisotropic Kirchhoff plate. The ground is
modelled as a stratified half-space with linearly vis-
coelastic layers and the embankment is also mod-
elled as a viscoelastic material. The simulations re-
produce the measurements, especially for low train
speeds the simulations agree almost exactly with
measurements. Costa et al. (2010) modelled the em-
bankment and the ground by 2.5D finite elements.
The 2.5D finite element method differs from the
transfer-matrix method in the sense that Fourier
transform is only applied with respect to time and
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the spatial coordinate along the track. The result-
ing partial differential equation is solved by the finite
element method. The rails are modelled by Euler-
Bernoulli beams connected to the embankment by a
spring/damper system, representing the rail pads.
The simulations are performed with and without
nonlinear effects taken into account by an equivalent
linear approach. Very good agreement is obtained
including the nonlinear effects, while the amplitudes
are underestimated when excluding the nonlinear ef-
fects.

3 Numerical modelling

Based on the previous section, three different nu-
merical models are investigated by the authors of
the present paper. The aim is to simulate the situa-
tion illustrated in Figure 1 and compare and validate
the models using the measurements from Ledsgaard.
The numerical models consist of a finite element

V

V
Figure 1: A part of the train moving along the railway sys-

tem comprimising the rails, embankment and the
gorund.

model of the track-embankment system interacting
with an elastic half-space representing the soil. In all
models, the soil is modelled using Green’s function
for the layered half-space, thus the difference be-
tween the models lies within the finite element mod-
elling of the track-embankment system. In the first
model, the track-embankment system is modelled as
a Euler-Bernoulli beam. In the second model, the
track is modelled as a Euler-Bernoulli beam, while
the embankment is modelled as a Timoshenko beam.
The reason for this is that Euler-Bernoulli beams
apply for thin beams, and the depth of the embank-
ment is significant, meaning that shear deformation
should not be disregarded. In the third model the
track is modelled as a Euler-Bernoulli beam and the
embankment is modelled as continuum finite ele-
ments assuming plane stress over the width of the
embankment. An illustration of the three models is
given in Figure 2.

Due to utilization of the transfer-matrix method,
the analysis is carried out in frequency domain. The

circular frequencies ω considered in the frequency-
domain are dictated by the discrete time series in
the time domain. The solution is found to each fre-
quency by the governing equation,

K̃ (ω) Ũ (ω) = F̃ (ω) (1)

where Ũ (ω) and F̃ (ω) are vectors of the correspond-
ing Fourier transforms of the discrete time series for
the displacement and load, respectively, and K̃ (ω)
is the corresponding dynamic stiffness matrix:

K̃ (ω) = −ω2M + iC + K (2)

Here K, M and C are the stiffness, mass and damp-
ing matrices of the system, respectively. These ma-
trices are obtained directly from a finite element for-
mulation of the system. However, the soil is modeled
using Green’s function instead of a finite element
formulation, hence, only the dynamic stiffness re-
lated to the track-embankment system can be found
using Equation (2). As described in Section 3.3 us-
ing Green’s function gives a complex stiffness ma-
trix, H̃ (ω), of the soil, which can be combined with
the dynamic stiffness matrix from the finite element
formulation. The governing equation to be solved is
then given by (1) with

K̃ (ω) =

[
K̃11 (ω) K̃12 (ω)

K̃21 (ω) K̃22 (ω) + H̃ (ω)
−1

]
(3)

where K̃22 refers to the three translational degrees
of freedom in each node which combines the soil
and the finite element formulation of the track-
embankment system and K̃11 refers to the remaing
degrees of freedom in the system.

From the displacement vector in the frequency do-
main, the time series response is found by inverse
Fourier transformation.

3.1 Modelling of the train loads

The interaction forces between the train and the
rails, in reality, consist of a quasi-static term and
a dynamic term. The quasi-static term is constant
due to the weight of the train. The dynamic term
is varying in time due to track irregularities and ve-
hicle defects, e.g. wheel flats. The actual inter-
action force is therefore extremely complex due to
the dynamic term, thus, the train is decoupled from
the track and the dynamic term is omitted in the
present analysis which has focus on the effects of
the train speed relative to wave propagation veloc-
ities in the track-embankment-subsoil system. The
loads from the X2000 passenger train used for the
test programme at Ledsgaard are modelled using a
series of forces of constant magnitude moving with
constant speed v. The axle spacing distances and
loads corresponding to the X2000 passenger train
is illustrated in Figure 3. The loads are illustrated
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Figure 2: The track-embankment system in the numerical models.

as both axle loads and bogie loads, i.e. the bogie
load is the sum of the two associated axle loads.
The total length of the train is approximately 109
m. The length of the numerical model is partly dic-
tated by the length of the train. The second part
having influence is the length for the train to travel
in the model before reaching a stationary condition,
meaning that the effects due to initialization of the
moving loads in the system are not present. The
third part having influence is that the entire train
should pass a section of the model and move far
enough behind it in order to ensure that the section
do not feel the loads from the train anymore.

The discrete time series in the numerical model
depends on the speed of the train. In the present
analyses, the time step is dictated by the condition
that the train travels the distance between to nodes
in the numerical model using four time steps. When
the loads are present between two nodes, the load is
distributed to the two nodes using the cubic shape
functions for the beam elements.

From the discrete time series of the load in each
node, the load spectrum in the frequency-domain is
found by Fourier transformation.

3.2 Modelling the track-embankment system

The numerical models presented in Figure 2 are
constructed using 500 macro finite elements along
the track. These macro finite elements describe the
combined track, embankment and subsoil between
two nodes along the track as illustrated in Figure 4.
The spacing distance of the nodes in the finite ele-
ment model equals the distance of 0.67 m between
the railway sleepers at Ledsgaard, leading to a to-
tal length of 335 m in the numerical models. The
out-of-plane degrees of freedom in the bottom part
of the macro finite elements, introduced due to the
three-dimensional soil modelling, are not considered
in the modelling of the track-embankment system.

Thus, vibration in the lateral direction is not ac-
counted for.

The individual beam elements in the macro fi-
nite element is modelled as either a Euler-Bernoulli
beam or a Timoshenko beam. The governing partial
differential equation for the Euler-Bernoulli beam is

q = EIy
∂4uz
∂x4

+ ρA
∂2uz
∂t2

(4)

where q is the force per unit length x, E is Young’s
modulus, Iy is the second moment of area around
the y-axis, ρ is the mass density, A is the cross-
sectional area, t is time and uz is the vertical dis-
placement. The governing equations for the Timo-
shenko beam elements are the coupled linear partial
differential equations given as

ρA
∂2uz
∂t2

= q +
∂

∂x

[
ksAG

(
∂uz
∂x

− ϕ

)]
(5a)

ρIy
∂2ϕ

∂t2
= EIy

∂2ϕ

∂x2
+ ksAG

(
∂uz
∂x

− ϕ

)
(5b)

where ks is the Timoshenko shear coefficient, G is
the shear modulus and ϕ is the angular displacement
or cross-sectional rotation.

Using the Galerkin approach, these governing par-
tial differential equations are rewritten into finite-
element form. The stiffness and mass matrices K
and M, respectively, for the beam elements are given
by the well known solutions for a complete two-
dimensional element,

K = function (L,E,A, ν, ks, Iy)

M = function (L, ρ,A, Iy)

where L is the length of the element. In the case
of a Euler-Bernoulli beam, the parameters ν and ks
are not relevant.

In model three the embankment is modelled with
continuum finite elements, and the governing partial
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Figure 3: Axle distances and loads of the X2000 passenger train used at the test programme at Ledsgaard; (—) axle loads, (---)
bogie loads.
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Figure 4: The macro elements used for the numerical modeling.

differential equation for the continuum is

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

+ ρbx = ρ
∂2ux
∂t2

(6a)

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

+ ρby = ρ
∂2uy
∂t2

(6b)

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρbz = ρ
∂2uz
∂t2

(6c)

Through multiplication with a virtual displacement
field and integration over the volume, the stiffness
and mass matrices for the finite element modelling
of the embankment in model three are found by nu-
merical (Gauss quadrature) evaluation of the inte-
grals,

K =

∫

A

BTDt (z)BdA (7)

M =

∫

A

NT ρt (z)NdA (8)

where N are the shape functions, B is the differenti-
ated shape functions, D is the constitutive relation
and t is the thickness of the element (i.e. the width
of the embankment) which varies over the depth, cf.
Figure 5.

The coupling between the rails and the embank-
ment in model two and three consists of a discrete
spring-damper system modelling the sleepers. A
continuous spring/damper system coupling the em-
bankment and the soil is used in model two. The
horizontal stiffness along the track and the vertical
stiffness in the spring system is approximated using,

kh =
GA

w
, kv =

EA

h
.

In the coupling between the rails and the embank-
ment E and G are material parameters for the
sleeper and A is the cross-sectional area, h is the
height and w is the width of the sleeper. In the cou-
pling between the embankment and the soil, E and
G are material parameters for the embankment, h
is the height of the embankment, w is the distance
between the sleepers and A is the average cross-
sectional areal of the embankment, calculated as the
height of the embankment times the average width
given as section AA in Figure 5.
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Figure 5: Cross-section of the embankment.

For all elements in the macro finite element the
damping is introduced as structural damping pro-
portional to the stiffness of the element,

C = αK. (9)

The matrices are obtained for each element in the
track-embankment system and added to the global
dynamic stiffness matrix, K̃ (ω).

3.3 Modelling the soil

The finite element model of the track-embankment
system interacts with an elastic half-space represent-
ing the soil. The two systems are connected through
a series of coupling points along the ground surface
under the embankment. Discrete Green’s functions
are used to derive a dynamic flexibility matrix for
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the coupling points. The dynamic flexibility ma-
trix describes the wave field in the radial, transverse
and vertical directions as functions of the frequency
and distance from the source point to the observa-
tion point. The methodology used for calculating
the Green’s function was first proposed by Kausel
and Roësset (1981). It combines integration in the
frequency-wavenumber domain with the description
of layered soils by transfer matrix methods, first
given by Thomson (1950) and Haskell (1953).

The advantage of the frequency-wavenumber do-
main is that, for a given set of horizontal wavenum-
bers kx and ky and circular frequency ω the displace-

ment amplitudes ̂̃U i in the tranformed domain are

related directly to the traction amplitudes ̂̃P j as,

̂̃U i (kx, ky, ω) = ̂̃Gij (kx, ky, ω) ̂̃P j (kx, ky, ω) (10)

where ̂̃Gij is the Green’s function tensor.
The Green’s function tensor is obtained using the

Cauchy equation of motion revealed in Equation (6)
but without condsidering the body forces. By ap-
plication of Fourier transforms with respect to the
coordinates x, y and t, the partial differential equa-
tions of motion in each soil layer are reduced to ordi-
nary differential equations in the vertical direction,

(
λ+ µ

)
ikx∆̄ + µ

(
d2

dz2
− k2x − k2y

)
̂̃Ux = −ωρ ̂̃Ux

(11a)
(
λ+ µ

)
iky∆̄ + µ

(
d2

dz2
− k2x − k2y

)
̂̃Uy = −ωρ ̂̃Uy

(11b)
(
λ+ µ

) d∆̄

dz
+ µ

(
d2

dz2
− k2x − k2y

)
̂̃Uz = −ωρ ̂̃Uz

(11c)
where the underline indicates the individual lay-
ers and ∆̄ = ∆̄ (kx, ky, z, ω) is the double Fourier
transform of the dilation amplitudes ∆ (x, y, z, ω).
The ordinary differential equation is solved impos-
ing compatibility in vertical displacement and stress
by appropriate boundary conditions at the free sur-
face and layer interfaces. Soils are highly nonlinear
materials, but in order to utilize the Fourier trans-
formation a linear response is assumed.

The derivation of the Green’s function tensor is
based on an assumption of linear elastic, homoge-
neous and isotropic material within each soil layer.
Evaluation of the Green’s functions in the trans-
formed space involves integration in the wavenum-
ber domain corresponding to the coordinates kx, ky
and ω. It is required that the Fourier transformed
spatial field is discribed with satisfactory accuracy
in the wavenumber domain in order to capture the
local peaks in the Green’s function corresponding to
waves propagating in the soil. The Green’s functions
are evaluated along a single wavenumber axis in the

computations and the wavenumber step is controlled
such that the average value between to wavenum-
bers differ less than 1% from the real value. In the
evaluation, a combination of hysteretic and linear
viscous damping is taken into account by using the
loss factor η and introduce complex values for the
Lamé constants,

µ (ω) =
E
(
1 + i

(
signη + ηω

2π100

))

2 (1 + ν)

λ (ω) = 2µ (ω)
ν

1 − 2ν

implying that the hysteretic damping and linear vis-
cous damping are equal at 100 Hz.

The load from the train is transfered to the soil
through the coupling points to the embankment.
To establish the solution for the displacements in
the transformed domain, the surface traction must
also be transformed to the wavenumber domain. A
Gaussian distribution of the load is used, leading to
a bell-shaped load on the surface of the half-space.
This situation is illustrated in Figure 6. The stan-
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Figure 6: Distribution of the load under the embankment.

dard deviation for this Gaussion distribution is set
to 1/6 of the width of the embankment, leading to
a coverage of 99.73% of the load within the width of
the embankment. The traction in Equation (10) is
applied in the form

̂̃P j (kx, ky, ω) = D̂ (kx, ky) P̃j (ω) (12)

where D̂ (kx, ky, ) is a distributed load with total
magnitude 1. Hence the flexibility matrix in spatial
domain is obtained by inverse Fourier transforma-
tion:

G̃ij (x, y, ω) =
1

4π2

∞∫

−∞

∞∫

−∞

̂̃Gij (kx, ky)

× D̂ (kx, ky) ei(kxx+kyy)dkxdky. (13)

For the bell-shaped load, the distribution is de-
scribed by

D̂ (kx, ky) = e−(k2x+k
2
y)

2
r20 (14)

in the wavenumber-domain. By inverting the flex-
ibility matrix, the complex stiffness matrix of the
soil is obtained,

H̃ (ω) = G̃ (x, y, ω)
−1
, (15)
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where the components of G̃ are given by Equa-
tion (13). The complex stiffness matrix can be put
into the finite element formulation of the numerical
model in Equation (3) by the principle of standard
finite element assembly.

4 Numerical simulations

The numerical model is used for simulations of 10
different train speeds in order to investigate when
the dynamic effects are introduced. The response
for the 10 train speeds is simulated in each of the
three numerical models. Furthermore, the load is
modelled in three different ways: as axle loads, as
bogie loads and as a single bogie load. Thus, the
number of simulations is 90. The case of a single
bogie load is to examine if the dynamic effects are
introduced in the same manner as if the entire train
is modelled. The soil profile at Ledsgaard is approx-
imated using five soil layers, the parameters of which
are given in Table 1.

Table 1: Parameters for the soil.

Value Unit
Layer 1 - crust
Height h 1.1 m
Young’s modulus E 11.58·106 Pa
Poisson’s ratio ν 0.49 [-]
Damping coefficient η 0.04 [-]
Mass density ρ 1500 kg/m3

Layer 2 - organic clay
Height h 3.0 m
Young’s modulus E 3.17·106 Pa
Poisson’s ratio ν 0.49 [-]
Damping coefficient η 0.02 [-]
Mass density ρ 1260 kg/m3

Layer 3 - clay
Height h 4.5 m
Young’s modulus E 9.34·106 Pa
Poisson’s ratio ν 0.49 [-]
Damping coefficient η 0.05 [-]
Density ρ 1475 kg/m3

Layer 4 - clay
Height h 6.0 m
Young’s modulus E 16.73·106 Pa
Poisson’s ratio ν 0.49 [-]
Damping coefficient η 0.05 [-]
Mass density ρ 1475 kg/m3

Layer 5 - clay
Height h - m
Young’s modulus E 22.09·106 Pa
Poisson’s ratio ν 0.49 [-]
Damping coefficient η 0.05 [-]
Mass density ρ 1475 kg/m3

The parameters used for modelling the system on
top of the ground are specified in Table 2.

Table 2: Parameters for the track-embankment system.

Value Unit
Model 1 - track/embankment
Cross-sectional area A 10.15 m2

Young’s modulus E 100·106 Pa
Bending stiffness EIy 80·106 Nm2

Mass density ρ 1800 kg/m3

Damping coefficient α 0.01 [-]
Model 2 and 3 - rail
Cross-sectional area A 7.67·10−3 m2

Young’s Modulus E 210·109 Pa
Bending stiffness EIy 6.38·10−6 Nm2

Mass density ρ 7850 kg/m3

Damping coefficient α 0.01 [-]
Model 2 and 3 - sleeper
Horizontal stiffness kh 18.75·109 N/m
Vertical stiffness kv 63.00·109 N/m
Damping coefficient α 0.01 [-]
Model 2 - embankment
Cross-sectional area A 10.15 m2

Young’s modulus E 100·106 Pa
Bending stiffness EIy 80·106 Nm2

Poisson’s ratio ν 0.3 [-]
Shear correction factor ks 0.85 [-]
Mass density ρ 1800 kg/m3

Damping coefficient α 0.01 [-]
Model 2 - embankment-ground coupling
Horizontal stiffness kh 0.46·109 N/m
Vertical stiffness kv 0.38·109 N/m
Damping coefficient α 0.01 [-]
Model 3 - embankment
Height h 1.4 m
Width (top) w 5.5 m
Width (bottom) w 9 m
Young’s modulus E 100·106 Pa
Poisson’s ratio ν 0.3 [-]
Mass density ρ 1800 kg/m3

Damping coefficient α 0.01 [-]

The numerical models are solved in the frequency
range 0 - 30 Hz, due to observations in some pre-
simulations, which indicated that the reponse of the
soil were located below a frequency of 30 Hz. Fig-
ure 7 illustrates the track motion along the track for
different train speeds simulated using the three dif-
ferent models and bogie loads as well as axle loads.
From the figure it is observed that the reponse of
model one and model two is identical. The difference
between modelling the train as bogie or axle loads
are restrcited to a difference in the amplitude, since
the pattern is identical. Furthermore, it is observed
that model three in general underestimates the am-
plitudes. Actually, the reponse in model three is
static for all the train speeds except 280 km/h, in
contrast to model one and two which has dynamic
response at speeds above 120 km/h. For models one
and two it is clearly seen from the figure that the
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Figure 7: Snapshots of the train along the track.

response is static due to the low train speeds and as
the train speed increases the reponse becomes dy-
namic. The position of the train along the railway
track is the same for all train speeds. The instant
position of the train loads is easily identified for the
low train speeds, but for the high train speeds the
position of the train loads are hard to identify. The
figures also show that for the dynamic response, the
tail of free oscillations are present in the range 50 -
100 m behind the train.

The response for a train speed of 70 km/h at the
node located at y = 235 m is illustrated in Figure
8. Figure 8a and 8c illustrate the load time series
and the displacement time series, respectively. Fig-
ures 8b and 8d are corresponding to Figure 8a and
8c where there has been zoomed on the time series
where the train passes the node. Figure 8e illus-
trates the frequency spectrum of the displacement
response. The same graphs are illustrated in Figure
9 for a train speed of 200 km/h.

Obviously some of the same observations is made
as in Figure 7. Model three underestimates the re-
sponse, especially at high train speeds. There is no
significant difference between models one and two.
The difference between modelling the train as bogie
loads or axle loads is in the displacement amplitude
of the response. From Figures 8e and 9e is is clear
that the response in the frequency domain tends

to higher frequencies as the train speed increases.
Thus, at a train speed of 70 km/h the primary re-
sponse is in the range 0 - 2 Hz and for a train speed
of 200 km/h it is in the range 0 - 10 Hz and mostly
in the range 2 - 4 Hz.

The data from the Ledsgaard site have been un-
available to the authors of the present paper, and
that is the reason why Figures 8 and 9 are plotted
for the speeds of 70 km/h and 200 km/h. These
are mainly the plots presented by the papers cited
in Section 2 and thus they provide the possibility
to compare with the measurements from Ledsgaard
presented in these papers. The pattern of response
agrees well with the measurements from Ledsgaard
for models one and two, unlike model three which
does not capture the dynamic effects at the high
train speeds. At low train speed the amplitudes
of the response agrees well with the measurements,
however at the high train speeds the models over-
estimate the displacement amplitudes. The mea-
surements at Ledsgaard show a displacement range
from 0 to -6 mm in the case of a train speed of 70
km/h and in the range from 6 to -15 mm in the
case of a train speed of 200 km/h. This corresponds
to an increase of the peak-to-peak amplitude with
a factor of 3.5. This dynamic amplification for the
simulation models is shown in Figure 10b. Figure
10a illustrates the change in positive and negative
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Figure 8: Response in a point on the track at a train speed of 70 km/h.
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Figure 9: Response in a point on the track at a train speed of 200 km/h.
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Figure 10: Dynamic amplification as function of increasing train speed. (a) absolute value of the displacement in downward
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peak displacement as function of the train speed relative to the Rayleigh wave propagation speed in the second soil
layer.

displacement amplitude due to increase in the train
speed. It is observed that it is the positive ampli-
tude which increases dramatically due to increase in
the train speed and this is also observed in Figure
7. At a train speed of 280 km/h the positive ampli-
tudes has become almost the same at the negative
amplitude. This implies a nearly harmonic response
where the negative amplitude is higher due to the
weight of the train. From the figure it is seen that
the difference between model one and two with bo-
gie or axle loads are almost negligble. This is more
clearly observed in Figure 10b where the four cor-
responding lines are closely related. From this fig-
ure it is evident that the dynamic effects introduced
in model one and two with bogie or axle loads are
also reproduced if only a single load is moving along
the railway. This means that in investigations of
the critical speed the modelling of the load is a sec-
ondary parameter. However, the factor of dynamic
amplification and, obviously, the displacement re-
sponse are not predicted in an identical manner.

It is generally recognized that the critical speed,
i.e. the point of dramatical increase in Figure 10b,
for a homogeneous half-space is directly related to
the Rayleigh wave speed of the material. The wave
speeds in this numerical simulation are given in Ta-
ble 3.

Table 3: Phase speeds of wave propagation.

Soil layer
1 2 3 4 5

cP km/h 1800 1800 5400 5400 5400
cS km/h 259 148 234 313 360
cR km/h 247 141 223 299 344

From Figure 10b is it shown that the critical speed
is around 180 km/h. This critical speed is hard
to identify from Table 3, thus the critical speed
may not be predictable by information regarding the
wave speeds in the individual soil layers. The critical
speed is somehow a combination depending on the
wave speeds in the individual layers, the height of
the layer and the order of them. A more precise pre-
diction may be obtained using dispersion diagrams.
The dispersion diagrams related to the soil profile
used to represent the Ledsgaard site in the numeri-
cal simulations are shown in Figure 11.

From Figure 7b the simulation with a speed of 180
km/h has the highest dynamic effects and the line
corresponding to this speed is illustrated in Figure
11. It then becomes evident why this speed causes
the highest dynamic response. The line of the train
speed crosses and afterwards follows the curve of
the high amplitude in the dispersion diagrams, i.e.
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Figure 11: Dispersion diagrams with dispersion curves for P, S and Rayleigh (R) waves in layer 1-5 and for the train speed 180
km/h. Dark red colours indicate high response levels.

a speed of 180 km/h excites the critical combination
of frequency and wavenumber in the ground. From
Figure 9e it is observed that the frequency spectrum
of the response for a train speed of 180 km/h is in the
range of 0 - 10 Hz highly concentrated in the range
2 - 4 Hz. This is consistent with the observation in
Figure 11c and 11d, where the peak amplitude fades
out around 10 Hz and the crossing of the peak am-
plitude is in the region of 5 Hz. Thus, it is possible
to identify the critical speed from the dispersion dia-
grams, i.e. the train speeds should form a dispersion
curve which does not cross or follow the dispersion
curves for wave propagation in the system.

5 Conclusion

This paper presented three models to simulate the
dynamic amplifications of deformations in railways
due to high-speed trains on soft ground. In all
three models the ground is model as a layered
half-space. In the first model, the
track-embankment system is modelled as a
Euler-Bernoulli beam. In the second model, the
rail is still modelled as a Euler-Bernoulli beam, but
the embankment is modelled as a Timoshenko
beam. The coupling between the two beams is a
spring/damper system with the property as a
railway sleeper. The coupling between the
embankment and the ground is modelled as a

consistent spring/damper system. In the third
model, the rail is modelled as a Euler-Bernoulli
beam and the embankment as continuum finite
elements with the same coupling as the second
model. To validate the model, the Ledsgaard case
from Sweden is used. The Ledsgaard case is a site
on the railway line between Malmö and
Gothenburg in Sweden, where a velocity upgrade
in 1997 caused a significant increase in the
vibrations of the surrounding soil and a large study
with appurtenant measurements was performed.
Simulations are performed with the three models
with the train load modelled as a single load, bogie
loads and axle loads. The two first models give
almost equal results, where the third model gives
results smaller than the two others. Compared
with the measurements from Ledsgaard the first
two models overestimating the displacement
amplitudes where the third model leads to an
underestimation. The third model does not
establish the dynamic amplification, where the two
first models perform very well. All three methods
to model the train loads establish the dynamic
amplification but give a difference in the
displacements. Hence, it may be concluded that
the simple model with the track and embankment
modelled as a single beam can be used. However,
the full pattern of axle loads must be accounted
for.
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Abstract

The phenomenon of dynamic amplification of the displacement response has been observed at several
locations as a result of increasing train speeds. The phenomenon is mainly restricted to locations with
high-speed traffic on soft ground, where the speed of the train approaches the speed of the surface waves in
the ground. A parameter study designed to identify the importance of the soil properties in the subsoil is
performed. Individual soil paramers are studied as well as the stratification and the stiffness of the overlying
embankment. The parameter study is based on a numerical model which models the track-embankment-
subsoil system as a Euler-Bernoulli beam interacting with a layered half-space.

1 Introduction

The implementation of high-speed trains has en-
abled the possibility of implementing an one-hour
model in the Danish railway traffic. The one-
hour model is intended to ensure that the travel-
ling time between the larger cities in Denmark does
not exceed one hour. The railway lines included
are Copenhagen-Odense, Odense-Aarhus, Aarhus-
Aalborg and Odense-Esbjerg and today the train
speed is in the range of 120-180 km/h on the re-
ferred railway lines. In order to be designated as
high-speed trains, the speed of the train has to be
at least 200 km/h.

A similar upgrade, at the Ledsgaard site on the
railway line between Malmö and Gothenburg in
Sweden, caused a significant increase in the vibra-
tions of the surrounding soil, cf. Adolfsson et al.
(1999). Due to the experience at Ledsgaard, the
dynamic effects caused by high-speed trains is an
important phenomenon to investigate. The phe-
nomenon has environmental effects related with nui-
sance to people in buildings near the railway lines
as well as structural consequences which may com-
promise the stability and safety. The worst-case sce-
nario would be derailment of the train.

1.1 Observations and measurements

Due to the implementation of high-speed trains the
study of railway vibrations has recieved increasing
attention. However, the attention seems to be more

in the theoretical than the experimental part. Data
from field measurements are hardly available in the
litterature, eventhough Woldringh and New (1999)
report on a small amount of data of measurements
conducted at three different sites.

At Stilton Fen in the United Kingdom measure-
ment of the vertical deflections due to trains trav-
elling at speeds in the range 130 to 180 km/h were
conducted in 1993. The embankment consisted of
ballast and ash to a depth of about 2.6 m and a thin
layer of silty sand and gravel which overlies peat and
very soft silty clay. The peak-to-peak deflections at
relatively low speeds were 5 mm, whereas it was 12
mm at the highest speed.

At a specific location on the railway line between
Amsterdam and Utrecht in the Netherlands simi-
lar mesurements were conducted — here with trains
speeds in the range of 40 to 200 km/h on an em-
bankment consisting of 2 m of sand fill over 6 m soft
clay and peat layers. The peak-to-peak deflections
were in the range 0.6 to 1.9 mm for the tested train
speeds.

At the Ledsgaard site the testing was conducted
at train speeds in the range 10 to 204 km/h. The
embankment consisted of 1.4 m crushed bedrock and
gravel underlayered by a 1.5 m dry weathered crust
layer over a 3.0 m thick layer of soft organic clay.
Under the soft organic clay a deposit of soft marine
clay is present, having a thickness of more than 50
m and beneath this bedrock is present. In this case
the peak-to-peak deflections were in the range of 6
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to 17 mm.
From these test sites, it is obvious that increased

vibration due to high-speed trains develope, which
in this paper will be referred to as the dynamic ef-
fect. Unfortunately, the availability of data from
field measurements are generally very limited, mean-
ing that evaluating trends in the response from mea-
surement is a challenging task. However, in order to
clarify the phenomenon and understand the mecha-
nism of the behaviour, measurements with varying
train speeds are needed as well as investigations of
the properties of the embankment and geotechnical
conditions and the geodynamic properties of the soil
materials. Thus, the investigations are comprehen-
sive.

As can be seen from the data reported by
Woldringh and New (1999) the dynamic effect of
high train speeds is observed at all three loca-
tions, even at the location between Amsterdam and
Utrecht where the deflections are rather small com-
pared to the two other sites. The fact that the
magnitude of the deflections are very different, even
though the soil profile to some extent is quite simi-
lar, implies that the properties of the materials and
the structure strongly influences the response of the
structure and surrounding soil. The strong influence
of the soil profile, the stiffness and the damping of
the soil on the vibration levels is also recognized by
Auersch (1994). Therefore, it may be impossible to
predict the response at a given site from field mea-
surements at a similar site. Thus, a mathematical
model of the train-structure-soil interaction may ac-
tually be more beneficial.

In order to validate and calibrate such mathemati-
cal models the usage of field measurements would be
a prefarable tool. Eventhough the amount of data
in general is limited, a comprehensive investigation
was conducted in relation to the dynamic effects ob-
served at Ledsgaard in Sweden. The investigations
compromise a total of 20 test runs with different
train speeds as well as determination of the mate-
rial and geotechnical properties at the site. This
data provides an unique opportunity to reproduce
the phenomena through mathematical models.

From analysis of the data regarding the dynamic
behavior of the system Madshus and Kaynia (2000)
and Kaynia et al. (2000) came to the conclusion that
the displacement field can be divided into two sub-
parts, a quasi-static part and a dynamic part. The
quasi-static field containes downward displacements
due to the mass of the train simply moving with
the load. The dynamic field contains displacements
with equally upward and downward amplitudes and
free oscillations follows behind the train.

1.2 Dynamic effects

The dynamic effects of the soil is due to wave propa-
gation in the medium. Mainly three different waves

are usually encountered in the soil: primary waves,
secondary waves and Rayleigh waves denoted P-
waves, S-waves and R-waves, respectively. The P-
waves are pressure waves, the S-waves are shear
waves and the Rayleigh waves are a combination
of pressure and shear waves propagating in the sur-
face og the ground. The phase velocities of the wave
types are

cP =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
, (1)

cR =
0.87 + 1.12ν

1 + ν
cS ,

where ν is the Poisson’s ratio, ρ is the mass density,
and µ and λ are the Lamé constants. Since the
Lamé constants are positive, cP > cS > cR. In an
isotropic, elastic material, and in a fixed frame of
reference, the waves propagates at the characteristic
speed in all directions.

Mixing of different wave types may take place in
an interface between two soil layers or at a bound-
ary. At a fixed or free boundary the waves are fully
reflected into the indigenous material, and at a layer
interface part of the energy is transmitted from one
layer to another, and the remaining part of the en-
ergy is reflected. The relation between the transmit-
ted and the reflected energy is described using the
mechanical impedance of the two materials on either
side of the interface. The mechanical impedance is
given by

Z = ρc

where ρ is the mass density and c is the phase speed
of the wave. The transmission and reflection co-
efficient Ct and Cr, respectively, with regard to the
particle velocities and displacements in two adjacent
materials are given by

Ct =
2

1 + Z2

Z1

, Cr = Ct − 1

The transmission and reflection coefficient, respec-
tively, with regard to the energy in two adjacent
materials are given by

Et =
Z2

Z1
C2
t , 1 = Et + Er

Obviously, all the energy is transmitted if Z2/Z1 =
1 and consequently no energy is transmitted if
Z2/Z1 → 0. The main observation is, that
the impedance mismatch between two materials is
closely related to the transmission and reflection at
the interface.

1.3 Mathematic model for parametric studies

The aim of this paper is to conduct a parametric
study on which parameters are important in relation
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to the dynamic effects of the response due to high-
speed trains. The parametric study is performed
using a numerical model to simulate the situation
of a train moving along a railway track. In order
to ensure selection of an reliabel model, a littera-
ture study of models validated using the data from
Ledsgaard is performed.

The simulations performed by Kaynia et al.
(2000) and Paolucci et al. (2003) reproduces the
measurements well regarding both pattern and am-
plitude. The situation is modelled as a beam inter-
acting with a horizontally layered viscoelastic half-
space and a beam interacting with an elastic foun-
dation, respectively. The model by Kaynia et al.
(2000) was developed further by Madshus and Kay-
nia (2000) to account for non-linear behaviour of the
materials. The simulations, especially the pattern
of response, agrees with the measurements. Karl-
ström and Boström (2006) used a Euler-Bernoulli
beam and an anisotropic Kirchhoff plate to model
the rails and the sleepers, respectively. The embank-
ment and the ground is modelled as viscoelastic ma-
terials. For low train speeds the simulations agree
almost exactly, and in general a good agreement
was observed. Inspired by Madshus and Kaynia
(2000), the model developed by Costa et al. (2010)
also takes the non-linearity into account. The rails
are modelled as Euler-Bernoulli beams connected to
the embankment via a spring/damper system form-
ing the rail pads. The embankment and the ground
is modelled using 2.5D finite elements. Investiga-
tion of the inclusion of the non-linearty was per-
formed and showed that excluding the non-linearity
underestimated the amplitudes while good agree-
ment was observed when non-linearity was included.
Also Takemiya (2003) included non-linearity in a
model composing of a Euler-Bernoulli beam and a
layered viscoelastic half-space. The agreement with
measurement was much better at low train speeds
compared to high train speeds. Based on this review
it is very common to model the situation of a train
moving along a railway track as a beam interacting
with a half-space. The same approach was taken
by Holm et al. (2014), however also two other mod-
els were investigated. The second model consisted
of a Euler-Bernoulli beam representing the rail, a
Timoshenko beam modelling the embankment and a
layered half-space modelling the ground. The third
model also uses a Euler-Bernoulli beam to model the
rails and then 2D finite elements and a layered half-
space to model the embankment and the ground,
respectively.

The parametric study in this paper is performed
adopting the first model by Holm et al. (2014), i.e. a
model with a Euler-Bernoulli beam on top of a half-
space. A detailed description of the model is given
by Holm et al. (2014), while the main structure is
summarised in Section 2. The aim of this paper
is to study the importance of different parameters

regarding the amount af dynamic amplification as
well as the point of introduction of the dynamic ef-
fects. The reference case in this parameter study
is presented in Section 3 along with a pre-study in-
vestigating the performance of the model in order
to ensure representative results. In Section 4.1 the
importance of some of the soil parameters is stud-
ied. In section 4.2 the depth of the top-layer in a
two-layered stratum is studied and in Section 4.3
the influence of the embankment stiffness is investi-
gated. In general the parametric study is conducted
for homogeneous half-spaces as well as two-layered
half-spaces.

2 The simulation model

An overall illustration of the situation the numerical
model is to analyse is given in Figure 1. The fig-
ure illustrates a train moving along a railway track
supported by an embankment placed on the ground
surface.

V

Figure 1: A part of the train moving along the railway sys-
tem comprimising the rails, embankment and the
ground.

Numerically, the system is modelled using an or-
dinary finite-element (FE) formulation, i.e. charac-
terizing it by a mass matrix, a damping matrix and
a stiffness matrix.

The rails and the embankment are modelled as
Euler-Bernoulli beam finite elements with transla-
tional degrees of freedom in the vertical and longi-
tudinal direction as well as a rotational degree of
freedom around the transverse direction. Thus, the
stiffness and mass matrices of each element are given
by the solution for a 2D Euler-Bernoulli beam ele-
ment,

K = function (L,E,A, Iy) , (2)

M = function (L, ρ,A, Iy) , (3)

where L is the length, E the Young’s modulus, ρ
the mass density, A the cross-sectional area and Iy
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Figure 2: Axle distances and loads of the X2000 passenger train used at the test program at Ledsgaard.

the second moment of inertia of the beam element.
The damping of the track-embankment system is
introduced by a structural damping model, which
provides damping proportional to the stiffness as

C = αK , (4)

where α is a damping constant.

The soil is modelled using discrete Green’s func-
tions describing the flexibility of the soil, i.e. the
wave field in the longitudinal, transverse and ver-
tical directions. The embankment is connected to
the ground through a number of points along the
railway and these points coincide with the nodes
in the modelling of the rail and embankment using
beam elements. Thus, an extra degree of freedom
is added in each node due to wave propagation in
three dimensions. The discrete Green’s functions
are obtained by transforming the Cauchy equation
of motion in each soil layer to an ordinary differen-
tial equation applying Fourier transformation with
regard to the horizontal coordinates x and y and the
time t. The ordinary differential equation is solved
imposing compatibility in vertical displacement and
stress by appropriate boundary conditions at the
free surface and layer interfaces. The derivation of
the Green’s function tensor is based on an assump-
tion of linear elastic, homogeneous and isotropic
material within each soil layer. Application of the
Fourier transformation implies that linear response
is assumed.

The discrete Green’s functions are assembled in
a dynamic flexibility matrix. The application of
Fourier transformation from the time domain to the
frequency domain means that a complex dynamic
flexibility matrix for the soil is obtained for each
single frequency. Thus, the system is solved in the
frequency domain. In order to do this, the stiffness,
damping and mass of the track-embankment system
is converted to a complex dynamic stiffness matrix
by

K̃ (ω) = −ω2M + iC + K. (5)

Inverting the flexibility matrix of the soil it becomes
an equivalent dynamic stiffness matrix, which can
by combined with the dynamic stiffness matrix in
Equation (5), and then the displacements of the sys-

tem in the frequency domain is solved using

K̃ (ω)Ũ (ω) = F̃ (ω) (6)

K̃ (ω) =

[
K̃11 (ω) K̃12 (ω)

K̃21 (ω) K̃22 (ω) + H̃ (ω)
−1

]
(7)

where K̃11 refers to the rotational degrees of free-
dom in the system, K̃22 refers to the translational
degrees of freedom, H̃ (ωj) is the dynamic flexibility

matrix of the soil and F̃ (ωj) is the Fourier transform
of the discrete time series for the load. The time-
domain solution of the discrete time series of the
displacements is found using inverse Fourier trans-
formation.

The discrete time series for the load is determined
from a series of axle loads moving with constant
speed along the railway track. In reality the forces
consist of a quasi-static term due to the mass of
the train moving along the railway and a dynamic
term due to track irregularities and vehicle defects,
e.g. wheel flats. In the analysis the train is decou-
pled from the track, implying that the interaction
between the rails and the train is neglected. Fur-
thermore, the dynamic term due to track irregular-
ities and vehicle defects is omitted, thus the train is
modelled as a series of constant loads moving with
constant speed along the railway. For a visco-elastic
half-space exposed to moving loads Yang and Hung
(2009) studied the influence of the number of loads.
It was observed that an increase in number of loads
caused an increase in the displacement, whereas the
velocity and acceleration of the soil remained un-
changed. Holm et al. (2014) also studied this and
found that the dynamic amplification is identified
regardless of the number of loads. However, the dis-
placement amplitude and, obviously, the response
pattern depends on the number of loads.

In the present analysis the axle loads are modelled
in accordance with the train used in the investiga-
tions at Ledsgaard in Sweden. The train consist of
an engine and four cars, having a total length of
approximately 109 m. The axle loads and spacing
distances are illustrated in Figure 2.

The numerical model are constructed using 500
beam elements along the track meaning that the sys-
tem has 2004 degrees of freedom. The length of the
beam finite elements is 0.67 m which is equivalent
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to the distance between the sleepers at the Leds-
gaard site. Thus, the model has a total length of
335 m. When the axles are in a position between
two nodes in the finite element system, the loads
are distributed to the nodes using the cubic shape
functions for the beam elements.

3 The reference case

A good practice in the case of a parameter study is
to set up a reference case. Then the results after a
change in a given parameter are compared with the
results from the reference case and then the influence
of the parameter can be evaluated.

In the numerical model the series of moving loads
representing the moving train are decoupled from
the track. Hence, the interaction between the
train and the track-embankment structure is ne-
glected. The numerical model is constructed us-
ing a Euler-Bernoulli beam interacting with an elas-
tic half-space. The beam representing the track-
embankment system is decribed by Equations (2)-
(4) and the parameters for the beam representing
the track-embankment system are inspired from the
Ledsgaard site and are given in Table 1.

Table 1: Parameters for the rail-embankment system.

Value Unit
Rail/embankment
Cross-sectional area A 10.15 m2

Young’s modulus E 100·106 Pa
Bending stiffness EIy 80·106 Nm2

Mass density ρ 1800 kg/m3

Damping coefficient α 0.01 [-]

The cross-sectional area are determined by con-
sidering the embankment as a 1.4 m high trapezoidal
form with a width of 5.5 m in the top and a width
of 9 m in the bottom. The Young’s modulus and
the mass density is believed to represent the mate-
rial used for construction of an embankment in a
reasonable way. A stiffness proportional damping is
introcuded in the structure with a magnitude of 1%.
According to Kaynia et al. (2000) the bending stiff-
ness is dependent on the train speed in the sense
that for high train speeds the stiffness of the em-
bankment is lower than at low train speeds. Kaynia
et al. (2000) estimated the bending stiffness at the
speeds of 70 and 200 km/h and the value adopted in
the reference case is at a train speed of 200 km/h.
The influence of the bending stiffness of the track-
embankment structure is investigated in the param-
eter study in order to examine the importance of the
parameter.

The soil is modelled as an elastic half-space. Dif-
ferent stratifications of the half-space is considered
in the parameter study. The stratifications is a
combination of the materials sand, clay and peat.

Hence, materials with significant deviation in the
characteristic soil parameters are investigated. The
reference parameters for these types of soils are
given in Table 2.

Table 2: The soil parameters for the reference cases.

Symbol Value Unit
Peat
Young’s modulus E 4·106 Pa
Poisson’s ratio ν 0.48 [-]
Material damping η 0.05 [-]
Mass density ρ 1300 kg/m3

P-wave speed cP 592 km/h
S-wave speed cS 116 km/h
R-wave speed cR 110 km/h
Sand
Young’s modulus E 160·106 Pa
Poisson’s ratio ν 0.40 [-]
Material damping η 0.04 [-]
Mass density ρ 2000 kg/m3

P-wave speed cP 1490 km/h
S-wave speed cS 608 km/h
R-wave speed cR 570 km/h
Clay
Young’s modulus E 15·106 Pa
Poisson’s ratio ν 0.30 [-]
Material damping η 0.045 [-]
Mass density ρ 2000 kg/m3

P-wave speed cP 398 km/h
S-wave speed cS 193 km/h
R-wave speed cR 177 km/h

In the parameter study four reference cases are
made from these soil materials - two homogeneous
half-spaces and two layered half-spaces. The homo-
geneous half-spaces consist of sand and clay, respec-
tively. Thereby, the difference in behaviour of these
materials are examined. However, homogeneous soil
conditions are infrequent and therefore the situation
of a two layered half-space is considered as well. The
bottommost layers in the two layered half-spaces are
the same sand and clay material as used in the ho-
mogeneous half-spaces. The top-layer in the two
stratifications is a 2 m thick deposit of peat.

3.1 Prestudy of the numerical model

The performance of the numerical model, which is
adopted from Holm et al. (2014), is investigated
in order to ensure representative results. In the
prestudy simulations with a homogeneous half-spae
of sand and the two-layered half-space of sand and
peat are considered. The constant speed v of the
train in the simulations are ranging from 0.1 to 1.0
of the Rayleigh wave velocity of the sand layer. The
reponse of the system for a variety of the simulations
are illustrated in Figures 3 to 6.

Figures 3 and 4 illustrate the response along the
track for the situations with the homogeneous half-
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Figure 3: The vertical displacement response at different train speeds on a homogenous half-space. In (a) the front axle of the
train is placed at 1/3 of the track length, in (b) 2/3 of the track length and in (c) 3/3 of the track length.
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Figure 4: The vertical displacement response at different train speeds on a two-layered half-space. In (a) the front axle of the
train is placed at 1/3 of the track length, in (b) 2/3 of the track length and in (c) 3/3 of the track length.
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Figure 5: The vertical response for four different nodes at four relative speeds on a homogenous half-space.
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Figure 6: The vertical response for four different nodes at four relative speeds on a two-layered half-space.

7



space and the layered half-space, respectively. As
outlined in Section 2, the railway track in the model
has a total length of 335 m and the total length of
the train is approximately 109 m. At the beginning
of each simulation the train is located within the
first 109 m of the model; thus the response of the
system as the front axle of the train passes the 1/3
point in the model is only developed to a minimum.
This is the situation illustrated in Figures 3a and
4a. As the train travels further through the model
and the front axle passes the 2/3 point, the response
becomes more pronounced. This is illustrated in
Figures 3b and 4b. To confirm if the response of
the system is fully developed when the front axle is
located at the 2/3 point, the response of the system
is calculated when the front axle of the train has
travelled to the end of the model. This is illustrated
in Figures 3c and 4c. The response patterns are
almost identical, indicating that the responses of the
system are fully developed.

From Figures 3 and 4 it can be seen that the re-
ponse patterns of the system for low train speeds are
almost identical for the homogeneous and the lay-
ered half-space, due to the quasi-static state. How-
ever, when the speed of the train increases the re-
sponse pattern becomes remarkably different. When
the train moves along the homogeneous half-space,
the positions of the individual axles are relatively
simple to identify as in the case of low train speeds.
However, for the statified half-space the response re-
calls a harmonic-like condition which only indicates
the position of the front axle. In the case of the
homogeneous half-space, a tail of free oscillations
are following the train at the largest train speed,
whereas the tail of free oscillations occurs at even
lower train speeds and is much longer in the case of
the layered half-space.

As an alternative to considering the response of
the entire railway track, the response of nodes at dif-
ferent locations along the railway track is presented
in Figures 5 and 6. Similarly to the observations
made from Figures 3 and 4 the passage of each axle is
relatively simply to identify for the low train speed,
and for the homogeneous half-space also in the case
of high train speeds. Comparing the nodal response
in each simulation indicates that the pattern and
displacement amplitude in the nodes located at a
position of 201 m, 235 m and 302 m along the track
are identical, with the node located at 134 m along
the track having slightly lower displacement ampli-
tudes because the response is not fully developed.

For the homogeneous half-space it is evident that
the dynamic effects increase as the speed of the train
tends to the Rayleigh wave speed of sand. In the
case of the layered half-space the dynamic effect has
a peak at the train speed of 60% of the Rayleigh
wave speed of the sand. This can be explained by
the presence of the peat layer which has a much
lower Rayleigh wave speed.

Figures 3 to 6 shows that the presence of the 2 m
of peat over the sand layer has a huge impact on the
displacement amplitude. The tail of free oscillations
behind the train increases in length as well as am-
plitude, and the increase in displacement amplitude
is in general recognized.

From the observations made from Figures 3 to 6,
the results compared in the subsequent parameter
study (see Section 4) is based on an average value
from the nodes in the range 201 m to 235 m along
the track, since this indicates that the effects due to
moving sources is fully developed in the model and
the boundary effects of the finite track are insignifi-
cant. In the parameter study, simulations providing
figures corresponding to those presented for the ref-
erence cases of a homogenous half-space of sand and
a layered half-space of sand and peat are carried out.
However, the results are presented in a different way.

Considering the four reference cases and in addi-
tion a homogeneous half-space of the peat material,
the genesis of the figures presented in the paramter
study is outlined. For each of the five different strat-
ifications seven simulations are carried out, where
the speed of the train is varying in the simulation.
Otherwise, all the input parameters are the same.
Train speeds in the range 0.1 to 1.0 of the Rayleigh
wave speed are considered. In the case of the lay-
ered half-spaces it is the Rayleigh wave speed of the
bottommost layer. The results of the simulations
are illustrated in Figure 7. The two subfigures to
the left consider the homogeneous half-spaces and
the two subfigures at the right consider the layered
half-spaces. In the subfigures (a) and (b) the ab-
solute values of the magnitude of the upward and
downward displacement are plotted. The dashed
line describes the upward displacements and the full
line describes the downward displacement. The am-
plitude is taken as the maximum peak amplitude in
the node response. Examples of the node response
is given in Figure 5 and 6. The upward displace-
ments are small at low train speeds, whereas the
downward displacements are significant due to the
weight of the train. The subplots (c) and (d)in Fig-
ure 7 are based on the peak amplitudes, simply by
adding the absolute values of the peak amplitudes,
resulting in a measure of the total amplitude. This
value is normalized with respect to the total ampli-
tude at the lowest train speed. In this manner the
first point will always have the value of 1.0 and the
value at the other train speeds is the factor of dy-
namic amplification due to increasing train speed.
The plots are made as function of the train speed
in all the subplots, however in the bottommost sub-
plots the train speed is normalized with respect to
the Rayleigh wave speed. In the case of the lay-
ered half-spaces it is the Rayleigh wave speed of the
bottommost layer.

In the case of homogeneous half-spaces, the pat-
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Figure 7: The dynamic amplifications do to the reference cases. Subplots (a) and (c) are related to the homogeneous half-spaces
and the subplots (b) and (d) are related to the two-layered half-spaces.

tern of the graphs are quite similar; however, the
values are very different due to the significantly dif-
ferent stiffness of the soils. In the plot of the dy-
namic amplification it is observed that the amplifi-
cation is highest for the half-space of sand, but as
seen in subplot (a), the magnitudes of the displace-
ments are much smaller than for the clay and peat
materials.

In the case of layered half-spaces the pattern is
very different. This is clearly seen in subplot (d),
where the situation with clay as the underlying ma-
terial follows a pattern similar to the case of the
homogeneous half-space of clay, with the difference
being stated in the factor of dynamic amplification
which is highest in the case of a layered half-space.
In the case with sand, the dynamic amplification
is almost doubled compared to the situation of a
homogeneous half-space of sand. Furthermore, the
graph shows a peak around a normalized speed of
0.5-0.6. This corresponds to the observations made
from Figure 6.

Comparing the two subplots (a) and (b) it is
clear, that the displacement amplitudes increase sig-
ficantly when a homogeneous half-space of sand is
compared to the layered half-space with sand as the
underlying material. Thus, the presence of a peat
layer has a significant influence. The same com-
parison between the two situations with clay, re-
veals that the influence is much less significant. The
reason for this is the significant difference between

the sand and the peat material, whereas the clay
and peat materials are closer related, due to the
impedance mismatch discussed in Section 1.2.

From the two subplots (a) and (b) it is observed
that for increasing train speeds the upward displace-
ment amplitude tends to attain the same magnitude
as the downward displacement amplitude. This is
clearly observed for the layered half-space consist-
ing of peat and sand, where the displacement am-
plitudes are almost alike for high train speeds, but
still with the downward displacement amplitude as
the largest, presumably due to the weight of the
train.

9



4 Parameter study

In this section the sensitivity regarding some of the
input parameters in the numerical model is studied.

4.1 The influence of the soil parameters

In the numerical model the soil is described by
Youngs’s modulus, Poisson’s ratio, the mass density
and the material damping. These parameters are
used for the calculation of the characteristic wave
speeds in the soil using Equation (1) with the com-
plex Lamé constants difined as

µ (ω) =
E
(
1 + i

(
signη + ηω

2π100

))

2 (1 + ν)

λ (ω) = 2µ (ω)
ν

1− 2ν

implying that hysteretic damping in combination
with linear viscous damping is used in the model
and that the hysteretic damping and linear viscous
damping are equal at 100 Hz.

In the parameter study the influence of a change
in these parameters are studied. However, the influ-
ence of the mass density is not considered, since this
parameter is assumed to be of minor variation and
it is relatively easy obtained by simple field tests. In
the case of the layered half-spaces it is the soil pa-
rameters in the top-layer of peat which are varied.

• The Young’s modulus is the primary parameter
dictating the wave speeds in the soil materials.
An increase of Young’s modulus leads to an in-
crease of the wave speeds in the material.

• Also, Poisson’s ratio has an influence on the
wave speeds. An increase of Poisson’s ratio will
lead to an increase in the speed of the waves, es-
pecially the speed of the P-wave becomes large
in comparison with the S-wave and Rayleigh
wave. Poisson’s ratio of soil is dependent on
the material and if it is drained or undrained
behaviour. If soil behaves undrained, Poisson’s
ratio goes towards a value of 0.5.

• The material damping occurs due to the trans-
formation of mechanical energy into thermic en-
ergy. It describes the damping in the material
and often no reliable information exist about
the energy loss (Andersen, 2006). Therefore it
is of interest to investigate the influence of the
loss factor.

The results due to the variation of the parameters
are shown in Figures 8 to 10.

In Figure 8 where a homogeneous half-space is
considered in the two plots (a) and (c), it is shown
in (c) that the strong increase in the dynamic am-
plification is between 0.7-0.9 of the Rayleigh wave
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Figure 8: The Young’s modulus influence on the dynamic amplification for a homogenous half-space and for a two-layered
half-space of peat over sand and of peat over clay. In the upper plot the dashed symbolise the positive displacements
and the solid line the absolute value of the negative displacements.
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speed more or less independently of Young’s mod-
ulus. The amplitude of the dynamic amplification
is dependent on Young’s modulus and the tendency
is that an increase in Young’s modulus gives rise
to an increase in the amplitude. For the two lay-
ered half-spaces, the Figures 8(b) and 8(d) indicate
that Young’s modulus has a significant influence on
the dynamic amplification. A low Young’s modu-
lus leads to a strong decrease in the train speed for
which the dynamic amplification increases. This can
be explained by the increase of the impedance ratio
between the two materials. The more the two mate-
rials behave like each other, in therms of mechanical
impedance the more energy will be transmitted.

On Figure 9, the dynamic amplification is shown
for different values of Poisson’s ratio. For Figures 9
(a) and (c) where homogenous half-spaces of sand
and clay are considered, it is shown that Poisson’s
ratio does not have an influence on when the dy-
namic amplification occurs. For the two layered
half-space in Figures 9 (b) and (d) Poisson’s ratio for
the peat is varied. The reference value is 0.48 due
to the assumption of a nearly undrain behaviour. If
the peat was drained, Poisson’s ratio would decrease
and two lower values are considered. As shown in
the figures, a decrease of Poisson’s ratio leads to an
increase of the magnitude of the dynamic amplifica-
tion, but still there is no influence on the train speed
that leads to dynamic amplification.

Figures 10 (a) and (c), where homogenous half-
spaces of sand and clay are considered, indicate that
the loss factor does not have an influence on when
the strong increase in the dynamic amplification oc-
curs, but a low loss factor gives rise to a increasing
magnitude of the dynamic amplification. In Figure
10 (a) it can be observed that the loss factor has no
influence on the negative displacement, but a vari-
ation in the positive displacements is recorded. A
larger loss factor gives a smaller positive displace-
ment. For the two-layered half-space, reported in
Figures 10 (a) and (c), a decrease of the loss factor
from 0.05 to 0.02 (in the peat over sand and clay,
respectively) indicates that the loss factor has no
major influence on the dynamic amplification.

4.2 The depth of the topsoil layer

In the following study the depth of the upper layer
is varied. The reference depth of the peat layer is
2 m. The depth of the layer has an influence on
which waves that occur in the soil and the Rayleigh
wave has almost all energy in a depth two times the
length of the Rayleigh wave. This means that if
the upper layer has a depth larger than two times
the length of the Rayleigh wave, the Rayleigh wave
will not interact with the layer below. Formally the
Rayleigh wave only exists in this case. In Figure
11 (b) the dynamic amplification is shown, and it
can be seen that an increase of the depth of the soft

layer causes a decrease in the train speed at which
the dynamic amplification occurs. The explanation
of this can be that with an increase of the depth of
the soft top-layer, the real surface wave speed for the
soil profile will decrease and go towards the Rayleigh
wave speed for the peat.

4.3 Stiffness of the embankment

The bending stiffness of the track-embankment
structure is a difficult size to determine accurately,
since it can be discussed how much of the embank-
ment that contributes to the bending stiffness and
it can be discussed what line the embankment has
rotation in. In addition, a solution of the problem of
the dynamic amplification may be an improvement
of the embankment. Therefore, the bending stiff-
ness of the embankment is a central value to inves-
tigate for the impact on the dynamic amplification.
As shown in Figure 12 an increase in the bending
stiffness of the track-embankment structure means
that the dynamic amplification is reduced and the
reduction increases as the train speed goes towards
the Rayleigh wave speed. The figures for the two-
layered half-spaces, i.e. Figures12 (b) and (d) indi-
cate that at increase of the bending stiffness move
the point where the dynamic amplification increases.
The magnitudes of amplification have their maxima
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Figure 11: The depth of the soft peat layers impact on the
dynamic amplification for a two layered half-space
of peat over sand and of peat over clay. In the
upper plot the dashed symbolise the positive dis-
placements and the solid line the absolute value
of the negative displacements.
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Figure 12: The bending stifness of the embankment influens on the dynamic amplification for a homogenous half-space and
for a two layered half-space of peat over sand and of peat over clay. In the upper plots the dashed symbolise the
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at 0.6 of the Rayleigh wave speed of the sand for the
profile with peat over sand. For the profile with peat
over clay, the visible maxima are at the Rayleigh
wave speed of the clay.

5 Conclusion

On various locations the dynamic amplification of
deformations in railways has shown to be a factor
which can be critical. In this paper a parameter
study of the dynamic amplification of deformations
in railways due to high-speed trains has been pre-
sented. The study is based on a numerical model
where the ground is modelled as a homogeneous or
layered half-space and the track-embankment struc-
ture is modelled as a Euler-Bernoulli beam.

As a base for the parameter study some reference
cases are set up including both a homogenous half-
space and a two-layered half-space with a soft layer
over a stiffer layer. Before the studies of the param-
eters, some considerations to secure reliable results
from the model are done.

The parameter study indicates that the bending
stiffness of the track-embankment structure does
have an influence on the train speed at which dy-
namic amplification occurs, but it has no influence
on the magnitude of the dynamic amplification. The

depth of a soft layer over a stiffer layer has an influ-
ence on when the dynamic amplification occurs as
well as on the magnitude.

In the study of the influence of the soil param-
eters, it is observed that the Young’s modulus has
a significant influence regarding the train speed at
which the phenomenon of dynamic amplification oc-
curs, but if the speed is normalised with respect to
the Rayleigh wave speed for the soil, it occurs at the
same point. The values of Poisson’s ratio and the
material damping are of minor importance. From
the simulations it is observed that the stratification
in general has a significant impact on the response;
hence focus should be on the stratification rather
than the exact value of the parameters — except
the stiffness in terms of Young’s modulus. Espe-
cially the relative stiffness of a top-layer compared
to that of an underlying half-space has been formed
to be crucial regarding dynamic amplification.
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Genius hits a target no one else can see.
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