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Preface

This project ismade in the period: 03-02-2014 to 10-06-2014. The project theme is "Imperfections

in Structural Columns" on the 4th semester of the Master program in Structural and Civil

Engineering under the School of Engineering and Science at Aalborg University.

Knowledge from previous semesters and earlier projects will be used as basis of the project.

Readers Guide

Through thisMaster thesis, the HarvardMethod is used to refer to all sources, by [Surname, year],

except for references to the Standards which will be referred to as [Standard, year]. Three main

sources of literature are used, namely books, articles and technical reports, which are all listed in

the bibliography, located at the end of the thesis. For sources with more than a two authors, only

the main author will be mentioned by name, while other contributing authors are mentioned

as "et al.". Sources on figures are displayed in the caption below the figure. Figures, tables and

equation are numbered, regarding to the present chapter, i.e. figures in e.g. chapter 5 is call

Figure 5.1, Figure 5.2 etc.

Main Programs

For the calculations conducted through this thesis, both commercial and open source software

has been used. For the numerical simulations, the commercial software Abaqus has been used.

For general data processing commercial software Matlab is used, while the open source toolbox

FERUM (Finite Estimation of Reliability Using Matlab) has been used for stochastic analysis.

Digital Appendix

The digital appendix will be available on the CD in the back of the report. Files on the appendix

CD is divided according to the given chapter in which they are used.
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1 Introduction

A structural column is an element which, through compression, transfers the load from above

lying structures to elements below, i.e. an element subjected to axial loading. A well known

problem when working with columns is global instability, where failure will occur before the

ultimate stress of the element has been met. This phenomenon occurs due to, high slenderness,

i.e. high ratio between the height and cross sectional area of the column, which is often used in

structural engineering. As global buckling is often the limiting factor of uni-axially compressed

columns, it is a field of great importance, and will be reviewed through this thesis.

1.1 History Review and State-of-the-Art

The earliest examples of post buckling and elastic instability studies are dated back to [VanMuss-

chenbroek, 1729]. By experiments he discovered proportionality between the squared length

of columns and the load capacity. In 1744 Euler proved the same proportionality theoretically,

[Euler & Oldfather, 1933], defined in Eq.(1.1)

𝑁𝑐𝑟 = 𝜋2𝐸𝐼
𝑙2𝑠

(1.1)

𝑁𝑐𝑟 Critical Euler load [N]

𝐸 Modulus of elasticity [Pa]

𝐼 Moment of inertia [m4]

𝑙𝑠 Effective column length [m]

Euler's equation was generally considered to overestimate the load capacity for short columns

with low slenderness ratios. Therefore, in the last decade of the 19th century, A. Considére and

F. Engesser independently suggested, that the true load capacity in the inelastic range could be

obtained by using the Tangent Modulus, 𝐸𝑇 , instead of Modulus of elasticity, 𝐸, shown in Figure

1.1. From this, the expression, seen in Eq.(1.2), called Tangent Modulus Theory, was formulated,

[Johnston, 1983].

𝑁𝑇 = 𝜋2𝐸𝑇 𝐼
𝑙2𝑠

(1.2)

𝐸𝑇 Tangent Modulus [Pa]

1
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ET

Figure 1.1. The general stress-strain relationship, fp, indicates the point where there is no longer

proportionality between the strain and stresses, i.e. Modulus of elasticity, 𝐸, is no longer

constant and Hooke's Law becomes invalid.

In 1895 F. Engesser produced a corrected formula for a reduced modulus, not only dependent

on the Tangent Modulus, but also on the cross sectional shape, Eq.(1.3), [Ziemian, 2010], named

Reduced Modulus Theory.

𝑁𝑟 = 𝜋2𝐸𝑟𝐼
𝑙2𝑠

(1.3)

𝐸𝑟 Reduced Modulus - (𝐸𝐼1 + 𝐸𝑇 𝐼2)/𝐼 [Pa]

𝐼1 Area moment of inertia relative to the

compressed portion of the cross section at the buckling state [m4]

𝐼2 Area moment of inertia relative to the strain

reversed portion of the cross section at the buckling state [m4]

However, as the reduced modulus theory was considered to be correct, but proved difficult to

calculate, and the tangent modulus theory was believed to underestimate the load capacity, a

viable solution was yet to be discovered. Nevertheless the tangent modulus theory was relatively

easy to use, and was therefore, according to [Usami & Itoh, 1998], the preferred method. Both

methodswere, however, used up to the first half of the 20th century for inelastic columnbehavior.

It was later proved by [Shanley, 1947] that the tangent modulus, yielded a lower bound solution,

while the reduced modulus yielded an upper bound solution. The correct column strength

solution was therefore considered to be somewhere between the two bounds.

By the late 1940s more advanced tools became available, which enabled researchers to measure

residual stresses within elements, perform precise full-scale experiments and run analyses using

computers. In the mid-1950s the Column Research Council (CRC, later known as the Structural

Stability Research Council, SSRC), formulated the CRC Column Formula, Eq.(1.4), [Ziemian, 2010],

2



1. Introduction

which is still used in various standards today [Usami & Itoh, 1998].

𝑁𝐶 = 𝜋2𝐸𝑇 𝐼
𝐾𝑙2𝑠

(1.4)

𝐾 Constant, varying from 0.5 to 2, depending on boundary conditions.

From the 1950s up to the 1970s, two different design methods were used: The CRC model,

Eq.(1.4), which included residual stresses but ignored geometrical imperfections, and the DIN

4114model, which included geometrical imperfections but ignored residual stresses. Nomodels,

which accounted for both phenomenons, were yet available due to the limited computational

power at the time. However, by the late 1960s sufficiently powerful computational tools became

available and both phenomenons could be accounted for, [Usami & Itoh, 1998].

Today, a variation of the same modified equations are in use in the DS/EN standard, seen in Eq.

(1.5), and will be more thoroughly explained in Chapter 3.

𝑁𝑅𝑑 =
𝜒𝑓𝑦𝐴
𝛾𝑀1

(1.5)

𝑁𝑅𝑑 Design load capacity [N]

𝑓𝑦 Yield stress [MPa]

𝐴 Cross sectional area [m2]

𝛾𝑀1 Partial safety factor [−]

𝜒 Column reduction factor [−]

Due to the advancement of Finite Element Modeling a lot of research on how to improve the

imperfection factors and how to optimize the model uncertainties are conducted presently.

According to [Papadopoulos et al., 2012] several works on stochastic imperfections were

published during the last decade. [Stavrev et al., 2013] suggests, that the stochastic imperfection

model should be derived by either a variation of the critical eigenmode with a random scalar

variable, or through more advanced theory of random fields, which [Papadopoulos et al., 2012]

furthermore suggests can be simulated as a standard numerical procedure, or by the spectral

representation method.

1.2 Beam theory

A number of differentmethods exists for analysis of a column. Through this section, the approach

best suited for capturing the bending shapes, investigated in this thesis is discussed. The different

approaches which will be discussed involves Bernoulli-Euler Beam Theory and Timoshenko Beam

Theory.

In 1750, Leonard Euler and Daniel Bernoulli, formulated the Bernoulli-Euler beam Theory,

[Haukaas, 2012]. The theory is based on the following key assumptions:

• Material behaves linearly according to Hooke's Law.

3
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• Plane sections remain plane and perpendicular to the neutral axis during bending, seen in

Figure 1.2.

x

y

z

Figure 1.2. Cross section subjected to bending as utilized in Bernoulli-Euler Beam Theory [Andersen &

Nielsen, 2008].

The general solution for the Bernoulli-Euler Beam Theory is Eq.(1.6).

𝑑4

𝑑𝑥4 𝑢(𝑥) = − 𝑞
𝐸𝐼

(1.6)

𝑢(𝑥) Deflection [m]

𝑞 Line load [N/m]

As seen in Eq.(1.6) shear stresses are not accounted for in Bernoulli-Euler Beam Theory. In

order to account for the shear stresses, Timoshenko formulated the Timoshenko Beam Theory

in 1921, [Andersen & Nielsen, 2008]. In order to account for this phenomenon, Timoshenko

discarded the assumption from Bernoulli-Euler Beam Theory, which states that plane sections

remain perpendicular to the neutral axis during bending, seen in Figure 1.3.10 Chapter 1 – Beams in three dimensions

=

+

x

x

x

y

y

y

z

z

z

Mz

Qy

γxy

γxy

Figure 1–9 Decomposition of cross-section deformation into bending and shear components.
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z

ds ≈ dx ds ≈ dx

ry rz

wy wz

−dθydθz

Figure 1–10 Definition of curvature.

1.2.3 Constitutive relations for an elastic beam

In what follows we shall refer toN(x), Qy(x), Qz(x), Mx(x), My(x) andMz(x) asgeneralised
stresses. These are stored in the column matrix

σ(x) =

















N(x)
Qy(x)
Qz(x)
Mx(x)
My(x)
Mz(x)

















. (1–21)

DCE Lecture Notes No. 23

Figure 1.3. Cross section subjected to bending and shear which are the assumption for the Timoshenko

Beam Theory [Andersen & Nielsen, 2008].

By adjusting the assumptions of the Bernoulli-Euler Beam Theory a term of shear stress is added

to Eq.(1.6) as seen in Eq.(1.7).

𝑑4

𝑑𝑥4 𝑢(𝑥) = − 𝑞
𝐸𝐼

+ 1
𝐺𝐴

𝑑2 𝑞
𝑑𝑥2 (1.7)

𝐺 Shear modulus [Pa]

4



1. Introduction

However, as the actual cross section deforms as seen in Figure 1.4, both theories abbreviate

from reality. As Figure 1.4 shows, the actual cross section deforms with a curve due to the

shear stresses being largest at the neutral axis and decrease when approaching the edges of the

cross section, [Andersen & Nielsen, 2008]. The shear stresses are neglected by Bernoulli-Euler

Beam Theory and Timoshenko Beam Theory accounts for shear stresses from a plane effective

cross sectional area. However, the deviation from reality decreases with the slenderness of the

inspected column, as the shear stresses are increasingly smaller compared to the normal stresses.

x

y

Figure 1.4. Actual deformation of a cross section subjected to bending [Andersen & Nielsen, 2008]

As this thesis focuses on general structural columns, which have high slenderness ratios, the

Bernoulli Euler Beam Theory is assumed to be valid. In order to have a simplemethod to compare

numerical results, the critical euler load will be derived in the following section.

1.3 Derivation of the Critical Euler Load

A compression column, subjected to a constant normal force, 𝑁 , with a constant stiffness, 𝐸𝐼 ,
is examined. A transient deformation, 𝑢0, is applied orthogonally to the normal force, causing a

moment:

𝑀 = 𝑁𝑢0 (1.8)

If the column returns to it's undeformed state, after the transient deformation is removed, the

column is considered stable. If the normal force is increased to a point where the deformation

becomes permanent, without buckling, the normal force applied is considered the critical Euler

load, 𝑁𝑐𝑟. If the load is increased further, the column will buckle, and global instability occurs,

[Bonnerup et al., 2009].
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Figure 1.5. Simple supported column.

As the critical load is the point of interest, 𝑁𝑐𝑟 is derived for a simple supported column, seen in

Figure 1.5. Through this assumption the bendingmoment can be expressed as the Bernoulli-Euler

assumption, seen in Eq.(1.9).

𝑀 = −𝐸𝐼 𝑑2𝑦
𝑑𝑥2 (1.9)

𝑀 Bending moment [Nm]

𝐸 Modulus of elasticity [Pa]

𝐼 Moment of inertia [m4]
𝑑2𝑦
𝑑𝑥2 Curvature [m]

A continuum is considered to obtain equilibrium and is illustrated in Figure 1.6.

Figure 1.6. Increment of a column. [Bonnerup et al., 2009]

6



1. Introduction

Equilibrium conditions are established as seen in Eq.(1.10) to (1.12).

𝑁 + 𝑝𝑥 𝑑𝑥 − (𝑁 + 𝑑𝑁) = 0 (1.10)

𝑉 + 𝑝𝑦 𝑑𝑥 − (𝑉 + 𝑑𝑉 ) = 0 (1.11)

𝑀 + 𝑑𝑀 − 𝑉 𝑑𝑥 + 𝑁𝑑𝑥 + 𝑁𝑑𝑦 − 𝑀 + 𝑝𝑥 𝑑𝑥 󰚛1
2

𝑑𝑦󰚜 − 𝑝𝑦 𝑑𝑥 󰚛1
2

𝑑𝑥󰚜 = 0 (1.12)

The high order terms will be neglected and the terms are simplified.

𝑑𝑁
𝑑𝑥

= 𝑝𝑥 (1.13)

𝑑𝑉
𝑑𝑥

= 𝑝𝑦 (1.14)

𝑑𝑀
𝑑𝑥

− 𝑉 + 𝑁 𝑑𝑦
𝑑𝑥

= 0 (1.15)

In order to obtain the differential equation for the column Eq.(1.9) and Eq.(1.14) are inserted into

Eq.(1.15) and differentiated according to x. This will lead to the following equation.

𝑑2

𝑑𝑥2 󰚱𝐸𝐼 𝑑2𝑦
𝑑𝑥2 󰚲 + 𝑑

𝑑𝑥
󰚛𝑁 𝑑𝑦

𝑑𝑥
󰚜 = 𝑝𝑦 (1.16)

Assuming the stiffness, 𝐸𝐼 , and the normal force, 𝑁 , does not change along the column, the

transverse load, 𝑝𝑦 is set equal to zero in the case of a uni-axial compressed column. From these

assumptions the following differential equation is derived.

𝑑4𝑦
𝑑𝑥4 + 𝑁

𝐸𝐼
𝑑𝑦2

𝑑𝑥2 = 0 (1.17)

The boundary conditions for a simple supported column is given in the table below.

𝑦 = 0 𝑥 = 0 ∧ 𝑥 = 𝑙
𝑑2𝑦
𝑑𝑥2 = 0 𝑥 = 0 ∧ 𝑥 = 𝑙

Based on these boundary conditions Eq.(1.17) is solved and the normal force is isolated. The

critical Euler load is obtained.

𝑁𝑐𝑟 = 𝜋2𝐸𝐼
𝐿2

𝑠
(1.18)

𝑁𝑐𝑟 Critical Euler load [N]

𝐿𝑠 Effective column length [m]

Eq.(1.18) calculates the critical load for the simplest form of global instability, which is

Euler-buckling i.e. the first failure mode of the element.

In the before mentioned case, it is assumed that Hooke's Law is valid, i.e. Modulus of elasticity is

constant, and thereby proportionality between stress and strain. This assumption is considered

7
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valid for slender columns where the stresses are smaller than the proportionality limit. However,

for short columns where the normal stress are larger than the proportionality limit, Modulus of

elasticity will decrease as the stresses increase. As a consequence, when the effective length of

the column approaches zero, the critical Euler load converges towards infinity.

As the critical Euler load is an idealized case and overestimates the load capacity, DS/EN 1993

demands that the stress-strain curve of the column, residual stresses and imperfections are

considered as well.

8



1. Introduction

1.4 Thesis Statement

Asmentioned in the historical review, a number of differentmethods to account for imperfections

in columns have been presented through the last couple of hundred years. This thesis seeks to

compare the method of the current DS/EN standard to numerical models and experimental data

found in literature. As indicated in the historical review, the perfect column does not correspond

to reality, in which imperfections are impossible to prevent. In order to account for this, the

DS/EN standard introduces an imperfection factor, 𝛼, which covers a variety of imperfections

and load scenarios. Furthermore the DS/EN standard ensures sufficient safety of the structures

by introducing the partial safety factor, 𝛾M1. As the partial safety factor in the DS/EN standard

is defined identically for different load scenarios, this thesis seeks to calibrate a specific partial

coefficient for simple supported steel columns subjected toweak axial bending causedby uni-axial

compression and initial bow imperfections.

As the DS/EN standard covers a variety of different load scenarios related to columns, this thesis

refrain from local instability and lateral torsional buckling. This thesis will thereby mainly focus

on global buckling instability about the weak axis, caused by imperfections.

This leads to the following problems for investigation:

• How sensitive is the load capacity to varying imperfections and how does it provoke global

buckling instability?

• How does the current methods of calculation in DS/EN correspond to experimental work

and numerical models?

• How sensitive are the reliability index to varying stochastic variables?

• Is an optimization of the current partial safety factor in DS/EN for uni-axial compressed

columns possible?

9





Part I

Buckling and Imperfection Study
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2 Reference Geometry and material

properties

The experimental data used for comparison in this thesis, is based on experiments conducted

on simple supported IPE160 profiles in [Sfintesco, 1970]. Through this chapter, the reference

geometry along with results obtained through the experiments will be presented.

2.1 Reference Geometry

The dimensions of the cross section for IPE160 profiles, are shown in Figure 2.1.
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Figure 2.1. Nominal geometry of IPE160 profile.

A presentation of the geometrical and material properties can be seen in Table 2.1.

2.2 Reference material properties

In [Sfintesco, 1970], compression tests of three different steel column lengths of 12, 15 and 20

times the radius of gyration, 𝑖𝑦, of an IPE160 profile, corresponding to 0.8m, 1.0m and 1.3m, are

conducted in order to determine the modulus of elasticity and the yield strength of the material.

The length of the test subjects are chosen in order to ensure material yielding and prevent global

buckling.

13
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Des essais comparatifs effectues sur des coupons ayant subi 
un recuit de normalisation il 650 oc pendant deux heures accusent 
des abaissements de caracteristiques variables avec Ia prove­
nance ; mais Ia forme du diagramme ne s'en trouve pas modifiee. 
II apparait done que Ia repartition des contraintes internes n'est 
pas en cause. 

La comparaison systematique des releves geometriques n 'a 
egalement pas permis de deceler Ia raison premiere de ce pheno­
mene. De meme, Ia comparaison des epreuves Baumann n 'a 
apporte aucun element qui puisse permettre de fonder une 
hypothese. 

Essais de traction 

Les caracteristiques mecaniques en traction ont ete definies 
(fig. 21) so it il !'aide des eprouvettes calibrees prelevees confor­
mement il l'Euronorme 2-57, soit en procedant, par coupon, il 
quatre essais sur eprouvettes brutes, obtenues en sciant longi­
tudinalement les ailes (eprouvettes 1 et 4), puis en coupant 
l'ame en deux bandes longitudinales egales {eprouvettes 2 et 3). 

Les caracteristiques de traction sont, pour certains lots, assez 
dispersees; les valeurs obtenues sur eprouvettes Euronormes sont 
plus elevees que les resultats de traction sur aile complete; et si 
l'on compare les resultats de traction sur aile complete, pour les 
deux ailes, on constate des ecarts de limite elastique pouvant 
atteindre 10 %- Generalement, les caracteristiques de l'ame 
presentent des exceptions; l'homogeneite complete d'une section 
se rencontre tres rarement. 

Construction Metalliquc, n• 3 - 1970 

J. Jacquet 

EN BANOES BRUTES 

Fig. 21 

1,4. - Description des essais effectues en Grande-Bretagne 

Les essais realises en Grande-Bretagne, il l'elancement unique 
de 70, portaient sur !'etude de !'influence des formes de profils 
sur Ia charge d'affaissement. Cette partie du programme compre­
nait I 0 essais sur chacun des profils suivants : IRSJ 5" X 3" 
(127 x 76,2 mm)- T 4" x 3" (101,6 x 76,2 mm) - tubes 
carres soudes 3" 1/2 x 1/4" (88,9 x 6,35 mm) et tubes ronds 
soudes 4" 1/2 x 1/4" (114,3 x 6,35 mm). En outre, 6 essais il 
l'elancement).. = 95 sur profils IPE 160 fournis par Ia France, 
devaient servir de recoupement avec les essais realises en France. 

Au total , 46 essais ont done ete executes dans cette serie. 

Mesures prtUimiuaires 

Les dimensions principales ont ete mesurees aux extremites, au 
quart, a Ia moitie et aux trois quarts de Ia hauteur. Les fleches 
initiales furent relevees au milieu de Ia longueur de l'eprouvette 
suivant les deux axes rectangulaires du profil , il !'exception des 
tubes ronds pour lesquels seule Ia Heche maxi male fut mesuree. 

Essais de flambemeut 

Les essais ont ete effectues sur une machine de compression a 
axe horizontal. Les articulations utilisees pour ces essais etaient 
celles mises au point par Ia B.A.M. il Berlin. 

Apres usinage des extremites, les eprouvettes ont ete placees 
entre les articulations il cardan (fig. 22) et reglees de telle sorte 
que l'axe de l'eprouvette corresponde il l'axe des articulations. 

Fig. 22- L'ensemb/e de /'installation britannique. 

On rC"marqucra sur celt£" pilo10graphie les articulations de Ia B.A.M. 

Figure 2.2. Performance curve for steel. [Sfintesco, 1970]

Figure 2.2 shows the deformation as a function of the load displayed in tons. As seen, the strength

peaks at abound 60 tons, corresponding to a yield stress about 300 MPa, which will be used as

the ultimate yield stress through this part.

It is seen that the three test subjects follow the same elastic curve, which translate to a modulus

of elasticity of 180 GPa. However, due to the poor quality of the figure, it is expected to have a

considerablemargin of error. Amodulus of elasticity of 210 GPawill therefore be used, as [Jensen

& Mohr, 2009] prescribes.

The geometry and material properties, used through the this part, are listed in Table 2.1.

Profile height, ℎ 160 [mm]

Profile width, 𝑏 82 [mm]

Web thickness, 𝑑 5 [mm]

Flange thickness, 𝑡 7.4 [mm]

Cross sectional area, 𝐴 2.01⋅103 [mm2]

Moment of inertia, weak axis, 𝐼𝑧 0.683⋅106 [mm4]

Plastic moment of resistance, 𝑊𝑝𝑙 123.8⋅103 [mm3]

Modulus of elasticity, 𝐸 2.1⋅105 [MPa]

Ultimate yield stress, 𝑓𝑦 300 [MPa]

Poisson's ratio 𝜈 0.3 [−]

Table 2.1. Material parameters and cross sectional dimensions [Jensen & Mohr, 2009].

2.3 Column Stability Experiments

A number of compression tests have been conducted as well. As opposed to the test subjects in

the material tests, the following test subjects are sufficiently long to ensure global buckling. The

test outcome can be seen in Table 2.2.
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2. Reference Geometry and material properties

Number of tests Slenderness ratio Mean value Standard deviation

𝜆∗ [−] 𝜇 [kgf/mm2] 𝜎 [kgf/mm2]

30 55 27.90 2.73

30 75 23.15 2.43

31 95 18.70 1.46

30 105 15.27 1.23

22 130 11.35 1.00

17 160 7.44 0.56

Table 2.2. Critical buckling results, acquired through experimental tests, [Sfintesco, 1970]

As seen in Table 2.2, the strength is presented in the unit [kgf/mm2]. In order to comply

with modern standards, the parameters are converted to [MPa] and relative slenderness ratio.

Furthermore the length of each test subject is calculated from the slenderness provided, using

Eq.(2.1) and (2.2). The converted values are presented in Table 2.3.

𝑖 = 󰞐 𝐼
𝐴

(2.1)

𝑙 = 𝜆∗ 𝑖 (2.2)

𝑖 Radius of gyration [m]

𝜆∗ Slenderness ratio [−]

𝑙 Length [m]

Relative Standard

Number of tests slenderness ratio Length Mean value deviation Variance

𝜆 [−] [m] 𝜇 [MPa] 𝜎 [MPa] 𝑣 = 𝜎
𝜇 [−]

30 0.630 1.01 274.0 26.84 0.098

30 0.859 1.38 227.3 23.86 0.105

31 1.09 1.75 183.6 14.34 0.078

30 1.12 1.94 150.0 12.08 0.081

22 1.49 2.40 111.5 9.82 0.088

17 1.83 2.95 73.1 5.50 0.075

Table 2.3. Critical buckling results, acquired through experimental tests, presented by modern standards.
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3 Load Capacity by DS/EN 1993-1-1

Through this chapter, the design method for columns in the current [DS/EN-1993-1-1, 2007]

standard is reviewed.

3.1 Imperfections

In [DS/EN-1993-1-1, 2007] imperfections in each column are accounted for by an elastic

imperfection reduction factor, 𝛼, which includes geometrical-, material imperfections and model

uncertainties. Values for 𝛼 are based on test results from [Maquoi & Rondal, 1978].

Depending on the geometrical properties of the column, 𝛼 varies, as shown in Table 3.1.

Buckling curve Imperfection factor 𝛼 [−]

𝑎0 0.13

𝑎 0.21

𝑏 0.34

𝑐 0.49

𝑑 0.79

Table 3.1. Imperfection factors for buckling curves. [DS/EN-1993-1-1, 2007]

Stated in [DS/EN-1993-1-1, 2007], rolled profiles, with a relative slenderness ratio less than 1.2

and weak-axial bending, are considered to be column case 𝑏, corresponding to a cross sectional

class 2, which yields an imperfection factor of 0.34.

When 𝛼 has been chosen the column reduction factor, 𝜒, which accounts for the reduction of

load capacity in imperfect columns, can be calculated by Eq.(3.1).

𝜒 = 1
𝜙 + 󰞎𝜙2 − 𝜆2

(3.1)

𝜙 0.5(1 + 𝛼(𝜆 − 0.2) + 𝜆2) [−]

𝜆 Relative slenderness ratio [−]

The reduction factor, as a function of column slenderness and imperfection factors, is shown

in Figure 3.1, 𝛼 = 0 represents an idealized case with centrally loaded perfect columns, i.e.

Euler-columns.
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Figure 3.1. Imperfection factor

As the slenderness of a column increases, illustrated in Figure 3.1, the column reduction factor

converges towards critical Euler-load, regardless of the imperfection factor.

3.2 Partial Safety Factor

[DS/EN-1990:2007, 2008] states two different methods of calculation for the design value of the

load capacity. The Partial Safety Factor, 𝛾M,i can be applied, either in the load capacity function,

as seen in Eq. (3.2), or directly to the characteristic value, if the element is of a single material,

shown in Eq. (3.3), which is suggested by 1993-1-1.

𝑅𝑑 = 𝑅 󰚵𝜂𝑖
𝑋𝑘,𝑖

𝛾𝑀,𝑖
; 𝑎𝑑󰚶 (3.2)

𝑅𝑑 = 𝑅𝑘
𝛾𝑀,𝑖

(3.3)

𝑅𝑑 Design resistance [Pa]

𝑅𝑘 Characteristic resistance [Pa]

𝜂𝑖 Conversion factor [−]

𝑋𝑘,𝑖 Characteristic value of the material [Pa]

𝛾𝑀,𝑖 Partial safety factor [−]

𝑎𝑑 Geometrical imperfection [m]

However, as statistical uncertainties are not introduced until Part II of this thesis, the partial safety

factor will be left out through the load capacity calculations in Part I, in order to to investigate the

effects of imperfections.

3.3 Design Equations

In this section, the twodesignmethods from the current [DS/EN-1993-1-1, 2007]will be reviewed.

To determine the design equation for columns subjected to a normal force 𝑁𝐸𝑑 and a bending
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3. Load Capacity by DS/EN 1993-1-1

moment 𝑀𝐸𝑑 Eq.(3.4) is derived from static equilibrium, [for Constructional Steelwork, 2006].

𝑁𝐸𝑑
𝑁𝑏,𝑅𝑑

+ 1
1 − 𝑁𝐸𝑑/𝑁𝑐𝑟

𝑁𝐸𝑑𝑢0,𝑑

𝑀𝑅𝑑
+

𝑀𝐼𝐼
𝐸𝑑,𝑚𝑎𝑥

𝑀𝑅𝑑
≤ 1 (3.4)

𝑀𝐼𝐼
𝐸𝑑,𝑚𝑎𝑥 Design bending moment from the 2. order effect [Nm]

𝑀𝑅𝑑 Design resistance [Nm]

𝑢0 Initial bow imperfection [m]

As it can prove problematic to determine the location of the maximum bending moment caused

by the second order effect, 𝑀𝐼𝐼
𝐸𝑑,𝑚𝑎𝑥 is defined as seen in Eq.(3.5)

𝑀𝐼𝐼
𝐸𝑑,𝑚𝑎𝑥 =

𝐶𝑚𝑀𝐸𝑑,𝑚𝑎𝑥

1 − 𝑁𝐸𝑑/𝑁𝑐𝑟
(3.5)

𝐶𝑚 Factor to account for 2. order bending moment effect [−]

𝑀𝐸𝑑,𝑚𝑎𝑥 1. order design bending moment [Nm]

Because the column can reach instability before yielding,𝑀𝑅𝑑 is replacedwith𝐶 𝑀𝑝𝑙,𝑅𝑑 where

𝑀𝑝𝑙,𝑅𝑑 is the fully plastic bending resistance and 𝐶 account for axial force, slenderness of the

profile and the distribution of the bending moment.

To determine the factor, 𝐶𝑚, [DS/EN-1993-1-1, 2007] states two different methods.

Method 1

Method 1 is derived on a theoretical basis and the different physical phenomenons are separated,

which makes it easier to recognize the individual terms in the derivation. As Method 1 is a design

method for general cases including limiting cases, this method must include more parameters to

ensure a generalized formula. 𝐶𝑚 is detemined by Eq.(3.6).

𝐶𝑖𝑖 = 1 + (𝑤𝑖 − 1) 󰚱2 − 1.6
𝑤𝑖

𝐶2
𝑚,𝑖(𝜆𝑚𝑎𝑥 + 𝜆2

𝑚𝑎𝑥)󰚲 𝑁𝐸𝑑
𝑁𝑝𝑙,𝑅𝑑

≥
𝑊𝑒𝑙,𝑗

𝑊𝑝𝑙,𝑖
(3.6)

𝜆𝑚𝑎𝑥 Highest relative slenderness [−]

𝑤𝑖 The ratio between the plastic- 𝑊𝑝𝑙 and elastic modulus 𝑊𝑒𝑙[−]

Method 2

The concept of method 2 is to reduce the number of compact coefficients which makes it easier

to apply to practical engineering. To derive 𝐶𝑚, numerical calculations are made, in order to

recalculate the factor, so it fits buckling cases.

𝐶𝑚 is determined for weak axial bending by Eq.(3.7).

𝐶𝑚𝑧 = 0.6 + 0.4𝜓 ≥ 0.4 (3.7)

𝜓 The ratio between the two end moments [−]

19



Aalborg University MSc. Structural and Civil Engineering - Master Thesis

As method 1, according to [Bonnerup et al., 2009], overestimates the load bearing capacity

of columns, and method 2 is preferred for practical engineering due to the simplicity of the

expression, method 2 will be the preferred method through this thesis.

From these considerations, the global strength of columns is stated in [DS/EN-1993-1-1, 2007] as

seen in Eq.(3.8) for weak-axial bending.

𝑁𝑒𝑑
𝜒𝑧𝑁𝑅𝑘

𝛾𝑀1

+ 𝑘𝑧𝑧
𝑀𝑧,𝐸𝑑
𝑀𝑧,𝑅𝑘

𝛾𝑀1

≤ 1 (3.8)

𝑁𝐸𝑑 Design normal force [N]

𝑀𝑧,𝐸𝑑 Design moment about weak axis [Nm]

𝜒𝑧 Column reduction factor [−]

𝑘𝑧𝑧 Interaction factor [−]

The interaction factor 𝑘𝑧𝑧 is determined, by Eq.(3.9).

𝑘𝑧𝑧 = 𝐶𝑚𝑧(1 + (2𝜆𝑧 − 0.6)𝑛𝑧) ≤ 𝐶𝑚𝑧(1 + 1.4𝑛𝑧) (3.9)

𝑛𝑧 = 𝑁𝐸𝑑
𝜒𝑧𝑁𝑝𝑙,𝑅𝑑

(3.10)

All analytical calculations from this point, will be based on Eq.(3.8).
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4 Initial Finite Element Considerations

As this thesis is investigating the buckling point of a column subjected to uni-axial compression

and bending moment, elements which can capture the physical behavior caused by both forces

are preferable. Therefore, shell elements, a combination of membrane- and plate elements,

which can capture both the deformation and the stresses in the element cross section, [Cook

et al., 2002], are used through this thesis. The finite element analysis will be carried out in the

commercial software Abaqus. In the Finite Element Analysis the geometry, presented in Section

2.1 is simplified, and will be carried out by a shell model with the cross section geometry shown

in Figure 4.1.

7.4mm

7.4mm

5mm

16
0 

m
m

Figure 4.1. Shell geometry used in the Finite Element Model.

As seen in Figure 4.1, the shell model is slightly higher than the actual IPE160 profile, which causes

a higher moment of inertia about the strong axis. However, as the column will be subjected to

weak-axial bending. the effects from this deviation is assumed to be negligible, as

4.1 Shell analysis

Through this chapter different analysis types for numerical analysis in [DS/EN-1993-1-6, 2012] will

be introduced. Though [?] covers shell constructions e.g. silos and other thin walled structures,

the methods can be applied to shell elements used to model regular columns, as described

in[DS/EN-1993-1-1, 2007] as well. The analyses which will be reviewed in this chapter concerns:

• Linear Elastic Analysis (LA)

• Linear Elastic Bifurcation Analysis (LBA)

• Materially Nonlinear Analysis (MNA)

• Geometrically Nonlinear Analysis (GNA)

• Geometrically and Materially Nonlinear Analysis (GMNA)

• Geometrically Nonlinear Analysis with Imperfections included (GNIA)

• Geometrically and Materially Nonlinear Analysis with Imperfections included (GMNIA)

Linear Elastic Analysis - LA

The Linear Elastic Analysis is based on the assumption of perfect geometry, linear elastic material

law and small deformation theory. In small strain theory the deformation of the profile is assumed
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to be significantly smaller than the profile dimensions, i.e. the geometry and the material

properties in the cross section is assumed to be unchanged by the deformation. Through LA

both compatibility in the deformations and equilibrium conditions must be satisfied.

Linear Elastic Bifurcation Analysis - LBA

Based on the same assumptions as LA, the linear bifurcation eigenvalue of a thin-walled shell

profile is evaluated through LBA. Through this analysis several eigenmodes are revealed and the

lowest bending eigenmode about the weak axis of the profile is chosen as the critical buckling

load.

Materially Nonlinear Analysis - MNA

Similar to LA, MNA is based on the assumption of small strain theory and perfect geometry with

nonlinear elasto-plastic material law, which means the load capacity of the profile will be limited

by the yield stress of the material.

Geometrically Nonlinear Analysis - GNA

The GNA is based on the shell bending theory applied to a perfect structure with linear elastic

material law. However, as opposed to LA, large strain theory is applied, i.e. deformations in the

cross section are assumed to be relatively large compared to the profile dimensions. Due to the

slenderness of column profiles, it is assumed that this analysis will not limit the load capacity of

the profile.

Geometrically and Materially Nonlinear Analysis - GMNA

The GMNA is a combination of GNA and MNA. In this analysis shell bending theory is applied

to a perfect structure. Displacements are assumed defined by nonlinear large strain theory and

nonlinear elasto-plastic material law is applied.

Geometrically Nonlinear and Imperfection Analysis - GNIA

GNIA is similar to GNA and applies the same assumptions. However, in GNIA the profile deviates

from theperfect geometry and imperfections are included. These imperfections can include initial

bow imperfections, eccentricity of the load, nonlinear boundary conditions or effects of residual

stresses.

Geometrically and Materially Nonlinear and Imperfection Analysis - GMNIA

GMNIA is identical to the GMNA analysis with imperfections included.

Table 4.1 shows a summary of the different analyses.

Shell theory Material law Shell geometry

LA Linear bending and stretching Linear Perfect

LBA Linear bending and stretching Linear Perfect

MNA Linear Non-linear Perfect

GNA Non-linear Linear Perfect

GMNA Non-linear Non-linear Perfect

GNIA Non-linear Linear Imperfect

GMNIA Non-linear Non-linear Imperfect

Table 4.1. Types of shell analysis according to, [DS/EN-1993-1-6, 2012]

22



4. Initial Finite Element Considerations

Performance curves

Shown in Figure 4.2 are the seven different analysis types with increasing complexity. The results

are shown for a simple supported column of 2.95 m in order to ensure that buckling occur with

the purpose of showing the load capacity with each of the analysis types. The GNIA and GMNIA

are conducted with an inital bow imperfection of 12 mm.
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Figure 4.2. Performance curves from the varying analysis methods.

• The LA follows a strictly linear curve corresponding to the modulus of elasticity of the

material.

• The bifurcation load found from the LBA is illustrated by the black cross.

• The MNA follows the LA in the elastic area and decreases in the modulus of elasticity as it

approaches the ultimate yield stress.

• The GNA seems to be following the same linear curve, which can be explained due to the

large strain theory the analysis follows. As the deformations in the cross section are much

lower than the deformations in the axial direction of the column, the GNA will necessarily

follow the LA very closely at small deformations.

• The GMNA follows both nonlinear geometry, i.e. large strain theory, and a nonlinear

material law, which can be seen in the loss of load capacitywhen entering the plastic region.

• The GNIA and GMNIA analyses are visualized by the black solid and dashed lines

respectively. It can be seen that, due to the imperfection, the load capacity for both the

GNIA and GMNIA are significantly lower than what is the case of the same analyses without

imperfections, GNA and GMNA.

Through this thesis, the GMNIA is the preferred shell analysis, while it, as opposed to the GNIA,

allows material yielding, and will thereby give the most comparable results.
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4.2 Numerical Solvers in Abaqus

Eigenvalue solver

When conducting a bifurcation analysis, in order to find the bending modes, the critical buckling

loads are found from the nontrivial solution to the eigenvalue problem seen in Eq.(4.1)

𝐊𝑀 𝑁 ̄𝑣𝑀 = 0 (4.1)

𝐊𝑀 𝑁 Tangent stiffness matrix [N/m]

̄𝑣𝑀 Nontrivial displacement solutions [m]

Newton-Raphson Iteration Scheme

For a nonlinear analysis, twodifferent cases exists, namely geometrical- andmaterial nonlinearity.

For both cases, the main problem is that the stiffness matrix does not remain constant, but

changes with each load increment. When performing Finite Element Analyses a number of

different iteration schemes may be used. In this section the Newton-Raphson iteration scheme

will be reviewed, which uses iterations to obtain equilibriumbetween external and internal forces

in the system. For the nonlinear equilibrium path, shown in Figure 4.3, the stiffness matrix is

adjusted for each iteration step, in order to achieve equilibrium. The main concern with the

Newton-Raphson iteration scheme, is that it has difficulties processing post-buckling behavior,

where the slope of limit points are zero, illustrated in Figure 4.3.

Figure 4.3. Principle sketch of the Newton-Raphson iteration scheme, [Corp., 1978].

However as the main focus of this project is initial buckling and as it is expected that columns

will not obtain any additional post-buckling strength, a standard Newton-Rapson scheme will be

used, through this project.

4.3 Boundary Conditions and loads

When considering one dimensional models, boundary conditions are fairly simple to design, as

seen in Figure 4.4.
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4. Initial Finite Element Considerations

Figure 4.4. Simply Supported uni-axial compressed one dimensional column.

However, when considering models in three dimensions, the complexity of the models increase.

As the Finite Element Model in this project involves shell analysis in three dimensions, the

boundary conditions are described through this section.

In order to recreate a model as realistically as possible, a plate is attached to each end of the

model. In reality, the plate will be bolted or welded to the column, as seen in Figure 4.5, the

effects of these actions will, however, not be subject to analysis in this project.

Figure 4.5. Plate attached to the end of the column.[Constructalia, 2014]

In order to allow weak axial bending, the centerline of both column ends is fixed in the x- and

y-direction, while it is allowed to move in the z-direction in one end of the column. The column

is allowed to rotate freely, but due to the displacement fixities in both ends, the rotation stiffness

of the column is relatively high and will therefore discourage torsional bucking, as seen Figure 4.6

and 4.7.
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Figure 4.6. Boundary condination for the fixed

end.
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Figure 4.7. Boundary condination for the fixed

end.

A forced displacement is applied in the centerline of one end of the column.

4.4 Shell Element Study

Two rectangular shell elements have been chosen for analysis in order to determine which

element type suits the physical behavior of buckling best, namely the S4R and the S8R elements.

The S4R element, is a purely linear element with a node in each corner with three displacement-

and three rotation degrees of freedom for each node. As the element is linear it has limitations

regarding buckling, and more elements are needed in order to capture the bending shape of the

profile, as seen in Figure 4.8.

Figure 4.8. Linear elements in bending. Figure 4.9. Quad elements in bending.

The S8R element, has quadratic shape functions and can therefore capture bending shapes much

more efficiently than the linear S4R elements, as seen in Figure 4.9. Furthermore the S8R element

has four integration point whereas the S4R only has a single point. Therefore each S8R element

is more time and resource consuming than each S4R element, however it is expected that the

system will converge at fewer elements when using quadratic elements.

A convergence analysis for each element type will be conducted in order to determine which

element is best suited for global instability studies. The analysis will be carried out for a 2.95 m,

simple supported, IPE 160 profile with the same preferences as seen in Table 2.1 on page 14.

Due to weak axial bending, the main influence of inaccuracies caused by element size is expected

to be in the length direction of the column. As the LBA assumes small deformation theory, it is

expected that the cross sectional mesh is of little importance. However, a convergence analysis in

all directions will be conducted. In order to achieve a realistic result from the analysis and avoid

an uneven distribution of integration points, it has been sought to maintain a length/width ratio

of each shell element in the mesh between 0.2 and 5, therefore the initial convergence analysis

will be conducted as shown in Table 4.2.
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4. Initial Finite Element Considerations

Element type Flange Web Length

S4R 2 4 [32:256]

S4R 4 4 [64:256]

S4R 8 8 [64:512]

S8R 2 4 [32:256]

S8R 4 4 [64:256]

Table 4.2. Number of elements in the different profile directions. The two numbers in the length signifies

the range of the convergence analysis.

The convergence will be presented by eigenvalue as a function of nodes, seen in Figure 4.10.

Convergence is considered reached when the eigenvalue does not deviate more than 5 % when

the number of elements is doubled.
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Figure 4.10. Convergence analysis for the first eigenmode.

As Figure 4.10 shows, the convergence analyses for the linear elements are less consistent than

the convergence for the quadratic element. It is expected that the linear elements are not able

to capture the cross sectional deformation, with a reasonable number of elements. As the S8R

elements are visibly converged at a mesh with [2x4x32] elements, S8R elements are chosen for

further analysis. The LBA assumes small strain theory, therefore a convergence analysis using

GNA is required as well for the non-linear shell theories.

4.5 Verification of Mesh

Since GNA assumes large strain theory, a convergence analysis is necessary. As the GNA does not

converge towards a specific stress point, as the LBA does, a different approach to convergence

is considered. Three analyses will be conducted with varying number of elements in the length

direction. The three different analyses will vary from two to eight elements in the flange as seen

in Figure 4.11.
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Figure 4.11. Shell model shown with varying mesh.

The number of elements in each direction is summarized in Table 4.3.

Flange Web Length

2 4 [32:256]

4 4 [64:256]

8 4 [128:256]

Table 4.3. Number of elements in the different profile directions. The two numbers in the length signifies

the range of the convergence analysis.

The convergence analysis for the axial deformation at 235 MPa, as a function of the number of

nodes, along with an analysis with the axial deformation as a function of the computational time,

is seen in Figure 4.12 and 4.13.
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Figure 4.12. Convergence analysis for the axial

deformation as a function of the

number of nodes.
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Figure 4.13. Convergence analysis for axial deformation as a function of computational time.

As seen, the axial deformation varies from approximately 3.89 mm to 3.91 mm. As the variation

is no more than 0.5 % when the number of elements are doubled, the mesh is considered

converged. As the computational time increases significantly, with the number of nodes in the

model, the mesh is chosen is chosen as [2x4x32] S8R elements.

28



5 Imperfections in Finite Element

In structural columns, imperfections are not only seen as anomalies in the profile's geometry or

material, but can also be introduced during installation [Schillinger et al., 1978]. Through this

chapter, a study of different imperfections is performed in order to investigate the effect on the

load capacity of the affected column.

This study will lead to a stochastic analysis in Part II of this thesis. The FERUM toolbox used in

the stochastic analysis, requires a new Finite Element analysis, for each call to the limit state

function. As this operation is ineffective, and not practically possible, an investigation of the

influence of the different imperfections is conducted, in order to obtain amore effective solution.

The imperfections chosen for this investigation in this thesis are:

• Initial bow imperfection

• Flange out-of-squareness imperfection

• High order eigenmode imperfection

• Yield stress imperfection

• Applied moment about one end

• Young's Modulus imperfection

• Combination

• Bow- and out-of-squareness imperfection

• Bow- and modulus of elasticity Imperfection

• Bow- and yield stress imperfection

The imperfection analyses are conducted in Abaqus using GMNIA, and will be described in the

following sections. The column geometry and material properties, are shown in Table 2.1 on

page 14, applied to a 2.95 m simple supported column subjected to uni-axial compression.

5.1 Geometrical imperfections

During production, a variety of geometrical imperfections in a profile can occur. Through the

manufacturing procedure, steel blocks are processed by rollers in order to obtain the desired

geometry. After the initial rolling, the profile can be subject to a straightening process, in order

to the meet the required tolerances. However, as the perfect profile only exists in theory,

imperfections will always be present. These imperfections can occur, e.g. when one or both

rollers are out-of-line during rolling or bywarping of the steelwhile cooling. Through the following

sections, the three different geometrical imperfections, chosen for this thesis, will be studied.

5.1.1 Bow Imperfection

During the initial rolling of the profile, an initial bow imperfection is likely to be present, as seen

in Figure 5.1. If the final straightening process is not done to perfection, this bow imperfection

will remain and thereby cause a bending moment, as seen in Figure 5.2.
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Figure 5.1. Principle sketch of the rolling pro-

cess of steel profiles.

Figure 5.2. Bending moment caused by initial

bow imperfection

In order to obtain the geometry desired for investigation of initial bow imperfections, an LBA is

performed in Abaqus. Through this analysis, the first bending eigenmode, i.e. weak-axial bending,

is acquired, and applied to the perfect geometry with a scaled amplitude, 𝑢0, seen in Figure 5.3

Figure 5.3. Scaled geometry of the profile subjected to initial bow imperfection, used in Abaqus.

A number of analyses are conducted in Abaqus, with increasing bow imperfection. From these

analyses, the displacements in the load end of the column and reactions in the opposite, are

extracted and performance curves, seen in Figure 5.4 are created.
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5. Imperfections in Finite Element
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Figure 5.4. Stress-strain curve for a increasing

bow imperfection.
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Figure 5.5. Load capacity shown as a function

of initial bow imperfections.

Based on the performance curve, the load capacity at the buckling point of each bow imperfection

amplitude is seen in Figure 5.5. It is seen that the load capacity drops significantly, when the bow

imperfection is applied, due to the influence of the bending moment. This will cause the column

to buckle about the weak axis, while the column without imperfection, will compress and cause

local buckling, at a significantly higher load capacity, thanwhat is the casewhen affected by global

buckling.

The scaled deformed state of the profile can be seen in Figure 5.6, while the transparent mesh

shows the initial geometry.

Figure 5.6. The deformed column with an initial bow imperfection.

5.1.2 Out-of-Squareness Imperfection

In order to review the effects from out-of-line rollers during the manufacturing process, an

out-of-squareness imperfection is introduced in the cross section, as seen in Figure 5.7 and 5.8.
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Figure 5.7. Out-of-squareness imperfection

shown in the entire length of the

profile.

h

hx

y

z

Figure 5.8. Principle sketch of the out-of-

squareness imperfection applied

to the cross section.

Shown in Figure 5.9 and 5.10, are the performance curve and load capacity as a function of the

out-of-squareness imperfection.
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Figure 5.9. Performance curve for an increas-

ing out-of-squareness imperfec-

tion.
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Figure 5.10. Load capacity shown as a func-

tion of out-of-squareness imper-

fection.

It is seen that no significant loss of load capacity can be observed when applying the

out-of-squareness imperfection. As it is seen, the load capacity is not very sensitive to the

out-of-squareness imperfection, which will therefore not be subject to any further individual

investigations. The deformed state after failure of the profile subjected to an out-of-squareness

imperfection can be seen in Figure 5.11. It is seen that no global buckling is present, however

local buckling is seen in each end of the web.
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5. Imperfections in Finite Element

Figure 5.11. The deformed column with an initial out-of-square imperfection.

5.1.3 High Order Eigenmode Imperfection

In order to investigate an imperfection, caused by rollers, which are not perfectly circular and

rotating about an uneven axis, a high order eigenmode imperfection is applied to the perfect

geometry. The imperfection is simulated in Abaqus, similarly to the bow imperfection, where an

eigenmode is extracted from LBA. In order to contain the imperfection to the flanges, the web is

constrained for all deformations in the LBA, while the flanges are allowed to deform freely. The

deformed state of the eigenmode number 40 is applied to the perfect geometry, and the web

is allowed to deform again. The initial geometry of the profile with eigenmode 40 imperfection

applied, is shown in Figure 5.12.

Figure 5.12. Initial geometry of eigenmode 40 imperfection applied to the profile.

The performance curves are shown in Figure 5.13, while the load capacity as a function of the

imperfection amplitude is shown in Figure 5.14.
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Figure 5.13. Stress-strain curve for eigenmode

40.
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Figure 5.14. Load capacity for eigenmode 40.

Figure 5.14 shows, a significant drop in load capacity when the initial imperfection is applied.

However, the amplitude of the imperfection is of little importance.

Figure 5.15. Deformations shown in the global

x-direction in the web.

Figure 5.16. Deformations shown in the global

y-direction in the flange.

Due to the imperfection being an out-of-squareness imperfection, it could be expected that the

performance curvewould be similar to the imperfection shown in the last section. However, while

the imperfection in the last section is constant along the length of the profile, the imperfection

varies significantly for the high order eigenmode imperfection. Due to this variation, the profile

is susceptible to local buckling due to the moment introduced in local areas, which causes the

initial drop in load capacity. The deformed state after failure can be seen in Figure 5.15 and 5.16

where, local buckling is seen in the web and flange respectively.

5.2 Material imperfections

Material properties can vary depending on supplier and quality. Through this section, thematerial

properties are assumed homogenous for each profile, and will vary between each numerical

simulation.

5.2.1 Modulus of elasticity Imperfection

To investigate the influence of a variation in the profile elasticity the same analysis as in the

previous subsection is performedwith a varyingmodulus of elasticity. The load capacity in shown

in Figure 5.17.
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Figure 5.17. GMNA performed with a varying modulus of elasticity

From the variation of the load capacity as a function of the modulus of elasticity, shown in Figure

5.17, it is seen that the modulus of elasticity is of very little influence.

5.2.2 Yield Stress Imperfection

To investigate the influence of the yield stress a GMNA is performed with a varying yield stress.

The load capacity in shown in Figure 5.18.
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Figure 5.18. GMNA performed with a varying yield stress

Shown in Figure 5.18 it is seen that the load capacity as a function of varying yield stress,

is increasing linearly, which indicates a proportionality between the yield stress and the load

capacity.

5.3 Installation imperfections

Installation imperfections can lead to an extra bending moment, similarly to the bow imperfec-

tion, caused by load eccentricity, which will be the subject of investigation through this section.

5.3.1 Forced Rotation Imperfection

The load eccentricity will be simulated in Abaqus by applying a forced rotation about the weak

axis in one end of the column. The load capacity as a function of the forced rotation is shown in

Figure 5.19.
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Figure 5.19. Load capacity shown as a function of increasing forced rotation.

The deformed state after failure is seen in Figure 5.20.

Figure 5.20. Deformed column subjected to a forced rotation about the weak axis in one end.

It is seen that the deformed state is not identical to the deformed state for the initial bow

imperfection, which is caused by the eccentricity of the load, applied as a moment about just

one end of the column. As a consequence, the largest deformation is displaced slightly from the

middle of the column.

5.4 Combinations

Through this section, three combinations of two different imperfections, applied to a column

simultaneously, is investigated. This investigation is conducted in order to see if any amplification

of the imperfections occur compared to the imperfections applied individually. In order to study

the influence of the combined imperfections, two separate studies of each combination will be

presented. In each study, the initial bow imperfection will be fixed, according to the accepted

tolerance, i.e. 0.03%·𝑙 → 8.8 mm, [BS/EN-10034-1993, 1993].
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5. Imperfections in Finite Element

5.4.1 Bow- and Out-of-Squareness Imperfection

Through this section the effects of combined bow- and out-of-squareness imperfection will be

studied. The load capacity as a function of the imperfections can be seen in Figure 5.21 and 5.22.

The out-of-squareness imperfection deviates from perfect squareness to the accepted tolerance

of 0.75 mm according to [BS/EN-10034-1993, 1993].
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Figure 5.21. Performance curve of the load ca-

pacity as a function of the bow im-

perfection, shown for an out-of-

squareness of 0 and 1.5 mm.
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Figure 5.22. Performance curve of the load ca-

pacity as a function of the out-of-

squareness, shown for a bow im-

perfection of 0 and 8.8 mm

As seen in the figures, the bow imperfection is highly dominant. From Figure 5.21 it is seen that

the load capacity is unchanged when applying the tolerated deviation of out-of-squareness. In

Figure 5.22 a large deviation from the perfect column to tolerated bow imperfection is obvious.

From this study it is concluded that the bow imperfection is of far greater influence than the

out-of-squareness imperfection and will therefore be subject to further study with a varying

material parameter.

5.4.2 Bow- and Modulus of Elasticity Imperfection

In the following subsection the bow imperfection is combinedwith a varyingmodulus of elasticity.

The two studies of the imperfection combination is seen in Figure 5.23 and 5.24. The modulus

of elasticity deviates from the mean value 210 GPa, with the standard deviation, stated by [JCSS,

2002], seen in Table 7.2 on page 48.
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Figure 5.23. Performance curve of the load ca-

pacity as a function of the bow im-

perfection, shown for a modulus

of elasticity of 203.4 and 210 GPa.
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Figure 5.24. Performance curve of the load ca-

pacity as a function of the modu-

lus of elasticity, shown for a bow

imperfection of 0 and 8.8 mm.

It is seen that the modulus of elasticity is of little importance compared to the bow imperfection.

The same study will be conducted for a combination of bow imperfection and yield stress in the

following subsection.

5.4.3 Bow- and Yield Stress Imperfection

In the following subsection the bow imperfection is combinedwith a varying yield stress. The two

studies of the imperfection combination is seen in Figure 5.25 and 5.26. The yield stress deviates

from 300 MPa stated in Table 2.1 on page 14, with the standard deviation, according to [JCSS,

2002], stated in Table 7.2 on page 48.
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Figure 5.25. Performance curve of the load ca-

pacity as a function of the bow

imperfection, shown for a yield

stress of 300 and 281.5 MPa.
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Figure 5.26. Performance curve of the load ca-

pacity as a function of the yield

stress, shown for a bow imperfec-

tion of 0 and 8.8 mm.

Seen from the figures, the load capacity is not very sensitive to the variation of yield stress

compared to the bow imperfection. However, as the reduction of the load capacity, seen in

Figure 5.24 for the modulus of elasticity and 5.26 for yield stress, are larger for the varying yield

stress in the interval of the standard deviation, this combination is chosen for further stochastic

investigations in Part II of the thesis.
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5. Imperfections in Finite Element

5.5 Data process for Stochastic chapter

In order to allow the use of two stochastic variables related to the profiles geometry andmaterial,

in the limit state function of the Finite Element Model, a surface plot of the load capacity as a

function of the yield stress and bow imperfection will be obtained through this section. In order

to assure that the interval is sufficiently large, the yield stress is chosen at an interval of 170-370

MPa, while the initial bow imperfection is chosen as 0-16 mm. From the analyses conducted in

Abaqus, the following data shown in Figure 5.27 is obtained.

Figure 5.27. Load capacity of a 2.95 m column, subjected to a varying initial bow imperfection and yield

stress.

In order to use for further stochastic analysis, an interpolation between the data points is

required. Therefore a second order polynomial is fitted to the data points in each direction, and

a surface is generated, seen in Figure 5.28.

Figure 5.28. Simulated data, based on second order the polynomial, compared to the original data.

The comparison in Figure 5.28 verifies the validity of the second order polynomial. A comparison

between the load capacity calculated by Finite ElementMethod, seen in Figure 5.27, and the load

capacity calculated by the DS/EN method, seen in Eq.(3.8), can be seen in Figure 5.29.
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Figure 5.29. Load capacity for a column with varying yield stress, subjected to an increasing bow

imperfection, based on FEA and DS/EN.

It is seen that the load capacity obtained through Finite ElementModel ismore susceptible to bow

imperfections than the load capacity found through DS/EN calculations. As seen in Figure 5.29,

the load capacity calculated by DS/EN is lower then the Finite ElementMethod, for imperfections

below 6-10 mm, which corresponds well to the tolerance of 0.3%⋅𝑙 → 𝑙/335, according to

[BS/EN-10034-1993, 1993], depending on the yield stress. This indicates that in order to obtain

conservative results for the DS/EN method, the initial bow imperfection has to be in the interval

below this tolerance level. However, according in [Bonnerup et al., 2009], DS/EN assumes an

initial bow imperfection of 𝑙/1000 which is well under this tolerance level.
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Part II

Stochastic Analysis
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6 Model Uncertainty Estimation

The last part of the thesis treats imperfections as deterministic parameters, in order to investigate

the influence each imperfection has on the load capacity. Based on these investigations it is

recognized that bow imperfections are the most influential in relation to load capacity. Through

this part, the bow imperfection, combined with the two stochastic material variables studied

in Section 5.4, will be subject to stochastic analysis. In order to perform a stochastic analysis, a

study of the uncertainties between the stochasticmodels and the experimental data is conducted.

As the distribution of the acquired mean values and standard deviations, seen in Table 2.3 on

page 15, is not stated, 160 column tests are simulated using a normal and lognormal distribution,

in order to determinewhich distribution fits the experimental data best. With the simulated data,

the bias is calculated as seen in the following section, based on the Least Square Method from

[DS/EN-1990:2007, 2008], Annex D.8.

6.1 Calculation Method - DS/EN 1990, Annex D.8

Initially, the bias is calculated using, Eq.(6.1), which is used as the mean value for the model

uncertainty in Chapter 7. The bias is an expression, quantifying the systematic error margin

between the experimental- and theoretical data, seen in Figure 6.1.

81 (da)

DS/EN 1990:2007

NOTE – En lognormal fordeling for en variabel har den fordel, at der ikke kan forekomme negative værdier.

(2) Standardproceduren til metode D.5(1)a) omfatter de syv trin, der er angivet i D.8.2.2.1 til D.8.2.2.7.

D.8.2.2	 Standardprocedure

D.8.2.2.1	 Trin 1: Udarbejdelse af en beregningsmodel

(1) Udarbejd en beregningsmodel for konstruktionen eller konstruktionsdelens teoretiske bæreevne, rt, repræsente-
ret ved bæreevnefunktionen:

rt = grt (X_   )� (D.5)

(2) Bæreevnefunktionen bør dække alle relevante grundlæggende variable, X_   , der påvirker bæreevnen ved den re-
levante grænsetilstand.

(3) Alle grundlæggende parametre bør måles for hvert prøvelegeme i (antagelse c) i D.8.2.1) og bør være tilgænge-
lig til brug ved evalueringen.

D.8.2.2.2	 Trin 2: Sammenlign værdier opnået ved forsøg og teoretiske værdier

(1) De faktiske målte egenskaber sættes ind i bæreevnefunktionen, således at der opnås teoretiske værdier, rti, der 
kan danne grundlag for en sammenligning med værdierne opnået ved forsøg rei fra forsøgene.

(2) De punkter, der repræsenterer par af sammenhørende værdier (rti, rei), indtegnes i et koordinatsystem som vist i 
figur D.1.

Figur D.1 – re-rt-diagram

(3) Hvis bæreevnefunktionen er nøjagtig og fuldstændig, vil alle punkterne ligge på linjen θ = π /4. I praksis vil punk-
terne ligge noget spredt, men årsagerne til en eventuel systematisk afvigelse fra denne linje bør undersøges for at 
kontrollere, om dette indikerer fejl i forsøgsprocedurerne eller i bæreevnefunktionen.
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Figure 6.1. rert diagram [DS/EN-1990:2007, 2008].

Each point in Figure 6.1, represents the relationship between an experimental data point, 𝑟𝑒, and

theoretical data point, 𝑟𝑡. The line with angle, 𝜃 signifies the perfect fit, signifies the perfect fit

between the theoretical and experimental data.

𝑏 = ∑ 𝑟𝑒 𝑟𝑡
∑ 𝑟2

𝑡
(6.1)

𝑏 Bias [−]

𝑟𝑒 Experiments load capacity [Pa]

𝑟𝑡 Theoretical load capacity [Pa]
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Subsequently, a realization of the logarithmicmodel uncertainty of each simulated test point,Δ𝑖,

is calculated, using Eq.(6.2).

Δ𝑖 = ln 󰚱 𝑟𝑒
𝑏 𝑟𝑡

󰚲 (6.2)

The standard deviation of the model uncertainty is estimated by Eq.(6.3).

𝑠Δ = 󰞑 1
𝑁 − 1

𝑁
󰞉
𝑖=1

(Δ𝑖 − Δ̄)2 (6.3)

𝑠Δ Estimated standard deviation [Pa]

𝑁 Number of tests

Δ̄ Mean value of the realization results [Pa]

The coefficient of variation of the model uncertainty, 𝑉Δ, is calculated from Eq.(6.4).

𝑉Δ = 󰞏exp(𝑠2
Δ) − 1 (6.4)

6.2 Model uncertainty for DS/EN

The load capacity, based on the DS/EN method and the experimental data generated from a

normal- and a lognormal distribution, is compared in order to estimate the model uncertainty.

The fitted data are shown in Figure 6.2 and 6.3 respectively. The theoretical load capacity is based

on the same six column lengths, which were used in the experiments.
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Figure 6.2. rere diagram - Normal distribution.
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Figure 6.3. rere diagram - Lognormal distribution.

As the two figures show, the model uncertainty based on the two distributions, are nearly iden-

tical. Therefore, a lognormal distribution is used, which is recommended by [DS/EN-1990:2007,

2008]. As expected the bias is above 1 which indicates that DS/EN method yields a conservative

estimate of the load capacity, compared to the experimental data. The figures are shown for

calculations for DS/EN without initial bow imperfection.

6.3 Model uncertainty for the Finite Element Model

In this section, the same experimental data, generated from a lognormal distribution, as was used

in the previous section, is used to compare the Finite Element Model to the load capacity based
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6. Model Uncertainty Estimation

on the experiments. The numerical load capacity, is calculated using GMNIA, with an initial bow

imperfection of 𝑙/1000, which is the considered initial bow imperfection according to [Bonnerup

et al., 2009]. The relation between the numerical and experimental data is shown in Figure 6.4.
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Figure 6.4. rere diagram - Lognormal distribution.

The model uncertainty for the numerical model, shown in Figure 6.4, lies, as expected, between

the DS/EN method and the experimental data. This leads to a hierarchic order of calculation

methods as seen in Table 6.1.

Method of Resource

calculation consumption Conservatism

DS/EN Low High

Numerical models Moderate Moderate

Experimental test High Low

Table 6.1. Hierarchic order of calculation methods

As standard based calculations are relatively resource efficient, it is often the method of choice

for generalized cases in practical engineering. Therefore the calculations require a high level of

reliability, i.e. conservative results, and thus yields the highest model uncertainty. For more

complex problems, numerical models or experimental tests can be conducted, to ensure more

realistic results. However, numerical or experimental models can be used for standard cases as

well. As these more complex models are more resource demanding, a higher level of utilization

of the load capacity, is desired in order to justify the use of the extra resources.

In the following chapter, themodel uncertainty acquired for theDS/ENmethod and Finite Element

Model will be used to calibrate the partial safety factor.
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7 Stochastic Modeling

In this chapter, the stochastic variables, design equations and limit state functions are defined for

both a uni-axial compressed column with and without an initial bow imperfection.

7.1 Stochastic Variables

In order to determine which parameters can be set as deterministic and which need to be

stochastic, a sensitivity analysis of the model, with all parameters set at stochastic, should be

performed. However, based on the studies of imperfections in Chapter 5, the stochastic and

deterministic parameters are defined in the following subsections.

Geometrical

For the failure function defined by DS/EN the geometrical parameters, aside from the initial bow

imperfection, are assumed to be deterministic.

Material distribution

Material parameters are usually considered either log- or normal distributed [Sørensen, 2004].

If the strength of a structure is defined with normal distributed variables the total strength will

become normal distributed. This assumption is valid for ductile materials with small coefficients

of variation. However, for a normal distribution with a high coefficient of variation the strength

can become negative. To avoid this, a lognormal distribution can be considered, which is

recommended by [DS/EN-1990:2007, 2008].

Load distribution

In this project, two loads are considered, dead- and snowload. These loads are chosen because

they are considered to be the loads best suited to simulate column behavior by uni-axial

compression. According to [DS/INF-172, 2009], the deadload is assumed tobenormal distributed,

while the snowload is assumed to be Gumbel distributed.

In this analysis, two different design load cases, based on (7.1) are considered, namely dominating

deadload and domination snowload [DS/EN-1990:2007, 2008]. The partial safety factors of each

load can be seen in Table 7.1.

𝛾𝐷𝑒𝑎𝑑 𝛾𝑆𝑛𝑜𝑤
Dominating Deadload 1.5 0

Dominating Snowload 1 1.2

Table 7.1. Partial safety factors based on the dominating load.[NA:2013, 2013]

𝑆 = 𝐺𝑑𝑒𝑎𝑑𝛾𝑑𝑒𝑎𝑑,𝑖 + 𝑄𝑠𝑛𝑜𝑤𝛾𝑠𝑛𝑜𝑤,𝑖 (7.1)
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𝐺𝐷𝑒𝑎𝑑 Deadload [Pa]

𝑄𝑆𝑛𝑜𝑤 Snowload [Pa]

𝑖 Dominating load case [−]

𝛾𝐷𝑒𝑎𝑑, 𝛾𝑆𝑛𝑜𝑤 Partial safety factors [−]

Input parameters

In Table 7.2 the input parameter for the failure function defined by DS/EN shown.

Mean Standard Characteristic

Distribution value deviation quantile Reference

𝐸 [GPa] Lognormal 210 6.6 𝜇 [JCSS, 2002]

𝑓𝑦 [MPa] Lognormal 264 18.5 5 % [JCSS, 2002]

𝐺 [MPa] Normal 1 0.1 50 % [DS/INF-172, 2009]

𝑄 [MPa] Gumbel 1 0.4 98 % [DS/INF-172, 2009]

𝑢0 [m] Normal 0 𝑙/1000 50 % [JCSS, 2002]

𝑥w/

𝑟,DS/EN [−] Lognormal 1.14 0.087 - [Figure 6.3]

𝑥w/o

𝑟,DS/EN [−] Lognormal 1.16 0.087 - [Figure 6.3]

𝑥𝑟,FEA [−] Lognormal 1.08 0.095 - [Figure 6.4]

𝐼𝑧 [mm4] Deterministic 0.683⋅106 - - [Jensen & Mohr, 2009]

𝑊𝑃𝑙 [mm3] Deterministic 123.8⋅103 - - [Jensen & Mohr, 2009]

𝐴 [mm2] Deterministic 2.01⋅103 - - [Jensen & Mohr, 2009]

𝑙 [m] Deterministic 2.95 - - [Sfintesco, 1970]

𝛼 [−] Deterministic 0.34 - - [DS/EN-1993-1-1, 2007]

𝑐𝑚𝑧 [−] Deterministic 0.6 - - [DS/EN-1993-1-1, 2007]

Table 7.2. Stochastic variables, note that from this point forward, DS/EN is denoted w/ for calculations

with initial bow imperction and w/o without.

All parameters are assumed to be uncorrelated.

7.2 Design Equation

The design equation is the ratio between the resistance and the load, expressed by Eq.(7.2).

𝐺 = 𝑧𝑅𝑑 − 𝑆𝑑 (7.2)

𝑅𝑑 Design resistance

𝑆𝑑 Design load

𝑧 Scale factor

In order to determine the design load, unit-loads are applied, while the load capacity of the

column is scaled, using a scale-factor, 𝑧, until G = 0, and the design point is reached. The

characteristic values and partial safety factors are used for Eq.(7.2) and when G ≤ 0 failure will

occur.
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7. Stochastic Modeling

The design equation used is based on Eq.(7.3), from [DS/EN-1993-1-1, 2007].

𝑁𝐸𝑘
𝜒𝑓𝑦𝑘𝐴

𝛾𝑀1

+ 𝑘𝑧𝑧
𝑀𝐸𝑘

𝑊𝑃𝑙𝑓𝑦𝑘
𝛾𝑀1

= 1 (7.3)

𝑘𝑧𝑧 Interaction factors [−]

𝑊𝑃𝑙 The plastic moment of resistance [m3]

𝑓𝑦𝑘 Characteristic yield stress [Pa]

𝛾𝑀1 Partial safety factor [−]

𝐴 Cross sectional area [m2]

𝜒 Column reduction factor [−]

However as the design equation is based on characteristic values, the equation canbe significantly

simplified. Seen in Table 7.2, the initial bow imperfection are normal distributed, has a mean

value of zero, and the characteristic value is based on a 50 % quartile ,[Sørensen, 2004], i.e. the

characteristic value is zero and the equation can be simplified to uni-axial compression, seen in

Eq.(7.4).

𝑁𝐸𝑘
𝜒𝑓𝑦𝑘𝐴

𝛾𝑀1

= 1 (7.4)

From Eq.(7.4), the design resistance is formulated for a column subjected to uni-axial compres-

sion, seen in Eq.(7.5).

𝑅𝑑 =
𝜒𝑓𝑦𝑘𝐴
𝛾𝑀1

= 𝑁𝐸𝑑 (7.5)

Seen in Eq.(7.5), the 𝜒 factor accounts for the imperfections in the otherwise perfect column.

The load term, 𝑆, is based on Eq.(7.1), with an added scale factor, 𝜂.

𝑆 = (1 − 𝜂)𝐺𝑑𝑒𝑎𝑑𝛾𝑑𝑒𝑎𝑑 + 𝜂𝑄𝑠𝑛𝑜𝑤𝛾𝑠𝑛𝑜𝑤 (7.6)

𝜂 Scale factor between the dead- and snowload [−]

𝐺𝐷𝑒𝑎𝑑 Deadload [Pa]

𝑄𝑆𝑛𝑜𝑤 Snowload [Pa]

𝛾𝐷𝑒𝑎𝑑, 𝛾𝑆𝑛𝑜𝑤 Partial safety factors [−]

As the scale-factor, 𝑧, is used to scale the design resistance compared to the design load, 𝜂 is

introduced to scale the ratio between the dead- and snowload.

By inserting Eq.(7.5) and (7.6) into (7.2), the scale-factor, 𝑧, is obtained by setting 𝐺 = 0.

𝐺 = 𝑧 󰚱
𝜒𝑓𝑦𝑘𝐴
𝛾𝑀1

󰚲 − ((1 − 𝜂)𝐺𝑑𝑒𝑎𝑑𝛾𝑑𝑒𝑎𝑑 + 𝜂𝑄𝑠𝑛𝑜𝑤𝛾𝑠𝑛𝑜𝑤) = 0 (7.7)

In order to scale the loads in the design equation, a number of different 𝜂 values, varying from

zero to one is chosen. For each 𝜂 value, a unique 𝑧 value is calculated, and used to assign

the dominating load in the limit state function, calculated in the following section. The design

equation derived in this section, will be used for both the DS/EN and FEA limit state functions.
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7.3 Limit State Function

The limit state function is used to determine the reliability index, 𝛽, of a model, compared to the

design equation. The limit state function is defined by Eq.(7.8).

𝑔 = 𝑧𝑅𝑥𝑟 − 𝑆 (7.8)

𝑥𝑟 Model uncertainty - calculated in Chapter 6

For the limit state function the stochastic variables are used and no partial safety factors are

applied. For the limit state function a failure surface is defined by 𝑔(𝑥) = 0, seen in Figure 7.1.

As seen in the figure, everything below the line, i.e. 𝑔(𝑥) > 0 is considered safe, while 𝑔(𝑥) ≤ 0
is failure.

Note 3: First order reliability methods 
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Figure 3.1. Failure function )(xg .  

 

It is important to note that the failure surface does not define a unique failure function, i.e. the fail-

ure surface can be described by a number of equivalent failure functions. However, whenever poss-

ible, differentiable failure functions should be used. In structural reliability the failure function 

usually results from a mechanical analysis of the structure. 

 

If, in the failure function x  is replaced by the stochastic variables X , the so-called safety margin M 

is obtained: 
 

)(XgM =   (3.5) 

 

M is a stochastic variable. The probability of failure fP  of the component is: 
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f
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Example 3.1   

In the fundamental case only two basic variables are used, namely the load variable P and the 

strength variable S. A failure function can then be formulated as: 
 

pspsg −=),(   (3.7) 

 

The failure surface 0),( =psg  is shown in figure 3.2. The safety margin corresponding to (3.7) is: 

PSM −=   (3.8) 

 

Instead of the failure function (3.7) the following equivalent failure function can be used: 
 

33),( pspsg −=   (3.9) 

Figure 7.1. Limit state function [Sørensen, 2004].

DS/EN - Uni-axial compression

When dealing with a uni-axial compressed column the load capacity is found by Eq.(7.9).

𝑅 = 𝜒𝑓𝑦𝐴 (7.9)

The load, 𝑆, is defined by Eq.(7.10)

𝑆 = (1 − 𝜂)𝐺𝑑𝑒𝑎𝑑 + 𝜂𝑄𝑠𝑛𝑜𝑤 (7.10)

Thereby the limit state function for uni-axial compression is defined by Eq. (7.11).

𝑔 = 𝑧𝜒𝑓𝑦𝐴𝑥𝑟 − ((1 − 𝜂)𝐺𝑑𝑒𝑎𝑑 + 𝜂𝑄𝑠𝑛𝑜𝑤) (7.11)

DS/EN - Uni-axial compression with initial bow imperfection

When adding an initial bow imperfection to the limit state function an extra bendingmoment will

occur. An extra moment term is therefore applied to Eq.(7.9), seen in Eq.(7.12).

𝑁𝐸
𝜒𝐴𝑓𝑦

+ 𝑘𝑧𝑧
𝑀𝐸

𝑊𝑃𝑙𝑓𝑦
= 1 (7.12)

The bending moment is defined as the product of the normal force and the initial bow

imperfection, expressed in Eq.(7.13).

𝑀𝐸 = 𝑁𝐸 𝑢0 (7.13)
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7. Stochastic Modeling

When solving Eq.(7.12) two different solutions are obtained where one yields a negative load

capacity, and is therefore discarded. The derivation of the limit state equation is found in

Appendix A.

FEA - Uni-axial compression with initial bow imperfection

Through this analysis, the deterministic and stochastic parameters are chosen as seen in Table

7.2. However, as explained in Chapter 5, the only profile parameters considered stochastic, will

be the initial bow imperfection and yield stress as these were the most influential parameters

found in Section 5.4.

The limit state function, is based on Eq.(7.8), where the resistance, 𝑅, is expressed as a function

of the initial bow imperfection and yield stress, seen in Figure 5.28 on page 39.

7.4 Reliability index

To estimate the reliability index of the limit state function, described in the previous section,

different methods can be used. In this thesis, FORM (First Order Reliability Method) and MC

(Crude Monte Carlo) method, will be used.

7.4.1 First Order Reliability Method

The concept of FORM is to linearize the failure surface of the limit state function, as seen in Figure

7.2 so a probability of failure can be estimated, [Sørensen, 2004].

In order to use FORM, the stochastic variables are transformed into the standard normally

distributed variable 𝐔 with standard deviations of one and an expected value of zero. Thereby

the probability of failure can be calculated with the standard normal distribution function, Φ,

which is defined by Eq.(7.14).

𝑃𝑓 = Φ(−𝛽) (7.14)

𝑃𝑓 Probability of failure

Φ Standard normal distribution function

𝛽 Reliability index

The definition of the reliability index 𝛽 is the shortest distance from origin to the failure surface

𝑔(𝐮) = 0 in the 𝐔 space, see Figure 7.2.

Note 3: First order reliability methods 
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The Hasofer & Lind reliability index β  is defined as the smallest distance from the origin O in the 

u-space to the failure surface 0)( =uug . This is illustrated in figure 3.6. The point A on the failure 

surface closest to the origin is denoted the β -point or the design point. The Hasofer & Lind relia-

bility index defined in the u-space is invariant to different equivalent formulations of the failure 

function because the definition of the reliability index is related to the failure surface and not direct-

ly to the failure function. The reliability index is thus defined by the optimization problem: 
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The solution point for u  is denoted ∗

u , see figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Geometrical illustration of the reliability index β . 

 

If the failure surface is linear it is easy to see that the Hasofer & Lind reliability index is the same as 

the reliability index defined by (3.14). The Hasofer & Lind reliability index can thus be considered 

a generalization of the Cornell reliability index. 

 

The numerical calculation of the reliability index β  defined by (3.21) can be performed in a num-

ber of ways. (3.21) is an optimization problem with a quadratic objective function and one non-

linear constraint. A number of algorithms exist for solution of this type of problem, e.g. the NLPQL 

algorithm by Schittkowski [3.4]. Here a simple iterative algorithm will be described. For simplicity 

the index u will be omitted on the failure function )(ug  in the following. 

 

At the β  point ∗

u  it is seen that the following relation must be fulfilled: 

 

)( ∗∗

∇= uu gλ  (3.22) 

 

where λ  is a proportionality factor. In order to formulate an iteration scheme it is assumed that a 

point 0
u  close to ∗

u  is known, i.e.: 
 

uuu ∆+=
∗ 0  (3.23) 

 

Figure 7.2. Reliability index[Sørensen, 2004].
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7.4.2 Sensitivity Analysis

When the FORM analysis has estimated a probability of failure, a sensitivity analysis of each

stochastic variable can be performed in order to give an estimation of how sensitive the reliability

index is to any given stochastic variable.

In this thesis, the unit normal vector, 𝛼, to the failure surface at the design point, will be used to

express the sensitivity. The 𝛼 vector is expressed by Eq.(7.15).

𝜕𝛽
𝜕𝑢𝑖

󰝆
𝐮∗

= 𝜶𝐢 (7.15)

𝛼𝑖 Unit normal vector [−]

7.4.3 Crude Monte Carlo Simulation

The reliability index, calculated with FORM, is verified with the Crude Monte Carlo method. The

Crude Monte Carlo, is a brute force method, which at a sufficient amount of simulations will

converge towards a the correct reliability index, however it is very computationally heavy. The

probability of failure is estimated by Eq.(7.16).

̂𝑃𝑓 = 1
𝑁

𝑁
󰞉
𝑗=1

𝐼[𝑔(𝐮̂𝑗)] (7.16)

̂𝑃𝑓 Probability of failure [−]

𝑁 Number of simulations [−]

𝐼[𝑔(𝐮̂𝑗)] Indication function [−]

𝑔(𝐮̂𝑗) Failure function [−]

The indication function is defined as:

𝐼[𝑔(𝐮𝑗)] = 󰛑 0 if 𝑔(𝐮) > 0 Safe

1 if 𝑔(𝐮) ≤ 0 Failure
(7.17)

The reliability index is calculated with the inverse standard normal distribution function Φ−1 and

is defined with Eq.(7.18).

𝛽 = −Φ−1(𝑃𝑓) (7.18)
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8 Stochastic results

In order to acquire the partial safety factors, the program FERUM is used to perform the stochastic

analysis. The input parameters used in FERUM are described in Section 7.1. In the following

section, calculations with the partial safety factor, according to the current Danish National Annex

will be conducted through FORM and verified with Monte Carlo simulations. Subsequently a

sensitivity analysis of the stochastic variables will be performed, in order to study the influence

of the individual stochastic variable. Ultimately, the stochastic analyses, are used to calibrate the

partial safety factor.

8.1 Reliability Analysis for the Current DS/EN Partial Safety Factor

Through this section, the reliability index, 𝛽, will be calculated for each of the three limit state

functions. The reliability index for each limit state function will be calculated by FORM, and

validated by Monte Carlo, shown in Figure 8.1
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Figure 8.1. Reliability index shown for each of the three limit state functions, calculated by FORM and

Monte Carlo, visualized by lines and asterisks respectively.

It is seen in Figure 8.1, the reliability method is stable, regardless if FORM or Monte Carlo is used.

It is, however, seen that the reliability indeces calculated by the FEA limit state function, deviates

more than the DS/EN models. Nevertheless, as the tendency of the reliability indices are similar

and deviates by no more than 0.2, the reliability is considered verified. The Monte Carlo method

is confirmed by a convergence analysis of the probability of failure and the covariance of the

probability of failure, seen in Figure 8.2 and 8.3.
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Figure 8.3. Covariance of the probability of fail-

ure of the Monte method.

As the reliability index has been verified, a sensitivity analysis is conducted and discussed in the

following section

8.2 Sensitivity Analyses

Through this section, sensitivity analyses are conducted, in correspondence with Subsection

7.4.2. The analyses are conducted for the three limit state functions, in order to investigate the

influence of each stochastic variable on the reliability indices. The analyses are presented for the

limit state functions in Figure 8.4 for DS/ENw/o, DS/ENw/ and FEA respectively.
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Figure 8.4. Sensitivity analysis for each of the three limit state functions.

The sensitivity analyses, shows that the reliability index becomes highly dependent on the

snowload, for all limit state functions, while the yield stress is insignificant. Compared to the loads

and the model uncertainty, it is seen that the initial bow imperfection is only of significance to

the reliability in the FEA limit state function. However, as limit state functions contain a different

number of stochastic variables, a definitive conclusion is difficult to reach. However, it is seen

that the yield stress is generally insignificant. It is suspected that this is caused by the standard

deviation of 18.5 MPa, which may be too low to cause any considerable impact on the reliability

index, which is also indicated in Figure 5.29 on page 40.
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8.3 Calibration of Partial Safety Factor

In order to calibrate the partial safety factor, 𝛾𝑀1, the reliability indices are calculatedwith FORM

for different 𝛾𝑀1 values for eachweight factors. The target reliability index is chosen to 4.3, which

according to the Danish National Annex is the one-year return period for consequence class 2.

To estimate the 𝛾𝑀1 corresponding the target reliability index, the partial safety factor, is

calculated, based on the best fit in Eq.(8.1), [Hansen & Sørensen, 2002].

𝛾𝑀1 󰚅min
𝑀

󰚆 = 󰞉 󰙙𝛽𝑗(𝛾) − 𝛽𝑇 󰙚2
(8.1)

𝛽𝑇 Target reliability index

𝛽𝑗,𝜂 The reliability index for each weight factor, 𝜂, at each iteration, 𝑗, of 𝛾𝑀1

The plot of the margin of error, 𝑀 as a function of 𝛾𝑀1 is seen in Figure 8.5 for each limit state

function.
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Figure 8.5. Margin of error for each iteration of the reliability index as a function of the partial safety

factor.

The best fit between the reliability indices for each limit state function and target reliability index

is seen to correspond to the Danish National Annex at about 𝛾𝑀1 = 1.2. The reliability indices as

a function of the weight factor 𝜂, for the iterated 𝛾𝑀1, are seen in Figure 8.6.
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Figure 8.6. Reliability for each limit state function as a function of the weight factor.

The calibrated partial safety factor for each limit state function, in order to achieve the target

reliability, is seen to be slightly higher than the National Annex suggests. This is suspected to

be caused by a limited amount of uncertainties and stochastic variables. This will be subject to

discussion in the following section.

8.4 Review of Results

The stochastic results obtained for the calibrated safety factor are seen in Table 8.1.

Design Eq. R = 65.1 MPa

DS/ENw/ DS/ENw/o FEA

R [MPa] 65.5 67.2 72.6

xr [−] 1.16 1.14 1.08

𝜎 [−] 0.087 0.087 0.095

R·xr [MPa] 76.0 76.6 78.3

𝛽𝑚(𝛾𝑀1 = 1.2) [−] 4.24 4.19 4.19

𝛾𝑀1(𝛽𝑇 ) = 4.3) [−] 1.20 1.22 1.24

Table 8.1. Summarization of results obtained through Chapter 8.

𝑅 Load capacity

𝑥𝑟 Model uncertainty

𝜎 Variasion of the model uncertainty

𝛽m(𝛾𝑀1=1.2) Reliability index

𝛾𝑀1(𝛽𝑇 ) = 4.3) Calibrated partial safety factor

The partial safety factor of the Finite Element method, is slightly higher than the safety factors

obtained through DS/EN, as seen from Table 8.1. This is unexpected, as the load capacity found in

the Finite Element Analyses in Part I, showed a higher load capacity which would be expected to

cause lower partial safety factor. However, as themodel uncertainty, accounts for the higher load
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8. Stochastic results

capacity, the deviation between the load capacities are evened out and the partial safety factors

for each limit state function approaches the same value. In addition, the standard deviation of

the model uncertainty is higher for the Finite Element Model, which reduces the reliability of the

model, and thereby further increases the partial safety factor compared to the DS/EN models. In

order to investigate this, the same stochastic analyses are conducted for unbiased models, which

can be seen in Table 8.2.

Design Eq. R = 65.1 MPa

DS/ENw/ DS/ENw/o FEA

R [MPa] 65.5 67.2 72.6

xr [−] 1 1 1

𝜎 [−] 0.087 0.087 0.095

R·xr [MPa] 65.5 67.2 72.6

𝛽𝑚(𝛾𝑀1 =1.2) [−] 3.51 3.54 3.84

𝛾𝑀1(𝛽𝑇 ) = 4.3) [−] 1.44 1.41 1.35

Table 8.2. Unbiased results of the stochastic analyses.

The reliability index decreases which causes a higher required partial safety factor. However, the

partial safety factor for the Finite Element Model is seen to be lower than the DS/EN models,

which confirms the importance of the model uncertainty.

Furthermore, as the sensitivity analyses indicated, the snowload is highly dominant. An

investigation is therefore conducted with the covariance of the snowload changed from 0.4 to

0.3. This should increase the reliability of the model and thereby decrease the required partial

safety factor in order to obtain the target reliability. The results are shown in Figure 8.3. The

models are again considered biased.

Design Eq. R = 65.1 MPa

DS/ENw/ DS/ENw/o FEA

R [MPa] 65.5 67.2 72.6

xr [−] 1.16 1.14 1.08

𝜎 [−] 0.087 0.087 0.095

R·xr [MPa] 76.0 76.6 78.3

𝛽𝑚(𝛾𝑀1 = 1.2) [−] 4.43 4.38 4.33

𝛾𝑀1(𝛽𝑇 ) = 4.3) [−] 1.18 1.19 1.20

Table 8.3. Biased results obtained for a covariance of the snowload of 0.3.

As expected, the reliability index decreases, compared to the results shown in Table 8.1.

Furthermore, when comparing the results for the model with a snowload with a covariance of

0.3 and the unbiased model with a covariance of 0.4, to the original results, it is seen that the

partial safety factor deviates more for the unbiased model. This could indicate that the model

uncertainty is of interest for further studies.
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9 Conclusion

Through this thesis, global buckling of a uni-axially compressed simple supported column has

been studied. The studies have been conducted through analytical and numerical analysis,

which have been compared to experimental results. The analytical analysis is based on

[DS/EN-1993-1-1, 2007], while the numerical models are conducted through the commercial

software Abaqus. This has led to a study of a variety of imperfections in order to determine the

influence on the critical buckling load of columns. Geometrical and installation imperfections

are seen to be of greater influence to the load capacity than material variations. Especially

bow imperfection and load eccentricity are seen to influence the critical buckling point as these

provoke global instability, while the columns subjected to the other imperfections are more

disposed to local instability. It is observed that the results of the DS/ENmethods are conservative

and can be increased by 5-10% compared to the numerical and experimental results. However,

it is observed that the DS/EN model is less susceptible to bow imperfections, than the numerical

model, as a consequence the load capacity at large bow imperfections is underestimated by the

DS/EN method. However, according to [Bonnerup et al., 2009], the initial bow imperfection in

structural columns, is considered to be significantly less than this tolerance level.

After the imperfection study, a comparison between the theoretical models and experimental

data has been conducted in order to obtain the model uncertainty, for stochastic analysis. It is

observed that the load capacity of the Finite Element Model, corresponds better to reality than

the analytical models, which is reflected in a higher bias. However, the standard deviation of the

model uncertainty is slightly higher.

Subsequently a FORM analysis is performed where the design equation is based on the

[DS/EN-1993-1-1, 2007], in order to examine the reliability of the current standard. Three

different limit state functions are defined based on [DS/EN-1993-1-1, 2007], with and without

initial bow imperfection, and an imperfect numericalmodel using GMNIA. The stochastic analyses

shows that the limit state functions are slightly unreliable, which is assumed to be a consequence

of the relatively large standard deviation of the model uncertainty. As a result, a slight upward

adjustment of the partial safety factor is suggested, based on the Danish National Annex. It

is furthermore observed that the Finite Element Model yields a slightly higher partial safety

factor than the analytical models, which is unexpected. Therefore an investigation of the model

uncertainty is conducted. The same stochastic analyses are therefore performed with unbiased

models, with the same standard deviation of the model uncertainty. As expected, it is seen that

the Finite Element Model yields a lower partial safety factor.

As the partial safety factors are regarded as slightly high, the uncertainty of the distribution for

the snowload is reviewed as well. As the snowload is seen to be highly dominant in the sensitivity

analyses, the covariance is scaled down from 0.4 to 0.3, otherwise suggested by [JCSS, 2002]. As a

results, the partial safety factor is reduced slightly, but is still within a very close range to the value

suggested by the Danish National Annex. This suggests that a revision of the parameters used in

the limit state functions could be subject to further analysis. However, based on the calculations

conducted through this thesis, it is concluded that recommended values suggested by the Danish

National Annex are accurately defined.
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A Limit state function

In this appendix the limit state function and design equation for the DS/ENmethod with an initial

bow imperfection is derived. The limit state function is based on Eq. (A.1).

𝑁𝐸𝑑
𝜒𝐴𝑓𝑦𝑘

+ 𝑘𝑧𝑧
𝑀𝐸𝑑

𝑊𝑝𝑙𝑓𝑦𝑘
= 1 (A.1)

where

𝑀𝐸𝑑 = 𝑁𝐸𝑑𝑢 (A.2)

𝑘𝑧𝑧 = 𝐶𝑚𝑧(1 + (2𝜆 − 0.6)𝑛) (A.3)

𝑛 = 𝑁𝐸𝑑
𝜒𝑁𝑅𝑑

(A.4)

𝑁𝑅𝑑 = 𝑓𝑦𝑘𝐴 (A.5)

When solving Eq. (7.12) two solutions are given with Eq. (A.6) and (A.7).

𝑁𝐸𝑑 = − 1
𝐶𝑚𝑧𝑢(10𝜆 − 3)

(0.5(5𝐴𝜒𝐶𝑚𝑧𝑢−

󰞏25𝐴𝜒2𝐶2
𝑚𝑧𝑢2 + 200𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝜆𝑢 − 10𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝑢 + 25𝑊 2

𝑃𝑙 + 5𝑊𝑃𝑙)𝑓𝑦𝑘)
(A.6)

𝑁𝐸𝑑 = − 1
𝐶𝑚𝑧𝑢(10𝜆 − 3)

(0.5(5𝐴𝜒𝐶𝑚𝑧𝑢+

󰞏25𝐴𝜒2𝐶2
𝑚𝑧𝑢2 + 200𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝜆𝑢 − 10𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝑢 + 25𝑊 2

𝑃𝑙 + 5𝑊𝑃𝑙)𝑓𝑦𝑘)
(A.7)

As Eq.(A.7) yields a negative result, this expression is discarded. The definition of the limit state

function is therefore based on Eq.(A.6).

The load S is defined with Eq. (A.8).

𝑆 = (1 − 𝜁)𝐺𝑑𝑒𝑎𝑑 + 𝜁𝑄𝑠𝑛𝑜𝑤 (A.8)

The limit state function are defined with Eq. (A.9).

𝑔 = 𝑧𝑅𝑥𝑟 − 𝑆 (A.9)

By inserting Eq. (A.6) and (A.8) the limit state function is defined with Eq. (A.10).

𝑔 = − 1
𝐶𝑚𝑧𝑢(10𝜆 − 3)

(0.5𝑧(5𝐴𝜒𝐶𝑚𝑧𝑢−

󰞏25𝐴2𝜒2𝐶2
𝑚𝑧𝑢2 + 200𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝜆𝑢 − 10𝐴𝑊𝑃𝑙𝜒𝐶𝑚𝑧𝑢 + 25𝑊 2

𝑃𝑙+

5𝑊𝑃𝑙)𝑓𝑦𝑥𝑟) − (1 − 𝜁)𝐺𝑑𝑒𝑎𝑑 − 𝜁𝑄𝑠𝑛𝑜𝑤 (A.10)
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