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Preface

This projectis made in the period: 03-02-2014 to 10-06-2014. The project theme is "Imperfections
in Structural Columns" on the 4" semester of the Master program in Structural and Civil
Engineering under the School of Engineering and Science at Aalborg University.

Knowledge from previous semesters and earlier projects will be used as basis of the project.

Readers Guide

Through this Master thesis, the Harvard Method is used to refer to all sources, by [Surname, year],
except for references to the Standards which will be referred to as [Standard, year]. Three main
sources of literature are used, namely books, articles and technical reports, which are all listed in
the bibliography, located at the end of the thesis. For sources with more than a two authors, only
the main author will be mentioned by name, while other contributing authors are mentioned
as "et al.". Sources on figures are displayed in the caption below the figure. Figures, tables and
equation are numbered, regarding to the present chapter, i.e. figures in e.g. chapter 5 is call
Figure 5.1, Figure 5.2 etc.

Main Programs

For the calculations conducted through this thesis, both commercial and open source software
has been used. For the numerical simulations, the commercial software Abaqus has been used.
For general data processing commercial software Matlab is used, while the open source toolbox
FERUM (Finite Estimation of Reliability Using Matlab) has been used for stochastic analysis.

Digital Appendix
The digital appendix will be available on the CD in the back of the report. Files on the appendix
CD is divided according to the given chapter in which they are used.
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1 Introduction

A structural column is an element which, through compression, transfers the load from above
lying structures to elements below, i.e. an element subjected to axial loading. A well known
problem when working with columns is global instability, where failure will occur before the
ultimate stress of the element has been met. This phenomenon occurs due to, high slenderness,
i.e. high ratio between the height and cross sectional area of the column, which is often used in
structural engineering. As global buckling is often the limiting factor of uni-axially compressed
columns, it is a field of great importance, and will be reviewed through this thesis.

1.1 History Review and State-of-the-Art
The earliest examples of post buckling and elastic instability studies are dated back to [Van Muss-
chenbroek, 1729]. By experiments he discovered proportionality between the squared length
of columns and the load capacity. In 1744 Euler proved the same proportionality theoretically,
[Euler & Oldfather, 1933], defined in Eq.(1.1)

w2 El
— (1.1)

cT l?
S

=

N, | Critical Euler load [N]

FE Modulus of elasticity [Pa]
I Moment of inertia [m?]

Iy Effective column length [m]

Euler's equation was generally considered to overestimate the load capacity for short columns
with low slenderness ratios. Therefore, in the last decade of the 19th century, A. Considére and
F. Engesser independently suggested, that the true load capacity in the inelastic range could be
obtained by using the Tangent Modulus, E, instead of Modulus of elasticity, E, shown in Figure
1.1. From this, the expression, seen in Eq.(1.2), called Tangent Modulus Theory, was formulated,
[Johnston, 1983].

T2 B I
s

(1.2)

E+ | Tangent Modulus [Pa]
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Figure 1.1. The general stress-strain relationship, f,, indicates the point where there is no longer
proportionality between the strain and stresses, i.e. Modulus of elasticity, F, is no longer
constant and Hooke's Law becomes invalid.

In 1895 F. Engesser produced a corrected formula for a reduced modulus, not only dependent
on the Tangent Modulus, but also on the cross sectional shape, Eq.(1.3), [Ziemian, 2010], named
Reduced Modulus Theory.

N — w2 E, I

r= (1.3)

E._. | Reduced Modulus - (E1; + E1,)/I [Pa]
I, | Area moment of inertia relative to the
compressed portion of the cross section at the buckling state [m
I, | Area moment of inertia relative to the strain

reversed portion of the cross section at the buckling state [m

‘]

‘]

However, as the reduced modulus theory was considered to be correct, but proved difficult to
calculate, and the tangent modulus theory was believed to underestimate the load capacity, a
viable solution was yet to be discovered. Nevertheless the tangent modulus theory was relatively
easy to use, and was therefore, according to [Usami & Itoh, 1998], the preferred method. Both
methods were, however, used up to the first half of the 20th century for inelastic column behavior.
It was later proved by [Shanley, 1947] that the tangent modulus, yielded a lower bound solution,
while the reduced modulus yielded an upper bound solution. The correct column strength
solution was therefore considered to be somewhere between the two bounds.

By the late 1940s more advanced tools became available, which enabled researchers to measure
residual stresses within elements, perform precise full-scale experiments and run analyses using
computers. In the mid-1950s the Column Research Council (CRC, later known as the Structural
Stability Research Council, SSRC), formulated the CRC Column Formula, Eq.(1.4), [Ziemian, 2010],
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which is still used in various standards today [Usami & Itoh, 1998].

w2 Bl

Ne = =5z

(1.4)

K ‘ Constant, varying from 0.5 to 2, depending on boundary conditions.

From the 1950s up to the 1970s, two different design methods were used: The CRC model,
Eqg.(1.4), which included residual stresses but ignored geometrical imperfections, and the DIN
4114 model, which included geometrical imperfections but ignored residual stresses. No models,
which accounted for both phenomenons, were yet available due to the limited computational
power at the time. However, by the late 1960s sufficiently powerful computational tools became
available and both phenomenons could be accounted for, [Usami & Itoh, 1998].

Today, a variation of the same modified equations are in use in the DS/EN standard, seen in Eq.
(1.5), and will be more thoroughly explained in Chapter 3.

XSy A

Y1

(1.5)

Npa =

Npgg | Design load capacity [N]
fy Yield stress [MPa]

A Cross sectional area [m?]
Yar1 | Partial safety factor [—]
X Column reduction factor [—]

Due to the advancement of Finite Element Modeling a lot of research on how to improve the
imperfection factors and how to optimize the model uncertainties are conducted presently.

According to [Papadopoulos et al., 2012] several works on stochastic imperfections were
published during the last decade. [Stavrev et al., 2013] suggests, that the stochastic imperfection
model should be derived by either a variation of the critical eigenmode with a random scalar
variable, or through more advanced theory of random fields, which [Papadopoulos et al., 2012]
furthermore suggests can be simulated as a standard numerical procedure, or by the spectral
representation method.

1.2 Beam theory

A number of different methods exists for analysis of a column. Through this section, the approach
best suited for capturing the bending shapes, investigated in this thesis is discussed. The different
approaches which will be discussed involves Bernoulli-Euler Beam Theory and Timoshenko Beam
Theory.

In 1750, Leonard Euler and Daniel Bernoulli, formulated the Bernoulli-Euler beam Theory,
[Haukaas, 2012]. The theory is based on the following key assumptions:

e Material behaves linearly according to Hooke's Law.
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¢ Plane sections remain plane and perpendicular to the neutral axis during bending, seen in
Figure 1.2.

. P X
z /
Figure 1.2. Cross section subjected to bending as utilized in Bernoulli-Euler Beam Theory [Andersen &
Nielsen, 2008].

The general solution for the Bernoulli-Euler Beam Theory is Eq.(1.6).

—u(r) = ——= (1.6)

u(x) | Deflection [m]
q Line load [N/m]

As seen in Eq.(1.6) shear stresses are not accounted for in Bernoulli-Euler Beam Theory. In
order to account for the shear stresses, Timoshenko formulated the Timoshenko Beam Theory
in 1921, [Andersen & Nielsen, 2008]. In order to account for this phenomenon, Timoshenko
discarded the assumption from Bernoulli-Euler Beam Theory, which states that plane sections
remain perpendicular to the neutral axis during bending, seen in Figure 1.3.

Y

\ 4
8

z /
Figure 1.3. Cross section subjected to bending and shear which are the assumption for the Timoshenko
Beam Theory [Andersen & Nielsen, 2008].

By adjusting the assumptions of the Bernoulli-Euler Beam Theory a term of shear stress is added
to Eq.(1.6) as seen in Eq.(1.7).

d* q 1 d?q
A" =5t A de (17)

G ‘ Shear modulus [Pa]
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However, as the actual cross section deforms as seen in Figure 1.4, both theories abbreviate
from reality. As Figure 1.4 shows, the actual cross section deforms with a curve due to the
shear stresses being largest at the neutral axis and decrease when approaching the edges of the
cross section, [Andersen & Nielsen, 2008]. The shear stresses are neglected by Bernoulli-Euler
Beam Theory and Timoshenko Beam Theory accounts for shear stresses from a plane effective
cross sectional area. However, the deviation from reality decreases with the slenderness of the
inspected column, as the shear stresses are increasingly smaller compared to the normal stresses.

y

/ 7
Figure 1.4. Actual deformation of a cross section subjected to bending [Andersen & Nielsen, 2008]

As this thesis focuses on general structural columns, which have high slenderness ratios, the
Bernoulli Euler Beam Theory is assumed to be valid. In order to have a simple method to compare
numerical results, the critical euler load will be derived in the following section.

1.3 Derivation of the Critical Euler Load

A compression column, subjected to a constant normal force, IV, with a constant stiffness, E1,
is examined. A transient deformation, u, is applied orthogonally to the normal force, causing a
moment:

If the column returns to it's undeformed state, after the transient deformation is removed, the
column is considered stable. If the normal force is increased to a point where the deformation
becomes permanent, without buckling, the normal force applied is considered the critical Euler
load, N.,. If the load is increased further, the column will buckle, and global instability occurs,
[Bonnerup et al., 2009].
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Figure 1.5. Simple supported column.

As the critical load is the point of interest, IV_,. is derived for a simple supported column, seen in

Figure 1.5. Through this assumption the bending moment can be expressed as the Bernoulli-Euler
assumption, seen in Eq.(1.9).

d2
M= —Efﬁ (1.9)

M Bending moment [Nm]
E Modulus of elasticity [Pa]
I Moment of inertia [m?]
d

a2z | Curvature [m]

A continuum is considered to obtain equilibrium and is illustrated in Figure 1.6.

Figure 1.6. Increment of a column. [Bonnerup et al., 2009]
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Equilibrium conditions are established as seen in Eq.(1.10) to (1.12).

N +p, dz—(N+dN)=0 (1.10)
V4 p,de—(V4+dV) =0 (1.11)

1 1
M+ dM —Vdx 4+ Ndx + Ndy — M + p,, dx (idy) —p, dz (idx> =0 (1.12)

The high order terms will be neglected and the terms are simplified.

AN _ (1.13)
dx ~Pa ’
v _ (1.14)
dx — Py '
dM d

_V+N7y:0 (1.15)
dx dx

In order to obtain the differential equation for the column Eq.(1.9) and Eq.(1.14) are inserted into
Eq.(1.15) and differentiated according to x. This will lead to the following equation.

d? d?y d dy
— | FI— — | N—=| = 1.16
dx? ( dac2> * dx ( da:) Py (1.16)

Assuming the stiffness, F'1, and the normal force, N, does not change along the column, the
transverse load, p,, is set equal to zero in the case of a uni-axial compressed column. From these
assumptions the following differential equation is derived.

d*y N dy?
dot T Elde® (1.17)

The boundary conditions for a simple supported column is given in the table below.

y=0 z=0Nz =1

2
4Ty =0 |z=0Na=1

Based on these boundary conditions Eq.(1.17) is solved and the normal force is isolated. The
critical Euler load is obtained.
w2 El

N, | Critical Euler load [N]
L Effective column length [m]

S

Eq.(1.18) calculates the critical load for the simplest form of global instability, which is
Euler-buckling i.e. the first failure mode of the element.

In the before mentioned case, it is assumed that Hooke's Law is valid, i.e. Modulus of elasticity is
constant, and thereby proportionality between stress and strain. This assumption is considered
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valid for slender columns where the stresses are smaller than the proportionality limit. However,
for short columns where the normal stress are larger than the proportionality limit, Modulus of
elasticity will decrease as the stresses increase. As a consequence, when the effective length of
the column approaches zero, the critical Euler load converges towards infinity.

As the critical Euler load is an idealized case and overestimates the load capacity, DS/EN 1993
demands that the stress-strain curve of the column, residual stresses and imperfections are
considered as well.
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1.4 Thesis Statement

As mentioned in the historical review, a number of different methods to account for imperfections
in columns have been presented through the last couple of hundred years. This thesis seeks to
compare the method of the current DS/EN standard to numerical models and experimental data
found in literature. As indicated in the historical review, the perfect column does not correspond
to reality, in which imperfections are impossible to prevent. In order to account for this, the
DS/EN standard introduces an imperfection factor, «, which covers a variety of imperfections
and load scenarios. Furthermore the DS/EN standard ensures sufficient safety of the structures
by introducing the partial safety factor, 7,,,. As the partial safety factor in the DS/EN standard
is defined identically for different load scenarios, this thesis seeks to calibrate a specific partial
coefficient for simple supported steel columns subjected to weak axial bending caused by uni-axial
compression and initial bow imperfections.

As the DS/EN standard covers a variety of different load scenarios related to columns, this thesis
refrain from local instability and lateral torsional buckling. This thesis will thereby mainly focus
on global buckling instability about the weak axis, caused by imperfections.

This leads to the following problems for investigation:

e How sensitive is the load capacity to varying imperfections and how does it provoke global
buckling instability?

e How does the current methods of calculation in DS/EN correspond to experimental work
and numerical models?

¢ How sensitive are the reliability index to varying stochastic variables?

* |s an optimization of the current partial safety factor in DS/EN for uni-axial compressed
columns possible?






Part |

Buckling and Imperfection Study

11






2 Reference Geometry and material
properties

The experimental data used for comparison in this thesis, is based on experiments conducted
on simple supported IPE160 profiles in [Sfintesco, 1970]. Through this chapter, the reference

geometry along with results obtained through the experiments will be presented.

2.1 Reference Geometry
The dimensions of the cross section for IPE160 profiles, are shown in Figure 2.1.

KR:E}

L |

Figure 2.1. Nominal geometry of IPE160 profile.

A presentation of the geometrical and material properties can be seen in Table 2.1.

2.2 Reference material properties

In [Sfintesco, 1970], compression tests of three different steel column lengths of 12, 15 and 20
times the radius of gyration, Gy of an IPE160 profile, correspondingto 0.8 m, 1.0 mand 1.3 m, are
conducted in order to determine the modulus of elasticity and the yield strength of the material.
The length of the test subjects are chosen in order to ensure material yielding and prevent global
buckling.

13
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Figure 2.2. Performance curve for steel. [Sfintesco, 1970]

Figure 2.2 shows the deformation as a function of the load displayed in tons. As seen, the strength
peaks at abound 60 tons, corresponding to a yield stress about 300 MPa, which will be used as
the ultimate yield stress through this part.

It is seen that the three test subjects follow the same elastic curve, which translate to a modulus
of elasticity of 180 GPa. However, due to the poor quality of the figure, it is expected to have a
considerable margin of error. A modulus of elasticity of 210 GPa will therefore be used, as [Jensen
& Mohr, 2009] prescribes.

The geometry and material properties, used through the this part, are listed in Table 2.1.

Profile height, h 160 [mm]
Profile width, b 82 [mm]
Web thickness, d 5 [mm]
Flange thickness, t 7.4  [mm]
Cross sectional area, A 2.01-10®> [mm?]

Moment of inertia, weak axis, I, 0.683-10° [mm?*]
Plastic moment of resistance, W, 123.8-10°  [mm?]

Modulus of elasticity, £ 2.1.10° [MPa]
Ultimate vyield stress, fy 300 [MPa]
Poisson's ratio v 0.3 [—]

Table 2.1. Material parameters and cross sectional dimensions [Jensen & Mohr, 2009].

2.3 Column Stability Experiments

A number of compression tests have been conducted as well. As opposed to the test subjects in
the material tests, the following test subjects are sufficiently long to ensure global buckling. The
test outcome can be seen in Table 2.2.

14



2. Reference Geometry and material properties

Number of tests  Slenderness ratio Mean value Standard deviation

N [=] 1 [kgf/mm?] o [kgf/mm?]
30 55 27.90 2.73
30 75 23.15 2.43
31 95 18.70 1.46
30 105 15.27 1.23
22 130 11.35 1.00
17 160 7.44 0.56

Table 2.2. Critical buckling results, acquired through experimental tests, [Sfintesco, 1970]

As seen in Table 2.2, the strength is presented in the unit [kgf/mm?]. In order to comply
with modern standards, the parameters are converted to [MPa] and relative slenderness ratio.
Furthermore the length of each test subject is calculated from the slenderness provided, using
Eq.(2.1) and (2.2). The converted values are presented in Table 2.3.

i = \/Z (2.1)

l=X"1 (2.2)

) Radius of gyration [m]
A* | Slenderness ratio [—]

l Length [m]
Relative Standard
Number of tests slenderness ratio Length Meanvalue deviation Variance
A=l [m] w [MPa] o[MPa] v=7[-]
30 0.630 1.01 274.0 26.84 0.098
30 0.859 1.38 227.3 23.86 0.105
31 1.09 1.75 183.6 14.34 0.078
30 1.12 1.94 150.0 12.08 0.081
22 1.49 2.40 111.5 9.82 0.088
17 1.83 2.95 73.1 5.50 0.075

Table 2.3. Critical buckling results, acquired through experimental tests, presented by modern standards.

15






3 Load Capacity by DS/EN 1993-1-1

Through this chapter, the design method for columns in the current [DS/EN-1993-1-1, 2007]
standard is reviewed.

3.1 Imperfections

In [DS/EN-1993-1-1, 2007] imperfections in each column are accounted for by an elastic
imperfection reduction factor, «, which includes geometrical-, material imperfections and model
uncertainties. Values for o are based on test results from [Maquoi & Rondal, 1978].

Depending on the geometrical properties of the column, « varies, as shown in Table 3.1.

Buckling curve  Imperfection factor o [—]

ag 0.13
a 0.21
b 0.34
c 0.49
d 0.79

Table 3.1. Imperfection factors for buckling curves. [DS/EN-1993-1-1, 2007]

Stated in [DS/EN-1993-1-1, 2007], rolled profiles, with a relative slenderness ratio less than 1.2
and weak-axial bending, are considered to be column case b, corresponding to a cross sectional
class 2, which yields an imperfection factor of 0.34.

When « has been chosen the column reduction factor, x, which accounts for the reduction of
load capacity in imperfect columns, can be calculated by Eq.(3.1).

1

Yoo

(3.1)

¢ | 0.5(1 4+ a(A—0.2)+A2)[-]
A | Relative slenderness ratio [—]

The reduction factor, as a function of column slenderness and imperfection factors, is shown
in Figure 3.1, « = 0 represents an idealized case with centrally loaded perfect columns, i.e.
Euler-columns.

17
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Figure 3.1. Imperfection factor

As the slenderness of a column increases, illustrated in Figure 3.1, the column reduction factor
converges towards critical Euler-load, regardless of the imperfection factor.

3.2 Partial Safety Factor

[DS/EN-1990:2007, 2008] states two different methods of calculation for the design value of the
load capacity. The Partial Safety Factor, ,; can be applied, either in the load capacity function,
as seen in Eq. (3.2), or directly to the characteristic value, if the element is of a single material,
shown in Eq. (3.3), which is suggested by 1993-1-1.

Xk,
Ry=Rqn,—:aq (3.2)
Y ,i
R
Ry=—F (3.3)
YM i
R, Design resistance [Pa]
R, Characteristic resistance [Pa]
1, Conversion factor [—]

X, ; | Characteristic value of the material [Pa]
Y ,i | Partial safety factor [—]
aq Geometrical imperfection [m]

However, as statistical uncertainties are not introduced until Part Il of this thesis, the partial safety
factor will be left out through the load capacity calculations in Part |, in order to to investigate the
effects of imperfections.

3.3 Design Equations
In this section, the two design methods from the current [DS/EN-1993-1-1, 2007] will be reviewed.
To determine the design equation for columns subjected to a normal force N ; and a bending

18



3. Load Capacity by DS/EN 1993-1-1

moment M ; Eq.(3.4) is derived from static equilibrium, [for Constructional Steelwork, 2006].

N 1 N U MII max
Ed EdY0,d Ed, <1 (3.4)
Nb,Rd 1_NEd/Ncr MRd MRd
MEY e | Design bending moment from the 2. order effect [Nm]
Mgy Design resistance [Nm]
Ug Initial bow imperfection [m]

As it can prove problematic to determine the location of the maximum bending moment caused

by the second order effect, M LI is defined as seen in Eq.(3.5)

Ed,max
MI] o CmMEd,mam (3 5)
Ed =T N N .
e 1_NEd/Ncr
C,, Factor to account for 2. order bending moment effect [—]

Mg4, max | 1. order design bending moment [Nm]

Because the column can reach instability before yielding, M  ; is replaced with C' M, raqWhere
M,,; rq is the fully plastic bending resistance and C' account for axial force, slenderness of the
profile and the distribution of the bending moment.

To determine the factor, C,,,, [DS/EN-1993-1-1, 2007] states two different methods.

Method 1

Method 1 is derived on a theoretical basis and the different physical phenomenons are separated,
which makes it easier to recognize the individual terms in the derivation. As Method 1 is a design
method for general cases including limiting cases, this method must include more parameters to
ensure a generalized formula. C,,, is detemined by Eq.(3.6).

1.6 N Wi s

C'L"i =1+ (wz - 1) (2 - 702 i(Amaa: + A%@aw)) Ed > o (36)
w; "™ Npi,ra ™ Wpis

Amaz | Highest relative slenderness [—]

i The ratio between the plastic- W,,; and elastic modulus W, [—]

Method 2

The concept of method 2 is to reduce the number of compact coefficients which makes it easier
to apply to practical engineering. To derive C,,,, numerical calculations are made, in order to
recalculate the factor, so it fits buckling cases.

C,,, is determined for weak axial bending by Eq.(3.7).
C,,=06+04yY>04 (3.7)

P ‘ The ratio between the two end moments [—]

19
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As method 1, according to [Bonnerup et al., 2009], overestimates the load bearing capacity
of columns, and method 2 is preferred for practical engineering due to the simplicity of the
expression, method 2 will be the preferred method through this thesis.

From these considerations, the global strength of columns is stated in [DS/EN-1993-1-1, 2007] as
seen in Eq.(3.8) for weak-axial bending.

N M, g4

lef,ik e S 1 (3.8)
Ras! Ym

Ngg4 Design normal force [N]

M, gq | Design moment about weak axis [Nm]

X2 Column reduction factor [—]

k., Interaction factor [—]

The interaction factor &, is determined, by Eq.(3.9).

k,,=C,,.(1+ 2\, —0.6)n,) <C,, . (1+1.4n,) (3.9)
n, = Ned (3.10)
Xszl,Rd

All analytical calculations from this point, will be based on Eq.(3.8).

20



4 Initial Finite Element Considerations

As this thesis is investigating the buckling point of a column subjected to uni-axial compression
and bending moment, elements which can capture the physical behavior caused by both forces
are preferable. Therefore, shell elements, a combination of membrane- and plate elements,
which can capture both the deformation and the stresses in the element cross section, [Cook
et al., 2002], are used through this thesis. The finite element analysis will be carried out in the
commercial software Abaqus. In the Finite Element Analysis the geometry, presented in Section
2.1 is simplified, and will be carried out by a shell model with the cross section geometry shown
in Figure 4.1.

>H<5mm

160 mm

Figure 4.1. Shell geometry used in the Finite Element Model.

As seenin Figure 4.1, the shell model is slightly higher than the actual IPE160 profile, which causes
a higher moment of inertia about the strong axis. However, as the column will be subjected to
weak-axial bending. the effects from this deviation is assumed to be negligible, as

4.1 Shell analysis

Through this chapter different analysis types for numerical analysis in [DS/EN-1993-1-6, 2012] will
be introduced. Though [?] covers shell constructions e.g. silos and other thin walled structures,
the methods can be applied to shell elements used to model regular columns, as described
in[DS/EN-1993-1-1, 2007] as well. The analyses which will be reviewed in this chapter concerns:

e Linear Elastic Analysis (LA)

e Linear Elastic Bifurcation Analysis (LBA)

e Materially Nonlinear Analysis (MNA)

e Geometrically Nonlinear Analysis (GNA)

e Geometrically and Materially Nonlinear Analysis (GMNA)

e Geometrically Nonlinear Analysis with Imperfections included (GNIA)

e Geometrically and Materially Nonlinear Analysis with Imperfections included (GMNIA)

Linear Elastic Analysis - LA
The Linear Elastic Analysis is based on the assumption of perfect geometry, linear elastic material
law and small deformation theory. In small strain theory the deformation of the profile is assumed
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to be significantly smaller than the profile dimensions, i.e. the geometry and the material
properties in the cross section is assumed to be unchanged by the deformation. Through LA
both compatibility in the deformations and equilibrium conditions must be satisfied.

Linear Elastic Bifurcation Analysis - LBA

Based on the same assumptions as LA, the linear bifurcation eigenvalue of a thin-walled shell
profile is evaluated through LBA. Through this analysis several eigenmodes are revealed and the
lowest bending eigenmode about the weak axis of the profile is chosen as the critical buckling
load.

Materially Nonlinear Analysis - MNA

Similar to LA, MNA is based on the assumption of small strain theory and perfect geometry with
nonlinear elasto-plastic material law, which means the load capacity of the profile will be limited
by the yield stress of the material.

Geometrically Nonlinear Analysis - GNA

The GNA is based on the shell bending theory applied to a perfect structure with linear elastic
material law. However, as opposed to LA, large strain theory is applied, i.e. deformations in the
cross section are assumed to be relatively large compared to the profile dimensions. Due to the
slenderness of column profiles, it is assumed that this analysis will not limit the load capacity of
the profile.

Geometrically and Materially Nonlinear Analysis - GMNA

The GMNA is a combination of GNA and MNA. In this analysis shell bending theory is applied
to a perfect structure. Displacements are assumed defined by nonlinear large strain theory and
nonlinear elasto-plastic material law is applied.

Geometrically Nonlinear and Imperfection Analysis - GNIA

GNIA is similar to GNA and applies the same assumptions. However, in GNIA the profile deviates
from the perfect geometry and imperfections are included. These imperfections caninclude initial
bow imperfections, eccentricity of the load, nonlinear boundary conditions or effects of residual
stresses.

Geometrically and Materially Nonlinear and Imperfection Analysis - GMNIA
GMNIA is identical to the GMNA analysis with imperfections included.

Table 4.1 shows a summary of the different analyses.

Shell theory Material law  Shell geometry
LA Linear bending and stretching Linear Perfect
LBA Linear bending and stretching Linear Perfect
MNA Linear Non-linear Perfect
GNA Non-linear Linear Perfect
GMNA  Non-linear Non-linear Perfect
GNIA Non-linear Linear Imperfect
GMNIA Non-linear Non-linear Imperfect

Table 4.1. Types of shell analysis according to, [DS/EN-1993-1-6, 2012]
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4. Initial Finite Element Considerations

Performance curves

Shown in Figure 4.2 are the seven different analysis types with increasing complexity. The results
are shown for a simple supported column of 2.95 m in order to ensure that buckling occur with
the purpose of showing the load capacity with each of the analysis types. The GNIA and GMNIA
are conducted with an inital bow imperfection of 12 mm.
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Figure 4.2. Performance curves from the varying analysis methods.

e The LA follows a strictly linear curve corresponding to the modulus of elasticity of the
material.

¢ The bifurcation load found from the LBA is illustrated by the black cross.

¢ The MNA follows the LA in the elastic area and decreases in the modulus of elasticity as it
approaches the ultimate yield stress.

¢ The GNA seems to be following the same linear curve, which can be explained due to the
large strain theory the analysis follows. As the deformations in the cross section are much
lower than the deformations in the axial direction of the column, the GNA will necessarily
follow the LA very closely at small deformations.

e The GMNA follows both nonlinear geometry, i.e. large strain theory, and a nonlinear
material law, which can be seen in the loss of load capacity when entering the plastic region.

e The GNIA and GMNIA analyses are visualized by the black solid and dashed lines
respectively. It can be seen that, due to the imperfection, the load capacity for both the
GNIA and GMNIA are significantly lower than what is the case of the same analyses without
imperfections, GNA and GMNA.

Through this thesis, the GMNIA is the preferred shell analysis, while it, as opposed to the GNIA,
allows material yielding, and will thereby give the most comparable results.
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4.2 Numerical Solvers in Abaqus

Eigenvalue solver
When conducting a bifurcation analysis, in order to find the bending modes, the critical buckling
loads are found from the nontrivial solution to the eigenvalue problem seen in Eq.(4.1)

KM NgM _ (4.1)

KM N | Tangent stiffness matrix [N/m]

oM Nontrivial displacement solutions [m]

Newton-Raphson Iteration Scheme

For a nonlinear analysis, two different cases exists, namely geometrical- and material nonlinearity.
For both cases, the main problem is that the stiffness matrix does not remain constant, but
changes with each load increment. When performing Finite Element Analyses a number of
different iteration schemes may be used. In this section the Newton-Raphson iteration scheme
will be reviewed, which uses iterations to obtain equilibrium between external and internal forces
in the system. For the nonlinear equilibrium path, shown in Figure 4.3, the stiffness matrix is
adjusted for each iteration step, in order to achieve equilibrium. The main concern with the
Newton-Raphson iteration scheme, is that it has difficulties processing post-buckling behavior,
where the slope of limit points are zero, illustrated in Figure 4.3.
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Figure 4.3. Principle sketch of the Newton-Raphson iteration scheme, [Corp., 1978].

However as the main focus of this project is initial buckling and as it is expected that columns
will not obtain any additional post-buckling strength, a standard Newton-Rapson scheme will be
used, through this project.

4.3 Boundary Conditions and loads

When considering one dimensional models, boundary conditions are fairly simple to design, as
seen in Figure 4.4.
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4. Initial Finite Element Considerations

oo

Figure 4.4. Simply Supported uni-axial compressed one dimensional column.

However, when considering models in three dimensions, the complexity of the models increase.
As the Finite Element Model in this project involves shell analysis in three dimensions, the
boundary conditions are described through this section.

In order to recreate a model as realistically as possible, a plate is attached to each end of the
model. In reality, the plate will be bolted or welded to the column, as seen in Figure 4.5, the
effects of these actions will, however, not be subject to analysis in this project.

Figure 4.5. Plate attached to the end of the column.[Constructalia, 2014]

In order to allow weak axial bending, the centerline of both column ends is fixed in the x- and
y-direction, while it is allowed to move in the z-direction in one end of the column. The column
is allowed to rotate freely, but due to the displacement fixities in both ends, the rotation stiffness
of the column is relatively high and will therefore discourage torsional bucking, as seen Figure 4.6
and 4.7.

25



Aalborg University MSc. Structural and Civil Engineering - Master Thesis
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Figure 4.6. Boundary condination for the fixed Figure 4.7. Boundary condination for the fixed
end. end.

A forced displacement is applied in the centerline of one end of the column.

4.4 Shell Element Study

Two rectangular shell elements have been chosen for analysis in order to determine which
element type suits the physical behavior of buckling best, namely the S4R and the S8R elements.

The S4R element, is a purely linear element with a node in each corner with three displacement-
and three rotation degrees of freedom for each node. As the element is linear it has limitations
regarding buckling, and more elements are needed in order to capture the bending shape of the
profile, as seen in Figure 4.8.

L T

Figure 4.8. Linear elements in bending. Figure 4.9. Quad elements in bending.

The S8R element, has quadratic shape functions and can therefore capture bending shapes much
more efficiently than the linear S4R elements, as seen in Figure 4.9. Furthermore the S8R element
has four integration point whereas the S4R only has a single point. Therefore each S8R element
is more time and resource consuming than each S4R element, however it is expected that the
system will converge at fewer elements when using quadratic elements.

A convergence analysis for each element type will be conducted in order to determine which
element is best suited for global instability studies. The analysis will be carried out for a 2.95 m,
simple supported, IPE 160 profile with the same preferences as seen in Table 2.1 on page 14.
Due to weak axial bending, the main influence of inaccuracies caused by element size is expected
to be in the length direction of the column. As the LBA assumes small deformation theory, it is
expected that the cross sectional mesh is of little importance. However, a convergence analysis in
all directions will be conducted. In order to achieve a realistic result from the analysis and avoid
an uneven distribution of integration points, it has been sought to maintain a length/width ratio
of each shell element in the mesh between 0.2 and 5, therefore the initial convergence analysis
will be conducted as shown in Table 4.2.
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4. Initial Finite Element Considerations

Elementtype Flange Web Length

S4R 2 4 [32:256]
S4R 4 4 [64:256]
S4R 8 8  [64:512]
S8R 2 4 [32:256]
S8R 4 4 [64:256]

Table 4.2. Number of elements in the different profile directions. The two numbers in the length signifies
the range of the convergence analysis.

The convergence will be presented by eigenvalue as a function of nodes, seen in Figure 4.10.
Convergence is considered reached when the eigenvalue does not deviate more than 5 % when
the number of elements is doubled.

82 32 64 128 256
1632 64 128 256
64
81.5F
64
128
811 128 256 512
256
80.5+
©
o
= 80r
(]
=)
T 79.5f
C
S
o 79r
78.5r 32
—<— S4R [2x4] — elements
78t —*— S4R [4x4] — elements
64 —— S4R [8x8] - elements
77.5¢ —— S8R [2x4] — elements
128 o —— S8R [4x4] - elements
77 1 1 1 1 I I J
0 2000 4000 6000 8000 10000 12000 14000

Number of Nodes

Figure 4.10. Convergence analysis for the first eigenmode.

As Figure 4.10 shows, the convergence analyses for the linear elements are less consistent than
the convergence for the quadratic element. It is expected that the linear elements are not able
to capture the cross sectional deformation, with a reasonable number of elements. As the S8R
elements are visibly converged at a mesh with [2x4x32] elements, S8R elements are chosen for
further analysis. The LBA assumes small strain theory, therefore a convergence analysis using
GNA is required as well for the non-linear shell theories.

4.5 \Verification of Mesh

Since GNA assumes large strain theory, a convergence analysis is necessary. As the GNA does not
converge towards a specific stress point, as the LBA does, a different approach to convergence
is considered. Three analyses will be conducted with varying number of elements in the length
direction. The three different analyses will vary from two to eight elements in the flange as seen
in Figure 4.11.
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Figure 4.11. Shell model shown with varying mesh.

The number of elements in each direction is summarized in Table 4.3.

Flange Web Length

2 4 [32:256]
4 4 [64:256]
8 4 [128:256]

Table 4.3. Number of elements in the different profile directions. The two numbers in the length signifies
the range of the convergence analysis.

The convergence analysis for the axial deformation at 235 MPa, as a function of the number of
nodes, along with an analysis with the axial deformation as a function of the computational time,
is seen in Figure 4.12 and 4.13.
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Figure 4.12. Convergence analysis for the axial
deformation as a function of the
number of nodes.
Figure 4.13. Convergence analysis for axial deformation as a function of computational time.

As seen, the axial deformation varies from approximately 3.89 mm to 3.91 mm. As the variation
is no more than 0.5 % when the number of elements are doubled, the mesh is considered
converged. As the computational time increases significantly, with the number of nodes in the
model, the mesh is chosen is chosen as [2x4x32] S8R elements.
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5 Imperfections in Finite Element

In structural columns, imperfections are not only seen as anomalies in the profile's geometry or
material, but can also be introduced during installation [Schillinger et al., 1978]. Through this
chapter, a study of different imperfections is performed in order to investigate the effect on the
load capacity of the affected column.

This study will lead to a stochastic analysis in Part Il of this thesis. The FERUM toolbox used in
the stochastic analysis, requires a new Finite Element analysis, for each call to the limit state
function. As this operation is ineffective, and not practically possible, an investigation of the
influence of the different imperfections is conducted, in order to obtain a more effective solution.
The imperfections chosen for this investigation in this thesis are:

¢ Initial bow imperfection

¢ Flange out-of-squareness imperfection
¢ High order eigenmode imperfection

¢ Yield stress imperfection

¢ Applied moment about one end

¢ Young's Modulus imperfection

e Combination

¢ Bow- and out-of-squareness imperfection
¢ Bow- and modulus of elasticity Imperfection

¢ Bow- and yield stress imperfection

The imperfection analyses are conducted in Abaqus using GMNIA, and will be described in the
following sections. The column geometry and material properties, are shown in Table 2.1 on
page 14, applied to a 2.95 m simple supported column subjected to uni-axial compression.

5.1 Geometrical imperfections

During production, a variety of geometrical imperfections in a profile can occur. Through the
manufacturing procedure, steel blocks are processed by rollers in order to obtain the desired
geometry. After the initial rolling, the profile can be subject to a straightening process, in order
to the meet the required tolerances. However, as the perfect profile only exists in theory,
imperfections will always be present. These imperfections can occur, e.g. when one or both
rollers are out-of-line during rolling or by warping of the steel while cooling. Through the following
sections, the three different geometrical imperfections, chosen for this thesis, will be studied.

5.1.1 Bow Imperfection

During the initial rolling of the profile, an initial bow imperfection is likely to be present, as seen
in Figure 5.1. If the final straightening process is not done to perfection, this bow imperfection
will remain and thereby cause a bending moment, as seen in Figure 5.2.
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~—M

Figure 5.2. Bending moment caused by initial

Figure 5.1. Principle sketch of the rolling pro-
bow imperfection

cess of steel profiles.

In order to obtain the geometry desired for investigation of initial bow imperfections, an LBA is
performed in Abaqus. Through this analysis, the first bending eigenmode, i.e. weak-axial bending,
is acquired, and applied to the perfect geometry with a scaled amplitude, u, seen in Figure 5.3

Figure 5.3. Scaled geometry of the profile subjected to initial bow imperfection, used in Abaqus.

A number of analyses are conducted in Abaqus, with increasing bow imperfection. From these
analyses, the displacements in the load end of the column and reactions in the opposite, are

extracted and performance curves, seen in Figure 5.4 are created.
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5. Imperfections in Finite Element
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Figure 5.5. Load capacity shown as a function
of initial bow imperfections.

Based on the performance curve, the load capacity at the buckling point of each bow imperfection
amplitude is seen in Figure 5.5. It is seen that the load capacity drops significantly, when the bow
imperfection is applied, due to the influence of the bending moment. This will cause the column

to buckle about the weak axis, while the column without imperfection, will compress and cause
local buckling, at a significantly higher load capacity, than what is the case when affected by global

buckling.

The scaled deformed state of the profile can be seen in Figure 5.6, while the transparent mesh

shows the initial geometry.

Figure 5.6. The deformed column with an initial bow imperfection.

5.1.2 Out-of-Squareness Imperfection

In order to review the effects from out-of-line rollers during the manufacturing process, an

out-of-squareness imperfection is introduced in the cross section, as seen in Figure 5.7 and 5.8.
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Figure 5.7. Out-of-squareness  imperfection Figure 5.8. Principle sketch of the out-of-
shown in the entire length of the squareness imperfection applied

profile. to the cross section.

Shown in Figure 5.9 and 5.10, are the performance curve and load capacity as a function of the
out-of-squareness imperfection.
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Figure 5.9. Performance curve for an increas- Figure 5.10. Load capacity shown as a func-
ing out-of-squareness imperfec- tion of out-of-squareness imper-
tion. fection.

It is seen that no significant loss of load capacity can be observed when applying the
out-of-squareness imperfection. As it is seen, the load capacity is not very sensitive to the
out-of-squareness imperfection, which will therefore not be subject to any further individual
investigations. The deformed state after failure of the profile subjected to an out-of-squareness
imperfection can be seen in Figure 5.11. It is seen that no global buckling is present, however
local buckling is seen in each end of the web.
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5. Imperfections in Finite Element
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Figure 5.11. The deformed column with an initial out-of-square imperfection.

5.1.3 High Order Eigenmode Imperfection

In order to investigate an imperfection, caused by rollers, which are not perfectly circular and
rotating about an uneven axis, a high order eigenmode imperfection is applied to the perfect
geometry. The imperfection is simulated in Abaqus, similarly to the bow imperfection, where an
eigenmode is extracted from LBA. In order to contain the imperfection to the flanges, the web is
constrained for all deformations in the LBA, while the flanges are allowed to deform freely. The
deformed state of the eigenmode number 40 is applied to the perfect geometry, and the web
is allowed to deform again. The initial geometry of the profile with eigenmode 40 imperfection
applied, is shown in Figure 5.12.

Figure 5.12. Initial geometry of eigenmode 40 imperfection applied to the profile.

The performance curves are shown in Figure 5.13, while the load capacity as a function of the
imperfection amplitude is shown in Figure 5.14.
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Figure 5.13. Stress-strain curve for eigenmode Figure 5.14. Load capacity for eigenmode 40.

40.

Figure 5.14 shows, a significant drop in load capacity when the initial imperfection is applied.
However, the amplitude of the imperfection is of little importance.
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Figure 5.15. Deformations shown in the global
x-direction in the web.

Figure 5.16. Deformations shown in the global
y-direction in the flange.

Due to the imperfection being an out-of-squareness imperfection, it could be expected that the
performance curve would be similar to the imperfection shown in the last section. However, while
the imperfection in the last section is constant along the length of the profile, the imperfection
varies significantly for the high order eigenmode imperfection. Due to this variation, the profile
is susceptible to local buckling due to the moment introduced in local areas, which causes the
initial drop in load capacity. The deformed state after failure can be seen in Figure 5.15 and 5.16
where, local buckling is seen in the web and flange respectively.

5.2 Material imperfections

Material properties can vary depending on supplier and quality. Through this section, the material
properties are assumed homogenous for each profile, and will vary between each numerical
simulation.

5.2.1 Modulus of elasticity Imperfection

To investigate the influence of a variation in the profile elasticity the same analysis as in the
previous subsection is performed with a varying modulus of elasticity. The load capacity in shown
in Figure 5.17.
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Figure 5.17. GMNA performed with a varying modulus of elasticity

From the variation of the load capacity as a function of the modulus of elasticity, shown in Figure
5.17, it is seen that the modulus of elasticity is of very little influence.

5.2.2 Yield Stress Imperfection
To investigate the influence of the yield stress a GMNA is performed with a varying yield stress.
The load capacity in shown in Figure 5.18.
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Figure 5.18. GMNA performed with a varying yield stress

Shown in Figure 5.18 it is seen that the load capacity as a function of varying yield stress,
is increasing linearly, which indicates a proportionality between the yield stress and the load
capacity.

5.3 Installation imperfections
Installation imperfections can lead to an extra bending moment, similarly to the bow imperfec-
tion, caused by load eccentricity, which will be the subject of investigation through this section.

5.3.1 Forced Rotation Imperfection

The load eccentricity will be simulated in Abaqus by applying a forced rotation about the weak
axis in one end of the column. The load capacity as a function of the forced rotation is shown in
Figure 5.19.
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Figure 5.19. Load capacity shown as a function of increasing forced rotation.

The deformed state after failure is seen in Figure 5.20.

Figure 5.20. Deformed column subjected to a forced rotation about the weak axis in one end.

It is seen that the deformed state is not identical to the deformed state for the initial bow
imperfection, which is caused by the eccentricity of the load, applied as a moment about just
one end of the column. As a consequence, the largest deformation is displaced slightly from the
middle of the column.

5.4 Combinations

Through this section, three combinations of two different imperfections, applied to a column
simultaneously, is investigated. This investigation is conducted in order to see if any amplification
of the imperfections occur compared to the imperfections applied individually. In order to study
the influence of the combined imperfections, two separate studies of each combination will be
presented. In each study, the initial bow imperfection will be fixed, according to the accepted
tolerance, i.e. 0.03%:-l — 8.8 mm, [BS/EN-10034-1993, 1993].
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5. Imperfections in Finite Element

5.4.1 Bow- and Out-of-Squareness Imperfection

Through this section the effects of combined bow- and out-of-squareness imperfection will be
studied. The load capacity as a function of the imperfections can be seen in Figure 5.21 and 5.22.
The out-of-squareness imperfection deviates from perfect squareness to the accepted tolerance
of 0.75 mm according to [BS/EN-10034-1993, 1993].
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Figure 5.21. Performance curve of the load ca- Figure 5.22. Performance curve of the load ca-
pacity as a function of the bow im- pacity as a function of the out-of-
perfection, shown for an out-of- squareness, shown for a bow im-
squareness of 0 and 1.5 mm. perfection of 0 and 8.8 mm

As seen in the figures, the bow imperfection is highly dominant. From Figure 5.21 it is seen that
the load capacity is unchanged when applying the tolerated deviation of out-of-squareness. In
Figure 5.22 a large deviation from the perfect column to tolerated bow imperfection is obvious.
From this study it is concluded that the bow imperfection is of far greater influence than the
out-of-squareness imperfection and will therefore be subject to further study with a varying
material parameter.

5.4.2 Bow- and Modulus of Elasticity Imperfection

In the following subsection the bow imperfection is combined with a varying modulus of elasticity.
The two studies of the imperfection combination is seen in Figure 5.23 and 5.24. The modulus
of elasticity deviates from the mean value 210 GPa, with the standard deviation, stated by [JCSS,
2002], seen in Table 7.2 on page 48.
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Figure 5.23. Performance curve of the load ca- Figure 5.24. Performance curve of the load ca-
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perfection, shown for a modulus lus of elasticity, shown for a bow
of elasticity of 203.4 and 210 GPa. imperfection of 0 and 8.8 mm.

It is seen that the modulus of elasticity is of little importance compared to the bow imperfection.
The same study will be conducted for a combination of bow imperfection and yield stress in the
following subsection.

5.4.3 Bow- and Yield Stress Imperfection

In the following subsection the bow imperfection is combined with a varying yield stress. The two
studies of the imperfection combination is seen in Figure 5.25 and 5.26. The yield stress deviates
from 300 MPa stated in Table 2.1 on page 14, with the standard deviation, according to [JCSS,
2002], stated in Table 7.2 on page 48.
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Figure 5.25. Performance curve of the load ca- Figure 5.26. Performance curve of the load ca-
pacity as a function of the bow pacity as a function of the yield
imperfection, shown for a yield stress, shown for a bow imperfec-
stress of 300 and 281.5 MPa. tion of 0 and 8.8 mm.

Seen from the figures, the load capacity is not very sensitive to the variation of yield stress
compared to the bow imperfection. However, as the reduction of the load capacity, seen in
Figure 5.24 for the modulus of elasticity and 5.26 for yield stress, are larger for the varying yield
stress in the interval of the standard deviation, this combination is chosen for further stochastic
investigations in Part Il of the thesis.
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5. Imperfections in Finite Element

5.5 Data process for Stochastic chapter

In order to allow the use of two stochastic variables related to the profiles geometry and material,
in the limit state function of the Finite Element Model, a surface plot of the load capacity as a
function of the yield stress and bow imperfection will be obtained through this section. In order
to assure that the interval is sufficiently large, the yield stress is chosen at an interval of 170-370
MPa, while the initial bow imperfection is chosen as 0-16 mm. From the analyses conducted in
Abaqus, the following data shown in Figure 5.27 is obtained.

Load Capacity [MPa]

2507 T _ ~10

. Bow Imperfection [mm]
Yield Stress [MPa)

Figure 5.27. Load capacity of a 2.95 m column, subjected to a varying initial bow imperfection and yield
stress.

In order to use for further stochastic analysis, an interpolation between the data points is

required. Therefore a second order polynomial is fitted to the data points in each direction, and
a surface is generated, seen in Figure 5.28.

Load Capacity [MPa)

1o

. Bow Imperfection [mm]
Yield Stress [MPa)

Figure 5.28. Simulated data, based on second order the polynomial, compared to the original data.

The comparison in Figure 5.28 verifies the validity of the second order polynomial. A comparison
between the load capacity calculated by Finite Element Method, seen in Figure 5.27, and the load
capacity calculated by the DS/EN method, seen in Eq.(3.8), can be seen in Figure 5.29.
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Figure 5.29. Load capacity for a column with varying yield stress, subjected to an increasing bow
imperfection, based on FEA and DS/EN.

Itis seen that the load capacity obtained through Finite Element Model is more susceptible to bow
imperfections than the load capacity found through DS/EN calculations. As seen in Figure 5.29,
the load capacity calculated by DS/EN is lower then the Finite Element Method, for imperfections
below 6-10 mm, which corresponds well to the tolerance of 0.3%-l — /335, according to
[BS/EN-10034-1993, 1993], depending on the yield stress. This indicates that in order to obtain
conservative results for the DS/EN method, the initial bow imperfection has to be in the interval
below this tolerance level. However, according in [Bonnerup et al., 2009], DS/EN assumes an
initial bow imperfection of /1000 which is well under this tolerance level.
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6 Model Uncertainty Estimation

The last part of the thesis treats imperfections as deterministic parameters, in order to investigate
the influence each imperfection has on the load capacity. Based on these investigations it is
recognized that bow imperfections are the most influential in relation to load capacity. Through
this part, the bow imperfection, combined with the two stochastic material variables studied
in Section 5.4, will be subject to stochastic analysis. In order to perform a stochastic analysis, a
study of the uncertainties between the stochastic models and the experimental data is conducted.
As the distribution of the acquired mean values and standard deviations, seen in Table 2.3 on
page 15, is not stated, 160 column tests are simulated using a normal and lognormal distribution,
in order to determine which distribution fits the experimental data best. With the simulated data,
the bias is calculated as seen in the following section, based on the Least Square Method from
[DS/EN-1990:2007, 2008], Annex D.8.

6.1 Calculation Method - DS/EN 1990, Annex D.8

Initially, the bias is calculated using, Eq.(6.1), which is used as the mean value for the model
uncertainty in Chapter 7. The bias is an expression, quantifying the systematic error margin
between the experimental- and theoretical data, seen in Figure 6.1.

A
re .
. '/'/ r, = br,
-
<
-/./".

, /ﬁvd
»

It

Figure 6.1. r.r, diagram [DS/EN-1990:2007, 2008].

Each pointin Figure 6.1, represents the relationship between an experimental data point, _, and
theoretical data point, r,. The line with angle, 8 signifies the perfect fit, signifies the perfect fit
between the theoretical and experimental data.

_ Zre rt
b= S (6.1)
b Bias [—]

r. | Experiments load capacity [Pa]

r, | Theoretical load capacity [Pa]
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Subsequently, a realization of the logarithmic model uncertainty of each simulated test point, A,
is calculated, using Eq.(6.2).

Te
A, =In (bm) (6.2)

The standard deviation of the model uncertainty is estimated by Eq.(6.3).

SN = Li(A. —A)2 (6.3)
N—14&7°

sa | Estimated standard deviation [Pa]
N | Number of tests
A Mean value of the realization results [Pa]

The coefficient of variation of the model uncertainty, VA, is calculated from Eq.(6.4).

VA =1/exp(sh) — 1 (6.4)

6.2 Model uncertainty for DS/EN

The load capacity, based on the DS/EN method and the experimental data generated from a
normal- and a lognormal distribution, is compared in order to estimate the model uncertainty.
The fitted data are shown in Figure 6.2 and 6.3 respectively. The theoretical load capacity is based
on the same six column lengths, which were used in the experiments.

6=m/4 _6=m/4

& 300 t & 300 '
= . = -}
2 250] ,' 2 250 i
Q ] .
© . /t (] : .
& 200t IS & 200 s 74
S |- S . }-
-% 'P/: g b .8
8 150¢ . 8 150 .
B 5 T .
€ 100+ < 100
[} - [0} -
E ol - Bias = 1.141 £ ol ~ Bias = 1.139
g . Standard deviation = 0.088 g . Standard deviation = 0.087
d o ‘ ‘ a=0.34 d o ‘ ‘ a=0.34

0 100 200 300 0 100 200 300

Theoretical load capacity [MPa] Theoretical load capacity [MPa]

Figure 6.2. r,r, diagram - Normal distribution. Figure 6.3. r,r, diagram - Lognormal distribution.

As the two figures show, the model uncertainty based on the two distributions, are nearly iden-
tical. Therefore, a lognormal distribution is used, which is recommended by [DS/EN-1990:2007,
2008]. As expected the bias is above 1 which indicates that DS/EN method yields a conservative
estimate of the load capacity, compared to the experimental data. The figures are shown for
calculations for DS/EN without initial bow imperfection.

6.3 Model uncertainty for the Finite Element Model
In this section, the same experimental data, generated from a lognormal distribution, as was used
in the previous section, is used to compare the Finite Element Model to the load capacity based
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6. Model Uncertainty Estimation

on the experiments. The numerical load capacity, is calculated using GMNIA, with an initial bow
imperfection of 1/1000, which is the considered initial bow imperfection according to [Bonnerup
et al., 2009]. The relation between the numerical and experimental data is shown in Figure 6.4.

3001

Experimental load capacity [MPa]
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0=m/4

Bias = 1.079
Standard deviation = 0.0954
Bow imperfection = 1/1000

L L L

50 100 150

200

250 300

Theoretical load capacity [MPa]

Figure 6.4. r r, diagram - Lognormal distribution.

The model uncertainty for the numerical model, shown in Figure 6.4, lies, as expected, between
the DS/EN method and the experimental data. This leads to a hierarchic order of calculation
methods as seen in Table 6.1.

Method of Resource
calculation consumption Conservatism
DS/EN Low High
Numerical models Moderate Moderate
Experimental test High Low

Table 6.1. Hierarchic order of calculation methods

As standard based calculations are relatively resource efficient, it is often the method of choice
for generalized cases in practical engineering. Therefore the calculations require a high level of
reliability, i.e. conservative results, and thus yields the highest model uncertainty. For more
complex problems, numerical models or experimental tests can be conducted, to ensure more
realistic results. However, numerical or experimental models can be used for standard cases as
well. As these more complex models are more resource demanding, a higher level of utilization
of the load capacity, is desired in order to justify the use of the extra resources.

In the following chapter, the model uncertainty acquired for the DS/EN method and Finite Element
Model will be used to calibrate the partial safety factor.
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7 Stochastic Modeling

In this chapter, the stochastic variables, design equations and limit state functions are defined for
both a uni-axial compressed column with and without an initial bow imperfection.

7.1 Stochastic Variables

In order to determine which parameters can be set as deterministic and which need to be
stochastic, a sensitivity analysis of the model, with all parameters set at stochastic, should be
performed. However, based on the studies of imperfections in Chapter 5, the stochastic and
deterministic parameters are defined in the following subsections.

Geometrical
For the failure function defined by DS/EN the geometrical parameters, aside from the initial bow
imperfection, are assumed to be deterministic.

Material distribution

Material parameters are usually considered either log- or normal distributed [Sgrensen, 2004].
If the strength of a structure is defined with normal distributed variables the total strength will
become normal distributed. This assumption is valid for ductile materials with small coefficients
of variation. However, for a normal distribution with a high coefficient of variation the strength
can become negative. To avoid this, a lognormal distribution can be considered, which is
recommended by [DS/EN-1990:2007, 2008].

Load distribution

In this project, two loads are considered, dead- and snowload. These loads are chosen because
they are considered to be the loads best suited to simulate column behavior by uni-axial
compression. Accordingto [DS/INF-172, 2009], the deadload is assumed to be normal distributed,
while the snowload is assumed to be Gumbel distributed.

In this analysis, two different design load cases, based on (7.1) are considered, namely dominating
deadload and domination snowload [DS/EN-1990:2007, 2008]. The partial safety factors of each
load can be seen in Table 7.1.

YDead VSnow
Dominating Deadload 1.5 0

Dominating Snowload 1 1.2

Table 7.1. Partial safety factors based on the dominating load.[NA:2013, 2013]

S = Gdeadf)/dead,i + anow’)/snow,i (71)
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Gpead Deadload [Pa]
Qsnow Snowload [Pa]
7 Dominating load case [—]

YDead: YSnow | Partial safety factors [—]

Input parameters
In Table 7.2 the input parameter for the failure function defined by DS/EN shown.

Mean Standard Characteristic

Distribution value deviation guantile Reference
E [GPa] Lognormal 210 6.6 W [JCSS, 2002]
fy [MPa] Lognormal 264 18.5 5% [JCSS, 2002]
G [MPa] Normal 1 0.1 50 % [DS/INF-172, 2009]
Q [MPa] Gumbel 1 0.4 98 % [DS/INF-172, 2009]
ug  [m] Normal 0 (/1000 50 % [JCSS, 2002]
ar‘;f{DS/EN [—] Lognormal 1.14 0.087 - [Figure 6.3]
a:‘;‘ﬂ’{%s/EN [—] Lognormal 1.16 0.087 - [Figure 6.3]
Tpopea (] Lognormal 1.08 0.095 - [Figure 6.4]
I, [mm?* Deterministic 0.683-10° - - [Jensen & Mohr, 2009]
Wp, [mm3]  Deterministic  123.8-10° - - [Jensen & Mohr, 2009]
A [mm?] Deterministic 2.01-10° - . [Jensen & Mohr, 2009]
I [m] Deterministic 2.95 - - [Sfintesco, 1970]
a [-] Deterministic 0.34 - - [DS/EN-1993-1-1, 2007]
Cmz ] Deterministic 0.6 - - [DS/EN-1993-1-1, 2007]

Table 7.2. Stochastic variables, note that from this point forward, DS/EN is denoted w/ for calculations
with initial bow imperction and w/o without.

All parameters are assumed to be uncorrelated.

7.2 Design Equation

The design equation is the ratio between the resistance and the load, expressed by Eq.(7.2).

G - ZRd - Sd (7.2)

R, | Design resistance
S, | Design load
z Scale factor

In order to determine the design load, unit-loads are applied, while the load capacity of the
column is scaled, using a scale-factor, z, until G = 0, and the design point is reached. The
characteristic values and partial safety factors are used for Eq.(7.2) and when G < 0 failure will
occur.
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7. Stochastic Modeling

The design equation used is based on Eq.(7.3), from [DS/EN-1993-1-1, 2007].

Ngy, Mgy,

X fyrA ks Weifoe 1 (7.3)
YMm1 Y

k Interaction factors [—]

Wp, | The plastic moment of resistance [m?]
fyk, Characteristic yield stress [Pa]

Yar1 | Partial safety factor [—]

A Cross sectional area [m?]

X Column reduction factor [—]

However as the design equation is based on characteristic values, the equation can be significantly
simplified. Seen in Table 7.2, the initial bow imperfection are normal distributed, has a mean
value of zero, and the characteristic value is based on a 50 % quartile ,[S@rensen, 2004], i.e. the
characteristic value is zero and the equation can be simplified to uni-axial compression, seen in
Eq.(7.4).
Ngg

XfykA
YM1

—1 (7.4)

From Eq.(7.4), the design resistance is formulated for a column subjected to uni-axial compres-
sion, seen in Eq.(7.5).

Seen in Eq.(7.5), the x factor accounts for the imperfections in the otherwise perfect column.

The load term, .S, is based on Eq.(7.1), with an added scale factor, 7.

S = (1 - n)Gdeadedead + annow’stow (76)
n Scale factor between the dead- and snowload [—]

Gpead Deadload [Pa]

Qsnow Snowload [Pa]

YDeadr Ysnow | Partial safety factors [—]

As the scale-factor, z, is used to scale the design resistance compared to the design load, 7 is
introduced to scale the ratio between the dead- and snowload.

By inserting Eq.(7.5) and (7.6) into (7.2), the scale-factor, z, is obtained by setting G = 0.

XSyrA
G==z ( uk ) - ((1 - n)Gdead’Ydead + annow’YSnow> =0 (77)
Ynm1

In order to scale the loads in the design equation, a number of different 7 values, varying from
zero to one is chosen. For each 7 value, a unique z value is calculated, and used to assign
the dominating load in the limit state function, calculated in the following section. The design
equation derived in this section, will be used for both the DS/EN and FEA limit state functions.
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7.3 Limit State Function

The limit state function is used to determine the reliability index, (3, of a model, compared to the
design equation. The limit state function is defined by Eq.(7.8).

g=zRx,.—S (7.8)

T Model uncertainty - calculated in Chapter 6

™

For the limit state function the stochastic variables are used and no partial safety factors are
applied. For the limit state function a failure surface is defined by g(z) = 0, seen in Figure 7.1.
As seen in the figure, everything below the line, i.e. g(x) > 0 is considered safe, while g(z) < 0
is failure.

Xy
A
g(x)>0 g(x)<0
safe, o, failure, o,
X
g(x)=0

Figure 7.1. Limit state function [Sgrensen, 2004].

DS/EN - Uni-axial compression
When dealing with a uni-axial compressed column the load capacity is found by Eq.(7.9).

R=xf,A (7.9)

The load, .S, is defined by Eq.(7.10)

S = (1 - n)Gdead + annow (7-10)

Thereby the limit state function for uni-axial compression is defined by Eq. (7.11).

g = ZXfyA$r - ((1 - n)Gdead + annow> (7-11)

DS/EN - Uni-axial compression with initial bow imperfection
When adding an initial bow imperfection to the limit state function an extra bending moment will
occur. An extra moment term is therefore applied to Eq.(7.9), seen in Eq.(7.12).

NE ME
+kzz =
XAfy WPlfy

1 (7.12)

The bending moment is defined as the product of the normal force and the initial bow
imperfection, expressed in Eq.(7.13).

50



7. Stochastic Modeling

When solving Eq.(7.12) two different solutions are obtained where one yields a negative load
capacity, and is therefore discarded. The derivation of the limit state equation is found in
Appendix A.

FEA - Uni-axial compression with initial bow imperfection

Through this analysis, the deterministic and stochastic parameters are chosen as seen in Table
7.2. However, as explained in Chapter 5, the only profile parameters considered stochastic, will
be the initial bow imperfection and yield stress as these were the most influential parameters
found in Section 5.4.

The limit state function, is based on Eq.(7.8), where the resistance, R, is expressed as a function
of the initial bow imperfection and yield stress, seen in Figure 5.28 on page 39.

7.4 Reliability index

To estimate the reliability index of the limit state function, described in the previous section,
different methods can be used. In this thesis, FORM (First Order Reliability Method) and MC
(Crude Monte Carlo) method, will be used.

7.4.1 First Order Reliability Method
The concept of FORM is to linearize the failure surface of the limit state function, as seen in Figure
7.2 so a probability of failure can be estimated, [Sgrensen, 2004].

In order to use FORM, the stochastic variables are transformed into the standard normally
distributed variable U with standard deviations of one and an expected value of zero. Thereby
the probability of failure can be calculated with the standard normal distribution function, @,
which is defined by Eq.(7.14).

Py = ®(—p) (7.14)
Pf Probability of failure

d Standard normal distribution function
I5; Reliability index

The definition of the reliability index [ is the shortest distance from origin to the failure surface
g(u) = 0in the U space, see Figure 7.2.

u,
|
N\
u =A
B

/ tangent hyperplane: #—a’u =0

u,

Figure 7.2. Reliability index[S@rensen, 2004].
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7.4.2 Sensitivity Analysis

When the FORM analysis has estimated a probability of failure, a sensitivity analysis of each
stochastic variable can be performed in order to give an estimation of how sensitive the reliability
index is to any given stochastic variable.

In this thesis, the unit normal vector, «, to the failure surface at the design point, will be used to
express the sensitivity. The « vector is expressed by Eq.(7.15).

B

= - 7.1
8uz~u @ (7.15)

1

*

o; ‘ Unit normal vector [—]

7.4.3 Crude Monte Carlo Simulation

The reliability index, calculated with FORM, is verified with the Crude Monte Carlo method. The
Crude Monte Carlo, is a brute force method, which at a sufficient amount of simulations will
converge towards a the correct reliability index, however it is very computationally heavy. The
probability of failure is estimated by Eq.(7.16).

. 1 X ~

Py = le[g(uj)] (7.16)
‘7:

f’f Probability of failure [—]

N Number of simulations [—]

Ig(11;)] | Indication function [—]

g(;) Failure function [—]

The indication function is defined as:

~_J 0 ifg(u) > 0Safe
Tgluy)] = { 1 if g(u) < 0 Failure (7.17)

The reliability index is calculated with the inverse standard normal distribution function ®~! and
is defined with Eq.(7.18).

B=—0"1(Py) (7.18)
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8 Stochastic results

In order to acquire the partial safety factors, the program FERUM is used to perform the stochastic
analysis. The input parameters used in FERUM are described in Section 7.1. In the following
section, calculations with the partial safety factor, according to the current Danish National Annex
will be conducted through FORM and verified with Monte Carlo simulations. Subsequently a
sensitivity analysis of the stochastic variables will be performed, in order to study the influence
of the individual stochastic variable. Ultimately, the stochastic analyses, are used to calibrate the
partial safety factor.

8.1 Reliability Analysis for the Current DS/EN Partial Safety Factor
Through this section, the reliability index, 3, will be calculated for each of the three limit state
functions. The reliability index for each limit state function will be calculated by FORM, and
validated by Monte Carlo, shown in Figure 8.1

BW/O
4.6 DS/EN

44

»
)

Reliability Index B
N

3.8

3.6

34 * 1 1 1 1 1 1 1 1 1 J
0 01 02 03 04 05 06 07 08 09 1

Dominating load
Deadload - Snowload

Figure 8.1. Reliability index shown for each of the three limit state functions, calculated by FORM and
Monte Carlo, visualized by lines and asterisks respectively.

Itis seen in Figure 8.1, the reliability method is stable, regardless if FORM or Monte Carlo is used.
It is, however, seen that the reliability indeces calculated by the FEA limit state function, deviates
more than the DS/EN models. Nevertheless, as the tendency of the reliability indices are similar
and deviates by no more than 0.2, the reliability is considered verified. The Monte Carlo method
is confirmed by a convergence analysis of the probability of failure and the covariance of the
probability of failure, seen in Figure 8.2 and 8.3.
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Figure 8.2. Probability of failure for the Monte
Carlo method.

Figure 8.3. Covariance of the probability of fail-
ure of the Monte method.

As the reliability index has been verified, a sensitivity analysis is conducted and discussed in the
following section

8.2 Sensitivity Analyses

Through this section, sensitivity analyses are conducted, in correspondence with Subsection
7.4.2. The analyses are conducted for the three limit state functions, in order to investigate the
influence of each stochastic variable on the reliability indices. The analyses are presented for the
limit state functions in Figure 8.4 for DS/EN DS/EN,,, and FEA respectively.

w/o’

DS/EN, DS/EN, , FEA

1 - 1 - 1 —

« 08 /7 08 / -
206 |/ 0.6t / '
= / / 7fy
Z’ O 4 " ‘c E

[

0.2 U,

0

0 / —
0 02040608 1

00 0.2 04 06 0.8 1
Dominating load
Deadload — snowload

0 02040608 1

Figure 8.4. Sensitivity analysis for each of the three limit state functions.

The sensitivity analyses, shows that the reliability index becomes highly dependent on the
snowload, for all limit state functions, while the yield stress is insignificant. Compared to the loads
and the model uncertainty, it is seen that the initial bow imperfection is only of significance to
the reliability in the FEA limit state function. However, as limit state functions contain a different
number of stochastic variables, a definitive conclusion is difficult to reach. However, it is seen
that the yield stress is generally insignificant. It is suspected that this is caused by the standard
deviation of 18.5 MPa, which may be too low to cause any considerable impact on the reliability
index, which is also indicated in Figure 5.29 on page 40.
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8. Stochastic results

8.3 Calibration of Partial Safety Factor

In order to calibrate the partial safety factor, v, ¢, the reliability indices are calculated with FORM
for different v,,; values for each weight factors. The target reliability index is chosen to 4.3, which
according to the Danish National Annex is the one-year return period for consequence class 2.

To estimate the ~y,;; corresponding the target reliability index, the partial safety factor, is
calculated, based on the best fit in Eq.(8.1), [Hansen & Sgrensen, 2002].

Y1 (mj\i;l> = Z (ﬂj(’Y) - 5T)2 (8.1)

Br
Bj,n

Target reliability index
The reliability index for each weight factor, 7, at each iteration, j, of v,

The plot of the margin of error, M as a function of ,,; is seen in Figure 8.5 for each limit state
function.

30
W/0
BDSIEN
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I3FEA
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Partial safety factor, Ym1

Figure 8.5. Margin of error for each iteration of the reliability index as a function of the partial safety
factor.

The best fit between the reliability indices for each limit state function and target reliability index
is seen to correspond to the Danish National Annex at about v, ,; = 1.2. The reliability indices as
a function of the weight factor 7, for the iterated -y, ,,, are seen in Figure 8.6.
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Figure 8.6. Reliability for each limit state function as a function of the weight factor.

The calibrated partial safety factor for each limit state function, in order to achieve the target
reliability, is seen to be slightly higher than the National Annex suggests. This is suspected to
be caused by a limited amount of uncertainties and stochastic variables. This will be subject to
discussion in the following section.

8.4 Review of Results
The stochastic results obtained for the calibrated safety factor are seen in Table 8.1.

Design Eq. R =65.1 MPa

DS/EN,, DS/EN,,, FEA

R [MPa] 655 67.2 72.6
x -] 1.16 1.14 1.08

o [-] 0.087 0.087  0.095

Rx, [MPa]  76.0 76.6 78.3

B (Yar1 =1.2)  [-] 4.24 4.19 4.19
Yar1(Br)=43) [-] 1.20 1.22 1.24

Table 8.1. Summarization of results obtained through Chapter 8.

R Load capacity

T Model uncertainty

r
o Variasion of the model uncertainty
Ben(Var1=1.2) Reliability index

Y1 (Br) =4.3) | Calibrated partial safety factor

The partial safety factor of the Finite Element method, is slightly higher than the safety factors
obtained through DS/EN, as seen from Table 8.1. This is unexpected, as the load capacity found in
the Finite Element Analyses in Part |, showed a higher load capacity which would be expected to
cause lower partial safety factor. However, as the model uncertainty, accounts for the higher load
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capacity, the deviation between the load capacities are evened out and the partial safety factors
for each limit state function approaches the same value. In addition, the standard deviation of
the model uncertainty is higher for the Finite Element Model, which reduces the reliability of the
model, and thereby further increases the partial safety factor compared to the DS/EN models. In
order to investigate this, the same stochastic analyses are conducted for unbiased models, which
can be seen in Table 8.2.

Design Eq. R =65.1 MPa

DS/EN,, DS/EN,,, FEA

R [MPa] 655 67.2 726
x -] 1 1 1
o [-] 0.087 0.087  0.095
Rx, [MPa] 655 67.2 72.6
B (Va1 =1.2)  [-] 3.51 3.54 3.84
Yar1(Br)=43) [-] 1.44 1.41 1.35

Table 8.2. Unbiased results of the stochastic analyses.

The reliability index decreases which causes a higher required partial safety factor. However, the
partial safety factor for the Finite Element Model is seen to be lower than the DS/EN models,
which confirms the importance of the model uncertainty.

Furthermore, as the sensitivity analyses indicated, the snowload is highly dominant. An
investigation is therefore conducted with the covariance of the snowload changed from 0.4 to
0.3. This should increase the reliability of the model and thereby decrease the required partial
safety factor in order to obtain the target reliability. The results are shown in Figure 8.3. The
models are again considered biased.

Design Eq. R =65.1 MPa

DS/EN,, DS/EN,, FEA

R [MPa] 655 67.2 726
x -] 1.16 1.14 1.08

o [-] 0.087 0.087  0.095

Rx, [MPa]  76.0 76.6 78.3

B (Va1 =1.2) -] 4.43 4.38 4.33
Yar1(Br)=43) [-] 1.18 1.19 1.20

Table 8.3. Biased results obtained for a covariance of the snowload of 0.3.

As expected, the reliability index decreases, compared to the results shown in Table 8.1.
Furthermore, when comparing the results for the model with a snowload with a covariance of
0.3 and the unbiased model with a covariance of 0.4, to the original results, it is seen that the
partial safety factor deviates more for the unbiased model. This could indicate that the model
uncertainty is of interest for further studies.
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9 Conclusion

Through this thesis, global buckling of a uni-axially compressed simple supported column has
been studied. The studies have been conducted through analytical and numerical analysis,
which have been compared to experimental results. The analytical analysis is based on
[DS/EN-1993-1-1, 2007], while the numerical models are conducted through the commercial
software Abaqus. This has led to a study of a variety of imperfections in order to determine the
influence on the critical buckling load of columns. Geometrical and installation imperfections
are seen to be of greater influence to the load capacity than material variations. Especially
bow imperfection and load eccentricity are seen to influence the critical buckling point as these
provoke global instability, while the columns subjected to the other imperfections are more
disposed to local instability. It is observed that the results of the DS/EN methods are conservative
and can be increased by 5-10% compared to the numerical and experimental results. However,
it is observed that the DS/EN model is less susceptible to bow imperfections, than the numerical
model, as a consequence the load capacity at large bow imperfections is underestimated by the
DS/EN method. However, according to [Bonnerup et al., 2009], the initial bow imperfection in
structural columns, is considered to be significantly less than this tolerance level.

After the imperfection study, a comparison between the theoretical models and experimental
data has been conducted in order to obtain the model uncertainty, for stochastic analysis. It is
observed that the load capacity of the Finite Element Model, corresponds better to reality than
the analytical models, which is reflected in a higher bias. However, the standard deviation of the
model uncertainty is slightly higher.

Subsequently a FORM analysis is performed where the design equation is based on the
[DS/EN-1993-1-1, 2007], in order to examine the reliability of the current standard. Three
different limit state functions are defined based on [DS/EN-1993-1-1, 2007], with and without
initial bow imperfection, and an imperfect numerical model using GMNIA. The stochastic analyses
shows that the limit state functions are slightly unreliable, which is assumed to be a consequence
of the relatively large standard deviation of the model uncertainty. As a result, a slight upward
adjustment of the partial safety factor is suggested, based on the Danish National Annex. It
is furthermore observed that the Finite Element Model yields a slightly higher partial safety
factor than the analytical models, which is unexpected. Therefore an investigation of the model
uncertainty is conducted. The same stochastic analyses are therefore performed with unbiased
models, with the same standard deviation of the model uncertainty. As expected, it is seen that
the Finite Element Model yields a lower partial safety factor.

As the partial safety factors are regarded as slightly high, the uncertainty of the distribution for
the snowload is reviewed as well. As the snowload is seen to be highly dominant in the sensitivity
analyses, the covariance is scaled down from 0.4 to 0.3, otherwise suggested by [JCSS, 2002]. As a
results, the partial safety factor is reduced slightly, but is still within a very close range to the value
suggested by the Danish National Annex. This suggests that a revision of the parameters used in
the limit state functions could be subject to further analysis. However, based on the calculations
conducted through this thesis, it is concluded that recommended values suggested by the Danish
National Annex are accurately defined.
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A Limit state function

In this appendix the limit state function and design equation for the DS/EN method with an initial
bow imperfection is derived. The limit state function is based on Eq. (A.1).

Npd k. Mpd _ 4 (A.1)

XAfyk plfyk

where
Mgq = Ngqu (A.2)
k,,=0C,,.(1+(2\—0.6)n) (A.3)
n—= h (A.4)
XNRra

Npg = fykA (A.5)

When solving Eq. (7.12) two solutions are given with Eq. (A.6) and (A.7).
1
C,,,u(10A —3)

\/25AX2C2, _u + 200AW py xC,py - Xt — 10AW pyxCrp o+ 25W3) + 5Wpy) f 1)
(A.6)

Ngg=— (0.5(5AxC,,, ,u—

1
C_u(10r—3)
V/25AX2C2, u? 4 200AW py Xy Nt — W0AW pyxCop st + 25W 2 + 5Wpy) f 1)

(A7)

As Eq.(A.7) yields a negative result, this expression is discarded. The definition of the limit state
function is therefore based on Eq.(A.6).

The load S is defined with Eq. (A.8).

S = (1 - C)Gdead + Canow (AS)

The limit state function are defined with Eq. (A.9).

g=zRzx,.—S (A.9)

By inserting Eq. (A.6) and (A.8) the limit state function is defined with Eq. (A.10).

1
- C,, . u(10A—3)

\/25A2X203nzu2 + 200AW p; xC,,, o Au — 10AW p; xC,,, ,u + 25W 3, +
5WPZ) yxr) - (1 - C)Gdead - Canow (A].O)

(0.52(5AXxC,,, ,u—
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