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Duration Probabilistic Automata (DPAs) and Timed Priced Markov Deci-
sion Processes (PTMDPs) introduced in this work are two di↵erent classes of
timed games with uncertainty, where the controller play against a stochastic
environment. We here present a method which learns strategies for the con-
troller on DPAs and PTMDPs. There are a number of di↵erent criteria one can
optimize against, in this we focus on synthesizing strategies which optimizes to-
wards minimizing the expected cost at some reachability target. The method
developed is based on reinforced learning and we see that it is able to learn
near-optimal strategies for Duration Probabilistic Automatons. For the larger
class of PTMDPs the method is in large also applicable.

The main learning algorithm consists of a number of steps. We develop a
number of di↵erent methods for two of these steps. We then experimentally
explore the di↵erent methods in terms of the scheduler they synthesize, the time
and the memory used for synthesizing this scheduler. We see that the methods in
large are equally good, and the performance on the individual methods depends
on the models of the experiments used.

We also show that the methods presented outperform previously known au-
tomated for tools synthesizing schedulers for Duration Probabilistic Automata
with an order of magnitude improvement in running time, while still obtaining
the same schedulers down to a di↵erence of 0.5 in the decision boundaries. All
of the methods presented have been implemented in the tool Uppaal. This en-
ables us to also synthesize strategies which are constrained by a Uppaal-Tiga
strategy, giving some worst case guarantees for the synthesized scheduler. Using
the Uppaal implementation we can thus synthesize schedulers for cost-bounded
reachability-objectives for games while also providing a (near-) optimal expected
cost.
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Abstract. We present a method which learns strategies on Markov deci-
sion processes with time and price. The method will synthesize strategies,
optimized towards minimizing the expected cost. The method is based
on reinforced learning and is able to learn near-optimal strategies for Du-
ration Probabilistic Automatons. The method is in large also applicable
to the larger class of Priced Time Markov Decision Processes.
We develop a number of methods for di↵erent steps of the main learn-
ing algorithm, and empirically investigate their e↵ect on the synthesized
strategies. We also show that the methods presented outperform pre-
viously known automated for tools synthesizing schedulers for Duration
Probabilistic Automata with an order of magnitude improvement in run-
ning time, while still obtaining the same schedulers down to a di↵erence
of 0.5 in the decision boundaries. All of the methods presented have been
implemented in the tool Uppaal. This enables us to synthesize strategies
for cost-bounded reachability-objectives for games while also providing
a (near-) optimal expected cost.

1 Introduction

Planning any project is in it self a major task, requiring tedious allocation of
resources and correct estimates of time requirements. A good project planner is
able to foresee and solve races for resources between tasks while scheduling and
adapting the schedule according to new information that is observed while the
project is executed. This foresight is largely based on experience and a good in-
tuition. However, even a skilled project planner can have a hard time scheduling
a project in the best possible way. Factoring in the stochastic nature of the real
world does not make the task any simpler. The complex interleaving of chance
makes it inherently hard to adapt the schedule in an optimal way. In [16] it was
shown, that an optimal scheduler under uncertainty is computable for Duration
Probabilistic Automata (DPA). In [13] we showed that a near to optimal sched-
uler can be approximated using machine learning technics for finding a scheduler
for such a DPA. We here expand and elaborate on this method of learning.

1.1 The Scheduling Problem

The problem of providing an optimal scheduler is not trivial and the question
of optimality is di↵erent at di↵erent levels of abstraction. The simplest version



of the scheduling problem consists of several fixed-time tasks. Under these con-
ditions, there are tools that can provide an optimal scheduler with respect to
time [2] as well as with respect to to some cost/value using Priced Time Au-
tomata [7].

However, not all environments are controlled enough to provide fixed-time
guarantees for all tasks. Consider the example in in Figure 1, a computer with
a single printer has two time uncertain processes. Process P1 opens a large file
on a local media and has to print it and store changes made to it. Concurrently,
process P2 opens a fairly small file over a network connection, prints it and stores
it locally. Due to parameters such as disk-access time, caches, network-delay and
network congestion, the simple task of opening a file becomes time uncertain.
Furthermore, to print a file, a process has to have exclusive (non pre-emptive)
access to the printer.

P1 : T0:F1 T1:PTR T2:F1

P2 : T0:F2 T1:PTR T2:F2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1: The description of processes P1 and P2 using a shared printer (PTR) for
printing two di↵erent files (F1,F2 ). The shaded areas indicate time uncertain
completion of tasks T0 in both processes, the task can complete anywhere in
the shaded area. File F1 is stored locally while F2 is fetched via network, hence
the di↵erence in time variation.

This gives ground to Time Uncertain Schedulers, where the exact running
time of tasks is uncertain. Optimal Time Uncertainty Schedulers can be found
using Timed Games [11, 18], where optimal means a scheduler which minimizes
(or maximizes) the worst case completion time. In contrast to fixed-time schedul-
ing where the optimal strategy does not depend on the specific execution, the
strategy of a Time Uncertain Scheduler does.

While Time Uncertain Optimal Schedulers provide a strategy guaranteed to
minimize the worst case, the worst case is often not frequently occurring, making
the proposed scheduler less than optimal on average. In a realistic setting, the
expected completion time is of more concern than the worst case. To the best of
our knowledge, there exists only one algorithm to provide an optimal scheduler
with regards to expected completion time, this was provided by Kempf et al. [16],
but unfortunately this algorithm does not scale well.

We present an approximating approach using reinforced learning and sched-
uler evaluation to approximate Time Uncertain Optimal Schedulers w.r.t ex-
pected completion time. The proposed solution is based on the work on guided
scheduler optimization by Henriques et al. [15], where reinforced learning in
combination with Statistical Model Checking (SMC) is used to verify Bounded
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Linear Temporal Logic properties on discrete finite Markov Decision Processes
(MDPs).

We also show in [13] that given this algorithm and the algorithms for worst
case analysis from Uppaal-Tiga, we can also optimize the scheduler under
worst case guarantees. This was first suggested in [10]. We will introduce two
models, DPAs and PTMDPs. In context of DPAs we will use the term scheduler,
and in context of PTMDPs we will use the term strategy. The two terms are
equivalent.

1.2 Related Work

Our synthesis problem – aiming at optimal expected cost subject to worst-case
time bounds – extends the notion of beyond worst-case synthesis in [10] intro-
duced for finite state MDPs, with consideration of minimizing expectation of
mean-payo↵ (shown to be in NP\coNP) as well reachability cost (shown to be
NP-hard).

The DPA formalisms considered in [16] is a proper subclass of PTMDP pro-
posed in this work. In [16] exact methods for synthesizing strategies with minimal
expected completion time are given and implemented. However, no worst-case
guarantees are considered. As we shall demonstrate our reinforcement learn-
ing method produces identical solutions and with an order of magnitude time-
improvement.

[17] uses a version of Kearns algorithm to find a memoryless scheduler for
expecting reward, however with no implementation provided, and no real-time
consideration.

Our use of statistical model checking for learning optimal strategies of PT-
MDPs extends that of [15] from finite-state MDPs to the setting of timed game
automata based, infinite state MDPs requiring the use of new symbolic strate-
gies.

Finally, statistical model checking has been used for confluent MDPs in [8].

2 Duration Probabilistic Automata

We present the DPA model by first defining individual tasks, then by defining
collections of tasks in a Simple Duration Probabilistic Automaton (SDPA) and
finally by presenting a DPA as a collection SDPAs.

A task is a single atomic unit, which cannot be split into smaller parts, and
must have exclusive access to some resource to complete the task. We define a
task as

Definition 1 (Task). A task is a four-tuple (a, b, R,'), where

– a, b 2 Z�0, a  b are minimum and maximum possible durations of the task,
respectively,

– R is a resource used by the task, and
– ' is a probability mass distribution function over [a, b].
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We always assume ' to be an uniform distribution. For a task t = (a, b, R,')
we refer to the respective elements as (a

t

, b
t

, R
t

,'
t

).
A series of tasks that need to be completed in a specific sequential order is a

process and can be modeled as an SDPA. The SDPA contains information about
the progress of tasks and contains states to wait in between execution of two
tasks. We define an SDPA formally as:

Definition 2 (Simple Duration Probabilistic Automaton). A Simple Du-
ration Probabilistic Automaton (SDPA) is a tuple (T, next, t1, x), where

– T is a set of tasks,
– t1 2 T is the initial task, and
– next : T ! (T [ {?}) \ {t1} is a transition function from any task to the

successor task or to the final state ? if there are no remaining tasks. next
is a one-to-one mapping.

– t is the complement-task for each t 2 T .
– x is a clock.

A state in an SDPA S = (T, next, t1, x) is a pair (t̃, r) where t̃ 2 {t, t | t 2
T} [ {?} is a discrete state and r 2 R�0 is the valuation of the clock x. The
initial state in S is the pair (t1, 0) and the state space SP (S) of S is the set of
all states.

The complemented task named t denotes a state waiting to start t. We define
for a task t that a

t

= 0, b
t

= 1, R
t

= ;. The complement task t is a pseudo task
allowing the SDPA to postpone executing a task for some arbitrary amount of
time.

We can then define the semantics of an SDPA. These are defined as a tran-
sition system, using the following rules:

r + d  b
t̃

, d 2 R�0, t̃ 2 {t, t | t 2 T} [ {?}
(t̃, r)

d!
s

(t̃, r + d)
(1)

t 2 T, s 2 T [ {?}, next(t) = s, a
t

 ⌫  b
t

(t, r)
done!

s

(s, 0)
(2)

t 2 T
(t, r)

go!
s

(t, 0)
(3)

A DPA is a set of SDPAs where tasks are executed in parallel and share a
common resource pool. We formally define a DPA:

Definition 3 (Duration Probabilistic Automaton). A Duration Probabilis-
tic Automaton (DPA) D is a set S = {S1, S2, . . . , SN

} of N SDPAs where,

– the state space of the DPA D is SP (D) = SP (S1)⇥SP (S2)⇥ · · ·⇥SP (S
N

)
excluding states with conflicting resources, i.e. excluding states {(t̃1, x1), . . . ,

( ˜tN , xN )} where 91  i, j  N, i 6= j.R
t̃

i \R
t̃

j 6= ;.
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– the initial state of the DPA D is {(t11, 0), (t21, 0), . . . , (tN1 , 0)} where ti1 is the
initial task in S

i

.
– the set of clocks for a DPA D is defined as X = {x1, . . . , xN}.
– a clock valuation ⌫ is a function ⌫ : X ! R�0.

Before we define the semantics of a DPA we define the plus operator and the
less-than comparator on clock valuations, we sometimes denote a clock valuation
as a set of pairs of clocks and real numbers s.t. ⌫ = {(x, 4), (y, 1), (z, 5)}, if
⌫(x) = 4, ⌫(y) = 1 and ⌫(z) = 5:

Definition 4 (Plus Operator for Clock Valuation and Number). The
plus operator for a clock valuation ⌫ and a number d 2 R:

⌫ + d = {(x, r + d) | (x, r) 2 ⌫}.

we then define the less-than comparator of two clock valuations:

Definition 5 (Less-Than for Clock Valuations). Given clock valuations ⌫1
and ⌫2 defined over the same set of clocks, ⌫1 < ⌫2 if:

8(x, r) 2 ⌫1.9(x, r0) 2 ⌫2.r < r0.

The semantics of a DPA are defined as a transition system as well, using the
following rules:

(t̃i, ri)
d!
s

(t̃i, ri + d) for all 1  i  N

{(t̃1, r1), . . . , ( ˜tN , rN )} d! {(t̃1, r1 + d), . . . , ( ˜tN , rN + d)}
(4)

(tj , rj)
done!

s

(s, 0)

{(t̃1, r1), . . . , (tj , rj), . . . , ( ˜tN , rN )} done

j

! {(t̃1, r1), . . . , (s, 0), . . . , ( ˜tN , rN )}
(5)

(tj , r)
go!
s

(tj , 0),
S

1iN,i 6=j

t̃i
R

\ tj
R

= ;

{(t̃1, r1), . . . , (tj , rj), . . . , ( ˜tN , rN )} go

j

! {(t̃1, r1), . . . , (tj , 0), . . . , ( ˜tN , xN )}
(6)

To control the behavior of the DPA, we create a scheduling policy ⌦ which
decides what action to take in a given state of the DPA. A DPA under a specific
scheduler results in a Markov Chain.

Definition 6 (Scheduling Policy). Given a DPA D with the set of SDPAs
S = {S1, S2, . . . , SN

}, a scheduling policy is a function ⌦ : SP (D) ! {goi |
1  i  N} [ {w} such that for every i 2 [1, N ],⌦(q, ⌫) = goi only if S

i

has a
waiting task in q and ⌦(q, ⌫) = w only if at least one task is running in q.

The intuition of the scheduler is that either ⌦ returns goi and a task is
started or ⌦ returns w for some time until ⌦ again returns goj . With the model
defined, we can now define the problem.
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3 Optimal Scheduling of DPAs

In this section we start by presenting the notion of an optimal scheduler and
continue by elaborating the results of Kempf et al. [16] with regards to di↵er-
ent types of schedulers. The definition used in this section are inspired by the
definitions by Kempf et al. [16].

3.1 Optimal Scheduling

While Definition 1 of a task states ' to be a uniform distribution over an interval,
the interleaving of tasks result in a shift in the probability distribution. To handle
this, we define a shift similar to Kempf et al. [16] such that we normalize the
probability distribution:

Definition 7 (Shift). A shift x of the probability distribution ' for a task t,
written '

/x

is defined as

'
/x

[⌧ ] ='[⌧ + x] if 0  x  a
t

(7)

'
/x

[⌧ ] ='[⌧ + x] · bt � a
t

b
t

� x
if a

t

< x < b
t

(8)

With shift defined, we can begin to reason about the probability that some
task finishes before others in a DPA. As with shift, Kempf [16] et al. provided a
similar definition. Based on this, we define the probability ⇢ for an SDPA s with
a running task, that s is the first to terminate its current task.

Definition 8 (Task Termination Probability). Given a DPA D, a state
(q, ⌫) 2 SP (D) and SPDAs with running tasks {s1, .., si, .., sn}, the probability
that si terminates at time ⌧ and all other running tasks terminate at > ⌧ is
given by

⇢i(q, ⌫)[⌧ ] = 'i

/x

i [⌧ ]
Y

i

0 6=i

'i

0

/x

i0 [> ⌧ ] (9)

This leads us to the definition of stochastic time-to-go for a DPA under
a scheduler. From Definition 8 we know the probability that some task will
terminate, and given our scheduler ⌦ we know which task will be started in the
next state. From this, we can construct a formula for the probability distribution
for a given DPA D under ⌦ terminates.

Definition 9 (Stochastic Time-To-Go). Given a DPA D and a scheduler ⌦,
the global probability distribution for a global state (q, ⌫) is given by function µ
defined as
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if 8p 2 q, p = ? µ(q, ⌫,⌦)[⌧ ] =

(
1 if ⌧ = 0

0 if ⌧ > 0
(10)

if (q, ⌫ + ⌧)
⌦(q,⌫+⌧)�! (q0, ⌫0)

µ(q, ⌫,⌦)[⌧ ] =
X

i2Active

Z
⌧

0
⇢i(q, ⌫)[⌧ 0] · µ(q0, ⌫0,⌦)[⌧ � ⌧ 0]d⌧ 0 (11)

From Definition 9 we can derive the expected time-to-go under a scheduler

Definition 10 (Expected Time-To-Go).

E(q, ⌫,⌦) =

Z 1

0
⌧ · µ(q, ⌫,⌦)[⌧ ]d⌧ (12)

Using Definition 10, we can create a notion of the optimal scheduler ⌦, as this
is the scheduler that given any clock-valuation ⌫ and state q is as least as good
as any other possible scheduler ⌦0. We define the optimal scheduler formally

Definition 11 (The Optimal Scheduler). The stochastic optimal scheduler
⌦ is defined as

8⌦0.E(q, ⌫,⌦)  E(q, ⌫,⌦0) (13)

3.2 Scheduler Types

In a probabilistic setting, it is important to distinguish between a static and an
adaptive scheduling policy [1]. A static scheduling policy is not influenced by the
clock-valuations i.e. a scheduling policy is based solely on the discrete state of
the system. As it cannot adapt to the actual task durations, this scheduler type
cannot always describe an optimal scheduler. This can be seen in the example in
Figure 2 which contains two determined runs over the DPA from the example in
Figure 1. An optimal scheduler for this DPA is for the second task in P1 to use
the printer first, unless the first task in P2 completes in 1 time units, in which
case P2 should use the printer first. But because the actual completion times
of tasks cannot be considered in a static scheduling policy, a static scheduling
policy cannot describe an optimal scheduling of the DPA.

Another important distinction is between lazy and non-lazy schedulers. It
was shown by Abdedda et al. [19] that the class of non-lazy schedulers contains
the optimal scheduling. We use the definitions of laziness by Kempf et al. [16].

Definition 12 (Laziness). A scheduling policy ⌦ is lazy at (q, ⌫) if ⌦(q, ⌫ +
⌧) = i and ⌦(q, ⌫ + ⌧ 0) = w for every ⌧ 0 2 [0, ⌧). A schedule is non-lazy if no
such (q, ⌫) exists.

They continue by showing that

Theorem 1 (Non-Lazy Optimal Schedulers). The optimal value E can be
obtained by a non-lazy scheduler.
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This intuitively means that if it pays o↵ for a task to wait, it will do so until
some task releases some resources (i.e. a task finishes).

Due to the non-blocking nature of tasks with no resource requirements, we
can introduce another theorem which reduces the complexity of the generated
scheduler. Theorem 2 states that if there is a task t without any resource re-
quirements waiting to be started, it is always optimal to start t.

Theorem 2. The optimal value of E can be obtained by a scheduler which al-
ways immediately starts waiting tasks which do not need any resources.

Proof (Theorem 2). Consider an optimal scheduler ⌦ which chooses to wait in
the state (q, ⌫) that has some waiting task t from the SDPA S which does not
need any resources. We can construct another optimal scheduler ⌦0 which starts
t in the state (q, ⌫) and in any other state (q0, ⌫0), ⌦0(q0, ⌫0) = ⌦(q0, ⌫0).

Clearly, as ⌦ is optimal from every state in the state space and with every
clock valuation ⌫, ⌦0 is optimal for all other states than (q, ⌫). This is due to
the fact that ⌦ and ⌦0 only depends on the current state of the DPA (they are
memoryless).

Starting t in (q, ⌫) cannot e↵ect any other SDPA as it uses no resources. The
SDPA containing t can only meet an earlier deadline than under ⌦, as t will
now be executed sooner. This means that the expected running time under ⌦0

can only be shorter than or equal to the running time under ⌦. And as ⌦ is
optimal, so is ⌦0. ut

Theorem 3. Given an optimal scheduler ⌦ and two states (q, ⌫) and (q, ⌫0)
s.t. ⌫ = {(x1, r1), . . . , (xn

, r
n

)} and ⌫0 = {(x1, r1 + d1), . . . , (xn

, r
n

+ d
n

)} where
d1, . . . , dn 2 R�0 It holds that E(q, ⌫,⌦) � E(q, ⌫0,⌦).

In the states the discrete states are the same, and all tasks in (q, ⌫0) are at
least as progressed as in (q, ⌫). It then holds that the expected time to go for
(q, ⌫) is at least as big as for (q, ⌫0) under an optimal scheduler.

From Kempf et al. [16] we have the following lemma:

Lemma 1. Let q be a state and let ⌫ and ⌫0 be two clock valuations which
are identical except for some clock x 2 X, ⌫0(x) = ⌫(x) + d and let ⌦ be an
optimal scheduler. Then E(q, ⌫0,⌦) is at least as good as E(q, ⌫,⌦), that is,
E(q, ⌫0,⌦)  E(q, ⌫,⌦).

Proof (Theorem 3). Given an optimal scheduler ⌦ and a state (q, ⌫) s.t. ⌫ =
{(x1, r1), . . . , (xn

, r
n

)} and a state (q, ⌫0) s.t. ⌫0 = {(x1, r1+d1), . . . , (xn

, r
n

+d
n

)}
we now prove that E(q, ⌫0,⌦)  E(q, ⌫,⌦)

The following holds due to Lemma 1:

E(q, ⌫,⌦) � E(q, ⌫1,⌦) � E(q, ⌫2,⌦) � · · · � E(q, ⌫
n

,⌦)

Where
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⌫1 = {(x1, r1 + d1), (x2, r2), . . . , (xn

, r
n

)},
⌫2 = {(x1, r1 + d1), (x2, r2 + d2), . . . , (xn

, r
n

)},
...

⌫
n

= {(x1, r1 + d1), (x2, r2 + d2), . . . , (xn

, r
n

+ d
n

)}

And as ⌫
n

= ⌫0 Theorem 3 is true.
ut

Finally, schedulers can be preemptive or non-preemptive. In preemptive sched-
ulers, tasks may be preempted after being started. This is often not applicable
to real processes which may be non-preemptable e.g. due to side e↵ects. For this
reason we will focus only on non-preemptive schedulers.

As the aim of this thesis is to approximate optimal scheduling, we will in
consider only non-preemptive non-lazy adaptive scheduling policies and refer to
such simply as scheduling policies for DPAs.

P1 : T0:F1 T1:PTR T2:F1

P2 : T0:F2 T1:PTR T2:F2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P1 : T0:F1 T1:PTR T2:F1

P2 : T0:F2 T1:PTR T2:F2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 2: Example of two timeliness showing determined runs for the processes
shown in Figure 1. No static scheduler can be optimal in both runs.

4 Priced Timed Markov Decision Processes

In [13], attached and currently under review, we describe methods for solving
the scheduling problem. In the paper we introduce the more general model of
Priced Timed Markov Decision Processes (PTMDPs).

Example Consider the PTMDP of Figure 3 modeling a process consisting of a
sequence of two uncontrollable steps, r, d, with a possible control action, a, b,
w being taken after the first step. The first step r is taken between 0 and 100
time-units according to a uniform distribution1 as can be seen by the invariant

1 following the stochastic semantics for timed automata components applied in Up-
paal SMC.
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b

d

d

x=0

d

w

x=0

a

r
CHOICE

x<=140 &&

c’==2

x<=120 &&

c’==3

END

A

B
x=0

x>=20

x==100

x>=90

x>=60

x<=100 &&

c’==4

x<=100 &&

c’==0

Fig. 3: Example of an PTMDP from [13].

x<=100 and the absent guard, and with cost-rate c’==0. In the next step, the
controller may suggest to play any of the time-action pairs (d, a), (d, b) with
d  100 or (100, w). These will be in competition with the uniformly distributed
choices of the environment (e, d) with e 2 [90, 100]. It is clear that in terms of
worst-case time, the best choice for the controller is (100, w) with 200 as worst-
case overall time. In contrast, the worst choice for the controller is (100, b) with
340 as worst-case time.

Another case is that we want to minimize the expected value of the clock c.
This means that it would be stupid to wait for some time in CHOICE and then
do a or b. This is due to the fact that x is reset when taking a or b, which means
that no matter when we take the a or b transitions we will stay in the A or B
location the same amount of time.

Lets now look into the di↵erent choices:

Choose to do a As argued if the controller chooses to do a it should not wait
in the CHOICE location. This means that the c clock will only progress in the
A location. In the A location only the environment can act. When x � 60 the
environment can go to the END location, and there is an invariant such that
it always holds that x  120. Thus the environment must go to END when
60  x  120. We assume that the environment chooses the delay over a
uniform distribution. As c0 = 3 this means that the expected value of c in
END is 3 ·

�
120�60

2 + 60
�
= 270.

Choose to do b This choice is very similar to choosing a however here the
environment must go to END when 20  x  140 and c0 = 2. Thus in this
case the expected value of c in END is 2 ·

�
140�20

2 + 20
�
= 160.

Choose to wait 100 and then do w In this case we choose to wait in the
CHOICE location the environment has to go to END when 90  x  100 and
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c0 = 4. The controller can only choose w when x = 100, in theory there is a
race between the controller and the environment. However the only time the
controller can act is when x = 100, and then the controller will go to END. In
the same situation the only choice for the environment is also to go to END
as well. Thus the expected value for c in END can be calculated in the same
way as in the two previous cases, and is 4 ·

�
100�90

2 + 90
�
= 380.

This means that the best strategy for minimizing the expected cost, i.e. the
final value of c, is to choose b.

Now assume that the END location must be reached within an upper time-
bound of 210. The on-the-fly method of Uppaal-Tiga (exploiting early termi-
nation) may (in fact will) produce the strategy which deterministically chooses
(100, w). This clearly meets the given upper time-bound, and yields an expected
reachability cost of 4 ⇤ 95 = 380. The most permissive strategy guaranteeing the
time-bound 210 (also obtainable by Uppaal-Tiga) will have the choice depend
on the time-point t when CHOICE is reached: if t > 90 only (100, w) is a legal
choice; if 70 < t  90 also (d, a) with d  90 � t are legal choices, and finally
if t  70 also (e, b) with e  70 � t are legal. The strategy with minimal ex-
pected reachability cost while guaranteeing the time-bound 210, will (obviously)
deterministically make the “cheapest” legal choice for a given value of t, i.e.

– (100, w) for t > 90,

– (0, a) when 70 < t  90,

– and (0, b) when t  70.

This yields 204 as minimum expected value; We know that the value of t will
be uniformly distributed. This means that 70% of the time we will do (0, b), 20%
of the time we will do (0, a) and 10% of the time we will do (100, w). We know
the expected price of the di↵erent choices from above. Thus we can simply take
the sum of the products of the price and the probability of an action. This will
give us the expected price:

0.7 · 160 + 0.2 · 270 + 0.1 · 380 = 204.

Thus we now have the most cost optimal strategy under the constraint that
we have to reach the END location in 210 time units.

4.1 Priced Timed Markov Decision Processes

In this section we formalize the notion of PTMDPs. This section is analogous to
Sections 2 and 3 but for the more general model of PTMDPs.

We first introduce Priced timed games and then use this in the definition of
PTMDPs.
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Priced Timed Games Priced Timed Games [20] are two-player games played
on (priced) timed automata [3, 6]. Here we recall the basic results. Let X =
{x, y, ...} be a finite set of clock. We define B(X) as the set of clock constraints
over X generated by grammar: g, g1, g2 ::= x ./ n | x � y ./ n | g1 ^ g2, where
x, y 2 X are clocks, n 2 N and ./ 2 {, <,=, >,�}.

Definition 13. A Priced Timed Automaton (PTA) A = (L, `0, X,⌃, E,R, Inv)
is a tuple where L is a finite set of locations, `0 2 L is the initial location, X
is a finite set of non-negative real-valued clocks, ⌃ is a finite set of actions,
E ✓ L ⇥ B(X) ⇥ ⌃ ⇥ 2X ⇥ L is a finite set of edges, P : L ! NX assigns
a price-rate to each location, and Inv : L ! B(X) sets an invariant for each
location.

The semantics of a PTA A is a priced transition system SA = (Q, q0,⌃,!),
where the set of states Q consists of pairs (`, v) with ` 2 L and v 2 RX

�0 such
that v |= Inv(`)}, and q0 = (`0, 0) is the initial state. ⌃ is a finite set of actions,
and ! ✓ Q ⇥ (⌃ [ R�0) ⇥ R�0 ⇥ Q is the priced transition relation defined
separately for action a 2 ⌃ and delay d 2 R�0 as:

– (`, v)
a�!0 (`0, v0) if there is an edge (`

g,↵,r���! `0) 2 E such that v |= g,
v0 = v[r 7! 0] and v0 |= Inv(`0),

– (`, v)
d�!

p

(`, v + d), where p = P (`) · d, v |= Inv(`) and v + d |= Inv(`).

Thus, the price of an action-transition is 0, whereas the price of a delay transition
is proportional to the delay according to the price-rate of the given location.
We shall assume that SA is deterministic in the sense that any state q 2 Q
has at most one successor q↵ for any action or delay ↵ 2 (⌃ [ R�0). A run
of a PTA A is an alternating sequence of priced action and delay transitions

of its priced transition system SA: ⇡ = q0
d0�!

p0 q00
a0�!0 q1

d1�!
p1 q01

a1�!0

· · · dn�1�!
pn�1 q0

n�1
an�1�!0 q

n

· · · , where a
i

2 ⌃, d
i

, p
i

2 R�0, and q
i

is a state

(`
qi , vqi). We denote the set of runs of A as ExecA, and ExecfA (ExecmA ) for the

set of its finite (maximal) runs. For a run ⇡ we denote by ⇡[i] the state q
i

, and
by ⇡|

i

(⇡|i) the prefix (su�x) of ⇡ ending (starting) at q
i

. For a finite run ⇡,
C(⇡) denotes its total accumulated cost

P
n

i

p
i

. Similarly T (⇡) denotes the total
accumulated time

P
n

i

d
i

. An infinite run ⇡ is said to be cost-divergent provided
lim

n!1
P

n

i

p
i

= +1. We say that A is (cost-) non-Zeno provided every infinite
run is time-(cost-)divergent.

Definition 14. A Priced Timed Game G (PTG) is a PTA whose actions ⌃ are
partitioned into controllable (⌃

c

) and uncontrollable (⌃
u

) actions.

We note, that for PTAs and PTGs with P (`) = 1 in all locations `, we obtain
standard timed automata (TA) and timed games (TG). Given a (P)TG G, a set
of goal-locations G ✓ L and a cost- (time-) bound B 2 R�0, the (G,B) cost-
(time-) bounded reachability control problem for G consists in finding a strategy �
that will enforce G to be reached within accumulated cost (time) B. The formal
definition of this control problem is based on definitions of strategy and outcome.
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Definition 15. A strategy � over a PTG G is a partial function from ExecfG to
P (⌃

c

[ {�}) \{;} such that for any finite run ⇡ ending in state q = last(⇡), if
a 2 �(⇡) \⌃

c

, then there must exist a transition q
a�! q0 in SG.

Given a PTG G and a strategy � over G, the outcome Out(�) is the subset
of ExecG defined inductively by q0 2 Out(�), and:

– If ⇡ 2 Out(�) then ⇡0 = ⇡
e�! q0 2 Out(�) if ⇡0 = ExcelG and either one of

the following three conditions hold:
1. e 2 ⌃

u

, or
2. e 2 ⌃

c

\ �(⇡) and e 2 �(⇡), or

3. e 2 R�0 and for all e0 < e, last(⇡)
e

0
�! q0 for some q0 st �(⇡

e

0
�! q0) 3 �.

Let (G,B) be a cost- (time-) bounded reachability objective for G. We say
that a maximal, finite run ⇡ is winning w.r.t. (G,B), if last(⇡) 2 G⇥ R�0 and
C(⇡)  B. A strategy � over G is a winning strategy if all runs in Out(�) are
winning (w.r.t. (G,B)).

A memoryless strategy � only depends on the last state of a run, e.g. when-
ever last(⇡) = last(⇡0), then �(⇡) = �(⇡0). For unbounded reachability and
safety objectives for TGs, memoryless strategies su�ces [20], For TGs with an
additional clock time, which is never reset (here named clocked TGs), memory-
less strategies even su�ces for time-bounded reachability objectives.

The notion of strategy in Def. 15 is non-deterministic, thus inducing a natural
order of permissiveness: � � �0 i↵ �(⇡) ✓ �0(⇡) for any finite run ⇡. Determin-
istic strategies – returning singleton-sets for each run – are least permissive.
For safety objectives – being maximal fixed-points – strategies are closed under
point-wise union, yielding (unique) most permissive strategies. For TGs being
non-Zeno, time-bounded reachability objectives are safety properties.

Theorem 4. Let G be a non-Zeno, clocked TG. If a time-bounded reachability
objective (G, T ) has a winning strategy, then it has (a) deterministic, memoryless
winning strategies, and (b) a (unique) most permissive, memoryless winning
strategy �p

G(G, T ).

The tool Uppaal-Tiga [5] provides on-the-fly, symbolic (zone-based) algo-
rithms for computing both types of memoryless safety strategies for TGs. For
PTGs, the synthesis problem for cost-bounded reachability problems is in general
undecidable [9].

Priced Timed Markov Decision Processes The definition of outcome of
a strategy in the previous Section assumes that an environment behaves com-
pletely antagonistically. We will now assume a randomized environment, where
the choices of delay and uncontrollable actions are stochastic according to a
(delay,action)-density function for a given state.

Definition 16. A Priced Timed Markov Decision Process (PTMDP) is a pair
M = hG, µui, where G = (L, `0, X,⌃

c

,⌃
u

, E,R, Inv) is a PTG, and µu is a

13



family of density-functions, {µu

q

: 9`9v.q = (`, v)}, with µu

q

(d, u) 2 R�0 assigning
the density of the environment aiming at taking the uncontrollable action u 2 ⌃

u

after a delay of d from state q.

In the above definition, it is tacitly assumed that µu

q

(d, u) > 0 only if q
d,u�!

in G. Also, we shall wlog for time-bounded reachability objectives assume thatP
u

(
R
t�0 µ

u

q

(t, u)dt) = 1 2. In case the environment wants to perform an action
deterministically after an exact delay d, µu

q

will involve the use of Dirac delta
function (see [12]).

The presence of the stochastic component µu makes a PTMDP a de facto
infinite state Markov decision process. Here we seek strategies that will minimize
the expected accumulated cost of reaching a given goal set G.

Definition 17. A stochastic strategy µc for a PTMDP M = hG, µui is a family
of density-functions, {µc

q

: 9`9v.q = (`, v)}, with µc

q

(d, c) 2 R�0 assigning the
density of the controller aiming at taking the controllable action c 2 ⌃

c

after a
delay of d from state q.

Again it is tacitly assumed that µc

q

(d, c) > 0 only if q
d,c�! in G. Now, a

PTMDP M = hG, µui and a stochastic strategy µc defines a race between the
environment and the control strategy, where the outcome is settled by the two
competing density-functions. More precisely, the combination of M and µc de-
fines a probability measure PM,µ

c on (certain) sets of runs.
For `

i

2 L and I
i

= [l
i

, u
i

] with l
i

, u
i

2 Q, i = 0..n, we denote the cylinder
set by C(q, I0`0I1 · · · In�1`n) consisting of all maximal runs having a prefix of

the form: q
d0�! a0�! (`1, v1)

d1�! a1�! · · · dn�1�!an�1�! (`
n

, v
n

) where d
i

2 I
i

for all
i < n. Providing the basis for a Sigma-algebra, we now inductively define the
probability measure for such sets of runs3:

PhG,µui,µc

�
C(q, I0`0I1 · · · In�1`n)

�
=

X

p2{u,c}

X

a2⌃p

`q
a!`1

Z

t2I0

µp

q

(t, a) ·
� Z

⌧>t

µp

q

(⌧)d⌧
�
· PhG,µui,µc

�
C((qt)a, C(I1 · · · In�1`n)

�
dt

The above definition requires a few words of explanation: the outermost sums
divide into cases according to who wins the race of the first action (c or u),
and which action a the winner will perform. Next, we integrate over all the legal
delays the winner may choose according to the given interval I0 using the relevant
density-function. Independently, the non-winning player (p) must choose a larger
delay; hence the product of the probability that this will happen. Finally, the
probability of runs according to the remaining cylinder I1`1, · · · , In�1`n from
the new state (qt)a is taken into account.

2 For a time-bounded reachability objective (G, T ), we may without a↵ecting control-
lability assume that each location has each action (controllable or uncontrollable)
action enabled after T .

3 with the base case, e.g. n = 0, being 1
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Now let ⇡ 2 Execm and let G be as set of goal locations. Then C
G

(⇡) =
min{C(⇡|

i

) : ⇡[i] 2 G} denotes the accumulated cost before ⇡ reaches G4. Now
C

G

is a random variable, which for a given stochastic strategy, µc, will have
expected value given by the following Lesbegue integral:

EM
µ

c (C
G

) =

Z

⇡2Exec

m

C
G

(⇡)PM,µ

c(d⇡)

Now, we want a (near-optimal) stochastic strategy µo that minimizes this ex-
pected value, subject to guaranteeing T as a worst-case reachability time-bound
– or alternatively – subject to µo being a stochastic refinement (� 5) of the
most permissive time-bounded reachability strategy �p(G, T ) for M. That is
EM
T

(C
G

) = inf
�
EM
µ

c (C
G

) | µc � �p(G, T )
 
. We note that letting µc range over

deterministic strategies �d su�ces in attaining EM
T

(C
G

).

5 Learning Strategies for PTMDPs

The algorithm used to learn will generate an approximation of the optimal strat-
egy. The algorithm has five main phases, and one optional. All these can be seen
in Figure 4. We will now shortly describe each of these steps. In the following
sections, Section 9 and Section 10, we will take a more in depth look at the
filtering and learning phases.

Simulation In the initial step of the algorithm, we use Uppaal SMC to make
a batch of runs which we can then learn on. In the first round the runs
will be generated over a uniform strategy. In the subsequent iterations we
use the stochastic strategy from the learning step of the previous iteration.
The result of this phase is a set of runs ⇧. Given that we have learned a
most permissive strategy using Uppaal-Tiga, the simulation is restricted
to always respect this strategy.

Filtering When filtering, we choose the best runs. We will look into di↵erent
definitions of best runs in Section 9. The set of best runs are then send to
the Learning phase.

Learning In this step we use the set of best runs for learning which actions led
to these runs. Thus the intuition is that if all the best runs did action a in
location l, it is likely to be a good action to do. The result of this step is a
stochastic strategy, which is a density function µc

q

that for a given state q,
action a and delay d gives a probability to take a after d in q.
Currently we have three di↵erent methods for doing the learning; Co-Variance
matrices, Logistic Regression and Splitting. We elaborate these methods in
Section 10.

4 Note that C
G

(⇡) will be infinite in case ⇡ does not reach G. However, this case will
never happen in our usages.

5
µ

c � � i↵ µ

c

q

(d, a) > 0 only if � 2 �(qe) for all e < d and a 2 �(qd).
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maxRuns
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det(𝜇′)
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Zonification 𝜎௭ௗ

𝜎

Fig. 4: Approximation of the optimal strategy using reinforced learning from [13].
In the article everything on the figure is explained, in this work we will only
explain the most essential parts.

Determinization As we know that the optimal strategy is deterministic, we
here determinize the strategy. This simply means that we always choose the
action, delay pair which have the highest probability. Note that in the next
iteration we do not learn from runs generated under the determined strategy
but under the stochastic strategy.

Evaluation In this step we evaluate the generated deterministic strategy. In
each iteration of the algorithm we save the best strategy seen so far. The
strategies is evaluated using Uppaal SMC. When we have not synthesized a
better strategy than the one we have for maxNoBetter iterations, we restart
the algorithm with the uniform strategy (but remembering the current best
strategy). After maxResets resets, we terminate the algorithm, and report
the best candidate found across the di↵erent resets. There are also other
termination criteria build into this step, which we will not elaborate on
here.

Zoneification (optional) In this step we translate the strategy such that it
is expressed in terms of zones. This step makes it possible to e.g. do model
checking on the model under the learned strategy. Currently this step is not
implemented. The splitting method generates strategies which are essentially
expressed as zones. This means that it is theoretically trivial to do model
checking on a model under a strategy generated by the splitting method.
However in practice this is currently not implemented in Uppaal.
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Model checking under a strategy could e.g. give us the worst possible time
to completion under the synthesized strategy.

6 The Learning Algorithm in Practice

In [13] we conducted a set of experiments. We saw in these experiments that the
three methods mentioned in Section 5 preformed equally well on the experiments
chosen. We also saw that the algorithm is able to learn strategies which are
significantly better than the uniform strategy. Both when unconstrained and
when constrained by a strategy generated by Uppaal-Tiga.

We will now take a more in debt look at how the algorithm works when run
on the PTMDP from Figure 3 constrained by the Uppaal-Tiga strategy which
guarantees that we reach END in 210 time units.

We here focus on the Logistic Regression learning method. In Figure 5 we
have plotted runs going through the CHOICE location, under strategies generated
in di↵erent iterations.

Figure 5.a We here see the runs generated under the uniform strategy, when
constrained by the Uppaal-Tiga strategy. We can see that the algorithm
never chooses to do (0, b) when t > 70 which is exactly what is specified by
the Uppaal-Tiga strategy. The same holds for (0, a) and t > 90. We also
see that the expected cheapest action is clearly (0, b) then (0, a) and then
(100, w) again in accordance with the analysis from Section 4.

Figure 5.b We see that the algorithm learned that it should never do (100, w)
if there is any other choice, we also see that the density of (0, a) where
0 < t < 70 is dropping.

Figures 5.b, 5.c, 5.d, 5.e and 5.f We can observe that the density of (0, a)
in 0 < t < 70 is gradually dropping as the algorithm gains more experience
through the learning iterations and the di↵erent strategies synthesized.

Figure 5.f In this we see that the algorithm has learned that when 0 < t < 60
it should do (0, b), when 70 < t < 90 it should do (0, a), and when t > 90 it
should do (100, w).
There is still some uncertainty when 60 < x < 70. However after determiniz-
ing the strategy we see that the algorithm has learned that the limit should
be exactly 70, thus the algorithm has learned the exact optimal strategy.

Thus we see that the general algorithm behaves as expected, and that the
algorithm converges towards the optimal strategy through the iterations. We
now look into whether the theorems about DPAs presented in Section 2 holds
for PTMDPs.

7 Theorems in Relation to PTMDP

As DPAs are a proper subclass of PTMDPs as argued in Appendix A, it is
natural to ask whether Theorems 1 and 3 hold for PTMDPs too. Theorem 2
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Fig. 5.a: The runs generated in simula-
tion under the uniform strategy.
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Fig. 5.b: The runs generated in the sim-
ulation under the strategy from the sec-
ond iteration.
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Fig. 5.c: The runs generated in the
simulation under the strategy from the
fourth iteration.
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Fig. 5.d: The runs generated in the
simulation under the strategy from the
sixth iteration.
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Fig. 5.e: The runs generated in the
simulation under the strategy from the
eighth iteration.
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Fig. 5.f: The runs generated in the simu-
lation under the strategy from the tenth
iteration.

Fig. 5: Runs generated over the PTMDP from Figure 3 in Section 4 using the
filtering method from Section 9.3 and the Logistic Regression method. The runs
shown are the runs going through the CHOICE location. The horizontal axis shows
the valuation of the time clock. The vertical axis shows the time to done from
the point where the run entered the CHOICE location.
The colors denote the choice made by the strategy. Blue mean means (100, w),
green means (0, a) and red means (0, b).
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does not make much sense in the context of PTMDPs as they have no notion of
resources. In this section we will give two counter examples to the two theorems,
thus proving they do not hold for the more general model.

7.1 Lazyness

In Figure 6 we give an example of a PTMDP where the optimal strategy is lazy
when we want to minimize the value of c in the END location. The only location
where we should make a choice is in the CHOICE location where free to be as
c0 = 0. The behavior in places A,B and C is completely deterministic, because
of that the following is clear:

Choose (d, a), d 2 N�0 We delay d time units and then choose a. Then the
value of c is 2 when entering the END location.

Choose (d, b), d 2 N�0 Delay d then choose b. The value of c is then 1 when
entering the END location.

Choose (d, c), d 2 N�0 Delay d then choose c. The value of c is then 2 when
entering the END location.

This means that the optimal strategy for CHOICE is:

⌫(x)  2 Delay d s.t. 1 < ⌫(x) + d  2 then do b.
⌫(x) > 2 Do c.

In the first case the optimal strategy requires we wait and then do an ac-
tion. Thus the strategy is lazy, which means that Theorem 1 does not hold for
PTMDPs in general.

x<=1

x = 0

x = 0

x == 1

x == 1

x > 1 && x <= 2

x > 2

x = 0

A

CHOICE

x<=1 &&
c’ == 2

C

B

END

x == 1

c

x<=3 &&
c’ == 0

x <= 3
c’ == 0

b

a

x<=1 &&
c’ == 1

x<=1 &&
c’ == 2

Fig. 6: PTMDP where the optimal strategy is lazy, and Theorem 3 does not hold.
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7.2 Delayed states are always better

In the model in Figure 6 Theorem 3 does not hold either.
Given the optimal strategy µc we can see that for the two states

q = ({CHOICE}, {x = 1.5, c = 0})

and
q0 = ({CHOICE}, {x = 3, c = 0})

that µc

q

(0, b) = 1 has an expected value of 1 and µc

q

0(0, c) = 2 which yields a
value of 2. This is a counter example to the theorem as the more progressed
state q0 has a higher expected cost.

In the current algorithm we assume Theorem 1 is true, and in the new filtering
method we present in Section 9 we shall assume Theorem 3 to be true. Thus for
some PTMDPs we are not guaranteed to learn the optimal strategy. However, for
some PTMDPs the best non-lazy strategy can still be an improvement compared
to the uniform strategy, e.g. for the PTMDP in Figure 3 the optimal strategy
is actually lazy6. In the remainder of this work, we concentrate on DPAs, the
sub-class of the PTMDPs for which the theorems hold.

8 DPA Optimization

The DPA model is a subclass of the PTMDPs, as argued in Appendix A. This
means that there are some optimizations we can only do safely when working
with DPAs. These optimizations could make the learning algorithm work better.
We suggest the following optimizations:

Immediate Start According to Theorem 2 starting a task with no resource-
requirements can never be worse than not starting it. Therefore we restrict all
our schedulers s.t. if there exists a task ready to be started with no resource-
requirements, we immediately start this task. Intuitively this can lead to many
di↵erent schedulers, trivially starting all the waiting tasks with no resource-
requirements one by one, will, regardless of order, lead to the same state.

Resetting of clocks The “progress” of a waiting task can have no e↵ect on the
scheduler. To give the learning algorithms the least noisy data, we always assume
that the clocks of the waiting states are zero. This makes these clocks insignificant
in the learning algorithms. Any learning algorithm should recognize that as the
clock always has the same value, no matter which decision was made, its value
is insignificant. This could possibly be extended to all non active clocks for the
more general class, these clocks can be found via static analysis [4].

It is easy to see that the values of clocks of SDPAs waiting to start a task is
never important for the scheduler, as the value of this clock does not restrict any
transitions, and it is reset when entering the next discrete state in the SDPA.

6 However for the model in Figure 6 the algorithm is not able to learn anything.
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9 Filtering

An important part of the learning algorithm is the filtering step. We will in this
section explore di↵erent methods for filtering. In the filtering step the goal is to
select the runs from which we should learn. These runs should be “good” runs,
but should also give information about as much of the state space as possible.

The näıve approach to filtering is to simply taking the set of maxBest runs.
In Section 9.1 we describe this näıve approach for filtering. In Section 9.4 we
describe the filtering method used in [13]. This method takes the discrete part
of the state into account. In Section 9.4 we present a filtering approach which
also takes the continuous part of the state into account.

9.1 Stateless Filtering

The näıve filtering step simply returns the set of runs which takes the shortest
time. To define this properly, we define the function time to end.

Definition 18. Given a run generated under a lazy strategy

⇡ = (q0, ⌫0)
d0! (q0, ⌫0 + d0)

a0! (q1, ⌫1)
d1! (q1, ⌫1 + d1)

a1! . . .
an�1! (q

n

, ⌫
n

)

over a DPA D and a state (q
k

, ⌫
k

) 2 ⇡, the function timeToEnd gives the time
which passed from the point the run was in the state (q

k

, ⌫
k

), To the point where
the run is in (q

n

, ⌫
n

) which is the end state. Formally:

timeToEnd(⇡, (q
k

, ⌫
k

)) =
n�1X

i=k

d
i

thus given a set of runs ⇧ the filter returns the set ⇧ 0 of runs s.t.

|⇧ 0| = maxBest

8⇡0 2 ⇧ 0.@⇡ 2 ⇧ \⇧ 0.timeToEnd(⇡0, (q0, ⌫0)) > timeToEnd(⇡, (q0, ⌫0))

This filtering method returns a set of runs. This will not be the case in the
methods explained in Section 9.3 and Section 9.5.

9.2 Learning on Stateless Filtered Runs

While the Stateless Filtering method intuitively seems su�cient, we here show
that this is not always the case.

We will show this using the PTMDP in Figure 7 where we would like to
minimize the value of the clock x in the END location.

In the START location the environment has two possible actions, each of which
will be chosen with probability 1

2 ; it can go to the A location or the CHOICE
location. If we go to A, x will be 0 in the END location. If we go to the CHOICE
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location the controller has to choose between actions b and c. If the controller
chooses b, x will be 1 in the END location. If the controller chooses c, x will be
100 in the end location.

Thus the only place we need a strategy is for the CHOICE location. And the
optimal strategy is clearly to do b.

x == 100

x == 1

x == 0
a

b

c

B

CHOICE

A

C

END

cho

x <= 0

x <= 1

x <= 100

x <= 0

x <= 0 START

Fig. 7: PTMDP example where the Stateless Filtering method from Section 9.1
does not work.

Under the uniform strategy the expected time to completion from START is
25.25, and under the optimal strategy the expected time to completion from
START is 0.5. If we use the filtering method from Section 9.1 the following will
happen:

– Half the runs go through A, and half go through CHOICE.
– The runs going through A will have time 0 and the runs going through CHOICE

will either have time 1 or 100.
– Assuming we choose the best half of the runs, we will choose all the runs

going through A, and none of the runs going through CHOICE.

This means that the learning step will not get any runs going through CHOICE
and thus will not learn anything about this location. As a consequence, all learn-
ing methods will suggest that we use the uniform strategy in this location, and
thus we will get an expected time to completion which is 25.25 under the learned
strategy.

Even though for simplicity, we here use the PTMDP formalism, a similar
issue can occur in a DPA. If we look at the partial DPA in figure 8 we see that
if A0 stops when ⌫(xA) < 5 we will be in the discrete state A1, B0 and if A0
stops when ⌫(xA) > 5 we will be in the discrete state A1, B0. As intuitively runs
which stop when ⌫(xA) < 5 are shorter than runs which stop when ⌫(xA) > 5
the Stateless filtering method will give more information for the discrete state
A1, B0, than for the discrete state A1, B0.
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A : A0 · · ·
B : B0 · · ·

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 8: A part of a DPA showing how the environment is able to decide which
discrete state the DPA will be in.

9.3 Discrete State Filtering

We suggest to have a higher granularity when selecting the data to learn on.
Instead of returning a set of runs, we will instead return a function F which goes
from a discrete state q to a set of action valuation pairs.

This set will represent the actions which were advantageous in the concrete
discrete state, regardless of how we got to this discrete state. We can define the
returned set of action, valuation using the set of runs ⇧

q

:

|⇧
q

| = maxBest

8⇡0 2 ⇧
q

.@⇡ 2 ⇧ \⇧
q

.timeToEnd(⇡0, (q, ⌫)) > timeToEnd(⇡, (q, ⌫0))

where ⌫ and ⌫0 are valuations. F(q) is then simply the valuation of the runs when
they were in q and the action they chose in q. Note that this definition is similar
to the one from Section 9.1. The di↵erence is that here we only consider the part
of the run executed after q. In Section 9.1 we considered the whole run.

If we look at the PTMDP in Figure 7 we will see that we will get action
valuation pairs for the CHIOCE location as well as for the A location. This means
that the learning step now has the information it needs to learn the optimal
strategy and lower the expected time to go to 0.5.

9.4 Learning on Discrete State Filtered Runs

In the above we argue that we should consider both the discrete part of the state
and the expected time to run when evaluating whether an action, valuation-pair
should be used for learning or not. We here provide a case, in which this refined
method is still not su�cient.

In Figure 9 we give an example of a DPA where it is important to also include
the continuous part of the state when doing the filtering.

We have run our learning algorithm on the DPA in Figure 9. We used Logistic
Regression, 2000 runs in each simulation, and used 200 (action, valuation) pairs
for each discrete state to learn on. We have illustrated the development of the
algorithm for one discrete state, namely the one where A0 is running and B0
has finished running; and thus is in B1. Each of the plots in Figure 10 shows a
set of runs, the horizontal axis shows ⌫(xA), the vertical axis shows the time to
done from this state. And the colors denote the choice made.

We will now, based on Figure 10, give an in depth explanation of the devel-
opment of the scheduler for this particular state as the algorithm iterates.
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A1:R

A : A0 A2

B : B0 B1:R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 9: A DPA, the first process first has a completely deterministic task A0,
which do not use any resource, then has the task A1 which takes no time, but
needs resource R and then in the end it has a task A2. The second has two tasks,
the first can end between 0 and 10, and the second always takes 7.5. The optimal
scheduler in state ({A0, B1}, ⌫) is go2 if ⌫(xA) < 5 else w.

Figure 10.a We here see the runs generated under the uniform scheduler. We
see two green lines and one red line. The red line consist of the runs which
choose to start B1 and the green lines consist of the runs that waited until
A0 was done, as described in the caption of the figure. However there are
two green lines. The upper being the runs which in the later configuration
{A1, B1} chose to start B1 after A0 finished, the lower line being those who
chose to start A1 instead.
From the plot it is clear that to minimize the expected time to completion,
we should never choose to start B1 after waiting (the upper green line). It
is also clear that we should choose to start B1 if ⌫(xA) < 50 and we should
wait till A0 finishes, and then do A1 if ⌫(xA) > 50.

Figure 10.b Here we see the runs from Figure 10.a which were selected for
learning for this discrete state. What is interesting to see is that no points
are selected for ⌫(xA) < 25. We can also see that some red points was selected
for ⌫(xA) > 50 even though that it is clear the green points are the best here.

Figure 10.c We here see that we have learned that we should not choose B1
after waiting, as the upper green line is much less dense. We also see that the
distribution over ⌫(xA) of whether to wait or start B1 is completely random,
thus we have not learned anything about this discrete state.

Figure 10.d Here we can see that as the upper green line has disappeared we
will not choose any red points for learning at all. This is due to the fact that
we choose the 10% best runs. This also means that we only learn on runs
for ⌫(xA) > 55.

Figure 10.e This is a set of runs generated under the best stochastic strategy
found, the strategy is to almost always wait, and then start A1. However this
is not the optimal strategy, as discussed above. The reason we have learned
this is clearly due to the filtering which has made sure we only learned the
optimal strategy for ⌫(xA) > 50 - This is then assumed to be the best
strategy for the whole discrete state.

9.5 Continuous State Filtering

As we now know that the filtering is still not fine grained enough, we can refine
our filtering method further. We chose to refine the method explained in Sec-
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Fig. 10.a: The runs generated in simu-
lation under the uniform scheduler.
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Fig. 10.b: The runs chosen for learning
from Figure 10.a.
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Fig. 10.c: The runs generated in the sim-
ulation under the scheduler from the
first iteration.
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Fig. 10.d: The runs chosen for learning
from Figure 10.c.

 0

 50

 100

 150

 200

 0  20  40  60  80  100

Fig. 10.e: The runs generated in the
simulation under the scheduler from
the second iteration. This was the best
scheduler found.

Fig. 10: Runs generated over the DPA seen in Figure 9 using the filtering method
from Section 9.3. The runs shown are the runs going through the state where
A is doing A0 and B has just finished B0 and is waiting in B1. The horizontal
axis shows the valuation of the clock for process A, ⌫(xA) when B finished B0.
The vertical axis shows the time to done from the point where B finished B0.
The colors denote the choice made by the scheduler. Red means that the sched-
uler choose to start B1, green means the scheduler decided to wait until A0 was
done.

25



tion 9.2 by exploiting Theorem 3; if the values of the clocks are more progressed,
the expected time to end is smaller. For the optimal scheduler, this means that
if we have large clock valuations, we should choose runs which have low time to
completion, and if we have small clock values we may choose runs which have
a higher time to completion. We therefore propose a sweeping algorithm, shown
in Algorithm 2, for choosing the set of action valuation pairs, given a set of
runs. The algorithm will be run for each discrete state q, the results will then
be aggregated to the function F as defined in Section 9.2.

Before looking into the algorithm, we first define an ordering � of (action,
valuation, time) triples used internally in Algorithm 2. The ordering is defined
in Algorithm 1.

Input: Two action, valuation, time triples; (a, ⌫, time) and (a0
, ⌫

0
, time

0).
Result: True if (a, ⌫, time) � (a0

, ⌫

0
, time

0) False otherwise
1 foreach x 2 X do // We always check the clocks in the same order.

2 if ⌫(x) < ⌫

0(x) then
3 return True;
4 else if ⌫(x) > ⌫

0(x) then
5 return False;

6 if time  time

0
then

7 return True;
8 else

9 return False

Algorithm 1: Ordering � of action, valuation, time triples. The ordering is
used in Algorithm 2. Note that the action in the triples does not e↵ect the
ordering. The reason the action is in the input of the algorithm is that this
makes it easier to describe Algorithm 2.

We can now describe Algorithm 2. The idea is to find the triples in av for
which it holds that there is not another triple for which the valuations of all
clocks are smaller, and time is also smaller. This is the property checked in
Line 11. These triples are considered good for learning on due to Theorem 3;
this will be more clear when we explore how the sweep filtering preforms on the
example in Figure 9.

In Lines 1-6 of the algorithm we simply reformat the runs into the tuples
used internally in the algorithm. In Line 7 we sort the input in preparation for
the sweep. The sorting is to make it possible to only sweep over the points once,
and still generate the front we are searching for. In Lines 10-16 we then find the
front. We also evaluate the points not on the front using the points from the
front.

As mentioned we check in Line 11 if the triple is on the front, we do this by
checking if there is another triple in the front for which all clock valuations and
time are smaller. It is enough to check the triples in the front due to the sorting.
Let us consider the else branch of the if first. In this branch we will add the
triple to the front as we did not find a better triple in the front. We then add
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Input: A set of runs ⇧ and a discrete state q.
Result: A set of action, valuation pairs.

1 av = ;; // The raw action valuation pairs. And time to completion

2 foreach ⇡ 2 ⇧ do

3 if ⇡ contains (q, ⌫)
go

j

! , goj , 1  j  N} then

4 put (a, ⌫, timeToEnd(⇡, (q, ⌫))) into av;

5 else if ⇡ contains (q, ⌫)
d!, a 2 R�0 then

6 put (w, ⌫, timeToEnd(⇡, (q, ⌫))) into av;

7 sort av ascending according to the ordering �;
8 Front := ;;
9 Result := ;;

10 foreach (a, ⌫, time) 2 av do

11 if 9(a0
, ⌫

0
, time

0) 2 Front.8x 2 X.⌫(x) > ⌫

0(x) ^ time > time

0) then
12 choose (a0

, ⌫

0
, time

0) 2 Front s.t.
@(a00

, ⌫

00
, time

00) 2 Front.8x 2 X.⌫

0(x) > ⌫

00(x) ^ time

00
< time

0;
13 add (a, ⌫, time� time

0) to Result;

14 else

15 add (a, ⌫, time) to Front;
16 add (a, ⌫, 0) to Result;

17 sort Result descending on time;
18 /* We only return the action, valuation part of the tripe, the time

is not relevant in the learning algorithm. */

19 return the first macBest action, valuation pairs in Result;
Algorithm 2: Select the action valuation pairs to use in the learning step of
the main algorithm.
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the triple to the Result set, but with time = 0. This indicates that this point is
good as no run going trough the same state had a better time to done for this
or a strictly smaller valuation. In the other branch we find the triple from the
front, which have the smallest time of the triples from the front, for which all
clock values are smaller than the new triple.

We then add the new triple to Result but with time relative to the point
from the front, thus the time will be measured in relation to the point from the
front, exploiting Theorem 3.

9.6 Learning on Continuous State Filtered Runs

We will now look into how this new filtering method works on the example from
Figure 9. In Figure 11 we have plotted runs in the same way as in Figure 10,
the only di↵erence is that we now use the Continuous State filtering method.
We will not go through these plots as thoroughly as before, as they are largely
self-explanatory.

In Figure 11.b we see how the filtering works on the runs from the uniform
scheduler. We can see the e↵ect from the changes to time done by the algorithm.
We can also see that already now the runs we have selected are the best possible
data for the filtering algorithm. This is due to the fact that the runs selected
when ⌫(xA)  50 are the red runs (which say start B1) and the runs selected
when 50  ⌫(xA) are the runs that waited. This is exactly what the optimal
scheduler should do.

We can see in Figure 11.c that the scheduler we synthesized is very close to
the optimal. After 13 iterations we end on the scheduler which generated the
runs in Figure 11.e. The final strategy says that the boundary is at ⌫(xA) = 52
which is very close to the optimal ⌫(xA) = 50.

We have in this section taken an in depth look into the filtering part of the
algorithm. The näıve idea is to simply filter on the expected time to go. However
as we have shown this is in some examples not enough. We have also seen that
we should consider the full state of the DPA, and not just the discrete state.

In Section 11 we will investigate the three di↵erent filtering methods experi-
mentally. We now look into the learning step of the algorithm.

10 Strategies: Data structures, Algorithms and Learning

Crucial to our reinforcement learning algorithm in Figure 3 is the e�cient
representation and manipulation of control strategies. In Uppaal-Tiga, non-
deterministic strategies are represented using zones, e.g. sets Z of valuations
described by a guard in B(X). In a representation R, each location ` has an
associated finite set of zone-action pairs R

`

= {(Z1, a1), . . . , (Zk

, a
k

)}, where
a
i

2 ⌃
c

[ {�}. Now R represents the strategy �
R

where �
R

((`, v)) 3 a i↵
(Z, a) 2 R

`

for some Z with v 2 Z. In Uppaal-Tiga R is e�ciently imple-
mented as a hash-table with the location ` as key.
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Fig. 11.a: The runs generated in simu-
lation under the uniform scheduler.
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Fig. 11.b: The runs chosen for learning
from Figure 11.a.
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Fig. 11.c: The runs generated in the sim-
ulation under the scheduler from the
first iteration.
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Fig. 11.d: The runs chosen for learning
from Figure 11.c.
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Fig. 11.e: The runs generated in the sim-
ulation under the scheduler from the
13th iteration. This is the best scheduler
found.

Fig. 11: Same plots as in Figure 10, but using the filtering method from Sec-
tion 9.5 the reason the chosen runs all lie very low on the vertical axis is due to
the filtering method, which will push the best runs to 0.
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For stochastic strategies, we shall in the following restrict our attention to
so-called non-lazy strategies1, µc, where the controller either urgently decides on
an action, i.e. µc

q

(d, a) = 0 if d > 0, or prefer to wait until the environment makes
a move, i.e. µc

(`,v)(d, a) = 0 whenever v(time) + d  T with T being the time-
bound of the reachability property in question. We shall use w to denote such an
indefinite delay choice. Thus, for non-lazy stochastic strategies, the functionality
may be recast as discrete probability distributions, i.e. µc

q

: (⌃
c

[ {w}) ! [0, 1].
In particular, we note that any non-lazy, stochastic strategy can trivially be
transformed to a deterministic strategy by always selecting the action with the
highest probability.

In the following we introduce three di↵erent data structuring and learning
algorithms for stochastic strategies. Given that memoryless strategies su�ces, it
su�ces to learn a set of sub-strategies µc

`

= {µc

q

: 9v.q = (`, v)}, where ` 2 L.
The sub-strategies are then learned solely from a set of (action,valuation) pairs.
Given a set of runs ⇧ the relevant information for the sub-strategy µc

`

is given
as In

`

:

In
`

= {(s
n

, v) 2 (⌃
c

[ R)⇥ RX

�0 | (q0
s0!

p0 . . .
sn�1!

pn�1 (`, v)
sn!

pn . . . ) 2 ⇧}

This means that it su�ces to describe a sub strategy. In Sections 10.1 and 10.2
we only describe methods for learning sub-strategies. In Section 10.3 we describe
a method for learning a full strategy. As Sections 10.1 and 10.2 are taken directly
from [13] the input is assumed to be a set of runs as described above. However
it is trivial to change this input to be the function F described in Section 9.

10.1 Sample Mean and Covariance

For each controllable action c and location `, we approximate the set of points
representing clock valuations from which that action was successfully taken in
` by its sample mean and covariance matrix. Suppose we have N points corre-
sponding to clock valuations v1, . . . , vN . The sample mean vector v is the arith-
metic mean, component-wise, for all the points: v = 1

N

P
N

k=1 vk. The sample

covariance matrix is defined as the square matrix Q = [q
ij

] = 1
N�1

P
N

k=1(vk �
v)(v

k

� v)T .
Intuitively, if the sample covariance q

ij

between two clocks x
i

and x
j

is
positive, then bigger (resp. smaller) values of x

i

correspond to bigger (resp.
smaller) values of x

j

. If it is negative, then the bigger (resp. smaller) values of
x
i

correspond to the smaller (resp. bigger) values of x
j

. If it is zero then there
is no such relation between the values of those two variables.

Note that the covariance matrix has size n2 where n is the number of clocks
but it is symmetric. Furthermore, for the matrix to be significant we need at
least n(n + 1)/2 sample points that correspond to the number of (potentially)
di↵erent elements in the matrix, otherwise we default to using only the mean
vector.
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Distribution The purpose of this representation is to derive a distance from an
arbitrary point to this “set” that is used to compute a weight for each controllable
action. For a given valuation, such a distance d(v) is evaluated as follows: d(v)2 =
(u�v)TQ�1(u�v). If there are too few sample points then we default to using the
Euclidian distance to the mean v. The weight is then given by w(v) = N ·e�d(v).
The weights for the di↵erent actions define a probability distribution.

Algorithm and Complexity When generating runs using SMC, controllable ac-
tions are chosen according to the represented distribution that is initialized to
be uniform. The time complexity is O(n2), n being the number of clocks. For
the learning phase, the covariance matrix is computed using the filtered “best”
samples. Then we need to invert it (once) before the next learning phase. The
time complexity is O(n3). This is done for every action.

10.2 Logistic Regression

We consider a sub strategy µc

`

where the only options are either to take a transi-
tion (a) or wait until the environment takes a transition (w) (the case with more
options is addressed later). The goal is to learn the weights �0,�1, . . . ,�|X| 2 R
to use in the logistic function: Equation 10.2.

f(v) =
1

1 + e�(�0+�1·v(x1)+···+�|X|·v(x|X|))
,

where x1, . . . , x|X| 2 X. This function, combined with the learned weights
�0,�1, . . . ,�|X|, defines a stochastic sub-strategy s.t. µ

c

(`,v)(a) = f(v) and µc

(`,v)(w) =

1 � f(v). Using Figure 12 we here give an intuition on how, given an input set
In

`

, we learn the weights �0, . . . ,�|X| (for details, see [14]). We assume that there
exists only two options (a and w) in the location `, and (for simplicity and wlog)
a single clock in the system. For each input (s

n

, v) 2 In
`

:

– If s
n

= a, construct a point at (v(x), 1) where x 2 X is the clock. These are
the triangles in Figure 12.

– Otherwise, construct a point at (v(x), 0) where x 2 X is the clock. These
are the circles in Figure 12.

We use L1-regularized logistic regression provided by LIBLINEAR [14] for
fitting the function to the constructed points. The output of this process is the
weights �0,�1, . . . ,�|X| and the result is shown in Figure 12. In the case of more
than two options (e.g. if we also had an action b) we use the one-versus-all
method. This method learns a function for each action7.

Complexity The complexity of fitting the points using this method is O(|In
`

|+i)
[21], where i is the number of iterations before the fitting algorithm converges
thus for multiple actions, the complexity for learning is O(c · (|In

`

| + i)) where
c is the number of options. We need to store c · |X| weights per location, this is
the space complexity.
7 If e.g. we have three actions, a, b and w, we will learn three functions, one which is
a versus b and w, one which is b versus a and w, and one which is w versus a and b.
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f (v)

v(x )

f(v) =
1

1 + e

�(�1.131+0.647v(x))

Fig. 12: Example of logistic regression with one clock x and two options a and
w. For valuation v, f(v) gives the probability of selecting action a (triangle) and
1�f(v) gives the probability of selecting action w (circle). The probabilities are
equal at v(x) = 1.747 because f(0.5) = 1.747.

10.3 Splitting

In [13] we presented the splitting sub strategy, in this section we will elaborate
on this method, and provide more details. Especially we will provide pseudocode
for the algorithm as this was not included in [13] due to space constraints. Some
paragraphs in this are slightly modified versions of paragraphs from [13].

As the output of filtering has changed, so has the input of this method. We
have changed the method to comply with the changes.

Opposed to Sections 10.1 and 10.2 we in this section describe learning a full
strategy instead of a sub-strategy.

We represent the strategy as a function S which goes from locations, l, to
trees, t, S(l) = t. An internal node in a tree is a four-tuple (x, s, low, high),
where low and high are either internal nodes or leaf nodes, x 2 X is the clock
we split on and s 2 R

>0 is the discriminating value for the clock. A leaf node is
a function W mapping actions, a 2 ⌃

c

[{w} to weights, W (a) 2 R
>0, which can

be normalized and then interpreted as probabilities. Figure 13 shows an example
of a tree with a splitting for the clock valuation ⌫(x) = 2.

x, 2

{(go1, 3), (go2, 1),
(w, 3)}

{(go1, 1), (go2, 6),
(w, 1)}

Fig. 13: A binary tree with a splitting on clock x and value 2.

For a given state (q, ⌫) we say that the state belongs to a leaf node W , if we
by traversing the tree S(q) using the valuation ⌫ reach W . Here W is represented
by the pairs (a,W (a)) where W (a) > 0. This defines a stochastic strategy µc s.t.
µc

`,v

(a) = W (a)/
P

b2⌃c[{w} W (b) for all a 2 ⌃
c

[ {w}. Initially, the tree consists
of only a single leaf node assigning weight 1 to all actions. In each iteration of
the learning algorithm presented in Section 4, a percentage of the leaf nodes are
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split on one clock according to Algorithm 3 and 4 and then the leaf nodes are
updated according to Algorithm 5.

When we get a function F from the filtering step to learn on, we will run the
three algorithms. The general algorithm is:

Select nodes to split. Evaluate all the leaf nodes in the di↵erent trees, and
find a set of leaf nodes which should be split. Each leaf is assigned a weight,
and the leafs with the highest weights are the ones chosen for splitting. The
weight assigned to a leaf is the number of good runs which did another action
than the one which has the highest weight in the leaf. The selection of the
leafs are done across the forest, thus leafs from di↵erent trees are compared.
This is done in Algorithm 3.

Split the selected nodes. Choose one clock for each leaf selected in the pre-
vious step. Split the node on the selected clock. The clock is selected is the
one which gives the biggest di↵erence between the two resulting leafs. The
formula for this di↵erence is used in Line 11. Algorithm 4.

Update the tree. Update the strategy S using the function F. Here we simply
count the number of runs which did a specific action, and assign this count
as the weight of the action. The weight from previous iterations is added to
this count with a decay �, done in Line 5 of Algorithm 5.

Input: The strategy S and a function F outputted from the filtering.
Result: A set of leaf nodes to be split in Algorithm 4.

1 toSplit := ;;
2 foreach location l 2 L do

3 foreach leaf node W 2 S(l) do
4 ⇧

:= {(a, ⌫) 2 F(l) | ⌫ fits the constraints of W ’s ancestors};
5 a

0 := argmax
a2{goj |1jN}[w(W (a));

6 W.score

:= |{(a, ⌫) 2 ⇧ | a 6= a

0}|;
7 add W to toSplit ;

8 sort toSplit descending on the scores;
9 return the first splitFrac leafs in toSplit ;

Algorithm 3: Select nodes which will be split in Algorithm 4.

11 Experiments

In [13] we have already run experiments. We will not rerun these experiments
but simply recall the results.

We see that for the DPAs from [16] our methods found the same schedulers as
their analytic approach did, down to 0.5 time units on the decision boundaries.
We also saw that the analytically approach used between 176 and 8547 seconds
for the examples, whereas our approximation used less than 30 seconds for each
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Input: A function F outputted from the filtering and a set of leaf nodes toSplit
outputted from Algorithm 3.

Result: The trees are updated with the split leaf nodes.
1 foreach leaf W 2 toSplit do

2 ⇧

:= {(a, ⌫) 2 F(l) | ⌫ fits the constraints of W ’s ancestors};
3 best

:= �1;
4 // Find the clock to split

5 foreach clock x 2 X do

6 min

:= min(a,⌫)2⇧

(⌫(x));
7 max

:= max(a,⌫)2⇧

(⌫(x));
8 mid

:= max�min

2 +min;
9 ⇧

left

:= {(a, ⌫) 2 ⇧ | ⌫(x)  mid};
10 ⇧

right

:= {(a, ⌫) 2 ⇧ | ⌫(x) > mid};
11 w =P

a

02{goj |1jN}[{w}(|{((a, v) 2 ⇧

left

| a = a

0}|� |{((a, v) 2 ⇧

right

| a = a

0}|)2;
12 if w > best then

13 best

:= w;
14 bestC = x;

15 // Split on the chosen clock

16 min

:= min(a,⌫)2⇧

(⌫(bestC));
17 max

:= max(a,⌫)2⇧

(⌫(bestC));
18 mid

:= max�min

2 +min;
19 new

:= (bestC,mid,W1,W1); // W1 denotes a leaf where all weights

are 1
20 if W = W.parent.left then

21 W.parent.left

:= new;
22 else

23 W.parent.right

:= new;
Algorithm 4: Split the nodes selected in Algorithm 3.

Input: A strategy S and a function F outputted from the filtering.
Result: A set of leaf nodes to be split in Algorithm 4.

1 foreach location l 2 L do

2 foreach leaf node W 2 S(l) do
3 ⇧

:= {(a, ⌫) 2 F(l) | ⌫ fits the constraints of W ’s ancestors};
4 foreach action a

0 2 {goj | 1  j  N} [ {w} do

5 W (a) := � ·W (a) + |{(a, v) 2 ⇧ | a = a

0}|; // � is a parameter

of decay

Algorithm 5: Update the trees in the forest according to the new batch of
runs.
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example. Thus an order of magnitude faster. We also see that it depends on the
example which of the learning methods is the best at finding the best scheduler.
We see however that all the methods are capable of finding a scheduler which is
significantly better than the uniform scheduler. We also see that the overhead
of learning constrained by a Uppaal-Tiga strategy is very low.

Lastly we note that the all the methods provide a reasonable improvement to
the uniform scheduler and therefore we here only compare the di↵erent methods
to each other, and not to the uniform scheduler.

We will now do a more in depth comparison of the filtering and learning
methods. To evaluate the methods, we here choose a subset of all the parameters
to evaluate. We will focus in the following parameters

– Comparison of the learning methods proposed in [13]; Co-Variance Matrices,
Splitting and Logistic Regression.

– Comparison of the filtering methods from Section 9: Stateless Filtering, Dis-
crete State Filtering and Continuous State Filtering.

– The e↵ect of using a di↵erent fraction of runs for learning.

We conducted tests on the DPAs used by Kempf. et. al in [16] as well as
randomly generated DPA’s used in [13]. We also only investigate one parameter
at a time to provide a better overview. For dimensions not reported, we always
use the aggregated value across that dimension for the three reported values;
mean, maximal and minimal.

In the experiments we set the parameters from Figure 4 as follows;maxRuns :=
2000,maxGood := 2000,maxbest := 1000, evalRuns := 2000,maxNoBetter :=
10, maxIterations := 200 and maxResets := 7. In the experiments inves-
tigating the e↵ect of the relations between maxGood and maxbest, we set
maxGood = 2000 and maxbest = 200.

We will use Uppaal SMC for evaluation of the synthesized schedulers, here
we will evaluate the schedulers using Uppaal SMC with -E 0.005 option8. We
will report running-time, memory consumption, scheduler performance. Due to
the number of parameters, we will here only report representative results, while
the full result-sets will be available online9.

Values reported For stability, all experiments have been repeated 10 times. We
therefore here report three values which are an aggregated result; The minimum,
the maximum and the average of all repetitions. For each of the experiments we
monitored the (by Uppaal SMC estimated) expected time to completion given
a scheduler as well as the time and memory consumption.

As our experiments are of varying size, we normalize and report the deviation
of the result as a fraction of the average of all our measurements for a given
experiment. If we did 4 repetitions of experiment A and got the values 20, 15,
5, 0 we would report these results as max = 20, mean = 10, min = 0 and then

8 This will result in an evaluation of the strategy using 3688 runs.
9 The results and the models are published at http://goo.gl/qmigZW

35

http://goo.gl/qmigZW


normalize to the values according to the mean. We say that an experiment with
a normalized value of 1 is exactly on the mean, while an experiment with the
normalized value of 1.1 is 10% worse.

The Näıve method For comparison, and to evaluate if our more complex
learning methods provide an improvement, we also introduce a näıve method
for learning. In this method, we simply, for each state, remember how many
(action, valuation) pairs we get from the filtering method, which chose some
specific action. This value then represent our weights. This is what we refer to
in Section 3.2 as a static scheduling policy, which is implemented as the filtering
method in Section 10.3, but without splitting at any point in time, thus only
using Algorithm 5.

11.1 DPAs by Kempf et. al.

In this section we look into how the proposed methods perform on the DPAs
provided by Kempf. et. al.

The Learning Methods E↵ect on Synthesized Schedulers We investigate
the di↵erent learning methods compared to each other. In Figures 14.a and 14.b
we show sets of experiments comparing the di↵erent methods. The di↵erence
between the two figures is that in Figure 14.a we use half of the runs from the
simulation for learning and in Figure 14.b we only use 10% of the runs. As we
will see when comparing running times, this gives a slightly faster learning.

In Figure 14.a we see that for some examples the four methods perform
equally well. For the others we see that the Näıve method is consistently worse.
We also see that Splitting and Logistic Regression are almost always performing
equally well. The results from the Co-Variance method are interesting, as the
results vary a lot. This is because the method is more sensitive to which of the
filtering methods we use than the other methods. We see that discrete filtering
and stateless filtering gives the worst schedulers for the given experiment, while
the continuous state filtering gives the best scheduler.

We see the same patterns in Figure 14.b, however it seems like the Näıve
method is even more sensitive to the filtering methods when using less data in
the learning step.

The Filtering Methods E↵ect on Synthesized Schedulers In the same
way as in the previous section, we have compared the di↵erent filtering methods.
In Figure 17.a we can see that when we use half of the runs there are almost no
di↵erence to which filter we use. However in Figure 17.b, when we only use 10%
of the runs, the performance of the Stateless filtering clearly depends on which
method for learning we use. The two remaining filtering methods seem largely
una↵ected by this change.
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Speed of learning If we compare Figure 15.a and Figure 15.b, it is clear that
the number of runs we use to handle in our filtering a↵ect the running time.
What we can also see, is that the Näıve learning method is the fastest of the
four, often followed by the Co-Variance and Splitting methods. We note that the
Linear Regression method is the slowest of all. If we compare Figure 18.a and
Figure 18.b we see that the Continuous state filtering is noticeably slower when
using the 50% best runs for learning. The remaining methods seem to behave as
expected, with the 10%-experiments being the fastest.

Memory Consumption When looking at the memory consumption in Figure
16.a, it is clear that the Splitting method by far is the most memory hungry
of all the methods using up to 2.5 times more memory than the average. We
can also see that the remaining three methods are fairly on par, with the Näıve
being the most memory e�cient of the methods proposed. If we instead look
at the memory consumption, depicted in Figure 19.a aggregated by the filtering
method, we can see that the Continuous State-method requires slightly more
memory on average. If we compare Figure 16.a with 16.b and Figure 19.a with
19.b, it is apparent that using a lower percentage of the runs also leads to a
lower memory consumption. We can also see that the Continuous State Filtering
method is an exception to this, as it needs to keep all runs in memory for o↵-
line filtering. As the number of runs we generate does not change, but only the
number of runs used in the learning, this is to be expected.

11.2 Randomly generated DPAs

Here we show the results of the experiments run on the randomly generated
DPA’s. The DPA’s are generated in size varying from three to five processes and
3 to 10 tasks. All other parameters; duration of tasks, number of resources and
resource-requirements pr. task have been selected at random. We use the same
10 generated DPAs for this test-set.

The Learning Methods E↵ect on Synthesized Schedulers As Figure 14.c
shows, the variations in the synthesized schedulers are higher than in Section
11.1. The variations from the mean value are in the interval [�0.9, 1.16]. Looking
more thoroughly at the data, we can see that for the two, in terms of state-space,
largest experiments, Splitting is performing exceptionally bad. This indicates
that the Splitting method is having trouble with stability, stretching the evidence
it gets too thin. We can also observe that Logistic Regression in general is the best
performing, while the Näıve method and the Co-Variance method are slightly
worse, but often more dependent of the filtering method used.

The Filtering Methods E↵ect on Synthesized Schedulers From Figure
17.c it is obvious that the Discrete State filtering method is performing the best
on average, followed by the Stateless filtering method. If we dig a bit deeper in the
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data, we can observe that the Continuous State Filtering Method is often a close
contender if combined with the Logistic Regression or the Co-Variance methods.
We also observe that specifically for the largest examples the Continuous State
filtering method is performing the worst.

Speed of learning Consistent with Section 11.1 we can in Figure 15.c see that
Logistic Regression is the slowest of the methods, followed by the Co-Variance
method. For the last two, there seems to be no clear winner. If we aggregate
on the filtering-method instead, we can in Figure 18.c see that the Continuous
State filtering method provides both the worst and the best running-times. Here
we suspect the guiding through of the state space for the best running-times.
As the complexity of the algorithm is much higher than the two other filtering
methods, we expect this to explain the worst running times. We can also see
that the Stateless filtering method is consistently worse than the Discrete State
filtering method, employing that the Discrete state filtering method is better at
guiding the search through the state-space.

Memory Consumption As in Section 11.1 we can in Figure 16.c see that the
Splitting method by far is the most memory consuming method. We can also
see, that as the size of the state-space grows, the significance of the memory
consumption of the learning methods drop. Logistic Regression and the Näıve
methods seems to have the lowest memory requirements which is also to be
expected as their representation is the smallest. If we instead analyze Figure
19.c, we can see that the filtering methods in large have no major di↵erence.
The slight variations in the maximal consumption seem to consistently favor the
Continuous State filtering method on the medium-sized examples. We expect
that this is due to the more fine-grained exclusion of seemingly unfavorable
actions, leading to a smaller state-space.

12 Conclusion

In this work we elaborated and extended the work done in [13]. Specifically,
we exploited properties specific to the DPA-model for optimizations. We also
elaborated on details left out in [13] due to space constraints. We specifically
elaborated on the filtering methods used and the evolution of a scheduler during
the learning algorithm as well as the Splitting method. Furthermore we proposed
a novel filtering method to improve on the quality of the data used for learning
as well as two näıve methods for learning and filtering respectively.

All of these methods and optimizations have been implemented as a part of
the model-checker Uppaal, in such a way that di↵erent modules of the main
learning-algorithm from Figure 4 can be easily changed.

In the final part of our work, we empirically investigated the performance
of our implementation of the proposed methods. In general we found that our
more refined learning methods, such as Logistic Regression and Splitting, can
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have significant improvements over Co-Variance and Näıve methods. We also ob-
served that the granularity of the filtering method preferred is dependent on the
specific learning method. In general we did not see any significant improvements
from using our novel Continuous State filtering method over the Discrete State
Filtering method. On the contrary, Continuous State filtering did at times come
with a penalty. This result was unexpected, and reveals that the test-cases might
not be covering enough or complex enough to reap the benefits from the more
advanced approach. We did however see that Stateless filter in most settings
is outperformed by the two others. If we investigate the time and memory-
consumption the filtering method used seems of minor significance of reasonably
sized models, and is instead dependent on the learning methods. The memory
consumption for the learning methods varying greatly, showing that the Split-
ting method spends significantly more memory on its tree structure. Concerning
time, it became clear, on the larger experiments, that Logistic Regression comes
with a severe performance penalty, possibly leaving room for implementation
optimizations.

In general, the small di↵erence between the performance of the schedulers
synthesized indicate that the experiments in lack complexity.

12.1 Further Work

All learning methods presented in this work assumes Theorem 1 to be true.
However as shown in Section 7.1 this theorem does not hold for PTMDPs. A
learning method which does not rely on Theorem 1 to be true is obvious further
work.

In the same way the Continuous State Filtering method currently relies on
Theorem 3 which does not hold for PTMDPs either. We expect the method
could be refined, and be better performing on this more general model with
more complex problems. In relation to this, the optimizations we suggested and
the non-lazyness theorem by [16] might hold for a larger subclass of PTMDP.

We also saw that our experiments seemed to lack complexity. Further work
therefore involves constructing more advanced experiments as well as applying
the method in real life scenarios.

Further work also includes making algorithms for zonifying the strategies
generated by the di↵erent learning methods, as this will allow for model checking
the model under a scheduler.

We have looked into two of the five steps of the algorithm. In the other steps
we have either used already available tools or the most naive approach. Further
work includes looking at each of these steps in more detail.

Furthermore, we have only concentrated on reachability for DPAs and PT-
MDPS. Further work includes optimizing for other properties, and possibly in
other models, such as models with imperfect information.
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13 Bibliographical Note

The work presented in this paper is largely based on work currently under review
[13] made jointly with Alexandre David, Kim Guldstrand Larsen, Alex Leagy,
Didier Lime and Mathias Grund Sørensen. This work is a continuation of our
8th semester project, made jointly with Mathias Grund Sørensen. Both of these
are attached to this thesis.

To make this thesis self-contained we have included sections from these other
works, providing the main theory and models. The material presented in Sec-
tion 1.1, Section 2 and Section 3 is directly from the 8th semester project. Ex-
ceptions to this are Theorem 3 and Lemma 1. Section 4 is a summery of the
work currently under review [13], Section 4.1 is taken directly from [13], the
authors of this thesis had minor contributions to this. Section 10 is also taken
directly from [13], however this section was mainly written by the authors of
this paper together with Mathias Grund Sørensen. This is except Section 10.1
which the authors of this thesis only had minor contributions to. Section 10.3 is
an extended version of a section from [13]. The authors of this paper also had
only minor contributions to Appendix A.

The work in the sections not mentioned here are novel to this thesis.
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Fig. 14.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 14.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 14.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 14: The expected time to go under the best scheduler found for the di↵erent
learning methods.
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Fig. 15.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 15.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 15.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 15: The time used by the algorithm for the di↵erent learning methods.
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Fig. 16.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 16.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 16.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 16: The memory used by the algorithm for the di↵erent learning methods.
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Fig. 17.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 17.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 17.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 17: The expected time to go under the best scheduler found for the di↵erent
filtering methods.
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Fig. 18.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 18.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 18.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 18: The time used by the algorithm for the di↵erent filtering methods.
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Fig. 19.a: The DPAs by Kempf el. al. [16] where we learn on half of the runs.

Fig. 19.b: The DPAs by Kempf el. al. [16] where we learn on 10% of the runs.

Fig. 19.c: Randomly generated DPAs where we learn on half of the runs.

Fig. 19: The memory used by the algorithm for the di↵erent filtering methods.
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A DPA Encoding

We illustrate our encoding of DPAs on one concrete example, the one referred
as p0s4p1s4 1 in [16]. The DPA input is as follows:

/* Resources */ res1:1;
/* Processes */ P1: [2,4].<res1:1>[2,6].[3,4];

P2: [2,6].<res1:1>[3,8].[1,5];

We have one unit of one resource res1 available. Process P1 runs between 2 and
4 time units with no resource, needs 1 unit of res1 for between 2 and 6 time
units, and finishes to run between 3 and 4 time units. Similarly, P2 runs between
2 and 6 time units, needs res1 for 3 to 8 time units, and runs between 1 and
5 time units. We translate automatically these DPAs to the PTMDP shown in
Fig. 20, where the delays of the uncontrollable moves are resolved by uniform
distributions with races between the two processes.

P1

P2

Fig. 20: TGs/PTMDPs corresponding to the processes P1 and P2.

For the purpose of SMC, we need to set exponential rates in locations with
unbounded delays. These locations are waiting locations before starting a task
(with or without resources). The pattern is to have a succession of wait-task
locations. The task locations are entered if the constraints of the needed resources
are met. These transitions also consume the resources. The lower bounds of the
tasks are encoded into the guards of transitions exiting the tasks and the lower
bounds into the invariants of these tasks. Finishing a task is not under the control
of the controller player.

In addition, we also generate queries and decorate the model with a minimum
time that is left to complete each job/process. This is encoded in the variable
left. It is used by Uppaal-Tiga to prune the search. The generated queries are:

// Time-optimal strategy, initial upper bound: 33,
// guaranteed lower bound on the time-to-completion:
// max(P2.left, P1.left).
control_t*(33, (P2.left >? P1.left)): A<> P1.Done && P2.Done
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// Probability evaluation with tiga-strategy
Pr[<=1000](<> P1.Done && P2.Done)

// Learnt constrained strategy
control[<=1000]: A<> P1.Done && P2.Done

// Probability evaluation with constrained SMC strategy
Pr[<=1000](<> P1.Done && P2.Done)

The user can then generate an optimal Uppaal-Tiga strategy with guar-
anteed upper bound. This should be done with the option -w2 to make it most
permissive. Then it is possible to apply learning on top of it to pick the ones
with best expected time.
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