
 

 

STOCHASTIC ANALYSIS OF GEOMETRIC 
IMPERFECTIONS OF A CYLINDRICAL 

SHELL STRUCTURE 
MASTER THESIS 

4th semester MSc – Structural and Civil Engineering 
Martin W. Boserup & Christian L. Krog 

Aalborg University 
10-06-2014 

 
 





Department of Civil Engineering

Aalborg University

Sohng̊ardsholmsvej 57

9000 Aalborg

www.civil.aau.dk

Master thesis

Title:

Simulation of geometrical imperfec-

tions and reliability estimation of

cylindrical shell structures

Project period:

4th semester, Spring 2014

01-02-2014 to 10-06-2014

Project group:

Martin Winther Boserup

Christian Lebech Krog

Supervisors:

Henrik Stensgaard Toft

Søren Madsen

Printed editions: 5

Number of pages: 80 + CD

Abstract:

This thesis deals with buckling of ax-

ially compressed thin cylindrical steel

shells. Through state-of-the-art review, it

is shown that a slightly imperfect cylin-

der has a load-carrying capacity (critical

buckling resistance), that is significantly

reduced compared to a perfect cylinder.

Therefore, three different imperfection pat-

terns is analysed through the most complex

of the recommended procedures in the Eu-

rocode, namely the geometrically and ma-

terially non-linear analysis with imperfec-

tion. Furthermore, the reliability of the im-

perfect models, as well as semi-empirical

mathematical models from the Eurocode

and DNV is estimated along with a cali-

bration of partial coefficients.

Martin Winther Boserup Christian Lebech Krog





Preface

This master thesis is made in the period 03-02-2014 to 10-06-2014 on the 4th semester of

the Master program in Structural and Civil Engineering under the School of Engineering

and Science at Aalborg University.

Readers guide

To get an overview of the thesis, a description of the individual chapters is given in the

following:

� Introduction - The buckling phenomenon is introduced through a history and a

state-of-the-art review along with a derivation of the classical solution to the critical

buckling stress of a axially compressed cylindrical shell. Based on this, a thesis

statement is presented.

� Finite Element Model - The finite element model used through the thesis is

presented, along with relevant numerical analysis methods.

� Simulation of Imperfections - By use of the presented finite element model,

different approaches to simulate initial geometric imperfections is investigated.

� Uncertainties related to the Critical Buckling Resistance - In this chapter,

main focus is put on estimating model uncertainties related to selected mathematical

models used to calculate the load-carrying capacity.

� Reliability Estimation of the Critical Buckling Resistance - Reliability levels

of the selected mathematical models are estimated and compared to target reliability

levels, and it is investigated, whether an optimistation of the partial safety factor

γM is possible.

In this thesis, sources are referred to by the Harvard method, [Surname, year]. A complete

list of all sources is shown in the bibliography chapter in the end of the thesis. Sources

with more than two authors are mentioned by the surname of the first author followed by

”et al.”. In the bibliography, books are listed by author, year, title, publisher and ISBN.

Articles are listed by author, year, title and journal. Web pages are listed by author, year,

title, url-address and date the page were accessed. Sources in figures/tables are shown in

the caption below.

Figures and tables are numbered by given chapters, i.e. the first figure in e.g. chapter

3, will be named Figure 3.1. Similarly, equations are numbered by given chapters, i.e. the

first equation in e.g. chapter 3, will be numbered (3.1).

A complete list of notations, symbols and abbreviations used in the thesis, is given on

page 1. Vectors are displayed with a bar above the symbol, e.g. (v̄), while matrices are

displayed with a bold symbol, e.g. (K).

Digital appendices (attached CD) include Matlab files, Abaqus files, Python files etc.

Files that are relevant for a given section is placed in a folder on the CD with a similar

name i.e. calculations used in section 2.4 is placed in the folder named 2.4 Boundary

conditions.
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Notation
Symbol Description Unit

b Bias [-]

C Extension stiffness parameter [N/m]

D Bending stiffness parameter [Nm]

E Young’s modulus [Pa]

fy Yield stress [Pa]

F Force [N]

h Mathematical model [-]

K Tangent stiffness matrix [N/m]

l Length [m]

Nx,Nθ,Nxθ Forces in x, θ and xθ-directions [N]

Pf Probability of failure [-]

Q Variable load [N]

r Radius [m]

R1,...,Rm Regression parameters [-]

t Thickness [m]

u,v,w Displacements in x, θ and z-directions [m]

v̄i Buckling mode shapes (eigenvectors) [m]

V Coefficient of variation [-]

V∆ Coefficient of variation of the model uncertainty [-]

w0 Imperfection amplitude [m]

XR Model uncertainty of h [-]

XR,imp Knock down factor for imperfections [-]

XR,GMNA Knock down factor [-]

XQ Model uncertainty of Q [-]

X Stochastic variables [-]

za,zb Design parameter [-]

Z Batdorf-parameter [-]

α Elastic imperfection reduction factor [-]

α2 Sensitivity measure [-]

β Reliability index [-]

βtarget Target reliability [-]

χ Buckling reduction factor [-]

Φ Standard normal distribution function [-]

γ Partial safety factor [-]

η Parameter controlling the ratio between permanent and variable load [-]

λi Eigenvalue (elastic critical buckling resistance) [N]

µ Mean value [-]
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σ Standard deviation [-]

σ2 Variance [-]

σc Characteristic buckling stress [Pa]

σcr Critical buckling stress [Pa]

∇ Laplace operator [-]

ν Poisson’s ratio [-]

Abbreviations Explanation

ASI Axisymmetric Imperfections

DNV Det Norske Veritas

DS/EN Dansk standard/European standard

FERUM Finite Element Reliability Using Matlab

FORM First-Order Reliability Method

GDI Geometrical Dimple Imperfection

GMNA Geometrically and Materially Non-linear Analysis

GMNIA Geometrically and Materially Non-linear Analysis with Imperfection

LBA Linear elastic Bifurcation Analysis

LBMI Linear Buckling Mode-shaped Imperfection

MCSIS Monte Carlo Simulation with Importance Sampling

MCS Crude Monte Carlo Simulation

MDB Model Database

MNA Materially Non-linear Analysis

MSI Mid-surface Imperfection

ODB Output Database

SPDI Single Perturbation Displacement Imperfection

SPLI Single Perturbation Load Imperfection

S4R 4-node general-purpose shell, reduced integration with hourglass control,

finite membrane strains

S8R 8-node doubly curved thick shell, reduced integration

TPDI Two Perturbation Displacement Imperfections

TPLI Two Perturbation Load Imperfections
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1 Introduction
In structures, many forms of instability can occur. The most common and important form

is buckling, which occur primarily in slender members in compression. For these members,

buckling is likely to occur at a much lower stress than the yield stress and buckling will

therefore govern the load-carrying capacity [Williams & Todd, 2000].

When members under compression are relatively long they become sensitive to Euler

buckling. Since the Euler buckling stress increases when the material is placed far away

from the center axis, cylindrical shells are very efficient as compression members [Teng &

Rotter, 2004]. Therefore cylindrical shells are widely used in civil engineering structures

such as pipelines, silos, tanks, wind turbine towers, chimneys and off-shore platforms.

However when the wall thickness becomes thinner, local buckling modes are appearing

and becomes the dominating failure modes [Teng, 1996]. Examples of local buckling are

shown in Figure 1.1 and 1.2.

Figure 1.1: Example of local buckling of a

wine tank [Bushnell, 1981]

Figure 1.2: Example of “elephants foot”

buckling of a water tank [Bushnell, 2011]

The buckling resistance of a thin cylindrical shell is very complex to estimate, since it

is very sensitive to imperfections in both material, geometry, boundary conditions and

applied loads. Moreover, when measuring the buckling resistance in laboratory tests, a

very low and scattered resistance is observed compared to the “classical elastic critical

stress” proposed by Lorenz, Timoshenko and Southwell [Teng & Rotter, 2004], see Figure

1.3. A derivation of the “classical elastic critical stress” is given in section 1.3 on page 9.

3
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Figure 1.3: Experimental strength versus ideal strength of isotropic axial compressed cylinders.

[Teng & Rotter, 2004]

It is observed that the bias increases with an increasing radius to thickness ratio r/t, which

indicate that the critical buckling resistance is sensitive to changes of r/t. Due to the high

bias, use of empirical “knock-down” factors are the primary approach to estimate the

buckling resistance when designing cylindrical shells [Singer et al., 2002]. This approach

is also used in [DS/EN-1993-1-6, 2007], where the characteristic buckling stress is given

as:

σc = χfyc (1.1)

where

σc Characteristic buckling stress [Pa]

χ Buckling reduction factor [-]

fyc Characteristic yield stress [Pa]

The buckling reduction factor χx depends on the bifurcation load and the elastic

imperfection reduction factor (α). In general (α) is known as a knock down factor,

which depends on the shell geometry, load conditions, boundary conditions and the initial

imperfection amplitude [Rotter & Schmidt, 2008]. The reduction factor is calibrated

through experimental tests so that approximately 95% of the experimental test results

have a larger buckling load than the characteristic buckling load obtained through (1.1)

[Rotter & Schmidt, 2008]. The procedure to calculate σx,Rc, according to [DS/EN-1993-

1-6, 2007], is shown in Appendix A.

Another procedure to estimate the buckling resistance, proposed by [DS/EN-1993-1-

6, 2007], is the global numerical geometrically and materially non-linear analysis with

imperfection (GMNIA). Here the finite element method is used to predict the most realistic

buckling behavior. The following analyses with increasing complexity are used in the

procedure suggested in [Rotter & Schmidt, 2008]:

� Linear bifurcation analysis (LBA) to obtain elastic critical buckling resistance.
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1. Introduction

� Material non-linear analysis (MNA) to obtain the plastic resistance.

� Geometrically and materially non-linear analysis (GMNA) to obtain the elastic-

plastic buckling resistance of the perfect structure.

� Multiple GMNIA with different imperfection modes to obtain the worst imperfection

form and thereby the elastic-plastic buckling resistance of the imperfect structure.

� Calibration of the elastic-plastic buckling resistance of the imperfect structure with

known experimental test results.

The reliability of models with the highest complexity (GMNIA) strongly depends on

the size and pattern of the initial imperfection. In [DS/EN-1993-1-6, 2007], no clear

guideline of how to select the initial imperfections is given. It is therefore interesting to

perform reliability estimates of the numerical models, to ensure that the structure meets

the suitable requirements. To achieve safe structures, usually the partial safety factor

method is used, where a target reliability βtarget level is selected, depending on various

measures. Target reliabilities recommended in [DS/EN-1990, 2007] for a one year and a

50 years reference period are listed in Table 1.1.

Reliability class
Minimum values of β

1 year reference period 50 years reference period

RC3 β = 5.2(Pf ≈ 10−7) β = 4.3(Pf ≈ 10−5)

RC2 β = 4.7(Pf ≈ 10−6) β = 3.8(Pf ≈ 5 10−5)

RC1 β = 4.2(Pf ≈ 10−5) β = 3.3(Pf ≈ 5 10−4)

Table 1.1: Recommended minimum values for reliability index β (ultimate limit states) [DS/EN-

1990, 2007].

As presented in Table 1.1, [DS/EN-1990, 2007] introduces three reliability classes

depending on loss of human life or economical, social or environmental consequences.

It is seen that a high reliability class leads to a high reliability index.

Since cylindrical shell structures are widely used in the off-shore industry, it is of interest

to take into account the classification society, Det Norske Veritas (DNV). Reliability levels

recommended in [DNV-Note-30.6, 2013] are presented in Table 1.2. The reliability levels

are, in contrast to [DS/EN-1990, 2007], based on consequences and class of failure.

Class of failure
Consequences

Less serious Serious

I - Redundant structure Pf = 10−3(β ≈ 3.09) Pf = 10−4(β ≈ 3.71)

II - Non-redundant structure,
Pf = 10−4(β ≈ 3.71) Pf = 10−5(β ≈ 4.26)

significant warning before failure

III - Non-redundant structure,
Pf = 10−5(β ≈ 4.26) Pf = 10−6(β ≈ 4.75)

no warning before failure

Table 1.2: Values of acceptable annual probabilities of failure Pf (and target reliabilities β)

[DNV-Note-30.6, 2013].
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Different reliability levels are observed, which reflect the different applications of the two

standards. In this thesis, the main focus is inspired by the methods recommended in

the Eurocode, while DNV is used in order to have a reference. In the following, a brief

historical review of buckling will be presented along with a general description of the

buckling phenomenon. The latest investigations in the field of simulation imperfections,

is described in a state-of-the-art review, which ends up in a thesis statement.

1.1 Review of buckling history
Studies of buckling instability has been researched for more than two centuries. Leonard

Euler was the first to derive a formula that gives the maximum axial load that a long,

slender, ideal column can carry without buckling. This was done in 1744 and investigations

on the subject has been going on ever since [Singer et al., 1998]. Approximately one century

later, in 1845, Fairbairn and Hodgkinson conducted tests on thin walled tubes under axial

compression. These studies were commenced in connection with the construction of the

Britannia and Conway bridges in England. Later in 1882, construction began on Scotland’s

Firth of Forth bridge, which was made of tubular steel members, see Figure 1.4, and was

finished in 1890 [Schmidt, 2000]. The bridges were constructed without clear knowledge

about the buckling phenomenon, since no theoretical solution existed at that time.

Figure 1.4: Tubular steel members of Firth of Forth bridge in Scotland. [Network Rail, 2012]

In 1905-1908, the first systematic study of elasto-plastic buckling of cylindrical shells was

carried out at Trinity College in Dublin by W. E. Lilly. His work led to the conclusion that

the buckling load becomes smaller with higher radius to thickness ratio (r/t) and the “true”

resistance of a compressed cylindrical shell is the load that produces the buckling mode

[Singer et al., 2002]. The theoretical solution to axial compressed cylindrical shells was

solved independently by Lorenz, Timoshenko and Southwell in 1910 and is, as mentioned

earlier, known as the “classical elastic critical stress”. Soon after, the theoretical solutions

for the critical load under external pressure and torsional shear, was solved successfully

by v. Mises and Schwerin, respectively [Singer et al., 2002].

Through the 1930s a lot of work within linear shell theory was done, especially by

6



1. Introduction

Timoshenko, Flügge and Donnell. Flügge was the first to present a theory of cylindrical

shells in 1934, but around the same time, Donnell presented a theory that was simplier

and easier to solve [Zingoni, 1997]. Though, no matter how precise the used linear theory

was, major deviations from experimental results was observed. This resulted in safety

factors as large as 4 to “knock down” the critical buckling stress, which unfortunately still

led to unsafe structures [Schmidt, 2000].

Even though a lot of work was done on linear shell theory, it was not before the 1950s

that it was realised that the large discrepancies between theoretical and experimental

results was due to unavoidable imperfections and unpredictable post-buckling behavior.

The effect of geometrical imperfections can be seen in Figure 1.5, where it is observed, that

a minor imperfection amplitude, decreases the critical buckling resistance dramatically.

The most notable researchers to implement imperfections and use non-linear formulations

of Donnell’s shell theory were Karman and Tsien (1941) and Donnell and Wan (1950)

[Teng & Rotter, 2004] [Schmidt, 2000].

Figure 1.5: Load - axial shortening relationships for cylinders with circumferential asymmetric

imperfections. [Teng & Rotter, 2004]

However, with the knowledge of the effects of geometrical imperfections, guidelines of how

to take these into account was not yet available. This encouraged Seide, Weingarten and

Morgan to publish a collection of experimental results in 1960 which later, in 1965, led to

the basis of the NASA SP-8007 guideline [Castro et al., 2013].

Work on buckling resistance of cylindrical shell structures has since the late 1970s been

dominated by numerical approaches due to the increasing availability of computational

power. Especially the finite element method has been widely used to predict the behavior

of cylindrical shells by using fully non-linear theory combined with imperfect geometry

[Schmidt, 2000].

In the following section, a brief introduction to general shell stability and buckling

behavior, including a derivation of the classical elastic critical stress is given.

1.2 General shell stability and buckling behavior
Two ways of instability can occur, namely bifurcation of equilibrium and limitation of

equilibrium. A typical type of limitation of equilibrium is known as snap-trough buckling
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[Farshad, 2010]. Both behaviors causes the structure to chance shape and thereby reduce

the stiffness resulting in unwanted deflections. The controlling parameter of the stability

is the membrane stresses in the shell wall [Rotter & Schmidt, 2008].

Snap-through buckling can be illustrated as shown in Figure 1.6. At a certain point a

critical load is reached (snap-through load) and the system becomes unstable. At this

point buckling occurs rapidly and the structure exhibits a dynamic jump which cause

large deformations, as illustrated in Figure 1.7. After the dynamic jump, once again the

structure becomes stable, usually in an inverted form.
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Figure 1.6: Illustration of geometric

change due to snap-through buckling. [Rot-

ter & Schmidt, 2008]
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Figure 1.7: Illustration of load displace-

ment response of snap-through buckling.

[Rotter & Schmidt, 2008]

Typical, snap-through occurs in domes and arches, but might also appear in cylindrical

shells under certain conditions.

When minimum two possible equilibrium paths pass through the same point, bifurcation

buckling occur. An example of bifurcation buckling in a column is shown in Figure 1.8.

The point referred to as the bifurcation point is given as the intersection between the

pre- and post-buckling equilibrium paths. When traveling from the origin towards the

bifurcation point, shown in Figure 1.9, the structure is stable. From the bifurcation point

the pre-buckling equilibrium path becomes unstable, and the post-buckling equilibrium

path can be either stable or unstable, depending on the type of bifurcation [Rotter &

Schmidt, 2008].
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Figure 1.8: Illustration of pre- and post

buckling behavior of a column. [Rotter &

Schmidt, 2008]
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Figure 1.9: Illustration of load dis-

placement response of a column.[Rotter &

Schmidt, 2008]

The post-buckling deformations of the structure, will take form in a different pattern,

named the buckling mode. In some cases more than 100 critical buckling modes can lie

with a bifurcation load within 1%, and for this reason the “unique” critical bifurcation

load is hard to predict [Teng & Rotter, 2004]. Normally the buckling load leading to

the lowest load-carrying capacity is considered. Usually, columns and beams, undergoing

axial compression, exhibit stable symmetric bifurcation, whereas the typical post buckling

behavior of cylindrical shells is unstable. Due to this fact, the buckling resistance of

cylindrical shells is highly sensitive to geometric imperfections [Rotter & Schmidt, 2008].

In the following, a derivation of the classical solution to the critical elastic buckling

stress will be given.

1.3 Linear shell theory
This section is based on [Brush & Almroth, 1975] and [Farshad, 2010]

In this section a linear stability analysis will be carried out for a cylindrical shell, see Figure

1.10, under axial loading. The linear theory assumes a perfect system and predicts the

bifurcation point and thereby the critical buckling stress. As stated by [Farshad, 2010], the

linear theory is not capable of predicting the “real” buckling behavior of cylindrical shells.

To obtain a “realistic” buckling behavior, implementation of imperfections and use of

non-linear shell theory is therefore necessary. Nevertheless, the linear theory still provide

useful results of the buckling behavior and will be presented briefly in the following.
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Figure 1.10: Cylindrical shell with coordinate system. [Brush & Almroth, 1975]

The “real” prebuckling behavior of a perfect cylindrical shell under axial compression is

shown in Figure 1.11. It is seen that the thickness of the shell wall is varying along the

x-axis. However, in the linear theory it is assumed that the wall thickness is constant as

shown in Figure 1.12.
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Figure 1.11: “Real” prebuckling behavior

of a cylinder subjected to axial compression.

[Brush & Almroth, 1975]
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Figure 1.12: Linear prebuckling behavior

of a cylinder subjected to axial compression.

[Brush & Almroth, 1975]

The goal is to determine the critical buckling load and thereby the critical buckling stress.

The analysis contains following steps suggested by [Farshad, 2010]:

� A deformed infinitesimal equilibrium state is considered as shown in Figure 1.13.

� Equilibrium, kinematic and constitutive equations are derived for the shell element.

� When constructing the equilibrium, kinematic and constitutive equations, a set of

homogeneous differential equations are derived, where the critical buckling load is

the unknown parameter.

10



1. Introduction

� These homogeneous differential equations can be rewritten and identified as an

eigenvalue problem, where the nontrivial solution is sought.

Figure 1.13: Forces (left) and moments (right) on an infinitesimal element. [Brush & Almroth,

1975]

The buckling behavior can be described by the governing linear differential equations (1.2)

to (1.4), named the Donnell stability equations in uncoupled form.

∇4u = −ν
r

∂3w

∂x3
+

1

r3

∂3w

∂x∂θ2
(1.2)

∇4v = −2 + ν

r2

∂3w

∂x2∂θ
− 1

r4

∂3w

∂θ3
(1.3)

D∇8w +
1− ν2

r2
C
∂4w

∂x4
−∇4

(
Nx

∂2w

∂x2
+

2

r
Nxθ

∂2w

∂x∂θ
+

1

r2
Nθ

∂2w

∂θ2

)
= 0 (1.4)

where

∇ Laplace operator [-]

u,v,w Displacements in x, θ and z-directions [m]

r Undeformed middle surface radius [m]

ν Poisson’s ratio [-]

C = Et
1−ν2 Extension stiffness parameter [N/m]

D = Et3

12(1−ν2)
Bending stiffness parameter [Nm]

Nx,Nθ,Nxθ Forces in x, θ and xθ-directions [N]

A simple supported, axially compressed cylindrical shell with perfect geometry at the

initial condition is considered. The homogenous differential equation in the z-direction

(1.4), can then be simplified by assuming that the membrane forces Nθ and Nxθ are small

compared to the axial force Nx:

Nx = − F

2πr
, Nxθ = Nθ = 0 (1.5)

By implementation of these values into (1.4) the differential equation simplifies to:

D∇8w +
1− ν2

r2
C
∂4w

∂x4
+

F

2πr
∇4∂

2w

∂x2
= 0 (1.6)

11



Aalborg University MSc. Structural and Civil Engineering - Master Thesis

It is assumed that the shell has zero displacements in the z-direction and zero curvature

at the ends:

w = 0 ,
∂2w

∂x2
= 0 (1.7)

An assumed solution to the homogeneous partial differential equations for the shell is

given as;

w = C1 sin(nθ) sin
(mπr

l
x
)

(1.8)

where

C1 Constant [-]

m,n 1,2,3,...., [-]

l Length [m]

This solution satisfies the end conditions, given in (1.7), and by inserting (1.8) in (1.6)

along with use of the constitutive and kinematic relations an eigenvalue problem can be

obtained. In (1.8), m and n are chosen, such that the lowest critical stress is optained. The

trivial solution to the problem corresponds to the prebuckled configuration, and therefore

the nontrivial solution is sought and obtained in rearranged form in terms of the critical

stress:

σcr =
E√

3(1− ν2)

t

r
(1.9)

where

σcr Critical buckling stress [Pa]

E Young’s modulus [Pa]

t Thickness [m]

This is known as the classical solution of the critical buckling stress for an axially

compressed cylindrical shell, and is in many applications used as a reference point to

more complex theories. In the following section, a state-of-the-art review of imperfect

cylindrical shells under axial compression will be presented.

1.4 State-of-the-art review of simulating geometric

imperfections
This thesis will focus on modeling geometric imperfection of axial loaded cylindrical

shells and therefore this state-of-the-art review will focus on this area. Other types of

investigation in this field could include; load combinations [Winterstetter & Schmidt, 2002]

[Mathon & Limam, 2006], composite materials [Orifici & Bisagni, 2013] and influence of

boundary conditions [Schmidt, 2000].

Recent work on modeling geometric imperfection include [Castro et al., 2013], where

five different methods, used to create geometric imperfections and knock down factors,

were compared for a composite cylindrical shell. The five methods were;

12



1. Introduction

� Linear buckling mode-shaped imperfection (LBMI)

� Single perturbation load imperfection (SPLI)

� Geometrical dimple imperfection (GDI)

� Axisymmetric imperfections (ASI)

� Mid-surface imperfections (MSI)

The idea of implementing linear buckling mode-shaped imperfection (LBMI), is to

calculate the eigenmodes in a LBA and apply them to the perfect model, as initial

imperfections. The scaling factor in this method is the imperfection amplitude. Another

method, the single perturbation load imperfection (SPLI), leads to a local displacement

at a given position of the cylinder.

The displacement field of the geometrical dimple imperfection (GDI), see Figure 1.14, is

given as radial displacements, see (1.10), and is defined as a dimple cosine with wavelengths

along the circumference (a) and the meridian (b)

∆r(ϕ,ζ) =
w0

4

[
1− cos

(
2πr

a
ϕ

)][
1− cos

(
2π

b
ζ

)]
(1.10)

where

w0 Imperfection amplitude [m]

a Wavelength along the circumference [m]

b Wavelength along the meridian [m]

r Radius [m]

Figure 1.14: Imperfection pattern for a GDI. [Castro et al., 2013]

The axisymmetric imperfections ASI differs from the GDI, when implementing it as initial

geometric imperfection, by only taking the meridional wavelength (b) into account, and

(1.10) reduces to (1.11);

∆r(ϕ,ζ) =
w0

2

[
1− cos

(
2π

b
ζ

)]
(1.11)

The imperfection pattern for the mid-surface imperfections (MSI) was measured on real

laminated composite cylinders by [Degenhardt et al., 2008], and implemented as initial

imperfections.
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[Castro et al., 2013] stated that the fairly simply SPLI method gave the lowest “knock-

down” factors i.e. the largest buckling stress and was preferred by the authors.

A similar conclusion was made by [Wang et al., 2013], where analyses were made

on aluminum cylindrical shells, and it was stated by the authors, that the dimple

imperfections were more realistic and physical meaningful compared to the eigenmode

shape imperfections.

A similar approach to MSI to predict the geometrical imperfection of cylindrical shell

structures was made by [De Paor et al., 2012], where the authors obtained detailed

measurements of 39 small-scale steel cylindrical cans by scanning the objects. Through

the obtained data it was stated that the magnitude of the radial deviation approximately

could be represented by a Gaussian distribution. Further a two dimensional random field

of radial deviation was generated by use of the Monte Carlo method and validated with

experimental results. [De Paor et al., 2012] suggested to implement these random fields

into a geometrical and material non-linear finite element analysis to predict the buckling

stress.

Investigation on “axially imperfect” cylinders, i.e. imperfections in the length direction,

has been carried out by [Blachut, 2010] and [Broggi et al., 2011]. [Blachut, 2010] introduced

the axial imperfection by varying the length sinusoidally, whereas [Broggi et al., 2011]

introduced the axial imperfection by a random field. Common to both investigations

was that the axial imperfection have a remarkable influence on the critical buckling load.

[Blachut, 2010] shows that “axially imperfect” cylinders can have a load carrying capacity

that is up to five time smaller than the load carrying capacity of an “eigenmode-imperfect”

cylinder.

1.5 Thesis statement
It has been shown through history review and state-of-the-art that the buckling

phenomenon is very complex and even though a lot of research has been carried out

in this field a lot of questions are still unanswered. Especially the simulation of initial

imperfections and the influence on the load-carrying capacity will be investigated. The

following questions are sought answered in this thesis:

� In which way can the geometrical imperfection be simulated?

� How does the simulated imperfections influence the load-carrying capacity (critical

buckling resistance) and reliability level?

To narrow down the focus area, limitations have been made. The cylindrical shells

will be made of steel, modeled under axial compression and with boundary conditions

corresponding to a middle section of a given structure. The radius-thickness ratio (r/t),

is chosen to be 250. A detailed description of the finite element model is presented in the

following chapter.

It is of interest to calculate the model uncertainty, of selected methods, and since no

test results are available for the certain conditions mentioned above, test results from

[Batterman, 1965](cylindrical aluminum shells) will be used. Results from numerical

models, will be compared with the semi-empirical methods suggested in [DS/EN-1993-

1-6, 2007] and [DNV-RP-C202, 2013].

14



2 Finite Element Model
In the present chapter, the finite element model used in this thesis will be presented.

The model is created in the commercial finite element program Abaqus [Simulia Corp.,

2013]. First, the different analysis methods will be described. Secondly, the geometry

and material properties will be determined along with boundary and load conditions.

Subsequently, a convergence analysis will be conducted in order to determine element

type and mesh size.

2.1 Numerical analyses
In this thesis, mainly three types of analyses will be performed, namely linear bifurcation

analysis (LBA) and geometrically and materially non-linear analysis of a perfect (GMNA)

and imperfect structure (GMNIA).

2.1.1 Linear bifurcation analysis

Linear bifurcation analysis is carried out to obtain the elastic critical buckling resistance

of the perfect structure. In Abaqus the elastic critical buckling resistance is obtained

through the eigenvalue problem given in (2.1), where the load, for which the stiffness

matrix becomes singular, is sought [Simulia Corp., 2013].

(λiK)v̄i = 0 (2.1)

where

λi Eigenvalue (elastic critical buckling resistance)

K Tangent stiffness matrix

v̄i Buckling mode shapes (eigenvectors)

The obtained buckling mode shapes does not represent real magnitudes of deformation at

the critical buckling load since they are normalised, such that the maximum displacement

is 1.0 [Simulia Corp., 2013].

2.1.2 Geometrically and materially non-linear analysis

Geometrically and materially non-linear analysis is carried out to obtain the elastic-

plastic buckling resistance of the perfect structure (GMNA) and the imperfect structure

(GMNIA). In contrast to the LBA, these analyses use non-linear large deflection theory

and nonlinear elastic plastic material law. Therefore a non-linear solution algorithm is

required to solve the non-linear equilibrium equations.

Newton Raphson method

As standard setting, Abaqus uses the force-residual based method Newton Raphson, which

is the most common iterative solution scheme. One of the reasons for this, is due to the

high rate of convergence, i.e. few iterations are needed to solve the non-linear equations

[Ottosen & Ristinmaa, 2005]. Figure 2.1 shows the procedure of calculating a non-linear

equation be means of Newton Raphson. The idea is to obtain a solution that satisfy the
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equilibrium equations. This is done by ensuring that the external forces are equal to the

internal forces.

where again k refers to the global load step and j to the iterations. In order to start the

iterations an initial value of Δu0
k is needed. This is usually done by setting Δu0

k = 0. In

the first iteration the system to be solved is then

Kk,0
t δu0

k = −q(uk) + (fk +Δf k) (130)

Since at the last converged step k the internal force vector is balance by the external load,

−q(uk) + fk = 0, we have

Kk,0
t δu0

k = Δf k (131)

This equation system is now solved and the displacement increment updated as

Δu1
k = Δbsu0

k + δu0
k (132)

The strain increment is then determined as

Δε1k = BΔu1
k (133)

With this strain increment it is now possible, by the methods discussed in Section 3.1,

to compute a stress increment, and thereby the total stress σ1
k+1. This is then in turn

used to compute a new internal force vector and thus a new right hand side of (129).

Furthermore the tangent stiffness matrix is updated. The complete iterative procedure

is outlined in Table 2. The graphical interpretation of the method for a problem with

one displacement variable is shown in Figure 23 (a) where the subscripts k indicating the

load step number have been dropped. In practice the so-called modified Newton-Raphson

(a) (b)

Figure 23: Solution of one-dimensional nonlinear equation by Newton-Raphson (a) and

modified Newton-Raphson (b) methods.

method is often used. The modification consists of computing the tangent stiffness matrix

32

Figure 2.1: Solution of one-dimensional nonlinear equation by Newton-Raphson [Krabbenhøft,

2002].

The method begins at the last known point of equilibrium, where a new increment in force

is applied. This is done by linearising the equation by use of the tangent stiffness from

the known point and it leads to a solution that generates a residual external force r rather

than satisfying the non-linear equation. The equation is linearized once again from the

new point, and this procedure is repeated until equilibrium is reached i.e. the selected

error ε is sufficiently small [Krabbenhøft, 2002].

However since the behavior of a cylindrical shell under axial compression can be highly

unstable, i.e. a decrease in load and/or displacement as the non-linear equilibrium path

evolves, the Newton Raphson method is not suitable, as illustrated in Figure 2.2. The

iterative approach used in Newton Raphson would only be able to predict the response of

ABDE, i.e. only a part of the real solution is obtained [Ottosen & Ristinmaa, 2005].

Figure 2.2: Load-displacements curve of a typical unstable behavior for a given structure, where

flaws of the Newton Raphson are illustrated.
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2. Finite Element Model

In order to be able to trace the response shown in Figure 2.2 another iterative scheme is

needed, and the arc-length method is very suitable of predicting the behavior, due to the

use of combined load and displacement control. [Ottosen & Ristinmaa, 2005]

Riks method

The modified Riks method is used to solve the non-linear equations, since is has been

proven to be the most successful method [Simulia Corp., 2013]. The Riks method is a

linearised version of the arc-length method, where instead of using a constraint arc surface,

the iterative change is made orthogonal to the predictor solution, shown by the normal

plane, n1 in Figure 2.3.

Figure 2.3: Solution of nonlinear equation by Riks [Memon & Su, 2004].

The method searches a solution in a space defined by the displacement p, and a load

state λq, where λ is a load proportionality factor. In contrast to the Newton Raphson

method, the Riks method solves the loads and displacements simultaneously, which makes

it possible to pass any limit point. The iteration stops when the out of balance force vector

gi becomes sufficiently small. Initially, an arc length is defined and thereby the initial load

proportionality factor λ. In Abaqus, the following increment size is automatically selected

by an incrementation algorithm [Simulia Corp., 2013].

Due to the highly unstable behavior of a cylindrical shell under axial loading, the Riks

method will be used as the non-linear solver in this thesis.

2.2 Geometry
The geometry of the cylindrical shell is defined as shown in Figure 2.4, whereas the

characteristic geometry parameters are listed in Table 2.1.
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Figure 2.4: Geometric parameters of the

cylinder.

Notation Symbol Value Unit

Length l 10 [m]

Radius r 2.5 [m]

Thickness t 0.01 [m]

Radius-thickness ratio r/t 250 [-]

Table 2.1: Characteristic geometry parameters.

The selected radius-thickness ratio is, from a civil engineering point of view, an upper

bound. The reason for this choice, is to ensure that buckling occur rather than yielding in

the material. Furthermore the geometry is selected such that the cylinder is categorized

as medium according to [DS/EN-1993-1-6, 2007], and it is ensured that r,t is placed at a

reasonable distance from the boundary line between long and medium, as illustrated in

Figure 2.5.

0.5 1 1.5 2 2.5 3
4

5

6

7

8

9

10

11

12

13

14

x 10
−3

Long Medium

r [m]

t [
m

]

Figure 2.5: Illustration of medium and long categories with a length of 10 m according to

[DS/EN-1993-1-6, 2007]. (*) represents the selected r,t.

The reason for selecting a medium cylinder is that, according to [Teng & Rotter, 2004],

most civil engineering structures under axial compression can be placed into the category

of medium cylinders.

2.3 Material properties
The material used for the model is steel with an ideal elastic perfect plastic material model

as shown in Figure 2.6 along with characteristic material properties listed in Table 2.2.

The multi-axial stress yield criterion is assumed to be von Mises with associated flow rule

for plastic strain increment since this criteria is commonly used for steel.
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Figure 2.6: Stress-strain curve for selected

material model.

Notation Symbol Value Unit

Young’s modulus E 210 · 109 [Pa]

Poisson’s ratio ν 0.3 [-]

Yield stress fyc 235 · 106 [Pa]

Table 2.2: Characteristic values of material

properties.

2.4 Boundary conditions
In this section it is investigated, in which way the boundary conditions can be modeled to

simulate a middle section of a given civil engineering structure. Three boundary conditions

are selected and shown in Figure 2.7. BC1 and BC2 are selected such that they represent

two ways of modeling a simple supported cylinder. BC3 is selected to investigate the

influence of fixed rotations at the boundaries. Since BC1 is similar to a simple support, it

allows rotation in all directions. Furthermore it is axially loaded in the top and bottom.

BC2 is axially loaded at the top, and is fixed against displacements in the x-direction at

the bottom. Theoretically, the load-carrying capacity of a cylinder with BC1 and BC2,

should be equal. BC3 is similar to a fixed-fixed support, which restraints it from rotation

at the boundaries. The load conditions are similar to BC1.

v,w=0

u=0

v,w=0

v,w=0
u  ,v  ,w  =0

u=0

v,w=0
u  ,v  ,w  =0
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Figure 2.7: Selected boundary conditions for the cylinder. u,v and w are displacements in the

x,y and z-directions, while lower case R represents rotation. The arrows represent the applied

axial force.

In order to compare the influence of the three boundary conditions, the critical buckling

resistance is obtained through a linear bifurcation analysis (LBA) along with the first

mode shape. The critical buckling resistances are listed in Table 2.3 and Figure 2.8 shows

the mode shapes.
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Figure 2.8: First mode shape for BC1, BC2 and BC3 obtained through LBA. Scale=0.3

It is seen that the mode shapes obtained for the cylinder with BC1 and BC3 are symmetric,

while the mode shape for BC2 is asymmetric. The reason for this asymmetry is that

the force is applied at the top. Additionally it is observed that mode shape 1 for BC1

only develops 1
2 wave in the meridional direction, while BC2 develops 21

2 waves and BC3

develops more than 10 waves. These observations correspond well with the critical buckling

resistances listed in Table 2.3, where BC2 and BC3 needs to be exposed to a larger amount

of energy to excite the first mode.

BC1 BC2 BC3

σcr [MPa] 479 508 505

Table 2.3: Critical buckling resistances for the three boundary conditions obtained through LBA.

For further comparison of the influence of BC1, BC2 and BC3, material and geometrical

non-linearity is taken into account through a GMNA. The displacement fields, shown in

Figure 2.10, are extracted at a post buckling state, corresponding to an axial shortening

of 0.02 m, shown in Figure 2.9.
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2. Finite Element Model
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Figure 2.9: Axial shortening versus axial stress for the GMNA with BC1, BC2 and BC3.

The dashed line represents the axial shortening where the displacement fields in Figure 2.10 are

extracted.

From Figure 2.9 it is clear that the equilibrium path for BC1 and BC2 are close to identical,

while BC3 in general obtains higher stresses, to reach the same axial shortening.

Figure 2.10: Displacement fields obtained through GMNA with BC1, BC2 and BC3. Scale=25

From Figure 2.10, it is seen that the displacement field of the cylinder with BC1 and BC2

are identical. This is also the case for the critical buckling resistances listed in Table 2.4.

The cylinder with BC3 develops a wave pattern around the edges, caused by the fix of

rotational degrees of freedom at the boundaries. Therefore a larger amount of energy is

necessary to cause the same axial shortening, compared to the cylinder with BC1 and

BC2, leading to a larger critical buckling resistance.
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BC1 BC2 BC3

σcr [MPa] 213 213 221

Table 2.4: Critical buckling resistances for the three boundary conditions obtained through

GMNA.

Since it is of interest to investigate the influence of geometrical imperfections, a boundary

condition which leads to symmetric displacement fields in both the linear bifurcation

analysis and the geometrically and materially non-linear analysis is selected. This

eliminates BC2, since asymmetry is obtained through the linear bifurcation analysis.

In a real design process, the boundary condition is most likely a mixture of BC1 and

BC3 since they are both extremes in relation to rotation. In this thesis, BC1 is selected

since it is the most conservative and to ensure buckling rather than yielding in the material.

2.5 Convergence analysis
In this section a convergence analysis will be conducted in order to determine element

type and mesh size. Abaqus has several different element types, and since the thickness

of the cylinder is significantly smaller than the other dimensions, shell elements are the

most reasonable choice of element in this thesis. The shell elements have displacements and

rotation degrees of freedom and the thickness is defined through section property definition

[Simulia Corp., 2013]. Two different shell element types will be compared in this section,

namely the linear 4-node general-purpose shell, reduced integration with hourglass control,

finite membrane strains (S4R) and the quadratic 8-node doubly curved thick shell, reduced

integration (S8R). The two shell elements are visualized in Figure 2.11 and 2.12.
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Figure 2.11: S4R element. The black

dots represents each node and the cross

represents the integration point.
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Figure 2.12: S8R element. The black

dots represents each node and the crosses

represent the integration points.

The convergence analysis is based on the linear bifurcation analysis (LBA) with geometry,

material properties and boundary conditions determined in section 2.2, 2.4 and 2.3. The

LBA is used due to the reasonable fast computational time and since a specific value for

the critical buckling (bifurcation) load is obtained.

Three mode shapes are used in the convergence analysis and named MS1, MS2 and

MS3 as shown in Figure 2.13 since they will be referred to several times through the

analysis.
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2. Finite Element Model

Figure 2.13: Visualization of the three used mode shapes MS1, MS2 and MS3. Scale=0.3.

First an analysis is carried out, where the lowest buckling load i.e. the 1st mode is used,

thereby neglecting possible mode shifts. The results of this analysis for number of elements

and number of nodes with S4R and S8R elements are shown in Figure 2.14 and 2.15.
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Figure 2.14: Convergence analysis for S4R

and S8R elements with varying number of

elements. All values are extracted from the

1st mode.
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Figure 2.15: Convergence analysis for S4R

and S8R elements with varying number of

nodes. All values are extracted from the 1st

mode.

From Figure 2.14 and 2.15 it can be concluded that the linear S4R elements not are

converged, even with use of 59280 nodes. Additionally a mode shift is observed, visualized

by the shift between the dashed and solid blue lines corresponding to a mode shift between

MS3 and MS1. The two mode shapes are shown in Figure 2.16 and 2.17.
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Figure 2.16: MS3 calculated with LBA

using 1768 S4R elements. Scale=0.3.

Figure 2.17: MS1 calculated with LBA

using 3900 S4R elements. Scale=0.3.

It is clear that the mode shapes are highly non-linear and therefore a large amount of

linear elements is necessary. In contrast to this, the quadratic S8R elements are converged

at 1768 elements and will therefore be the preferred element.

To ensure that the mesh is sufficiently fine, a higher order mode (MS2) is chosen for

comparison, see Figure 2.18.
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Figure 2.18: Convergence analysis for S8R elements with mode shape MS1 and MS2.

It is seen that more elements (3900) are needed for the model to converge. To ensure that

the model is accurate at higher modes, a more refined mesh should be considered, but due

to the computational time difference for the LBA (117s with 3900 elements and 212s with

6864 elements) a mesh size of 3900 elements is selected.

In the following a summarisation of the finite element model will be given.
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2. Finite Element Model

2.6 Model summary
A summary of the selected analysis parameters from previous sections are listed in Table

2.5 and a flow diagram which shows the connection between Matlab, Python and Abaqus

is shown in Figure 2.19. The reason for this approach is that it is of interest to calculate

multiple numerical models, where properties, such as the imperfection amplitude, are

changed several times, and therefore a large amount of time can be saved, since it is not

necessary to reconstruct the model in Abaqus each time.

FEA solver Abaqus version 6.13

Non-linear algorithm Riks method

Element type S8R

Number of elements/nodes 3900/11856

Element size 0.2 m·0.2 m

Integration points per element 4

Boundary condition BC1, see Figure 2.7 on page 19

Length 10 m

Radius 2.5 m

Thickness 0.01 m

Young’s modulus 210 · 109 Pa

Poisson’s ratio 0.3

Yield stress 235 · 106 Pa

Table 2.5: Analysis parameters along with characteristic material and geometrical values used

in the numerical model.

The flow diagram is made in order to facilitate the understanding of the connection

between the used programs. The following steps, corresponding to the steps in Figure

2.19, are used in the approach;

1. A main script is written in Matlab, where all properties that needs to vary are

defined. This could for instance be r,t,l,fy,E,ν etc.

2. The properties are printed to a Python file (Input.py), which is the program language

used in Abaqus.

3. A Python file (MDB.py) is written by editing the Model Database file created from

the Graphical User Interface in Abaqus. This file contains all information about the

model, and therefor it uses (Input.py) from step (2) as input.

4. A Python file (ODB.py) is written by editing the Output Database file created from

the Graphical User Interface in Abaqus. This file contains information about which

results that subsequently will be printed in step (6).

5. In this step, Abaqus is executed from the main file in step (1) and uses (Input.py)

and (MDB.py) to create the model which is then analysed.

6. The result file is printed from the information given in (ODB.py).

7. The results are saved/plotted in the main file. The whole process is repeated i times.

The above procedure applies to a model with perfect geometry. If imperfections needs to

be applied to the model, the following steps are introduced.
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1*. A model is created in the Graphical User Interface in Abaqus with a wanted

imperfection pattern.

2*. The displacement field of the model in step (1*) is extracted and saved in a (IMP.fil)

3 . Step (2*) and (2) are implemented in (3) and the process is similar to the one above.

Loop 

 

Matlab (1)

Input.py (2)

MDB.py (3)

ODB.py (4)

Abaqus (5)

Result-file (6)

Matlab (1)

Abaqus (1*)

IMP.fil (2*)

Figure 2.19: Flow diagram which shows the connection between Matlab, Python and Abaqus.

The dashed area shows an example of implementing imperfections.

The following chapter presents three ways of simulating geometric imperfections, where

the preceding finite element model will be used. The imperfection patterns are inspired

by the methods presented in the state-of-the-art review on page 12 and throughout the

chapter, different imperfection amplitudes will be investigated.
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3 Simulation of Imperfections
In this chapter it will be determined in which way the geometric imperfections will be

implemented to the model described in chapter 2.

In the field of buckling of shell structures, numerous ways of implementing geometrical

imperfections has been carried out. According to [Schmidt, 2000] three ways of

implementing geometrical imperfections are thinkable;

� “Realistic” geometric imperfections

� “Stimulating” geometric imperfections

� “Worst” geometric imperfections

To simulate “Realistic” geometric imperfections, it is in principle necessary to scan the

geometry for each model, and implement this in the FE model. When a sufficient number

of measurements has been made, it is possible to model the imperfections stochastically,

which is also carried out by [De Paor et al., 2012]. This approach however, is not

economically viable to a civil engineering shell structure.

“Stimulating” geometric imperfections are simulated by starting from the failure mode

of the perfect shell, i.e. the results of a GMNA. The pattern of this analysis reveals the

weak points of the structure and the idea is to create an initial deformation at these points.

This method however, is more appropriate, if several load cases are investigated.

The basic idea of “Worst” geometric imperfections is to implement a geometric

imperfection that gives the lowest buckling resistance. In this thesis, weight will be

put on these “Worst” geometric imperfections and primarily three approaches will be

investigated, namely the linear buckling mode-shaped imperfection (LBMI), the single

perturbation displacement imperfection (SPDI) and two perturbation displacements

imperfection (TPDI). [DS/EN-1993-1-6, 2007] suggests that the LBMI approach is used,

unless other unfavorable patters can be justified, and is therefore selected as a way of

implementing geometric imperfections. The SPDI (and TPDI) approach is selected rather

than the SPLI (TPLI) approach investigated by [Castro et al., 2013], since it is more

convenient to compare imperfection amplitudes of the LBMI and the SPDI. The difference

between SPDI and SPLI is the use of a displacement rather than a load to cause the

perturbation of the geometry.

In the end of this chapter, a comparison of the different approaches and results will be

conducted.

3.1 Geometrical perfect cylinder
In order to have a reference value, i.e. a critical buckling resistance for a model without

imperfections, a geometrically and materially non-linear analysis (GMNA) is carried out.

Figure 3.1 shows axial shortening versus axial stress for the GMNA, and three points are

highlighted to visualise the displacement fields shown in Figure 3.2.
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Figure 3.1: Axial shortening versus axial stress for the GMNA. The three points are selected to

visualize the displacement fields in Figure 3.2.

First a stable equilibrium path is observed at (1) in Figure 3.1 and corresponds to the

displacement field in Figure 3.2 (1). At (2) the cylinder reaches the critical buckling

resistance and the deformations begins to concentrate at the edges. At (3) large

deformations is observed at the edges.

Figure 3.2: Displacement field obtained through GMNA corresponding to point 1, 2 and 3 in

Figure 3.1. Scale=25.

3.2 Geometrical imperfections by means of linear buckling

mode-shapes
To implement linear buckling mode-shaped imperfections, two steps are needed. First a

LBA is performed, and displacements from a given mode is extracted. These displacements

are then implemented as initial geometric imperfections in a fully non-linear analysis

(GMNIA).
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3. Simulation of Imperfections

3.2.1 LBA

A linear bifurcation analysis is performed to obtain the mode shapes of the first 35 modes.

Each of the mode shapes are visualised in Appendix C and will in the following section

be implemented as geometric imperfections in a GMNIA. The critical buckling resistances

obtained through linear bifurcation analyses, are shown in Figure 3.3, while the three

selected mode shapes corresponding to the red bars, are shown in Figure 3.4.
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Figure 3.3: Critical buckling resistance for 35 eigenmodes obtained through LBA. Red bars

indicate modes for further investigation.

From Figure 3.3, it is observed that the mode shapes appear in pairs, which is caused by

symmetry. This is also clearly visualised in Appendix C. From mode 1 to mode 7, the

critical buckling resistance is increased from ≈ 480 MPa to ≈ 505 MPa, corresponding to

an increase of 5%. However, another development is observed from mode 9 to mode 35,

where only a slight increase in the critical buckling resistance is observed. These results

indicates that a unique critical buckling resistance is difficult to select, due to the relatively

similar values, which also is mentioned in section 1.2 on page 9.

Figure 3.4: Mode shapes obtained from LBA for mode 1,7 and 16. Scale=0.3.
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3.2.2 GMNIA

An analysis is performed to identify which of the 35 mode shapes obtained through the

linear bifurcation analysis, when implemented as geometrical imperfections, has the lowest

buckling resistance. For convenience purposes, the imperfection amplitude w0 is, in the

following, normalised for the thickness t. In the present analysis w0/t is selected to 1, i.e.

corresponding to a maximum displacement of one wall thickness. Results of this analysis

are shown in Figure 3.5.
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Figure 3.5: Critical buckling resistance obtained through GMNIA with constant imperfection

amplitude w0/t = 1. The initial geometric imperfection pattern is obtained from the first 35

eigenmodes obtained through LBA. Red bars indicate mode shapes for further investigation.

A large variety is observed, meaning that it is of great influence which mode is chosen, to

represent the initial imperfections. To investigate the influence of the selected imperfection

amplitude w0 three mode shapes are chosen (1,7,16), represented by the red bars in Figure

3.5.

The buckling point is defined by the crosses shown in Figure 3.6, which corresponds to the

maximum. It is assessed that the three mode shapes chosen, represent all 35 mode shapes,

i.e. has a fairly similar equilibrium path as the rest of the 32 mode shapes. Furthermore

it is seen that the pre- and post buckling paths depend highly on the mode shape selected

as initial geometric imperfection.
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Figure 3.6: Axial stress versus axial short-

ening with imperfection amplitude w0/t = 1.
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Figure 3.7: Critical buckling resistances

with increasing imperfection amplitude for

mode shape 1,7 and 16.

Critical buckling resistances σcr versus imperfection amplitudes normalised for the

thickness w0/t are plotted in Figure 3.7. It is observed that w0 at mode shape 1 has

a minor effect on the buckling resistance compared to mode shape 7 and 16. Even with

w0/t = 0.2 at mode shape 16, a lower buckling resistance is observed than with w0/t = 5

at mode shape 1.

To visualize the displacement field of the cylinder, three points (shown in Figure 3.8)

are extracted from the equilibrium path for mode shape 16 in Figure 3.6.
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Figure 3.8: Axial shortening versus axial stress for mode shape 16 with w0/t = 1. The three

points are selected to visualize the displacement fields in Figure 3.9.

Figure 3.9 shows the displacement fields of the cylinder for each of the three points. First

a stable equilibrium path is observed in Figure 3.8 and corresponds to the displacement

field in Figure 3.9 (1), until a bifurcation point occurs at (2). At the last point (3) the
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displacement field resembles a mixture of mode shape 1 and 16. This shows that the

cylinder, even with mode shape 16 as initial imperfection, transforms into a displacement

field, which shows traces of both mode shape 1 and 16. Furthermore the displacements are

concentrated at the boundaries, which indicates the importance of the modeled boundary

conditions.

Figure 3.9: Displacement field corresponding to point 1, 2 and 3 in Figure 3.8. Scale=10

3.3 Geometrical imperfections by means of a single

perturbation displacement
Similar to the linear buckling mode-shaped imperfection, two steps are needed to

implement the single perturbation displacement imperfection. First a point displacement

is applied as shown in Figure 3.11, and a static calculation with geometrically and

materially non-linear theory is performed. Secondly the displacements for the whole model

are extracted, visualised in Figure 3.10, and are then implemented as initial geometric

imperfections in a geometrical and material non-linear analysis (GMNIA).

Figure 3.10: Initial displacement field for

the single perturbation displacement with

w0/t = 5 and scale=20.
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Figure 3.11: Position of applied displace-

ment for the single perturbation displace-

ment.

To show the effects of the single perturbation displacement imperfection on the geometry,

displacements of the circumferential and meridional directions are shown in Figure 3.12

and 3.14 respectively. It is seen that a great part of the geometry is influenced by the

single perturbation displacement.
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Figure 3.12: Absolute displacements nor-

malised to the thickness in the circumferen-

tial direction.

Figure 3.13: Principle sketch of unde-

formed (black) and deformed (red) circum-

ferential cross section.

A principle sketch of the undeformed and deformed cross section in the circumferential

direction is shown in Figure 3.13.
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Figure 3.14: Absolute displacements normalised for the thickness in the meridional direction.

In contrast to the equilibrium paths obtained using linear buckling mode-shaped

imperfections, the equilibrium path is more complex i.e. one or more local maxima occur,

as shown in Figure 3.15. This makes the buckling point more difficult to define, and it is

chosen to use the first maximum as critical buckling resistance, shown by the blue cross.
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Figure 3.15: Axial stress versus ax-

ial shortening with imperfection amplitude

w0/t = 1.5. The cross represents the se-

lected critical buckling point.
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Figure 3.16: Critical buckling resistance

versus imperfection amplitude normalised

for the thickness. Values are extracted for

the first maximum and the global maximum.

Critical buckling resistances σcr versus imperfection amplitudes w0/t are plotted in

Figure 3.16. From the figure it is observed that a rather high imperfection amplitude

is needed (w0/t ≥ 1) to influence the critical buckling resistance. However in the range

of w0/t = [1; 3] a high reduction is observed. When w0/t ≥ 3 a constant critical buckling

resistance, corresponding to a 15% reduction of the critical buckling resistance compared

to w0/t = 0, is observed.

Six points (shown in Figure 3.17) are extracted from the equilibrium path in Figure

3.15, to visualise the displacement fields of the cylinder in Figure 3.18.
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Figure 3.17: Axial stress versus axial shortening for a single perturbation displacement

imperfection with w0/t = 1.5. The six points are selected to visualize the displacement fields

in Figure 3.18.

From the displacement fields in Figure 3.18, it can be observed that a major part of the

34



3. Simulation of Imperfections

displacements are observed around the initial imperfection. In contrast to the displacement

field in Figure 3.9, the single perturbation displacement imperfection does not cause any

other displacement field than the one initially given. It should be noded that the selected

critical buckling point corresponds to (2).

Figure 3.18: Displacement field corresponding to point 1, 2, 3, 4, 5 and 6 in Figure 3.17. The

red dots represent the positions of the initial perturbation displacements. Scale=25.

3.4 Geometrical imperfections by means of two

perturbation displacements
In this section, the effect of adding two initial displacement imperfections is investigated.

The procedure is similar to the one described in section 3.3. Two displacements are applied

as shown in Figure 3.20, and correspond to the displacement field in Figure 3.19.

Figure 3.19: Initial displacement field

for the two perturbation displacements with

w0/t = 5 and scale=20.
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Figure 3.20: Positions of applied displace-

ments for the two perturbation displace-

ment.

Again the effects of the two displacement imperfections on the geometry are visualised by
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showing the displacements of the circumferential and meridional directions in Figure 3.21

and 3.22 respectively. It is seen that a great part of the geometry is influenced by the two

perturbation displacements.
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Figure 3.21: Absolute displacements nor-

malised for the thickness in the circumferen-

tial direction.
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Figure 3.22: Absolute displacements nor-

malised for the thickness in the meridional

direction.

The critical buckling resistance is again chosen as the first maximum, shown by the blue

cross in Figure 3.23.
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Figure 3.23: Axial stress versus ax-

ial shortening with imperfection amplitude

w0/t = 1. The cross represents the selected

critical buckling point.
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Figure 3.24: Critical buckling resistance

versus imperfection amplitude normalised

for the thickness. Values are extracted for

the first maximum and the global maximum.

In order to investigate the effect of the imperfection amplitudes w0, critical buckling

resistances σcr versus imperfection amplitudes w0/t are plotted in Figure 3.24. It is

observed that the imperfection amplitude has a high influence on the buckling resistance

for w0/t = [0; 1] and is reduced with about 30%. The imperfection amplitude has less

influence on the buckling resistance for w0/t = [1; 5] where a reduction of only 5% is

observed.

Six points (shown in Figure 3.25) are extracted from the equilibrium path in Figure

3.23, to visualise the displacement fields of the cylinder in Figure 3.26.
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Figure 3.25: Axial shortening versus axial stress for the two perturbation displacement

imperfections with w0/t = 1. The six points are selected to visualize the displacement fields

in Figure 3.26.

Figure 3.26 shows the displacement fields of the cylinder for each of the six points.

Figure 3.26: Displacement field corresponding to point 1, 2, 3, 4, 5 and 6 in Figure 3.25. The

red dots represent the positions of the initial perturbation displacements. Scale=25

First a stable equilibrium path is observed in Figure 3.25 and corresponds to the

displacement field in Figure 3.26 (1), until a bifurcation point occurs at (2), which also
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is selected as the critical buckling point. At point (3) a local minimum is observed

and the cylinder regains strength and follows a stable path through point (4) until it

reaches a new bifurcation point (5). At the last point (6) the deformations are now

observed at the boundaries. Generally it is observed, in contrast to the single perturbation

displacement imperfection, that the displacements does not develop at the position of the

initial imperfection, which is unexpected. This leads to the conclusion, it can be very

difficult to predict how the cylinder is influenced by the different imperfections.

3.5 Comparison/summarising of imperfections
In this section, the equilibrium path, and thereby the critical buckling resistance, of models

with geometric imperfections as presented in section 3.2, 3.3 and 3.4 will be compared.

Furthermore the influence on the critical buckling resistance by increasing the imperfection

amplitude is compared. The initial geometric imperfection shapes are shown in Figure

3.27.

Figure 3.27: Initial geometric imperfection shapes. LBMI1, LBMI7 and LBMI16 represents the

linear buckling mode shaped imperfection for mode 1, 7 and 16, respectively. SPDI represents

imperfections simulated by single perturbation displacement imperfection, while TPDI represents

imperfections simulated by two perturbation displacement imperfections. All shapes are scaled

corresponding to a maximum displacement w0 = 0.3m.

The equilibrium paths of each numerical model with imperfection amplitude w0/t = 1.0,

are shown in Figure 3.28. It is seen that the different methods to simulate geometric

imperfections provide a very scattered result. However all models with geometric

imperfections give lower critical buckling resistances, compared to the perfect cylinder

(GMNA), which is expected. The LBMI for mode 16 gives the lowest critical buckling

resistance, and it is observed that the stiffness is reduced dramatically. The LBMI for

mode 1 and the SPDI gives results very close to the perfect model, and this indicates

that these imperfection patterns does not have a significant effect on the critical buckling

resistance.
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Figure 3.28: Axial stress versus axial shortening with imperfection amplitude w0/t = 1.0 for all

the simulated imperfections. GMNA represents the model without imperfections.

The large difference in the critical buckling resistance is caused by the large difference

in the initial imperfection pattern. This is clearly visualised by the difference in the

initial imperfection pattern between LBMI16 and SPDI in Figure 3.27. With the initial

imperfection pattern for LBMI16, almost all of the geometry is changed while only a part

is changed in SPDI. This is also reflected in the results of the critical buckling resistance,

where a 60% difference is observed.

The critical buckling resistance versus imperfection amplitude for all the simulated

imperfections, are shown in Figure 3.29. In general, there are no connection between

the five methods. However, similar developments are observed for LBMI7, LBMI16 and

TPDI, where there is a high reduction in the critical buckling resistance in the range

w0/t = [0; 1]. This indicates that the critical buckling resistance for these three methods

are very sensitive to small imperfections. In contrast to this, it is observed that LBMI1

and SPDI almost are unaffected by imperfection amplitudes w0/t < 1.
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Figure 3.29: Critical buckling resistance versus imperfection amplitude normalised for the

thickness for all the simulated imperfections.

Since predicting the behavior of thin cylindrical shell structures is complex, it is necessary

to be conservative, when choosing the initial imperfection pattern and the imperfection

amplitude. Therefore it is of interest to investigate the uncertainties related to a perfect

as well as an imperfect cylinder, and the reliability of the given methods to simulate

geometric imperfections.
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4 Uncertainties related to the

Critical Buckling Resistance
In general, uncertainty related to structures can be divided in four groups, which further

can be divided in aleatory and epistemic uncertainty;

� Aleatory uncertainty

– Physical uncertainty.

� Epistemic uncertainty

– Model uncertainty.
– Statistical uncertainty.
– Measurement uncertainty.

Physical uncertainty is the uncertainty related to the natural randomness of a given

quantity, such as the uncertainty in the yield stress due to production variation or the

uncertainty of the annual maximum mean wind speed.

Model uncertainty is the uncertainty related to the approximated mathematical models

used as well as the uncertainty of the choice of distribution functions used for the stochastic

variables.

Statistical uncertainty is the uncertainty related to the limited number of data available

and thereby the uncertainty of estimating statistical parameters.

Measurement uncertainty is the uncertainty related to imperfect measurements of

physical parameters, such as a geometrical quantity.

These four types of uncertainties are usually used by the reliability methods, which will be

presented in the following. Uncertainties like gross errors and human errors are not treated

directly in the the reliability methods, but the reliability index will typically depend on,

consequences and class of failure, [DNV-Note-30.6, 2013] and safety class, [DS/EN-1990,

2007].

In this thesis, physical uncertainty is accounted for by modeling stiffness- and strength

parameters stochastically. The model uncertainty is accounted for by using experimental

data from [Batterman, 1965], and in the following, the finite element model used to

represent the experimental setup is presented. Statistical and measurement uncertainties

are disregarded in this thesis.

4.1 Finite element model representing experimental setup

from Batterman
In this section, the model setup from [Batterman, 1965] is presented. In 1965,

[Batterman, 1965] studied the plastic buckling of cylindrical shells under axial compression

experimentally. The cylindrical shells was made of 2024-T4 aluminum with material and

geometrical parameters listed in Table 4.1.
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Notation Symbol Value Unit

Young’s modulus E 0.745 · 109 [Pa]

Poisson’s ratio ν 0.33 [-]

Yield stress fy 415 · 106 [Pa]

Number of specimens - 17 [-]

Length l 25 - 50 [mm]

Radius r 33 - 35 [mm]

Thickness t 0.3 - 3.5 [mm]

Radius-thickness ratio r/t 10 - 120 [-]

Table 4.1: Material and geometrical parameters used by [Batterman, 1965].

In the article, the stress-strain curve of the material in compression was obtained by

experiments as shown in Figure 4.1. The data is extracted and used in the numerical

models.

Figure 4.1: Stress-strain curve of 2024-T4 aluminum obtained by [Batterman, 1965]

Three end conditions were used in the article, namely abrupt, tapered and uniform, shown

in Figure 4.2. In this section, data will only be extracted for specimens with uniform end

conditions i.e. the specimens are flat ended between smooth bearing blocks.
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4. Uncertainties related to the Critical Buckling Resistance

Figure 4.2: Three end conditions presented in [Batterman,

1965].
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Figure 4.3: Applied bound-

ary conditions similar to uni-

form.

The uniform boundary condition is applied to the FE model as shown in Figure 4.3, which

is similar to BC2 in section 2.4. Parameters used in the FE model, are shown in Table

4.2.

FEA solver Abaqus version 6.13

Non-linear algorithm Riks method

Element type S8R

Number of elements/nodes Varying

Element size 2 mm·2 mm

Integration points per element 4

Table 4.2: Analysis parameters.

4.2 Estimation of model uncertainty according to

DS/EN-1990
In order to take the model uncertainties related to different mathematical models into

account, the method in annex D in [DS/EN-1990, 2007] is used.

As mentioned in the history review, the buckling resistance is difficult to describe

through a mathematical model. Therefore, it is of interest to calculate the model

uncertainty for selected methods, which in this case will be:

� Semi-empirical method suggested by [DS/EN-1993-1-6, 2007]

� Semi-empirical method suggested by [DNV-RP-C202, 2013]

� Geometrically and materially non-linear analysis (GMNA)

� Geometrically and materially non-linear analysis with imperfections (GMNIA)

The semi-empirical method suggested in [DS/EN-1993-1-6, 2007] and [DNV-RP-C202,

2013] are selected in order to compare these two approaches. The GMNA and GMNIA

suggested in [DS/EN-1993-1-6, 2007] are selected since they are the methods with highest

complexity and are therefore expected to give the lowest model uncertainties.
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For a mathematical model h the resistance Y can be written as

Y = f(X) ∼= XRh(X,R1,...,Rm) (4.1)

where

Y Buckling resistances

h Mathematical model

XR Model uncertainty

X Physical parameters

R1,...,Rm Regression parameters

In the approach suggested by [DS/EN-1990, 2007], annex D, (4.1) is rewritten:

Y = f(X) ∼= b∆h(X) (4.2)

where

b Constant corresponding to the mean value of R0 (bias)

∆ Log-normal distributed stochastic variable with mean 1 and standard deviation σ∆

Further it is assumed that R1,...,Rm are included in the model h(X).

Test results from [Batterman, 1965] is assumed to be statistical independent and the bias,

b, can be estimated using the “Least squares method”

b =

N∑
i=1

yih(xi)

N∑
i=1

h(xi)2

(4.3)

where

yi Realizations of buckling resistances

xi Realizations of physical and geometrical parameters

For each test result, a realization of the lognormal distributed variable XR, is obtained

from

∆i = ln

(
yi

bh(xi)

)
(4.4)

The mean value ∆̄ and standard deviation σ∆ can be estimated from

∆̄ =
1

N

N∑
i=1

∆i (4.5)

σ∆ =

√√√√ 1

N − 1

N∑
i=1

(
∆i − ∆̄

)2
(4.6)
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4. Uncertainties related to the Critical Buckling Resistance

Subsequently the coefficient of variation of the model uncertainty can be found

V∆ =
√

exp(σ2
∆)− 1 (4.7)

In order to visualise the difference between the results obtained, observed buckling

resistances in experiments versus estimated buckling resistance from the models has been

plotted in Figure 4.4, 4.5, and 4.6. The blue line in the plots represents b = 1.0, and the

red line represents the calculated bias.

The semi-empirical method suggested by [DS/EN-1993-1-6, 2007] versus the experimen-

tal data from [Batterman, 1965] is plotted in Figure 4.4. A fairly high bias is observed,

which is expected since the Eurocode is conservative. Additionally it can be observed

that non of the points are below b = 1.0 corresponding to a safe estimate of the buckling

resistance for all tests. Furthermore the coefficient of variation of the model uncertainty

is calculated to be V∆ = 0.04, illustrated by the points being closely concentrated around

the red line.
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Figure 4.4: Observed buckling resistance in experiments versus estimated buckling resistance

from the semi-empirical method suggested by [DS/EN-1993-1-6, 2007]. The coefficient of variation

of the model uncertainty V∆ = 0.04.

In Figure 4.5, the semi-empirical method suggested by [DNV-RP-C202, 2013] versus the

experimental data from [Batterman, 1965] is plotted. Similar to [DS/EN-1993-1-6, 2007],

a fairly high bias is observed, which again is expected. In contrast to [DS/EN-1993-1-6,

2007], the coefficient of variation of the model uncertainty is calculated to V∆ = 0.15,

which indicates a higher deviation between the individual points.
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Figure 4.5: Observed buckling resistance in experiments versus estimated buckling resistance

from the semi-empirical method suggested by [DNV-RP-C202, 2013]. The coefficient of variation

of the model uncertainty V∆ = 0.15.

The numerical GMNA method suggested by [DS/EN-1993-1-6, 2007] versus the

experimental data from [Batterman, 1965] is plotted in Figure 4.6. In contrast to the

the semi-empirical methods, a bias b = 1.08 is calculated which is less conservative. The

coefficient of variation of the model uncertainty is calculated to V∆ = 0.10, which is highly

influenced by the three points below the blue line. In general it is seen that the GMNA is

good at predicting the critical buckling resistance, but imperfections are not considered,

which could be the reason for the points marked with crosses lying under b = 1.00.
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Figure 4.6: Observed buckling resistance in experiments versus estimated buckling resistance

from numerical GMNA method suggested by [DS/EN-1993-1-6, 2007]. The coefficient of variation

of the model uncertainty V∆ = 0.10. The crosses refers to test specimens with r/t > 100

Results from the models are shown in Table 4.3.

Model b V∆

Eurocode 1993-1-6 1.28 0.04

DNV-RP-C202 1.25 0.15

GMNA 1.08 0.10

Table 4.3: Bias b and coefficient of variation of the model uncertainty V∆ for the three selected

models.

It is investigated whether there is a relation between the three points below the blue line,

and it is observed that they all have a r/t higher than 100, illustrated in Figure 4.7.

To take into account the length l of the test specimens, the Batdorf-parameter, Z is

introduced;

Z =
√

(1− ν2)
l2

rt
(4.8)

The normalised buckling resistance versus Z is plotted in Figure 4.8. It is concluded that

the length has little influence on the buckling resistance.
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Figure 4.7: Observed buckling resistance

in experiments versus r/t. The crosses refers

to test specimens with r/t > 100
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Figure 4.8: Observed buckling resistance

in experiments versus Z. The crosses refers

to test specimens with r/t > 100

To create an even better numerical model, a numerical GMNIA method suggested by

[DS/EN-1993-1-6, 2007] is implemented on test specimens with r/t higher than 100.

However, the remaining test specimens with r/t lower than 100 will not be given an initial

imperfection, but will be similar to results obtained through the GMNA. The geometry

and critical buckling resistance of the three test specimens, obtained by [Batterman, 1965],

are listed in Table 4.4.

l [mm] r [mm] t [mm] r/t [-] σcr,Experimental [MPa]

Cylinder 3 50.80 33.17 0.29 114.56 227.73

Cylinder 4 25.40 33.17 0.28 116.61 219.05

Cylinder 5 12.70 33.18 0.29 113.60 245.45

Table 4.4: Geometrical parameters for the three test specimens with r/t higher than 100, along

with σcr,Experimental.

The linear buckling mode-shaped imperfection (LBMI) is used to simulate the

imperfections. First the lowest critical buckling resistance of the first 35 modes is obtained

through a geometrically and materially non-linear analysis with an imperfection amplitude

w0/t = 1, shown in Figure 4.9, 4.10 and 4.11.
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Figure 4.9: Critical buckling resistances for 35 eigenmodes obtained through GMNIA. The

analysis is performed for cylinder 3, with constant imperfection amplitude w0/t = 1. The red bar

indicates the lowest buckling resistance.
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Figure 4.10: Critical buckling resistances for 35 eigenmodes obtained through GMNIA. The

analysis is performed for cylinder 4, with constant imperfection amplitude w0/t = 1. The red bar

indicates the lowest buckling resistance.
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Figure 4.11: Critical buckling resistances for 35 eigenmodes obtained through GMNIA. The

analysis is performed for cylinder 5, with constant imperfection amplitude w0/t = 1. The red bar

indicates the lowest buckling resistance.

It is observed that, when applying w0/t = 1, the buckling resistances are reduced with

≈ 60% and is therefore much lower than the results obtained by [Batterman, 1965].

Additionally it is investigated whether there is a connection between the three modes

shapes that gives the lowest critical buckling resistance. The three mode shapes are

visualised in Figure 4.12.

Figure 4.12: Mode shapes corresponding to the lowest critical buckling resistances for cylinder

3, 4 and 5.

The mode shapes are, despite the large difference in length, relatively similar and resembles

mode shape 16 found Figure 3.4 on page 29. This “ring buckling” pattern seems to be

the most critical for an axially compressed cylindrical shell.

It is of interest to calculate the size of w0, so that the results from the GMNIA corresponds

to the experimental data, in order to obtain a low coefficient of variation of the model

uncertainty. An analysis i carried out in the interval w0/t = [0.01; 0.075] to investigate

the influence of the imperfection amplitude on the critical buckling resistance, see Figure

4.13.
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Figure 4.13: Critical buckling resistances versus imperfection amplitude normalised for the

thickness, for each of the three cylinders. The crosses represent test results.

It is clear from Figure 4.13 that a very small w0 has great influence on the buckling

resistance. It is chosen to use an identical w0 for the three test specimens, and to ensure

that all σcr,GMNIA are lower than σcr,Experimental, an imperfection amplitude normalised

for the thickness is selected to w0/t = 0.05. The results are listed in Table 4.5.

σcr,Experimental [MPa] σcr,GMNIA [MPa]

Cylinder 3 227.73 196.10

Cylinder 4 219.05 217.05

Cylinder 5 245.45 214.24

Table 4.5: Critical buckling resistance obtained from [Batterman, 1965] and GMNIA for the

three test specimens.

The results are implemented in the approach suggested by [DS/EN-1990, 2007], annex D,

while results from cylinders with r/t < 100 remain without imperfection, i.e. results from

GMNA. The numerical GMNIA method suggested by [DS/EN-1993-1-6, 2007] versus the

experimental data from [Batterman, 1965] is plotted in Figure 4.14
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Figure 4.14: Observed buckling resistance in experiments versus estimated buckling resistance

from numerical GMNIA method suggested by [DS/EN-1993-1-6, 2007]. The coefficient of variation

of the model uncertainty V∆ = 0.04. The crosses refers to test specimens with r/t > 100

It is observed that the three points are above b = 1.0 and the coefficient of variation

of the model uncertainty is calculated to ∆V = 0.04. However, if the model should

be used to calculate a realistic reliability index, and in order to be consistent, all test

specimens have to be modeled with imperfections. This has not been done, since the test

results correspond well to the GMNA, which could indicate that the geometry of the test

specimens are nearly perfect. Therefore, the model uncertainty for GMNA is used in the

following when estimating the reliability level for GMNIA.
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5 Reliability Estimation of the

Critical Buckling Resistance
In this chapter, the reliability index of the earlier presented methods to calculate the

critical buckling resistance is estimated. The estimated reliability index is compared with

a target reliability level βtarget, and based on this, a calibration of the partial safety factor

γM is performed. The following steps, inspired by [Sørensen, 2004], are performed:

� Selection of the target reliability level.

� Formulation of the failure function (limit-state function).

� Identification of stochastic variables and deterministic parameters in the failure

function, along with specification of the distribution types and parameters for the

stochastic variables.

� Estimation of the reliability index through a first order reliability analysis (FORM),

which is validated through a crude Monte Carlo simulation (MCS).

� Comparison of the estimated reliability with the target reliability level.

� Calibration of partial safety factors in order to reach the target reliability level.

The target reliability level is selected to βtarget = 4.7 with a reference period of 1 year.

This is based on a comparison of [DS/EN-1990, 2007] and [DNV-Note-30.6, 2013], where

βtarget = 4.7 corresponds to a structure with safety class (or reliability class) RC2 in

[DS/EN-1990, 2007] and a non-redundant structure - no warning before failure with serious

consequences in [DNV-Note-30.6, 2013], see Table 1.1 and 1.2 on page 5. The 1 year

reference period is selected since the distributions in the Eurocode are based on 1 year

periods.

In the following, an introduction of the used methods to estimate the reliability index

is presented.

5.1 General reliability estimation
In order to estimate the reliability of cylindrical shell structures, a limit-state function is

required. In the present case, a collapse limit state (ultimate limit state) is considered,

i.e. the structure is just at the point where it becomes unstable (buckles). The limit state

is given as a function of realisations x of the stochastic variables X;

g(x) = g(x1,x2,x3,...,xn) ≤ 0 (5.1)

where positive values of g(x) denotes the safe state, while the negative values denotes

failure [Ditlevsen & Madsen, 1996]. A safety margin M is obtained by replacing

realisations x in the limit state function with stochastic variables X;

M = g(X) (5.2)

The probability of failure PF of the limit-state function (5.1) is given as;

PF = P (g(x) ≤ 0) = P (M ≤ 0) = Φ(−β) (5.3)
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where Φ is the standard normal distribution function.

Calculations in this chapter are performed in the open-source Matlab toolbox called

Finite Element Reliability Using Matlab (FERUM). The developments of the code started

in 1999 at the University of California at Berkeley and consist of various structural

reliability methods, but only First-Order Reliability Method (FORM) and crude Monte

Carlo simulation (MCS) will be used in this thesis, and is introduced in the following.

5.1.1 First-Order Reliability Method

In order to estimate the reliability index, the First-Order Reliability Method (FORM)

is used. The method uses a first-order approximation of the limit-state function (5.1)

in the u-space at the failure point u∗. The u-space is a normalised space, where the

stochastic variables u1, u2,....un are Normal distributed with mean value µ = 0 and

standard deviation σ = 1. The failure point, also called the design point, is defined

as the point on the limit-state surface, which is closest to the origin, and the distance is

defined as the the Hasofer & Lind reliability index β. An illustration of the method is

shown in Figure 5.1.

Figure 5.1: Geometrical illustration of the reliability index β in u-space [Sørensen, 2004].

To obtain the reliability index β the optimization problem (5.4) has to be solved.

β = min
gu(u)=0

√√√√ n∑
i=1

u2
i (5.4)

There are several numerical algorithms to solve this optimization problem, but the

standard algorithm in FERUM will be used in the present examples without further

considerations.

As seen in Figure 5.1, α is defined as a normal vector to the failure surface at the failure
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5. Reliability Estimation of the Critical Buckling Resistance

point and is given as:

αi =
dβ

dui

∣∣∣∣
u=u∗

(5.5)

where

α Unit normal to the failure surface at the β-point

u∗ β-point in the u-space

The α-vector can be used as a measure of how the individual stochastic variables influence

the reliability index β. The variance of the linear safety margin M = β − αTU is given

as;

σ2
M = α2

1 + α2
2 + · · ·+ α2

n = 1 (5.6)

If the stochastic variables Ui and Xi are independent, α2
i gives the percentage of the total

uncertainty. Another important sensitivity measure is the omission sensitivity factor ζ

given as;

ζi =
1√

1− α2
i

(5.7)

The omission sensitivity factor is a measure of the importance on the reliability index if

a given stochastic variable is assumed deterministic [Sørensen, 2004].

5.1.2 Crude Monte Carlo simulation and Importance Sampling

When performing a Monte Carlo simulation, distinctions is made between crude estimation

(MCS) and importance sampling (MCSIS). In MCS the probability of failure P̂f is

estimated in a statistical sense, that is, N independent samples ûj are randomly sampled

in the u-space.

P̂f =
1

N

N∑
j=1

I[g(ûj)] (5.8)

where I[g(u)] is the indicator function defined as;

I[g(u)] =

{
0 if g(u) > 0 (safe)

1 if g(u) ≤ 0 (unsafe)
(5.9)

MCS is visualised in Figure 5.2 for a simple case with two stochastic variables X1 and X2

representing load and strength respectively.
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Figure 5.2: Crude Monte Carlo [Sørensen,

2004].
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Figure 5.3: Monte Carlo with importance

sampling [Sørensen, 2004].

When estimating the probability of failure by MCSIS, the idea is to concentrate the

simulations in the area with the greatest contribution on the probability of failure, see

Figure 5.3. (5.8) is rewritten and the probability of failure is estimated by:

P̂f =
1

N

N∑
j=1

I[g(ŷj)]
fU (ŷj)

fS(ŷj)
(5.10)

where fS(ŷj) is called the sampling density and fU (ŷj) is the standard normal density

function for U.

The advantage of the MCSIS is that a smaller amount of simulations is needed, compared

to MCS. However, if the FORM analysis provides inaccurate results, the importance

sampling uses inaccurate information and therefore a large number of simulations is

required to obtain accurate results. In the present calculations, the MCS will be used,

since it is wanted as a verification tool to the FORM results.q

5.2 Design equation and limit state function
In the following, the reliability of the cylindrical shell is estimated from only one failure

mode, whereas in a real design process all thinkable failure modes, such as yielding in the

material or rapture due to fatigue, should be taken into account.

Two loads are considered, namely the permanent dead load and the variable wind load

and are combined through the load combinations STR (strength) (6.10a) and (6.10b) in

[DS/EN-1990, 2007]. To investigate the influence of the ratio between the permanent

and variable load, a parameter η is introduced and (6.10a) and (6.10b) is rewritten, as

suggested in [DS/INF-172, 2009], leading to the following design equations;

G = zB
h(xc,R1,...,Rn)

γM1
− ((1− η)γGB,supGUc) (6.10a) (5.11)

G = zA
h(xc,R1,...,Rn)

γM1
− ((1− η)γGA,supGUc + ηγQQc) (6.10b) (5.12)

where
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zA,zB Design parameters

h Mathematical model of the critical buckling resistance

xc Characteristic values

Ri Regression parameters

γM1 Partial safety factor for shell stability

η Parameter controlling the ratio between permanent and variable load [0;1]

γG,sup Partial safety factor for permanent load

γQ Partial safety factor for variable load

GUc Characteristic permanent load that acts unfavorable

Qc Characteristic variable load

The less favorable of (5.11) and (5.12) is selected based on the choice of η, where η = 0

corresponds to no variable load and η = 1 corresponds to no permanent load.

The limit-state function corresponding to the design equation can be written;

g = zXRh(X,R1,....Rn)− ((1− η)G+ ηQXQ) (5.13)

where

XR Model uncertainty of h

X Stochastic variables

XQ Model uncertainty of Q

Negative values of g in (5.13) represents the buckled state i.e. failure, while positive values

denotes the safe state. The design parameter z is selected as the maximum of zA and zB
in (5.11) and (5.12).

5.2.1 Stochastic variables

The stochastic variables X used in (5.13) are presented in Table 5.1. The uncertainties

and characteristic values are based on different references shown in the table, while model

uncertainties are based on section 4.1. The initial imperfection amplitude w0/t is assumed

to be normal distributed with mean value µ = 0 and standard deviation σw0/t = 0.1−0.5.

The reason for the varying standard deviation is that it is of interest to investigate the

influence of σw0/t on the reliability index.
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Variable µ σ V Distr. Quantile Xc Reference

fy [MPa] 264.3 18.5 0.07 LN 5% 235 [JCSS, 2001]

E [GPa] 210 6.3 0.03 LN µ 210 [JCSS, 2001]

ν 0.3 0.009 0.03 LN µ 0.3 [JCSS, 2001]

w0/t 0 0.1-0.5 - N - - -

XR,DS/EN 1.28 0.05 0.04 LN - - Tabel 4.3 on page 47

XR,DNV 1.25 0.18 0.15 LN - - Tabel 4.3 on page 47

XR,GMNA 1.08 0.108 0.10 LN - - Tabel 4.3 on page 47

Qwind 1.00 0.25 0.25 G 98% 1.65 [Sørensen et al., 2001]

XQ,wind 1.00 0.22 0.22 G 72% 1.10 [Sørensen et al., 2001]

G 1.00 0.10 0.10 N 50% 1.00 [DS/INF-172, 2009]

Table 5.1: Stochastic variables. N∼Normal, LN∼LogNormal, G∼Gumbel.

The mean value of the loads in Tabel 5.1 is selected to be 1.00, as they are accounted for

in the design parameter z.

5.3 Reliability estimation
In the following, FORM is used to estimate the reliability index β for a number of η-values,

while MCS is used as a verification tool. The advantage of MCS is that no approximations

is made, while the disadvantage is that it is significantly slower compared to FORM. Two

approaches are conducted;

� Method 1: The critical buckling resistance in the design equations, (5.11)/(5.12),

is calculated by the semi-empirical method in [DS/EN-1993-1-6, 2007], see Appendix

A.

� Method 2: The critical buckling resistance in the design equations, (5.11)/(5.12),

is calculated by the semi-empirical method in [DNV-RP-C202, 2013], see Appendix

B.

Besides the difference in the characteristic critical buckling resistance (σc,Eurocode = 152

MPa and σc,DNV = 130 MPa), also the partial safety factor γM differs. All used partial

safety factors are listed in Table 5.2. It should be noted, that the partial safety factors

related to the load term(γGj,sup, γQ,1) in (5.11)/(5.12) entirely are selected from [DS/EN-

1990, 2007].

Partial safety factor Equation (5.11) Equation (5.12)

γM1,DS/EN 1.20 1.20

γM,DNV 1.45 1.45

γGj,sup,DS/EN 1.20 1.00

γQ,1,DS/EN - 1.50

Table 5.2: Partial safety factors.

It is seen from Table 5.2, that a large difference is observed in γM which is caused by the

different approaches in the design codes.
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In [DS/EN-1993-1-6, 2007] γM is selected on the basis of a consequence class, chosen

to CC2 equivalent to medium consequence class. In the present case, γM1,DS/EN = 1.20 is

selected based on the Danish national annex. In contrast to this, γM in [DNV-RP-C202,

2013] is calculated directly from the reduced shell slenderness, λ̄s.

5.3.1 Semi-empirical models

In the following, results from the two approaches are presented. In Figure 5.4, β versus η is

plotted for method 1 using the semi-empirical mathematical model in [DS/EN-1993-1-6,

2007] and method 2 using the semi-empirical mathematical model in [DNV-RP-C202,

2013]. It is observed that β estimated through FORM and Monte Carlo almost are

identical, and it is concluded, that in this case, FORM is a reasonable tool to estimate

the reliability index.
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Figure 5.4: Reliability index β versus the parameter η for method 1 using the semi-

empirical mathematical model in [DS/EN-1993-1-6, 2007] and method 2 using the semi-empirical

mathematical model in [DNV-RP-C202, 2013]. The points at the dashed lines represent use of

(5.11), while the points at the solid lines represent use of (5.12).

From Figure 5.4, a large difference in β is observed with η < 0.3. This is caused by the

large difference in the model uncertainty of the two methods, see Table 5.1. β is almost

the same with η > 0.3. This is due to the fact, that the importance of the uncertainty

on the variable load increases with η and since they are equal in the two methods the

reliability index becomes close to equal. The importance of the stochastic variables are

listed as α2-values in Table 5.3 and 5.4.
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Eurocode α2
η=0 α2

η=0.1 α2
η=0.2 α2

η=1

fy 0.44 0.26 0.08 0.02

XR 0.10 0.08 0.02 0

G 0.42 0.18 0.02 0

Qwind 0 0.25 0.45 0.51

XQ,wind 0 0.22 0.41 0.45

Table 5.3: α2-values for method 1 using

the semi-empirical mathematical model in

[DS/EN-1993-1-6, 2007].

DNV α2
η=0 α2

η=0.1 α2
η=0.2 α2

η=1

fy 0.01 0.01 0 0

XR 0.73 0.72 0.36 0.11

G 0.24 0.19 0.04 0

Qwind 0 0.02 0.30 0.47

XQ,wind 0 0.01 0.27 0.41

Table 5.4: α2-values for method 2 using the

semi-empirical mathematical model in [DNV-RP-

C202, 2013].

It is clearly seen from Table 5.3 and 5.4, that the importance of the model uncertainty

XR reduces with increasing η. When compering the estimated β-values with the selected

target reliability level, a larger deviation is observed, when using method 1 with the semi-

empirical mathematical model in [DS/EN-1993-1-6, 2007] compered to method 2 using

the semi-empirical mathematical model in [DNV-RP-C202, 2013].

5.3.2 Numerical models

In order to calculate the reliability index for the mathematical models (GMNA and

GMNIA) used in Abaqus, simplifications have to be made. The reason for the

simplifications is, that when calculating the reliability index in FERUM, a large number

of calls (typical more than 50) to the failure function is necessary. This procedure

is computationally heavy, since a calculation to obtain the critical buckling resistance

in Abaqus is needed for each call to the failure function. As an example, a GMNA

calculation of the critical buckling resistance in Abaqus takes approximately 200 seconds,

corresponding to approximately 3 hours to obtain a single value of β. Additionally, a

Monte Carlo simulation is virtually impossible to perform, if the critical buckling resistance

needs to be obtained in Abaqus.

To overcome the problem, a mathematical simplification for the numerical models is

conducted. Basically the simplification is based on knocking down the critical buckling

resistance obtained in the linear bifurcation analysis. The parameters included in the

knock down factors are determined from the α2-vector, where it is observed that, by only

looking at the physical parameters, the yield stress, fy, and the imperfection amplitude,

w0/t, has the most influence on the reliability index. The simplified mathematical models

used to calculate the critical buckling resistance for GMNA and GMNIA can then be

written as;

σcr,GMNA = XR,GMNA(fy)σcr,LBA (5.14)

σcr,GMNIA = XR,GMNA(fy)XR,imp(w0/t)σcr,LBA (5.15)

where

XR,GMNA Knock down factor determined as σcr,GMNA/σcr,LBA
σcr,LBA Critical buckling resistance obtained through LBA

XR,imp Knock down factor for imperfections determined as σcr,GMNIA/σcr,GMNA
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The knock down factors as function of fy and w0/t are shown in Figure 5.5 and 5.6

respectively.
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Figure 5.5: Knock down factor XR,GMNA

versus yield stress fy.
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Figure 5.6: Knock down factor XR,imp

versus imperfection amplitude w0/t for

LBMI1, LBMI16 and TPDI.

The large difference between the critical buckling resistance obtained in LBA and GMNA

is reflected in the large knock down factor XR,GMNA in Figure 5.5. It should be noted, that

the simplification makes fy and w0/t independent. Three initial imperfection patterns are

selected for further investigation, namely; LBMI1, LBMI16 and TPDI. The LBMI patterns

are selected since they are suggested as initial imperfections in [DS/EN-1993-1-6, 2007],

while the TPDI is selected as an alternative. The initial imperfection pattern for each

model; LBMI1, LBMI16 and TPDI is shown in Figure 3.27 on page 38. In order to

implement the knock down factor XR,imp in FERUM, different regression lines, shown in

Figure 5.6, are made depending on the imperfection pattern.

Figure 5.7 shows the reliability index β versus the parameter η for method 1 and 2 using

the mathematical GMNA model. It is seen that β estimated through FORM and MCS

coincides, and the FORM results are therefore considered valid.
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Figure 5.7: Reliability index β versus the parameter η for method 1 and 2 using the mathematical

GMNA model. The points at the dashed lines represent use of (5.11), while the points at the solid

lines represent use of (5.12).

Generally, method 1 gives a lower reliability level compared to method 2 when using the

mathematical GMNA model and the reliability level for both methods is above the target

reliability. The reason for the difference between the two methods is, that a lower partial

safety factor and a higher characteristic critical buckling resistance is used in the design

equation for method 2. It is assessed, that the difference in the partial safety factor

has the highest influence on the reliability index. Therefore it is investigated how the

reliability level will change when the partial safety factor in the resistance term in method

2 is selected to γM = 1.20 i.e. the partial safety factor from [DS/EN-1993-1-6, 2007].

As shown in Figure 5.7, the reliability level decreases when using γM = 1.20 in method

2, and the difference is solely caused by difference in the characteristic critical buckling

resistance used in the design equations.

In order to investigate the influence of the imperfection amplitude on the reliability index,

three different standard divisions is selected namely; σw0/t=0.1, σw0/t=0.3 and σw0/t=0.5,

which is shown for method 1, while only σw0/t=0.3 is shown for method 2. Reliability

index β versus the parameter η for method 1 and 2 using the mathematical GMNIA

model with initial imperfection pattern LBMI1 is shown in Figure 5.8.
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Figure 5.8: Reliability index β versus the parameter η for method 1 and 2 using the mathematical

GMNIA model with initial imperfections from LBMI1 with varying standard deviation σw0/t. The

points at the dashed lines represent use of (5.11), while the points at the solid lines represent use

of (5.12).

The estimated β-values are almost identical to the β-values in Figure 5.7, which is due

to the low knock down factor, XR,imp for LBMI1. It is therefore concluded that a rather

high σw0/t is needed to have an influence on the reliability index when modeling the

imperfection as LBMI1.

Figure 5.9 shows the reliability index β versus the parameter η for method 1 and 2 using

the mathematical GMNIA model with initial imperfection pattern LBMI16. In contrast

to the previous results, the β estimated from FORM deviates from the β estimated from

MCS. This indicates that the FORM-results not are reliable, and is likely caused by the

regression lines used to approximate the knock down factors XR,GMNA and XR,imp. Three

MCS are performed, and it is seen that the trend is similar, and that it is likely that the

β-level is lower than shown in Figure 5.9. Only method 1 with σw0/t = 0.1 has a reliability

level close to the target reliability, which indicates that when using LBMI16 as the initial

imperfection pattern, low reliability levels are achieved.
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Figure 5.9: Reliability index β versus the parameter η for method 1 and 2 using the mathematical

GMNIA model with initial imperfections from LBMI16 with varying standard deviation σw0/t. The

points at the dashed lines represent use of (5.11), while the points at the solid lines represent use

of (5.12).

From Figure 5.9 it is seen that the σw0/t have a high influence on the reliability level, which

also is shown by the α2-values in Table 5.5 and 5.6. Even with η = 1, the imperfection

has an influence on the reliability index, especially when σw0/t = 0.5.

α2
η=0 α2

η=0.1 α2
η=0.2 α2

η=1

fy 0.07 0.07 0.06 0.01

XR 0.28 0.28 0.24 0.05

G 0.21 0.18 0.10 0

Qwind 0 0.01 0.12 0.45

XQ,wind 0 0.01 0.09 0.39

w0/t 0.42 0.43 0.36 0.08

Table 5.5: α2-values for method 1 using

the mathematical GMNIA model with initial

imperfections from LBMI16 with standard

deviation σw0/t = 0.1.

α2
η=0 α2

η=0.1 α2
η=0.2 α2

η=1

fy 0 0 0 0

XR 0.03 0.03 0.03 0.03

G 0.02 0.02 0.02 0

Qwind 0 0 0 0.23

XQ,wind 0 0 0 0.18

w0/t 0.93 0.93 0.92 0.53

Table 5.6: α2-values for method 1 using the

mathematical GMNIA model with initial imper-

fections from LBMI16 with standard deviation

σw0/t = 0.5.

In Figure 5.10, reliability index β versus the parameter η for method 1 and 2 using the

mathematical GMNIA model is shown with TPDI as the initial imperfection pattern.

Deviations in β estimated from FORM and β estimated from MCS is observed. Again

three MCS are performed to show that the trend of the FORM is similar to the trend of

the MCS, but is generally lower as shown in Figure 5.10.
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Figure 5.10: Reliability index β versus the parameter η for method 1 and 2 using the

mathematical GMNIA model with initial imperfections from TPDI with varying standard deviation

σw0/t. The points at the dashed lines represent use of (5.11), while the points at the solid lines

represent use of (5.12).

It is seen from Figure 5.10 that large differences are observed when η < 0.4, and is caused

by the uncertainty related to w0/t. For η > 0.4 the reliability level is nearly linear and is

only decreasing slightly with increasing η. Furthermore it is observed that method 1 with

σw0/t = 0.3 has the most stable reliability level and is also close to the target reliability.

5.4 Calibration of partial safety factors
In this section, the partial safety factor γM is calibrated for the Eurocode, i.e. method 1

using the semi-empirical mathematical model in [DS/EN-1993-1-6, 2007]. Furthermore the

partial safety factor γM is calibrated for method 1 using the mathematical model GMNIA

with imperfection patterns LBMI1, LBMI16 and TPDI. It is chosen to calibrate γM in the

design code in order to investigate whether it is possible to optimise it. The imperfection

patterns LBMI1, LBMI16 and TPDI are chosen for further investigation since LBMI1 is

assessed to be the first choice in a real design case, while LBMI16 is the “worst” and in

principle is recommended in [DS/EN-1993-1-6, 2007]. TPDI is assessed as a reasonable

alternative of simulating the initial imperfections.

To calibrate the partial safety factor, an optimisation problem is introduced:

minW (γ) =
L∑
j=1

wj (βj(γ)− βtarget)2 (5.16)

where W is the error i.e. the sum of the distance from βj to βtarget squared. wj is a weight

factor which defines the importance of each design case, and in the present example, all

design cases are equally weighted. The partial safety factor is selected such that the error
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is minimum, thereby giving the best fit. It should be mentioned that this method does

not take into account a βmin, which in some cases is necessary to fulfill the requirements.

Calibration of the partial safety factor γM for method 1 using the semi-empirical

mathematical model in [DS/EN-1993-1-6, 2007] is shown in Figure 5.11. It is seen, that

to obtain a reliability level that is close to the target, i.e. use of (5.16), the partial

safety factor is reduced from 1.20 to 1.05 in method 1. This corresponds well with the

recommended partial safety factor in [DS/EN-1993-1-6, 2007] (γM1 = 1.10) and indicates

that in this case, the Danish national annex might be too conservative.
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Figure 5.11: Reliability index β versus the parameter η for method 1 using the semi-empirical

mathematical model in [DS/EN-1993-1-6, 2007] with varying partial safety factor.

Calibration of the partial safety factor for the mathematical GMNIA model is done with

initial imperfections from LBMI1, LBMI16 and TPDI. When implementing the initial

imperfection pattern from LBMI16, the standard deviation of the imperfection amplitude

is selected to σw0/t = 0.1, while it is selected to σw0/t = 0.3 for LBMI1 and TPDI. The

reason for selecting these standard deviations is that it is assessed that they provide

the most reasonable imperfection amplitude while taking the imperfection pattern into

account.
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Figure 5.12: Reliability index β versus the parameter η for method 1 using the GMNIA model

with initial imperfections from LBMI1, LBMI16 and TPDI with varying partial safety factor.

As shown in Figure 5.12, the estimated reliability levels for LBMI16 and TPDI are fairly

similar for the selected standard deviations and the partial safety factor increases from 1.20

to 1.25 in both models. It is obvious that the partial safety factor is closely related to the

standard deviation of the imperfection amplitude and imperfection pattern. Furthermore,

it is seen that it is possible to reduce the partial safety factor from 1.20 to 1.05 when using

LBMI1 as the initial geometric imperfection. This is similar to the result obtained with

method 1 using the semi-empirical mathematical model in [DS/EN-1993-1-6, 2007].

From the results, it could be of interest for further studies to estimate the probability

of the occurrence of each individual imperfection pattern and implement this into the

reliability analysis.
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6 Conclusions
In the present thesis, buckling of axially compressed cylindrical steel shells is investigated,

where the main focus is put on simulating initial geometric imperfections and the influence

of these on the reliability level.

In order to estimate the critical buckling resistance both analytical, semi-empirical

and numerical methods are used. It is shown through historical review, that the classical

solution of the critical buckling stress gives unrealistic results, which is due to the linear

assumptions made in the solution along with the assumption of a perfect geometry. To

overcome this problem, [DS/EN-1993-1-6, 2007] and [DNV-RP-C202, 2013] uses semi-

empirical approaches to estimate the critical buckling resistance. However, it can be

concluded, when comparing with test results from [Batterman, 1965], that results obtained

through these approaches are conservative.

Another approach to estimate the critical buckling resistance is numerical finite element

analyses with different complexity, which also is recommended in [DS/EN-1993-1-6, 2007].

By use of this approach, a geometric and material non-linear analysis (GMNA) can be

taken into account and this analysis coincides well with test results in [Batterman, 1965].

It can therefore be concluded that the numerical GMNA approach is very useful when

estimating the critical buckling resistance. This conclusion though, is only valid when the

cylindrical shell has a nearly perfect geometry, which is very unlikely for a cylindrical shell

used in typical civil engineering structures.

Through state-of-the-art review, it is shown that numerous ways of simulating

geometrical imperfections exist. Three different approaches of simulating initial geometric

imperfections are compared, namely the linear buckling mode-shaped imperfection

(LBMI), the single perturbation displacement imperfection (SPDI) and two perturbation

displacements imperfection (TPDI). Through the investigation of the different approaches,

it is shown that the imperfection pattern as well as the imperfection amplitude has a high

influence on the critical buckling resistance. By implementing the LBMI patterns as initial

geometric imperfection through a geometric and material non-linear analysis (GMNIA), it

is concluded that the choice of the initial mode shape is of great importance. This is clearly

shown by comparing the reduction of the critical buckling resistance obtained with the

linear buckling mode-shaped imperfection for mode 1 (LBMI1) and mode 16 (LBMI16).

With use of an imperfection amplitude corresponding to 1 wall thickness (w0/t = 1),

a reduction of 5% and 60% compared to GMNA, is calculated when using LBMI1 and

LBMI16 respectively.

A similar result is obtained when implementing SPDI and TPDI as the initial geometric

imperfection. When using w0/t = 1, the SPDI pattern reduces the critical buckling

resistance with 2%, while a reduction of 30% is seen for TPDI compared to the result

obtained through the GMNA.

Since the geometrical imperfections are modeled as “worst”, it is obvious that large

reductions are observed, and this approach might be too conservative. Furthermore, it is

questionable how realistic the mode shaped patterns are as initial geometric imperfections,

especially when high order modes are considered. It could therefore be of interest, for
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further studies, to take the probability of the occurrence of the mode shaped imperfections

into account.

In order to take the model uncertainties into account, when estimating the reliability of

the presented models, the method in annex D in [DS/EN-1990, 2007] are used with test

results from [Batterman, 1965]. Furthermore, two methods to set up the design equations

is introduced, one where the resistance term is based on the Eurocode and another based

on DNV.

The reliability indices are calculated by use of the First-Order Reliability Method

(FORM) and validated with crude Monte Carlo simulation (MCS). It can be concluded

that FORM is a reliable tool when using the semi-empirical methods, the GMNA and the

GMNIA with LBMI1 as initial geometric imperfection. This conclusion however, does not

apply when using the GMNIA with LBMI16 and TPDI as initial geometric imperfection,

which is due to the highly non-linear mathematical simplifications introduced to calculate

the imperfection knock down factor XR,imp. Through this investigation, MCS is used

to validate the results and it is concluded that the reliability level in general is lower

compared to FORM, when using the GMNIA with LBMI16 and TPDI as initial geometric

imperfection.

It is shown that a relatively high reliability level is estimated when using the semi-

empirical mathematical model in [DS/EN-1993-1-6, 2007] both in the design and limit

state equation. This corresponds well with the calculated low coefficient of variation of

the model uncertainty and the fairly high bias. A calibration of the partial safety factor

γM is performed through an optimisation problem and it is shown that in the present

case, a reduction from 1.20 to 1.05 is possible.

Comparison of the reliability level between the model with perfect geometry (GMNA)

and the models with simulated initial geometric imperfections (GMNIA), shows in general

a large reduction. It is concluded, that the imperfection pattern and the selected standard

deviation of imperfection amplitude influences the reliability level greatly. The partial

safety factor γM is calibrated for the GMNIA model with initial imperfections LBMI1,

LBMI16 and TPDI, when using the semi-empirical mathematical model in [DS/EN-1993-

1-6, 2007] in the design equation. A reduction of the partial safety factor from 1.20 to 1.05

is possible when using LBMI1 as initial imperfection pattern. However, an increase from

1.20 to 1.25 is necessary to reach the target reliability when using LBMI16 and TPDI as

initial imperfection pattern. It is questionable though, whether the reliability level and

thereby the calibration of partial safety factor for the GMNIA models are accurate since

the results are based on model uncertainties related to GMNA.

From these considerations, no final conclusions can be made regarding the partial safety

factor, but since [DS/EN-1993-1-6, 2007] recommends γM = 1.10 and the Danish national

annex recommends γM = 1.20, this could indicate that the Danish national annex might be

too conservative. From the presented analyses, it is not possible to provide clear guidelines

of which imperfection pattern should be selected as initial geometric imperfection as well

as imperfection amplitude due to the large variations in the critical buckling resistance.
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A Buckling strength according to

EN 1993-1-6
In this appendix the buckling strength will be determined using the semi-empirical method

suggested by [DS/EN-1993-1-6, 2007]. Only axially compressed cylindrical shells will be

considered. In the calculation following parameters needs to be determine;

� The elastic critical meridional buckling stress σx,Rcr
� The elastic imperfection reduction factor α

� The relative shell slenderness λ̄x and the plastic limit slenderness λ̄p
� The buckling reduction factor χx

The elastic critical meridional buckling stress
To determine σx,Rcr the method in [DS/EN-1993-1-6, 2007], annex D is used and is

calculated from (A.1).

σx,Rcr = 0.605ECx
t

r
(A.1)

where

σx,Rcr Elastic critical meridional buckling stress [Pa]

E Young’s modulus [Pa]

Cx Factor [-]

t Thickness [m]

r Radius [m]

The factor Cx is determined from the dimensionless length parameter ω which indicates

if the cylinder is; short, medium or long. In this thesis only medium length cylinder is

considered and therefore Cx = 1.0, and thereby (A.1) is similar to the derived classical

solution (1.9) on page 12.

The elastic imperfection reduction factor
To take into account imperfection the reduction factor α is introduced.

α =
0.62

1 + 1.9
(

∆wc
t

)1.44 (A.2)

where

α Elastic imperfection reduction factor [-]

∆wc Characteristic imperfection amplitude [m]

∆wc is determined from

∆wc =
1

Q

√
r

t
t (A.3)
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Where Q is a fabrication quality parameter which is selected to be Q = 40 corresponding

to a quality class A, since it is assumed that the cylinders in [Batterman, 1965] are close

to perfect.

The relative shell slenderness λ̄x and the plastic limit

slenderness λ̄p
λ̄p and λ̄x is determined form (A.4) and (A.5) respectively.

λ̄p =

√
α

1− β (A.4)

λ̄x =

√
fyc
σx,Rcr

(A.5)

where

λ̄p Plastic limit slenderness [-]

β Plastic range factor (=0.60) [-]

λ̄x Relative shell slenderness [-]

fyc Characteristic yield strength [Pa]

The buckling reduction factor χx
The buckling reduction factor is determined as a function of the relative slenderness of

the shell and is given by;

χx = 1 when λ̄x ≤ λ̄0 (A.6)

χx = 1− β
(
λ̄x − λ̄0

λ̄p − λ̄0

)η
when λ̄0 < λ̄x < λ̄p (A.7)

χx =
α

λ̄x
2 when λ̄p ≤ λ̄x (A.8)

where

χx Buckling reduction factor [-]

λ0 Squash limit slenderness (=0.20) [-]

η Interaction exponent(=1.0) [-]

The characteristic buckling stress can then be determined using (A.9)

σx,Rc = χxfyc (A.9)

The design buckling stress is determined as:

σx,Rd =
σx,Rc
γM

(A.10)
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B Buckling strength according to

DNV-RP-C202
In this appendix the buckling strength will be determined using the semi-empirical method

suggested by [DNV-RP-C202, 2013]. Only axially compressed cylindrical shells will be

considered. In the calculation following parameters needs to be determine;

� The elastic buckling strength fE
� The reduced shell slenderness λ̄s

The elastic buckling strength
Since the cylinder in this thesis is unstiffened the elastic buckling strength is given by;

fE = C
π2E

12(1− ν2)

(
t

l

)2

(B.1)

where

fE Elastic buckling strength stress [Pa]

C Reduced buckling coefficient [-]

E Young’s modulus [Pa]

ν Poisson’s ratio [-]

t Thickness [m]

l Length [m]

The reduced buckling coefficient C is a function of the applied load on the cylinder and

the dimensionless curvature parameter Z given by (B.2) and (B.3) respectively.

C = ψ

√
1 +

(
ρξ

ψ

)2

(B.2)

Z =
l2

rt

√
1− ν2 (B.3)

where

ψ Buckling coefficient (=1.0) [-]

ρ = 0.5
(
1 + r

150t

)−0.5
Buckling coefficient [-]

ξ = 0.702Z Buckling coefficient [-]

r Radius [m]

The reduced shell slenderness
λ̄s is a function of; the stresses, elastic buckling strength and the yield stress, and is

defined by

λ̄s
2

=
fy
σj.Sd

(
σa0,Sd

fE

)
(B.4)
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where

λ̄s Reduced shell slenderness [-]

fy Yield stress [Pa]

σj.Sd =
√
σ2
a0,Sd von Mises stress [Pa]

σa0,Sd Axial stress [Pa]

The characteristic buckling strength fcs can then be determined using (B.5)

fcs =
fy√

1 + λ̄s
4

(B.5)

The design buckling stress is determined as:

fds =
fcs
γM

(B.6)

where

γM = 1.15 for λ̄s < 0.5

γM = 0.85 + 0.60λ̄s for 0.5 ≤ λ̄s ≤ 1.0

γM = 1.15 for λ̄s > 1.0

(B.7)
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C Mode shapes

Figure C.1: Visualization of the mode shapes 1-20 obtained through LBA. Scale=0.3.
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Figure C.2: Visualization of the mode shapes 21-35 obtained through LBA. Scale=0.3.
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