
Student Report

The Department of Computer Science

Selma Lagerlöfs Vej 300

Telephone +45 9940 9940

Fax +45 9940 9798

http://www.cs.aau.dk/

Title:
Modeling Linkable Multidimen-
sional Cubes with Logical Patterns

Theme:
Database Technology Specialization

Project period:
SW10, spring semester 2014

Project group:
sw102f14

Participants:

Alex Bondo Andersen

Kim Ahlstrøm Jakobsen

Supervisors:
Torben Bach Pedersen
Katja Hose

Page count: 81

Appendix count: 7

Finished: 4/6 – 2014

Abstract:

Traditional Decision Support Systems

(DSS) rely on local data to answer business

questions. This limits the decision maker

to a simplified world. Ad-hoc data inte-

gration enables the decision maker to an-

swer more business questions because the

local data is enriched with situationally ap-

propriate data. Linked data in Resource

Description Framework (RDF) format is

attractive as situational data because of

its growing amount and its interconnectiv-

ity between sources. Several systems have

been proposed to facilitate ad-hoc data in-

tegration and there is a high potential for

further research. We explore the poten-

tial of storing the local data in RDF –

as well as the situational data. We show

how business questions can be answered

on RDF formatted cubes annotated with

the QB4OLAP vocabulary, called Link-

able Multidimensional (LMD) cubes. We

introduce three logical patterns for LMD

cubes, which have different characteristics

with regards to load time, storage size,

and query evaluation time. Our novel al-

gorithm Semantic Web OLAP Denormal-

izer (SWOD) is used to convert cubes of

one pattern to another. The well-known

TPC BenchmarkTMH (TPC-H) dataset is

converted to RDF and described as LMD

cubes. We evaluate our patterns on these

cubes, with queries based on the TPC-H

business questions.

The content of this report is open to everyone, but publishing (with citations) is only

allowed after agreed upon by the writers.

Preface
This report is structured as a scientific paper with a number appendices, which present minor details and contributions.
The appendix presenting Semantic Web (Appendix A) originates from our previous semester project [3], with very few
changes. In Appendix G we present the TPC-H query names, descriptions, and business questions exactly as they are in the
specification [33].

The source code for our SWOD algorithm is located at a GIT repository1. The source code for our load program is located at
a GIT repository2. The scripts we use to orchestrate the loading and querying of our data are located at a GIT repository3.

We publish our cubes on the SPARQL endpoint http://extbi.lab.aau.dk/sparql in the named graph http://extbi.

lab.aau.dk/resource/ltpch/ with the ontology describing them in the named graph http://extbi.lab.aau.dk/ontology/

ltpch/.

1https://github.com/abondoa/swod.git
2https://github.com/kimajakobsen/sesame-repository-test-workspace.git
3https://github.com/abondoa/lmd-cubes.git

1

2

Resumé – Dansk
I dette projekt udforsker vi muligheden for at bruge RDF som opbevaringsformat for multidimensionelle kuber. Dette giver
mulighed for at bruge SPARQL queries til at udføre OLAP operationer. Fordelen ved at bruge SPARQL frem for andre query
sprog, er at SPARQL har indbygget funktionalitet til at lave ad-hoc data integration gennem query federationer. Ad-hoc
data integration er nyttigt i sammenhænge hvor man ikke p̊a forh̊and kan vide hvilke forretnings spørgsm̊al man kan blive
stillet overfor. Traditionelt indsamler man data i et data warehouse (DW) og evaluerer sine forretnings spørgsm̊al, i form af
queries, derp̊a. Det er b̊ade dyrt og tidskrævende at opbygge denne proces (kaldet ETL), der indsamler data og gemmer det
i sit DW. Ved at supportere ad-hoc data integration kan man tillade udforskning af nye data kilder der har relevance for et
forretnings spørgsm̊al uden at skulle lave store investeringer. Derudover kan et svar ogs̊a forventes langt hurtigere ved ad-hoc
data integration ved brug af SPARQL end hvis man skulle til at ændre sin ETL proces.

I forbindelse med OLAP bruger man i den relationelle verden nogle forskellige skema teknikker til at modellere sine kuber.
Selvom der findes vokabulare der beskriver kuber i RDF format er der ikke tidligere undersøgt og beskrevet hvordan relationelle
modellerings tekniker kan bruges p̊a RDF kuber. Vi beskriver hvordan disse teknikker bruges p̊a RDF data, der er beskrevet
med et vokabular, beregnet til at beskrive OLAP kuber, QB4OLAP. Vi siger at en kube er i Snowflake-pattern hvis hver
level instans i hver dimension er repræsenteret som en ressource. Hvis en kube i stedet har en ressource for hver dimensions
instans siger vi at den er i Star-pattern. Hvis der hverken er level eller dimension instanser, men facts er direkte tilknyttet
dimensions attributterne, er kuben i Denormalized-pattern.

Vi designer og implementerer en algoritme til at konvertere en kube fra Snowflake-pattern til Star-pattern eller Denormalized-
pattern. Denne algoritme kan h̊andtere kuber med multiple hierarkier og ubalancerede hierarkier i dimensioner. Algoritmen
konverterer instans dataen og genererer en onologiudvidelse der, sammen med den eksisterende ontologi, beskriver de kon-
verterede kuber.

For at teste vores patterns konverterer vi det velkendte TPC-H dataset til RDF og annoterer det med QB4OLAP. Vi definerer
kuber i dette dataset og modellerer dem som Snowflake-pattern i en række forskellige størrelser. Disse kuber konverteres til
Star-pattern og Denormalized-pattern og der køres queries p̊a all tre versioner of kuberne, hvorefter køretiderne sammenlignes.
Vi ser at Star-pattern klarer sig generelt bedst, mens Denormalized-pattern ikke ser ud til at have nogle klare fordele i nogle
af vores kuber. Pladsforbruget for Star-pattern er marginalt højere end for Snowflake-pattern, men Star-pattern kan b̊ade
h̊andtere flere af vores test queries uden at time out og generelt evaluere queries hurtigere.

3

4

Modeling Linkable Multidimensional Cubes with Logical
Patterns

Alex Bondo Andersen
Aalborg University

Denmark
aban09@student.aau.dk

Kim Ahlstrøm Jakobsen
Aalborg University

Denmark
kjakob09@student.aau.dk

ABSTRACT
Traditional Decision Support Systems (DSS) rely on local
data to answer business questions. This limits the decision
maker to a simplified world. Ad-hoc data integration enables
the decision maker to answer more business questions be-
cause the local data is enriched with situationally appropri-
ate data. Linked data in Resource Description Framework
(RDF) format is attractive as situational data because of its
growing amount and its interconnectivity between sources.
Several systems have been proposed to facilitate ad-hoc data
integration and there is a high potential for further research.
We explore the potential of storing the local data in RDF
– as well as the situational data. We show how business
questions can be answered on RDF formatted cubes anno-
tated with the QB4OLAP vocabulary, called Linkable Multi-
dimensional (LMD) cubes. We introduce three logical pat-
terns for LMD cubes, which have different characteristics
with regards to load time, storage size, and query evalua-
tion time. Our novel algorithm Semantic Web OLAP De-
normalizer (SWOD) is used to convert cubes of one pattern
to another. The well-known TPC BenchmarkTMH (TPC-H)
dataset is converted to RDF and described as LMD cubes.
We evaluate our patterns on these cubes, with queries based
on the TPC-H business questions.

1. INTRODUCTION
When an organization is operating in a volatile and competi-
tive environment, fast decision making is essential. Decision
Support Systems (DSS) are used to help the decision makers
make these decisions based on data stored in the organiza-
tions’ Data Warehouse (DW). To make well-informed deci-
sions, the DW must contain data relevant to the decisions.
Data from different sources may be integrated with the or-
ganization’s operational data to construct the DW. Tra-
ditionally this integration is performed through an Extract
Transform Load (ETL) process. The creation of an ETL
process is often slow and expensive, and it is not possible to
accommodate for all future decisions because the environ-
ment may change or new sources become available. In the

Figure 1: Illustration of our main contributions.

latest years an increasing amount of systems [11, 1, 32, 29]
have been designed with focus on enabling ad-hoc data in-
tegration, which enables data to be integrated at decision
time. A common denominator is that they use the Resource
Description Framework (RDF) [37] to facilitate ad-hoc data
integration. This opens up for a large repository of data,
which can be integrated with a local DW ad-hoc when an
unforeseen decision arises, instead of having to alter the en-
tire ETL process.

Other systems store Multidimensional (MD) cubes of the
local DW in a traditional format (relational or multidimen-
sional databases) and extending the query system to accom-
modate for ad-hoc data integration. We use RDF databases
to store the local MD cubes instead. This allows us to query
the local MD cube with SPARQL, which has native support
for ad-hoc data integration through query federation. We
use the term Linkable Multidimensional (LMD) cube for an
MD cube in RDF format. To describe LMD cubes we use
ontologies which are based on the well-known vocabulary
QB [17], extended with QB4OLAP [22]. We present three
patterns for modeling the LMD cubes at the logical layer,
which prove to have different characteristics with regard to
load time, storage size, and query evaluation time. These
patterns are based on the snowflake schema, star schema,
and fully denormalized schema known from the relational
OLAP community. Because there are no strict schemas for

5

Partsupplier
Part

Orders Seashell Firebrick Chocolate Aquamarine
Nation Customer Order

France
Andre

130 — — $150 $350
143 — $50 — —

Charlotte 112 — — $75 $300

Germany
Ben 141 $100 — — —
Paul 142 — $50 — $350

Figure 2: Constructed extract of the Lineitem-cube showing the price of parts on certain orders.

defining resources in RDF at the logical layer, as we know
from the relational world, we introduce the concept logical
patterns, or simply patterns, rather than using schemas. An
LMD cube can be logically modeled as either Snowflake-
pattern, Star-pattern, or Denormalized-pattern. In the con-
text of the Semantic Web no one has, to the best of our
knowledge, previously described how to apply these schema
techniques.

We create a novel algorithm, which converts an LMD cube
in Snowflake-pattern to an LMD cube in either Star-pattern
or Denormalized-pattern. We call this algorithm Seman-
tic Web OLAP Denormalizer (SWOD). The algorithm can
handle multiple dimension hierarchies as well as unbalanced
hierarchies.

In Figure 1 we see the three database model layers and the
terms we use in each layer. At the conceptual layer there is
a set of business questions used as part of a decision making
process, which the MD cube is designed to answer. At the
logical layer we operate with our three patterns, which are
used to model an MD cube as an LMD cube. SWOD is used
to convert an LMD cube from Snowflake-pattern to either
Star-pattern or Denormalized-pattern. Each pattern has
its own ontology, instance data, and queries. An ontology
contains the metadata of an LMD cube and describes the
instance data. Both ontologies and instance data are in RDF
format and annotated with QB4OLAP. Queries are used to
answer business questions and are written in SPARQL. LMD
cubes are stored physically in an RDF store. The marked
concepts are our main contributions.

TPC BenchmarkTMH (TPC-H) is a decision support
benchmark with business questions and a dataset focusing
on sales. We convert the TPC-H dataset to RDF and create
LMD cubes. We define three LMD cubes: Lineitem-cube,
Orders-cube, and Partsupplier-cube. Collectively, these
cubes constitute the dataset Linkable TPC-H (LTPC-H).
From the business questions, SPARQL queries are con-
structed. Figure 2 contains a constructed extract from the
Lineitem-cube. It shows the orders of two French and two
German customers. Their orders contain one or several
purchases of parts with the price given in dollars. We use
this extract in our examples throughout this paper.

In order to show how ad-hoc data integration is performed
we introduce the business question: “Show the total revenue
per nation for nations, which have at least a population of
thirty million”. The population of a nation is not a part

of the TPC-H dataset but is available at the DBpedia end-
point1.

Our novel contributions are: (i) Definitions of three
patterns for modeling LMD cubes; (ii) Design and imple-
mentation of the algorithm SWOD, which transforms cubes
in Snowflake-pattern into Star-pattern and Denormalized-
pattern; (iii) Annotation of the TPC-H dataset and queries
with QB4OLAP.

The structure of the remaining paper is as follows. Next we
introduce preliminaries where we provide necessary back-
ground information for RDF, MD cubes, and MD vocabu-
laries in Section 2. We describe related work in Section 3
before we describe how we introduce TPC-H into a Semantic
Web context in Section 4. We explain the logical patterns in
Section 5. In Section 6 we explain the SWOD algorithm and
its auxiliary functions. We describe the evaluation setup in
Section 7 and in Section 8 we present the actual evaluation.
Last in Section 9 we have the conclusion and future work.

2. PRELIMINARIES
We present a basic understanding of the main topics used
in this paper, namely definitions of an RDF graph, a ba-
sic graph pattern, a multidimensional cube, and the vo-
cabulary we are using to describe our test data, namely
QB4OLAP [22]. For a more intuitive and elaborate descrip-
tion of triples and querying using basic graph patterns see
Appendix A.

2.1 RDF Graphs
An RDF graph, or simply a graph, consists of a set of re-
sources linked together with labeled directed edges called
predicates [18]. A resource can represent anything, includ-
ing physical things. A triple consists of three elements, a
subject, a predicate, and an object. In a triple, the subject
is the resource located at the base of the predicate arrow
and the object at the tip. In Figure 3 Ben is the subject,
lives_in is the predicate, and Germany is the object. A for-
mal definition is given in Definition 1 [34]. A resource, which
can be used as a predicate is called a property. A resource
can be an instance of a class. A class is also a resource
itself and is used to describe the meaning of its instances
and how they can be related to other instances. A triple in-
dicates that there is some relationship between the subject
and the object. The nature of the relationship is given by
the property used as predicate.

1http://dbpedia.org/sparql

6

Figure 3: An example triple.

Subjects can be IRI s or blank nodes. Internationalized
Resource Identifiers (IRIs) are used to uniquely identify
a resource and a blank node is a resource without a
globally available identifier, therefore also called anonymous
resources. Objects can be literals, IRIs, or blank nodes.
Literals are of basic types, such as strings, integers, and
dates. Predicates are IRIs.

Definition 1 (Triple, Graph). Given a set of IRIs U , a set
of blank nodes B, and set of literals L, a triple t is defined
as t = (s, p, o) ∈ (U ∪B) × U × (U ∪B ∪ L). A graph G is
a set of triples: G ⊆ (U ∪B)× U × (U ∪B ∪ L).

In some cases a triple is present in a context, which essen-
tially makes it a quad instead of a triple. Contexts can be
used to group sub-graphs together by adding a context to
the triples of a sub-graph. Such sub-graphs are called named
graphs, where the context represent the name. This allows
for a query on a graph to specify the named graph which is
of interest and only consider triples from it when answering.

To make IRIs in triples more readable, prefixes for name-
spaces can be defined. These prefixes are used as a short-
hand notation for frequently used IRIs. In Figure 4 the
table contains the namespaces we use throughout this pa-
per. A prefix is used by appending it with a local name,
which is then automatically appended to the IRI of the
prefix. E.g. rdfs:Class translates to <http://www.w3.org

/2000/01/rdf-schema#Class>.

2.2 Basic Graph Patterns
A term related to the triple is the Basic Triple Pattern
(BTP), which may contain variables at any position (sub-
ject, predicate, and/or object). Variables in a BTP are pre-
fixed with a “?” to identify them. A set of BTPs is called a
Basic Graph Pattern (BGP). BGPs are the basic building
blocks of queries over a graph. A formal definition of a BTP
and a BGP is given in Definition 2 [34].

Definition 2 (Basic Triple Pattern, Basic Graph Pattern).
Given a set of IRIs U , a set of blank nodes B, a set of
literals L, and a set of variables V , a BTP btp is defined as
btp = (s, p, o) ∈ (U ∪B ∪ V) × (U ∪ V) × (U ∪B ∪ L ∪ V).
A BGP bgp is a set of BTPs: bgp ⊆ (U ∪B ∪ V)×(U ∪ V)×
(U ∪B ∪ L ∪ V). When two or more BTPs share a variable,
we say that there is a join between these BTPs and the
shared variable is the joining variable.

When evaluating a BGP {(s1, p1, o1) , (s2, p2, o2) , · · · ,
(sn, pn, on)} over a graph G we use the following notation:

G (s1 p1 o1 . s2 p2 o2 . · · · . sn pn on)

The result is a set of tuples containing bindings for the vari-
ables in the BGP. The bindings are often represented as a
table, with the variables as columns and each row represent-
ing a single binding. Note that a joining variable has only

a single column (not one for each BTP with the variable),
thereby creating a join between the BTPs with the joining
variable.

In practice we use the query language SPARQL 1.1 [39],
which uses BGPs as the basic building block for querying a
graph dataset. It has additional functionality as well, such
as filtering, aggregation, and query federation. Querying is
further described in Appendix A.

2.3 Multidimensional Cubes
An MD cube is often used when performing OLAP opera-
tions. We use a definition of MD cubes based on the one
given by Jensen et al. [25]. An MD cube is used to capture
a number of facts in a set of dimensions. Intuitively the
facts are located inside the cube while the dimensions are
located along the axes. This would suggest a fixed num-
ber of three dimensions, however, any positive number of
dimensions is possible. Every dimension has a number of
hierarchies, which contain a number of levels. The levels
define different granularities of the dimension. The finest
granularity is called the lowest level. The coarsest granular-
ity is called the top level. A classic example of a dimension
is the date dimension, which might have a hierarchy with
the levels date, month, and year (and implicitly a top level
called “all dates”). Note that the lowest level has the same
name as the dimension itself, which is often the case. Every
level may have a number of attributes. A month could have
an attribute indicating the season and a date could have an
attribute indicating whether or not it is a weekend.

A fact is related to an instance of each dimension at a given
level – initially the lowest level. Furthermore, a fact, usu-
ally, has a number of measures. A measure is a numeric
value and an aggregation formula. A variant of the measure
is the derived measure, which consists of several numeric val-
ues. E.g. a sale may have revenue and expenses as regular
measures, and a profit (revenue − expenses) as a derived
measure.

A cube can be rolled up along a dimension hierarchy to a
coarser level. When rolling up, a new set of facts is con-
structed from the finer grained facts, by aggregating the
measures and associating the facts with the coarser dimen-
sion levels. A rolled-up cube is similar to an ordinary cube
in that it can be further rolled up along the same or other di-
mension hierarchies, but it can also be drilled down along a
rolled-up dimension hierarchy, which is the reverse of rolling
up. In short, rolling up grants overview, while drilling down
grants details.

To cope with the details of a large, fine grained cube it is
possible to slice it. A slice is a selection on a dimension of a
specific subset of the cube, e.g. dates, which are weekends.
When slicing a cube the output is a new cube, which can be
further sliced (often called diced) along the same or other di-
mensions, and rolled up. Note the difference between rolling
up and slicing; when rolling up we combine facts and their
measures to get a new cube, when slicing we remove facts
to get a new cube.

The snowflake and star schema are the two most commonly
used models when structuring MD cubes in a relational DW

7

Prefix IRI

ltpch: http://extbi.lab.aau.dk/ontology/ltpch/
ltpch-inst: http://extbi.lab.aau.dk/resource/ltpch/

qb: http://purl.org/linked-data/cube#
dbpprop: http://dbpedia.org/property/
dbponto: http://dbpedia.org/ontology/

qb4o: http://publishing-multidimensional-data.googlecode.com/git/index.html#ref_qbplus_
func: http://example.org/customfunction/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
owl: http://www.w3.org/2002/07/owl#
xsd: http://www.w3.org/2001/XMLSchema#

Figure 4: RDF prefixes and their IRIs.

with the intention of performing Online Analytical Process-
ing (OLAP) on them. Depending on the data the appropri-
ate schema is chosen. A snowflake schema stores a dimen-
sion in several tables where each table contains a level [28,
pp. 55-57][25, p. 14]. A completely snowflaked schema is in
third normal form [28, p. 55], such that data redundancy
is kept at a minimum and also keeping the logical model
very similar to the conceptual model. In a star schema the
dimensions are denormalized, which results in data redun-
dancy [28, p. 55][2, pp. 9-24][25, pp. 12-13]. When querying
a star schema, the number of joins between tables is usually
lower, because every dimension level is already captured in
single table. This generally leads to better query evaluation
time, but at the cost of a larger storage space.

A third schema is the (fully) denormalized schema. Costa
et al. [16] explores using a denormalized schema such that
all queries are performed only on a single table. This results
in an increase in storage use, but makes it possible to cal-
culate query evaluation time very accurately. They also see
improvements in query evaluation time as the data storage
size increases compared to a snowflake schema. For most
cases, however, the denormalized schema is outperformed
by the snowflake schema. IBM considered using a denormal-
ized schema for their Blink project [5], but refrained from
this because the amount of redundant data simply became
larger than the gain from having a single table.

We present three patterns for modeling LMD cubes at a
logical level, these are inspired by the three schemas from
the relational world. We call these Snowflake-pattern, Star-
pattern, and Denormalized-pattern.

2.4 Multidimensional Vocabularies
In a Semantic Web context there are published a number
of vocabularies and ontologies in different areas. With re-
gards to MD data, there are two main vocabularies: QB
and Open Cube vocabulary [21] (OC), along with a com-
bination of the two called QB4OLAP [22]. QB is a W3C
recommendation while OC is suggested by Etcheverry and
Vaisman. The underlying model of QB is compatible with
model of SDMX [19], which is a standard for modeling sta-
tistical data. This is because QB is built with the purpose
of publishing statistical data. However, it is usable for other
applications of MD data, such as OLAP cubes. OC, on
the other hand, was built with OLAP cubes in mind, which
means that it is more specialized towards it. OC allows

for defining relations between dimension levels at both the
ontology and instance level, while QB only allows this at
the instance level. In effect, this means that a consumer
of an OLAP cube described with QB cannot easily get an
overview of the dimension levels, compared to an OLAP
cube described with OC. OC also has a notion of aggregate
functions, which may be related to different measures, such
that one measure can have one (or more) aggregate func-
tion associated with it. QB is the de facto standard of these
two vocabularies for describing MD data despite its short-
comings when it comes to OLAP specific subjects. The third
vocabulary, QB4OLAP [22], has been created by the authors
of OC to be an extension of QB, which is more suited for
OLAP cubes. It adds definitions for relationships between
dimension levels as part of the ontology and aggregate func-
tions for measures. QB4OLAP is, however, extended from
an older version of QB namely the draft from April 20122.
All three vocabularies described above have a Snowflake-
pattern approach to OLAP. We show how QB4OLAP can
be applied to MD cubes in Star-pattern and Denormalized-
pattern.

We here give a brief description of the QB4OLAP vocabu-
lary. A full description of QB4OLAP can be found in [22].
Figure 5 shows classes and properties, which make up the
vocabulary. It is used to annotate the ontology describing
an MD cube. The white background indicates that a class
or property is taken from the QB vocabulary, while a
gray background indicates additions made in QB4OLAP.
Finally, ghosted classes and properties are belonging to
external vocabularies, e.g. skos:Concept, which belongs
to the Simple Knowledge Organization System (SKOS)
vocabulary3. To describe a cube with QB4OLAP a re-
source of the type qb:DataStructureDefinition must
be created. This resource is connected to a num-
ber of qb:ComponentSpecifications, each of which
define a level, dimension, measure, or attribute. A qb:

ComponentSpecification links to a property of the type
qb:ComponentProperty. qb:ComponentProperty has five
subclasses: qb:LevelProperty, qb:DimensionProperty,
qb:MeasureProperty, qb:AttributeProperty, and qb

:CodedProperty. The last one is not relevant in this
paper. Additional properties can be used to further
specify a qb:ComponentSpecification, depending on

2http://www.w3.org/TR/2012/
WD-vocab-data-cube-20120405/
3http://www.w3.org/2004/02/skos/

8

Figure 5: The QB4OLAP vocabulary. From Etcheverry and Vaisman [22].

the subtype of qb:ComponentProperty used. E.g. when
defining a qb:MeasureProperty, the allowed aggregation
function(s) can be specified with the property qb4o:

hasAggregateFunction, which points to an instance of
the qb4o:AggregateFunction such as qb4o:sum. When
a complete qb:DataStructureDefinition is defined
with a number of qb:ComponentSpecifications, an in-
stance of type qb:DataSet can be defined, by giving
it a name (through rdf:label) and linking it to the
qb:DataStructureDefinition. A fact is defined as an
instance of qb:Observation and points to an instance of
qb:DataSet. An example of QB4OLAP in use is given in
section 4.

3. RELATED WORK
The usage of RDF data to enable ad-hoc data integration
has lately started receiving some attention. Abelló et al. [1]
propose a high level architecture of a system where station-
ary data and situational data is combined to make Fusion
Cubes. The stationary data is in the form of a snowflake
schema or a star schema and is augmented by the situational
data. The situational data is preferably in RDF format and
is used as a mean to add semi-structured and unstructured
data which has narrow focus and/or short life span – hence
situational data. Romero and Abelló [32] present a concrete
architecture, which is inspired by Abelló et al. [1]. Both
these papers work toward a DSS with ad-hoc data integra-
tion based on the RDF standard, while using a “traditional”
DW to store the stationary data. We store the stationary
data in RDF format as well, thus relying on the ad-hoc query
federation allowed through SPARQL to enable ad-hoc data
integration.

Prior to SPARQL 1.1 there was no support for aggrega-
tion in SPARQL, which meant OLAP queries were not a
real possibility. The team at Virtuoso made an extension to

SPARQL in 2009 to enable OLAP queries [20]. This exten-
sion is called SPARQL-BI. To test the extension, relational
TPC-H data was mapped to RDF through Virtuoso. The
ontology for this data was generated in an ad-hoc manner,
such that every attribute in the relational schema becomes
a predicate and every table becomes a class. TPC-H queries
were constructed in SPARQL-BI and run on the RDF views.

The queries made in SPARQL-BI were picked up by team
from Berlin SPARQL Benchmark [12] (BSBM), who released
a benchmark tool using TPC-H data in the form of RDF
views as the base data. They also developed a series of
support tools, one of these tools are csv2ttl which we uti-
lize. Along with the queries in SPARQL-BI, queries where
also rewritten to Virtuoso SPARQL 1.1, which had been
released in the meantime. The queries were, however, fol-
lowing Virtuoso SPARQL rather than the official SPARQL
standard, which means that they do not run on all types
of RDF databases. Also, not all queries are correct with
regards to the TPC-H specification, e.g. missing ordering
of results. We translate the TPC-H dataset to RDF, de-
scribe it with the known vocabulary QB and its extension
QB4OLAP, and perform OLAP queries on it using standard
SPARQL 1.1.

Kämpgen and Harth [26] model the Star Schema Bench-
mark [30] (SSB) – a benchmark dataset similar to TPC-
H [33] – in two ways: Using the vocabulary QB and an
ad-hoc ontology created from the relational schema of SSB.
Queries evaluated on the data modeled with QB generally
perform worse than on the data modeled from the relational
schema. We present the well-known TPC-H dataset mod-
eled as Snowflake-pattern, Star-pattern, and Denormalized-
pattern described with the QB4OLAP vocabulary. Further-
more, we create an automatic way of converting an LMD

9

cube described by QB4OLAP from a Snowflake-pattern into
Star-pattern and Denormalized-pattern, and evaluate these.

Kämpgen and Harth [27] propose an open source OLAP
engine that enables users to pose MDX and metadata queries
on Semantic Web sources. They support data annotated
with the QB vocabulary but do not consider QB4OLAP.
We use the QB4OLAP vocabulary, which makes it possible
to annotate which aggregate functions the different measures
support. We use SPARQL as our query language as oppose
to MDX, to have native support for ad-hoc data integration
by use of the SERVICE keyword.

4. TPC-H IN THE SEMANTIC WEB
TPC-H [33] is a decision support benchmark used to com-
pare database system vendors in terms of queries per hour.
This benchmark contains a data generator, 22 queries, ACID
tests, and a performance matrix. The data generator gener-
ates the data in a serialized database format, which can be
loaded into a relational database. The schema for the gen-
erated relational data is seen in Figure 6. The figure shows
the concepts encapsulated in tables and foreign keys are in-
dicated with arrows between the tables. When generating
a TPC-H dataset a scaling factor is selected, to define the
size. The queries are designed to represent complex business
questions. The queries contain a number of substitution pa-
rameter, which need to be instantiated before running them.
This make it possible to run a query several times by chang-
ing the instantiations of these substitution parameter and
thus avoiding an unfair amount of cache hits. TPC-H tests
for ACID properties in the form of transactions, but since
we focus on data integration we deem this out of scope. The
TPC-H performance matrix is based on results from run-
ning both queries and ACID tests in parallel, which means
we will not be using it. We use the raw query evaluation
time as evaluation measure. To use TPC-H data in a Se-
mantic Web context we convert it into RDF format. We
use an existing vocabulary, based on the de facto standard
vocabulary for cubes, to describe the data after conversion,
namely QB4OLAP [22]. The TPC-H dataset converted to
RDF and described with this vocabulary is called LTPC-H.

The Lineitem-cube has two dimensions, Partsupplier and
Orders. The Partsupplier dimension has the levels: Part-
supplier, Part, Supplier, Nation, and Region. These levels
are divided into two hierarchies, one for Part and one for
Supplier, where the Nation and Region are in the Supplier
hierarchy. The Orders dimension has the levels: Orders,
Customer, Nation, and Region. All these levels are in the
same hierarchy. The dimension levels and their order are
seen in Figure 7. The Nation and Region levels are present
in both the Orders and Partsupplier dimension. We use only
one set of instances of Nations and Regions and refer to these
in both dimensions. We do this to avoid data duplication
and to enable queries which link between the dimensions at
these levels. The measures are Price, Discount percentage,
Tax, and Quantity. Additionally there is a derived measure
called Revenue, which is calculated as price · (1− discount).

In Figure 2 we see a constructed example of the Lineitem-
cube, where the Part hierarchy of the Partsupplier dimen-
sion is rolled up to Part and the Supplier hierarchy is com-
pletely rolled up. The Orders dimension hierarchy is not

TPC Benchmark
TM

 H Standard Specification Revision 2.16.0 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base

Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

Legend:

 The parentheses following each table name contain the prefix of the column names for that table;

 The arrows point in the direction of the one-to-many relationships between tables;

 The number/formula below each table name represents the cardinality (number of rows) of the table. Some

are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM

table is approximate (see Clause 4.2.5).

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-

PRIORITY

SHIP-

PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)

SF*200,000

PARTSUPP (PS_)

SF*800,000

LINEITEM (L_)

SF*6,000,000

ORDERS (O_)

SF*1,500,000

CUSTOMER (C_)

SF*150,000

SUPPLIER (S_)

SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)

25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)

5

Figure 6: The TPCH relational schema. Figure orig-
inates from [33].

Figure 7: The dimensions Orders and Partsupplier
from the Lineitem-cube.

rolled up, instead we have made a slice on the Region level
of the Orders dimension which selects the Region Europe.
Only the Price measure is shown in this example.

We use the TPC-H data generator DBGEN4 to generate
TBL files, which is a format for serialized database tables.
The TBL files contain rows, delimited by a new-line charac-
ter, which are divide into a number of columns, delimited by
a pipe “|”. This data is converted into RDF using the BIBM
conversion tool5. The conversion is based on a schema file
which defines how to convert each TBL file into RDF6. For
each row in the TBL file being converted, a URI is con-
structed based on information in the schema file. For each

4http://www.tpc.org/tpch/spec/tpch_2_16_1.zip
5http://sourceforge.net/p/bibm/code/HEAD/tree/
trunk/bibm/src/com/csvreader/
6http://sourceforge.net/p/bibm/code/HEAD/tree/
trunk/bibm/tpch/virtuoso/tpch_schema.json

10

(a) Snowflake-pattern example. (b) Star-pattern example. (c) Denormalized-pattern example.

Figure 8: The figures show the fact and Orders dimension describing Ben’s purchase in Figure 2 modeled
with our three patterns.

column in every row, a triple is constructed with the rows
URI as subject, the column value as the object and the pred-
icate defined in the schema file. Then we decorate the RDF
TPC-H dataset with the QB4OLAP vocabulary and create
three cubes. The cubes have Lineitem, Orders, and Part-
supplier as facts and are named accordingly. These cubes
and their ontologies comprise LTPC-H. Figure 8a shows an
instance of a Lineitem fact with level instances of the Orders
dimension relating to the purchase by the Customer Ben in
Figure 2.

In Code Snippet 1 the qb:DataStructureDefinition

and the qb:DataSet definitions for the Lineitem-cube are
seen. The qb:ComponentSpecifications are blank nodes
and typed implicitly by being object of a triple with qb:

component as predicate. The cube has two dimensions and
the lowest levels of each dimension are shown by the predi-
cates ltpch:l_has_order and ltpch:l_has_partsupplier

respectively. The Lineitem-cube has four measures,
which are ltpch:l_quantity, ltpch:l_extendedprice,
ltpch:l_discount, and ltpch:l_tax, each has an ag-
gregation type associated with it. Finally a cube,
ltpch:lineitemCube, is defined with the qb:structure

predicate pointing to the previously defined ltpch:

lineitemStructure.

We define cubes in a similar manner where Orders and Part-
suppliers are facts. These cubes, the dimensions, and the
levels are found in Appendix D. The Partsupplier-cube has
two dimensions, Part and Supplier. The Part dimension
has only a single level: Part. The Supplier has three levels:
Supplier, Nation, and Region. The Orders-cube only has a
single dimension, the Customer dimension, which has the
levels: Customer, Nation, and Region.

We have made SPARQL queries corresponding to the 22
business questions from TPC-H and split them among the
three cubes, based on which resources the queries require.
We based these queries on the BIBM queries7. However, we
have made three kinds of changes: Standardization changes,
correction changes, and optimization changes. Standardiza-
tion changes are applied to conform to the SPARQL stan-
dard [39]. Some queries from BIBM do not conform to the
TPC-H specification. To these queries we make correction

7http://sourceforge.net/p/bibm/code/HEAD/tree/
trunk/bibm/tpch/sparql/

changes to make them conform. Optimization changes are
reordering of triple patterns based on knowledge of how the
data is stored. All the queries are in Appendix G. Below we
present the concrete changes we have made.

Standardization Changes. Standardization changes are
applied to all queries because the queries provided by BIBM
were in Virtuoso SPARQL. We changed them to follow
the official W3C recommendation8, such that they can be
run on e.g. Sesame. These changes are syntactic in nature.
We change the binary operator and to && and replace the
like-operator with the REGEX function. Further we remove
commas between variables and encapsulate aggregation
functions with parentheses in the SELECT clause.

Correction Changes. We made the necessary corrections
such that the queries correspond to the TPC-H specifica-
tion. All queries, which use the brand attribute for slicing
of the Part level, have been modified to do the match case-
insensitively, due to a mismatch between case convention in
the data and the queries. In query 7 we add ?cust_nation

in the order-by clause. In query 15 and 20 we introduce a
substitution parameter in the date selection, to conform to
the TPC-H specification.

Optimization Changes. To have a broader foundation for
comparing our patterns, we optimize some of the queries,
such that they can be evaluated in reasonable time. These
changes are called optimization changes and are, like stan-
dardization changes, on syntactic changes. We removed ex-
cess triple patterns such as ltpch:customer_ben a ltpch:

customer when the type could be implicitly inferred from
other properties used on the resource, ltpch:customer_ben
in this example. In query 2 the filter on Region name is
moved into a sub-query, to make the result set from the
sub-query smaller without interfering with the semantics of
the query. In query 4 we have introduced a sub-query in-
stead of having a filter-exists, which is slower when using
Sesame without object indexes.

8http://www.w3.org/TR/sparql11-query/

11

1 ltpch:lineitemStructure a qb:DataStructureDefinition ;
2 qb:component [qb4o:level ltpch:l_has_order ; qb:order 1] ;
3 qb:component [qb4o:level ltpch:l_has_partsupplier ; qb:order 2] ;
4 qb:component [qb:measure ltpch:l_quantity ; qb:hasAggregateFunction qb4o:sum] ;
5 qb:component [qb:measure ltpch:l_extendedprice ;
6 qb4o:hasAggregateFunction qb4o:sum] ;
7 qb:component [qb:measure ltpch:l_discount ; qb4o:hasAggregateFunction qb4o:avg] ;
8 qb:component [qb:measure ltpch:l_tax ; qb4o:hasAggregateFunction qb4o:avg] .
9

10 ltpch:lineitemCube a qb:DataSet ;
11 qb:structure ltpch:lineitemStructure ;
12 rdf:label "Lineitem Cube" .

Code Snippet 1: Part of ontology defining the data structure for the Lineitem-cube.

5. LOGICAL PATTERNS
Data stored in Snowflake-pattern adheres to the Linked
Data (LD) principles made by Tim-Berners Lee (presented
in Appendix A.2), since every “thing” is represented by a
URI (a specialization of IRIs), which happens to be a Hyper
Text Transfer Protocol (HTTP) URL. These URIs can be
looked up and data about the thing is shown. This is good
for publishing data, because it allows other people to use
it and gain an understanding of it quite easily. However,
our focus is on the ability to perform OLAP queries on
the data, rather than the data being published in a nice
format. Other work (Kämpgen and Harth [26]) suggests
that having dimension level instances in a denormalized
format improve performance (for most queries of the SSB
dataset). Therefore, we have developed two additional
patterns for modeling LMD cubes, namely Star-pattern and
Denormalized-pattern.

LMD cubes in Star-pattern and Denormalized-pattern are
not linked data, since a URI may actual represent several
things in these patterns. A dimension instance of the Or-
ders dimension modeled as Star-pattern represents both an
Order, a Customer, a Nation, and a Region. However, since
they are in RDF format, they can still be linked to other
sources which are in RDF.

Below we present the details for our three patterns and relate
them to each other.

5.1 Snowflake-pattern
A dimension modeled as Snowflake-pattern has a number of
level instances. Facts links a to level instance of the lowest
level of a Snowflake-pattern dimension. Such a level instance
may have a number of attribute values which are reached
through attribute properties, defined in the ontology. Fur-
thermore, level instances may refer to a level instance of
the parent level, called the parent level instance. In Fig-
ure 8a we see the fact representing Ben’s purchase, ltpch-
inst:Lineitem_1_1, linking to a level instance of the Orders
level, ltpch-inst:Orders_141, which again links to Cus-
tomer level instance, ltpch-inst:Customer_1, etc. Every
level instance in this example has a single attribute, which
describe each level instance. In practice more attributes
are often required. The Snowflake-pattern is similar to the
snowflake schema in a relational database. Here we use the
term Snowflake-pattern rather than snowflake schema since
we are working with graphs rather than tables and there-

fore find it more appropriate to say that a dimension is of
a certain pattern instead of a certain schema. An LMD
cube with all dimensions modeled as Snowflake-pattern is
said to be in Snowflake-pattern. Modeling an LMD cube as
Snowflake-pattern ensures minimum data redundancy of the
three patterns and keeps the cube as linked data.

5.2 Star-pattern
An LMD cube in Star-pattern does not have level instances.
Instead every dimension has a number of dimension in-
stances. A dimension instance is a resource, which has
all attributes of all levels in the given dimension, similar
to a dimension modeled as a star schema in a relational
database. In Figure 8b we show the Orders dimension and
fact relating to Ben’s purchase modeled as Star-pattern.
In the figure, the level instances ltpch-inst:Region_3,
ltpch-inst:Nation_7, and ltpch-inst:Customer_1 are
merged into the bottom level instance, ltpch-inst:

Orders_141. The merge involve changing triples relating
to all none-bottom level instances such that they relate
to the bottom level instance instead – e.g. the triple
with the predicate ltpch:c_name is changed such that it
has ltpch-inst:Orders_1 as subject, we also change the
predicate, which we explain further below. After the merge
we say that ltpch-inst:Orders_1 is a dimension instance,
rather than a level instance, since it represents an instance
of the Orders dimension rather than just a level. When all
dimensions of an LMD cube are in Star-pattern we say the
cube is in Star-pattern.

As Figure 8a and Figure 8b show, we are introducing
new properties in the Star-pattern. We do this to avoid
name collisions of properties between levels when merging
level instances. Although this is not a risk in LTPC-H,
because properties on every level are already prefixed with
a letter unique for that level, it may be a problem for other
datasets. If LTPC-H did not have these letter prefixes,
the introduction of new properties would ensure that we
could distinguish between the name of the Nation and the
name of the Customer. These new properties are defined
as sub-properties of the properties on which they are
based, e.g. ltpch:customer_name ltpch:subPropertyOf

ltpch:c_name, in the ontology of the LMD cube. We
give an algorithm for converting an LMD cube from
Snowflake-pattern to Star-pattern in Section 6.

12

5.3 Denormalized-pattern
In the Denormalized-pattern the dimensions do not have any
instances. All level attributes are moved to be attached di-
rectly at the facts. This means that there will be a lot of
data duplication, but the dimension attributes will be lo-
cated closer to the facts. In Figure 8c we see Ben’s purchase
modeled as Denormalized-pattern. We see that there are
now only the fact, measure, and attribute values, which are
attached directly to the fact. Like the Star-pattern we have
to avoid predicate collisions, both between levels but also
between dimensions – both the Partsupplier and the Orders
dimension have the Nation and Region levels. We use a
similar property naming convention as in the Star-pattern,
but additionally we prefix the new properties with the name
of the dimension. We also define the new properties as
sub-properties of the properties which they are based on,
e.g. ltpch:orders_customer_name ltpch:subPropertyOf

ltpch:c_name, in the ontology of the LMD cube. When all
dimensions of a cube are in a Denormalized-pattern we say
the cube is in a Denormalized-pattern.

5.4 Unbalanced Hierarchies
Dimension hierarchies may be unbalanced [25, p. 47], e.g.
not every Customer in LTPC-H has placed Orders and in
effect is not related to any orders. In Figure 9a we see an
abstract example of an unbalanced hierarchy in the LTPC-H
dataset in Snowflake-pattern. The circles represent resource
instances where “l” is a Lineitem, “o” is an Order, “c” and
“c′” are Customers, “n” is a Nation, and “r” is a Region.
Each resource instance has an arrow labeled with a number,
this represent the number of attribute sets that is connected
to the resource. An attribute set is the set of attributes
of a level instance. The Customer, c′, does not have any
Orders, however this Customer should still be included in
the Lineitem-cube. Since c′ cannot be merged into any or-
ders, we create a dimension instance based on c′ instead.
This means that every level instance above c′ is merged into
c′. This is illustrated in Figure 9b where c′ now has the
attribute set of its Nation and Region i.e. three. In the
Denormalized-pattern we use the same strategy as can be
seen in Figure 9c.

5.5 New Properties
When making new properties and declaring them as sub-
properties, in both Star-pattern and Denormalized-pattern,
we have to be careful. When a property prop_b is a
sub-property of prop_a, every triple res_1 prop_b res_2

implies the triple res_1 prop_a res_29. This is generally
our intention. However, for the property owl:sameAs and for
properties declared as owl:InverseFunctionalProperty,
this has unintentional side effects.

When there is an owl:sameAs predicate between two re-
sources, it means that these are exactly the same. There
might be an owl:sameAs from a level instance to an exter-
nal resource. When this level instance is merged into the
lowest level to create a dimension instance, we do not wish
define the dimension instance as being the exact same re-
source as the external resource. To avoid this we do not
declare new properties based on the owl:sameAs property
as sub-properties of owl:sameAs.

9http://www.w3.org/TR/rdf-schema/#def-subproperty

(a) Snowflake-pattern.

(b) Star-pattern. (c) Denormalized-pattern.

Figure 9: The Customer c′ is an unbalanced level
instance. The figures show how this instance is rep-
resented in the three patterns.

When a property prop_a is declared as an instance of owl
:InverseFunctionalProperty, it means that the object of
a triple with prop_a as the predicate, uniquely defines the
subject resource of the triple10. If two presumed different
resources point to the same object through prop_a, they
are actually the same resource. Inverse functional proper-
ties are similar to primary keys in the relational world. In
LTPC-H we have declared a number of properties as owl:

InverseFunctionalProperty, e.g. ltpch:c_custkey on the
Customer level. When declaring a new property based on a
property of the type owl:InverseFunctionalProperty, we
do not declare the new property as a sub-property of the
old. This ensures that we avoid situations like when two
Orders dimension instances in Star-pattern would be consid-
ered the same resource, because they have the same ltpch:

customer_custkey value.

6. SEMANTIC WEB OLAP
DENORMALIZER

To convert LMD cubes from Snowflake-pattern to either
Star-pattern or Denormalized-pattern we use the SWOD
algorithm, which we present in this section along with
auxiliary algorithms. We perform the conversion by
analyzing the QB4OLAP based ontology describing the
cubes. Our approach is to merge the level instances into
dimension instances to produce Star-pattern cubes or merge
level instances with the facts to produce Denormalized-
pattern cubes. SWOD can run in either SWOD-S mode or
SWOD-D mode, depending on whether the output pattern
is Star-pattern or Denormalized-pattern. We describe the
algorithms in general terms with references to LTPC-H
instance data and ontology, the latter of which is found in
Appendix D. We recommend using the ontology to gain a
better understanding of the algorithms.

Semantic Web OLAP Denormalizer (SWOD) is described in
Algorithm 1. The inputs to this algorithm are a collection

10http://www.w3.org/TR/owl-ref/
#InverseFunctionalProperty-def

13

of LMD cubes cubes described by a QB4OLAP based on-
tology onto. The output is a new collection of LMD cubes,
which are in either Star-pattern or Denormalized-pattern,
depending on the mode argument, along with the ontology
describing the new cubes. The algorithm uses the recur-
sive function MergeLevel() to merge level instances in a
dimension hierarchy together. This function is defined in
Algorithm 2.

To create a Star-pattern the MergeStar() function is called.
It uses the lowest level of a dimension to associate every
fact to a dimension instance, as defined in Algorithm 3. To
create a Denormalized-pattern the MergeDenorm() is used.
It merges the dimension instances into every fact as defined
in Algorithm 4. We also use the function MergeURIs(),
which combines two or more URIs into a new URI. The
exact method used to do this is not important as long as the
new URI does not risk URI collision with other resources.
In practice we use the first URI and concatenate the local
name or the remaining URIs, e.g.:

MergeURIs(domain_a#a,domain_b#b) = domain_a#a_b

It should be noted that we operate with two kinds of vari-
ables in our algorithms, BGP variables, which are prefixed
with a question mark “?”, and regular algorithm variables.
In some places we use algorithm variables in a BGP. This
does not make it a BGP variable, instead it is used as a con-
stant (URI, literal, or blank node) in the BGP, by extracting
the value of the algorithm variable at the time the BGP is
constructed. Also note that a graph can be produced by
projecting exactly three variables from an evaluation of a
BGP. In the following we create a graph G′ based on the
evaluation of a BGP on the graph G:

G′ = {(s, p, o) ∈ G (?s rdf:type t . ?s ?p ?o)}

G′ contains all triples with the subject s, which is an in-
stances of the class t, in the graph G. If a BGP does not
contain variables, the result of an evaluation is a boolean
value, indicating if a set of triples (a BGP without variables
is a set of triples) is present in a given graph.

SWOD, see Algorithm 1, loops through all LMD cubes
(resources of the type qb:DataSet). In LTPC-H we have
three cubes: ltpch:lineitemCube, ltpch:ordersCube,
and ltpch:partSupplierCube. For each cube, the lowest
level of each dimension is identified at line 3. The ltpch

:lineitemCube cube has two dimensions namely Orders
and Partsupplier. We loop over the dimensions, with their
lowest levels, in the lines 4–11. Each lowest level instance
is merged together with the instances at each higher level,
using the recursive function MergeLevel(). Depending
on mode we use either MergeStar() or MergeDenorm()

to integrate the dimension instances with the facts. We
also generate a specific ontology extension based on mode,
by using either GetStarOnto() or GetDenormOnto(). The
lines 12–14 loop over the facts in the current cube and
add these to the Star-pattern cube collection cubes′ along
with the measures and attributes associated with each
fact. Finally we combine the input ontology and extension
ontology (line 15) and return it with the converted cubes
(line 16).

Algorithm 1: Conversion of data from Snowflake-pattern
to Star-pattern or Denormalized-pattern.

Input: LMD cubes cubes described by a QB4OLAP
ontology onto. Both cubes and onto are graphs.
mode indicates the expected output pattern,
Star-pattern or Denormalized-pattern.

Output: LMD cubes cubes′ described by the ontology
onto′. Both cubes′ and onto′ are graphs.

1 Function SWOD(cubes,onto,mode) is
2 foreach dataSet ∈ onto(?dataSet a qb:DataSet) do
3 lowestLvls = {(lvl, dim) ∈

onto(dataSet qb:structure ?structure.
?structure qb:component ?component.
?component qb4o:level ?lvl.
?lvl qb:inDimension ?dim)};

4 foreach (lvl, dim) ∈ lowestLvls do
5 dimInsts = MergeLevel(cubes,onto,lvl,dim);
6 if mode = SWOD-S then
7 cubes′ = cubes′ ∪

MergeStar(cubes,dimInsts,lvl,dataSet);
8 onto′ = onto′ ∪ GetStarOnto(onto,lvl,dim);

9 if mode = SWOD-D then
10 cubes′ = cubes′ ∪

MergeDenorm(cubes,dimInsts,lvl,dataSet);
11 onto′ = onto′ ∪ GetDenormOnto(onto,lvl,dim);

12 foreach
(fact, prop, obj) ∈ cubes(?fact qb:dataSet dataSet.
?fact ?prop ?obj) do

13 if onto(prop a qb:AttributeProperty) ∨
onto(prop a qb:MeasureProperty) then

14 cubes′ = cubes′ ∪ {(fact, prop, obj)};

15 onto′ = onto′ ∪ onto;
16 return cubes′,onto′;

6.1 Merging Level Instances
The MergeLevel() function, see Algorithm 2, recursively
merge level instances together into dimension instances
which are used in a Star-pattern cube or further merged
with the facts of a Denormalized-pattern cube. The
function initially receives a level of a dimension along with
the graph containing the instances, cubes, and the ontology
describing the dataset, onto. The function uses recursion to
merge parent level instances, before merging these with the
instances of the current level. When the recursion reaches
its depth – a level with no parent levels – it returns the
instances of the current level with all their triples, which
have attribute properties as predicates. Note that we use
MergeURIs() to alter the predicates before adding them to
the result graph. When the top call returns a set of merged
level instances, we call these dimension instances.

First we run through each parent level – recall that the Part-
supplier level has two parents, the Part and the Supplier
level – in lines 2–8. Here, we recursively merge the par-
ent levels. For each instance at the parent level (lines 4–8),
we find children at the current level, if any, in lines 5–6

14

Algorithm 2: Generation of level instances through recur-
sively merging parent levels.

Input: LMD cubes cubes described by a QB4OLAP
ontology onto. Both cubes and onto are collections
of triples. lvl is a level in dim, both of which are
resources defined in onto.

Output: A collection of triples dimInsts of dimension
instances.

1 Function MergeLevel(cubes,onto,lvl,dim) is
2 foreach parLvl ∈ onto(lvl qb4o:parentLevel ?parLvl .

?parLvl qb:inDimension dim) do
3 parInsts = MergeLevel(cubes,onto,parLvl,dim);
4 foreach parInst ∈ parInsts(?parInst qb4o:inLevel [])

do
5 foreach lvlInst ∈ cubes(?lvlInst parLvl parInst)

do
6 dimInsts =

dimInsts ∪ {(lvlInst, prop, obj)|(prop, obj) ∈
parInsts(parInst ?prop ?obj)};

7 if cubes(?lvlInst parLvl parInst) = ∅ then
8 dimInsts = dimInsts ∪ {(parInst, prop, obj) ∈

parInsts(parInst ?prop ?obj)};

9 foreach prop ∈ onto(lvl qb4o:hasAttribute ?prop) do
10 dimInsts =

dimInsts ∪ {(lvlInst, MergeURIs(lvl,prop) obj) ∈
cubes(?lvlInst qb4o:inLevel lvl. ?lvlInst prop ?obj)};

11 dimInsts = dimInsts ∪ {(lvlInst, qb4o:inLevel, lvl)|lvlInst ∈
cubes(?lvlInst qb4o:inLevel lvl)} ;

12 return dimInsts;

and merge them by extracting every triple related to the
parent instance and creating a new similar triple with the
current level instance as the subject (instead of the parent
instance). Note that we use [] to indicate an anonymous
resource in line 4. To accommodate for unbalanced hierar-
chies, we add ancestor level instances which do not have any
children in the current level in lines 7–8. Then we add the
triples relevant to the current level to the result graph cubes’
in lines 9–11. Relevant triples are those with predicates de-
clared as attribute properties of the current level (through
the use of qb4o:hasAttribute) in the ontology and those which
indicate the level (with the predicate qb4o:inLevel). Finally,
the merged level instances are returned in line 12.

Algorithm 3: Linking facts to dimension levels.

Input: cubes is a graph containing MD cubes in
Snowflake-pattern. dimInsts is a set of triples with
merged dimension instances. lvl is the initial level
of dimension being merged. dataSet is a dataset in
cubes.

Output: dimInsts′ is a graph containing all dimension
instances and links between facts of dataSet and
the dimension instances.

1 Function MergeStar(cubes,dimInsts,lvl,dataSet) is
2 dimInsts′ = dimInsts ∪ {(fact, lvl, lvlInst)|(fact, lvlInst) ∈

cubes(?fact qb:dataSet dataSet. ?fact lvl ?lvlInst)}
return dimInsts′

The function MergeStar() in Algorithm 3 is used by SWOD()

to link the facts from the cube dataSet with the dimension
instances returned from MergeLevel(). The entire set of
dimension instances (dimInsts) is added to the result graph.
For every fact in the given dataset we select every triple with
the predicate of the lowest level (lvl) of the dimension and
its object. These triples are added to the result graph. The
objects of these triples are originally level instances, but are
used as dimension instances when converted to Star-pattern.
By adding these we ensure that the facts are associated with
the correct dimension instance.

Algorithm 4: Merging dimension instances with facts.

Input: cubes is a graph containing MD cubes in
Snowflake-pattern. dimInsts is a set of triples with
merged dimension instances. lvl is the initial level
of the dimension being merged. dataSet is a
dataset in cubes.

Output: dimInsts′ is a graph containing all the facts of
dataSet merged with the dimension instances to
which they related.

1 Function MergeDenorm(cubes,dimInsts,lvl,dataSet) is
2 foreach lvlInst ∈ dimInsts(?lvlInst qb4o:inLevel []) do
3 foreach fact ∈ cubes(?fact lvl lvlInst) do
4 dimInsts′ =

dimInsts′ ∪ {(fact, MergeURIs(dim,prop), obj)|
(prop, obj) ∈ dimInsts(lvlInst ?prop ?obj)};

5 if cubes(?fact lvl lvlInst) = ∅ then
6 dimInsts′ =

dimInsts′ ∪ {(lvlInst, MergeURIs(dim,prop), obj)|
(prop, obj) ∈ dimInsts(lvlInst ?prop ?obj)};

7 return dimInsts′

In Algortihm 4 we define the function MergeDenorm(). The
lines 2–6 are very similar to the lines 4–8 of Algorithm 2.
Instead of having a set of parent level instances and a set of
current level instances, we have a set of dimension instances
and a set of facts. The dimension instances are merged with
the facts by selecting all triples related to the dimension
instance and creating new similar triples with the facts as
subjects. As in MergeLevel() we accommodate for unbal-
anced hierarchies by also adding dimension instances, which
do not have facts associated with them – again, this hap-
pens for customers which are not related to any orders and
thereby not related to any lineitems.

6.2 Generating Ontology Extension
Depending on which pattern we wish to generate, we need a
certain extension to our ontology. This ontology extension
describes the new properties, which are introduced after the
pattern transformation.

In Algorithm 5 we define GetStarOnto(), which generates
an ontology extension for a Star-pattern cube. We traverse
all attribute properties of the input level, lvl, in the lines 2–
6 and define a new property by merging the URIs of the
attribute property and the level. We make the new prop-
erties sub-properties of the attribute properties on which
they are based. If the attribute property is owl:sameAs or
is an inverse functional property we define the new property

15

Algorithm 5: Generate ontology extension for Star-pattern
cube.
Input: onto is a graph containing the ontology for an MD

cubes in Snowflake-pattern. lvl is a level in dim,
both of which are resources located in onto.

Output: onto′ is a graph containing an ontology which
extends onto to describe an MD cube in
Star-pattern.

1 Function GetStarOnto(onto,lvl,dim) is
2 foreach prop ∈ onto(lvl qb4o:hasAttribute ?prop) do
3 if onto(prop a owl:InverseFunctionalProperty)∨

prop = owl:sameAs then
4 onto′ =

onto′ ∪ {(MergeURIs(lvl,prop), a, rdfProperty),
(MergeURIs(lvl,prop), rdfs:seeAlso, prop)};

5 else
6 onto′ = onto′ ∪

{(MergeURIs(lvl,prop), rdfs:subProprtyOf, prop)};

7 foreach parLvl ∈ onto(lvl qb4o:parentLevel ?parLvl.
?parLvl qb:inDimension dim) do

8 onto′ = onto′ ∪ GetStarOnto(onto,parLvl,dim)

9 return onto′

as a “fresh” property with a similarity to the old (through
the rdfs:seeAlso predicate) instead. In the lines 7–8 we loop
through all parent levels and recursively call GetStarOnto()
with the parent levels as inputs. The resulting triples from
these are added to the result graph, which is then returned.

An ontology extension of a Denormalized-pattern cube is
generated by GetDenormOnto(), defined in Algorithm 6. It
functions in much the same way as GetStarOnto(), with the
exception that it also uses the dimension URI to create the
new properties. This is because all attribute properties in a
Denormalized-pattern are run through MergeURIs() twice,
once in MergeLevel() and once in MergeDenorm(). Since
the properties used as predicates in the instance data are
run through MergeURIs() twice rather than once with more
arguments, as in GetDenormOnto(), we require MergeURIs()

to obey the following:

MergeURIs(a,b,c) = MergeURIs(a,MergeURIs(b,c))

7. EXPERIMENTAL SETUP
In order to understand how the Snowflake-pattern, Star-
pattern, and Denormalized-pattern perform we have applied
them on the LTPC-H. Now we describe the setup of our
experiments.

All experiments are run a PowerEdgeTMC1100 server run-
ning ubuntu server 14.04 with two Intel(R) Xeon(R) CPU
L5520 @ 2.27GHz. It has 72 GB DDR3 DIMM RAM and a
Western Digital 1 TB, Internal, 5400 RPM hard-disk.

We use Sesames native store as the physical storage of the
data. The blank nodes, URIs, and literals are stored in a
data dictionary implemented as a hashtable. A b+tree is
used to store the quads (subject, predicate, object, context)
and also functions as the index. This means that an index is
a quadstore and each additional index is an additional copy

Algorithm 6: Generate ontology extension for
Denormalized-pattern cube.

Input: onto is a graph containing the ontology for an MD
cubes in Snowflake-pattern. lvl is a level in dim,
both of which are resources located in onto.

Output: onto′ is a graph containing an ontology which
extends onto to describe an MD cube in
Denormalized-pattern.

1 Function GetDenormOnto(onto,lvl,dim) is
2 foreach prop ∈ onto(lvl qb4o:hasAttribute ?prop) do
3 if onto(prop a owl:InverseFunctionalProperty)∨

prop = owl:sameAs then
4 onto′ =

onto′∪{(MergeURIs(dim,lvl,prop), a, rdfProperty),
(MergeURIs(dim,lvl,prop), rdfs:seeAlso, prop)};

5 else
6 onto′ = onto′ ∪

{(MergeURIs(dim,lvl,prop), rdfs:subProprtyOf, prop)};

7 foreach parLvl ∈ onto(lvl qb4o:parentLevel ?parLvl.
?parLvl qb:inDimension dim) do

8 onto′ = onto′ ∪ GetDenormOnto(onto,parLvl,dim)

9 return onto′

of the quadstore where only the triple order differs [13, p.
101][15, 14]. We use two indexes for our repositories: SPOC
(subject, predicate, object, context) and POSC (predicate,
object, subject, context).

Figure 10: The process of how TPC-H data is
transformed to RDF data organized in cubes with
Snowflake-pattern, Star-pattern, and Denormalized-
pattern.

The process of making the data ready for querying consists
of six steps shown in Figure 10. We measure the time of
these steps and present them in Section 8. The first step is
called Generate SF# and is the generation of the TPC-H
data according to some scaling factor. We use the TPC-H
DBGEN tool to do this. This data is then converted to RDF
in the Convert step and we correct the xsd:dateTime to xsd

:date. The next step Stage is to load the RDF data into
the Sesame native store. In the Lineitem QB4OLAP step
we add QB4OLAP– by defining dimensions, levels and their
relations, etc. – and thus generating the Snowflake-pattern

16

cube. The next two steps are independent of each other.
We generate Star-pattern using the SWOD-S algorithm
and likewise we generate Denormalized-pattern using the
SWOD-D algorithm. We explain the process in greater
detail in Appendix A.6. These last three steps are performed
once for each data cube – Lineitem, Orders, Partsupplier.

We construct a new data staging area for each of the scal-
ing factors we test. For each of these scaling factors we
store each data cube separately. Finally, every data cube
is stored in three different repositories using the three pat-
terns: Snowflake-pattern, Star-pattern, and Denormalized-
pattern. We define the size of a repository as its size on the
hard disk. We measure the size of these Sesame repositories
and the number of triples in each, this is presented in the
next section.

We define 22 TPC-H SPARQL queries based on the queries
from BIBM. These are defined in three variants such
that they fit the Snowflake-pattern, Star-pattern, and
Denormalized-pattern. By doing so we are able to compare
the query evaluation time of the three patterns, which we
do in the next section. In Appendix G all the queries are
presented. To show how this in done, recall the query:
“Show the total revenue per nation for nations, which
have at least a population of thirty million”. The strategy
is to get the attributes needed to calculate the revenue
and find the name of the nation from which the orders
originates (the nation of the customer). Then we use data
from the Wikipedia endpoint called dbpedia11 to get the
population of the different nations – which we do not have
available locally. Last we are able to make a filter such that
we only receive nations with a population of more than
30.000.000 and we make a case insensitive comparison of
nation names to match nations from dbpedia and our local
nations. Code Snippet 2 shows our example query adapted
for Snowflake-pattern.

SELECT DISTINCT ?n_name1 ?pop
(sum(? price *(1-? discount)) as ?revenue)

WHERE {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?price ;
ltpch:l_linediscount ?discount ;
ltpch:l_has_order ?ord .

?ord ltpch:o_has_customer ?cust .
?cust ltpch:c_has_nation ?nation .
?nation ltpch:n_name ?n_name1 .
SERVICE <http:// dbpedia.org/sparql/> {

?nation2 a dbponto:Country ;
dbpprop:commonName ?n_name2 ;
dbpprop:populationEstimate ?pop .

}
FILTER (

REGEX(?n_name1 , str(? n_name2), "i")
&& ?pop > 30000000

)
}
GROUP BY ?n_name1 ?pop

Code Snippet 2: Snowflake-pattern version of our
running example query.

11http://dbpedia.org/sparql

In Code Snippet 3 the query has been adapted to Star-
pattern. Here we see that locally (not in SERVICE clause)
we are only working with two resources at subject position:
A lineitem fact and an orders dimension instance. In the
Snowflake-pattern query we have three level instances in-
stead of a single dimension instance. This makes the Star-
pattern query slightly shorter, and arguably less complicated
because less triple patterns are required to express the same
conceptual query.

SELECT DISTINCT ?n_name1 ?pop
(sum(? price *(1-? discount)) as ?revenue)

WHERE {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?price ;
ltpch:l_linediscount ?discount ;
ltpch:l_has_order ?ord .

?ord ltpch:nation_name ?n_name1 .
SERVICE <http:// dbpedia.org/sparql/> {

?wiki_nation a dbponto:Country ;
dbpprop:commonName ?n_name2 ;
dbpprop:populationEstimate ?pop .

}
FILTER (

REGEX(?n_name1 , str(? n_name2), "i")
&& ?pop > 30000000

)
}
GROUP BY ?n_name1 ?pop

Code Snippet 3: Star-pattern version of our running
example query.

Code Snippet 4 contains the Denormalized-pattern query.
Locally there are neither level instances nor dimension in-
stances, only facts, at subject position. This allows us to
reach dimension attribute values directly from the fact and
arguably make the query simpler.

SELECT DISTINCT ?n_name1 ?pop
(sum(? price *(1-? discount)) as ?revenue)

WHERE {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?price ;
ltpch:l_linediscount ?discount ;
ltpch:order_nation_name ?n_name1 .

SERVICE <http:// dbpedia.org/sparql/> {
?wiki_nation a dbponto:Country ;

dbpprop:commonName ?n_name2 ;
dbpprop:populationEstimate ?pop .

}
FILTER (

REGEX(?n_name1 , str(? n_name2), "i")
&& ?pop > 30000000

)
}
GROUP BY ?n_name1 ?pop

Code Snippet 4: Denormalized-pattern version of
our running example query.

Ten of the TPC-H queries use functions which are not a part
of the Sesame implementation, these functions are dateadd,
equals, and or. We have implemented these as SPARQL
extension functions, please see Appendix C for implementa-
tion details.

17

As mentioned, all the TPC-H queries have variables which
need to be instantiated, BIBM does this based on query de-
scription files, which are included in Appendix G. This in-
stantiation is based on a seed. The order of the queries are
randomized based on this seed, we call a set of instantiated
queries a querymix. For each scaling factor we run six differ-
ent querymixes, each querymix is run on the three patterns.
To calculate the average query evaluation time of a query,
we remove the fasted and the slowest query evaluation time
and calculate the average of the remaining.

8. EVALUATION
In this section we evaluation LTPC-H. We evaluate the
three LMD cubes where we vary the patterns and the scal-
ing factor such that we have 27 LMD cubes. Figure 11
illustrate these cubes. Each cube is evaluated on three mea-
sures, these are load time, storage size, and query evaluation
time. For the sake of brevity we only present results for
the Lineitem-cube here and refer to the results of the other
cubes in Appendix F. We refer to the previous section for
setup details.

Figure 11: The x axis show the different scaling
factor, the z axis show the patterns, and the z axis
shows the LMD cubes.

Step 0.01 0.1 1

Generate 9 12 36
Convert 8 58 570
Stage 49 410 24,187
QB4OLAP 66 552 20,619
SWOD-S 58 573 26,198
SWOD-D 133 1,419

Figure 12: Seconds spent for performing the steps
of our process.

Figure 12 shows the load times in seconds for how long it
takes to generate the Lineitem-cube. It shows the time it
takes to: Generate TPC-H data, convert it to RDF, load it
into a staging area, construct the LMD Snowflake-pattern
cube with QB4OLAP, construct the LMD Star-pattern

cube, and construct the LMD Denormalized-pattern cube.
We measure the load times for scaling factors 0.01, 0.1, and
1.

There are no results for the Denormalized-pattern for scaling
factor 1 because the process took an unreasonable amount of
time and we had to stop it. The load times of Generate and
Convert shows the performance of the DBGEN tool and the
BIBM conversion tool. Stage is the time it takes for Sesame
native store to load the data from the converted RDF file
(in turtle format) into its repository. Since the data amount
increase with a factor of ten between scaling factor 0.01,
0.1, and 1, we expect load times to do approximately the
same. However at scaling factor 1 this does not hold. The
reason for this lies in the implementation of Sesames native
store. Despite having sufficient memory available, Sesame
uses and maintains the indices on the hard drive. Sesame
scans these indices before inserting new triples in order to
detect and avoid duplicates and find the place to put the
new triple, thus requiring and increasingly high amount of
disk reads as the repository grows. Recall that the index
contain a complete instance of the data thus making the
index expensive to read in terms of disk operations. These
reasons cause the load of Lineitem-cube with scaling factor
1 as Denormalized-pattern to run for an unreasonably long
time. In QB4OLAP and SWOD-S we also see that the load
time greatly increase at scaling factor 1.

Pattern 0.01 0.1 1

Snowflake 132 1,032 45,412
Star 190 1,605 71,610
Denormalized 265 2,451

Figure 13: Seconds spent from generation to finished
LMD cube.

The steps performed when loading the LMD cubes are se-
quential (with SWOD-S and SWOD-D as exceptions). In
Figure 13 we see the time required to reach a functional
LMD, i.e. the accumulated times of Figure 12. It takes
138% longer to generate Denormalized-pattern at scaling
factor 0.1 than Snowflake-pattern and it takes 56% longer
time to generate Star-pattern.

Pattern 0.01 0.1 1

Snowflake 1,521,825 15,192,665 151,834,525
Star 1,771,500 17,691,440 176,824,356
Denormalized 4,159,183 41,511,007

Figure 14: The number of triples in Lineitem-cube
using different patterns.

The storage size is measured in two ways: The number of
triples in the repository and the physical size of the Sesame
native store repository on the disk. In Figure 14 we see the
number of instance triples in the Lineitem-cube repositories
with different scaling factors and with different patterns.
We can see that the amount of triples increase when we
convert a LMD cube from Snowflake-pattern to Star-pattern
or Denormalized-pattern.

18

10−3 10−2 10−1 100
0

50

100

150

Scaling Factor

In
re

a
se

%

Denormalized-pattern

Star-pattern

Figure 15: The growth of triples compared to
Snowflake-pattern in percent.

Pattern 0.01 0.1 1

Snowflake 122 1,211 12,049
Star 139 1,380 13,760
Denormalized 288 2,866

Figure 16: The disk size of repositories contain-
ing the Lineitem-cube using different patterns. The
sizes are in mega bytes.

In Figure 15 we can see how many percent the Star-pattern
and Denormalized-pattern cubes are larger than Snowflake-
pattern. Note that we have included scaling factor 0.001 in
this figure. When the scaling factor is increased, the growth
percentage of Star-pattern increase from 15.3% to 16.5%
while the growth percentage of Denormalized-pattern de-
crease from 179% to 173.2%. While these results are promis-
ing for the Denormalized-pattern cube, it still contains more
than twice as many triples as either of the otherpatterns at a
scaling factor of 0.1. The number of triples in the ontologies
are 403, 454, and 463 in Snowflake-pattern, Star-pattern,
and Denormalized-pattern respectively. The Star-pattern
and Denormalized-pattern ontologies have more triples than
Snowflake-pattern because they have to avoid URI collisions
and therefore create new properties as described in Section 6.
Because Denormalized-pattern has to avoid collisions be-
tween dimensions as well as level, it contains more new prop-
erties than Star-pattern. In Figure 16 we see the size of the
Lineitem-cube repositories at different scaling factors and
with different patterns. The storage size is approximately
increased ten fold, when the scaling factor is increased ten
fold. However, the ratio between two repositories of the
same pattern with a factor 10 between scaling factors is a
little less than ten. This is in part due to the overhead re-
quired to store namespaces, which for all scaling factors is
the same size, and in part because of the storage of fixed
sized levels such as Nation and Region.

There are 17 queries for the Lineitem-cube. These can be
seen, along with the ones for the Partsupplier-cube and

10−3 10−2 10−1 100
10−1

100

101

102

Scaling Factor

G
eo

.
M

ea
n

Denormalized-pattern

Star-pattern

Snowflake-pattern

Figure 17: Geometric mean of queries run on
Lineitem-cube with double logarithmic axes.

Orders-cube, in Appendix G. Figure 17 shows the geomet-
ric mean for the query evaluation times on different scal-
ing factors for the different patterns. Note that we have
included results for cubes with the scaling factor 0.001. Fig-
ure 18 shows the individual query evaluation times of the
queries run on different scaling factors and patterns. In Ap-
pendix F bar charts of the results are show. Queries which
are not able to finish within 1000 seconds are stopped and
we write > 1000 to mark this. We calculate the minimum
average and the minimum geometrical mean, we say that
these are minimum because the queries which timeout are
included as the query evaluation time 1000 in the calcula-
tion. The first column in the figure is the names of the
queries, seconds is scaling factor 0.01, third is scaling fac-
tor 0.1, and last is scaling factor 1. Recall we did not load
Denormalized-pattern scaling factor 1 because it timed out,
we are therefore not able to present any results for it. Fur-
ther we experienced hardware problem during the evaluation
of scaling factor 1, therefore the results only represent a sin-
gle run on warm cache instead the average of the middle
four runs. Figure 19 compares the Lineitem-cube queries in
different aspects. These aspects are the number of substi-
tution parameters in the query, the number of Basic Triple
Pattern (BTP) in the query, how many FILTER clauses, max-
imum level depth, distinct levels spanned, number of sub-
queries, and on which patterns can the query be answer on
SF 1 without exceeding 1000 seconds. Due to the fact that
in scaling factor 0.1, Denormalized-pattern is slower on all
query except queries 7 and 12, this leads us to conclude that
it not a attractive pattern to use on the LTPC-H dataset.
In general we see that queries with a high number of dis-
tinct levels, such as queries 7 and 8, are slow in Snowflake-
pattern and fast in Star-pattern. The opposite is also true,
when there is a low number of distinct levels, the Snowflake-
pattern performs well as seen in query 1, 3 and 6. Queries
have to perform subject-object joins every time a level is
used in Snowflake-pattern where Star-pattern only does this
at the lowest dimension level where after it performs the ef-
ficient subject-subject joins. Subject-subject joins are faster
because the cubes are stored in indices with the subject as

19

the primary index attribute. This contributes to the fact
that Star-pattern is faster when there is a high number of
distinct levels. Query 21 exceed 1000 seconds on all pat-
terns. The query contains a FILTER NOT EXISTS which may
be the reason why Sesame is not able to answer the query
in less the 1000 seconds. Other queries also exceed 1000
seconds in scaling factor 1, this is often caused by a large
result set. Snowflake-pattern timeout on eight queries and
Star-pattern timeout on six where four of them are shared.
In terms of average and geometrical mean, the Star-pattern
cubes have the lowest query evaluation times.

As presented in the introduction we evaluate the business
question “Show the total revenue per nation for nations,
which have at least a population of thirty million”. Recall
that we use RDF as underlying format because we want
to benefit from the native ad-hoc data integration. The
query serves as a proof of concept, to show that it is indeed
possible to query internal and external data in an MD
context. The queries are explained in Section 7. We run
the queries on the three patterns on scaling factor 0.1. The
query evaluation times are 123.71s, 121.59s, and 97.18s
for Snowflake-pattern, Star-pattern, and Denormalized-
pattern respectively. This simple query have similar
results for Snowflake-pattern and Star-pattern but here
Denormalized-pattern the lowest query evaluation time.

Based on the three measures load time, storage size, and
query evaluation time we have gained a higher understand of
when to use the three patterns. We see that Denormalized-
pattern has more than twice as many triples in the repos-
itory as the other patterns and show very little potential
in terms of query evaluation time. The load time is also
the much larger Denormalized-pattern than the other pat-
terns. Snowflake-pattern and Star-pattern both show good
results and different types of queries. Star-pattern excel
at queries that span several distinct levels and Snowflake-
pattern at queries that span few distinct levels. For some
of these queries Star-pattern outperforms Snowflake-pattern
by orders of magnitude. Despite that Star-pattern has an
overhead in form of more triples and a higher load time, it
is faster on average and is therefore a suitable alternative to
Snowflake-pattern.

9. CONCLUSIONS AND FUTURE WORK
Motivated by the increasing amount of research in the use
of Semantic Web technologies for ad-hoc data integration in
Decision Support Systems (DSS), we explore the potential of
using RDF to store both local and situational data. RDF is
an attractive format because the query language SPARQL,
which operates on RDF data, has native support for ad-hoc
data integration through federated queries. We define the
term Linkable Multidimensional (LMD) cubes as Multidi-
mensional (MD) cubes in RDF format. We use the de facto
standard MD vocabulary (QB extended with QB4OLAP)
for describing the LMD cubes, on the instance and ontolog-
ical level. We present three logical patterns for modeling
LMD cubes, namely Snowflake-pattern, Star-pattern, and
Denormalized-pattern. These patterns are inspired by tech-
niques known from the relational OLAP world.

We present the novel algorithm Semantic Web OLAP De-
normalizer (SWOD), which can transform an LMD cube

in Snowflake-pattern into Star-pattern and Denormalized-
pattern. It accounts for unbalanced hierarchies and name
collisions of properties belonging to different levels and di-
mensions. This allows us to only model the data once and
convert it to the pattern(s), which is/are best suited for a
given use case.

We convert the TPC BenchmarkTMH (TPC-H) datasets
of different sizes to RDF and call it Linkable TPC-
H (LTPC-H). We annotate the datasets with QB4OLAP,
as a novel contribution, to create LMD cubes modeled
with Snowflake-pattern. We run these through SWOD
to create LMD cubes in Star-pattern and Denormalized-
pattern. The largest LMD cube has 177 million triples.
Our evaluation of the cubes include load time, repository
size, and query evaluation time. We measure the query
evaluation time by converting the 22 TPC-H queries to
SPARQL and evaluating them on our different LMD cubes.
The LMD cubes are available on our SPARQL endpoint
http://www.extbi.lab.aau/sparql.

In our evaluation we found that generally Star-pattern and
Snowflake-pattern both perform well on load times, reposi-
tory size, and query evaluation time, while Denormalized-
pattern is outperformed by the other patterns. For the
LTPC-H dataset the Star-pattern is about 15% larger
than Snowflake-pattern, where Denormalized-pattern is
more than 170% larger. The time it takes to create a
Star-pattern LMD cube is 59% longer than the Snowflake-
pattern, while the Denormalized-pattern is 138% slower
than the Snowflake-pattern. On average, the query eval-
uation time of the Snowflake-pattern cubes evaluate our
queries at least 70% slower than the Star-pattern cubes.
Furthermore, the Star-pattern cubes are able to handle
more queries than Snowflake-pattern cubes without timing
out. On average the Denormalized-pattern cubes perform
comparable with the Snowflake-pattern cubes. While none
of the patterns prove to be strictly better than the others,
we recommend Star-pattern over the other two patterns for
storing the LTPC-H cubes.

We evaluate the business question “Show the total revenue
per nation for nations, which have at least a population of
thirty million”and find that the lowest query evaluation time
is when using Denormalized-pattern. Because we are able
to evaluate the query we show that LMD cubes is a viable
option for answering business questions with ad-hoc data
integration.

Interesting research directions are developing algorithms for
automatically converting queries of one pattern to another
along with testing performance of the patterns on different
datasets. Work in these directions will further improve the
versatility of LMD cubes and help generate general heuris-
tics for the use of the patterns.

10. ACKNOWLEDGMENT
We would like to thank our supervisors Torben B. Peder-
sen and Katja Hose for fruitful guidance within the areas
of BI and semantic web. We would also like to thank An-
ders T. Olesen for providing the test server and providing
maintenance of it.

20

Query

1
3
4
5
6
7
8
9
10
12
14
15
17
18
19
20
21

>Average
>Geo. Mean

Snow. Star. Denorm.

5.28 5.42 5.31
0.85 1.54 1.56
0.29 0.26 0.64
1.00 0.92 0.88
0.87 0.89 0.88

> 1000 4.62 1.62
> 1000 0.09 1.17

3.11 2.33 5.32
3.64 0.45 0.76
3.98 2.91 2.83
2.38 2.36 0.53
2.34 2.35 2.42
1.25 1.38 4.11
1.33 1.31 1.39
3.92 4.66 4.65
1.60 1.53 2.53

> 1000 > 1000 > 1000

168.44 57.39 57.59
4.92 1.95 2.41

(a) scaling factor 0.01

Snow. Star. Denorm.

54.67 56.98 59.11
8.82 17.23 33.11
2.87 2.26 33.03
9.49 11.26 9.97

26.00 27.81 29.73
> 1000 55.11 41.60
> 1000 0.76 15.71

32.57 25.60 59.69
38.64 4.19 7.26
49.96 49.39 41.61
28.44 28.31 33.41
21.80 22.48 25.04
11.70 14.37 435.51
12.48 12.48 14.04
38.03 49.75 58.04
15.24 15.50 27.83

> 1000 > 1000 > 1000

186.15 77.42 106.93
31.83 16.97 32.74

(b) scaling factor 0.1

Snow. Star.

545.50 > 1000
> 1000 > 1000
272.92 24.95
275.38 101.78
257.69 > 1000
> 1000 569.36
> 1000 107.25
> 1000 > 1000
685.27 46.10
606.95 422.95
> 1000 > 1000
294.15 265.86
628.97 396.98
> 1000 243.09
> 1000 587.65
287.65 260.77
> 1000 > 1000

658.58 501.48
428.16 247.20

(c) scaling factor 1

Figure 18: Query Evaluation Times of queries on the different patterns with scaling factor 0.01, 0.1, and 1
respectively.

Query Substitution Parameters BTPs Filters Level Depth Distinct Levels Sub-queries Completion

1 1 8 1 0 0 0 Sn
3 2 10 3 2 2 0
4 1 6 3 1 1 0 Sn,St
5 2 13 4 4 7 0 Sn,St
6 3 5 5 0 0 0 Sn
7 2 12 6 3 6 1 St
8 2 16 4 4 8 2 St
9 1 13 1 3 5 1
10 1 15 3 3 3 0 Sn,St
12 3 7 5 1 1 0 Sn,St
14 1 7 2 2 2 1
15 1 17 5 2 2 3 Sn,St
17 2 11 3 2 2 1 Sn,St
18 1 12 2 2 2 1 St
19 6 11 20 2 2 0 St
20 3 12 5 3 4 2 Sn,St
21 1 18 6 3 5 2

Figure 19: The queries of the Lineitem-cube compared on different parameters.

References
[1] Alberto Abelló, Jérôme Darmont, Lorena Etcheverry,

Matteo Golfarelli, Jose-Norberto Mazón, Felix Nau-
mann, Torben Bach Pedersen, Stefano Rizzi, Juan Tru-
jillo, Panos Vassiliadis, and Gottfried Vossen. Fu-
sion cubes: Towards self-service business intelligence.
IJDWM, 9(2):66–88, 2013.

[2] Chris Adamson and Mike Venerable. Data Warehouse
Design Solutions. John Wiley & Sons, Inc., New York,
NY, USA, 1998. ISBN 0-471-25195-X.

[3] Alex Bondo Andersen and Kim Ahlstrøm Jakobsen.
Linking open data: Through a danish agricultural &
business-based case study, Dec 2013. Student report.

[4] FBI Productions ApS. Funny business inc. URL http:

//www.fbi.dk/. Retrieved: December 9th 2013.

[5] Ronald Barber, Peter Bendel, Marco Czech, Oliver
Draese, Frederick Ho, Namik Hrle, Stratos Idreos,
Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, Tian-
chao Tim Li, Guy M. Lohman, Konstantinos Morfo-
nios, René Möller, Keshava Murthy, Ippokratis Pan-
dis, Lin Qiao, Vijayshankar Raman, Richard Sidle,
Knut Stolze, and Sandor Szabo. Business analytics
in (a) blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.
URL http://dblp.uni-trier.de/db/journals/debu/

debu35.html#BarberBCDHHIKKLLLMMMPQRSSS12.

[6] David Beckett. Rdf/xml syntax specification (re-
vised), February 2004. URL http://www.w3.org/TR/

n-triples/. Retrieved: December 22th 2013.

[7] David Beckett. Rdf 1.1 n-triples, November 2013. URL
http://www.w3.org/TR/n-triples/. Retrieved: De-
cember 22th 2013.

21

[8] David Beckett and Tim Berners-Lee. Turtle - terse
rdf triple language, March 2011. URL http://www.w3.

org/TeamSubmission/turtle/. Retrieved: December
22th 2013.

[9] Tim Berners-Lee. Linked data – design issues,
July 2006. URL http://www.w3.org/DesignIssues/

LinkedData.html. Retrieved: October 30th 2013.

[10] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A
readable rdf syntax, March 2011. URL http://www.w3.

org/TeamSubmission/n3/. Retrieved: December 22th
2013.

[11] Henrike Berthold, Philipp Rösch, Stefan Zöller, Fe-
lix Wortmann, Alessio Carenini, Stuart Campbell,
Pascal Bisson, and Frank Strohmaier. An architec-
ture for ad-hoc and collaborative business intelligence.
In Proceedings of the 2010 EDBT/ICDT Workshops,
EDBT ’10, pages 13:1–13:6, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-990-9. doi: 10.1145/
1754239.1754254. URL http://doi.acm.org/10.1145/

1754239.1754254.

[12] Christian Bizer and Andreas Schultz. The berlin sparql
benchmark. International Journal On Semantic Web
and Information Systems, 2009.

[13] J. Broekstra. Storage, Querying and Inferencing for Se-
mantic Web Languages. PhD thesis, Vrije Universiteit,
7 2005.

[14] J. Broekstra. Sesame native store tech-
nical description, May 2014. URL http:

//answers.semanticweb.com/questions/21881/

why-is-sesame-limited-to-lets-say-150m-triples.
Retrieved: May 13th 2014.

[15] J. Broekstra. Sesame native store technical description,
May 2014. URL https://groups.google.com/forum/

#!topic/sesame-users/SwPksydmIbE. Retrieved: May
13th 2014.

[16] João Pedro Costa, José Cećılio, Pedro Martins, and
Pedro Furtado. One: A predictable and scalable dw
model. In Alfredo Cuzzocrea and Umeshwar Dayal, ed-
itors, DaWaK, volume 6862 of Lecture Notes in Com-
puter Science, pages 1–13. Springer, 2011. ISBN 978-
3-642-23543-6. URL http://dblp.uni-trier.de/db/

conf/dawak/dawak2011.html#CostaCMF11.

[17] Richard Cyganiak and Dave Reynolds. The rdf data
cube vocabulary, 2014. URL http://www.w3.org/TR/

2014/REC-vocab-data-cube-20140116/. Retrieved:
March 5th 2014.

[18] Richard Cyganiak, David Wood, and Markus Lan-
thaler. Rdf 1.1 concepts and abstract syntax,
February 2014. URL hhttp://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/. Retrieved: May 20th
2014.

[19] Statistical Data and Metadata eXchange. Statistical
data and metadata exchange. URL http://sdmx.org/.
Retrieved: March 5th 2014.

[20] Orri Erling and Ivan Mikhailov. Business Intelligence
Extensions for SPARQL. OpenLink Software, 2009.
URL http://virtuoso.openlinksw.com/dataspace/

doc/dav/wiki/Main/VOSArticleBISPARQL2.

[21] Lorena Etcheverry and Alejandro A. Vaisman. En-
hancing olap analysis with web cubes. In Proceed-
ings of the 9th International Conference on The Se-
mantic Web: Research and Applications, ESWC’12,
pages 469–483, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-30283-1. doi: 10.1007/
978-3-642-30284-8 38. URL http://dx.doi.org/10.

1007/978-3-642-30284-8_38.

[22] Lorena Etcheverry and Alejandro A. Vaisman.
Qb4olap: A vocabulary for olap cubes on the se-
mantic web. In Juan Sequeda, Andreas Harth,
and Olaf Hartig, editors, COLD, volume 905
of CEUR Workshop Proceedings. CEUR-WS.org,
2012. URL http://dblp.uni-trier.de/db/conf/

semweb/cold2012.html#EtcheverryV12.

[23] Tom Heath and Christian Bizer. Linked Data: Evolving
the Web into a Global Data Space. Morgan & Claypool,
1st edition, 2011. ISBN 9781608454303. URL http:

//linkeddatabook.com/.

[24] http://dbpedia.org/. About: Federal bureau of in-
vestigation. URL http://dbpedia.org/page/Federal_

Bureau_of_Investigation. Retrieved: December 9th
2013.

[25] Christian S. Jensen, Torben Bach Pedersen, and Chris-
tian Thomsen. Multidimensional Databases and Data
Warehousing. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers, 2010. URL http:

//dx.doi.org/10.2200/S00299ED1V01Y201009DTM009.

[26] Benedikt Kämpgen and Andreas Harth. No size fits
all – running the star schema benchmark with sparql
and rdf aggregate views. In Philipp Cimiano, Oscar
Corcho, Valentina Presutti, Laura Hollink, and Sebas-
tian Rudolph, editors, The Semantic Web: Semantics
and Big Data, volume 7882 of Lecture Notes in Com-
puter Science, pages 290–304. Springer Berlin Heidel-
berg, 2013. ISBN 978-3-642-38287-1. doi: 10.1007/
978-3-642-38288-8 20. URL http://dx.doi.org/10.

1007/978-3-642-38288-8_20.

[27] Benedikt Kämpgen and Andreas Harth. Olap4ld - a
framework for building analysis applications over gov-
ernmental statistics. Accepted demo of the 11th ESWC
2014, 2014.

[28] Ralph Kimball and Margy Ross. The Data Warehouse
Toolkit: The Complete Guide to Dimensional Modeling.
Wiley, 2. edition, April 2002.

[29] Jose-Norberto Mazón, Jose Jacobo Zubcoff, Irene Gar-
rigós, Roberto Espinosa, and Rolando Rodŕıguez. Open
business intelligence: On the importance of data qual-
ity awareness in user-friendly data mining. In Pro-
ceedings of the 2012 Joint EDBT/ICDT Workshops,
EDBT-ICDT ’12, pages 144–147, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1143-4. doi: 10.1145/
2320765.2320812. URL http://doi.acm.org/10.1145/

2320765.2320812.

22

[30] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star
schema benchmark. June 2009. URL http://www.cs.

umb.edu/~poneil/StarSchemaB.PDF.

[31] Woody Pidcock and Michael Uschold. What
are the differences between a vocabulary, a tax-
onomy, a thesaurus, an ontology, and a meta-
model?, 2010. URL http://infogrid.org/trac/wiki/

Reference/PidcockArticle. Retrieved: December
22th 2013.

[32] Oscar Romero and Alberto Abelló. Open access seman-
tic aware business intelligence. In eBISS, pages 121–
149, 2013.

[33] TPC BENCHMARKTMH (Decision Support) Standard
Specification. Transaction Processing Performance
Council (TPC), Building 572B Ruger St. (surface) P.O.
Box 29920 (mail) San Francisco, CA 94129-0920, revi-
sion 2.16.0 edition, 2013.

[34] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, An-
dreas Harth, and Axel Polleres. Comparing data sum-
maries for processing live queries over linked data.
World Wide Web, 14(5-6):495–544, 2011.

[35] W3C. Properties, . URL http://www.w3.org/TR/

rdf-schema/#ch_property. Retrieved: December 22th
2013.

[36] W3C. Linked data, . URL http://www.w3.org/

standards/semanticweb/data. Retrieved: December
21th 2013.

[37] w3c. Resource description framework (rdf):concepts
and abstract syntax, Febuary 2004. URL http://www.

w3.org/TR/rdf-concepts/. Retrieved: December 13th
2013.

[38] W3C. Sparqlendpoints, January 2013. URL http:

//www.w3.org/wiki/SparqlEndpoints. Retrieved: De-
cember 21th 2013.

[39] W3C. Sparql 1.1 query language, March 2013. URL
http://www.w3.org/TR/sparql11-query/. Retrieved:
December 21th 2013.

23

A. BUSINESS INTELLIGENCE IN THE SEMANTIC WEB
This section is originates from [3, pp. 3-6]. Small modifications have been made and the paragraph about blank nodes is new.

A.1 Semantic Web
Here we describe the basics of the Semantic Web as a background for the article. This is not meant to be a full description
of every aspect of the Semantic Web, for this we refer to our sources in our bibliography.

The Semantic Web – also occasionally called Web 3.0 or a component thereof – is sometimes described as an evolution of
World Wide Web (WWW). The Semantic Web differentiates itself from WWW in two regards.

For one, Semantic Web links resources, where WWW links documents. The difference is that resources can represent physical
things, where a document can only describe a physical thing. For instance: There are several documents describing FBI,
but if you want to represent some data about FBI, you cannot uniquely identify FBI as part of your data. You could write
human readable text which, from the context, would make it clear that it is the Federal Bureau of Investigation [24] you are
talking about (not the Danish comedian organization Funny Business Incorporated [4]). In the Semantic Web you are able to
uniquely define a resource, such as the Federal Bureau of Investigation, through Uniform Resource Identifiers (URIs). A URI
can be used as part of an RDF graph, which we define further down, to add information about the resource which the URI
represents.

The second difference is that the links/references between documents in WWW are through the anchor element in HTML.
Such a link is not named – it is not clear what relationship(s) exists between the referring and the referred document. The
links between resources in the Semantic Web are named. A link in the Semantic Web is called a predicate. A predicate
is a URI, which is also present in the Semantic Web, hence the semantics of the given predicate (and relationship between
resources) can be extracted.

A.2 Linked Data
Data in the Semantic Web can be in the form of Linked Data (LD). For LD Tim Berners-Lee has set up four principles which
the data must live up to (quoted from Berners-Lee [9]):

1. “Use URIs as names for things”

2. “Use HTTP URIs so that people can look up those names.”

3. “When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)”

4. “Include links to other URIs. so that they can discover more things.”

This means that a URI should not only represent a resource, it should also locate the resource or at least information about
the resource, such as links to other resources (through their URIs).

To store LD the format called RDF is the standard, defined by W3C [36]. A set of data stored in RDF is called an RDF
graph, or simply a graph for shorthand notation, and consist of triples. Triple consists of three elements – hence the name – a
subject, a predicate, and an object. The subject and predicate of a triple are always URIs. The object can either be a URI or a
literal (string, number, data etc.). A triple indicates that there is some relationship between the subject and the object. The
predicate defines the nature of this relationship. Two resources can have several different relationships. This can be modeled
by having a triple for each relationship, each with a different predicate to indicate each relationship. A set of triples is, as
mentioned, called a graph, because each URI and literal from subjects and objects can be viewed as nodes in a graph and
every predicate will be a directed named edge from the subject to the object.

A.3 Resource Description Framework Formats
RDF does not in itself define a serialization format. There exists a number of serialization formats for RDF; Turtle [8],
N-Triples [7], Notation 3 [10], and RDF/XML [6]. The Turtle syntax, which we use in this project, serializes RDF data by
separating triples with a dot (.). The three parts of each triple are separated by a whitespace. URIs are written between less
than (<) and greater than (>) symbols (used as angled brackets). Literals are written between quotes (”) and can optionally
be appended by two “hats” (ˆˆ) and a data type (string, integer, date, etc.).

There are shorthand notations for having several triples with the same subject, or subject and predicate, these are illustrated
in Code Snippet 5. Semi-colon (;) is used to indicate that the following triple uses the same subject as the previous. Comma
(,) is used when both subject and predicate is reused from previous triple. In total Code Snippet 5 has four triples, three of
which have the same subject, namely <resourceA>, two these have the same predicate, <predicate2>. As shown, the types
are prefixed with xsd:.

24

<resourceA > <predicate1 > <resourceB > ;
<predicate2 > "String litteral"^^xsd:string ,

"String , without explicit data type" .

<resourceB > <predicate3 > "123"^^xsd:integer .

Code Snippet 5: Example of RDF data in Turtle format.

Notation 3 and N-Triple are similar to the Turtle format. Notation 3 is more expressive than Turtle, since every legal Notation
3 document is not necessarily legal RDF data – Notation 3 allows blank nodes as predicates, which the RDF standard does not.
The Turtle and Notation 3 formats offer a shorthand version of rdf:type, namely a, which is a predicate used to denote the
type of a resource. N-Triple is very similar to Turtle with the exception that there are no shorthand notation for continuous
use of a single subject, or subject and predicate, thus making it a bit more bloated to read and cumbersome to write by hand.
RDF/XML is very different from the other formats, mainly because it is based on Extensible Markup Language (XML). We
will not present further about RDF/XML, since we do not use it in this project.

A.4 Identifying & Locating Resources
Additionally to URIs uniquely defining resources, they also should be human readable. This means that from seeing the
URI a person should have a good chance of knowing what it refers to, assuming he is knows the domain of the resource in
question. When choosing a URI for a resource it should also be possible to look up the resource, which is why most URIs
in the Semantic Web are defined as web addresses, which can be resolved with Hyper Text Transfer Protocol (HTTP), as
mentioned as part of the four principles for LD in Section A.2. In this way the URI does not only serve as a unique identifier
for a resource, but also as the means of reaching the resource. When looking up a URI which represents a real world object,
e.g. a URI representing a person, this object cannot actually be transmitted over HTTP. In this case the server responding to
the request should redirect to a page which describes the real world object. This can be achieved by the server sending HTTP
response code 303 along with the address to a page describing the object, which tells the client to look at the alternative
page [23, sec. 2.3.1] – browsers will automatically redirect the user when encountering a 303 response code. An alternative
way to handle this is to use hash URIs. A hash URI is a HTTP address with the use of the hash (#) symbol. The part after
the hash symbol, the fragment identifier, is removed when making the HTTP request, thus preventing a client to trying to
access the real world object through HTTP [23, sec. 2.3.2].

RDF also allows for blank nodes to be used as subjects and objects. A blank node is a resource without a URI or a literal,
it is an anonymous node. Blank nodes start with an underscore followed by a colon and the name of the variable _:Order.
Blank nodes can also be written as a nested list, an example of this is seen in Code Snippet 6. The person Ben lives in a

ltpch:customer_ben ltpch:c_name "Ben" ;
ltpch:c_has_nation [ltpch:n_has_region ltpch:region_europe ;

ltpch:comment "A warm place"] .

Code Snippet 6: Caption

country which is in the region europe, but the nation is a blank node and thus unknown to us. Blank nodes are often used to
protect information or create complex attributes e.g. an address that consist of a street, streetnumber and house.

A.5 Ontology
Since predicates in a triple are also URIs it is possible to use them as subjects (or objects). This is useful to define the nature
of the relationship which the predicate represent. When defining this nature we say that we define a property [35]. Overall,
there are two classes of properties, those that are to be used as predicates with resources (URIs) as objects in triples and those
which are to be used with literals as objects. These two broad classes of are called object properties and data type properties,
respectively. If we look at Code Snippet 5, we see examples of these in the two first lines. <predicate1> is an object property,
while <predicate2> is a data type property. The definition of these properties in Turtle format is shown in Code Snippet 7.
Note that we use the shorthand notation a for defining the types, as described in Section A.3.

<predicate1 > a owl:ObjectProperty .

<predicate2 > a owl:DatatypeProperty .

Code Snippet 7: RDF in Turtle format describing two predicates of different types.

25

Aside from defining properties to be used in an RDF graph, ontologies can also define classes of resources. This is useful to
group together resources of the same type and to help make more specific properties. E.g. we might want to have a class
called Company which every company resource is supposed to belong to. This is shown in Code Snippet 8 in Turtle format.
This ontology also defines the data type property bus:name, which is used to define names of companies.

bus:Company a owl:Class .

bus:name a owl:DatatypeProperty ;
rdfs:domain bus:Company ;
rdfs:range xsd:string .

Code Snippet 8: RDF in Turtle format describing the type of a company. A “name” is defined as a
DatatypeProperty type, with the domain of a company, and the range is a string.

An RDF ontology can be used to formalize different levels of understanding. Often terms such as vocabulary, taxonomy, and
thesaurus are used to describe a collection of explicit listed concepts [31]. We use the term vocabulary when we describe the
multidimensional metadata such as QB4OLAP. We are using the term ontology to describe the metadata of a dataset e.g. the
TPCH dataset.

A.6 Querying Linked Open Data
Querying the Semantic Web is often done through a SPARQL Endpoint. Several such endpoints are hosted by different
organizations [38]. The query language is called SPARQL [39] and uses syntax and keywords similar to those of SQL. An
example query in SPARQL is shown in Code Snippet 9, where we retrieve every field in our dataset (called a named graph)
agri:FieldGraph, with an area under 10 (hectare). The two first lines in our WHERE-clause are called triple patterns, and are
similar to triples in Turtle format, with the difference that variables are allowed. Strictly speaking several triple patterns can
be located on the same line so long they are separated by a dot (.). Variables are recognized by the prefixed question mark
(?). The FILTER-keyword allows making restrictions such as limiting our result set to fields in a particular area range.

SELECT ?field ?area
FROM agri:FieldGraph
WHERE {

?field a agri:Field .
?field ex:area ?area .
FILTER (?area < 10)

}

Code Snippet 9: Example SPARQL query. All resources ?field are selected together with their area from
our graph agri:FieldGraph. Each resource must be a field and have an area under 10.

B. PROCESS
The process of converting TPC-H to cubes with different patterns consists of six steps. In Figure 10 this process is illustrated.
We now explain each of the six steps.

Generate SF#. First we use the TPC-H DBGEN to generate TBL files, which contains the data in a compact format similar
to comma separated data. The TPC-H DBGEN generates data according to the specified scaling factor, in Code Snippet 10
an example of TBL data is shown. Recall that we generate data with scaling factor 0.01, 0.1, and 1, a scaling factor of 1
correspond to 1 GB of TBL data.

1 1 |Customer #000000001| IVhzIApeRb ot , c ,E|15 |25−989−741−2988 |711.56 |BUILDING | to the even ,
r e g u l a r p l a t e l e t s . r egu la r , i r o n i c ep i taphs nag e |

2 2 |Customer #000000002|XSTf4 ,NCwDVaWNe6tEgvwfmRchLXak|13 |23−768−687−3665 |121.65 |AUTOMOBILE| l
accounts . b l i t h e l y i r o n i c t h e o d o l i t e s i n t e g r a t e bo ld ly : c a r e f |

Code Snippet 10: Data from a TBL file with data regarding customers.

Conversion. In the conversion step we transform the TBL data files to RDF. Here we use the BIBM tool csv2ttl12 to create
to turtle RDF. Code Snippet 11 shows an example of how we invoke the tool. The csv2ttl tool requires a json file wich

12http://sourceforge.net/p/bibm/code/HEAD/tree/trunk/bibm/csv2ttl.sh

26

1 /bibm/ c s v 2 t t l . sh −schema /bibm/ tpch / v i r t u o s o / rdfh schema . j son −ext t b l / nat ion . t b l

Code Snippet 11: How we call the csv2ttl tool.

describes the RDF classes and how they relate to the input file. It is also required to specify format of the input.

Because of an error in the converter all dates are marked as xsd:dateTime, this is however incorrect because they do not
contain a timestamp. We replace the type with the correct xsd:date. We you SED to this, in Code Snippet 12 the command
is seen.

1 sed − i s /xsd : dateTime/xsd : date /

Code Snippet 12: Command to replace dateTime with date.

Stage. In order to load the data into the Sesame native store repository we utilize the sesame openrdf API. We create
a new repository and load the turtle files. We call this repository for the stageing area because it contain without any
multidimensional annotations.

The next three steps are perform for each cube, in our example it is the Lineitem, Orders, and Partsupplier.

QB4OLAP. This step consist of a manual phase where the data is analyzed, we create construct queries, and execute these.
Based on which kind of queries that need to be answered we design cubes. Measures and dimensions are identified and defined
according to QB4OLAP. The cube definitions for TPC-H are located in Appendix D.

We write a series of construct queries that create one repository for each cube described in the cube definition. In Appendix
E we have included the construct queries for the Snowflake-pattern Lineitem-cube.

Last we execute these construct queries and the repositories are created. We measure the execution time of the construct
queries.

SWOD-S. In this step we use SWOD to generate construct queries for Star-pattern as described in Section 6, but we do not
count the generation time as part of the load time. The load time is how many seconds it takes to run the construct queries.

SWOD-D. Similar to SWOD-S we generate construct queries but for the Denormalized-pattern, this is also described in
Section 6. We the load time in the same way.

C. EXTENSION FUNCTIONS
To make our queries more comprehensible, we have created some extension functions on our Sesame SPARQL server. These
are: dateadd, equals, and or. These extension functions are located at the namespace http://example.org/customfunction

/.

dateadd is used to add a duration to a date. We are using simple durations, to allow the function to be simple and efficient.
A simple duration only has one unit, such as “21 days” or “3 months”. The duration “1 year and 6 months” is not a simple
duration. The function is used when a query requires results in a particular date interval, which is defined by a date and a
simple duration. The unit of the duration is given as a string, the value is given as an integer, and the date, which is added a
duration to, is an XML Schema date13. The extension function is implemented in Java, since Sesame is implemented in Java
and is easily extended through it. We implement it as an interface to the built-in XML data types (date and duration) and
rely on these to handle the underlying computation of adding a duration to a date.

The extension function equals is an equality test function, which returns 0 or 1 instead of true or false. It is used when
aggregating measures of both an entire set and a selected subset. This is the case when e.g. calculating the market share
percentage of a certain nation in query 8. The alternative to using equals, would be to have two separate sub-queries, one

13http://www.w3.org/TR/xmlschema-2/#date

27

aggregating the entire set and one for aggregating the subset, then finally calculating the market share. By using equals, we
can have a single sub-query which calculate both the aggregate value of the entire set and selected subset by multiplying the
aggregate value in the latter case with equals, with the selection condition as parameter.

In one query (query 12) the selection is a disjunctive equality, which we enable by the or extension function. We use results
from the calls to equals as inputs, if either of the calls to equals returns 1, or will also return 1 otherwise it returns 0 (as
would be expected). The results of or are summed together to get the count on the selection.

D. CUBE DEFINITIONS

##
Dimensions
##
ltpch:ordersDim a qb:DimensionProperty .
ltpch:partSupplierDim a qb:DimensionProperty .

ltpch:l_has_order a qb4o:LevelProperty ;
qb4o:inDimension ltpch:ordersDim ;
qb4o:parentLevel ltpch:o_has_customer ;
qb4o:hasAttribute ltpch:o_orderkey ,

ltpch:o_custkey ,
ltpch:o_orderstatus ,
ltpch:o_totalprice ,
ltpch:o_orderdate ,
ltpch:o_orderpriority ,
ltpch:o_clerk ,
ltpch:o_shippriorit ,
ltpch:o_comment .

ltpch:o_has_customer a qb4o:LevelProperty ;
qb4o:inDimension ltpch:ordersDim ;
qb4o:parentLevel ltpch:c_has_nation ;
qb4o:hasAttribute ltpch:c_custkey ,

ltpch:c_name ,
ltpch:c_address ,
ltpch:c_nationkey ,
ltpch:c_phone ,
ltpch:c_acctbal ,
ltpch:c_mktsegment ,
ltpch:c_comment .

ltpch:c_has_nation a qb4o:LevelProperty ;
qb4o:inDimension ltpch:ordersDim ;
qb4o:parentLevel ltpch:n_has_region ;
qb4o:hasAttribute ltpch:n_nationkey ,

ltpch:n_name ,
ltpch:n_regionkey ,
ltpch:n_comment .

ltpch:s_has_nation a qb4o:LevelProperty ;
qb4o:inDimension ltpch:partSupplierDim ;
qb4o:parentLevel ltpch:n_has_region ;
qb4o:hasAttribute ltpch:n_nationkey ,

ltpch:n_name ,
ltpch:n_regionkey ,
ltpch:n_comment .

ltpch:n_has_region a qb4o:LevelProperty ;
qb4o:inDimension ltpch:ordersDim ,

ltpch:partSupplierDim ;
qb4o:hasAttribute ltpch:r_regionkey ,

ltpch:r_name ,
ltpch:r_comment .

ltpch:l_has_partsupplier a qb4o:LevelProperty ;
qb4o:inDimension ltpch:partSupplierDim ;
qb4o:parentLevel ltpch:ps_has_part ,

ltpch:ps_has_supplier ;
qb4o:hasAttribute ltpch:ps_partkey ,

ltpch:ps_suppkey ,

28

ltpch:ps_availqty ,
ltpch:ps_supplycost ,
ltpch:ps_comment .

ltpch:ps_has_part a qb4o:LevelProperty ;
qb4o:inDimension ltpch:partSupplierDim ;
qb4o:hasAttribute ltpch:p_partkey ,

ltpch:p_name ,
ltpch:p_mfgr ,
ltpch:p_brand ,
ltpch:p_type ,
ltpch:p_size ,
ltpch:p_container ,
ltpch:p_retailprice ,
ltpch:p_comment .

ltpch:ps_has_supplier a qb4o:LevelProperty ;
qb4o:inDimension ltpch:partSupplierDim ;
qb4o:parentLevel ltpch:s_has_nation ;
qb4o:hasAttribute ltpch:s_suppkey ,

ltpch:s_name ,
ltpch:s_address ,
ltpch:s_nationkey ,
ltpch:s_phone ,
ltpch:s_acctbal ,
ltpch:s_comment .

##
Line Item Data Cube
##
ltpch:lineitemStructure a qb:DataStructureDefinition ;

qb:component [qb4o:level ltpch:l_has_order ; qb:order 1] ;
qb:component [qb4o:level ltpch:l_has_partsupplier ; qb:order 2] ;
qb:component [qb:measure ltpch:l_quantity ; qb:hasAggregateFunction qb4o:sum] ;
qb:component [qb:measure ltpch:l_extendedprice ;

qb4o:hasAggregateFunction qb4o:sum] ;
qb:component [qb:measure ltpch:l_discount ; qb4o:hasAggregateFunction qb4o:avg] ;
qb:component [qb:measure ltpch:l_tax ; qb4o:hasAggregateFunction qb4o:avg] .

ltpch:lineitemCube a qb:DataSet ;
qb:structure ltpch:lineitemStructure ;
rdf:label "Lineitem Cube" .

##
Part Supplier Data Cube
##
ltpch:partSupplierStructure a qb:DataStructureDefinition ;

qb:component [qb4o:level ltpch:ps_has_part ; qb:order 1] ;
qb:component [qb4o:level ltpch:ps_has_supplier ; qb:order 2] ;
qb:component [qb:measure ltpch:ps_availqty ;

qb4o:hasAggregateFunction qb4o:sum] ;
qb:component [qb:measure ltpch:sp_supplycost ;

qb4o:hasAggregateFunction qb4o:sum] .

ltpch:partSupplierCube a qb:DataSet ;
qb:structure ltpch:partSupplierStructure ;
rdf:label "Part Supplier Cube" .

##
Orders Data Cube
##
ltpch:ordersStructure a qb:DataStructureDefinition ;

qb:component [qb4o:level ltpch:o_has_customer ; qb:order 1] ;
qb:component [qb:measure ltpch:o_totalprice ;

qb4o:hasAggregateFunction qb4o:sum] .

ltpch:ordersCube a qb:DataSet ;
qb:structure ltpch:ordersStructure ;
rdf:label "Orders Cube" .

Code Snippet 13: Part of ontology defining the data structure for the Lineitem-cube.

29

E. CONSTRUCT QUERIES FOR SNOWFLAKE LINEITEM CUBE
In this section we show the construct queries for the Lineitem-cube. We made these queries manually, we also produced
queries for the Orders and Partsupplier-cubes.

construct
{

?li a qb:Observation .
?li ?prop ?obj .
?li qb:dataSet ltpch:lineitemCube .
?li ltpch:l_has_partsupplier ?partsupp .

}
where
{

?li a ltpch:lineitem .
?li ?prop ?obj .
?li ltpch:l_has_supplier ?supp .
?li ltpch:l_has_part ?part .
BIND(URI(CONCAT("http://lod2.eu/schemas/ltpch -inst#partsupp",SUBSTR(STR(?part) ,38),

SUBSTR(STR(?supp) ,42))) as ?partsupp) .
}

Code Snippet 14: Construct query for Snowflake-pattern that use the lineitem class

construct
{

?order a qb4o:LevelMember .
?order ?prop ?obj .
?order qb4o:inLevel ltpch:l_has_order .
?order skos:broader ?cu .

}
where
{

?order a ltpch:orders .
?order ?prop ?obj .
?order ltpch:o_has_customer ?cu .

}

Code Snippet 15: Construct query for Snowflake-pattern that use the orders class

construct
{

?cu a qb4o:LevelMember .
?cu ?prop ?obj .
?cu qb4o:inLevel ltpch:o_has_customer .
?cu skos:broader ?na .

}
where
{

?cu a ltpch:customer .
?cu ?prop ?obj .
?cu ltpch:c_has_nation ?na .

}

Code Snippet 16: Construct query for Snowflake-pattern that use the customer class

construct
{

?nation a qb4o:LevelMember .
?nation ?prop ?obj .
?nation qb4o:inLevel ltpch:c_has_nation ,

ltpch:s_has_nation .
?nation skos:broader ?re .

}
where

30

{
?nation a ltpch:nation .
?nation ?prop ?obj .
?nation ltpch:n_has_region ?re .

}

Code Snippet 17: Construct query for Snowflake-pattern that use the nation class

construct
{

?region a qb4o:LevelMember .
?region ?prop ?obj .
?region qb4o:inLevel ltpch:n_has_region .

}
where
{

?region a ltpch:region .
?region ?prop ?obj .

}

Code Snippet 18: Construct query for Snowflake-pattern that use the region class

construct
{

?partsupp a qb4o:LevelMember .
?partsupp ?prop ?obj .
?partsupp qb4o:inLevel ltpch:l_has_partsupplier .
?partsupp skos:broader ?part .
?partsupp skos:broader ?supplier .

}
where
{

?partsupp a ltpch:partsupp .
?partsupp ?prop ?obj .
?partsupp ltpch:ps_has_part ?part .
?partsupp ltpch:ps_has_supplier ?supplier .

}

Code Snippet 19: Construct query for Snowflake-pattern that use the partsupplier class

construct
{

?part a qb4o:LevelMember .
?part ?prop ?obj .
?part qb4o:inLevel ltpch:ps_has_part .

}
where
{

?part a ltpch:part .
?part ?prop ?obj .

}

Code Snippet 20: Construct query for Snowflake-pattern that use the part class

construct
{

?supp a qb4o:LevelMember .
?supp ?prop ?obj .
?supp qb4o:inLevel ltpch:ps_has_supplier .
?supp skos:broader ?na .

}
where
{

?supp a ltpch:supplier .
?supp ?prop ?obj .
?supp ltpch:s_has_nation ?na .

}

Code Snippet 21: Construct query for Snowflake-pattern that use the supplier class

31

F. ADDITIONAL EVALUATION RESULTS
This section contains additional results and graphs.

Pattern 0.001 0.01 0.1

snowflake 2 19 193
star 2 19 189
denormalized 3 33 329

Figure 20: The disk size of repositories containing the Orders-cube using different patterns. The sizes are in
mega bytes.

Pattern 0.001 0.01 0.1

snowflake 1 9 91
star 1 8 80
denormalized 2 19 187

Figure 21: The disk size of repositories containing the Partsupplier-cube using different patterns. The sizes
are in mega bytes.

Pattern 0.001 0.01 0.1

snowflake 20,025 198,225 1,980,225
star 20,100 201,000 2,010,000
denormalized 39,700 397,000 3,970,000

Figure 22: The triples of repositories containing the Orders-cube using different patterns.

32

Pattern 0.001 0.01 0.1

snowflake 8,635 89,325 891,225
star 8,126 85,300 853,000
denormalized 22,096 248,000 2,480,000

Figure 23: The triples of repositories containing the Partsupplier-cube using different patterns.

Step 0.001 0.01 0.1

Generate 9 9 12
Convert 3 8 58
Stage 13 49 410
QB4OLAP 5.58 12.41 74.24
SWOD-S 5.47 16.89 140.05
SWOD-D 3.76 7.65 34.83

Figure 24: Seconds spent for performing the steps of our process in the Orders-cube.

Step 0.001 0.01 0.1

Generate 9 9 12
Convert 3 8 58
Stage 13 49 410
QB4OLAP 4.29 11.13 73.65
SWOD-S 5.64 10.07 38.2
SWOD-D 4.34 11.26 74.83

Figure 25: Seconds spent for performing the steps of our process in the Partsupplier-cube.

33

1 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20 21 13 22 2 11 16

A
ve

ra
ge

G
eo

.
M

ea
n

0

1

2

3

4

5

6

7

8

9

10

11

71 13575 48129 51

Query

Q
u
er

y
E

va
lu

a
ti

o
n

T
im

e
(s

ec
)

snowflakeschema avg(w/o max min)

starschema avg(w/o max min)

denormalizedschema avg(w/o max min)

Figure 26: Query Evaluation Times of queries on our different patterns on scaling factor 0.01.

34

1 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20 21 13 22 2 11 16

A
ve

ra
ge

G
eo

.
M

ea
n

0

10

20

30

40

50

60

70

80

90

100

110

190436 128

Query

Q
u
er

y
E

va
lu

a
ti

o
n

T
im

e
(s

ec
)

snowflakeschema avg(w/o max min)

starschema avg(w/o max min)

denormalizedschema avg(w/o max min)

Figure 27: Query Evaluation Times of queries on our different patterns on scaling factor 0.1.

35

1 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20 21

>
A
ve

ra
ge

>
G
eo

.
M

ea
n

0

100

200

300

400

500

600

700

800

900

1,000

1,100

Query

Q
u
er

y
E

va
lu

a
ti

o
n

T
im

e
(s

ec
)

snowflakeschema 3

starschema 3

Figure 28: Query Evaluation Times of queries on our different patterns on scaling factor 1.

36

G. TPCH
This section contains the 22 queries that we run on the TPC-H dataset. Each query consists of a title, description, and
business question, which are copied from the TPC-H documentation14. Each query is written three times such that there is a
query for each pattern. Relevant information from the query description file is also included, these originates from BIBM 15.
This describe the substitution parameter that are inserted into the queries. Because we are not concerned with the TPC-H
ACID tests, we remove the update elements from the query description of query 15. This section is meant as a reference work.

G.1 Pricing Summary Report Query (Q1)
This query reports the amount of business that was billed, shipped, and returned.

The Pricing Summary Report Query provides a summary pricing report for all lineitems shipped as of a given date.
The date is within 60 - 120 days of the greatest ship date contained in the database. The query lists totals for
extended price, discounted extended price, discounted extended price plus tax, average quantity, average extended
price, and average discount. These aggregates are grouped by RETURNFLAG and LINESTATUS, and listed
in ascending order of RETURNFLAG and LINESTATUS. A count of the number of lineitems in each group is
included.

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?l_returnflag
?l_linestatus
(sum(? l_linequantity) as ?sum_qty)
(sum(? l_lineextendedprice) as ?sum_base_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?sum_disc_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)*(1 + ?l_linetax)) as ?sum_charge)
(avg(? l_linequantity) as ?avg_qty)
(avg(? l_lineextendedprice) as ?avg_price)
(avg(? l_linediscount) as ?avg_disc)
(count (1) as ?count_order)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_returnflag ?l_returnflag ;
ltpch:l_linestatus ?l_linestatus ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linetax ?l_linetax ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linediscount ?l_linediscount .

filter (? l_shipdate <= bif:dateadd ("day", -%DELTA%, "1998 -12 -01"^^xsd:date))
}
group by

?l_returnflag
?l_linestatus

order by
?l_returnflag
?l_linestatus

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?l_returnflag
?l_linestatus
(sum(? l_linequantity) as ?sum_qty)
(sum(? l_lineextendedprice) as ?sum_base_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?sum_disc_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)*(1 + ?l_linetax)) as ?sum_charge)
(avg(? l_linequantity) as ?avg_qty)
(avg(? l_lineextendedprice) as ?avg_price)

14http://www.tpc.org/tpch/spec/tpch2.16.0.pdf
15http://sourceforge.net/p/bibm/code/HEAD/tree/trunk/bibm/tpch/querydescriptions/

37

(avg(? l_linediscount) as ?avg_disc)
(count (1) as ?count_order)

where {
?l a ltpch:lineitem ;

ltpch:l_returnflag ?l_returnflag ;
ltpch:l_linestatus ?l_linestatus ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linetax ?l_linetax ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linediscount ?l_linediscount .

filter (? l_shipdate <= bif:dateadd ("day", -%DELTA%, "1998 -12 -01"^^xsd:date))
}
group by

?l_returnflag
?l_linestatus

order by
?l_returnflag
?l_linestatus

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?l_returnflag
?l_linestatus
(sum(? l_linequantity) as ?sum_qty)
(sum(? l_lineextendedprice) as ?sum_base_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?sum_disc_price)
(sum(? l_lineextendedprice *(1 - ?l_linediscount)*(1 + ?l_linetax)) as ?sum_charge)
(avg(? l_linequantity) as ?avg_qty)
(avg(? l_lineextendedprice) as ?avg_price)
(avg(? l_linediscount) as ?avg_disc)
(count (1) as ?count_order)

where {
?l qb:dataSet ltpch:lineitemCube ;

ltpch:l_returnflag ?l_returnflag ;
ltpch:l_linestatus ?l_linestatus ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linetax ?l_linetax ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linediscount ?l_linediscount .

filter (? l_shipdate <= bif:dateadd ("day", -%DELTA%, "1998 -12 -01"^^xsd:date))
}
group by

?l_returnflag
?l_linestatus

order by
?l_returnflag
?l_linestatus

1 params : [
2 {name :DELTA, c l a s s : Random , range : [6 0 , 1 2 0] , d e f a u l t :90}
3]

Code Snippet 22: Query ones variable

G.2 Minimum Cost Supplier Query (Q2)
This query finds which supplier should be selected to place an order for a given part in a given region.

The Minimum Cost Supplier Query finds, in a given region, for each part of a certain type and size, the supplier
who can supply it at minimum cost. If several suppliers in that region offer the desired part type and size at the
same (minimum) cost, the query lists the parts from suppliers with the 100 highest account balances. For each

38

supplier, the query lists the supplier’s account balance, name and nation; the part’s number and manufacturer;
the supplier’s address, phone number and comment information.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?s_acctbal
?s_name
?nation_name
?p_partkey
?p_mfgr
?s_address
?s_phone
?s_comment

where
{

?ps qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_has_supplier ?supp;
ltpch:ps_has_part ?part ;
ltpch:ps_supplycost ?minsc .

?supp ltpch:s_acctbal ?s_acctbal ;
ltpch:s_name ?s_name ;
ltpch:s_has_nation ?s_nation ;
ltpch:s_address ?s_address ;
ltpch:s_phone ?s_phone ;
ltpch:s_comment ?s_comment .

?s_nation ltpch:n_name ?nation_name ;
ltpch:n_has_region ?s_region .

?part ltpch:p_partkey ?p_partkey ;
ltpch:p_mfgr ?p_mfgr ;
ltpch:p_size ?p_size ;
ltpch:p_type ?p_type .

filter (REGEX(?p_type , "%TYPE%$") && ?p_size = %SIZE%) .
{

select
?part
(? m_region as ?s_region)
(min(? s_cost) as ?minsc)

where
{

?ps a ltpch:partsupp ;
ltpch:ps_has_part ?part ;
ltpch:ps_has_supplier ?minsupp ;
ltpch:ps_supplycost ?s_cost .

?minsupp ltpch:s_has_nation ?m_nation .
?m_nation ltpch:n_has_region ?m_region .
?m_region ltpch:r_name ?m_region_name .
filter (? m_region_name = "%REGION%") .

}
group by

?part
?m_region

}
}
order by

desc (? s_acctbal)
?nation_name
?s_name
?p_partkey

limit 100

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?s_acctbal
?s_name

39

?nation_name
?p_partkey
?p_mfgr
?s_address
?s_phone
?s_comment

where {
?ps qb:dataSet ltpch:partSupplierCube ;

ltpch:ps_has_supplier ?supp;
ltpch:ps_has_part ?part ;
ltpch:ps_supplycost ?minsc .

?supp ltpch:supplier_acctbal ?s_acctbal ;
ltpch:supplier_name ?s_name ;

ltpch:supplier_address ?s_address ;
ltpch:supplier_phone ?s_phone ;
ltpch:supplier_comment ?s_comment ;
ltpch:nation_name ?nation_name ;
ltpch:region_name ?r_name .

?part ltpch:part_partkey ?p_partkey ;
ltpch:part_mfgr ?p_mfgr ;
ltpch:part_size ?p_size ;
ltpch:part_type ?p_type .

filter (REGEX(?p_type , "%TYPE%$") && ?p_size = %SIZE%) .
{

select
?part
?r_name
(min(? s_cost) as ?minsc)

where
{

?ps2 qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_has_part ?part;
ltpch:ps_has_supplier ?ms;
ltpch:ps_supplycost ?s_cost .

?ms ltpch:region_name ?r_name .
FILTER (? r_name = "%REGION%")

}
group by

?part
?r_name

} .
}
order by

desc (? s_acctbal)
?nation_name
?s_name
?p_partkey

limit 100

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?s_acctbal
?s_name
?nation_name
?p_partkey
?p_mfgr
?s_address
?s_phone
?s_comment

where
{

?ps qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_supplycost ?minsc ;
ltpch:supplier_supplier_acctbal ?s_acctbal ;
ltpch:supplier_supplier_name ?s_name ;
ltpch:supplier_supplier_address ?s_address ;
ltpch:supplier_supplier_phone ?s_phone ;
ltpch:supplier_supplier_comment ?s_comment ;

40

ltpch:supplier_nation_name ?nation_name ;
ltpch:supplier_region_name ?r_name ;
ltpch:part_part_partkey ?p_partkey ;
ltpch:part_part_mfgr ?p_mfgr ;
ltpch:part_part_size ?p_size ;
ltpch:part_part_type ?p_type .

filter (REGEX(?p_type , "%TYPE%$") && ?p_size = %SIZE%) .
{

select
?p_partkey
?r_name
(min(? s_cost) as ?minsc)

where
{

?ps2 qb:dataSet ltpch:partSupplierCube ;
ltpch:part_part_partkey ?p_partkey ;
ltpch:ps_supplycost ?s_cost ;
ltpch:supplier_region_name ?r_name .

FILTER (? r_name = "%REGION%") .
}
group by

?p_partkey
?r_name

} .
}
order by

desc (? s_acctbal)
?nation_name
?s_name
?p_partkey

limit 100

1 params : [
2 {name : SIZE , c l a s s : Random , range : [1 , 5 0] , d e f a u l t : 15} ,
3 {name :TYPE, c l a s s : Type , range : [3] , d e f a u l t : ’BRASS’} ,
4 {name :REGION, c l a s s : Region , d e f a u l t : ’EUROPE’}
5] ,

Code Snippet 23: Query ones variable

G.3 Shipping Priority Query (Q3)
This query retrieves the 10 unshipped orders with the highest value.

The Shipping Priority Query retrieves the shipping priority and potential revenue, defined as the sum of l -
extendedprice * (1-l discount), of the orders having the largest revenue among those that had not been shipped as
of a given date. Orders are listed in decreasing order of revenue. If more than 10 unshipped orders exist, only the
10 orders with the largest revenue are listed.

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?o_orderkey
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?revenue)
?o_orderdate
?o_shippriority

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_has_order ?ord ;
ltpch:l_shipdate ?l_shipdate .

?ord ltpch:o_orderdate ?o_orderdate ;
ltpch:o_shippriority ?o_shippriority ;
ltpch:o_orderkey ?o_orderkey ;
ltpch:o_has_customer ?cust .

?cust ltpch:c_mktsegment ?c_mktsegment .

41

filter ((? o_orderdate < "%DATE%"^^xsd:date) &&
(? l_shipdate > "%DATE%"^^xsd:date) &&
(? c_mktsegment = "%SEGMENT%"))

}
group by

?o_orderkey
?o_orderdate
?o_shippriority

order by
desc (sum (? l_lineextendedprice * (1 - ?l_linediscount)))
?o_orderdate

limit 10

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?o_orderkey
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?revenue)
?o_orderdate
?o_shippriority

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_has_order ?ord ;
ltpch:l_shipdate ?l_shipdate .

?ord ltpch:order_orderdate ?o_orderdate ;
ltpch:order_shippriority ?o_shippriority ;
ltpch:order_orderkey ?o_orderkey ;
ltpch:customer_mktsegment ?c_mktsegment .

filter ((? o_orderdate < "%DATE%"^^xsd:date) &&
(? l_shipdate > "%DATE%"^^xsd:date) &&
(? c_mktsegment = "%SEGMENT%"))

}
group by

?o_orderkey
?o_orderdate
?o_shippriority

order by
desc (sum (? l_lineextendedprice * (1 - ?l_linediscount)))
?o_orderdate

limit 10

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?o_orderkey
(sum(? l_lineextendedprice *(1 - ?l_linediscount)) as ?revenue)
?o_orderdate
?o_shippriority

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_order_shippriority ?o_shippriority ;
ltpch:order_order_orderkey ?o_orderkey ;
ltpch:order_customer_mktsegment ?c_mktsegment .

filter ((? o_orderdate < "%DATE%"^^xsd:date) &&
(? l_shipdate > "%DATE%"^^xsd:date) &&
(? c_mktsegment = "%SEGMENT%"))

}

42

group by
?o_orderkey
?o_orderdate
?o_shippriority

order by
desc (sum (? l_lineextendedprice * (1 - ?l_linediscount)))
?o_orderdate

limit 10

1 params : [
2 {name :SEGMENT,
3 c l a s s : OneOf ,
4 range : [AUTOMOBILE, BUILDING, FURNITURE, MACHINERY, HOUSEHOLD] ,
5 d e f a u l t : BUILDING
6 } ,

Code Snippet 24: Query ones variable

G.4 Order Priority Checking Query (Q4)
This query determines how well the order priority system is working and gives an assessment of customer satisfac- tion.

The Order Priority Checking Query counts the number of orders ordered in a given quarter of a given year in
which at least one lineitem was received by the customer later than its committed date. The query lists the count
of such orders for each order priority sorted in ascending priority order.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?o_orderpriority
(count (*) as ?order_count)

where
{

{
select distinct

?o_orderpriority
?ord

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_has_order ?ord ;
ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate .

?ord ltpch:o_orderpriority ?o_orderpriority ;
ltpch:o_orderdate ?o_orderdate .

filter (
(? l_commitdate < ?l_receiptdate) &&
(? o_orderdate >= "%MONTH %-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

)
}

}
}
group by

?o_orderpriority
order by

?o_orderpriority

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select

43

?o_orderpriority
(count (1) as ?order_count)

where
{

{
select distinct

?o_orderpriority
?ord

where
{

?li ltpch:l_has_order ?ord ;
ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate .

?ord ltpch:order_orderpriority ?o_orderpriority ;
ltpch:order_orderdate ?o_orderdate .

filter (
(? l_commitdate < ?l_receiptdate) &&
(? o_orderdate >= "%MONTH %-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

)
}

}
}
group by

?o_orderpriority
order by

?o_orderpriority

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?o_orderpriority
(count (1) as ?order_count)

where
{

{
select distinct

?o_orderpriority
?orderkey

where
{

?li ltpch:order_order_orderpriority ?o_orderpriority ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_order_orderkey ?orderkey ;
ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate .

filter (
(? l_commitdate < ?l_receiptdate) &&
(? o_orderdate >= "%MONTH %-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

)
}

}
}
group by

?o_orderpriority
order by

?o_orderpriority

44

1 params : [
2 {name :MONTH,
3 c l a s s : Month ,
4 range : [1993−01 , 1997−10] ,
5 d e f a u l t : 1993−07
6 }
7] ,

Code Snippet 25: Query ones variable

G.5 Local Supplier Volume Query (Q5)
This query lists the revenue volume done through local suppliers.

The Local Supplier Volume Query lists for each nation in a region the revenue volume that resulted from lineitem
transactions in which the customer ordering parts and the supplier filling them were both within that nation. The
query is run in order to determine whether to institute local distribution centers in a given region. The query
considers only parts ordered in a given year. The query displays the nations and revenue volume in descending order
by revenue. Revenue volume for all qualifying lineitems in a particular nation is defined as sum(l extendedprice *
(1 - l discount)).

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?nation
(sum(? l_lineextendedprice * (1 - ?l_linediscount)) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:o_has_customer ?cust ;
ltpch:o_orderdate ?o_orderdate .

?ps ltpch:ps_has_supplier ?supp .
?supp ltpch:s_has_nation ?s_nation .

?s_nation ltpch:n_has_region ?s_region ;
ltpch:n_name ?nation .

?s_region ltpch:r_name ?r_name .
?cust ltpch:c_has_nation ?c_nation.
filter ((? c_nation = ?s_nation) &&

(? o_orderdate >= "%YEAR%-01-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("year", 1,"%YEAR%-01-01" ^^xsd:date)) &&
(? r_name = "%REGION%"))

}
group by

?nation
order by

desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?nation
(sum(? l_lineextendedprice * (1 - ?l_linediscount)) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:order_orderdate ?o_orderdate ;

45

ltpch:nation_name ?c_nation_name.
?ps ltpch:nation_name ?nation ;

ltpch:region_name ?r_name .
filter ((? c_nation_name = ?nation) &&

(? o_orderdate >= "%YEAR%-01-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("year", 1,"%YEAR%-01-01" ^^xsd:date)) &&
(? r_name = "%REGION%"))

}
group by

?nation
order by

desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?nation
(sum(? l_lineextendedprice * (1 - ?l_linediscount)) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_nation_name ?c_nation_name ;
ltpch:partsupplier_nation_name ?nation ;
ltpch:partsupplier_region_name ?r_name .

filter ((? c_nation_name = ?nation) &&
(? o_orderdate >= "%YEAR%-01-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("year", 1,"%YEAR%-01-01" ^^xsd:date)) &&
(? r_name = "%REGION%"))

}
group by

?nation
order by

desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

1 params : [
2 {name :REGION,
3 c l a s s : Region ,
4 d e f a u l t : ’ ASIA ’
5 } ,
6 {name :YEAR,
7 c l a s s : Random ,
8 range : [1 9 9 3 , 1997] ,
9 d e f a u l t :1994

10 }
11] ,

Code Snippet 26: Query ones variable

G.6 Forecasting Revenue Change Query (Q6)
This query quantifies the amount of revenue increase that would have resulted from eliminating certain company- wide
discounts in a given percentage range in a given year. Asking this type of ”what if” query can be used to look for ways to
increase revenues.

The Forecasting Revenue Change Query considers all the lineitems shipped in a given year with discounts between
DISCOUNT-0.01 and DISCOUNT+0.01. The query lists the amount by which the total revenue would have
increased if these discounts had been eliminated for lineitems with l quantity less than quantity. Note that the
potential revenue increase is equal to the sum of [l extendedprice * l discount] for all lineitems with discounts and
quantities in the qualifying range.

46

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
(sum(? l_lineextendedprice * ?l_linediscount) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipdate ?l_shipdate .

filter ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR %-01-01"^^xsd:date)) &&
(? l_linediscount >= %DISCOUNT% - 0.01) &&
(? l_linediscount <= %DISCOUNT% + 0.01) &&
(? l_linequantity < %QUANTITY %))

}

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
(sum(? l_lineextendedprice * ?l_linediscount) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipdate ?l_shipdate .

filter ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR %-01-01"^^xsd:date)) &&
(? l_linediscount >= %DISCOUNT% - 0.01) &&
(? l_linediscount <= %DISCOUNT% + 0.01) &&
(? l_linequantity < %QUANTITY %))

}

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
(sum(? l_lineextendedprice * ?l_linediscount) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipdate ?l_shipdate .

filter ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR %-01-01"^^xsd:date)) &&
(? l_linediscount >= %DISCOUNT% - 0.01) &&
(? l_linediscount <= %DISCOUNT% + 0.01) &&
(? l_linequantity < %QUANTITY %))

}

47

1 params : [
2 {name :YEAR,
3 c l a s s : Random ,
4 range : [1 9 9 3 , 1997] ,
5 d e f a u l t : 1994
6 } ,
7 {name :DISCOUNT,
8 c l a s s : Random ,
9 range : [0 . 0 2 , 0 . 0 9] ,

10 d e f a u l t : 0 . 0 6
11 } ,
12 {name :QUANTITY,
13 c l a s s : Random ,
14 range : [2 4 , 2 5] ,
15 d e f a u l t : 24
16 }
17] ,

G.7 Volume Shipping Query (Q7)
This query determines the value of goods shipped between certain nations to help in the re-negotiation of shipping contracts.

The Volume Shipping Query finds, for two given nations, the gross discounted revenues derived from lineitems in
which parts were shipped from a supplier in either nation to a customer in the other nation during 1995 and 1996.
The query lists the supplier nation, the customer nation, the year, and the revenue from shipments that took place
in that year. The query orders the answer by Supplier nation, Customer nation, and year (all ascending).

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?supp_nation
?cust_nation
?li_year
(sum (? volume) as ?revenue)

where {
{

select
?supp_nation
?cust_nation
((YEAR (? l_shipdate)) as ?li_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?volume)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:o_has_customer ?cust .
?cust ltpch:c_has_nation ?custn .
?custn ltpch:n_name ?cust_nation .
?ps ltpch:ps_has_supplier ?supp .
?supp ltpch:s_has_nation ?suppn .
?suppn ltpch:n_name ?supp_nation .
filter ((

(? cust_nation = "%NATION1%" && ?supp_nation = "%NATION2%") ||
(? cust_nation = "%NATION2%" && ?supp_nation = "%NATION1%")) &&
(? l_shipdate >= "1995 -01 -01"^^xsd:date) &&
(? l_shipdate <= "1996 -12 -31"^^xsd:date))

}
}

}
group by

?supp_nation
?cust_nation
?li_year

order by

48

?supp_nation
?cust_nation
?li_year

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select ?supp_nation
?cust_nation
?li_year
(sum (?value) as ?revenue)
where {

{
select

?supp_nation
?cust_nation
((YEAR (? l_shipdate)) as ?li_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?value)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:nation_name ?cust_nation .
?ps ltpch:nation_name ?supp_nation .
filter ((

(? cust_nation = "%NATION1%" && ?supp_nation = "%NATION2%") ||
(? cust_nation = "%NATION2%" && ?supp_nation = "%NATION1%")) &&
(? l_shipdate >= "1995 -01 -01"^^xsd:date) &&
(? l_shipdate <= "1996 -12 -31"^^xsd:date))

}
}

}
group by

?supp_nation
?cust_nation
?li_year

order by
?supp_nation
?cust_nation
?li_year

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select ?supp_nation
?cust_nation
?li_year
(sum (?value) as ?revenue)
where {

{
select

?supp_nation
?cust_nation
((YEAR (? l_shipdate)) as ?li_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?value)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:order_nation_name ?cust_nation ;
ltpch:partsupplier_nation_name ?supp_nation .

49

filter ((
(? cust_nation = "%NATION1%" && ?supp_nation = "%NATION2%") ||
(? cust_nation = "%NATION2%" && ?supp_nation = "%NATION1%")) &&
(? l_shipdate >= "1995 -01 -01"^^xsd:date) &&
(? l_shipdate <= "1996 -12 -31"^^xsd:date))

}
}

}
group by

?supp_nation
?cust_nation
?li_year

order by
?supp_nation
?cust_nation
?li_year

1 params : [
2 {name :NATION1,
3 c l a s s : Nation ,
4 d e f a u l t : ’FRANCE’
5 } ,
6 {name :NATION2,
7 c l a s s : Nation2 ,
8 d e f a u l t : ’GERMANY’
9 }

10] ,

G.8 National Market Share Query (Q8)
This query determines how the market share of a given nation within a given region has changed over two years for a given
part type.

The market share for a given nation within a given region is defined as the fraction of the revenue, the sum of
[l extendedprice * (1-l discount)], from the products of a specified type in that region that was supplied by suppliers
from the given nation. The query determines this for the years 1995 and 1996 presented in this order.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?o_year
((? sum1 / ?sum2) as ?mkt_share)

where {
{ select

?o_year
(sum (? volume * bif:equals (?nation , "%NATION%")) as ?sum1)
(sum (? volume) as ?sum2)
where {

{ select
((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?volume)
?nation

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_partsupplier ?ps ;
ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ps ltpch:ps_has_supplier ?s_supplier .
?s_supplier ltpch:s_has_nation ?n2 .
?n2 ltpch:n_name ?nation .
?ps ltpch:ps_has_part ?part .
?part ltpch:p_type ?type .
?ord ltpch:o_orderdate ?o_orderdate ;

ltpch:o_has_customer ?c_customer .

50

?c_customer ltpch:c_has_nation ?n_nation .
?n_nation ltpch:n_has_region ?r_region .
?r_region ltpch:r_name ?region.
filter ((? o_orderdate >= "1995 -01 -01"^^xsd:date) &&

(? o_orderdate <= "1996 -12 -31"^^xsd:date &&
?region = "%REGION%" &&
?type = "%TYPE%")

)
}

}
}
group by

?o_year
}

}
order by

?o_year

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?o_year
((? sum1 / ?sum2) as ?mkt_share)

where
{

{
select

?o_year
(sum (? volume * bif:equals (?nation , "%NATION%")) as ?sum1)
(sum (? volume) as ?sum2)

where
{

{
select

((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?volume)
?nation

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_has_order ?ord ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ps ltpch:nation_name ?nation ;
ltpch:part_type ?p_type .

?ord ltpch:order_orderdate ?o_orderdate ;
ltpch:region_name ?r_name .

filter ((? o_orderdate >= "1995 -01 -01"^^xsd:date) &&
(? o_orderdate <= "1996 -12 -31"^^xsd:date) &&
(? r_name = "%REGION%") &&
(? p_type = "%TYPE%")

)
}

}
}
group by

?o_year
}

}
order by

?o_year

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

51

select
?o_year
((? sum1 / ?sum2) as ?mkt_share)

where
{

{
select

?o_year
(sum (? volume * bif:equals (?nation , "%NATION%")) as ?sum1)
(sum (? volume) as ?sum2)

where
{

{
select

((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount)) as ?volume)
?nation

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:partsupplier_nation_name ?nation ;
ltpch:partsupplier_part_type ?p_type ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_region_name ?r_name .

filter ((? o_orderdate >= "1995 -01 -01"^^xsd:date) &&
(? o_orderdate <= "1996 -12 -31"^^xsd:date) &&
(? r_name = "%REGION%") &&
(? p_type = "%TYPE%")

)
}

}
}
group by

?o_year
}

}
order by

?o_year

1 params : [
2 {name :NATION,
3 c l a s s : Nation ,
4 d e f a u l t : ’BRAZIL’
5 } ,
6 {name :REGION,
7 c l a s s : RegionForNation ,
8 d e f a u l t : ’AMERICA’
9 } ,

10 {name :TYPE,
11 c l a s s : Type ,
12 range : [1 , 2 , 3] ,
13 d e f a u l t : ’ECONOMY ANODIZED STEEL’
14 }
15] ,

G.9 Product Type Profit Measure Query (Q9)
This query determines how much profit is made on a given line of parts, broken out by supplier nation and year.

The Product Type Profit Measure Query finds, for each nation and each year, the profit for all parts ordered in
that year that contain a specified substring in their names and that were filled by a supplier in that nation. The
profit is defined as the sum of [(l extendedprice*(1-l discount)) - (ps supplycost * l quantity)] for all lineitems
describing parts in the specified line. The query lists the nations in ascending alphabetical order and, for each
nation, the year and profit in descending order by year (most recent first).

52

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?nation
?o_year
(sum(? amount) as ?sum_profit)

where {
{ select

?nation
((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount) - ?ps_supplycost * ?l_linequantity)

as ?amount)
where {

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ps ltpch:ps_has_part ?part ;
ltpch:ps_has_supplier ?supp .

?supp ltpch:s_has_nation ?s_nation .
?s_nation ltpch:n_name ?nation .
?ord ltpch:o_orderdate ?o_orderdate .
?ps ltpch:ps_supplycost ?ps_supplycost .
?part ltpch:p_name ?p_name .
filter (REGEX (?p_name , "%COLOR%"))

}
}

}
group by

?nation
?o_year

order by
?nation
desc (? o_year)

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?nation
?o_year
(sum(? amount) as ?sum_profit)

where {
{ select

?nation
((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount)
- ?ps_supplycost * ?l_linequantity) as ?amount)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ps ltpch:nation_name ?nation .
?ord ltpch:order_orderdate ?o_orderdate .
?ps ltpch:partsupplier_supplycost ?ps_supplycost .
?ps ltpch:part_name ?p_name .
filter (REGEX (?p_name ,"%COLOR%"))

}
}

}
group by

?nation

53

?o_year
order by

?nation
desc (? o_year)

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?nation
?o_year
(sum(? amount) as ?sum_profit)

where {
{ select

?nation
((YEAR (? o_orderdate)) as ?o_year)
((? l_lineextendedprice * (1 - ?l_linediscount)
- ?ps_supplycost * ?l_linequantity) as ?amount)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_linequantity ?l_linequantity ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:partsupplier_nation_name ?nation ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:partsupplier_partsupplier_supplycost ?ps_supplycost ;
ltpch:partsupplier_part_name ?p_name .

filter (REGEX (?p_name ,"%COLOR%"))
}

}
}
group by

?nation
?o_year

order by
?nation
desc (? o_year)

1 params : [
2 {name :COLOR,
3 c l a s s : Color ,
4 d e f a u l t : green
5 }
6] ,

G.10 Returned Item Reporting Query (Q10)
The query identifies customers who might be having problems with the parts that are shipped to them.

The Returned Item Reporting Query finds the top 20 customers, in terms of their effect on lost revenue for a
given quarter, who have returned parts. The query considers only parts that were ordered in the specified quarter.
The query lists the customer’s name, address, nation, phone number, account balance, comment information and
revenue lost. The customers are listed in descending order of lost revenue. Revenue lost is defined as sum(l -
extendedprice*(1-l discount)) for all qualifying lineitems.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?c_custkey
?c_companyName
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)

54

?c_acctbal
?nation
?c_address
?c_phone
?c_comment

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_returnflag ?l_returnflag ;
ltpch:l_has_order ?ord ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:o_has_customer ?cust ;
ltpch:o_orderdate ?o_orderdate .

?cust ltpch:c_address ?c_address ;
ltpch:c_phone ?c_phone ;
ltpch:c_comment ?c_comment ;
ltpch:c_acctbal ?c_acctbal ;
ltpch:c_custkey ?c_custkey ;
ltpch:c_has_nation ?c_nation ;
ltpch:c_name ?c_companyName .

?c_nation ltpch:n_name ?nation .
filter ((? o_orderdate >= "%MONTH%-01"^^xsd:date) &&

(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date)&&
(? l_returnflag = "R"))

)
}
group by

?c_custkey
?c_companyName
?c_acctbal
?nation
?c_address
?c_phone
?c_comment

order by
desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

limit 20

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_custkey
?c_companyName
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)
?c_acctbal
?nation
?c_address
?c_phone
?c_comment

where {
?li ltpch:l_returnflag ?l_returnflag ;

ltpch:l_has_order ?ord ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount .

?ord ltpch:order_orderdate ?o_orderdate ;
ltpch:customer_address ?c_address ;
ltpch:customer_phone ?c_phone ;
ltpch:customer_comment ?c_comment ;
ltpch:customer_acctbal ?c_acctbal ;
ltpch:customer_custkey ?c_custkey ;
ltpch:customer_name ?c_companyName ;
ltpch:nation_name ?nation .

filter ((? o_orderdate >= "%MONTH%-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date) &&
(? l_returnflag = "R"))

) .
}
group by

?c_custkey

55

?c_companyName
?c_acctbal
?nation
?c_address
?c_phone
?c_comment

order by
desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

limit 20

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_custkey
?c_companyName
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)
?c_acctbal
?nation
?c_address
?c_phone
?c_comment

where {
?li ltpch:l_returnflag ?l_returnflag ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_customer_address ?c_address ;
ltpch:order_customer_phone ?c_phone ;
ltpch:order_customer_comment ?c_comment ;
ltpch:order_customer_acctbal ?c_acctbal ;
ltpch:order_customer_custkey ?c_custkey ;
ltpch:order_customer_name ?c_companyName ;
ltpch:order_nation_name ?nation .

filter ((? o_orderdate >= "%MONTH%-01"^^xsd:date) &&
(? o_orderdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date) &&
(? l_returnflag = "R"))

) .
}
group by

?c_custkey
?c_companyName
?c_acctbal
?nation
?c_address
?c_phone
?c_comment

order by
desc (sum(? l_lineextendedprice * (1 - ?l_linediscount)))

limit 20

1 params : [
2 {name :MONTH,
3 c l a s s : Month ,
4 range : [1993−02 , 1995−1] ,
5 d e f a u l t : 1993−10
6 }
7] ,

G.11 Important Stock Identification Query (Q11
This query finds the most important subset of suppliers’ stock in a given nation.

The Important Stock Identification Query finds, from scanning the available stock of suppliers in a given nation,
all the parts that represent a significant percentage of the total value of all available parts. The query displays the
part number and the value of those parts in descending order of value.

56

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?bigpspart
?bigpsvalue

where {
{ select

?bigpspart
(sum(? b_supplycost * ?b_availqty) as ?bigpsvalue)

where
{

?bigps qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_has_part ?bigpspart ;
ltpch:ps_supplycost ?b_supplycost ;
ltpch:ps_availqty ?b_availqty ;
ltpch:ps_has_supplier ?b_supplier .

?b_supplier ltpch:s_has_nation ?b_nation .
?b_nation ltpch:n_name "%NATION%" .

}
group by

?bigpspart
} .
{
select

((sum(? t_supplycost * ?t_availqty) * %FRACTION %) as ?threshold)
where

{
?thr_ps qb:dataSet ltpch:partSupplierCube ;

ltpch:ps_has_part ?t_part ;
ltpch:ps_supplycost ?t_supplycost ;
ltpch:ps_availqty ?t_availqty ;
ltpch:ps_has_supplier ?t_supplier .

?t_supplier ltpch:s_has_nation ?t_nation .
?t_nation ltpch:n_name "%NATION%" .

}
}

filter (? bigpsvalue > ?threshold)
}

order by
desc (? bigpsvalue)

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?bigpspart
?bigpsvalue

where
{

{
select

?bigpspart
(sum(? b_supplycost * ?b_availqty) as ?bigpsvalue)

where
{

?bigps qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_has_part ?bigpspart ;
ltpch:ps_supplycost ?b_supplycost ;
ltpch:ps_availqty ?b_availqty ;
ltpch:ps_has_supplier ?b_supplier .

?b_supplier ltpch:nation_name ?n_name .
FILTER (? n_name = "%NATION%") .

}
group by

?bigpspart
} .
{

select

57

((sum(? t_supplycost * ?t_availqty) * %FRACTION %) as ?threshold)
where
{

?thr_ps qb:dataSet ltpch:partSupplierCube ;
ltpch:ps_has_part ?t_part ;
ltpch:ps_supplycost ?t_supplycost ;
ltpch:ps_availqty ?t_availqty ;
ltpch:ps_has_supplier ?t_supplier .

?t_supplier ltpch:nation_name ?n_name .
FILTER (? n_name = "%NATION%") .

}
}

filter (? bigpsvalue > ?threshold)
}

order by
desc (? bigpsvalue)

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?bigpspart
?bigpsvalue

where
{

{
select

?bigpspart
(sum(? b_supplycost * ?b_availqty) as ?bigpsvalue)

where
{

?bigps qb:dataSet ltpch:partSupplierCube ;
ltpch:part_part_partkey ?bigpspart ;
ltpch:ps_supplycost ?b_supplycost ;
ltpch:ps_availqty ?b_availqty ;
ltpch:supplier_nation_name ?n_name .

FILTER (? n_name = "%NATION%") .
}
group by

?bigpspart
} .
{

select
((sum(? t_supplycost * ?t_availqty) * %FRACTION %) as ?threshold)

where
{

?thr_ps qb:dataSet ltpch:partSupplierCube ;
ltpch:part_part_partkey ?t_part ;
ltpch:ps_supplycost ?t_supplycost ;
ltpch:ps_availqty ?t_availqty ;
ltpch:supplier_nation_name ?n_name .

FILTER (? n_name = "%NATION%") .
}

}
filter (? bigpsvalue > ?threshold)

}
order by

desc (? bigpsvalue)

58

1 params : [
2 {name :NATION,
3 c l a s s : Nation ,
4 d e f a u l t : ’GERMANY’
5 } ,
6 {name :FRACTION,
7 c l a s s : Fract ion ,
8 d e f a u l t : 0 .0001
9 }

10] ,

G.12 Shipping Modes and Order Priority Query (Q12)
This query determines whether selecting less expensive modes of shipping is negatively affecting the critical-prior ity orders
by causing more parts to be received by customers after the committed date.

The Shipping Modes and Order Priority Query counts, by ship mode, for lineitems actually received by customers
in a given year, the number of lineitems belonging to orders for which the l receiptdate exceeds the l commitdate
for two different specified ship modes. Only lineitems that were actually shipped before the l commitdate are con-
sidered. The late lineitems are partitioned into two groups, those with priority URGENT or HIGH, and those with
a priority other than URGENT or HIGH.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?l_shipmode
(sum (

bif:or (
bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?high_line_count)

(sum (1 -
bif:or (

bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?low_line_count)

where {

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_has_order ?ord ;
ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipdate ?l_shipdate .

?ord ltpch:o_orderpriority ?o_orderpriority .
filter (? l_shipmode in ("%SHIPMODE1%", "%SHIPMODE2%") &&

(? l_commitdate < ?l_receiptdate) &&
(? l_shipdate < ?l_commitdate) &&
(? l_receiptdate >= "%YEAR %-01-01"^^xsd:date) &&
(? l_receiptdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date)))

}
group by

?l_shipmode
order by

?l_shipmode

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?l_shipmode
(sum (

bif:or (
bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?high_line_count)

59

(sum (1 -
bif:or (

bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?low_line_count)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_order ?ord ;
ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipdate ?l_shipdate .

?ord ltpch:order_orderpriority ?o_orderpriority .
filter (? l_shipmode in ("%SHIPMODE1%", "%SHIPMODE2%") &&

(? l_commitdate < ?l_receiptdate) &&
(? l_shipdate < ?l_commitdate) &&
(? l_receiptdate >= "%YEAR %-01-01"^^xsd:date) &&
(? l_receiptdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date)))

}
group by

?l_shipmode
order by

?l_shipmode

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?l_shipmode
(sum (

bif:or (
bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?high_line_count)

(sum (1 -
bif:or (

bif:equals (? o_orderpriority , "1-URGENT"),
bif:equals (? o_orderpriority , "2-HIGH"))) as ?low_line_count)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_commitdate ?l_commitdate ;
ltpch:l_receiptdate ?l_receiptdate ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:order_order_orderpriority ?o_orderpriority .

filter (? l_shipmode in ("%SHIPMODE1%", "%SHIPMODE2%") &&
(? l_commitdate < ?l_receiptdate) &&
(? l_shipdate < ?l_commitdate) &&
(? l_receiptdate >= "%YEAR %-01-01"^^xsd:date) &&
(? l_receiptdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date)))

}
group by

?l_shipmode
order by

?l_shipmode

60

1 params : [
2 {name :SHIPMODE1,
3 c l a s s : Shipmode ,
4 d e f a u l t : ’MAIL’
5 } ,
6 {name :SHIPMODE2,
7 c l a s s : Shipmode2 ,
8 d e f a u l t : ’ SHIP ’
9 } ,

10 {name :YEAR,
11 c l a s s : Random ,
12 range : [1 9 9 3 , 1997] ,
13 d e f a u l t : 1994
14 }
15] ,

G.13 Customer Distribution Query (Q13)
This query seeks relationships between customers and the size of their orders.

This query determines the distribution of customers by the number of orders they have made, including customers
who have no record of orders, past or present. It counts and reports how many customers have no orders, how
many have 1, 2, 3, etc. A check is made to ensure that the orders counted do not fall into one of several special
categories of orders. Special categories are identified in the order comment column by looking for a particular
pattern.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?c_count
(count (1) as ?custdist)

where {
{ select

?c_custkey
(count (?ord) as ?c_count)

where
{

?cust ltpch:c_custkey ?c_custkey .
optional {

?ord qb:dataSet ltpch:ordersCube ;
ltpch:o_has_customer ?cust ;
ltpch:o_comment ?o_comment .

filter (!(REGEX (? o_comment , "%WORD1 %.*% WORD2%"))) .
}

}
group by

?c_custkey
}

}
group by

?c_count
order by

desc (count (1))
desc (? c_count)

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_count
(count (1) as ?custdist)

where
{

61

{
select

?c_custkey
(count (?ord) as ?c_count)

where
{

?cust ltpch:customer_custkey ?c_custkey .
optional {

?ord ltpch:o_has_customer ?cust ;
ltpch:o_comment ?o_comment .

filter (!(REGEX(?o_comment , "%WORD1 %.*% WORD2%"))) .
}

}
group by ?c_custkey

}
}

group by
?c_count

order by
desc (count (1))
desc (? c_count)

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_count
(count (1) as ?custdist)

where
{

{
select

?c_custkey
(count (? o_comment) as ?c_count)

where
{

?order ltpch:customer_customer_custkey ?c_custkey .
optional {

?order ltpch:o_comment ?o_comment .
filter (!(REGEX(?o_comment , "%WORD1 %.*% WORD2%"))) .

}
}
group by ?c_custkey

}
}

group by
?c_count

order by
desc (count (1))
desc (? c_count)

1 params : [
2 {name :WORD1,
3 c l a s s : OneOf ,
4 range : [s p e c i a l , pending , unusual , expre s s] ,
5 d e f a u l t : s p e c i a l
6 } ,
7 {name :WORD2,
8 c l a s s : OneOf ,
9 range : [packages , r eques t s , accounts , d e p o s i t s] ,

10 d e f a u l t : r e q u e s t s
11 }
12] ,

G.14 Promotion Effect Query (Q14)

62

This query monitors the market response to a promotion such as TV advertisements or a special campaign.

The Promotion Effect Query determines what percentage of the revenue in a given year and month was derived
from promotional parts. The query considers only parts actually shipped in that month and gives the percentage.
Revenue is defined as (l extendedprice * (1-l discount)).

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
((100 * ?sum1 / ?sum2) as ?promo_revenue)

where
{

select
(sum (

bif:equals(SUBSTR (?p_type , 1, 5), "PROMO") *
?l_lineextendedprice * (1 - ?l_linediscount)) as ?sum1)

(sum (? l_lineextendedprice * (1 - ?l_linediscount)) as ?sum2)
where {

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_has_partsupplier ?ps .

?ps ltpch:ps_has_part ?part .
?part ltpch:p_type ?p_type .
filter ((? l_shipdate >= "%MONTH%-01"^^xsd:date) &&

(? l_shipdate < bif:dateadd("month", 1, "%MONTH%-01"^^xsd:date)))
}

}

prefix bif: <http:// example.org/customfunction/>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix qb: <http://purl.org/linked -data/cube#>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
((100 * ?sum1 / ?sum2) as ?promo_revenue)

where
{

select
(sum (

bif:equals(SUBSTR (?p_type , 1, 5), "PROMO") *
?l_lineextendedprice * (1 - ?l_linediscount)) as ?sum1)

(sum (? l_lineextendedprice * (1 - ?l_linediscount)) as ?sum2)
where {

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_has_partsupplier ?part .

?part ltpch:part_type ?p_type .
filter ((? l_shipdate >= "%MONTH%-01"^^xsd:date) &&

(? l_shipdate < bif:dateadd("month", 1, "%MONTH%-01"^^xsd:date)))
}

}

prefix bif: <http:// example.org/customfunction/>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix qb: <http://purl.org/linked -data/cube#>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
((100 * ?sum1 / ?sum2) as ?promo_revenue)

63

where
{

select
(sum (

bif:equals(SUBSTR (?p_type , 1, 5), "PROMO") *
?l_lineextendedprice * (1 - ?l_linediscount)) as ?sum1)

(sum (? l_lineextendedprice * (1 - ?l_linediscount)) as ?sum2)
where {

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:partsupplier_part_type ?p_type .

filter ((? l_shipdate >= "%MONTH%-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd("month", 1, "%MONTH%-01"^^xsd:date)))

}
}

1 params : [
2 {name :MONTH,
3 c l a s s : Month ,
4 range : [1993−01 , 1997−12] ,
5 d e f a u l t : 1995−09
6 }
7] ,

G.15 Top Supplier Query (Q15)
This query determines the top supplier so it can be rewarded, given more business, or identified for special recognition.

The Top Supplier Query finds the supplier who contributed the most to the overall revenue for parts shipped
during a given quarter of a given year. In case of a tie, the query lists all suppliers whose contribution was equal
to the maximum, presented in supplier number order.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?s_suppkey
?s_name
?s_address
?s_phone
?total_revenue

where {
?supplier a ltpch:supplier ;

ltpch:s_suppkey ?s_suppkey ;
ltpch:s_name ?s_name ;
ltpch:s_address ?s_address ;
ltpch:s_phone ?s_phone .

{ select
?supplier
(sum(? l_extendedprice * (1 - ?l_discount)) as ?total_revenue)

where {
?li1 qb:dataSet ltpch:lineitemCube ;

ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_extendedprice ;
ltpch:l_linediscount ?l_discount ;
ltpch:l_has_partsupplier ?ps1 .

?ps1 ltpch:ps_has_supplier ?supplier .
filter (

?l_shipdate >= "%MONTH%-01"^^xsd:date &&
?l_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

}
group by

?supplier
}
{ select (max (? l2_total_revenue) as ?maxtotal)

64

where {
{ select

?supplier2
(sum(? l2_extendedprice * (1 - ?l2_discount)) as ?l2_total_revenue)

where {
?li2 qb:dataSet ltpch:lineitemCube ;

ltpch:l_shipdate ?l2_shipdate ;
ltpch:l_lineextendedprice ?l2_extendedprice ;
ltpch:l_linediscount ?l2_discount ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:ps_has_supplier ?supplier2 .
filter (

?l2_shipdate >= "%MONTH%-01"^^xsd:date &&
?l2_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date)

)
}
group by
?supplier2

}
}

}
filter (? total_revenue = ?maxtotal)

}
order by

?supplier

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select distinct
?s_suppkey
?s_name
?s_address
?s_phone
?total_revenue

where
{

?partsupp ltpch:supplier_suppkey ?s_suppkey ;
ltpch:supplier_name ?s_name ;
ltpch:supplier_address ?s_address ;
ltpch:supplier_phone ?s_phone .

{
select

?s_suppkey
((sum(? l_extendedprice * (1 - ?l_discount))) as ?total_revenue)

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_extendedprice ;
ltpch:l_linediscount ?l_discount ;
ltpch:l_has_partsupplier ?ps .

?ps ltpch:supplier_suppkey ?s_suppkey .
filter (

?l_shipdate >= "%MONTH%-01"^^xsd:date &&
?l_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

}
group by

?s_suppkey
} .
{

select
(max (? l2_total_revenue) as ?maxtotal)

where
{

{
select

((sum(? l2_extendedprice * (1 - ?l2_discount))) as ?l2_total_revenue)
where
{

65

?li2 qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l2_shipdate ;
ltpch:l_lineextendedprice ?l2_extendedprice ;
ltpch:l_linediscount ?l2_discount ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:supplier_suppkey ?s_suppkey2 .
filter (

?l2_shipdate >= "%MONTH%-01"^^xsd:date &&
?l2_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

}
group by

?s_suppkey2
}

}
}
filter (? total_revenue = ?maxtotal)

}
order by

?s_suppkey

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select distinct
?s_suppkey
?s_name
?s_address
?s_phone
?total_revenue

where
{

?li ltpch:partsupplier_supplier_suppkey ?s_suppkey ;
ltpch:partsupplier_supplier_name ?s_name ;
ltpch:partsupplier_supplier_address ?s_address ;
ltpch:partsupplier_supplier_phone ?s_phone .

{
select

?s_suppkey
((sum(? l_extendedprice * (1 - ?l_discount))) as ?total_revenue)

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_lineextendedprice ?l_extendedprice ;
ltpch:l_linediscount ?l_discount ;
ltpch:partsupplier_supplier_suppkey ?s_suppkey .

filter (
?l_shipdate >= "%MONTH%-01"^^xsd:date &&
?l_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))

}
group by

?s_suppkey
} .
{

select
(max (? l2_total_revenue) as ?maxtotal)

where
{

{
select

((sum(? l2_extendedprice * (1 - ?l2_discount))) as ?l2_total_revenue)
where
{

?li2 qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l2_shipdate ;
ltpch:l_lineextendedprice ?l2_extendedprice ;
ltpch:l_linediscount ?l2_discount ;
ltpch:partsupplier_supplier_suppkey ?s_suppkey2 .

filter (
?l2_shipdate >= "%MONTH%-01"^^xsd:date &&

66

?l2_shipdate < bif:dateadd ("month", 3, "%MONTH%-01"^^xsd:date))
}
group by

?s_suppkey2
}

}
}
filter (? total_revenue = ?maxtotal)

}
order by

?s_suppkey

1 params : [
2 {name :MONTH,
3 c l a s s : Month ,
4 range : [1993−01 , 1997−10] ,
5 d e f a u l t :1996−01
6 }
7] ,

G.16 Parts/Supplier Relationship Query (Q16)
This query finds out how many suppliers can supply parts with given attributes. It might be used, for example, to determine
whether there is a sufficient number of suppliers for heavily ordered parts.

The Parts/Supplier Relationship Query counts the number of suppliers who can supply parts that satisfy a
particular customer’s requirements. The customer is interested in parts of eight different sizes as long as they
are not of a given type, not of a given brand, and not from a supplier who has had complaints registered at the
Better Business Bureau. Results must be presented in descending count and ascending brand, type, and size.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?p_brand
?p_type
?p_size
((count(distinct ?supp)) as ?supplier_cnt)

where {
?ps qb:dataSet ltpch:partSupplierCube ;

ltpch:ps_has_part ?part ;
ltpch:ps_has_supplier ?supp .

?part ltpch:p_brand ?p_brand ;
ltpch:p_type ?p_type ;
ltpch:p_size ?p_size .

filter (
(? p_brand != "%BRAND%") &&
!(REGEX (?p_type ,"^%TYPE%")) &&
(? p_size in (%SIZE1%, %SIZE2%, %SIZE3%, %SIZE4%, %SIZE5%, %SIZE6%, %SIZE7%, %SIZE8

%))
) .
filter NOT EXISTS {

?supp ltpch:s_comment ?badcomment .
filter (REGEX (?badcomment , "Customer .* Complaints")) .

}
}

group by
?p_brand
?p_type
?p_size

order by
desc ((count(distinct ?supp)))
?p_brand
?p_type
?p_size

67

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?p_brand
?p_type
?p_size
((count(distinct ?supp)) as ?supplier_cnt)

where {
?ps qb:dataSet ltpch:partSupplierCube ;

ltpch:ps_has_part ?part ;
ltpch:ps_has_supplier ?supp .

?part ltpch:part_brand ?p_brand ;
ltpch:part_type ?p_type ;
ltpch:part_size ?p_size .

FILTER (
(? p_brand != "%BRAND%") &&
!(REGEX(?p_type , "^%TYPE%")) &&
(? p_size in (%SIZE1%, %SIZE2%, %SIZE3%, %SIZE4%, %SIZE5%, %SIZE6%, %SIZE7%, %SIZE8

%))
)
FILTER NOT EXISTS {

?supp ltpch:supplier_comment ?badcomment .
FILTER (REGEX(?badcomment , "Customer .* Complaints"))

}
}

group by
?p_brand
?p_type
?p_size

order by
desc ((count(distinct ?supp)))
?p_brand
?p_type
?p_size

prefix bif: <http:// example.org/customfunction/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>

select
?p_brand
?p_type
?p_size
((count(distinct ?supp)) as ?supplier_cnt)

where {
?ps qb:dataSet ltpch:partSupplierCube ;

ltpch:supplier_supplier_suppkey ?supp ;
ltpch:part_part_brand ?p_brand ;
ltpch:part_part_type ?p_type ;
ltpch:part_part_size ?p_size .

FILTER (
(!(REGEX(? p_brand , "%BRAND%","i")) &&
!(REGEX(?p_type , "^%TYPE%")) &&
(? p_size in (%SIZE1%, %SIZE2%, %SIZE3%, %SIZE4%, %SIZE5%, %SIZE6%, %SIZE7%, %SIZE8

%))
)
FILTER NOT EXISTS {

?ps2 ltpch:supplier_supplier_suppkey ?supp ;
ltpch:supplier_supplier_comment ?badcomment .

FILTER (REGEX(?badcomment , "Customer .* Complaints"))
}

}
group by

?p_brand
?p_type
?p_size

68

order by
desc ((count(distinct ?supp)))
?p_brand
?p_type
?p_size

1 params : [
2 {name :BRAND,
3 c l a s s : Brand ,
4 d e f a u l t : ’ Brand#45’
5 } ,
6 {name :TYPE,
7 c l a s s : Type ,
8 range : [1 , 2] ,
9 d e f a u l t : ’MEDIUM POLISHED’

10 } ,
11 {name : SIZE1 , c l a s s : Random , range : [1 , 5 0] ,
12 d e f a u l t : 49} ,
13 {name : SIZE2 , c l a s s : Random , range : [1 , 5 0] ,
14 d e f a u l t : 14} ,
15 {name : SIZE3 , c l a s s : Random , range : [1 , 5 0] ,
16 d e f a u l t : 23} ,
17 {name : SIZE4 , c l a s s : Random , range : [1 , 5 0] ,
18 d e f a u l t : 45} ,
19 {name : SIZE5 , c l a s s : Random , range : [1 , 5 0] ,
20 d e f a u l t : 19} ,
21 {name : SIZE6 , c l a s s : Random , range : [1 , 5 0] ,
22 d e f a u l t : 3} ,
23 {name : SIZE7 , c l a s s : Random , range : [1 , 5 0] ,
24 d e f a u l t : 36} ,
25 {name : SIZE8 , c l a s s : Random , range : [1 , 5 0] ,
26 d e f a u l t : 9}
27] ,

G.17 Small-Quantity-Order Revenue Query (Q17)
This query determines how much average yearly revenue would be lost if orders were no longer filled for small quantities of
certain parts. This may reduce overhead expenses by concentrating sales on larger shipments.

The Small-Quantity-Order Revenue Query considers parts of a given brand and with a given container type and
determines the average lineitem quantity of such parts ordered for all orders (past and pending) in the 7-year
data- base. What would be the average yearly gross (undiscounted) loss in revenue if orders for these parts with
a quantity of less than 20% of this average were no longer taken?

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
((sum(? l_lineextendedprice) / 7.0) as ?avg_yearly)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_partsupplier ?ps .

?ps ltpch:ps_has_part ?part .
?part ltpch:p_brand ?p_brand ;

ltpch:p_container ?p_container .
{

select
?part
((0.2 * avg(? l2_linequantity)) as ?threshold)

where {
?li2 a ltpch:lineitem ;

ltpch:l_linequantity ?l2_linequantity ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:ps_has_part ?part .

69

}
group by

?part
}

filter (? l_linequantity < ?threshold && REGEX(?p_brand ,"%BRAND%","i") && ?
p_container = "%CONTAINER%")

}

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
((sum(? l_lineextendedprice) / 7.0) as ?avg_yearly)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_partsupplier ?ps .

?ps ltpch:part_partkey ?p_partkey.
{

select
?p_partkey
((0.2 * avg(? l2_linequantity)) as ?threshold)

where {
?li2 a ltpch:lineitem ;

ltpch:l_linequantity ?l2_linequantity ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:part_partkey ?p_partkey ;
ltpch:part_container ?p_container ;
ltpch:part_brand ?p_brand .

filter (REGEX(?p_brand ,"%BRAND%","i") && ?p_container = "%CONTAINER%")
}
group by

?p_partkey
}
filter (? l_linequantity < ?threshold)

}

prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
((sum(? l_lineextendedprice) / 7.0) as ?avg_yearly)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:partsupplier_part_partkey ?p_partkey .

{
select

?p_partkey
((0.2 * avg(? l2_linequantity)) as ?threshold)

where {
?li2 a ltpch:lineitem ;

ltpch:l_linequantity ?l2_linequantity ;
ltpch:partsupplier_part_brand ?p_brand ;
ltpch:partsupplier_part_container ?p_container ;
ltpch:partsupplier_part_partkey ?p_partkey .

filter (REGEX(?p_brand ,"%BRAND%","i") && ?p_container = "%CONTAINER%")
}
group by

?p_partkey
}
filter (? l_linequantity < ?threshold)

}

70

1 params : [
2 {name :BRAND, c l a s s : Brand , d e f a u l t : ’ Brand#23 ’} ,
3 {name :CONTAINER, c l a s s : Container , d e f a u l t : ’MED BOX’}
4] ,

Code Snippet 27: Query ones variable

G.18 Large Volume Customer Query (Q18)
The Large Volume Customer Query ranks customers based on their having placed a large quantity order. Large quantity
orders are defined as those orders whose total quantity is above a certain level.

The Large Volume Customer Query finds a list of the top 100 customers who have ever placed large quantity
orders. The query lists the customer name, customer key, the order key, date and total price and the quantity for
the order.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?c_name
?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice
(sum(? l_linequantity) as ?l_quantity)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_order ?ord .

?ord ltpch:o_orderkey ?o_orderkey ;
ltpch:o_orderdate ?o_orderdate ;
ltpch:o_ordertotalprice ?o_ordertotalprice ;
ltpch:o_has_customer ?cust .

?cust ltpch:c_custkey ?c_custkey ;
ltpch:c_name ?c_name .

{ select
?sum_order
(sum (? l2_linequantity) as ?sum_q)

where {
?li2 qb:dataSet ltpch:lineitemCube ;

ltpch:l_linequantity ?l2_linequantity ;
ltpch:l_has_order ?sum_order .

}
group by ?sum_order

} .
filter (? sum_order = ?ord && ?sum_q > %QUANTITY %)

}
group by

?c_name
?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice

order by
desc (? o_ordertotalprice)
?o_orderdate

limit 100

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_name

71

?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice
(sum(? l_linequantity) as ?l_quantity)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_order ?ord .

?ord ltpch:order_orderkey ?o_orderkey ;
ltpch:order_orderdate ?o_orderdate ;
ltpch:order_ordertotalprice ?o_ordertotalprice ;
ltpch:customer_custkey ?c_custkey ;
ltpch:customer_name ?c_name .

{
select

?ord
(sum (? l2_linequantity) as ?sum_q)

where
{

?li2 a ltpch:lineitem ;
ltpch:l_linequantity ?l2_linequantity ;
ltpch:l_has_order ?ord .

}
group by

?ord
} .
filter (?sum_q > %QUANTITY %)

}
group by

?c_name
?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice

order by
desc (? o_ordertotalprice)
?o_orderdate

limit 100

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?c_name
?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice
(sum(? l_linequantity) as ?l_quantity)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_linequantity ?l_linequantity ;
ltpch:order_order_orderkey ?o_orderkey ;
ltpch:order_order_orderdate ?o_orderdate ;
ltpch:order_order_ordertotalprice ?o_ordertotalprice ;
ltpch:order_customer_custkey ?c_custkey ;
ltpch:order_customer_name ?c_name .

{
select

?o_orderkey2
(sum (? l2_linequantity) as ?sum_q)

where
{

?li2 a ltpch:lineitem ;
ltpch:l_linequantity ?l2_linequantity ;
ltpch:order_order_orderkey ?o_orderkey2 ;

}
group by

?o_orderkey2

72

} .
filter (?sum_q > %QUANTITY %)

}
group by

?c_name
?c_custkey
?o_orderkey
?o_orderdate
?o_ordertotalprice

order by
desc (? o_ordertotalprice)
?o_orderdate

limit 100

1 params : [
2 {name :QUANTITY,
3 c l a s s : Random , range : [3 1 2 , 315] , # but why d e f a u l t i s 300? !
4 d e f a u l t : 300} ,
5] ,

Code Snippet 28: Query ones variable

G.19 Discounted Revenue Query (Q19)
The Discounted Revenue Query reports the gross discounted revenue attributed to the sale of selected parts handled in a
particular manner. This query is an example of code such as might be produced programmatically by a data mining tool.

The Discounted Revenue query finds the gross discounted revenue for all orders for three different types of parts
that were shipped by air and delivered in person. Parts are selected based on the combination of specific brands,
a list of containers, and a range of sizes.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipinstruct ?l_shipinstruct ;
ltpch:l_has_partsupplier ?ps .

?ps ltpch:ps_has_part ?part .
?part ltpch:p_brand ?p_brand ;

ltpch:p_size ?p_size ;
ltpch:p_container ?p_container .

filter (? l_shipmode in ("AIR", "AIR REG") &&
?l_shipinstruct = "DELIVER IN PERSON" &&
(((REGEX (?p_brand ,"^% BRAND1%$","i")) &&

(? p_container in ("SM CASE", "SM BOX", "SM PACK", "SM PKG")) &&
(? l_linequantity >= %QUANTITY1 %) &&
(? l_linequantity <= %QUANTITY1% + 10) &&
(? p_size >= 1) && (? p_size <= 5)) ||

((REGEX(?p_brand ,"^% BRAND2%$","i")) &&
(? p_container in ("MED BAG", "MED BOX", "MED PKG", "MED PACK")) &&
(? l_linequantity >= %QUANTITY2 %) &&
(? l_linequantity <= %QUANTITY2% + 10) &&
(? p_size >= 1) && (? p_size <= 10)) ||

((REGEX(?p_brand ,"^% BRAND3%$","i")) &&
(? p_container in ("LG CASE", "LG BOX", "LG PACK", "LG PKG")) &&
(? l_linequantity >= %QUANTITY3 %) &&
(? l_linequantity <= %QUANTITY3% + 10) &&
(? p_size >= 1) && (? p_size <= 15))))

}

73

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_has_partsupplier ?ps ;
ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipinstruct ?l_shipinstruct .

?ps ltpch:part_brand ?p_brand ;
ltpch:part_size ?p_size ;
ltpch:part_container ?p_container .

filter (? l_shipmode in ("AIR", "AIR REG") &&
?l_shipinstruct = "DELIVER IN PERSON" &&
(((REGEX (?p_brand ,"^% BRAND1%$","i")) &&

(? p_container in ("SM CASE", "SM BOX", "SM PACK", "SM PKG")) &&
(? l_linequantity >= %QUANTITY1 %) &&
(? l_linequantity <= %QUANTITY1% + 10) &&
(? p_size >= 1) && (? p_size <= 5)) ||

((REGEX(?p_brand ,"^% BRAND2%$","i")) &&
(? p_container in ("MED BAG", "MED BOX", "MED PKG", "MED PACK")) &&
(? l_linequantity >= %QUANTITY2 %) &&
(? l_linequantity <= %QUANTITY2% + 10) &&
(? p_size >= 1) && (? p_size <= 10)) ||

((REGEX(?p_brand ,"^% BRAND3%$","i")) &&
(? p_container in ("LG CASE", "LG BOX", "LG PACK", "LG PKG")) &&
(? l_linequantity >= %QUANTITY3 %) &&
(? l_linequantity <= %QUANTITY3% + 10) &&
(? p_size >= 1) && (? p_size <= 15))))

}

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
((sum(? l_lineextendedprice * (1 - ?l_linediscount))) as ?revenue)

where {
?li qb:dataSet ltpch:lineitemCube ;

ltpch:l_lineextendedprice ?l_lineextendedprice ;
ltpch:l_linediscount ?l_linediscount ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_shipmode ?l_shipmode ;
ltpch:l_shipinstruct ?l_shipinstruct ;
ltpch:partsupplier_part_brand ?p_brand ;
ltpch:partsupplier_part_size ?p_size ;
ltpch:partsupplier_part_container ?p_container .

filter (? l_shipmode in ("AIR", "AIR REG") &&
?l_shipinstruct = "DELIVER IN PERSON" &&
(((REGEX (?p_brand ,"^% BRAND1%$","i")) &&

(? p_container in ("SM CASE", "SM BOX", "SM PACK", "SM PKG")) &&
(? l_linequantity >= %QUANTITY1 %) &&
(? l_linequantity <= %QUANTITY1% + 10) &&
(? p_size >= 1) && (? p_size <= 5)) ||

((REGEX(?p_brand ,"^% BRAND2%$","i")) &&
(? p_container in ("MED BAG", "MED BOX", "MED PKG", "MED PACK")) &&
(? l_linequantity >= %QUANTITY2 %) &&
(? l_linequantity <= %QUANTITY2% + 10) &&
(? p_size >= 1) && (? p_size <= 10)) ||

((REGEX(?p_brand ,"^% BRAND3%$","i")) &&
(? p_container in ("LG CASE", "LG BOX", "LG PACK", "LG PKG")) &&
(? l_linequantity >= %QUANTITY3 %) &&
(? l_linequantity <= %QUANTITY3% + 10) &&

74

(? p_size >= 1) && (? p_size <= 15))))
}

1 params : [
2 {name :QUANTITY1, c l a s s : Random , range : [1 , 10]
3 , d e f a u l t : 1} ,
4 {name :QUANTITY2, c l a s s : Random , range : [1 0 , 20]
5 , d e f a u l t : 10} ,
6 {name :QUANTITY3, c l a s s : Random , range : [2 0 , 30]
7 , d e f a u l t : 20} ,
8 {name :BRAND1, c l a s s : Brand
9 , d e f a u l t : ’ Brand#12 ’} ,

10 {name :BRAND2, c l a s s : Brand
11 , d e f a u l t : ’ Brand#23 ’} ,
12 {name :BRAND3, c l a s s : Brand
13 , d e f a u l t : ’ Brand#34’}
14] ,

G.20 Potential Part Promotion Query (Q20)
The Potential Part Promotion Query identifies suppliers in a particular nation having selected parts that may be can- didates
for a promotional offer.

The Potential Part Promotion query identifies suppliers who have an excess of a given part available; an excess is
defined to be more than 50 % of the parts like the given part that the supplier shipped in a given year for a given
nation. Only parts whose names share a certain naming convention are considered.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?s_name
?s_address

where
{

?supp ltpch:s_name ?s_name ;
ltpch:s_address ?s_address .

{
select distinct

?supp
where
{

?big_ps ltpch:ps_has_part ?part ;
ltpch:ps_availqty ?big_ps_availqty ;
ltpch:ps_has_supplier ?supp .

?supp ltpch:s_has_nation ?s_nation .
?s_nation ltpch:n_name ?n_name .
?part ltpch:p_name ?p_name .
filter (REGEX (? p_name , "^%COLOR%") &&

?n_name = "%NATION%" &&
?big_ps_availqty > ?qty_threshold)

{
select

((0.5 * sum(? l_linequantity)) as ?qty_threshold)
?big_ps

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_partsupplier ?big_ps .

filter ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date))

)
}
group by

75

?big_ps
}

}
}

}
order by ?s_name

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select distinct
?s_name
?s_address

where
{

?supp ltpch:supplier_name ?s_name ;
ltpch:supplier_suppkey ?suppkey ;
ltpch:supplier_address ?s_address .

{
select

distinct ?suppkey
where
{

?big_ps ltpch:partsupplier_availqty ?big_ps_availqty ;
ltpch:supplier_suppkey ?suppkey ;
ltpch:nation_name ?n_name ;
ltpch:part_name ?p_name .

FILTER(REGEX (? p_name , "^%COLOR%") && ?n_name = "%NATION%") .
{

select
?big_ps
((0.5 * sum(? l_linequantity)) as ?qty_threshold)

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linequantity ?l_linequantity ;
ltpch:l_has_partsupplier ?big_ps .

FILTER ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date))

)
}
group by

?big_ps
} .
FILTER (? big_ps_availqty > ?qty_threshold) .

}
}

}
order by ?s_name

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select distinct
?s_name
?s_address

where
{

?li2 ltpch:partsupplier_supplier_name ?s_name ;
ltpch:partsupplier_supplier_suppkey ?suppkey ;
ltpch:partsupplier_supplier_address ?s_address .

{
select

distinct ?suppkey

76

where
{

?li ltpch:partsupplier_partsupplier_availqty ?big_ps_availqty ;
ltpch:partsupplier_supplier_suppkey ?suppkey ;
ltpch:partsupplier_nation_name ?n_name ;
ltpch:partsupplier_part_name ?p_name .

FILTER(REGEX (? p_name , "^%COLOR%") && ?n_name = "%NATION%") .
{

select
?li
((0.5 * sum(? l_linequantity)) as ?qty_threshold)

where
{

?li qb:dataSet ltpch:lineitemCube ;
ltpch:l_shipdate ?l_shipdate ;
ltpch:l_linequantity ?l_linequantity .

FILTER ((? l_shipdate >= "%YEAR%-01-01"^^xsd:date) &&
(? l_shipdate < bif:dateadd ("year", 1, "%YEAR%-01-01"^^xsd:date))

)
}
group by

?li
} .
FILTER (? big_ps_availqty > ?qty_threshold) .

}
}

}
order by ?s_name

1 params : [
2 {name :COLOR, c l a s s : Color
3 , d e f a u l t : f o r e s t } ,
4 {name :YEAR, c l a s s : Random , range : [1 9 9 3 , 1997]
5 , d e f a u l t : 1994} ,
6 {name :NATION, c l a s s : Nation
7 , d e f a u l t : ’CANADA’}
8] ,

G.21 Suppliers Who Kept Orders Waiting Query (Q21)
This query identifies certain suppliers who were not able to ship required parts in a timely manner.

The Suppliers Who Kept Orders Waiting query identifies suppliers, for a given nation, whose product was part
of a multi-supplier order (with current status of ’F’) where they were the only supplier who failed to meet the
committed delivery date.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?s_name
(count (1) as ?numwait)

where {
?li1 qb:dataSet ltpch:lineitemCube;

ltpch:l_receiptdate ?l1_receiptdate ;
ltpch:l_commitdate ?l1_commitdate ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_has_order ?ord .

?ps ltpch:ps_has_supplier ?supp .
?supp ltpch:s_name ?s_name ;

ltpch:s_has_nation ?s_nation .
?ord ltpch:o_orderstatus ?orderstatus .
?s_nation ltpch:n_name ?name
filter (

?l1_receiptdate > ?l1_commitdate &&
?name = "%NATION%" &&
?orderstatus = "F"

77

)
filter exists {

?li2 ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:ps_has_supplier ?supp2 .
filter (?supp != ?supp2)

}
filter not exists {

?li3 ltpch:l_has_order ?ord ;
ltpch:l_receiptdate ?l3_receiptdate ;
ltpch:l_commitdate ?l3_commitdate ;
ltpch:l_has_partsupplier ?ps3 .

?ps3 ltpch:ps_has_supplier ?supp3 .
filter (

?l3_receiptdate > ?l3_commitdate &&
?supp3 != ?supp

)
}

}
group by

?s_name
order by

desc (count (1))
?s_name

limit 100

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?s_name
((count (1)) as ?numwait)

where {
?li1 qb:dataSet ltpch:lineitemCube ;

ltpch:l_receiptdate ?l1_receiptdate ;
ltpch:l_commitdate ?l1_commitdate ;
ltpch:l_has_partsupplier ?ps ;
ltpch:l_has_order ?ord .

?ps ltpch:supplier_name ?s_name ;
ltpch:supplier_suppkey ?suppkey ;
ltpch:nation_name ?n_name .

?ord ltpch:order_orderstatus ?o_orderstatus .
filter (?l1_receiptdate > ?l1_commitdate && ?n_name = "%NATION%" && ?

o_orderstatus = "F")
filter exists {

?li2 ltpch:l_has_order ?ord ;
ltpch:l_has_partsupplier ?ps2 .

?ps2 ltpch:supplier_suppkey ?suppkey2 .
filter (? suppkey != ?suppkey2)

}
filter not exists {

?li3 ltpch:l_has_order ?ord ;
ltpch:l_receiptdate ?l3_receiptdate ;
ltpch:l_commitdate ?l3_commitdate ;
ltpch:l_has_partsupplier ?ps3 .

?ps3 ltpch:supplier_suppkey ?suppkey3 .
filter (

?l3_receiptdate > ?l3_commitdate &&
?suppkey3 != ?suppkey

)
}

}
group by

?s_name
order by

desc (count (1))
?s_name

limit 100

78

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?s_name
((count (1)) as ?numwait)

where {
?li1 qb:dataSet ltpch:lineitemCube ;

ltpch:l_receiptdate ?l1_receiptdate ;
ltpch:l_commitdate ?l1_commitdate ;
ltpch:partsupplier_supplier_name ?s_name ;
ltpch:partsupplier_supplier_suppkey ?suppkey ;
ltpch:partsupplier_nation_name ?n_name ;
ltpch:order_order_orderkey ?order_key ;
ltpch:order_order_orderstatus ?o_orderstatus .

filter (?l1_receiptdate > ?l1_commitdate && ?n_name = "%NATION%" && ?
o_orderstatus = "F")

filter exists {
?li2 ltpch:order_order_orderkey ?order_key ;

ltpch:partsupplier_supplier_suppkey ?suppkey2 .
filter (? suppkey != ?suppkey2)

}
filter not exists {

?li3 ltpch:order_order_orderkey ?order_key ;
ltpch:l_receiptdate ?l3_receiptdate ;
ltpch:l_commitdate ?l3_commitdate ;
ltpch:partsupplier_supplier_suppkey ?suppkey3 .

filter (
?l3_receiptdate > ?l3_commitdate &&
?suppkey3 != ?suppkey

)
}

}
group by

?s_name
order by

desc (count (1))
?s_name

limit 100

1 params : [
2 {name :NATION, c l a s s : Nation ,
3 d e f a u l t : ’ SAUDI ARABIA’}
4] ,

G.22 Global Sales Opportunity Query (Q22)
The Global Sales Opportunity Query identifies geographies where there are customers who may be likely to make a purchase.

This query counts how many customers within a specific range of country codes have not placed orders for 7 years
but who have a greater than average âĂIJpositiveâĂİ account balance. It also reflects the magnitude of that
balance. Country code is defined as the first two characters of c phone.

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>

select
?cntrycode
((count (1)) as ?numcust)
(sum (? c_acctbal) as ?totacctbal)

where {

79

?cust ltpch:c_acctbal ?c_acctbal ;
ltpch:c_phone ?c_phone .

{
select ((avg(? c_acctbal2)) as ?acctbal_threshold)
where
{

?cust2 ltpch:c_acctbal ?c_acctbal2 ;
ltpch:c_phone ?c_phone2 .

filter ((? c_acctbal2 > 0.00) &&
substr (?c_phone2 , 1,2) in (% COUNTRY_CODE_SET %)) .

}
}
filter (

(substr (?c_phone , 1,2)) in (% COUNTRY_CODE_SET %) &&
(? c_acctbal > ?acctbal_threshold)

) .
filter not exists { ?ord qb:dataSet ltpch:ordersCube ;

ltpch:o_has_customer ?cust } .
}

group by ((substr (?c_phone , 1,2)) as ?cntrycode)
order by (substr (?c_phone , 1,2))

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?cntrycode
((count (1)) as ?numcust)
(sum (? c_acctbal) as ?totacctbal)

where
{

?cust ltpch:customer_acctbal ?c_acctbal ;
ltpch:customer_phone ?c_phone .

{
select

((avg (? c_acctbal2)) as ?acctbal_threshold)
where
{

?cust2 ltpch:customer_acctbal ?c_acctbal2 ;
ltpch:customer_phone ?c_phone2 .

FILTER ((? c_acctbal2 > 0.00) &&
SUBSTR (?c_phone2 , 1, 2) in (% COUNTRY_CODE_SET %))

}
}
FILTER (SUBSTR (?c_phone , 1, 2) in (% COUNTRY_CODE_SET %) && ?c_acctbal > ?

acctbal_threshold) .
FILTER not exists { ?ord ltpch:o_has_customer ?cust } .

}
group by ((SUBSTR (?c_phone , 1, 2)) as ?cntrycode)
order by (SUBSTR (?c_phone , 1, 2))

prefix bif: <http:// example.org/customfunction/>
prefix ltpch: <http://extbi.lab.aau.dk/ontology/ltpch/>
prefix qb: <http://purl.org/linked -data/cube#>
prefix qb4o: <http://publishing -multidimensional -data.googlecode.com/git/index.html#

ref_qbplus_ >

select
?cntrycode
((count (1)) as ?numcust)
(sum (? c_acctbal) as ?totacctbal)

where
{

?cust ltpch:customer_customer_acctbal ?c_acctbal ;
ltpch:customer_customer_phone ?c_phone .

{
select

((avg (? c_acctbal2)) as ?acctbal_threshold)

80

where
{

{
select distinct

?custkey2 ?c_acctbal2
where
{

?cust2 ltpch:customer_customer_custkey ?custkey2 ;
ltpch:customer_customer_acctbal ?c_acctbal2 ;
ltpch:customer_customer_phone ?c_phone2 .

FILTER ((? c_acctbal2 > 0.00) &&
SUBSTR (?c_phone2 , 1, 2) in (% COUNTRY_CODE_SET %)) .

}
}

}
}
FILTER (SUBSTR (?c_phone , 1, 2) in (% COUNTRY_CODE_SET %) && ?c_acctbal > ?

acctbal_threshold) .
FILTER not exists { ?cust qb:dataSet ltpch:ordersCube } .

}
group by ((SUBSTR (?c_phone , 1, 2)) as ?cntrycode)
order by (SUBSTR (?c_phone , 1, 2))

1 params : [
2 {name :COUNTRY CODE SET, c l a s s : CountryCodeSet , range : [7] ,
3 d e f a u l t : ” ’ 1 3 ’ , ’ 31 ’ , ’ 23 ’ , ’ 29 ’ , ’ 30 ’ , ’ 18 ’ , ’ 17 ’”}
4] ,

81

	titelblad
	sigproc-sp

