
Group sw101f14

Master’s Thesis

GPS-Based Road Pricing

Authors:
Mikael Midtgaard
Jens Mohr Mortensen
Dan Stenholt Møller

Supervisor:
Kristian Torp

June 4, 2014





Abstract

GPS-Based Road Pricing is a system comprised of all components required of a complete
fully-functional GPS-based road pricing system. The system consists of a mobile client,
web client, server, and databases. The mobile client acts as an onboard unit that is able
to gather GPS locations of a driver. These locations are used for calculating the road
pricing tax of the driver. The accumulated tax is calculated online, which allows it to
be displayed to the driver in real-time. The web client provides extensive information of
the road pricing tax for the drivers of the system.

The system is developed in such a way that it can support millions of drivers, which
makes it possible to perform large scale experiments. Field trials are performed to
verify that the system is fully-functional, and satisfies all requirements of a complete
GPS-based road pricing system.





Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
DK-9220 Aalborg Øst
Telephone +45 9940 9940
Telefax +45 9940 9798
http://cs.aau.dkTitle: GPS-Based Road Pricing

Subject: Database Technology
Semester: Spring 2014
Project group: sw101f14

Authors:

Mikael Midtgaard

Jens Mohr Mortensen

Dan Stenholt Møller

Supervisor:
Kristian Torp

Number of copies: 5

Number of pages: 89

Number of appendices: 5

Completed: June 4, 2014

Synopsis:

GPS-Based Road Pricing is a system that
consists of all components required for run-
ning and experimenting with large scale
real-world GPS-based road pricing. The
system consists of an Android app, a web
application, a server, and four databases.
The Android app performs online road
pricing calculations and displays the cost
to the driver and reports it to the server.
The web application displays specific in-
formation on the road pricing costs. The
server handles requests from the An-
droid app and web application, and stores
and retrieves data from the appropriate
databases.

Field trials are performed to showcase and

illustrate the accuracy of the complete

functioning road pricing system. Privacy

of the users is handled by encrypting all

data traffic and storing privacy-sensitive

information separately. The costs of oper-

ating the road pricing system is minimized

by using a novel message format. The sys-

tem is able to scale to millions of users be-

cause of the low data costs and because

calculations are performed on the mobile

client.

The content of this report is freely accessible. Publication (with source reference) can only happen with

the acknowledgment from the authors of this report.

I





Preface

This Master’s thesis is written by three students on the 4th and final semester of the
Master of Science (MSc) in Engineering (Software) education at Aalborg University in
the spring of 2014. The theme of the project is database technology. Recurring terms
are defined in the glossary.

Whenever a technical choice is taken it is accompanied by a comparison table. These
tables consist of the different technology options that are considered for each component.
Each component is graded on a given set of aspects ranging from one (F) to three stars
(FFF), where one is worst and three is best. Based on these requirements we will
decide which choice is most suitable for our project.

In Appendix E a CD is attached that contains:

• The source code of the mobile app, web application, and web services.

• The database construction queries.

• The map and taxation model database dumps.

• README.txt file explaining how to use the GPS-Based Road Pricing system.

Alternatively, the contents of the CD can be accessed at
http://130.225.198.79:6060/RPServer/files/CD.rar

III

http://130.225.198.79:6060/RPServer/files/CD.rar




Glossary

Terms that are used throughout this project are defined in the list below.

• Road Pricing System – All the components necessary to perform GPS-based
road pricing.

• The System – Same as Road Pricing System.

• Road Pricing Provider – The organization in charge of running and maintaining
the road pricing system.

• Taxation Model – Encapsulates the rules of an entire road pricing system.

• Billing – Describes what a driver is paying in road pricing tax as a list of time
intervals with a price associated with each interval.

• Segment – A part of a road network.

• Travel Log – A price associated with a location represented as as segment at a
specific time

• Trip – A path traveled by a driver, described as a list of segments.

• Map matching – Associating a GPS location to a single segment in order to
determine where the driver is.

• Onboard unit – A device installed in a vehicle able to acquire and process data.

V





Contents

Page

I Introduction 1

1 Motivation 3

2 Problem Definition 5
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Problem Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Analysis 9
3.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Client/Server Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 System Definition 13

5 Technologies 15
5.1 Mobile Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Web Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Data Usage 25
6.1 Send Billing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Send Travel Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II Design 27

7 System Architecture 29
7.1 Mobile Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VII



7.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Web Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Taxation Model Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Billing Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 Encrypted Travel Log Database . . . . . . . . . . . . . . . . . . . . . . . . 34
7.7 User Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Client GUIs 37
8.1 Mobile App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Database Structures 43
9.1 Taxation Model Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 Billing Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3 Encrypted Travel Log Database . . . . . . . . . . . . . . . . . . . . . . . . 44
9.4 User Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5 Local Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III Implementation 47

10 Mobile App 49
10.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 Web Application 59
11.1 Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.2 Travel Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
11.3 Billing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.4 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

12 Web Services 63
12.1 getApplicationInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
12.2 sendBilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
12.3 sendTravelLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

IV Evaluation 67

13 Results 69
13.1 Field Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
13.2 Message Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.3 Data Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

VIII



14 Discussion 77
14.1 Field Trial Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
14.2 Accuracy in Map Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 78
14.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.4 Setup and Operational Costs . . . . . . . . . . . . . . . . . . . . . . . . . 79

15 Conclusion 81

16 Future Work 83
16.1 Map Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.2 Data Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.3 User Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16.4 Message Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16.5 Fraud Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 85

V Appendices 91

A Taxation Model Database Schema 93

B Travel Data 95

C Data Usage 97

D Data Usage Calculations 99

E CD 101

IX



Part I

Introduction

1





Chapter 1
Motivation

Several types of road pricing are in effect today [41, p. 10]. These include vignette
tax [53][19], congestion zones [8], and toll roads such as the Great Belt Fixed Link [52]
and the Oresund Bridge [36].

Experiments have been performed with more sophisticated methods of road pricing
such as GPS-based road pricing, and in 2005 the first GPS-based road pricing system was
launched: LKW-Maut [7]. LKW-Maut is a toll for trucks in Germany with a maximum
weight of 12 metric tons and above [49]. An onboard unit is used to measure the distance
traveled.

Experiments have been conducted to implement GPS-based road pricing for cars in
the United Kingdom, Holland, Singapore, and Denmark [54, pp. 128-129]. In the
United Kingdom the “Road Pricing Demonstrations Project” was conducted from 2008
to 2011 [16]. In this demonstration project four companies – Intelligent Mechatronic
Systems, Sanef Tolling Limited, T-Systems Ltd, and Trafficmaster plc – each tested road
pricing on 100 volunteer drivers. An additional three companies – Kapsch TrafficCom
Limited, Q-Free ASA, and Serco Ltd – assisted in developing road pricing systems. Four
different onboard units were used in the “Road Pricing Demonstrations Project”: three
thick clients and one thin client [17]. A thin client only gathers time and location data,
and then relays this to another unit that calculates the road pricing cost. A thick client
gathers the same data as a thin client, but also calculates the road pricing cost.

These four devices were specifically designed for GPS-based road pricing. Therefore,
the number of test drivers is restricted to the number of prototype devices the companies
have produced. No one has created a system for a publicly available platform that allows
for large scale experiments. We intend to create such a system.

3





Chapter 2
Problem Definition

In this chapter we present and analyze the problem at hand.

2.1 Problem Statement

Based on the previous chapter we define our problem statement as:

How can we analyze, design, and implement all components required for a fully
functioning GPS-based road pricing system, such that we are able to make large
scale real-world experiments with a complete road pricing system?

2.2 Problem Limitation

In this section we expand upon our problem statement by setting goals and assumptions
for the road pricing system.

2.2.1 Goals

We define five goals for the road pricing system we develop. Being able to showcase
the system; high accuracy; high privacy; low startup and operational costs; and high
scalability. In the following subsections we describe the meaning of each goal.

Showcasing

An estimated cost of driving should be accessible for drivers during a trip to allow for
an immediate understanding of how road pricing will affect them.

Drivers should be able to see a complete list of prices associated with their temporal
and spatial travel data, so they can see exactly what they are paying for.

5



High Accuracy

It is important to know where drivers are, such that they pay the correct road pricing tax.
The GPS receiver in the onboard unit should be able to report locations so accurately
that it is possible to correctly map match the GPS location to the segment the driver is
located on.

Additionally, if a driver is not connected to the Internet, or if communication with
the server temporarily fails no information should be lost.

High Privacy

The system handles spatial and temporal data of the travel patterns of drivers. This
means that drivers supply information on where their vehicles are at all times when
driving. We should ensure that such data remains private.

Data transfers between the driver and the server should be encrypted, such that third
parties cannot read the data.

The data should be stored such that the spatial data of the driver is inaccessible to
the road pricing provider. The road pricing provider should only have access to how
much a driver should pay in road pricing tax.

Low Startup and operational costs

In order to compete with other types of road pricing, the road pricing system we propose
should have a low monetary cost. The startup cost of road pricing should be low com-
pared to other types of road pricing. The operational cost for the road pricing system
should be a small fraction of the revenue generated by road pricing.

High Scalability

The road pricing system should be able to handle many users. This means that the
pressure on the network should be minimized. The road pricing system should be easily
expandable to allow for more users.

2.2.2 Assumptions

We make some assumptions concerning the road pricing system. They concern issues
that are out of our control or would be too time-demanding for us to handle.

Honest users

We assume that the users of the system are not attempting to cheat. This means
that users do not tamper with the device installed in vehicles, attempt to report false
locations, or interfere with the running software.

6



Correct map data

We assume that the map data covers all segments covered by the taxation model. We
assume that the map data is up-to-date with changes to the road network. We assume
that the map data that we are using is fully segmented, which means a new segment
begins at each intersection. Using fully segmented map data means that when a driver
enters a new segment, he will drive the entire length of the segment unless he ends
or begins his trip at that segment. This concept is illustrated in Figure 2.2.1, where
each segment is illustrated with a distinct color. When driving along the blue segment
from left to right in road network (a), the driver encounters a new segment at the
intersection. This is not the case in road network (b). This means that road network
(a) is fully segmented and road network (b) is not.

Figure 2.2.1: A fully segmented road network (a), and a road network that is not fully
segmented (b). A different color is used for each segment.

7





Chapter 3
Analysis

In this chapter we analyze the possible choices for the road pricing system we develop.
We base our choices on how well they reflect the goals described in Section 2.2.1.

3.1 Privacy

In this section the privacy issues of the system will be analyzed. We analyze these issues
because of the privacy goal from Section 2.2.1. We analyze two privacy issues: data
transfer and data storage.

3.1.1 Data Transfer

In the road pricing system, information will be transferred from the server to the client
and vice versa. Some of the information is subject to privacy concerns, e.g. most people
are not interested in exposing when they visit the doctor. As described in our privacy
goal in Section 2.2.1 we want to ensure that such data remains private. It is undesirable
that third parties can read the data while it is being transferred. Analysis on more data
would be able to yield the travel patterns of a driver. To avoid this we encrypt the data
that is transferred between the client and the server.

3.1.2 Data Storage

The data that the server receives is stored in a database. Since the location data of
the drivers is sensitive this needs to be encrypted in the database. However, not all the
stored data is equally sensitive. We do not consider how much road pricing tax a driver
pays to be as sensitive as the location data of a driver. The road pricing provider should
be able to see the billing information for a driver, but should not be able to see the
locations the driver. The billing information and travel information should be stored in
different databases to differentiate between them. Furthermore, the travel information
should be stored encrypted.

9



3.2 Client/Server Functionality

In this section we discuss the distribution of functionality between the client and the
server. In the road pricing system the onboard unit is the client. We discuss the
distribution because it has a direct effect on the scalability, privacy, and cost goals
from Section 2.2.1. The following topics are important when it comes to functionality
distribution: Price calculation, taxation model, map, and history.

The most important topic is to decide if the price calculation should be performed on
the client or on the server, because the calculation is based on a taxation model and a
map. This means that the taxation model and map have to be stored where the price
calculation is performed.

The effects of having price calculation on the client and the server will now be outlined.

3.2.1 Client-side Calculation

In order to perform the price calculations client-side there has to be a local database on
each client. This database should contain map data and a taxation model that describes
the cost of driving. In order to determine the road pricing tax of the driver, the client
has to establish where the driver is located based on GPS locations – this is known
as map matching. When map matching is performed on the client the cost of sending
GPS-locations to the server and receiving road segment IDs is eliminated; this has the
added effect of increased privacy since the exact locations of the driver are not sent.
Furthermore, response time is faster, since time spent on data transfer is eliminated.
Similarly the traffic and response time costs are reduced when price calculations are
performed based on a taxation model that is stored on the client.

When the price calculations are performed on the client it alleviates the processing
requirements on the server-side.

3.2.2 Server-side Calculation

Calculating the cost of driving requires spatial and temporal data of the travel patterns
of the driver. This means that the client has to either send GPS locations or road
segment IDs to the server depending on where map matching occurs. If map matching
is done on the client, segment IDs are sent. If map matching is done on the server GPS
locations are sent.

There are significantly more GPS locations than segment IDs, since more GPS loca-
tions are map matched to the same road segment. This means that the data traffic cost
is higher if map matching is done on the server. Additionally, the privacy will be more
difficult to handle since the exact locations of the driver are sent to the server.

If map matching is done on the server, the taxation model and map data have to be
stored on the server. This means that the taxation model and map data do not have to
be stored on the client. This would reduce the overall space requirement tremendously,
since the taxation model and map data would only have to be stored in a single location
as opposed to potentially millions.

10



If there are many users, the server requirements for calculating the road pricing tax
is high. This means that calculating the road pricing tax on the server scales poorly
compared to the client-side approach.

3.2.3 Choosing Price Calculation Location

Choosing the location of the price calculation should reflect our goal for a scalable,
private, and low cost system, as described in Section 2.2.1. The following factors are
important to such a system: overall space requirements, data traffic, response time,
privacy, and scalability.

Client-side Server-side

Overall space requirements F FFF
Data traffic FFF F
Response time FFF F
Privacy FFF F
Scalability FFF F
Total 13 7

Table 3.2.1: Comparison table between client-side and server-side price calculation.

The space requirements are the same on a client and on a server. The difference is
that if the map data and taxation model are stored client-side, it has to be stored on
all clients instead of only once on the server. Since there are potentially millions of
clients the overall space requirements are significantly higher when the price calculation
is performed client-side.

If the price calculation is performed on the server the data traffic cost is much higher,
and privacy becomes more difficult to handle.

If the price calculation is performed on the client it has to communicate with the
server fewer times, which means that the response time of the application is higher.

We choose to perform price calculations on the client because the data traffic cost
will be lower; the response time will be lower; privacy will be easier to handle; and the
system scales better.

11





Chapter 4
System Definition

In this chapter we define the system we develop. We define the system based on the
problem statement from Section 2.1, the goals we defined in Section 2.2.1, and the
analysis made in Chapter 3.

The system implements road pricing.
It does so by running a mobile app on a mobile client installed in road vehicles that
transfer data to a server. On the mobile client a taxation model and map data are
stored according to the region of the driver. This means that the system can be used
anywhere in the world, as long as the correct taxation model and map data are stored
on the client.

The mobile client generates data based on the location of the driver. The data is
processed and stored on the mobile client before it is sent to the server. There are two
types of data that is sent to the server: travel log data and billing data. The travel log
data describes where a driver was at a specific time and the cost thereof. The billing
data describes what the driver pays in road pricing tax in a specific time interval. Before
the data is transferred from the mobile client to the server it is stored on the mobile
client. The two types of data are sent to the server in distinct intervals.

The data traffic is encrypted to avoid third parties from accessing it. The server stores
travel log data and billing data separately.

It is possible for the drivers to access their travel log information and billing data on
a web client. It is possible for the road pricing providers to access billing information
for any driver in the system on a web client.

13





Chapter 5
Technologies

In this chapter we analyze the available technologies for the components of the system.
Based on the system definition in Chapter 4 we need to analyze technologies for the
following components: a mobile client, web client, server, and databases.

The available technologies and the choice of the most suited for each component will
be outlined in the following sections.

5.1 Mobile Client

In this section we present an analysis of which mobile client the mobile app is most
suitable to run on.

The primary use of the mobile client is to track the position of the drivers as they
travel in order to calculate the road pricing tax.

The mobile app needs to run on a mobile client for which we have certain requirements:
It needs to have a GPS receiver in order to track the location of the drivers. In order
to keep traffic costs low the mobile client needs to perform some calculations, such that
it is not dependent on receiving results from a server, as described in Section 3.2. The
client will, however, still need to communicate with a server. The mobile client needs
to communicate with a server from nearly any location, since it is installed in a road
vehicle.

The mobile client needs a screen to showcase the cost to the driver. Since the mobile
client needs to be installed in all road vehicles, it needs to be low in price.

Finally, we must be able to develop an app that runs on the client.

We consider two types of clients: smartphone and dedicated device.

Modern smartphones satisfy all these requirements: They have GPS receivers, rela-
tively powerful processors, are cheap, easily accessible, are able to communicate with a
server using mobile networks such as 3G, and have screens.

In Table 5.1.1 a comparison between smartphones and dedicated devices can be seen.
We choose a smartphone as the onboard unit as it scores the highest in the comparison.

15



Smartphone Dedicated Device

GPS FFF FFF
Communication to server FFF FFF
Programmable FFF F
Screen FFF F
Acquisition and installation price FFF FFF

Total 15 11

Table 5.1.1: Comparison between mobile client.

Another advantage of using a smartphone as the mobile client is that there are devel-
opment kits available.

For Android, which is the most popular operating system for smartphones [4][5], An-
droid SDK is freely available [27].

For iOS, which is the second most popular operating system for smartphones [4],
Xcode is freely available [24]. However Xcode is only compatible with OS X.

We have considerable experience with Android development, and very limited experi-
ence with iOS development. We have immediate access to Android smartphones, which
is not the case for iPhones.

Android iOS

Market share FFF FF
Development kit FFF FFF
Experience FFF F
Accessibility FFF F

Total 12 7

Table 5.1.2: Comparison between smartphone operating systems.

As seen in Table 5.1.2 Android scores the highest and therefore we choose this as
the operating system for the mobile client. We choose to develop an Android 4.0 app
because in this version Google combined the tablet and phone Android versions into
one [26]. This means that some core functionality is performed differently from older
Android versions.

By choosing 4.0 we allow for more people to use our mobile app, than if we had chosen
a newer version.

5.2 Server

The server is the connection between the databases and the clients in our system. This
connection will be provided in the form of web services, which is a method for commu-
nicating between two clients over the Internet.

16



Since we choose to develop the mobile client as an Android app it would be natural to
select Java as technology for the application server that runs on the server. The reason
for this is that Android apps are developed in Java and we can thereby reuse the models
from the Android app on the application server.

In the following sections the technology choice for the application server and the web
service interface will be analyzed.

5.2.1 Java Application Server

Several Java application servers exist, but we will only consider the following.

Jetty [13]
Is an application server with a relatively small download size of approximately
10MB. It has plugins to most well-known IDEs. Configuration of the server is
done by sending XML based configuration files along when starting the server.
The team behind Jetty has created Jetty Documentation Hub, which is used to
provide support for their server. Jetty is not rich on server features. It is basically
just a container. The Jetty application server is free to use under the Apache 2.0
license.

GlashFish [43]
Is an application server that has a download size of approximately 50MB. It has
plugins to most well-known IDEs. Configuration of the server can be done in one
big XML file. Glassfish has documentation available on their website. Glassfish
includes all the server features of a full Java EE compliant application server. The
Glassfish application server is free to use, but can be extended with a license that
includes additional features such as 24/7 support.

Tomcat [6]
Is an application server, which is lightweight, and has a download size of approxi-
mately 12MB. It has plugins to most well-known IDEs. Configuration of the server
is done in several XML files, but mostly in the server.xml file. Tomcat has a big
community and it is one of the most used Java application servers, so it is easy
to find support on a problem [35]. Tomcat is low on server features. The Tomcat
application server is free to use under the Apache 2.0 license.

JBoss [23]
Is the application server that has the biggest download size of approximately
130MB. It has plugins to most well-known IDEs. JBoss has a big community,
which is a big help when in need of support. Configuration of the server is done in
one big XML file called standalone.xml. Jboss includes all the server features of a
full Java EE compliant application server. The JBoss application server is free to
use, but there is an enterprise version that includes additional support.

17



5.2.1.1 Technology Choice

In Table 5.2.1 the comparison between the application servers can be seen. The perfor-
mance field is based on the test made by Maple [38].

Jetty GlassFish Tomcat JBoss

Installation Size FFF FF FFF F
Server Configuration FF FFF FFF FFF
Documentation and Community FF FF FFF FF
Features F FFF F FFF
Performance F F FFF FF

Total 9 11 13 11

Table 5.2.1: Comparison between the Java application servers.

We choose to use Tomcat as our application server, because it is dominant in all fields
except the feature field. This is not a noticeable lack, since we will not be using all the
features a full Java EE compliant application server offers.

5.2.2 Web Service Interface

For the creation of a web service there are two interfaces that are commonly used;
these are SOAP (Simple Object Access Protocol) [9] and REST (REpresentational State
Transfer) [14].

SOAP is a message protocol that is based on XML [10], the protocol defines a message
architecture and format. SOAP defines a top level XML element called an envelope which
itself consists of two elements: a header and a body. The header of the SOAP envelope
is extensible and can contain information that can be used for routing purposes. The
body of the SOAP envelope contains the message that are to be transmitted between
the two clients.

One of the advantages of SOAP is that it uses the well defined XML message format,
which means that SOAP messages always look the same. This on the other hand also
makes the messages increase in size and therefore more bandwidth usage is required.

REST is a architectural style that is based upon HTTP [32]. In REST resources are
identified with an URI that can be accessed trough the HTTP methods GET, PUT,
POST, and DELETE. The messages in REST are decoupled from their representation.
This means that the messages are not limited to XML.

One of the advantages of REST is that the developer can choose the format of the
message. This means that if a lightweight message is needed, it can be accomplished by
choosing a message format that uses few bytes.

One of the disadvantages of REST is that it is an architectural style which means that
it only consists of best practices and there are no rules enforcing a best practice.

Pautasso et al. [46] gives an in depth look at SOAP and REST with an analysis of
which interface to choose in different cases. REST is more lightweight because there is

18



no technology stack to setup, whereas SOAP depends on a large technology stack that
needs to be setup.

5.2.2.1 Technology Choice

In Table 5.2.2 the comparison between the server interfaces can be seen. The latency
field is based on the test made by Aihkisalo and Paaso [3, p. 408].

SOAP REST

Web Service Stack Size F FFF
Message Format Structure FFF F
Message Byte Size F FFF
Available Message Formats F FFF
Latency F FFF

Total 7 13

Table 5.2.2: Comparison between the web service interfaces.

We choose to use REST as our server interface, because with REST we can reduce
the data traffic, which is in line with our scalability and cost goals, as described in Sec-
tion 2.2.1. Because of this decision we have multiple message formats available, and
therefore we need to decide on which format to use. The decision will be discussed in
the following section.

5.2.3 Message Format

As mentioned in the previous section we have the option to use a wide variety of mes-
sage formats for our REST implementation. We have decided to choose between XML,
JSON [31], Protocol Buffers [20], and a novel message format.

It is possible to compare these message formats in a number of ways and we have
decided to compare the following points: readability, marshalling speed, and payload
size.

We have decided to include a novel message format in the comparison because this
will give us more control over the data flow between the client and the server.

Aihkisalo and Paaso [2] look at different implementations of marshalling and unmar-
shalling. This is of interest as this is an action that is performed every time a message
is transmitted. In this report they find that there is no solution that performs best in
all cases.

Aihkisalo and Paaso [3] look at the difference in payload and transmission time for
XML, JSON and Protocol Buffers. They conclude that XML has the biggest payload
and protocol buffers the smallest. The payload for XML and JSON can be reduced using
gzip [37].

Ismail [33] looks at the advantages and disadvantage of protocol buffers, which is an
emerging choice of formatting. He concludes that even though protocol buffers has the

19



advantages of being faster marshalled and smaller in payload, it suffers because it is not
readable and does not support inheritance or polymorphism. This drawback means that
it is hard to debug and errors have to be parsed to be readable.

5.2.3.1 Technology Choice

In Table 5.2.3 the comparison between the message formats can be seen.

XML JSON Protocol Buffers Novel Message Format

Readability FFF FFF F FF
Marshalling Speed FF FF FFF FFF
Payload Size F FF FFF FFF

Total 6 7 7 8

Table 5.2.3: Comparison between the message formats.

We choose to use a novel message format. The reason for this is that it scores the
highest and with a novel message format we reduce the size of each packet thereby
preserving bandwidth for the client, which is in line with our scalability and cost goals
described in Section 2.2.1.

5.2.4 Message Encryption

As explained in Section 3.1 we handle data where privacy is a concern. The communi-
cation between the clients and the server will be performed with HTTP, but it does not
provide encryption of messages; this means that we need to find another way to encrypt
them.

We look at two ways of encrypting traffic: Encrypting the message and encrypting
only the body of the message.

Encryption of the message can be done with HTTPS [12]. HTTPS is HTTP over
TLS [30], where TLS provides the secure connection.

Encryption of the body can be done with any available encryption algorithm.
We will now choose which type of encryption to use.

5.2.4.1 Technology Choice

In Table 5.2.4 the comparison between the encryption methods can be seen.

HTTPS Body Encryption

Privacy FFF FF
Ease of use FFF FF
Total 6 4

Table 5.2.4: Comparison between the encryption methods.

We choose to use an HTTPS, because it encrypts all traffic and is easier to use.

20



5.3 Web Client

As stated in Section 2.2.1 the system should be able to showcase relevant information.
Therefore, the purpose of the web client is to showcase information to drivers about
their travel patterns, and what they paid for it. It should also allow the road pricing
provider to see the billing information of drivers.

As stated in Chapter 4 the road pricing provider should not be able to see the travel
patterns of the driver. This means that there should be a login functionality that dis-
tinguishes between a driver and the road pricing provider. It should not be possible for
drivers to see the travel patterns or the billing information of any other driver.

No information should be shown if the user is not logged in. If a driver is logged in the
billing information should be shown in a list. The travel information should be shown
in a different view.

The road pricing provider should be able to submit a user id and view the billing
information of that user.

We need to decide which technology we want to use for developing this web client.
We consider PHP [21], JSF [44], and ASP.NET [39].

5.3.1 Technology Choices

We compare technologies on our experience with it, and how easy it is to set up. In Ta-
ble 5.3.1 a comparison of the technologies are shown.

PHP JSF ASP.NET

Experience FFF FF F
Setup FFF FF FF

Total 6 4 3

Table 5.3.1: Comparison between the web client technologies.

Based on the comparison table we choose PHP. The reason for choosing PHP is that
it is a language we have experience with, we know that we can setup and create a quality
web client in reasonable time.

5.4 Databases

This section analyzes which type of data storage is most appropriate for the different
components of the system.

As described in the system definition in Chapter 4 the system should be able to store
information about the driver on both the mobile client and the server.

In the following the different storage options will be presented.

21



5.4.1 Mobile Client Data Storage

As stated in Section 5.1 we develop an Android app, we need to decide which storage
options to use.

In Android the following storage options exist [28]:

Shared Preferences
Is mostly used to store persistent primitive data types i.e. booleans, floats, integers,
longs, and strings. The data is stored in key-value pairs and is therefore best used
for storing the preferences and settings of an app.

Internal Storage
Is mostly used to store non-persistent data in an app. The stored data is private to
the app and when the app is uninstalled the data will be removed. The advantage
is that the app does not rely on external storage. The disadvantage is that the
storage size depends on the mobile client and therefore can be very small. The
stored data persists through reboot of the client.

External Storage
Is used to store public data on the shared external storage of the mobile client. The
advantage is that the data can be shared across the apps on the mobile client. The
disadvantage is that the data can be unavailable if the external data is mounted
on to a computer or removed from the mobile client.

SQLite Databases
Is used to store structured data. The database will be private to the app and
removed when uninstalling the app. The supported data types can be seen in
Table 5.4.1.

Data Type Value

Integer Signed integer

Text Text string

Real Floating point

Blob Blob of data, stored exactly as inputted

Table 5.4.1: The supported data types in SQLite [50].

The advantages of using SQLite databases is the possibility to store and execute
structured queries. A disadvantage is that SQLite only offers a small number of
data types.

5.4.1.1 Technology Choice

In Table 5.4.2 the comparison between the storage options of the mobile client can be
seen.

22



Shared
Preferences

Internal
Storage

External
Storage

SQLite

Storage Limitation F FF FFF FFF
Data Types FF F F FFF
ACID F F F FFF
Queries F F F FFF

Total 5 5 6 12

Table 5.4.2: Comparison between the storage options.

We choose to use SQLite as the data storage of our mobile client, because the storage
size is only restricted to the available space on the client, it has several data types,
is ACID compliant, and supports queries. Furthermore, a lot of our data has spatial
properties and SQLite has a geospatial extension called Spatialite [18]. This extension
is necessary to be able to do client-side calculation as we propose in Section 3.2.

5.4.2 Server Databases

As stated in Section 3.1 we will be storing travel information and billing information
on the server. We are working with geospatial data and we need to use a DBMS that
supports it. In the previous section we chose SQLite for the mobile client, but SQLite
lacks some of the characteristics of an enterprise DBMS, such as stored procedures
and high concurrency [51]. We therefore consider the following DBMSs for the server
databases:

Microsoft SQL Server(Spatial) [40]
Is a relational DBMS, which is currently the 3rd most popular DBMS system [34].
It is a commercial DBMS.

Oracle Database [45]
Is a relational DBMS, which is currently the 1st most popular DBMS system [34].
It is a commercial DBMS.

PostgreSQL with PostGIS [48][47]
Is a object-relational DBMS, which is currently the 4th most popular DBMS sys-
tem [34]. It is an object-oriented DBMS. It is not a commercial DBMS.

All the DBMSs have a wide set of geospatial functions.

23



5.4.2.1 Technology Choice

In Table 5.4.3 the comparison between the DBMSs can be seen.

MS SQL Server Oracle Database PostgreSQL

Experience FF F FFF

Total 2 1 3

Table 5.4.3: Comparison between the DBMS’s.

We choose PostgreSQL as our DBMS, because it has a great community and we have
experience with the DBMS.

24



Chapter 6
Data Usage

In this chapter we analyze how we can calculate the data usage of the traffic sent between
the mobile client and server. We want to be able to make this calculation because of
the goals we set in Section 2.2.1. First we have a goal that the operational cost should
be low. This means that we need to lower the traffic between the mobile clients and
the server as this will have a direct effect on the operational cost. Secondly we have
a goal that the system should be scalable. This affects the traffic between the mobile
clients and the server because more users generate more traffic. This means that if we
can keep the communication to a minimum we can serve more mobile clients with the
same hardware.

In Section 13.3 data usage calculations for data collected by test drivers will be per-
formed.

In the following sections we introduce the method for calculating data usage for billing
information and travel information.

6.1 Send Billing information

Billing information describes how much a driver should be paying in road pricing tax in
a specific time interval. The billing information is sent to the server when a new time
interval begins. The data that is being transferred every time is an identifier, a start
time for the interval, a taxation model, and a price.

The size of the data sent for each report does not change based on report frequency.
This means that the data cost of sending billings is linearly dependent on how frequent
it is being sent.

We can calculate how much data a driver uses to send billing information in a day if
we assume the following:

• The driver spends m minutes each day driving.

• The billing information is sent to the server with an interval of t.

25



• The size of the data sent between the client and the server when reporting a billing
is d.

Using this notation we calculate the amount of billing information data sent per day
as b:

b =
⌈m
t

⌉
∗ d (6.1)

6.2 Send Travel Information

The travel information describes the continuous location of the driver. The data is stored
locally before it is transferred to the server. When the travel information is reported all
data that has not previously been reported is sent to the server. This means that the
size of the data sent is high if it is sent with low frequency, and low if it is sent with high
frequency.

A new location is stored every time the driver enters a new segment. In order to
calculate how much data a driver needs to send per day as travel information we need
to make some assumptions:

• The driver spends m minutes each day driving.

• The driver enters a new road segment with a constant rate of u.

• The travel information is sent to the server with an interval of t.

• When a driver enters a new road segment the size of the location update is s.

• The travel information contains identification c.

• The size of the data sent between the client and the server when reporting travel
logs is d.

Using this notation we calculate the amount of travel log data sent per day as l:

l =
⌈m
t

⌉
∗ (d + c) +

⌈m
u

⌉
∗ s (6.2)

26



Part II

Design

27





Chapter 7
System Architecture

In this chapter the system architecture and all of its components are presented. The
system architecture has been derived from the system definition, which can be seen
in Chapter 4. It consists of the following components: Web Client, Mobile Client with
Local Database, Server, Taxation Model Database, Billing Database, Encrypted Travel
Log Database, and User Database. The system architecture can be seen in Figure 7.0.1.
In the figure the dashed lines represent data flow between the components. The cylinders
represent databases and the box represents the server. The desktop PC represents a
client with a web browser and the smartphone represents a smartphone.

Figure 7.0.1: The figure shows all the components that make up the system architecture,
and it shows the data flow between the components.

29



In the following sections the individual components will be introduced. For each
component a flowchart [15] is presented. The charts provide an overview of the process
and data flow. In the flowcharts we use the following symbols:

• A square represents a process.

• A diamond represents a decision.

• A parallelogram represents data.

• A cylinder represents data stored in a database.

• An arrow shows the direction of the data flow.

7.1 Mobile Client

The mobile client is the main source of data because it collects GPS information. This
data is used to calculate the price of a trip, which is stored in travel logs. These travel
logs are sent to the server in bulk.

The price calculations are aggregated over time and sent as billing information to the
server without any location data. This means that the billing information cannot be used
to track the driver, which means that the whereabouts of the drivers are inaccessible to
road pricing providers. The travel logs contain segments derived from map matching.
This means that the travel logs can be used to track the whereabouts of the driver. The
billings are used to tax the driver, and travel logs are used to determine the whereabouts
of the driver.

Figure 7.1.1: The data flow for the data created and processed by the mobile client
component.

The process and data flow for map matching and price calculation on the mobile client
component can be seen in Figure 7.1.1. First the GPS location for the mobile client is
found. The GPS location and a map is used as input for the map matching function.
The map matching function finds a segment id based on the input. When a segment id
has been found, the price calculation function can calculate the price based on this id

30



and the active taxation model. Finally, the mobile client encodes the data as travel logs
and billings and sends them to the server.

The process and data flow for getting the active taxation model and map data can be
seen in Figure 7.1.2. At first the mobile client downloads the active taxation model id
and the map data id. These ids are used to verify if the locally stored taxation model is
the active one and if the map data is available on the mobile client. If one of these are
invalid the mobile client will download the missing data from the server.

Figure 7.1.2: The data flow for the data fetched by the mobile client.

7.1.1 Local Database

The local database stores the following information: the whereabouts of the drivers, the
active taxation model, relevant map data, and the calculated billing information.

The whereabouts of the drivers are stored to show where they have driven.

The active taxation model is stored in order to provide a basis for calculating the
price for driving on a road segment.

The map data in the local database is used for map matching.

The calculated billing information is stored on the mobile client and aggregated in
order to conserve bandwidth.

7.2 Server

The server is the center of the architecture, this is because the server handles the infor-
mation exchange between the clients and databases.

Figure 7.2.1: The data flow for incoming data in the server component.

The process and data flow for the incoming data can be seen in Figure 7.2.1. The
server receives data from the mobile client in the form of billing information and travel

31



logs. These have been encoded in a novel message format in order to conserve bandwidth;
therefore the server has to decode the data. After this is completed the data can be sent
to the appropriate database for insertion.

The process and data flow for the outgoing data can be seen in Figure 7.2.2. The
data flow for the outgoing data is very generic because the processes are very similar.
The following data can be requested from the server: map data, taxation models, billing
information, travel logs, and user information. The requested data is retrieved from the
appropriate database and sent to the client that made the request.

Figure 7.2.2: The data flow for outgoing data in the server component.

7.3 Web Client

The web client is intended both for the drivers who use the mobile client and the road
pricing provider who provides the system, as well as audit users whose role is to inspect
data of drivers. The web client provides a way of getting access to information that is
stored in the system. The information comes from the mobile client and is stored in the
appropriate databases.

The process and the data flow for the web client can be seen in Figure 7.3.1. The web
client requests the needed billing information and travel logs from the server. The web
client transforms travel and billing data before it is displayed to make it more readable.

Figure 7.3.1: The data flow for web client component.

7.4 Taxation Model Database

The taxation model database contains the information provided by the road pricing
provider. The information in this database comes from RCS [41], which is a system that
handles taxation models and map data. A taxation model defines a set of spatiotemporal
rules that can be used for road pricing [41, pp. 19-25].

The process and data flow for the taxation model database can be seen in Figure 7.4.1.
The database handles requests from the server and sends the result data back to the
server.

32



Figure 7.4.1: The data flow for the taxation model database component.

7.5 Billing Database

The billing database contains the information that is used by the road pricing provider
to bill drivers. The information that is needed to bill a driver is: identification, time,
taxation model, and price. The combination of these make up the billing information in
the system.

• The identification is used to identify the driver that should be billed.

• The time describes the interval that the cost is generated in.

• The taxation model is used to verify that the driver is paying the correct road
pricing tax.

• The price is an aggregated price for the segments driven.

The process and data flow for when the billing database receives billing information
can be seen in Figure 7.5.1. The database receives data from the server. This data is
inserted into the billing table, which stores the billing information.

Figure 7.5.1: The data flow for the billing database component when it receives data.

The process and data flow for when the billing database retrieves billing information
can be seen in Figure 7.5.2. The database handles requests for billings from the server.
The requested billings are read from the database and returned to the server.

Figure 7.5.2: The data flow for the billing database components retrieval of data.

33



7.6 Encrypted Travel Log Database

This database contains the information about the whereabouts of the driver. It is nec-
essary to store this information because it allows the audit user to verify the billing
information. The information that is needed to verify the billing information is: identi-
fication, time, segment, taxation model, and price. The combination of these make up
the travel logs in the system.

• The identification is used to identify the driver that should be billed.

• The time is used to determine when the driver is at a specific segment.

• The segment identifies the whereabouts of the driver.

• The taxation model is used to verify that the driver is paying the correct road
pricing tax.

• The price is the calculated price for the segment.

The process and data flow for when the encrypted travel log database receives travel
logs can be seen in Figure 7.6.1. The database receives data from the server. The data
is inserted into the encrypted travel log table, which stores the encrypted travel logs.

Figure 7.6.1: The data flow for the encrypted travel log database component when it
receives data.

The process and data flow for when the encrypted travel log database retrieves travel
logs can be seen in Figure 7.6.2. The database handles encrypted travel log requests
from the server. This is handled by reading the requested data from the database and
returning the result to the server.

Figure 7.6.2: The data flow for the encrypted travel log database components retrieval
of data.

7.7 User Database

The user database contains the information that is used by the road pricing provider
to identify users. The information that is needed to identify a user is: identification,

34



username, password, and role. The passwords are hashed before they are stored in the
database. The combination of these make up the user information in the system.

• The identification is used to identify the driver that should be billed.

• The username and password are used by the driver to access the web application.

• The role is used to distinguish between the groups of users in the system.

The process and data flow for when the user database receives user information can be
seen in Figure 7.7.1. The database receives data from the server. This data is inserted
into the person table, which stores the user information.

Figure 7.7.1: The data flow for the user database component when it receives data.

The process and data flow for when the user database retrieves user information can
be seen in Figure 7.7.2. The database handles requests for user information from the
server. The requested users are read from the database and returned to the server.

Figure 7.7.2: The data flow for the user database components retrieval of data.

35





Chapter 8
Client GUIs

In this chapter the design of the GUIs for the mobile app and web application are pre-
sented. The development of the mobile app and web application is focused on function-
ality. This means that the main concern is that they functions correctly, and usability
is a secondary concern. The implementation of the mobile app and web application can
be seen in Chapter 10 and Chapter 11 respectively.

8.1 Mobile App

The app is designed with two purposes in mind: showcasing road pricing tax to the
driver and calculating road pricing tax. Continuously showcasing the road pricing tax is
done so the drivers will get an immediate understanding of how road pricing will affect
them. The app should also calculate the road pricing tax to limit data usage and lower
response time, as described in Section 3.2.

We divide the app into four screens: Main menu, taximeter, settings, and travel
history. The screens and the navigation between them are described in the following
sections.

Main Menu

The main menu presents the driver with a set of options. The driver can start road
pricing, see travel history, or go to the settings:

Start Road Pricing
This button will take the driver to the taximeter screen. Additionally, it will start
the road pricing tax calculation.

Travel History
This button will take the driver to the travel history screen. In the screen the
driver can see his travel history.

37



Settings
This button will take the driver to the settings screen. Here the driver can change
the available settings.

In Figure 8.1.1 the design for the main menu is shown.

Figure 8.1.1: The design for the main menu screen of the app.

Taximeter

The taximeter screen is where the driver can see the price for the current trip. This
screen is available when the road pricing tax of a trip is being calculated. The design of
this screen is very minimalistic due to the fact that it is presented to the driver while
driving. The price on the screen should update as the driver progresses on his trip just as
a taximeter in a taxi would, which also means the price will only increase. The taximeter
screen can be seen in Figure 8.1.2.

Figure 8.1.2: The design for the taximeter screen of the app.

38



Travel History

The travel history screen shows the driver information about previous trips. The design
for the travel history screen can be seen in Figure 8.1.3.

Figure 8.1.3: The design for the travel history screen of the app.

Settings

The settings screen is where the driver is presented with the mobile app settings. This
screen should be available in two versions depending on the user.

The driver should have a simplistic version where only the most basic settings are
presented. The settings that are available for the driver are: Sync options, manual
upload travel history, and manual update taxation model. The sync options are available
to let the driver conserve the mobile bandwidth on the mobile client. The manual
upload button allows the driver to upload the travel history before the mobile app
would have uploaded it to the server. This may make the travel history available on
the web application sooner than it would otherwise have. The manual update button
allows the driver to download a new taxation model sooner than it had been scheduled
for download. This will not activate the new taxation model but it will make it available
on the mobile client.

Figure 8.1.4: The design for the settings screen of the app.

39



The road pricing provider will have more settings available. One of the settings that
are available are select taxation model. The other setting is how long the travel log
should be available on the mobile client.

Both versions of the settings screen can be seen in Figure 8.1.4.

Navigation

The navigation of the mobile app has its basis in the main menu where the user starts.
From this screen the user can select any one of the other screens. From all other screens
it is possible to navigate back to the main menu. The screens are shown in Figure 8.1.5
with navigational arrows.

Figure 8.1.5: The navigation design for the app.

40



8.2 Web Application

The web application is only used for showcasing information to the users. This is in
line with the showcasing goal described in Section 2.2.1. There are the following groups
of users can use the web application: drivers, road pricing providers, and audit users.
These groups of users have different access rights in the web application. The pages of
the web application will be described below.

Login

This page is a simple login screen with a login form consisting of user identification and
password fields. If a user enters correct login information the user is redirected to the
billing page. In Figure 8.2.1 the design for the login screen can be seen.

Figure 8.2.1: The design for login page for the web application.

Billing

The billing page shows the billings the mobile client of the driver has sent to the server.
The billing page is structured as a list of time intervals with corresponding amount of
road pricing tax. If the user is logged in as a driver only the billing information of the
user is displayed. If the user is logged in as a road pricing provider the user can choose
to show the billing information of a single driver or statistics for all the drivers.

In Figure 8.2.2 an example of the design for the billing page can be seen. The figure
shows both the page for a single driver’s billing information and statistics for all the
drivers.

41



Figure 8.2.2: The design for billing page for the web application.

Travel Log

This page shows precise travel information of a driver, and is therefore only accessible
to the driver and audit user. If a user is logged in as a driver travel information is shown
as a list. Each item in the list consists of a timestamp, location as a road segment, road
pricing tax for the segment, length of the segment, and what was paid for driving on the
segment.

In Figure 8.2.3 an example of the travel log page can be seen.

Figure 8.2.3: The design for the travel log page for the web application.

42



Chapter 9
Database Structures

As explained in the system architecture in Chapter 7 the system contains the following
databases: Taxation Model Database, Billing Database, Encrypted Travel Log Database,
and Local Database.

In this chapter the databases and their schema diagrams will be presented.

9.1 Taxation Model Database

The Taxation Model Database is used to store taxation models and map data. An
introduction to the database is given in Section 7.4. The schema for this database
was developed for RCS [41, p. 31], which is a road pricing calculation system. The
schema can be seen in Appendix A. It consists of the following tables: map, model, area,
model area group, rule, price, and temporal.

A taxation model has a set of areas that have a set of rules. The schema supports
any number of taxation models with any number of areas with any number of rules. In
relation to RCS we have chosen to extend the model table with an active from attribute
that defines the date a taxation model is active from.

9.2 Billing Database

The Billing Database is used by the road pricing provider to store the billing information
the drivers provide. The database and the data it stores are introduced in Section 7.5.
The schema for the Billing Database can be seen in Figure 9.2.1. It consists of the
following table: billing info.

The table and its attributes will be explained in the following section.

43



Figure 9.2.1: Database schema for the Billing Database.

9.2.1 billing info

The billing info table is used to store billing information, which is introduced in Sec-
tion 7.5. The table consists of the following attributes: imei, time start, tm id, and
price.

• imei is an identifier, which is used to store the IMEI [1] number of the mobile
clients.

• time start describes the start of the time interval in the billing information.

• tm id identifies the taxation model of the billing information.

• price describes the price of the billing information.

In the billing info table we choose the attributes imei and time start as the primary
key. This primary key enables us to uniquely identify each billing in the table. None of
the attribute values can be null, because all attributes are needed to bill a driver.

9.3 Encrypted Travel Log Database

The Encrypted Travel Log Database is used to store the detailed travel information of
all the mobile clients in the road pricing system. It consists of the encrypted travel log
table that is encrypted. This is done to ensure the privacy of the mobile clients. The
database and the data that it stores are introduced in Section 7.6. The schema for the
Encrypted Travel Log Database can be seen in Figure 9.3.1.

Figure 9.3.1: Database schema for the Encrypted Travel Log Database.

In the following section the encrypted travel log table is explained.

44



9.3.1 encrypted travel log

The encrypted travel log table is where the travel information of the drivers are stored.

It consists of the following attributes: imei, timestamp, segment id, tm id, and price.

• imei is used to store the IMEI number of the mobile client.

• timestamp stores the time the driver drove on a given segment.

• segment id represents the segment the driver drove on.

• tm id identifies the taxation model the mobile client uses.

• price describes the cost of traveling on a given segment.

In the encrypted travel log table we have chosen the attributes imei, timestamp, and
segment id as the primary key. This primary key enables us to uniquely identify each
travel log in the table. The attribute values cannot be null.

9.4 User Database

The User Database is used by the road pricing provider to store the user information
of the drivers. The database and the data it stores are introduced in Section 7.7. The
schema for the User Database can be seen in Figure 9.4.1. It consists of the following
table: person.

Figure 9.4.1: Database schema for the User Database.

9.4.1 person

The person table is used to store user information in the road pricing system. The
user information for the drivers is used to link them with their mobile client. The table
consists of the following attributes: imei, username, password, and role.

• imei is an identifier used to store the IMEI number of the mobile clients.

• username and password are used to validate users.

• role is used to distinguish between the user groups of the system.

45



In the person table we chose the attribute username as the primary key. Besides that
the attribute imei is a unique key, which means that two imei values cannot be the
same. The imei value can be null as this is only used to identify a drivers mobile client.

9.5 Local Database

The Local Database is used by the mobile clients to store the travel information of the
drivers, the taxation model, and map data. The database and the data that it stores are
introduced in Section 7.1.1. The schema for the Local Database is the combination of the
schemas for the Encrypted Travel Log Database and Taxation Model Database. It consists
of the following tables: travel log, map data, taxation model, area, model area group, rule,
price, and temporal.

The travel log table is equivalent to the table from the Encrypted Travel Log Database
in Section 9.3. But the travel log table on the mobile client is not encrypted. The rest
of the tables are equivalent to the tables in the Taxation Model Database, which can be
seen in Section 9.1.

46



Part III

Implementation

47





Chapter 10
Mobile App

This chapter explains the implementation of the Android mobile app. The app is de-
signed to show the effects of road pricing online. This means that the app calculates
and showcases the accumulated to the driver as he drives. The design used for the
implementation of the app can be seen in Section 8.1.

In the following sections the main components of the app will be presented.

10.1 Activities

Activities [25] in Android is where interaction with the user is made. Each activity has
its own window where it can setup its user interface. The app has the following activities:
SplashActivity, MenuActivity, TaxameterActivity, HistoryActivity, and SettingsActivity.
It is possible to start the UpdateService from all activities. This service handles the price
calculations and will be presented in Section 10.2.1. In the following subsections each
activity along with its responsibilities will be presented.

10.1.1 SplashActivity

The SplashActivity is the first activity to be shown when the app is started. The window
can be seen in Figure 10.1.1.

The activity downloads the ApplicationInfo through the web service. The Applica-
tionInfo consists of information of where to download the map and taxation model
databases and the active taxation model. The map and taxation model databases will
only be downloaded once. If the app cannot get internet connection it checks if it has
already downloaded the databases and if a active taxation model exists. When the
downloads are completed the activity directs the user to the MenuActivity.

49



Figure 10.1.1: SplashActivity window.

10.1.2 MenuActivity

In the MenuActivity the user can navigate to TaxameterActivity, HistoryActivity, and
SettingsActivity. This is accomplished through a simple button menu layout. The win-
dow for the activity can be seen in Figure 10.1.2a.

(a) MenuActivity window. (b) TaxameterActivity window.

10.1.3 TaxameterActivity

The TaxameterActivity informs the user of the estimated cost of his current trip. This
is done by a thread that inquires on the cost every 30th second from the UpdateService,

50



described in Section 10.2.1. The window for the activity can be seen in Figure 10.1.2b.

10.1.4 HistoryActivity

The HistoryActivity shows the 100 last visited segments of the user along with a times-
tamp and cost of each segment. This activity exists to give the user a simple way to
see the segments used for estimating the cost. The window for the activity can be seen
in Figure 10.1.2.

Figure 10.1.2: HistoryActivity window.

10.1.5 SettingsActivity

The SettingsActivity is where the billing and travel log communication intervals between
the mobile client and the server are set. Furthermore, the IMEI number, the name of
the active taxation model, and the battery information of the mobile client can be seen.
This information is primarily used for testing purposes.

The activity also has a button that sends missing travel logs to the server, and a
button that clears the history of the mobile client. The need for the missing travel logs
button will be further explained in Section 10.2.2. The window for the activity can be
seen in Figure 10.1.3.

10.2 Services

Services [29] in Android are run in the background in their own thread. There can only
exist one instance of a service. The app consists of the following services: UpdateService
and WebServiceIntentService. In the following subsections each service will be described.

51



Figure 10.1.3: SettingsActivity window.

10.2.1 UpdateService

The UpdateService is a service that is created when the user starts a trip and runs until
the trip is stopped. When the service is created it registers a location listener that
receives GPS locations if the mobile client has moved 10 meters and the last received
GPS location is older than one second.

Every time the service receives a new GPS location the onLocationChanged method
is called. The code for this method can be seen in Code Snippet 10.2.1. The method
starts by creating a new thread, which will be used to perform the database lookups.
This can be seen in Section 10.2.1.

As seen in Section 10.2.1 the thread starts with finding the segment that corresponds to
the received location. This is where map matching is performed, which will be explained
in Section 10.3.1.

In Section 10.2.1 to Section 10.2.1 the thread checks if the segment has been visited
recently. This is done to ensure that the driver does not pay for driving on the same
segment twice. The recently visited segments is a list of the last 10 visited segments. If
the segment was not visited recently the thread finds the price for the segment and adds
it to the current trip cost. This can be seen in Sections 10.2.1 and 10.2.1.

The method call for finding the price of the segment will be explained in Section 10.3.2.
This call is followed by sending the price of the segment and the segment to the Web-
ServiceIntentService queue as seen in Section 10.2.1 to Section 10.2.1. The WebServi-
ceIntentService will be presented in the following section.

52



1 @Override

2 public void onLocationChanged(Location location) {

3 final LatLng loc = new LatLng(location.getTime (), location.

getLatitude (), location.getLongitude ());

4 new Thread(new Runnable () {

5 @Override

6 public void run() {

7 ... // Snip

8 Segment s = DBMap.getInstance(UpdateService.this).findSegment

(loc);

9 if (s != null) {

10 boolean inPrevList = false;

11 for (Segment prevS : prevSegments) {

12 if (prevS.getSegmentID () == s.getSegmentID ()) {

13 inPrevList = true;

14 break;

15 }

16 }

17 if (! inPrevList) {

18 prevSegments.add(0, s);

19
20 if (prevSegments.size() > 10) {

21 prevSegments.remove(prevSegments.size() -1);

22 }

23
24 int price = DBRp.getInstance(UpdateService.this).

findSegmentPrice(s);

25 taxameterPrice += price;

26
27 Intent i = new Intent(UpdateService.this ,

WebServiceIntentService.class);

28 i.putExtra(getString(R.string.billingPriceKey), price

);

29 i.putExtra(getString(R.string.segmentKey), s);

30 startService(i);

31 }

32 }

33 ... // Snip

34 }

35 }).start ();

36 }

Code Snippet 10.2.1: The onLocationChanged method that is called when a new GPS
location is received.

53



10.2.2 WebServiceIntentService

The WebServiceIntentService is a service that only exists when there are elements in its
queue. It is in the WebServiceIntentService the billing of the user is handled. For each
element in the queue the WebServiceIntentService calls the onHandleIntent method,
which will check if the app needs to send data to the server.

The code for the onHandleIntent method can be seen in Code Snippet 10.2.2. The
method starts by fetching the web service communication frequency for sending billings
and travel logs. This can be seen in Sections 10.2.2 and 10.2.2. In Section 10.2.2
to Section 10.2.2 the current billing object is constructed. A billing object is not tied to
a single trip. Instead it is the cost since the last time the app sent a billing object to the
web service. In Sections 10.2.2 to 10.2.2 a travel log object is created and inserted in
respectively the travel info table and history table. These tables will be further explained
in Section 10.3.3.

If the mobile client is connected to the Internet, it checks if it should send the billing
and travel logs. If this is the case the billing and the travel logs will be sent to the web
service. This can be seen in Section 10.2.2 to Section 10.2.2.

1 @Override

2 protected void onHandleIntent(Intent intent) {

3 int price = intent.getIntExtra(getString(R.string.billingPriceKey),

0);

4 Segment s = intent.getParcelableExtra(getString(R.string.segmentKey))

;

5
6 int bIntPos = settings.getInt(getString(R.string.

settings_billInterval), 0);

7 intervalBilling = getResources ().getIntArray(R.array.billing_values)[

bIntPos ];

8
9 int tIntPos = settings.getInt(getString(R.string.

settings_travelInterval), 0);

10 intervalTravel = getResources ().getIntArray(R.array.travellog_values)

[tIntPos ];

11
12 long curBTS = settings.getLong(getString(R.string.

current_billing_start), System.currentTimeMillis () /1000);

13 int curB = settings.getInt(getString(R.string.current_billing), 0);

14 int p = curB + price;

15 settings.edit().putInt(getString(R.string.current_billing), p).commit

();

16 Billing billing = new Billing(Long.parseLong(imei), modelID , p,

curBTS);

17
18 TravelLog travel = new TravelLog(Long.parseLong(imei), modelID , price

, s.getTimestamp (), s.getSegmentID ());

19 DBLocal.instance(this).insertTravelInfoTable(travel);

20 DBLocal.instance(this).insertHistoryTable(travel);

21
22 if (isNetworkAvailable ()) {

23 long nowBilling = System.currentTimeMillis () - lastTimeBilling;

54



24 if (nowBilling > intervalBilling) {

25 lastTimeBilling = System.currentTimeMillis ();

26 if (billing.getCost () > 0) {

27 sendBillings(billing);

28 }

29 }

30 long nowTravel = System.currentTimeMillis () - lastTimeTravel;

31 if (nowTravel > intervalTravel) {

32 lastTimeTravel = System.currentTimeMillis ();

33 sendTravels ();

34 }

35 }

36 ... // Snip

37 }

Code Snippet 10.2.2: The onHandleIntent method called for every element in the queue.

10.3 Databases

The app has the following SQLite databases: map, road pricing, and localdb. These
databases are presented in Chapter 9. The app has one connection per database, because
SQLite handles concurrency poorly. This is enforced through a singleton pattern as seen
in Code Snippet 10.3.1.

1 private DBLocal(Context c) {

2 this.dbHelper = new DbHelper(c);

3 this.db = dbHelper.getWritableDatabase ();

4 }

5
6 public static synchronized DBLocal instance(Context c){

7 if(instance == null){

8 instance = new DBLocal(c);

9 }

10 return instance;

11 }

Code Snippet 10.3.1: An example of a singleton creation of a database connection.

In the following subsections the important method calls for each database are pre-
sented.

10.3.1 map

The map database is where all the road segments are stored. The most commonly used
method call to this database is findSegment, which can be seen in Code Snippet 10.3.2.
It is a simple map matching algorithm that returns the segment closest to the GPS
location.

It queries the map database to find the id, streetname, source, target, and length of
a segment that corresponds to the given GPS location. The query can be seen in Sec-
tion 10.3.1.

55



To speed up the query a minimum bounding rectangle is created. The minimum
bounding rectangle is created with the dimensions: longitude - 0.02, latitude - 0.01,
longitude + 0.02, latitude + 0.01.

1 public Segment findSegment(LatLng loc) {

2 Segment seg = null;

3 try {

4 int segmentid = 0;

5 String streetname = null;

6 int type = 0;

7 int source = 0;

8 int target = 0;

9 String magid = null;

10 double length = 0;

11
12 // Find segment id

13 String querySeg = "select id, streetname , roadtype , source ,

target , GLength(transform(geom ,32632)) from map m " +

14 "where st_intersects(buildmbr( " + (loc.getLng () - 0.02) + ",

" + (loc.getLat () - 0.01) + ", " + (loc.getLng () + 0.02)

+ ", " + (loc.getLat () + 0.01) + "), m.geom) " +

15 "and m.ROWID in (" +

16 "select ROWID from SpatialIndex where f_table_name=’map’

and search_frame=buildmbr( " + (loc.getLng () - 0.02) +

", " + (loc.getLat () - 0.01) + ", " + (loc.getLng () +

0.02) + ", " + (loc.getLat () + 0.01) + ")) " +

17 "Order by distance(geom , MakePoint("+ loc.getLng () + ", "

+ loc.getLat () + ", 4326)) limit 1;";

18
19 Stmt stmtSeg = db.prepare(querySeg);

20 if (stmtSeg.step()) {

21 segmentid = stmtSeg.column_int (0);

22 streetname = stmtSeg.column_string (1);

23 type = stmtSeg.column_int (2);

24 source = stmtSeg.column_int (3);

25 target = stmtSeg.column_int (4);

26 length = stmtSeg.column_double (5);

27 }

28
29 magid = DBRp.getInstance(context).findMAG(loc.getLat (), loc.

getLng ());

30
31 seg = new Segment ((loc.getTime () /1000) , segmentid , streetname ,

type , source , target , length , magid);

32 } catch (Exception e) {

33 e.printStackTrace ();

34 }

35 return seg;

36 }

Code Snippet 10.3.2: The findSegment method.

56



10.3.2 road pricing

The road pricing database is where all the taxation models are stored. The most com-
monly used method call to this database is findSegmentPrice. It is equivalent to the
stored procedure find segment price from [41, pp. 55-57]. The only difference is that the
method has been converted to a Java method that calls a query. This is because SQLite
does not support stored procedures.

10.3.3 localdb

The localdb database is where the travel logs and history of visited segments are stored.
The database connection implements simple Create, Read, Update, and Delete meth-
ods(CRUD).

57





Chapter 11
Web Application

As described in the showcasing goal in Section 2.2.1 there needs to be a way for drivers
to see exactly what they are paying for. We therefore develop a web application that
describes all temporal and spatial travel data associated with the road pricing tax for
drivers. The implementation of the web application is based on the design described
in Section 8.2. This web application is used by drivers, road pricing providers, and
auditors.

Drivers use the web application to see what they should pay in road pricing tax along
with an exact breakdown of what they should pay for each individual segment they
traveled on.

Road pricing providers use the web application to see the overall revenue generated
by road pricing as well as the revenue generated by the individual drivers. It is not
possible for road pricing providers to see where a driver was – only what they owe for a
user-defined time period.

Audit users are able to see where each individual driver has been and what he should
pay in road pricing tax. The audit user should only be used if a specific driver is under
reasonable suspicion of intentionally reporting falsified information.

11.1 Login

The GUI for the login page is identical for all users. When a user logs in with their
username and password, their role is set. This role determines which content will be
displayed. The login interface can be seen in Figure 11.1.1.

59



Figure 11.1.1: The login GUI for the web application.

11.2 Travel Log

The travel log page lists the price for each segment a driver has traveled on. The en-
tries are divided into pages of 20. A driver will only see the prices for the segments he
has traveled on, whereas an audit user can see this information for any driver. In Fig-
ure 11.2.1 the GUI for the travel log of a driver is shown. Because of our goal of keeping
drivers’ travel patterns private – as described Section 2.2.1 – road pricing providers are
unable to see the travel log page. This means that road pricing providers are unable to
find the location of a driver.

As described in the system architecture in Chapter 7 the travel logs are stored in a
separate database. In the PHP implementation of the web application there is a distinct
class that handles the connection to each separate database. This is used to easily handle
the permissions of the user roles.

Figure 11.2.1: The travel log page for the driver ’mikael’.

60



11.3 Billing

The billing page displays the cost of driving in temporal intervals. Drivers are able to see
all the billing information associated with them. Similar to the travel log page, the entries
are divided into pages of 20. The billing page for a driver can be seen in Figure 11.3.1.
Road pricing providers and audit users are able to see the billing information for any
and all drivers.

The start time of the interval is displayed in the “Time Start” column. The price
displayed is the cost of driving from the timestamp in the entry to the timestamp in the
following entry.

Figure 11.3.1: The billing page for the driver ’leif’.

11.4 Map

In order to visualize the travel log data, it can be seen on an interactive map. The
permissions for the map page are the same as the travel log: road pricing providers
cannot access it. The map GUI of a driver can be seen in Figure 11.4.1.

61



Figure 11.4.1: The map page for a driver with a temporal constraint applied.

Figure 11.5.1: The filtering options drivers have for each page.

11.5 Filtering

Drivers are able to filter entries in the billing and travel log pages – as well as the
highlighted segments in the map page – based on a user-defined temporal interval. The
filtering form for drivers can be seen in Figure 11.5.1.

The road pricing providers and audit users are able to filter on a specific driver in
addition to a temporal interval, which can be seen in Figure 11.5.2. The filtering options
are the same for all pages.

The total price, which can be seen in Figure 11.2.1 and Figure 11.3.1, is also determined
by the filter: If no filter is applied it will reflect the total price of the billings or travel
logs. When a filter is applied only the entries that are within the filter are part of the
aggregated price.

Figure 11.5.2: The filtering options road pricing providers and audit users have on the
pages they have permissions to.

62



Chapter 12
Web Services

This chapter explains the implementation of the REST web services as designed in
the data flows in Section 7.2. The server is responsible for hosting the REST web
services in the system. We implement the web services to accommodate the needs of
the mobile app. The following web services are needed: getApplicationInfo, sendBilling,
and sendTravelLog. In the following sections each web service will be described.

12.1 getApplicationInfo

The getApplicationInfo web service is used by the mobile client to get information on
the newest databases and the active taxation model. The implementation can be seen
in Code Snippet 12.1.1.

getApplicationInfo is a HTTP GET web service that returns the ApplicationInfo object
as a comma-separated string. The ApplicationInfo object consists of: the URL for
downloading the latest map database, the URL for downloading the latest road pricing
database, and the identifier for the active taxation model.

1 @RequestMapping(value = "/applicationinfo", method = RequestMethod.GET ,

produces = "text/plain")

2 public String getApplicationInfo (){

3 ApplicationInfo ai = new ApplicationInfo(

4 "http ://130.225.198.79:6060/ RPServer/files/map.db",

5 "http ://130.225.198.79:6060/ RPServer/files/roadpricing.db",

6 "899b2ce2 -ab5e -11e3 -9c2f -00269 edefa15",

7 ... // snip

8 );

9 return ai.convertToString ();

10 }

Code Snippet 12.1.1: The getApplicationInfo web service.

63



12.2 sendBilling

The sendBilling web service is used by the mobile client to send Billing objects to the
billingdb. The billingdb is described in Section 9.2 and it is used to store the Billing
objects. The implementation of the sendBilling web service can be seen in Code Snip-
pet 12.2.1.

1 @RequestMapping(value = "/billing", method = RequestMethod.POST , consumes

= "*/*", produces = "text/plain")

2 public String sendBilling(@RequestBody byte[] input) {

3 Billing b = Billing.ConstructFromBytes(input);

4 return bm.insertBilling(b)?"1":"0";

5 }

Code Snippet 12.2.1: The sendBilling web service.

sendBilling is a HTTP POST web service and it takes a Billing object as input. This
Billing object is in the form of a byte array. The structure of the Billing byte array
can be seen Section 12.2.1. The sendBilling web service returns 1 if the Billing object
is inserted into the billingdb or 0 if an error occurred.

12.2.1 Billing Message Format

The Billing object consists of the attributes described in Section 9.2.1. The Billing
object always has the same size, because all the attributes are of a fixed size. Therefore
the attributes are stored consecutively after each other. In Figure 12.2.1 the byte sizes
of the attributes can be seen.

Figure 12.2.1: Structure of a Billing byte array.

The size of a Billing byte array is 56 bytes:

• Bytes 0 through 7 represent the IMEI number of the mobile client.

• Bytes 8 through 15 represent the Unix epoch time the Billing was created, called
start.

• Bytes 16 through 19 represent the cost of the Billing object.

• Bytes 20 through 56 represent the taxation model identifier.

64



12.3 sendTravelLog

The sendTravelLog web service is used by the mobile client to send TravelLog objects to
the traveldb. The traveldb is described in Section 9.3 and is used to store the TravelLog
objects. The implementation of the sendTravelLog web service can be seen in Code
Snippet 12.3.1.

1 @RequestMapping(value = "/travellog", method = RequestMethod.POST ,

consumes = "*/*", produces = "text/plain")

2 public String sendTravelLog(@RequestBody byte[] input) {

3 List <TravelLog > list = TravelLog.ConstructListFromBytes(input);

4 boolean allGood = tm.insertTravels(list);

5 return allGood?"1":"0";

6 }

Code Snippet 12.3.1: The sendTravelLog web service.

sendTravelLog is a HTTP POST web service and takes a list of TravelLog objects as
input. This list is in the form of a byte array. The structure of the byte array can be
seen Section 12.3.1. The sendTravelLog web service returns 1 if the list is inserted in the
traveldb or 0 if an error occurs.

12.3.1 TravelLog Message Format

The Travellog object consists of the attributes described in Section 9.3.1. In Figure 12.3.1
the structure of a TravelLog byte array can be seen. The example in the figure consists
of three TravelLog objects: two created when model-1 was the active Taxation Model
and one when model-2 was the active Taxation Model. A concrete example of this
structure can be seen in Section 13.2.

Figure 12.3.1: Structure of a list of Travellogs as byte array.

The size of the byte array depends on the number of TravelLog objects. The first 8
bytes always represent the IMEI number of the mobile client. The IMEI number is the
same for all the TravelLog objects and is therefore only displayed once.

The rest of the bytes are divided into groups based on their Taxation Model ID. These
groups are divided with the “|” symbol, which is colored red in the figure. The first

65



36 bytes of each group represent the Taxation Model ID. The remaining bytes in each
group is represented as triples on the form cost;start;segment. Each of these triples are
divided by a “$” symbol, which is colored blue in the figure.

66



Part IV

Evaluation

67





Chapter 13
Results

In this Chapter the results of this project will be presented.

13.1 Field Trial

As presented in Section 2.2.1, accuracy is an important goal of our system. This is to
ensure the drivers pay the correct road pricing tax. Because of this, a field trial was
performed to evaluate the accuracy of the system, and to show that the road pricing
system and all its components are fully operational.

13.1.1 Overall Test Results

In the period April 8th to June 3rd 7 drivers have tested the road pricing system. Com-
bined they have driven 4304 kilometers and generated 2736.9 DKK in travel logs and
2511.5 DKK in billings. The difference is caused by the different reporting frequencies of
billings and travel logs. This means that some billings are stored locally on the mobile
client and have not yet been reported to the server.

The travel log database contains 10013 rows, which each represent a travel log. The
billing database contains 810 rows, which each represent a billing.

13.1.2 Structured Test Drive

The structured test drive consists of three trips. The test drive was conducted using a
LG Nexus 5 [22]. All trips have been performed on the same route of approximately 14
kilometers, which consists of 49 segments. The route can be seen in Figure 13.1.1.

For each trip we locate the mobile client differently in the car.

• In trip 1 the mobile client is located in the passenger seat of the car.

• In trip 2 the mobile client is located in the glove box of the car.

• In trip 3 the mobile client is located in the front window of the car.

69



Figure 13.1.1: The route of the test drive [42].

The results from the test drive can be seen in Table 13.1.1. From the results we can see
that the number of segments detected is almost identical. Trip 3 misses three segments,
but two of them are the start and stop segment, which could be attributed to the driver
pressing the start/stop button too late. The location of the mobile client does not seem
to interfere with the results.

Furthermore, we can see that the mobile app detects a lot of the side streets, making
the price of the trip greater than the expected road pricing tax. This is caused by the
simple map matching algorithm of the mobile app, which is too aggressive when it comes
to finding segments. A discussion on map matching can be seen in Section 14.2.

Trip 1 - Passenger Seat Trip 2 - Glove Box Trip 3 - Front Window

Total 62 segments 63 segments 60 segments

Missed Loftbrovej(54123) Loftbrovej(54123) Blomsterparken(239654)
Gammel Høvej(66907)
Blomsterparken(239654)

Correct 48/49 segments (98%) 48/49 segments (98%) 46/49 segments (93.9%)

Wrong 14 segments (22.6%) 15 segments (23.8%) 14 segments (23.3%)

Table 13.1.1: Segment results of the test drive.

70



13.2 Message Size

As presented in Section 2.2.1 operational costs and scalability are important goals of our
system. Therefore it is desirable to keep the HTTP messages sent between the mobile
client and the server as small as possible. We compare our novel message format against
XML and JSON.

13.2.1 Billing Comparison

The implementation of the billing message format can be seen in Section 12.2.1. For
this comparison the following Billing object is used:

Billing 1

IMEI: 123456789012345
Model: 3b1d50ed-ffe9-4966-aff0-63cf1a136625
Cost: 123
Start: 1401615421

In Code Snippet 13.2.1 the Billing object is transformed into our novel message format.
The size of the message is 64 bytes, but after transformation it is shorter. This is because
the int and longs are transformed to bytes reducing them to respectively 4 and 8 bytes.
Therefore, the size of the message is 56 bytes.

12345678901234514016154211233 b1d50ed -ffe9 -4966 -aff0 -63 cf1a136625

Code Snippet 13.2.1: The Billing in the novel message format before the int and longs
are transformed.

The Billing object can be seen as XML in Code Snippet 13.2.2 and as JSON in Code
Snippet 13.2.3.

<?xml version=” 1 .0 ” ?>
<bi l l ing>

<imei>123456789012345</ imei>
<model>3b1d50ed−f f e 9 −4966−a f f 0 −63cf1a136625</model>
<cost>123</cost>
<start>1401549053544</ start>

</ bi l l ing>

Code Snippet 13.2.2: The Billing as XML.

{"imei":123456789012345 ,"model":"3b1d50ed -ffe9 -4966 -aff0 -63 cf1a136625","

cost":123,"start":1401549053544}

Code Snippet 13.2.3: The Billing as JSON.

In Table 13.2.1 the comparison results between our novel message format, XML, and
JSON can be seen. The size of the XML message is 161 bytes, which is 187.5% larger
than our novel message format. The size of the JSON message is 101 bytes, which is
80.4% larger than our novel message format.

71



Novel Format XML JSON

Message Size 56 bytes 161 bytes 101 bytes

% Larger – 187.5% 80.4%

Table 13.2.1: Billing message comparison table.

13.2.2 TravelLog Comparison

The implementation of the travel log message format can be seen in Section 12.3.1. For
this comparison the following TravelLog objects are used:

TravelLog 1

IMEI: 123456789012345

Model: 3b1d50ed-ffe9-4966-aff0-63cf1a136625

Cost: 111

Start: 1401615421

Segment: 11111

TravelLog 2

IMEI: 123456789012345

Model: 3b1d50ed-ffe9-4966-aff0-63cf1a136625

Cost: 222

Start: 1401615421

Segment: 22222

TravelLog 3

IMEI: 123456789012345

Model: 979f8f93-bb7e-4486-bc00-54ba5aac5945

Cost: 222

Start: 1401615421

Segment: 22222

In Code Snippet 13.2.4 the TravlLog objects are transformed into our novel message
format. The size of the message is 158 bytes, but after transformation it is shorter. This
is because only the IMEI number is shortened to 8 bytes. The size of the message is 142
bytes.

1234567890123453 b1d50ed -ffe9 -4966-aff0 -63 cf1a136625111 ;1401615421;11111

$222 ;1401615421;22222|979 f8f93 -bb7e -4486-bc00 -54 ba5aac5945222

;1401615421;22222

Code Snippet 13.2.4: The TravelLogs in the novel message format before the IMEI is
transformed.

72



The TravelLog objects can be seen as XML in Code Snippet 13.2.5 and as JSON in Code
Snippet 13.2.6.

<?xml version=” 1 .0 ” ?>
<trave l log l i s t>

<travellog>
<imei>123456789012345</ imei>
<model>3b1d50ed−f f e 9 −4966−a f f 0 −63cf1a136625</model>
<cost>111</cost>
<start>1401615421</ start>
<segment>11111</segment>

</ travellog>
<travellog>

<imei>123456789012345</ imei>
<model>3b1d50ed−f f e 9 −4966−a f f 0 −63cf1a136625</model>
<cost>222</cost>
<start>1401615421</ start>
<segment>22222</segment>

</ travellog>
<travellog>

<imei>123456789012345</ imei>
<model>979 f8 f93−bb7e−4486−bc00−54ba5aac5945</model>
<cost>222</cost>
<start>1401615421</ start>
<segment>22222</segment>

</ travellog>
</ trave l log l i s t>

Code Snippet 13.2.5: The TravelLogs as XML.

[

{"imei":123456789012345 ,"model":"3b1d50ed -ffe9 -4966 -aff0 -63 cf1a136625

","cost":111,"start":1401615421 ,"segment":11111} ,

{"imei":123456789012345 ,"model":"3b1d50ed -ffe9 -4966 -aff0 -63 cf1a136625

","cost":222,"start":1401615421 ,"segment":22222} ,

{"imei":123456789012345 ,"model":"979f8f93 -bb7e -4486 -bc00 -54 ba5aac5945

","cost":222,"start":1401615421 ,"segment":22222}

]

Code Snippet 13.2.6: The TravelLogs as JSON.

In Table 13.2.2 the comparison results between our novel message format, XML, and
JSON can be seen. The size of the XML message is 554 bytes, which is 290.1% larger
than our novel message format. The size of the JSON message is 355 bytes, which is
150% larger than our novel message format.

73



Novel Format XML JSON

Message Length 142 bytes 554 bytes 355 bytes

% Larger – 290.1% 150%

Table 13.2.2: TravelLog message comparison table.

13.3 Data Usage

As presented in Section 2.2.1, operational costs and scalability are important goals of
the system. This is to ensure that the cost of running the system is low compared to
the generated revenue and that we can handle millions of users. Therefore, we want to
calculate the amount of data transferred between the mobile client and the server.

In Chapter 6 we analyze how to calculate the data usage. With the implemented
system we record packages transferred between the mobile client and the server in order
to calculate the data usage. We want to calculate the actual data usage using both
HTTP and HTTPS. This will illustrate the cost of using encryption.

13.3.1 Daily Data Usage of a Single Driver

We calculate the data usage for sending a billing and travel logs using both HTTP and
HTTPS. In Figure 13.3.1 the packages sent between the mobile client and the server
when reporting a billing using HTTP is shown. In Appendix C the packages for sending
billing and travel logs using both HTTP and HTTPS is shown.

Figure 13.3.1: Billing packages transferred between the mobile client and the server.

A connection is established between the mobile client and the server before the data
is sent. In the figure the connection is established in Lines 16 to 18 and uses:

74bytes + 74bytes + 66bytes = 208bytes (13.1)

In Line 19 the billing is sent to the server. The HTTP request message with the
billing uses 261 bytes. An acknowledgment is returned from the server to indicate that
it received the package with the billing. This package is shown in Line 20 and uses 66
bytes. The server returns a HTTP response to let the mobile client know that the billing
was stored successfully. The HTTP response message uses 195 bytes, which can be seen
in Line 21.

74



Finally, the mobile client sends an acknowledgment to the server to let it know that
the response was received. This acknowledgment uses 66 bytes and can be seen in Line
22.

The size of the data sent between the mobile client and the server for each billing is:

208bytes + 261bytes + 66bytes + 195bytes + 66bytes = 802bytes (13.2)

To perform the data usage calculation we need to use Equation (6.1) from Section 6.1.
If a driver drives 60 minutes a day and sends a billing every 15 minutes the following
amount of data is used daily:

b =

⌈
60min

15 min
update

⌉
∗ 802

bytes

update
= 3184bytes (13.3)

The data usage for sending billing and travel logs using both HTTP and HTTPS is
calculated similarly. The calculations for the data usage of reporting billings, and travel
logs with HTTP and HTTPS can be seen in Appendix D.

When calculating the data usage for reporting travel logs we assume that the driver
passes 6.47 segments per minute. This is based on actual travel data, which can be seen
in Appendix B. In Table 13.3.1 the daily data usage for a driver driving 60 minutes each
day and reporting billing and travel logs every 15 minutes can be seen.

HTTP HTTPS

Billing 3184 bytes 13040 bytes

Travel Logs 11156 bytes 21068 bytes

Table 13.3.1: Daily data usage of a single driver sending billing and travel logs using
HTTP and HTTPS.

We see that reporting a billing costs approximately 3 kB each day using HTTP, and
approximately 4 times that using HTTPS. Reporting travel logs costs approximately 11
kB each day using HTTP, and approximately 2 times that using HTTPS.

This illustrates that there is a significant trade-off between security and data usage.

13.3.2 Daily Data Usage of Denmark

If we assume that in Denmark 1.5 million drivers drive 60 minutes each day, the daily
data usage for the road pricing system in Denmark is:

75



HTTP HTTPS

Billing 4.8 GB 19.6 GB

Travel Logs 16.7 GB 31.6 GB

Total 21.5 GB 51.2 GB

Table 13.3.2: Daily data usage of 1.5 million drivers sending billing and travel logs using
HTTP and HTTPS.

13.3.3 Internet Connection Requirements

We assume that the data usage peaks during rush hour, and rush hour lasts 4 hours
each day, and 40% of the daily traffic is evenly distributed during rush hour. Using
these assumptions we can calculate the maximum throughput:

40% ∗ 51.2GB

4hours
= 5.12

GB

hour
⇓

5.12 GB
hour ∗ 1000MB

GB

3600 sec
hour

= 1.42
MB

s
(13.4)

⇓

1.42
MB

s
∗ 8

Mb

MB
= 11.38

Mb

s

Based on the maximum throughput the server will require a flat rate Internet connec-
tion of minimum 11.38Mb

s . This means that we can handle road pricing for Denmark
using only a regular household Internet connection. Scaling the road pricing system to
a country with more drivers can easily be done by upgrading the Internet connection.

76



Chapter 14
Discussion

In this chapter we will discuss the important aspects of the complete road pricing system.

14.1 Field Trial Experiences

In this section we discuss the practical experiences of the field trial.

14.1.1 Price Increase

In the implementation of the system the price displayed in the app is increased when
the price of a new segment has been calculated. This means that the size of the increase
depends on the taxation model rule associated with the segment and the length of the
segment. If a driver encounters a large segment, the cost of driving on the segment
will be proportionately large. When this occurs the price will increase significantly as
opposed to smoothly, when a driver encounters a new segment frequently.

A test person was surprised of a sudden increase in price because a long segment was
encountered.

Usability improvements could be considered in order to display the increase more
smoothly. This would, however, not show the precise price, which means there is a
trade-off between showing the correct price and usability.

14.1.2 GPS Initialization

When an app that requires a exact GPS location is started on an Android client, it takes
some time for the GPS receiver to triangulate the GPS position. We depend on knowing
the exact location of the driver in order to charge the correct amount of road pricing
tax. This means that while the GPS receiver is triangulating the position, we are unable
to perform price calculations. This process may in some cases take considerable time,
which meant that some test drivers did not understand why the shown price did not
increase.

77



14.1.3 Equipment Failure

Any hardware is prone to failures. An Android client used by a test driver was damaged
during testing. This reminds us that at some point any equipment we use will need to
be repaired or replaced. It is worth considering the expected lifespan of the onboard
unit.

14.1.4 Mobile Client Restrictions

A mobile client is restricted in many ways compared to a desktop computer. The pro-
cessing power, memory, storage capacity, and battery life of the mobile client all need to
be considered. During early field trials the map matching algorithm did not perform ef-
ficiently enough for the road pricing tax to be displayed in real time. We have optimized
the map matching algorithm in order to perform online price calculations.

14.2 Accuracy in Map Matching

The accuracy of GPS receivers varies depending on the location. This could be due to
GPS satellites being out sight for the receiver e.g. in cities with tall buildings. Therefore
map matching is needed in systems that need to associate GPS locations to spatial
locations.

As seen in Section 10.3.1 the mobile app implements a simple map matching algorithm.
The simple map matching algorithm only uses the distance between the GPS locations
and segments as a parameters. This can give problems when segments cross each other
or is located side by side.

Map matching algorithms can be partitioned into two groups: online and offline.
Online map matching algorithms map match the GPS locations in real-time. Offline
map matching algorithms map match a finite set of GPS locations after a trip.

In Table 14.2.1 characteristics of online and offline map matching can be seen. Our
simple map matching algorithm lies in the online category.

Online Offline

• Gives results in real-time.

• Low processing time over ac-
curacy.

• Relies on previous GPS loca-
tions.

• Gives results afterward.

• Accuracy over low processing
time.

• Can rely on future GPS loca-
tions.

Table 14.2.1: Map matching characteristics.

Implementing an offline map matching algorithm is a way to ensure a more accurate
result. Offline map matching generally requires more processing power. Even though

78



processing is limited on a mobile client, performing the map matching on the mobile
client is more in line with our goals than performing map matching on the server, as
described in Section 3.2. Using an offline map matching algorithm on the mobile client
would increase accuracy, but would lower our ability to showcase the road pricing tax.
There is a trade-off between accuracy and the ability to showcase the system, which are
two of our goals described in Section 2.2.1.

14.3 Scalability

In this section the scalability of this system will be discussed. As presented in Sec-
tion 2.2.1, the system should be able to handle millions of users.

In general scalability methods can be partitioned into two groups.

Horizontal Scalability is when the system is shared among multiple servers.

Vertical Scalability is when the system is on a single server. This server is then
upgraded with many resources.

If maintenance of the system is of high importance vertical scalability would be the
way to go. This is because the maintenance would be limited to a single server. On
the other hand at some point it will be cheaper to buy several servers than upgrading
the single server. Realistically, systems would use a mix between horizontal and vertical
scalability.

When it comes to our system a solution could be to use a horizontal scalability ap-
proach. This could be various servers that handles a sub-part of the user base. How to
partition the users is not a major concern, since the main responsibility of the servers is
to store data.

14.4 Setup and Operational Costs

In this section we discuss the costs of setting up and operating the road pricing system.
We do not calculate exact costs, since too many factors are unknown. We omit discussion
on who should pay the different costs.

14.4.1 Setup Cost

In order to realize road pricing in the manner we propose, each driver needs to have an
Android mobile client. This will generate a setup cost for acquiring the mobile clients.
Additionally, servers have to be purchased and set up, or rented through a third party.
The setup costs for the system depends on the number of users.

79



14.4.2 Operational Cost

After the system has been realized operational costs will be associated with it. These
costs will be related to the following areas: server, data traffic, user support, and ad-
ministration.

Server

There can be two kinds of server costs: maintenance and renting. If the server is bought
and installed it will need to be maintained for it to function. This may include upgrading
the server or replacing parts. There may also be expenses associated with licensing.

If the server is rented a fixed cost will have to be paid regularly. This cost may change
if a server is upgraded or downgraded.

Data Traffic

In Section 3.2 the decision to do client-side calculation is made. This means that we
reduce the amount of data traffic between the mobile clients and the server. In Sec-
tion 13.3 we calculate the data traffic between the mobile clients and the server. The
calculations are based on the minutes a user drives per day and the frequency at which
data is sent. These calculations can help in the calculation of the operational cost. The
data traffic price is dependent on the subscriptions for the mobile clients and potential
extra costs for roaming.

User Support

We anticipate that with the introduction of a system with a scale like this, there will be
users who need support. The cost for supporting users will depend the number of users
and the usability of the system.

Administration

For the system to function there is a need for people to administer it. Administration
includes the following tasks: creating and maintaining taxation models, keeping the map
data up to date, and billing drivers.

80



Chapter 15
Conclusion

In Chapter 1 we explored other road pricing solutions. Other implementations of road
pricing are dependent on custom prototypes.

In Chapter 2 we define our problem statement as:

How can we analyze, design, and implement all components required for a fully
functioning GPS-based road pricing system, such that we are able to make large
scale real-world experiments with a complete road pricing system?

Analyzing the technical options we decided to develop an app for an Android client.
This was in line with our scalability goal because Android has the largest market share
of smartphones, which means many people are able to run our mobile app on their own
device. Additionally, an Android client satisfied all our requirements for an onboard
unit.

We chose to implement a client/server architecture with four databases. Having mul-
tiple databases is used to separate privacy-sensitive data from other data. This also
allows for having different parties handle different types of data. The location of the
drivers is stored in the travel log database, while the billing information is stored in the
billing database.

We created a web application that showcases travel and billing information to drivers,
road pricing providers, and audit users, while handling the permissions of the user types.

We create a novel message format that has significantly lower message size than popu-
lar formats such as JSON and XML. This lowers the overall data usage and thereby also
the requirements and pressure of the network. The established message formats were
80% to 290% greater in size than our novel message format, as described in Section 13.2.

Using the novel message format we calculated the required Internet connection to
support road pricing in Denmark to be only 11.38Mb/s during rush hour, which is
nothing more than a regular household Internet connection.

To ensure privacy all data transfers are encrypted by the use of HTTPS.

Through testing we found that the map matching algorithm finds close to all correct

81



segments (93.9% to 98%), but approximately (22.6% to 23.8%) a quarter of the segments
found were not part of the trip.

We implemented all required components for a fully-functional complete road pricing
system and performed extensive field trials. The field trials were performed over a 8
week period and included 7 test drivers, who drove over 4000 kilometers combined, and
collected over 10000 travel logs and over 800 billings.

The functional road pricing system fulfilled our goals described in Section 2.2.1:

• We are able to showcase the functional system in real-time through the Android
app we developed, and in-depth travel and billing information can be accessed
through the web application we developed. This was successfully tested through
field trials.

• The map matching is accurate enough to find nearly all segments of a trip, albeit
with some additional segments.

• We ensure privacy by encrypting all traffic and separating privacy-sensitive data.

• We keep costs low by performing price calculations client-side and limiting data
traffic by using a novel message format.

• We ensure that the system is scalable by performing the heavy calculations client-
side, so the pressure on the servers is low. Additionally, the mobile client we use
is an Android device, which has the largest market share of smartphones therefore
supporting a large user base.

This means that we have successfully created all necessary components for a fully
functioning complete GPS-based road pricing system that allows for large scale real-
world experiments.

82



Chapter 16
Future Work

In this chapter we describe the parts of the project we would continue to work on if we
had more time.

16.1 Map Matching

Map matching is a complex research topic with many competing algorithms. Imple-
menting map matching is a large task, and finding a readily usable algorithm presents
some challenges: The processing power on our mobile client is limited, which means
that a map matching algorithm has to be very efficient not to become a bottleneck.
Determining the accuracy of a map matching algorithm is difficult without performing
actual experiments with an implemented algorithm. This is a time-consuming task.

Time should either be spent on implementing a more accurate map matching algo-
rithm, or alternatively we could purchase a commercial map matching solution.

16.2 Data Encryption

At the moment the TravelLog information is stored without encryption in the travel log
database. This is not in line with our privacy goal in Section 2.2.1. The travel log data
is stored in a separate database, which makes it possible to store it on a separate server.

The data in the travel log database should be encrypted, such that the party hosting
the travel log database is unable to view sensitive data. This has the added effect that
if information is leaked, or if someone gains access to the database, private data cannot
be read.

83



16.3 User Management

User information is typically very privacy-sensitive, which means that the implementa-
tion for handling user data should be very secure. The user information is stored in a
separate database. This allows for a third party to handle user information.

In Denmark the ideal solution would be to use the already implemented NemID solu-
tion [11] to handle user information and logins. By using existing solutions like NemID,
users would only need to remember one login. Furthermore, the security would be out-
sourced to companies that are experts on the area.

16.4 Message Reduction

Even though the byte size of our novel message format has already been greatly reduced,
it is possible to reduce them even further. This is in line with our scalability and low
operational costs goals, as described in Section 2.2.1

In Section 12.3.1 the implementation of the TravelLog Message Format was introduced.
These can be fine-tuned to take up a couple of less bytes, but we can get a great gain
by using a variant of delta encoding.

In this variant the mobile client and the server would have a copy of a standard
message. Then instead of sending a whole message the mobile client would send the
difference between the message and the standard message. The server will then compare
the received message with the standard message to translate it into the original message.
This would for instance eliminate the need for sending the Taxation Model ID with every
message.

16.5 Fraud Prevention

There will always be users that will try to exploit the system, which is why we have to
prevent that.

Users could spoof their location, which means that they would be billed for driving
somewhere that they are not. To prevent users that try to spoof their GPS location,
the mobile app could check if mock locations is enabled on the mobile client. This will
only stop the users that use a mobile client, which is not rooted. Rooted means mobile
clients that can access system files.

Furthermore, the mobile app could try to see if the distance between two consecutive
GPS locations is within a realistic range.

At last the user could try to drive with the mobile app having the GPS receiver
disabled. This can be prevented by having some kind of “heart beat”, which checks once
in a while if everything is functioning correctly.

These modifications would inhibit GPS spoofing, but also increase the processing
requirements.

84



Bibliography

[1] 3GPP. 3rd generation partnership project; technical specification group core
network; numbering, addressing and identification. http://www.arib.or.jp/

english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/23/23003-

5b0.pdf, 2006. Last Viewed: 2014.05.22.

[2] Tommi Aihkisalo and Tuomas Paaso. A performance comparison of web service ob-
ject marshalling and unmarshalling solutions. IEEE, 2011. Last Viewed: 2014.02.24.

[3] Tommi Aihkisalo and Tuomas Paaso. Latencies of service invocation and processing
of the rest and soap web service interfaces. IEEE, 2012. Last Viewed: 2014.02.24.

[4] Strategy Analytics. Android captures record 81 percent share of global smartphone
shipments in q3 2013. http://blogs.strategyanalytics.com/WSS/post/2013/

10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-

Shipments-in-Q3-2013.aspx, October 2013. Last Viewed: 2014.02.21.

[5] Strategy Analytics. Android pushes past 80leap 156.0 http://www.idc.

com/getdoc.jsp?containerId=prUS24442013, November 2013. Last Viewed:
2014.02.21.

[6] Apache. Apache tomcat. http://tomcat.apache.org/, 2014. Last Viewed:
2014.03.03.

[7] John Blau. High-tech truck toll system finally launched in germany.
http://www.computerworld.com/s/article/98679/High_tech_truck_toll_

system_finally_launched_in_Germany, 2005. Last Viewed: 2014.05.29.

[8] Laura Blow, Andrew Leicester, and Zoë Smith. London’s congestion charge. http:
//eprints.ucl.ac.uk/14932/1/14932.pdf, 2003. Last Viewed: 2014.05.29.

[9] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen Satish Thatte, and Dave Winer. Simple object access
protocol (soap) 1.1, May 2000. URL http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/.

85

http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/23/23003-5b0.pdf
http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/23/23003-5b0.pdf
http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/23/23003-5b0.pdf
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://www.idc.com/getdoc.jsp?containerId=prUS24442013
http://www.idc.com/getdoc.jsp?containerId=prUS24442013
http://tomcat.apache.org/
http://www.computerworld.com/s/article/98679/High_tech_truck_toll_system_finally_launched_in_Germany
http://www.computerworld.com/s/article/98679/High_tech_truck_toll_system_finally_launched_in_Germany
http://eprints.ucl.ac.uk/14932/1/14932.pdf
http://eprints.ucl.ac.uk/14932/1/14932.pdf
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible markup language (xml) 1.0 (fifth edition), November 2008. URL http:

//www.w3.org/TR/2008/REC-xml-20081126/.

[11] Nets DanID. Nemid. https://www.nemid.nu/dk-da/, 2010. Last Viewed:
2014.05.30.

[12] Inc. E. Rescorla RTFM. Http over tls. https://tools.ietf.org/html/rfc2818,
May 2000. Last Viewed: 2014.05.05.

[13] Eclipse. Jetty. http://www.eclipse.org/jetty/, 2014. Last Viewed: 2014.03.03.

[14] Roy Thomas Fielding. Representational state transfer (rest). http://www.

ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm, 2000. Last
Viewed: 2014.02.24.

[15] International Organization for Standardization (ISO). Information processing -
documentation symbols and conventions for data, program and system flowcharts,
program network charts and system resources charts. https://www.iso.org/obp/
ui/#iso:std:iso:5807:ed-1:v1:en, 1985. Last Viewed: 2014.05.27.

[16] Department for Transport. Road pricing demonstrations project – in-
troduction. https://www.gov.uk/government/publications/road-pricing-

demonstrations-project-introduction, 2011. Last Viewed: 2014.05.29.

[17] Department for Transport. Wp07 design of in-vehicle equipment to sup-
port road pricing. http://lists.umn.edu/cgi-bin/wa?A3=ind1105&L=CON-

PRIC&E=base64&P=10237118&B=--005045016d7d4a3cff04a41cca3b&T=

application%2Fpdf;%20name=%22wp07%20invehicledesign.pdf%22&N=wp07%

20invehicledesign.pdf&attachment=q, 2011. Last Viewed: 2014.05.29.

[18] Alessandro Furieri. Spatialite on android: a quick tutorial. https://www.gaia-

gis.it/fossil/libspatialite/wiki?name=spatialite-android-tutorial,
2013. Last Viewed: 2014.02.24.

[19] AGES ETS GmbH. Eurovignette. https://www.eurovignettes.eu/portal/,
2014. Last Viewed: 2014.05.29.

[20] Google. Protocol buffers, 2012. URL https://developers.google.com/

protocol-buffers/.

[21] PHP Group. Php: Hypertext preprocessor. http://www.php.net/, February 2014.
Last Viewed: 2014.02.24.

[22] GSMARENA. Lg nexus 5. http://www.gsmarena.com/lg_nexus_5-5705.php,
2013. Last Viewed: 2014.05.22.

[23] Red Hat. Jboss application server. http://www.jboss.org/overview/, 2013. Last
Viewed: 2014.01.09.

86

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
https://www.nemid.nu/dk-da/
https://tools.ietf.org/html/rfc2818
http://www.eclipse.org/jetty/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.iso.org/obp/ui/#iso:std:iso:5807:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:5807:ed-1:v1:en
https://www.gov.uk/government/publications/road-pricing-demonstrations-project-introduction
https://www.gov.uk/government/publications/road-pricing-demonstrations-project-introduction
http://lists.umn.edu/cgi-bin/wa?A3=ind1105&L=CON-PRIC&E=base64&P=10237118&B=--005045016d7d4a3cff04a41cca3b&T=application%2Fpdf;%20name=%22wp07%20invehicledesign.pdf%22&N=wp07%20invehicledesign.pdf&attachment=q
http://lists.umn.edu/cgi-bin/wa?A3=ind1105&L=CON-PRIC&E=base64&P=10237118&B=--005045016d7d4a3cff04a41cca3b&T=application%2Fpdf;%20name=%22wp07%20invehicledesign.pdf%22&N=wp07%20invehicledesign.pdf&attachment=q
http://lists.umn.edu/cgi-bin/wa?A3=ind1105&L=CON-PRIC&E=base64&P=10237118&B=--005045016d7d4a3cff04a41cca3b&T=application%2Fpdf;%20name=%22wp07%20invehicledesign.pdf%22&N=wp07%20invehicledesign.pdf&attachment=q
http://lists.umn.edu/cgi-bin/wa?A3=ind1105&L=CON-PRIC&E=base64&P=10237118&B=--005045016d7d4a3cff04a41cca3b&T=application%2Fpdf;%20name=%22wp07%20invehicledesign.pdf%22&N=wp07%20invehicledesign.pdf&attachment=q
https://www.gaia-gis.it/fossil/libspatialite/wiki?name=spatialite-android-tutorial
https://www.gaia-gis.it/fossil/libspatialite/wiki?name=spatialite-android-tutorial
https://www.eurovignettes.eu/portal/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.php.net/
http://www.gsmarena.com/lg_nexus_5-5705.php
http://www.jboss.org/overview/


[24] Apple Inc. Mac app store – xcode. https://itunes.apple.com/us/app/xcode/

id497799835?ls=1&mt=12, 2014. Last Viewed: 2014.02.21.

[25] Google Inc. Activities. http://developer.android.com/guide/components/

activities.html, 2014. Last Viewed: 2014.05.27.

[26] Google Inc. Ice cream sandwich. http://developer.android.com/about/

versions/android-4.0-highlights.html, February 2014. Last Viewed:
2014.02.21.

[27] Google Inc. Legal notice — android developers. http://developer.android.com/
legal.html, 2014. Last Viewed: 2014.02.21.

[28] Google Inc. Storage options — android developers. http://developer.android.

com/guide/topics/data/data-storage.html, February 2014. Last Viewed:
2014.02.21.

[29] Google Inc. Services. http://developer.android.com/guide/components/

services.html, 2014. Last Viewed: 2014.05.27.

[30] T. Dierks Independent and Inc. E. Rescorla RTFM. The transport layer security
(tls) protocol version 1.2. https://tools.ietf.org/html/rfc5246, August 2008.
Last Viewed: 2014.05.05.

[31] Ecma International. The json data interchange format, October 2013. URL http:

//www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.
Last Viewed: 2014.02.24.

[32] R. Fielding UC Irvine, J. Gettys Compaq/W3C, J. Mogul Compaq, H. Frystyk
W3C/MIT, L. Masinter Xerox, P. Leach Microsoft, and T. Berners-Lee W3C/MIT.
Hypertext transfer protocol – http/1.1. https://tools.ietf.org/html/rfc2616,
Juni 1999. Last Viewed: 2014.05.05.

[33] Usman Ismail. A case against using protobuf for transport in rest services. http:

//techtraits.com/noproto/, April 2013. Last Viewed: 2014.02.24.

[34] Solid IT. Db-engines ranking. http://db-engines.com/en/ranking, 2014. Last
Viewed: 2014.03.03.

[35] Jelastic. Java & php software stacks market share: October 2013.
http://blog.jelastic.com/2013/11/07/software-stacks-market-share-

october-2013/?utm_source=tuicool, 2013. Last Viewed: 2014.03.10.

[36] Øresundsbro Konsortiet. The oresund bridge. http://uk.oresundsbron.com/

page/976, 2014. Last Viewed: 2014.05.29.

[37] Jean loup Gailly. The gzip home page. http://www.gzip.org/, July 2003. Last
Viewed: 2014.03.07.

87

https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/about/versions/android-4.0-highlights.html
http://developer.android.com/about/versions/android-4.0-highlights.html
http://developer.android.com/legal.html
http://developer.android.com/legal.html
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
https://tools.ietf.org/html/rfc5246
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc2616
http://techtraits.com/noproto/
http://techtraits.com/noproto/
http://db-engines.com/en/ranking
http://blog.jelastic.com/2013/11/07/software-stacks-market-share-october-2013/?utm_source=tuicool
http://blog.jelastic.com/2013/11/07/software-stacks-market-share-october-2013/?utm_source=tuicool
http://uk.oresundsbron.com/page/976
http://uk.oresundsbron.com/page/976
http://www.gzip.org/


[38] Simon Maple. The great java application server debate with tomcat, jboss,
glassfish, jetty and liberty profile. http://zeroturnaround.com/rebellabs/the-
great-java-application-server-debate-with-tomcat-jboss-glassfish-

jetty-and-liberty-profile/, Maj 2013. Last Viewed: 2014.03.04.

[39] Microsoft. The official microsoft asp.net site. http://www.asp.net/, 2014. Last
Viewed: 2014.03.10.

[40] Microsoft. Microsoft sql server. http://www.microsoft.com/en-us/sqlserver/

default.aspx, 2014. Last Viewed: 2014.03.03.

[41] Dan Stenholt Møller, Jens Mohr Mortensen, and Mikael Midtgaard. Road pric-
ing calculation system. Master’s thesis, Aalborg University, 2013. Last Viewed:
2014.05.29.

[42] Jens Mohr Mortensen. J1stracking. http://j1s.dk/tracking/?date=

20140601&clientid=j1s, 2014. Last Viewed: 2014.06.01.

[43] Oracle. Glassfish. https://glassfish.java.net/, 2013. Last Viewed: 2014.03.03.

[44] Oracle. Javaserver faces technology. http://www.oracle.com/technetwork/java/
javaee/javaserverfaces-139869.html, 2013. Last Viewed: 2014.01.09.

[45] Oracle. Oracle database. http://www.oracle.com/us/products/database/

overview/index.html, 2014. Last Viewed: 2014.03.03.

[46] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.
”big”’ web services: Making the right architectural decision. In Proceedings of the
17th International Conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2. doi: 10.1145/1367497.
1367606. URL http://doi.acm.org/10.1145/1367497.1367606. Last Viewed:
2014.02.24.

[47] PostGIS. Documentation. http://postgis.net/documentation, 2013. Last
Viewed: 2013.12.09.

[48] PostgreSQL. Postgresql. http://www.postgresql.org/, 2013. Last Viewed:
2013.12.09.

[49] roadtraffic technology.com. Lkw-maut electronic toll collection system for, ger-
many. http://www.roadtraffic-technology.com/projects/lkw-maut/, 2006.
Last Viewed: 2014.05.29.

[50] SQLite. Datatypes in sqlite version 3. http://www.sqlite.org/datatype3.html,
2014. Last Viewed: 2014.03.06.

[51] SQLite. Appropiate uses for sqlite. http://www.sqlite.org/whentouse.html,
2014. Last Viewed: 2014.03.06.

88

http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
http://www.asp.net/
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://j1s.dk/tracking/?date=20140601&clientid=j1s
http://j1s.dk/tracking/?date=20140601&clientid=j1s
https://glassfish.java.net/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/us/products/database/overview/index.html
http://www.oracle.com/us/products/database/overview/index.html
http://doi.acm.org/10.1145/1367497.1367606
http://postgis.net/documentation
http://www.postgresql.org/
http://www.roadtraffic-technology.com/projects/lkw-maut/
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/whentouse.html


[52] A/S Storebælt. Storebælt. http://www.storebaelt.dk/, 2014. Last Viewed:
2014.05.29.

[53] www.dalnicni znamky.com. Vignettes and highway toll in europe. http://www.

dalnicni-znamky.com/en/, 2014. Last Viewed: 2014.05.29.

[54] Martina Zanic. GNSS-based Road Charging Systems Assessment of Vehicle Location
Determination. PhD thesis, Technical University of Denmark, 2011. Last Viewed:
2014.05.29.

89

http://www.storebaelt.dk/
http://www.dalnicni-znamky.com/en/
http://www.dalnicni-znamky.com/en/




Part V

Appendices

91





Appendix A
Taxation Model Database Schema

In Figure A.0.1 the database schema from RCS [41, p. 31] can be seen. This database
schema defines a taxation model as a number of areas. Any combination of a taxation
model and an area can be populated with rules and prices for these. A rule applies to a
segment, road type, or border crossing in a given time interval.

Figure A.0.1: This is the database schema for the taxation model of RCS.

93





Appendix B
Travel Data

Table B.0.1 shows travel data generated by using the Dijkstra shortest path between
cities on the map data of the system. The letter in parenthesis describes the types of
road of the route. M represents motorway, H represents highway, and C represent city.

Route Segments Duration Segments/Minute

Aalborg - Randers (M) 96 50 min 1.92

Aalborg - Blokhus (MH) 106 40 min 2.65

Holstebro - Randers (H) 282 90 min 3.13

Holstebro - Esbjerg (H) 264 88 min 3

Aarhus - Randers (M) 105 33 min 3.18

Grenaa - Randers (H) 186 55 min 3.38

Odense - Esbjerg (M) 165 83 min 1.99

Klampenborg - Christianshavn (C) 107 21 min 5.10

Vanløse - Christianshavn (C) 97 15 min 6.47

Klampenborg - Christianshavn (C) 41 8 min 5.13

Table B.0.1: Something

segment/minute minute/segment

Min 1.92 0.52

Avg 3.59 0.28

Max 6.47 0.15

Table B.0.2: Something

95





Appendix C
Data Usage

In Figure C.0.1 the data packages sent when reporting a billing with HTTP can be seen.

Figure C.0.1: Billing packages transferred between the mobile client and the server.

In Figure C.0.2 the data packages sent when reporting a billing with HTTPS can be
seen.

Figure C.0.2: HTTPS billing packages transferred between the mobile client and the
server.

In Figure C.0.3 the data packages sent when reporting travel logs with HTTP can be
seen.

97



Figure C.0.3: Travel log packages transferred between the mobile client and the server.

In Figure C.0.4 the data packages sent when reporting travel logs with HTTPS can
be seen.

Figure C.0.4: HTTPS travel log packages transferred between the mobile client and the
server.

98



Appendix D
Data Usage Calculations

Equation (D.1) shows the data usage calculation for reporting billing using HTTP for a
driving driving 60 minutes per day.

b =

⌈
60min

15 min
update

⌉
∗ 802

bytes

update
= 3184bytes (D.1)

Equation (D.2) shows the data usage calculation for reporting billing using HTTPS
for a driving driving 60 minutes per day.

Equation (D.2)

b =

⌈
60min

15 min
update

⌉
∗ 3260

bytes

update
= 13040bytes (D.2)

Equation (D.2) shows the data usage calculation for reporting travel logs using HTTP
for a driving driving 60 minutes per day. The driver encounters a new segment once
every 0.15 minutes.

Equation (D.3)

l =

⌈
60min

15 min
update

⌉
∗ (745 + 44)

bytes

update
+

⌈
60min

0.15 min
segment

⌉
∗ 20

bytes

segment
= 11156bytes

(D.3)

Equation (D.2) shows the data usage calculation for reporting travel logs using HTTPS
for a driving driving 60 minutes per day. The driver encounters a new segment once
every 0.15 minutes.

Equation (D.4)

l =

⌈
60min

15 min
update

⌉
∗ (3223 + 44)

bytes

update
+

⌈
60min

0.15 min
segment

⌉
∗ 20

bytes

segment
= 21068bytes

(D.4)

99





Appendix E
CD

101


	I Introduction
	1 Motivation
	2 Problem Definition
	2.1 Problem Statement
	2.2 Problem Limitation
	2.2.1 Goals
	2.2.2 Assumptions


	3 Analysis
	3.1 Privacy
	3.1.1 Data Transfer
	3.1.2 Data Storage

	3.2 Client/Server Functionality
	3.2.1 Client-side Calculation
	3.2.2 Server-side Calculation
	3.2.3 Choosing Price Calculation Location


	4 System Definition
	5 Technologies
	5.1 Mobile Client
	5.2 Server
	5.2.1 Java Application Server
	5.2.2 Web Service Interface
	5.2.3 Message Format
	5.2.4 Message Encryption

	5.3 Web Client
	5.3.1 Technology Choices

	5.4 Databases
	5.4.1 Mobile Client Data Storage
	5.4.2 Server Databases


	6 Data Usage
	6.1 Send Billing information
	6.2 Send Travel Information


	II Design
	7 System Architecture
	7.1 Mobile Client
	7.1.1 Local Database

	7.2 Server
	7.3 Web Client
	7.4 Taxation Model Database
	7.5 Billing Database
	7.6 Encrypted Travel Log Database
	7.7 User Database

	8 Client GUIs
	8.1 Mobile App
	8.2 Web Application

	9 Database Structures
	9.1 Taxation Model Database
	9.2 Billing Database
	9.2.1 billing_info

	9.3 Encrypted Travel Log Database
	9.3.1 encrypted_travel_log

	9.4 User Database
	9.4.1 person

	9.5 Local Database


	III Implementation
	10 Mobile App
	10.1 Activities
	10.1.1 SplashActivity
	10.1.2 MenuActivity
	10.1.3 TaxameterActivity
	10.1.4 HistoryActivity
	10.1.5 SettingsActivity

	10.2 Services
	10.2.1 UpdateService
	10.2.2 WebServiceIntentService

	10.3 Databases
	10.3.1 map
	10.3.2 road pricing
	10.3.3 localdb


	11 Web Application
	11.1 Login
	11.2 Travel Log
	11.3 Billing
	11.4 Map
	11.5 Filtering

	12 Web Services
	12.1 getApplicationInfo
	12.2 sendBilling
	12.2.1 Billing Message Format

	12.3 sendTravelLog
	12.3.1 TravelLog Message Format



	IV Evaluation
	13 Results
	13.1 Field Trial
	13.1.1 Overall Test Results
	13.1.2 Structured Test Drive

	13.2 Message Size
	13.2.1 Billing Comparison
	13.2.2 TravelLog Comparison

	13.3 Data Usage
	13.3.1 Daily Data Usage of a Single Driver
	13.3.2 Daily Data Usage of Denmark
	13.3.3 Internet Connection Requirements


	14 Discussion
	14.1 Field Trial Experiences
	14.1.1 Price Increase
	14.1.2 GPS Initialization
	14.1.3 Equipment Failure
	14.1.4 Mobile Client Restrictions

	14.2 Accuracy in Map Matching
	14.3 Scalability
	14.4 Setup and Operational Costs
	14.4.1 Setup Cost
	14.4.2 Operational Cost


	15 Conclusion
	16 Future Work
	16.1 Map Matching
	16.2 Data Encryption
	16.3 User Management
	16.4 Message Reduction
	16.5 Fraud Prevention

	Bibliography

	V Appendices
	A Taxation Model Database Schema
	B Travel Data
	C Data Usage
	D Data Usage Calculations
	E CD


