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Abstract

The medical sector gathers and digitizes a lot of quantitative information on patients.

This quantitative information is used to describe health properties of patients, such as

analysis samples and diagnoses. Doctors are known to utilize information from analy-

sis samples to diagnose illnesses of patients, but this relationship is not preserved when

the information is digitized. This project aims to test the existence of a relationship be-

tween analysis samples and illnesses. To test this existence, a non-parametric bayesian

model is constructed, which aims to predict the illness of a diagnosis based on analysis

samples. This model uses Kernel Density Estimation to estimate normality spaces for

medical properties of analysis samples given illnesses of diagnoses. These normality

spaces contain densities based on temporal data of analysis samples and are used for

estimating likelihoods of illnesses through analysis samples. The model is evaluated on

different sets of illnesses and compared to naive prediction approaches. For each set of

illnesses the model outperformed the naive approaches. Based on this, it is assumed

that there exists a relationship between analysis samples and diagnoses.
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1. Introduction

The Danish healthcare sector uses digital tools to store information about its proce-

dures. This has lead to large amounts of data being available, which creates possibili-

ties for data mining. Data mining in this context could increase the quality of health-

care services through deeper understanding of the medical procedures conducted in

healthcare facilities. This deeper understanding can improve decision making in med-

ical facilities and thereby help increase the quality of service in the medical sector. This

is due to the fact that when a doctor diagnoses a patient, it is done based on his in-

terpretation of a set of observations that has been made with regards to the patient.

The interpretation of these observations can be biased by the doctor’s medical expe-

rience, or affected by the extent of the doctors knowledge. Therefore by analyzing the

data stored about medical procedures, objectifying the information in it, and making it

available to doctors, diagnostic procedures conducted at medical facilities could be im-

proved. This project examines a medical data warehouse (Boyesen and Nielsen, 2013)

that contains information about medical procedures for diagnostic purposes (Panum

and Møller, 2013), with the goal of creating decision support for doctors based on ex-

isting data.

Medical procedures can be viewed as actions or events, e.g. measuring a patient’s

blood pressure or diagnosing a patient (Stedman, 2000). There exist various types of

medical procedures, e.g. analytical procedures and diagnostic procedures. Some med-

ical procedures return a result, e.g. the measurement of a patient’s blood pressure re-

turns a numeric measurement indicating the blood pressure. Different types of medical

procedures might yield different types of results, e.g. measuring blood pressure yields

a numeric measurement, while diagnosing a patient identifies a illness. The medical

data warehouse available contains information on two types of medical procedures,

analytic- and diagnostic procedures, and it is these medical procedures which are ex-

amined throughout this project. A diagnostic procedure involves the act of determining

whether a patient is healthy or ill based on observations and information about the pa-

tient and, if the patient is ill, determining which illness the patient is affected by. An

analytical procedure is the act of gathering health related information about a patient.
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Medical procedures can be interconnected, e.g. a procedure that involves measur-

ing the blood pressure of a patient may lead to the diagnosis of high blood pressure for

that patient. This interconnection stems from the result of the diagnostic procedure of-

ten being based on the results of a set of analytical procedures, i.e. a diagnosis is given

based on a set observations. In short, a set of analytical procedures can be used to de-

termine a health state for a patient through a diagnostic procedure.

The set of analytical procedures which may prove useful in a diagnostic procedure

is dependent on the illness a given patient has. As an example, a patient may go to

the emergency room with high fever and, through a set of analyses, a doctor may deter-

mine that the patient has the flu. In this case the analytical procedures that are relevant

for the diagnostic procedure will most often lie within a short time frame of the patient

going to the emergency room, as the flu in most cases is cured within a relatively short

time frame (MUSC, 2011). Another example is a patient with a chronic disease. For

such an illness, it might be necessary for the doctor to use the result of analytical pro-

cedures within a large time frame in order to give the correct diagnosis, since evidence

which supports that the patient is affected by a chronic illness might be available in the

result of older analytical procedures. The set of analytical procedures that are relevant

for a given diagnostic procedure in the data warehouse is therefore dependent on the

illness the patient was diagnosed with, as there is no explicit link between diagnostic

and analytical procedures. It is important to note that, while the representation in the

data warehouse suggests diagnosing based on performed analytical procedures, this is

only possible due to the fact that illnesses can impact the measurements through ana-

lytical procedures (Strimbu and Tavel, 2010).

Determining the interconnection between diagnoses and analyses requires discov-

ering patterns or association rules (Diamond and Forrester, 1979). The event of diag-

nosing a patient can be seen as the problem of finding patterns or association rules

related to some illness, which makes it distinguishable from other illnesses. The rele-

vance of an analysis sample in regards to some illness depends on how well the analysis

sample conforms to an observed pattern of the medical property being measured in
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regards to the illness. An observed pattern can be a rise in blood pressure for patients,

shortly before being diagnosed with high blood pressure.

Constructing models for support in diagnostic procedures has been done before (Shwe

et al., 1991) (Middleton et al., 1991).These describe the work of creating decision-theoretic

version of Quick Medical Reference (QMR) called Quick Medical Reference Decision

Theoretic(QMR-DT). QMR is a support tool for use in general medicine and can be

used by medical practitioners, either as a knowledge base in which they can look up

information or to assist them in diagnostic procedures. The intention with QMR-DT

was to focus on the diagnostic aspects of QMR using the knowledge base INTERNIST-

1. INTERNIST-1 is a knowledge base covering over 600 diagnoses and 4000 findings

where findings, i.e. analysis samples, and diagnoses are already linked. This means it is

known beforehand which analysis samples are relevant for each diagnosis. In order to

reduce the complexity of the model for QMR-DT a set of assumptions were made and

covered in (Shwe et al., 1991). These involve e.g. diagnoses being marginally indepen-

dent and findings being conditionally independent with regards to diagnoses.

The results covered in (Middleton et al., 1991) show that QMR-DT performed equally

to QMR even with many simplifying assumptions used. QMR-DT is however a refor-

mulation of the INTERNIST-1 knowledge base, which took 20 person-years to create

(Middleton et al., 1991). This means that, with a sufficient knowledge base, diagnostic

support can be created using a probabilistic model.

The data warehouse available differs from the INTERNIST-1 knowledge base in that

there exists no explicit link between analytical- and diagnostic procedures. Based on

this, it is assumed the data warehouse contains hidden information, which, if found

and made available, can strengthen the decision making for doctors. This project aims

to examine the relationship between results of analytical procedures and diagnostic

procedures. If this relationship exists then it is assumed that it is possible to predict the

result of a diagnostic procedure based on the results of a set of analytical procedures,

which can be used in decision support for diagnosing patients.



4

This relationship will be examined based on 22 057 845 given diagnoses and 97 497 758

analysis samples distributed across 1 098 988 patients in the data warehouse. The data

has been recorded over a time period of 48 years.

2. Abstract Problem Statement

The assumptions in Section 1 state that analysis samples are used to determine an ill-

ness and that, as a result of this, there exists a relationship between analysis samples

and illnesses. This lead to the following abstract problem statement:

Given a medical data warehouse, containing patient information regarding analysis

samples and diagnoses, is it possible to construct a model for predicting illnesses based

on measured medical properties with higher accuracy than naive approaches?

In this context, naive approaches refer to either predicting the illness using arbi-

trary guessing or predicting using a static guess which is the illness with the maximum

likelihood in regards to the distribution of diagnosis frequencies for illnesses. This re-

lationship is assumed to exist if it is possible to predict illnesses better than these naive

approaches.

In order to concretize the problem further, it is necessary to gain a deeper under-

standing of the available data. This is covered in Section 3 and 4 through an analysis of

how analysis samples and diagnoses are represented in the data warehouse, along with

a statistical analysis of their distributions and their interconnection.

3. Data Representation

The data in the data warehouse originates from the digitization of medical procedures.

In order to utilize the data to prove that there exists a relationship between analytical

and diagnostic procedures, it is required to understand how these medical procedures

are digitized and what the available data represents in relation to real world patients.

The result of each medical procedure is stored in the data warehouse. For diagnostic

procedures this is the given diagnosis, and for analytical procedure an analysis sample.
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When a patient is given a diagnosis at a hospital it is a confirmation by a doctor

that the patient is affected by an illness. In the medical sector, a diagnostic procedure

is used to confirm or disprove that the patient is affected by the illness at the time of

conduction. This is digitized by an entry for a diagnosis in the data warehouse, stating

that a patient was affected by an illness at a certain time. Therefore the illnesses are

represented as a binary state, meaning the patients either have the illnesses or they do

not have the illnesses. In a medical sense, an illness for a patient is timeboxed, mean-

ing patients are ill for a certain period of time, which could in some cases mean the

patient’s entire life. This representation, for a given patient, is illustrated in Figure 1.

The time period in which a patient is ill will be referred to as the illness interval. This

representation means that an entity of a diagnosis, in the data warehouse, does not rep-

resent the start nor the end of a given illness, but only the point in time the patient was

given a diagnosis. This means that how long the patient has been ill when a diagnosis

is given is unknown, and the severity of the illness is unknown. As an example, there is

a difference between the severity of stage 1 and stage 4 lung cancer (Cancer Research

UK, 2014), but this distinction is not modeled in the data warehouse.

Illnesses are organized in a tree structure, named SKS (Statens Serum Institut, n.d.),

where each level represents a certain level of concreteness, with leaf nodes being con-

crete illnesses. The level of concreteness used is referred to as the granularity. An exam-

ple is that in level 3, there is a category named cancer, while on level 4 there exist various

sub types of cancer, e.g. breast cancer, lung cancer etc. An example of a branch in the

diagnosis tree structure for breast cancer is illustrated in Figure 2. For this project, the

leaf nodes in the SKS structure will be used to define the granularity of illnesses.

Analytical procedures measure a medical property of a patient, which can have

been influenced by the health of the given patient. In this context, a medical property is

an attribute which can be measured on a patient, such as blood sugar. The results of the

measurements of these medical properties are usually represented as numeric values,

e.g. blood sugar level. The results will be referred to as measurements. The measure-

ments might be different at various points in time, indicating that the health state of



6

Illness interval

a�ected

una�ected

time

illness

Figure 1: Example of a patient’s health state over time. The time interval in which a
patient is ill is referred to as the illness interval.

Neoplasms
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Level 4

(rest of nodes)

Figure 2: Branch in the SKS structure for breast cancer.

the patient has changed. A single analysis sample thereby only represents a medical

property at a certain point in time, and not the given medical property’s change over

time during an illness. An example of this is illustrated in Figure 3.

The data warehouse only contains analysis samples for medical properties which

are measured through quantitative analysis. Qualitative information gathered through
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conversations with the patient, such as the patient complaining of a stomach ache or

the doctor observing an inflamed area, is not recorded in the available data. This is dis-

cussed in Section 13.

Illness interval
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Figure 3: Example of an analysis sample taken during a patient’s illness interval for a
medical property.

3.1. Data Warehouse

The data for analysis samples and diagnoses are stored in the data warehouse in a tab-

ular representation. They each have a related fact table, in which events of the given

type are stored as entities.

Analysis samples and diagnoses are related to a patient. They each have an associ-

ated timestamp which represents the time the analysis sample was taken or the diag-

nosis given. There exists no explicit relationship in the data which defines the analysis

samples that were used to give a specific diagnosis.

The attributes assumed to influence the health state of a patient in the entities; pa-

tients, analysis samples, and diagnoses are presented and discussed in the following

paragraphs.



8

Patient – age and gender. The age of a patient might influence the health state of

a patient, and thereby the medical properties measured through analysis samples. An

example of this is the level of growth hormone, which is high for young patients, but

decreases as the patient grows older (Bowen, 2006)(Cain et al., 2009). Furthermore the

values measured in analysis samples can differ based on the gender of the patient, due

to the biological structure of men and women being different (Holdcroft, 2007).

Analysis sample – medical property, timestamp, measurement, and patient. Analy-

sis samples have a related medical property. This is referred to as the class attribute for

analysis samples, which is the attribute used to group analysis samples. The timestamp

states when the analysis sample was taken in time, and is recorded with a granularity

in days. The measurement is a numeric value for the medical property. Each analysis

sample is related to the patient, from which the analysis sample was taken.

Diagnosis – illness, timestamp, and patient. The illness attribute describes the con-

dition of the patient being diagnosed, e.g. breast cancer. The illness of a diagnosis is

referred to as the class attribute for diagnoses. The timestamp states when a diagnosis

was given and it has a granularity level of days. Each diagnosis has a related patient to

which the diagnosis was given.

A complete overview of attributes that the data warehouse contains for both analy-

sis samples and diagnoses can be seen in Appendix B.

Some patients have had diagnoses given to them without having had analysis sam-

ples taken, and some patients have had analysis samples taken without being given any

diagnoses. These patients and their related diagnoses and analysis samples are filtered

out, since no relationships between diagnoses and analyses are present for these pa-

tients.

Diagnosis entities in the data warehouse do not only represent when a patient has

had an illness, but also various kinds of contact a patient has had with the medical
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sector. For example, a diagnosis given to a patient might have the illness went to the

emergency room, since diagnosis entities cover all contact with the medical sector. Of

the total amount of diagnosis entities, 78.6% have been excluded due to not returning

a concrete illness such as the flu. This leaves 4 726 003 given diagnoses and a total of

70 684 854 analysis samples. These diagnoses and analysis samples are gathered over

a time period starting on the 8th of January 1965 and ending on the 1st of April 2013,

thereby spanning a time period of 48 years.

With regards to the SKS structure, the amount off illnesses patients have been di-

agnosed with for each level of the SKS structure is illustrated in Figure 4. Each bar in

Figure 4 represents the amount of distinct illnesses patients have been diagnosed with

in the data warehouse, for that given level. As described, a part of the given diagnoses

have been filtered out due to the diagnosed illness not referring to a concrete illness.

This filtering has been done on granularity level 2 of the SKS structure, meaning diag-

nosis entities for illnesses in entire sub tress of the SKS structure have been removed.

This leaves us with 31 105 distinct illnesses.

100 101 102 103 104 105

Amount of Illnesses

2

3

4

5

SK
S 
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l

Figure 4: Amount of illnesses at each level in the SKS structure.
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4. Data Analysis

In order to get a deeper understanding of the data, the data is examined through qual-

itative statistical analysis. The qualitative statistical analysis includes demographics

of the data, analyzing class distributions, and gaining an understanding of how time

affects the relationship between diagnoses and analyses. The demographic analysis

consists of investigating the amount of analysis samples and diagnoses, and their at-

tributes. Analysis samples and diagnoses have their respective class attributes, medical

property and illness, examined in Section 4.1. The time attribute relationship between

analysis samples and diagnoses is covered in Section 4.2.

As mentioned in Section 1, diagnoses and analysis samples are connected through

a patient. There exists 405 133 patients, shared across diagnoses and analysis samples.

The average amount of diagnoses per patient is 11.7 diagnoses, with a standard devia-

tion of 13.8 diagnoses. On average a patient has had 174.5 analysis samples taken, with

a standard deviation of 293.7 analysis samples.

4.1. Classes

This section examines the individual classes of analysis samples and diagnoses, through

examining demographic information and qualitative analysis. The class of a diagnosis

refers to the illness a patient has been diagnosed with, and the class of an analysis sam-

ple refers to the medical property measured for the analysis sample.

As covered in Section 3, there are 31 105 unique illnesses patients have been diag-

nosed with following the filtering of illnesses from the SKS model, and 1357 unique

medical properties.

In order to examine the distribution of diagnosed illnesses across diagnoses, a sub-

distribution will be examined. Figure 5 is a histogram of this subdistribution of di-

agnoses grouped by diagnosed illnesses, containing only the 100 most frequently di-

agnosed illnesses in descending order. As seen in the figure, the distribution is not

uniform and Pearson’s chi-squared test for goodness of fit (McDonald, 2009) test also

confirms this theorem, since it returns a p-value of 0.1× 10−6 when the distribution is
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Figure 5: The amount of times the 100 most frequently diagnosed illnesses have been
diagnosed.
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Figure 6: The amount of times analysis samples have been taken for the top 100 most
frequently measured medical properties.
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run against a uniform distribution. The p-value in this case presents a goodness of fit,

with the value of 1 being perfectly uniform and being less than 0.05 is considered sig-

nificantly non-uniform (Fisher, 1925). This means that the distribution of diagnoses

across illnesses is not uniform, and thereby it is assumed the probability distribution

across illnesses for a patient when he receives a diagnosis is not uniform.
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Figure 7: Heat map illustrating the ratio of total patients being diagnosed with an ill-
ness of the 100 most frequently diagnosed illnesses at some point in time, while having
had an analysis sample taken for one of the 100 most frequently measured medical
properties.

The same analysis is conducted for how medical properties are distributed across

analysis samples. Figure 6 is a histogram of a subdistribution containing the 100 largest

analysis samples grouped by medical property in descending order. Of the given class

distribution, Pearson’s chi-squared test returns a p-value of of 0.1× 10−6. Based on this

p-value and Figure 6, it can be concluded that the distribution of medical properties

measured across analysis samples is not uniform and thereby it is assumed that the
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probability distribution across medical properties when a patient has an analysis sam-

ple taken is not uniform.

Figure 7 illustrates how these frequent illnesses and medical properties are related.

It is a heat map of the illnesses and medical properties from Figure 5 and 6. The heatmap

shows the ratio of all patients in the data warehouse that has been diagnosed with a

given illness while having had a medical property measured, for each combination of

illnesses and medical properties for the 100 most frequently diagnosed illnesses and

the 100 most frequently measured medical properties.

4.2. Time

This section covers the analysis of how the two classes, illnesses and medical proper-

ties, are related based on their common attribute time through a patient. As described

in Section 1 it is assumed that diagnoses are given based on a set of analyses. Through

the representation of the data, there exists no explicit link showing which analysis sam-

ples were used as indicators for diagnoses. This relationship can thereby only be estab-

lished based on their shared attribute time through patients.

Visualizing the relationship, for a given patient, can be done by constructing a time-

line. This timeline contains the analysis samples and diagnoses of a given patient,

mapped out in relative time to each other. An example of such a timeline is illustrated

in Figure 8, with d representing diagnoses and a representing analysis samples. This

timeline will be the foundation for the visualizations and the qualitative analysis.

da d

time

aaa
p

a

Figure 8: Example of a patient timeline with analysis samples a and diagnoses d.

Prior to examining the relationship between diagnoses and analysis samples, their

individual distribution of time values will be examined. Averaging the time interval be-
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tween diagnoses of patients with multiple diagnoses yields a result of 255.4 days, with

a standard deviation of 691.6 days. This is related to the mean frequency with which a

patient is ill. The standard deviation being relatively large, suggests that the frequency

with which a patient is ill depends largely on the given patient.

Based on the assumption stated in Section 1, that analysis samples are used to de-

termine an illness, which results in a diagnosis, we construct the two following hy-

potheses: analysis samples are primarily taken prior to the time of diagnosis (H1), and

analysis samples are primarily taken close to the time of diagnosis (H2).

In order to test the validity of H1, we will examine the density of analysis samples

of discrete time intervals prior and posterior to a diagnosis. Figure 9 illustrates an ex-

ample for a discrete time interval of length r prior to diagnoses, ranging from time of

diagnosis minus r to time of diagnosis, for a patient. These time intervals are exam-

ined by counting the amount of analysis samples within them. The mean amount of

analysis samples within a time interval prior or posterior to a diagnosis is illustrated in

Figure 10. The mean amount of analysis samples posterior to a diagnosis is consistently

larger than prior to a diagnosis. This rejects H1.

da d

time

aaa

rr

p
a

Figure 9: Example of a patient timeline, with a relative discrete time interval r prior to
diagnoses d.

H2 can be tested by examining the slope of Figure 10, due to the slope being cor-

related to the mean increase in size of one time interval to next time interval. If the

analysis samples are uniformly distributed across time the slope should be constant

across every time interval. The slope is illustrated in Figure 11, and it can be seen that

it is not constant. The slope is larger at smaller time intervals, meaning that in general

more analysis samples are taken close to the time of the diagnosis. This confirms H2.
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Figure 10: μ and σ of the amount of analysis samples taken prior and posterior to diag-
noses for a range of relative discrete time intervals.

Knowing thatH1 is rejected, leads to the question of why the mean amount of anal-

ysis samples taken is larger after a diagnosis. One hypothesis is that posterior analysis

samples are used for monitoring the health state of a patient. Diagnosing a patient in-

volves determining the illness of a patient, meaning analysis samples are investigated

as indicators for a given illness (Strimbu and Tavel, 2010). In the case of monitoring,

the illness has been classified, and thereby it is known which medical properties are

affected during the state of illness. Monitoring therefore involves periodically taking

analysis samples of the relevant medical properties, in order to determine when it re-

turns to values that are considered healthy, and thereby the patient is no longer affected

by the illness.

This hypothesis can be formalized as the following: the mean amount of different

medical properties in relation to the mean amount of analysis samples of a time in-

terval should be smaller for analysis samples taken posterior to a diagnosis than prior
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Figure 11: Slope for μ and σ of the amount of analysis samples taken prior and posterior
to diagnoses for a range of relative discrete time intervals.

(H3). Figure 12 illustrates the mean amount of different medical properties of analysis

samples in a time interval. It can be seen that the mean amount of different medical

properties posterior and prior are very similar. When considering this fact, and with

regards to the mean amount of analysis samples posterior to a diagnosis being higher

than prior, H3 can be confirmed.

The confirmation ofH2 means analysis samples are not uniformly distributed across

time, and are thereby frequently taken within a time interval prior to a diagnosis being

given. Based on this confirmation it can be assumed that diagnoses are often given

based on a set of recently taken analysis samples. Knowing this relationship exists, it

can be examined if there exists a relationship between analysis samples for specific

medical properties and illnesses based only on the time attribute. An example of such

a relationship is that knowing when an analysis sample was taken for blood sugar gives

evidence about when the patient is diagnosed with diabetes. In order for this relation-

ship to exist there must be a correlation between when analysis samples are taken and
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Figure 12: μ and σ of the amount of medical properties a patient has had taken prior
and posterior to a diagnosis for a range of relative discrete time intervals.

diagnoses are given to patients. If the relationship does not exist, the analysis samples

will be relatively uniformly distributed on the time dimension prior to a diagnosis be-

ing given. Due to the uncertainty of when, during an illness, a patient is diagnosed, this

relationship is assumed not to exist. The hypothesis H4 is therefore defined as follows:

given an analysis sample and a diagnosis, there exists no strong correlation across only

the time attribute.

H4 is investigated by examining if there exist trends for when a specific medical

property was measured given that the patient is affected by a specific illness. The cor-

relation will be examined for the top 100 most frequently diagnosed illnesses and mea-

sured medical property. The top 100 is selected as a subset, since the most data will be

available for the most frequent illnesses and measured medical properties. For each

combination of illnesses and medical properties within the top 100 for each class, an

entropy measure is used to analyze if there is a trend based on time. Entropy is the

measure of uncertainty in a random variable (Russell and Norvig, 2009). The entropy
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measure which will be used is Shannon Entropy, which will be referred to as entropy. A

simple example is a coin flip which has a 50% chance to take either the value heads or

tails. The formal definition for calculating the entropy is as follows:

H(X) = −
∑

x∈X p(x)log2(p(x)),

where X is a discrete random variable which has the finite set of states X (Lesne, 2011).

Entropy can be normalized to a value between 0 and 1 using the following method:

Hn(X) =
−

∑
x∈X p(x)log2(p(x))

log2(|X|)

described in (Masisi et al., 2008). The chance that a random variable has to take on a

value can be expressed via a probability distribution.

The entropy measure is calculated based on data extracted in the following manner.

For a given combination of an illness and a medical property, all analysis samples of the

given medical property taken within 30 days prior to a patient being diagnosed with the

given illness is extracted. The choice of 30 days is based on H2, which confirmed that

analysis samples are primarily taken close to a diagnosis being given. Based on this, it

can be assumed that prior analysis samples are primarily taken as part of the process of

giving a diagnosis to a patient. The time interval prior to a diagnosis, from which anal-

ysis samples were used to give the diagnosis, is unknown. It can however be assumed

that the shorter the time difference is between when an analysis sample was taken and

a diagnosis given, the more likely it is that the analysis sample was used to diagnose the

patient. Thereby the time difference between a diagnosis and a prior analysis sample

can be seen as a relevance measure for that given analysis sample given the diagnosis.

The time interval, from which to include analysis samples when diagnosing a patient,

might vary based on the illness the patient is affected by. As an example, it might be

possible to detect cancer for a patient in an analysis sample taken six months prior to

the patient being diagnosed with cancer, but it is not be possible to detect if a patient

has a cold, based on a six months old analysis sample. However, in order to simplify

the analysis, a general time interval of 30 days prior to a diagnosis, is used across all

illnesses.
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The extracted analysis samples are divided into bins based on which time interval

prior to their related diagnosis they lie in. This means all analysis samples taken within

1− 5 days prior to a diagnosis being given are placed in one bin, while all analysis sam-

ples taken within 6 − 10 days prior to a diagnosis are placed in another bin and so on

up until the 30 day range being examined. The result is a set of 6 bins, one for each

range of length 5 in the 30 day range. Based on the number of analysis samples in each

bin, a probability distribution is created for which the entropy is calculated. A large en-

tropy means there is high uncertainty, and would indicate that there are no clear trends

in the distribution of analysis samples based on the time dimension and confirms H4.

The length of the time interval, which the bins are created based on, has an impact on

the resulting entropy. For small time intervals a trend has to lie within a short time in-

terval to be detectable, whereas larger bins make it easier to detect general trends.

Based on this examination of H4, it can be seen as investigating if analysis samples

are distributed non-uniformly in the relative time interval prior to a diagnosis, as op-

posed to H2 which investigated if analysis samples were distributed uniformly across

the entire time dimension for patients.

A heat map for the entropy measurements is illustrated in Figure 13. This shows that

for the majority of the combination of analysis samples and illnesses the entropy is rel-

atively high, indicating no specific trends for when analysis samples are taken based on

the time dimension. Therefore H4 is confirmed.

A scenario that the previous method of examination does not account for, is the fact

that two diagnoses might be given within a small period of time of each other, thereby

share analysis samples. Two illnesses can affect the same medical property (Shwe et al.,

1991), and thereby lead to conflicting scenarios when determining one specific illness

based on analysis samples. Examining the frequency of this scenario is not possible

without knowing which medical properties are affected by which illness. However, it is

possible to examine a more abstract scenario, which is the frequency of two diagnoses

within a time interval. This frequency can be seen as the probability of receiving an

additional diagnosis posterior to receiving a diagnosis. Figure 14 illustrates the proba-
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Figure 13: Heat map over the Distribution of Analysis Samples on the Time Dimension

bility of a patient being given an additional diagnosis posterior to a diagnosis.

It can be seen that this abstract scenario occurs frequently, with the probability of

receiving an additional diagnosis on the same day being 78%. The trend is also clear

when plotting the mean amount of diagnoses for a time interval posterior to a diagno-

sis, as seen in Figure 15.
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Figure 14: Probability of an additional diagnosis being given to a patient within a range
of time intervals into the future for diagnoses.
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5. Problem Definition

The abstract problem statement being investigated is the following:

Given a medical data warehouse, containing patient information regarding analysis

samples and diagnoses, is it possible to construct a model for predicting illnesses based

on measured medical properties with higher accuracy than naive approaches?

The abstract problem statement lead to the need for a deeper understanding of the

available data in order to concretize it. Sections 3 and 4 covered the data structure of

analysis samples and diagnoses in the data warehouse, and an analysis of the respec-

tive classes’ distribution and their interconnection. This has lead to knowledge that

allows us to concretize the abstract problem statement.

Section 3 covers issues which arise from the digitization of diagnoses and analy-

sis samples. An example of this is that the point in time where a patient becomes ill

does not necessarily match the time a patient was diagnosed. Thereby in order to use

diagnoses as reference points for an illness, one has to be aware of the existence of un-

certainty for which point in time the diagnosis was given, within the illness interval.

Furthermore, in regards to the time relationship between analysis samples and diag-

noses, there is no information about when an analysis sample was taken, in regards to

the illness interval. However, the degree of uncertainty is limited by the length of the

illness interval for the patient. When constructing a predictive model, this uncertainty

is a factor that should be accounted for.

In Section 3 it is mentioned that the presentation of illnesses is discretized through

a binary state. The effect of having illnesses as represented as binary states is discussed

in (Shwe et al., 1991), and it concludes that while it might weaken the model, it in-

creases simplicity. This means that the data will be used in the form it is stored in the

data warehouse, and will not require transformation into a more dynamic model for

illnesses.
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The assumption of relationship between analysis samples and illnesses, stated in

Section 1, can be transformed into the assumption of: there exist certain global pat-

terns in some medical properties prior to, or when affected by, a given illness. These

patterns are global in the sense that they are to some degree common across all pa-

tients, and they are defined by how the measurements for a medical property change

prior to or when a patient is affected by a given illness. Analysis samples are a sparse

representation of a medical property, which these patterns must be based upon. As

covered in Section 4.2, the patterns cannot be defined based on only the time attribute

for analysis samples. Therefore it is important to account for both measurement and

time, with regards to temporal aspects, when constructing a model for prediction. As

an example, if a set of analysis samples indicates that a patient’s blood pressure has

consistently risen over the course of a week, then it is important to preserve the tem-

poral aspect of this increase in the model, since it might be a symptom for a specific

illness. It is the existence of these patterns which must be proved, in order to confirm

that there exists a relationship between analysis samples and illnesses.

Section 4.2 investigated the frequency of two diagnoses occurring within a time in-

terval for a patient. The latter diagnosis in such an interval, can be a complication,

in the medical sense. This means that the second diagnosis was caused by the patient

having the firstly diagnosed illness. When constructing a model for predicting illnesses,

it would mean that a prior diagnosis might be the cause of a future diagnosis. This can

mean that prior knowledge of a patient’s health state affects the probability distribu-

tion of illnesses for a posterior diagnosis. For simplicity, as suggested by (Shwe et al.,

1991), we assume that diagnoses are marginally independent to reduce complexity of

the model while potentially increasing error of the model.

Analysis samples are primarily taken close to the time of a diagnosis as covered in

Section 4.2. This strengthens the assumption that time is an important attribute for

analysis samples which must be accounted for. The assumption that medical prop-

erties are affected by a patient’s illness, leads to measurements of medical properties

in analysis samples being affected by the patient’s illness. This allows for prediction

of illnesses based on analysis samples. Medical properties might be correlated, but to
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reduce complexity and suggested by (Shwe et al., 1991) we use the assumption of con-

ditional independence of medical properties given an illness.

There are two major factors to account for when predicting the illness of a diagno-

sis: the time or time interval of the prediction diagnosis, and the time distance between

the analysis samples and the prediction diagnosis.

This leads to two assumptions: firstly, that diagnoses are given based upon a sce-

nario where the patients observed changes in their health state, meaning that the pa-

tients are ill prior to being given a diagnosis. Secondly, that when the medical sector

has diagnosed the illness, doctors start a treatment that shortens the length of the ill-

ness interval. The treatment might involve procedures, such as the use of medicine,

which could affect medical properties and lead to noise in the analysis samples.

In Section 4.2 it was described how the time difference between an analysis sample

and a diagnosis can be seen as a relevance measure for the analysis sample given the

diagnosis. The horizon, the time interval in which the future diagnosis and prior anal-

ysis samples lie, must therefore be accounted for when constructing a model.

Based on the representation of the data, where there exists no explicit link between

analysis samples and diagnoses, there are two statistical approaches to consider when

constructing a model. These two options are either to perform extensive analysis of the

data in order to gather knowledge of the parameters and thus use a parametric method,

or to use a non-parametric method that relies on the data. Non-parametric approaches

are generally better for large sets of data, since these data sets are difficult to generalize

across without introducing errors(Doshi-velez et al., 2009). Thereby non-parametric

approaches are deemed more suitable for the given data set.

Based on these simplifying assumptions, and the knowledge gained through analy-

sis of the data, it is possible to create a model based on existing data that, by objectify-

ing the data in the data warehouse, can assist in showing that there exist a relationship

between analysis samples and diagnoses, which can be used to predict the illnesses of
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diagnoses. With this in mind we now propose the following concretized problem state-

ment:

Given a set of patients, which have had analysis samples taken and been given di-

agnoses, is it possible to construct a non-parametric temporal model for classifying

the illness of a future diagnosis, based on a set of analysis samples, within a horizon

with higher accuracy than naive methods?

In this context, temporal model refers to a model that accounts for temporal aspects

during inference.

6. Abstract Model

This section covers the intuition behind the constructed model. The act of diagnosing

a patient, involves acting under uncertainty, since it is not possible to directly observe

the illness a patient is affected by. However, there are observable indicators that affect

a doctor’s belief about which illness the patient might be affected by. As an example,

observing an inflamed ear canal in a patient complaining of earache, increases the be-

lief that the patient is affected by an outer ear infection. To handle this uncertainty, a

probabilistic approach is chosen for the model.

When modeling illnesses and medical properties it can either be seen as illnesses

causing changes in medical properties or it can be seen as a state of medical properties

causing an illness. This can be clarified with these two examples: Firstly, an ear infec-

tion causes an inflamed ear canal, thus the illness causes changes in medical proper-

ties. Secondly, the state where the patient has an inflamed ear canal is diagnosed as an

ear infection, therefore the state of the medical properties causes the conclusion that

the patient suffers from the illness. We choose to model it as illnesses causing changes

in medical properties.

How medical properties are affected by the illness can thereby be mapped as a be-

lief network, also known as a Bayesian network. Figure 16 illustrates a Bayesian network

representing the relationship between illnesses and medical properties.
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I
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Figure 16: Abstract model represented as a Bayesian Network, with I being a discrete
node with a state for each illness, MP1, MP2, and MP3 being continuous nodes for
medical properties.

The network in Figure 16 uses three medical properties as an example, and thereby

contains four nodes. The first node is the illness node I, which represents a random

variable that has a state for each illness i1, ..., im. Illnesses are modeled in a single node,

due to the assumption of marginal independence of illnesses introduced in Section 5.

The node can be used for representing a probability distributionP (I) across its discrete

amount of states, which holds a probability for each given illness. This probability dis-

tribution is used to represent the probabilities a patient has of being affected by certain

illnesses.

The nodesMP1,MP2,MP3, each represent a medical property. Having edges going

from I to MP1,MP2,MP3 can be read as: Given information about illnesses I, this in-

formation influences our belief of the random variablesMP1,MP2,MP3. An example of

this is, given knowledge of a patient being affected by the illness high blood pressure, it

influences our belief of the medical property blood pressure, in terms of that it should

be high for the patient. Based on the assumption of conditional independence of medi-

cal properties given an illness, covered in Section 5, there are no edges connecting med-

ical property nodes. These medical property nodes are continuous random variables

meaning they can be in a continuous amount of states, and this is illustrated through

a double circle. Having a continuous state space, in this scenario, refers to that the at-

tributes which describe a medical property are continuous values. An example of this
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it that the measurement of a medical property, such as blood sugar, can be a numeric

value and therefore does not have a discrete amount of states. Thereby P (MP1) repre-

sents a space of normality measure forMP1 with a dimension for each attribute used to

describe MP1. Consider the example of measurements for patients’ blood sugar being

normally distributed with μ being 150 and a low variance. Receiving a measurement of

3000 is highly unlikely based on the distribution of the data, and would thereby have a

low normality value for that point in the normality space of the medical property blood

sugar.

While P (I) represents a probability distribution over illnesses I, P (MP1 | I) repre-

sents a conditional probability distribution. This refers to that given information about

the random variable I, we can construct a conditional probability distribution forMP1,

in which there exists a probability distribution of MP1 for each state in I. This means

that given information about an illness, it affects our belief of a medical property. An

example of this is, given the illness high blood pressure, our belief is influenced in terms

of what would be considered normal measurements for blood pressure. This leads to

the intuition that: Given a set of observations for medical properties MP1,MP2,MP3

that defines points in the normality space, it is possible to deduce the probability distri-

bution for illnesses based on this P (I | MP1,MP2,MP3) given knowledge of normality

for medical properties given illnesses P (MP1,MP2,MP3 | I).

The abstract model is a naive Bayes model, based on the information variables,

MP1,MP2,MP3, are independent given the hypothesis variable I (Jensen and Nielsen,

2007). Time is not accounted for in the presented representation, and thereby the

model only illustrates the intuition behind prediction of illness for an immediate state.

Thereby, in a concrete model, time affects every node of the system, which has to be

accounted for. The explained example, shown in Figure 16, is applicable to a model

with any number of medical properties MP1, ...,MPn.
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The requirement of P (MP1, ...,MPn | I) for determining P (I | MP1, ...,MPn) can

be described through Bayes’ rule:

P (I |MP1, ...,MPn) =
P (MP1,...,MPn|I)P (I)

P (MP1,...,MPn)
,

and with the assumption of medical properties being conditionally independent given

illnesses, it leads to the following:

P (I |MP1, ...,MPn) =
P (MP1|I)P (MP2|I)...P (MPn|I)P (I)

P (MP1,...,MPn)
.

P (MP1, ...,MPn) can be omitted, since the evidence for P (MP1, ...,MPn) is iden-

tical across all observations, and thereby only functions as a factor for normalization.

P (I) can be seen as set of relative weights for the illnesses. These weights can seen as

a tuning parameter, and can either be estimated through the distribution in the data

set or tuned based on performance. Since this is an abstract representation and in a

concrete scenario P (I) is influenced by time, the weights are initially defined through a

uniform distribution, for simplicity, and thereby it is possible to omitP (I). The remain-

ing probability distribution is P (MP1, ...,MPn | I), and the method used for estimating

it is covered in Section 7.

7. Medical Property-Illness Distributions

This section describes how to obtain the probability distribution P (MP1, ...,MPn | I).

The probability distribution must be estimated based on the given data set, since the

normality spaces forMP1, ...,MPn given a state in I are unknown. Thereby a model will

be constructed, which utilizes the available data to return an estimate ofP (MP1, ...,MPn |

I). Constructing such a model requires an understanding of how medical properties

and illnesses are related.

The intuition for predicting an illness for a patient, based on a set of analysis sam-

ples, is that medical properties change in detectable patterns as the patient’s health

deteriorates during or prior to having an illness. Consider the synthetic example in

Figure 17: given continuous measurements of a medical property for a set of patients

p1, p2, p3, becoming affected by illness i aligned to the same point in time. The patients’
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Figure 17: Change in value over time for a medical property for a set of patients,
p1, p2, p3, prior to and after becoming affected by an illness i.

medical property values rise prior to the patients becoming affected by i. This illus-

trates that there exists a correlation between the given medical property and the given

illness, which reflects a belief of how the given medical property should behave during

or prior to having the given illness.

The intuition is that the more similar a set of analysis samples is to the previous

medical property observations, for a given illness i, the stronger the belief is that the

patient is affected by i. Observations in this context refer to a set of analysis samples.

The strength of the belief representsP (i |MP1, ..,MPn). The probabilityP (MP | i) can

be estimated by measuring how normal a given analysis sample of MP is compared to

the normality space for MP given i based on previous observations.

The example illustrated in Figure 17 assumes that continuous measurements of a

medical property are available, however in the given data set it is represented as snap-

shots. These snapshots are analysis samples, which represent a value for a medical

property in a given time for a given patient.
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Using these snapshot values taken from all patients, we can plot an example for how

a medical property behaves prior to patients being diagnosed with a given illness. An

example of this, based on synthetic analysis samples, can be seen in Figure 18.
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Figure 18: Example of an MPID for a medical propertyMP and an illness i, illustrating
the trend for how MP changes prior to patients being diagnosed with i.

The visualized medical property changes according to the illustrated trend up to

the point in time at which the patient is diagnosed with the given illness. Trends for

a medical property given an illness are defined by how the analysis samples are dis-

tributed in the two dimensional space of time and value. The time dimension is used

in order to preserve temporal aspects of observations. An example of this could be ob-

servations containing information about whether a medical property has increased or

decreased over the given horizon, e.g. an increase in blood pressure. In this context

the time for an analysis sample refers to the relative time prior to the diagnosis, when
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the analysis sample was taken, with time discretized in days. Thereby the time values

in the distributions are defined using diagnoses as reference points. The distribution

of analysis samples of a given medical property MP and for illness i is referred to as a

Medical Property-Illness Distribution (MPID) and corresponds to the normality space

of MP given i.

The independence between two MPIDs, for two illnesses i1 and i2 and a medical

property MP , correlates to how well i1 and i2 can be distinguished based on MP . This

is because the measure of independence of the distributions describes the degree with

which analysis samples for MP given i1 generally differ from analysis samples for MP

given i2.
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Figure 19: An example of two patients that have had an analysis sample taken at the
same point in time and becomes ill at the same point in time, while being diagnosed at
different points in time.

Section 3 described that it is uncertain which relative point in time the diagnosis is

given compared to the illness of the patient. This uncertainty is reflected in the diagno-
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sis reference points used to create the MPIDs, which causes uncertainty on the relative

time dimension across the analysis samples given an illness. An example of this is il-

lustrated in Figure 19. Two patients p1 and p2 have had two similar analysis samples

taken in terms of measured value and relative time to their illness interval. However,

due to the difference in their time of diagnosis, when considering the illness interval,

the analysis samples will be different in the respective MPID. This means that there ex-

ists uncertainty on the time dimension of MPIDs, which has to be accounted for.

Thereby P (MP | i) is estimated by the normality measure for an analysis sample

given previous observations of the medical property MP given the MPID for MP and

i. The methods used for handling the uncertainty and finding the normality measure

for observations in regards to an illness are covered in Section 9.

8. Horizon

In order to reason sensibly about future illnesses, it is necessary to limit the time in-

terval for which a future illness can be predicted. This is because increasing the time

interval increases the range of possible time intervals between the observations and the

future diagnosis. This increase lowers the relevance of the observations, since the time

between an observation and a diagnosis influences how relevant an observation is for

a diagnosis, as described in Section 4.2. An example of this is that measuring a patient’s

current temperature does not influence the belief in whether that patient is going to get

a fever four years into the future. We thereby propose the concept of a horizon which is

a defined time interval, for which it holds that a set of analysis samples and future di-

agnosis are contained in the interval. An example of a horizon is illustrated in Figure 20.

This example illustrates observations, in terms of analysis samples, on a patient

timeline. The minimum time interval in which all of the analysis samples lie is referred

to as the Observation Interval. When subtracting the observation interval from the time

interval the horizon covers, the Prediction Interval is retrieved. The prediction interval

is the time interval in which the future diagnosis, which we wish to predict the illness

of, lies. Thereby, the distance into the future in which you can predict an illness of a
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Figure 20: Example of a horizon imposed on a patient timeline. The time interval
in which the analysis samples are taken is referred to as the observation interval, and
the time interval in which the diagnosis being predicted was given is referred to as the
prediction interval.

future diagnosis is dependent on the prior information obtained through the time in-

terval, in terms of observations.

The concept of a horizon is related to MPIDs, since it defines the time dimension

of the MPIDs. Therefore the horizon limits the information available in the MPID, by

excluding analysis samples taken outside a relative time interval prior to diagnoses.

The length chosen for the horizon affects the information contained within the MPIDs,

since it delimits the analysis samples included in each MPID.

Based on this, limiting the information in MPIDs might affect the ability to predict

certain illnesses. An example is the contrast between cancer and the flu; a six month

old analysis sample might contain information that is valuable when diagnosing can-

cer, while the opposite holds for the flu, due to the differences in length of the illness

intervals. Thereby, the horizon primarily affects the two following aspects: the infor-

mation contained in the model and the desired prediction interval.

The chosen horizon will be discussed in regards to these aspects in Section 10.
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9. Kernel Density Estimation

This section covers how P (MP | i) is estimated for a given medical property MP and

illness i through a normality measure. The medical property MP is a random contin-

uous variable, and therefore does not have a countable amount of states (Jensen and

Nielsen, 2007). As mentioned in Section 6, every node is affected by time, which causes

P (MP | I) to be dependent on the relative time to diagnosis and can thereby be seen

as P (MP | I, τ) where τ is the relative time to diagnosis. Since we need to estimate

P (MP | I) for prediction, τ must be eliminated. The methods considered for elimi-

nating τ are covered in Section 10.1. Based on this we want to construct the Probability

Density Function (PDF) forP (MP | i) given values for time and measurement. The PDF

is unknown, however there are two approaches of estimating it. The first one involves

the use of a parametric approach, which is based on assumptions of distributions in the

data. The second uses a non-parametric approach, which involves using a set of data

points to estimate it. Based on the problem definition in Section 5, the non-parametric

approach Kernel Density Estimation (KDE) (Parzen, 1962)(Hansen, 2009) is used.

Using KDE it is possible to estimate the density, also referred to as the relative likeli-

hood, ofMP for patients having i given the analysis sample was taken at a certain time

prior to the diagnosis and having a certain measurement. An example of this can be

seen in Figure 21, which is based on the data of Figure 18. The example shows how the

densities of the observations are centered around the trend line seen in Figure 18. The

densities are depicted using contours, where the most red contour is the highest den-

sity. The density at a given value and time represents how frequently that observation

has been made compared to other observations.
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Figure 21: A contour plot of a KDE, estimated based on samples from an example
MPID.

The KDE for an MPID is made in the following manner. Given an input vector X =

x1, ..., xn the multivariate kernel estimator is defined as follows:

f̂(x) = 1
n∗|H|

∑n
i=1K(H−1(Xi − x)),

where K(u) is a multivariate kernel function and H = (h1, ..., hn)
′ is a bandwidth vec-

tor with |H| = h1h2 . . . hn, with hi being the bandwidth for the i’th dimension. The

multivariate kernel density estimator f̂(x) integrates to one, and given the input vector

X = x1, ..., xn it returns the estimated density at point X.

A Kernel function is a function K(u) : R→ R which satisfies the following:∫∞
−∞K(u) du = 1,

where a multivariate Kernel function has the formK(u) = k(u1)k(u2)...k(un), and is the

product of n one dimensional kernel functions. Thereby the kernel functions fulfill the

same criterion as probability distributions, in regards to their sum being 1.
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The bandwidth variable is used to control the certainty with which a diagnosis can

be predicted. How the KDE is affected by the bandwidth is illustrated in Figure 22 for a

one dimensional synthetic data set. For h = 1, the KDE clearly peaks at the most dense

concentration of data points. h = 4 results in an oversmoothing which causes the KDE

to not fully reflect the distribution of the underlying data.
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Figure 22: Two kernel density estimations for a synthetic data set, with the two band-
widths h = 1 and h = 4.

Oversmoothing of the KDEs makes it more difficult to predict diagnoses, sinceP (MP |

I) is lowered across all illnesses I when the KDE does not reflect the distribution of the

underlying data. This is because oversmoothing of the KDE causes the probability dis-

tribution P (I |MP ) to be more uniform, since with generally lowered probabilities for

P (MP | I), the chance that an illness has a significantly higher probability than other

illnesses is lower. A more uniform probability distribution for P (I | MP ) increases the

entropy, which means that it is more difficult to predict an illness.

There exist cases where MP given i have never been observed before. When this

occurs the density cannot be calculated and is therefore returned as 0, which means
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the probability P (MP | i) is 0. Since there is always a chance of observing MP given

i, this chance is represented using additive smoothing(Manning et al., 2008). Additive

smoothing is used by adding a pseudocount to all densities.

The normality measure, introduced in Section 6, is thereby calculated through the

use of KDE with additive smoothing applied to all densities. Section 10 covers how this

is implemented in the model.

10. Model Overview

This section will cover how the methods and concepts presented in Section 7, 8, and 9

can be used to construct a model based on the intuition of the abstract model covered

in Section 6. The abstract model showed that P (MP1 | I), P (MP2 | I), ..., P (MPn | I)

are required in order to calculate P (I | MP1, ..,MPn). The probability P (MP | i),

for each medical property MP and each illness i ∈ I, can be estimated using Kernel

Density Estimation based on prior time to diagnosis and measurements for analysis

samples. The prior time is equivalent to the distance into the future the given diagno-

sis, which illness is being predicted, lies relative to the analysis sample. However, as

described in Section 8, one wishes to predict the illness of a diagnosis within a time

interval. A time interval is equivalent to a range of distances, and is determined by the

prediction interval.

10.1. Probability Distribution

This Section covers how the probability distribution over a set of illnesses I is calcu-

lated given a set of observations in the form of analysis samples.

Consider the following example (E1): a doctor has one analysis sample of MP and

based on this, he wants to know the probabilities of illnesses I that a future diagnosis

for a patient might have. The analysis sample has a measurement, and thereby the only

information missing in order to estimate P (MP | i) for each i ∈ I, is the time in which

the future diagnosis lies. This point in time is unknown. However, we know there is a

limited amount of possible points in time (days), based on the prediction interval de-
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termined by the horizon. Estimating over a time interval can be seen as the problem of

combining multiple probability distributions for each discrete point in time into one

probability distribution.

In order to solve this, the two following approaches have been considered. The first

approach is to use principles of Bayesian Model Averaging (Opitz and Maclin, 1999),

which involves the use of output from multiple models for the same problem and mean-

ing across outputs for each class. In this case, the model could return an output for

each point in time and then mean across the outputs for each illness. The second ap-

proach involves estimating a time of the future diagnosis for each i ∈ I based on prin-

ciples from maximum likelihood estimation (Cam, 1990). This can be seen as using the

time for which P (MP | i) maximizes, given a measurement such that P (MP | i) ≈

max
τ

P (MP | i, τ). Figure 23 illustrates an example of this, through a contour plot of

kernel density estimation for P (MP | i), based on prior time to diagnosis and mea-

surement.

In Figure 23, the measured value for the analysis sample is marked by a line, and

thereby only leaving the time into the future at which the diagnosis lies unknown. A

horizontal slice across the time dimension in the KDE at the measured value for the

analysis sample can be seen in Figure 24. The density can be seen as the likelihood,

and with the time dimension containing a discrete amount of possible values, the max-

imum likelihood can be estimated by determining for which point in time the density

is largest. Thereby P (MP | i) is the density at the point in time where the density is

largest given a measurement for MP .

The first approach corresponds to averaging the densities, and thereby the prob-

abilities, for illnesses across the time dimension. This can potentially hide valuable

information in scenarios where an illness has a large density for a certain point in time

but small densities for other times, due to the nature of arithmetic mean.
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Figure 23: A contour plot of a KDE, estimated based on samples from an example
MPID, with a line for a measurement of an analysis sample.
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Figure 24: A density slice over time for a medical property based, on the line illustrated
in Figure 23.
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The second approach’s intuition is based on answering the following question: If

a given patient were to get affected by illness i within a defined horizon, what is the

most likely scenario for that to happen? Thereby with the use of this approach, P (I |

MP1, ...,MPn) can be seen as weights for maximum likelihood scenarios over illnesses,

if the patient were to get a diagnosis. The second approach is chosen based on this in-

tuition, and the risk that using the first approach might potentially hide information.

E1 covers the case of a single analysis sample being used for prediction. However,

there exist cases in which multiple analysis samples are available. Consider the follow-

ing example (E2): a doctor has two analysis samples, a1 and a2, measuring respectively

the medical properties MP1 and MP2, with a1 being measured three days prior to a2.

The doctor wants to know the probabilities of illnesses I that a future diagnosis for the

patient might have. Given this case the, probability distribution being calculated is

P (I |MP1,MP2), which is equal to P (MP1 | I)P (MP2 | I) as per Bayes’ rule, assuming

a uniform probability distribution over I, and assuming conditional independence of

medical properties given I, which is described in Section 6. P (MP1 | I) and P (MP2 | I)

are calculated as described in E1, but with an additional temporal constraint. This tem-

poral constraint is based on a1 and a2 being taken three days apart, and thereby they

create an observation interval within the horizon. The relative time aspects of obser-

vations should be withheld, and therefore the goal is to find a set of points in time for

which it holds that the relative time between the analysis samples is preserved, while

maximizing the product of the densities. An example of this is shown in Figure 25.

The example shows the horizontal density slices across the time dimension of the

KDEs for the medical properties MP1 and MP2 at the measured values for a1 and a2

respectively, for a given illness. The crosses mark the points in time for a1 and a2 which

maximizes the product of both densities, while preserving the relative time aspect be-

tween them. Since the relative times between analysis samples are known, because

they can be determined by knowing a single point in time, it is possible to determine

the entire set of points in time, which maximizes the joint density for a set of analysis

samples a1 and a2, and thereby represents the maximum likelihood.



41

Days prior to diagnosis

De
ns

ity

a2

a1

3 Days

mp1

mp2

Figure 25: Two density slices over time for medical properties MP1 and MP2 given
two measurements from two analysis samples respectively, in which the two analysis
samples maximize the density based on their relative time being to each other is 3 days
apart.

For this given example the newest analysis sample is used as a reference point. This

reference point will be used to align the MPIDs on the time dimension, based on the

relative times between each analysis sample. An example of the densities aligned over

time based on the MPIDs is shown in Figure 26.

Based on the densities aligned on time, it is possible to construct a distribution

which represents the joint density for MP1 and MP2 aligned based on a1 and a2 for

a given illness i. The joint density is, as per P (i | MP1,MP2) = P (MP1 | i)P (MP2 | i),

the product of the densities for the individual analysis sample. Thereby, in this case, the

point in time of the maximum density in the joint density represents the point in time

for the newest analysis sample that maximizes the likelihood across the given analysis

samples.

The approach covered in E2 is capable of handling any amount of analysis sam-

ples. Using the approaches explained through E1 and E2 it is possible to calculate the

probability distribution for a set of illnesses I given a set of analysis samples. The prob-
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Figure 26: Two density slices based on Figure 25, in which they are aligned based on the
analysis sample’s relative time to each other and the product of the two density slices.

ability distribution can be seen as a hypothesis returned by the model for which illness

or illnesses a patient is affected by.

10.2. Configuration

This subsection covers how the model is configured through defining the bandwidth

used in KDE and the length of the used horizon.

The bandwidth selected for the KDEs has an impact on the resulting densities, and

thereby on the calculated probabilities, as discussed in Section 9. Therefore the band-

width can be seen as a tuning parameter, which can be adjusted to improve perfor-

mance. In order to remain non-parametric, we wish to use a method which can esti-

mate an optimal bandwidth. For this purpose, the bandwidth will be defined based on

Silverman’s rule described by (Silverman, 1982) and with the considerations in (Jones

and Lotwick, 1984). Silverman’s rule has been shown to be the optimal choice of band-

width given that the underlying data is Gaussian distributed and is in other cases con-

sidered a good starting point for tuning the bandwidth (Silverman, 1986).
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It is assumed that the chosen kernel function has little influence on the resulting

densities. This hypothesis is investigated in Section 11. The kernel function used for

KDE is the Gaussian kernel function, which is defined as:

k(x) = 1√
2π
e−

x2

2 .

The length of the horizon determines the time interval in which the illness of a fu-

ture diagnosis can be predicted. As discussed in Section 8, the chosen length for the

horizon can impact the ability to predict some illnesses, since a short horizon might

remove evidence that a patient is affected by a given illness. Furthermore if the hori-

zon is too large, then the risk of including analysis samples taken outside an illness

interval for a given diagnosis is increased, which is a potential source of noise. Due to

the fact that analysis samples are primarily taken close to a diagnosis being given, as

shown in Figure 11, it can be assumed that diagnoses are often given based on a set of

recent analysis samples, and thereby a relatively short horizon is preferred. Therefore

the chosen length of the horizon is 30 days.

11. Model Evaluation

Based on the model presented in Section 10, this section covers the reasoning behind

the evaluation of the model and the results showing its performance. The problem

statement covered in Section 5 defines a binary success criterion, which is evaluated

based on a performance measure. The potential use context for the model as a sup-

portive tool for diagnosing patients, is evaluated based on qualitative analysis of per-

formance.

To evaluate if the constructed model fulfills the problem statement, a set of illnesses

is selected in order to define the class context for which illnesses will be predicted. The

class context is the set of illnesses I for which the model creates a probability distri-

bution. In order to limit the computational resources required to run the model, the

evaluation is performed on a subset of the total 31 105 different illnesses. The illnesses

in this subset are selected based on the amount of data concerning them, in terms of

how frequently they are diagnosed, since it is assumed that more frequently diagnosed

illnesses have a larger amount of medical property information available. The medi-
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cal property information consists of the amount of observations within the horizon of

a given diagnosed illness. This means that the illnesses are being arbitrarily selected,

in a medical sense, since they are not selected based on any medical knowledge. The

classes used for the evaluation consists of a set of 20 illnesses, which are among the top

100 most frequently diagnosed illnesses. The patients which have had some analysis

sample taken, and have been diagnosed with at least one of these illnesses, form the

data set used for evaluating the model.

The intuition for evaluating the model, based on a set of illnesses that are arbitrary

in a medical sense, is that if the method performs better than naive approaches on such

a set of illnesses, then the model should be generalizable across any set of illnesses. Fur-

thermore if the model performs better than naive approaches on these illnesses, then

it should be possible to select a set of illnesses, using medical knowledge, for which the

model performs significantly better.

In order to test the model, the intuition is to exclude a subset of diagnoses of the

selected illnesses prior to training and use the subset exclusively for testing. This test

subset is referred to as the testing set, while the remaining data is referred to as the

training set. One thing to consider is that patients might have some individual char-

acteristics in their medical properties which could potentially skew the evaluation of

the model. Consider the case where information about a patient is shared across both

the training set and the test set. This violates the independence of the two sets, which

could lead to overfitting of the model. Thereby the data set is divided across patients,

while the testing and training is still performed across diagnoses. The test set consists

of 20% of the patients diagnosed with one of the selected illnesses, while the remaining

80% are included in the training set.

Dividing the data on patients leaves us with two sets of patients, and thereby two

sets of patient timelines. The timelines for the patients in the test set need to be di-

vided into diagnosis samples with corresponding analysis samples. This represents a

test sample. Test samples are created using the principles described in Section 7, such

that: for each diagnosis a patient has, the illness of that diagnosis defines the desired
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class output for that sample. The diagnoses have a set of analysis samples related to

them, which is the analysis samples within a horizon prior to the diagnosis. The hori-

zon used for gathering these analysis samples is of equal length to the one used in the

model, which is 30 days. Therefore a test sample consists of an illness and a set of anal-

ysis samples, which is referred to as the observation set. However, there exist cases

where the observation set is empty, since no analysis samples lie within the horizon of

the diagnosis. These cases will be excluded for testing, since without observations it is

not possible to reason about the illness of a diagnosis. This results in the test set con-

sisting of 3504 test samples, and the training set of consisting of 64 369 diagnoses across

64 369 patients. The test samples are extracted from 29 150 diagnoses across 16 092 pa-

tients.

The performance of the model is evaluated through the use of the performance

measure accuracy. This performance measure is defined as follows:

Accuracy = CP
TS ,

where CP is the amount of correct predictions, equivalent to the amount of times the

model was able to predict the illness of the test sample and TS being total amount of

test samples. An illness is considered correctly predicted by the model, if it is returned

as the most likely illness for the test sample.

Since the model is evaluated in relation to naive approaches, it is relevant to con-

sider the best possible performance for a naive approach, given the selected illnesses.

Consider the frequencies of illnesses across diagnoses of the test set illustrated in Fig-

ure 27. Assuming that the class distribution across the training set and the test set are

similar, a naive approach would at maximum be able to achieve an accuracy of 15.2%,

as covered in Section 5. This is because the most frequent class, represents 15.2% of

the test samples. Therefore in order to answer the problem statement, by confirming

the posed question, the model must have a higher accuracy than the naive approach.

The model correctly predicts 778 out the possible 3504 test samples in the test set, and

thereby has an accuracy of:

Accuracy = 778
3504 = 22.2%.
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Figure 27: The distribution of the classes within the test set.

Since the naive approach would achieve an accuracy of 15.2%, the model thereby

performs better than the described naive approaches on a set of illnesses selected ar-

bitrarily, in a medical sense.

Evaluating the model solely based on accuracy, and thereby only considering the

most probable illness returned by the model, might not be reasonable in the context

of using the model as a decision support tool for diagnosing patients. Consider the

example of a doctor wanting to diagnose a patient. In this example the doctor might

not only be interested in the illness with the highest probability, since the hypothe-

ses returned by the model are estimates and thereby may not be exact. The amount

of information the model is given as input, in terms of analysis samples, also influ-

ences its ability to distinguish certain illnesses. This is because distinguishing between

certain illnesses might require observations for specific medical properties, and there-
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fore the more observations that are available, the better hypotheses the model should

return. The doctor may use the model in a continuous process of gathering informa-

tion and consulting hypotheses returned by the model to decide which information to

gather next. The goal of this process is to increase distinguishability in the hypothe-

ses returned by the model by gathering additional information, and thereby in the end

isolate a single illness which the patient will be diagnosed with. In this scenario, it is

desirable to examine the model’s ability to isolate a group of illnesses which contains

the illness to predict.

This is examined by using principles from accuracy. However, a class is in this con-

text considered correctly classified if it is amongst the k classes with the largest prob-

ability. This new accuracy measure is referred to as k-Accuracy and can be calculated

using the following formula:

k-Accuracy = CPk

TS ,

where CP k is the amount of test samples, in which the illness of the test sample is

among the k illnesses with the largest probability returned by the model.

Based on this, the accuracy at the different values of k can be determined, and is

illustrated in Figure 28.

The orange line illustrates a benchmark for accuracy, which is the expected accu-

racy of arbitrary prediction. It can be seen that the model predicts significantly better

than the arbitrary prediction benchmark and with k = 5 it reaches an accuracy above

50%.

Throughout these results the kernel used for Kernel Density Estimation has been a

gaussian kernel, as described in Section 10.2. This is due to simplicity and based on the

hypothesis that the type of kernel would have a minor influence on the result. Figure 29

illustrates the k-Accuracy of the model using three types of kernels for Kernel Density

Estimation, with the types being: uniform, gaussian, and triangular.
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Figure 28: k-Accuracy for the model at a range of values of k

By examining the standard deviation (σ) of the k-Accuracy of each kernel at various

values of k, it can be seen that the performance does not vary across kernels to a large

degree. This thereby confirms the hypothesis that the type of kernel used has a minor

influence on the performance of the model.

The approach of arbitrarily selecting illnesses as classes, for the model, might not

be suitable in the scenario where reaching high measures of accuracy is the objective.

Since accuracy is related to classes being distinguishable based on a set of features, this

leads to the problem that some illnesses might not be distinguishable based on analy-

sis samples. In order to examine the occurrence of this in the current set of classes, the

individual class accuracy is measured and illustrated in Figure 30.

It can be seen that the individual accuracy for the classes varies to a large degree,

and thereby lowers the accuracy of the model. This variance is assumed to be based

on two problems: as mentioned, the classes are selected arbitrarily and therefore there
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Figure 29: k-Accuracy for three different kernels used for KDE for four different values
of k, with standard deviation of the k-Accuracy at the different k values.
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is no guarantee that it is possible to achieve a high accuracy for the set of classes. The

distinguishability for a class in a set of classes depends largely on the other classes in-

cluded in the set. This is because the class must separable from all the other classes

in the set, thereby the more classes in the set, the harder it becomes to remain distin-

guishable. The names of the illnesses in the set used in this evaluation can be seen in

Appendix A. This concept of determining the set of classes for achieving higher accu-

racy is covered in Section 12.

12. Class Context

This section covers methods for defining the classes used by the model in order to in-

crease the performance, without using medical knowledge. The set of classes, and its

size, influences the performance of the model, as described in Section 11. This set of

classes is referred to as the class context for the model. In a use context as a decision

support tool, the performance might be used as a measure of validity. This means that

if the performance is low, it might not be adequate for use as a decision support tool

for doctors diagnosing patients. Thereby, as a measure of the model’s potential for use

as decision support, its performance is evaluated on a set of classes selected with the

purpose of maximizing performance in terms of accuracy. This will be done by esti-

mating a performance measure for each individual class, which is used to define a set

of classes that yields a high accuracy for the model. The performance measure is based

on the accuracy of the individual class.

Measuring the general performance of a class is complex, since it is affected by each

other class included in the model, as described in Section 11. This means that the pre-

diction problem that the model attempts to solve becomes more complex as the size

of the set of classes increases. This causes the amount of hypotheses returned by the

model to increase and thereby the entropy of the prediction increases. This means that

having more classes, and thereby a potentially increased entropy, is likely to lower ac-

curacy and vice versa. Therefore to estimate a set of classes which would increase the

accuracy of the model, the individual class accuracy of a large set of classes will be ex-

amined. This examination consists of running the model on a large set of classes and
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then using the individual performance for each class to determine a new class context.

This is done by examining the individual class accuracy and selecting an amount of ill-

nesses with the largest class accuracy, in order to show correlation between accuracy

and class context.
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Figure 31: Distribution of classes in the test set for the class context of the 50 classes.

The initial set for this examination consists of 50 illnesses. Figure 31 is a histogram

of the 6419 test samples in the test set across the illnesses. In order for the model to

perform better than naive methods, its accuracy should be larger than 5.7%, since this

is the maximum accuracy that can be achieved by predicting based on the most occur-

ring illness. The accuracy is 9.9%, and thereby better than the naive approach.

In Figure 32 the class accuracy for each class can be seen. Based on these, the five

classes with largest class accuracies are chosen as the new class context. The model is

then examined with this new class context.

This examination is based on a test set with the size of 2265 test samples. The ac-

curacy of the model is 48%, with naive being 24.6%. The class accuracy for this class
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Figure 32: Accuracy for each individual class of the 50 classes with the five classes with
highest accuracy highlighted in blue.

context can be seen in Figure 33. Comparing these class accuracies with those for the

initial class context shows that the accuracy for each class has changed in this new class

context. This confirms that the accuracy for each class is influenced by the remaining

classes in the class context.

Using this knowledge to examine the performance in regards to a use context leads

us to examine the k-Accuracy for the mentioned class contexts. The performance for

the class context used in Section 11 combined with the two class contexts examined in

this section is illustrated in Figure 34. This shows the k-Accuracy for each class context

at a relative value of k. It can be seen that the k-Accuracy is similar across different class

contexts.
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Figure 33: Accuracy for each individual class of the five classes.
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Figure 34: k-Accuracy of the model given a range of values of k, for the test set for each
class context.
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13. Discussion

The results presented in Section 11 and Section 12 show how the model performs across

sets of classes that are arbitrarily selected and chosen based on performance. The sce-

nario of using a set of classes chosen based on performance for the model achieves an

accuracy of 48%. This indicates that for certain illnesses it is possible to define a rela-

tionship between analysis samples and illnesses, which makes it possible to predict or

get an indication of which illness a given patient is affected by. However, the quality

of the predictions or indications depends on the given illnesses. This is because some

illnesses cannot be predicted with a high accuracy using the available data, as shown in

Section 11. This is possibly caused by lack of information available to the model, since

some illnesses might not be predictable solely based on the available medical proper-

ties. In summary, the model is not capable of achieving a high accuracy on the set of

every illness, so in order for it to achieve high accuracy it is required to use a subset of

illnesses.

This thereby limits the medical contexts in which the model is applicable for pre-

dicting a single illness. However, as shown in Section 11, when evaluating the model

based on k-Accuracy for an arbitrarily selected set of illnesses, the model is capable

of achieving an accuracy of almost 80% for k = 10 with the model running on 20 ill-

nesses. In this scenario the model rejects half of the possible illnesses, while having

high accuracy and thereby low uncertainty for the remaining illnesses. Given this, a

possible usage for the model in a diagnostic decision support scenario is as a method

for eliminating possible illnesses from a set of illnesses that a doctor suspects a patient

is affected by. For this usage, a doctor would configure the model with a set of illnesses

he suspects the patient might be affected by. Based on the high k-Accuracy for a set of

k most likely illnesses, the doctor eliminate the illnesses not in this set from the original

set of illnesses that he suspected the patient might be affected by.
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Despite the performance of the model, it may be useful in a scenario where the

k-Accuracy performance measure is used to determine its usefulness. However, the

model predicts incorrectly more than half of the times in a limited class context, when

only the illness with the single highest probability is considered.

The current performance is most likely limited by three factors: the quality of the

data, the amount of features contained in the model, and the assumptions covered in

Section 5.

The quality of the data in this context refers to potential errors in the data. There

exist various types of errors, however the ones that are assumed to affect the model

are the three following: incorrect diagnoses, uncertainty of when in the illness interval

the diagnosis was given, and erroneous analysis samples. Incorrect diagnoses are di-

agnoses which contain false information in regards to the patient’s health state, such

as: being diagnosed with the incorrect illness, or receiving a diagnosis while not being

affected by an illness and vice versa. The uncertainty between diagnoses and illness

intervals across patients was introduced in Section 7 as uncertainty on the time dimen-

sion from using diagnoses as reference points. As an example, an analysis sample taken

three days prior to a diagnosis might contain the same information as an analysis sam-

ple taken five days prior to a diagnosis, given they were taken at the same point in the

illness interval. This issue is related to the fact that patients might be diagnosed with

a given illness at different points in time in their illness interval, meaning using time

as a feature across patients might yield some false information, since similar analysis

samples can be displaced on the time dimension. Erroneous analysis samples refer to

analysis samples with an incorrect measurement, which influence the model by intro-

ducing false information. This can be caused by the analysis sample being mistreated

when it was processed.

Currently the model utilizes only features related to analysis samples, i.e. the time

the analysis samples was taken and its measurement, for determining the illness of a

patient. However, there exist other features in the data warehouse which might con-

tain information that can increase accuracy of the model. These features could be fea-
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tures containing information about the patient, such as: age, gender, chronic illnesses,

and family relations. When considering features that are not available through the

data warehouse, patient records could contain valuable information. Patient records

can contain information about symptoms that are not detectable through the available

medical properties.

The model is currently based on a set of simplifying assumptions, such as marginal

independence of illnesses and that patients are only affected by a single illness at a

time. The assumption of marginal independence of illnesses affects the model, since

other illnesses that a patient might be affected by are not considered when predicting

a new illness. As indicated in Figure 14, the case that a patient is affected by more than

one illness simultaneously can occur for patients. Through medical knowledge, it is

known that there exist correlations between illnesses through complications (National

Eye Institute, n.d.). Knowing this, the information that a patient has recently been diag-

nosed with an illness can be utilized by the model for prediction to potentially increase

its accuracy.

Knowing that the presence of one illness might lead to another could construct a

scenario of a patient affected by two illnesses at the same point in time. However, in

the current model, the illnesses are modeled as a single random variable, meaning that

it is assumed that patients are only affected by a single illness at a time. Therefore the

model does not account for the scenarios where the patient might be affected by mul-

tiple illnesses at the same point in time. These multiple illnesses, at the same point in

time, can be seen as a joint illness that consists of a set of illnesses in which each ill-

ness is referred to as a sub illness. This joint illness might be observed as a health state,

which differs from the individual health state of each of the sub illnesses. Thereby,

the medical properties which influence the belief for the individual sub illnesses might

not be equivalent to medical properties which affect the joint illness. Therefore a joint

illness can potentially be seen as a new illness, which is influenced by its own set of

medical properties. Including this in the model increases the complexity, however it

may be useful in a use context as a supportive tool for diagnosing patients.
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The foundation for the research conducted in this report is based on the assump-

tion that there exists a relationship between analysis samples and illnesses that makes

it possible to predict illnesses based on analysis samples. This assumption is a simpli-

fication of the process a doctor goes through when diagnosing a patient. The doctor’s

belief of the health state for patient is influenced by the analysis samples. A doctor

does however use additional information when determining the health state of a pa-

tient such as medical history.

The results from the tests of the model hint towards it being possible to use sta-

tistical analysis and machine learning to determine the illnesses of a patient based on

medical data. This can support the current medical system, since the model functions

as a tool for objectifying the diagnostic procedure and knowledge sharing across doc-

tors.

14. Conclusion

The motivation behind this project was based on the belief that it was possible to ex-

tract additional information from a medical data warehouse containing data on analy-

sis samples and diagnoses through data mining. This was based on the belief that there

exists a relationship between the analysis samples a patient has had taken and the di-

agnoses he has been given.

This lead to the investigation of an abstract problem statement, which is used through-

out analysis of the data in the data warehouse. This analysis showed that analysis sam-

ples are distributed close to diagnoses on a patient timeline, indicating that there exists

a relationship between analysis samples and diagnoses based on time. Based on the

use context in which analysis samples are taken, it was assumed that the measure of an

analysis sample is significant for this relationship. The information gained through the

qualitative analysis lead to the following problem statement:
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Given a set of patients, which have had analysis samples taken and been given di-

agnoses, is it possible to construct a non-parametric temporal model for classifying

the illness of a future diagnosis, based on a set of analysis samples, within a horizon

with higher accuracy than naive methods?

This problem statement was researched through construction of a probabilistic model,

due to the uncertainty of diagnosing patients with illnesses. The intuition of the prob-

abilistic model was based on a Bayesian network, describing the relationship between

medical properties and illnesses. This network defines the probability that a patient

is affected by a given illness within a defined time interval, based on a set of analy-

sis samples, by a normality measure for each of the medical properties for the given

illness. The normality measure is defined using Kernel Density Estimation, for each

medical property based on the time and measurement of the analysis samples of that

medical property. Throughout the model, the length of the time interval, referred to

as the horizon, is used to determine the time interval in which the illness is being pre-

dicted. The horizon is used to determine the amount of information that is used for the

Kernel Density Estimations and defines a time interval in which the diagnosis, which

we wish to predict the illness of, lies.

The probabilistic model is evaluated through a set of performance measures. The

first one being accuracy, which is used to measure the model’s ability to predict illnesses

of future diagnoses that lie within the horizon for a given set of analysis samples. Eval-

uating the model based on accuracy can answer the problem statement, since it makes

it possible to compare the model to naive approaches. The model was evaluated on

three different sets of illnesses of various sizes, which were proper subsets of the set

containing all illnesses. For all three sets the model performed better than the best

naive approach.
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The second performance measure is called k-Accuracy and is a measure of the model’s

ability to isolate a set of illnesses in which the correct illness is. This measure was used

to evaluate the model for a use context of doctors using it as decision support, and

showed that the model is capable of isolating a relatively small set of illnesses for pre-

diction while achieving high accuracy.

It was shown that the set of illnesses for prediction used for the model influences

the performance of the model. Choosing the set of illnesses for prediction, in regards

to performance, was shown to be complex since each chosen illness influences the per-

formance of other illnesses in the set.

Through this model driven approach, it is concluded that there exists a relationship

between analysis samples of medical properties and illnesses of diagnoses, which can

be used to predict the illness a patient will be diagnosed with.

15. Future Work

This report covers the intuition and reasoning behind the construction of a model for

use in decision support for diagnosing patients. The evaluation of the model covered

in Section 11 and Section 12 shows that, when used on a small set of manually selected

illnesses, the model’s performance increases in comparison to larger sets of illnesses

that are arbitrarily selected. However, in order to increase performance, some aspects

of the model should be investigated more thoroughly. This section covers some of these

aspects and ideas, which are relevant to investigate in order to increase performance.

In the current model, the usefulness a given medical property has for diagnosing a

given illness is equal across all medical properties. This causes every medical property

to be considered a biomarker (National Cancer Institute, n.d.), meaning no medical

property influences the belief of a given illness more than another. This simplification

could potentially lead to false evidence. Consider the example of a patient affected

by the illness high blood pressure that has had analysis samples taken for the medi-

cal properties blood pressure and hemoglobin. Given medical properties are weighted
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equally, the analysis sample for hemoglobin influences our belief of the patient having

high blood pressure with the same weight as the actual blood pressure. Thereby the

influence a certain medical property has for a given illness is a topic that should be re-

searched further.

Using Kernel Density Estimation requires defining the parameter bandwidth. In the

model, this parameter is approximated through the use of Silverman’s rule, as described

in Section 10.2. The parameter bandwidth can influence the performance of the model

in terms of accuracy, as discussed in Section 9. Therefore the model can be tuned

based on bandwidth in order to increase performance. Tuning the bandwidth param-

eter could also account for the uncertainty of the time dimension in MPIDs, based on

the uncertainty in the diagnosis reference points described in Section 8. Therefore the

aspect of tuning the bandwidth parameter for performance is a topic that requires fur-

ther research.

The model has only been evaluated with a horizon configured to 30 days. As dis-

cussed in Section 8, the chosen length of the horizon can influence the performance

of the model, since it might cause analysis samples containing relevant information to

be discarded. Since the horizon determines the amount of information available to use

for prediction of illnesses, the relationship between the length of the horizon and per-

formance should be investigated further.

Determining illnesses solely based on analysis samples for medical properties might

not be possible for every illness. This is because some illnesses are determined based

on symptoms which are not detectable in medical properties. Therefore, by making

the model capable of utilizing qualitative patient information, this might increase the

performance of certain illnesses and thereby increase the overall performance of the

model. This qualitative patient information could be gathered from sources such as

patient records, medical journals, etc. Making this data available to the model and uti-

lizing it for prediction is a topic for further research.
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A. Illness Names

28376 DC209 - KRÆFT I ENDETARMEN

28842 DC349 - KRÆFT I LUNGE UNS

35324 DD649 - ANÆMI UNS

36829 DE109 - TYPE 1-DIABETES UDEN KOMPLIKATIONER

43122 DF171 - SKADELIG BRUG AF TOBAK

43434 DF200 - PARANOID SKIZOFRENI

47960 DG473 - SØVNAPNØ

54160 DH833 - STØJSKADE PÅ INDRE ØRE

54297 DH911 - ALDERSBETINGET HØRETAB

54343 DH919 - HØRETAB UNS

54396 DH931 - TINNITUS

54755 DI109 - ESSENTIEL HYPERTENSION

54967 DI208 - ANDEN FORM FOR ANGINA PECTORIS

55288 DI251 - STABIL ANGINA PECTORIS

55324 DI252 - GAMMELT MYOKARDIEINFARKT

55405 DI259 - KRONISK ISKÆMISK HJERTESYGDOM UNS

55765 DI350 - AORTASTENOSE

56751 DI489 - ATRIEFLAGREN EL ATRIEFLIMREN UNS

56775 DI489B - ATRIEFLIMREN

57608 DI652 - OKKLUSION EL STENOSE AF A. CAROTIS U HJERNEINFARKT

57897 DI694 - SENFØLGE EFTER TIDLIGERE APOPLEXIA CEREBRI

58223 DI739A - CLAUDICATIO INTERMITTENS

59080 DI849 - HÆMORROIDER UNS UDEN KOMPLIKATION

59086 DI849 - HÆMORROIDER UNS UDEN KOMPLIKATION

60159 DJ189 - PNEUMONI UNS

61023 DJ441 - KRONISK OBSTRUKTIV LUNGESYGDOM M AKUT EKSACERBATION UNS

61079 DJ449 - KRONISK OBSTRUKTIV LUNGESYGDOM UNS
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61139 DJ459 - ASTMA UNS

64820 DK309 - FUNKTIONEL DYSPEPSI UNS

65348 DK449 - DIAFRAGMAHERNIE UDEN ILEUS EL GANGRÆN

66247 DK573 - DIVERTIKULOSE ELLER DIVERTIKULIT I TYKTARM U PERF EL ABSCES

72616 DM170 - PRIMÆR DOBBELTSIDIG KNÆLEDSARTROSE

73311 DM232 - GAMMEL MENISKLÆSION

73392 DM238 - ANDEN LIDELSE I KNÆLED

73612 DM255 - LEDSMERTER

73644 DM258 - ANDEN LEDLIDELSE

74554 DM472 - ANDEN SPONDYLOSE M RADIKULOPATI

74560 DM472 - ANDEN SPONDYLOSE M RADIKULOPATI

75246 DM545 - LÆNDESMERTER UNS

76199 DM754 - AFKLEMNINGSSYNDROM I SKULDER

76232 DM759 - SKULDERLIDELSE UNS

81792 DN811 - CYSTOCELE HOS KVINDE

82890 DN92 - KRAFTIG, HYPPIG OG UREGELMÆSSIG MENSTRUATION

83242 DN950 - POSTMENOPAUSAL METRORAGI

95109 DR100 - AKUTTE MAVESMERTER

95140 DR102 - MAVESMERTER LOKALISERET TIL BÆKKEN OG BÆKKENBUND

95189 DR108 - ABDOMINALIA, ANDEN OG IKKE SPECIFICERET

96027 DR319 - HÆMATURI UNS

96203 DR391 - VANDLADNINGSBESVÆR UNS

96944 DR559 - BESVIMELSE EL KOLLAPS
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B. Table Dump

Patient

id borger aendringsdato sup DataCentAjourDato Kommune Tlf

CPRNummer BefolkningSted DiskretionsFlag LoadTM UdrejseDato

CPRNummerCrypt ByNavn FlygtningeNr Lokalitet UdRejseLand

FoedDato CivilDato Foedested Paaroerende1 YderAdresse

navn CivilStatus FoedselsAarhundrede Paaroerende2 YderNavn

Adresse CoNavn FolkeKirke SocialDistrikt YderNummer

PostBy CPRAegtefaelle ForskBeskytDato StatusDato YderPostNr

PostNr CPRgaeldende FraFlytDato StatusKode

AdrBeskytSlut CPRNummerMor FraKommune Stilling

AdrBeskytStart CPRSup HjemStedKommune SuppDato

aendringsdato opl CPRtype Koen TilFlytDato

Diagnosis

id diagnose level1Kodetekst level5Kodetekst level9tekst GRP23

DiagnoseKode level1tekst level5tekst AFLPOS GRP99

DiagnoseKodeTekst level2kode level6kode DelKode AendringsDato

DiagnoseSKSType level2Kodetekst level6Kodetekst AmtAnd ORIG FRADAT

DiagnoseTekst level2tekst level6tekst BiOperPris ORIG TILDAT

DiagnoseType level3kode level7kode IndGrepPris LoadDT

Gyldig level3Kodetekst level7Kodetekst KodeType DiagnoseKodeTekstHist

GyldigFra level3lkode level7tekst Koen DiagnoseTekstHist

GyldigTil level3tekst level8kode LnkNbr level1Kodetekst hist

Lukket level4kode level8Kodetekst DiagGruppe level1tekst hist

MaxAlder level4Kodetekst level8tekst OperGruppe level2Kodetekst hist

MinAlder level4tekst level9kode SKSUdg level2tekst hist

level1kode level5kode level9Kodetekst USBPRI level3Kodetekst hist
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Diagnosis

level3tekst hist level5tekst hist level7tekst hist level9tekst hist IndskrivningsDato

level4Kodetekst hist level6Kodetekst hist level8Kodetekst hist id Borger UdskrivningsDato

level4tekst hist level6tekst hist level8tekst hist HenvDato

level5Kodetekst hist level7Kodetekst hist level9Kodetekst hist HenvAfsDato

Analysis

id AnalysetypeLeverandoer OevreAcceptgraense ArbejdsstationNavn

InvestigationsID NedreOBSgraense Fra

LeverandoerID OevreOBSgraense Til

LeverandoerAnalyseID Version GyldigFra

NedreAldersgraense StandardRelationstegn GyldigTil

OevreAldersgraense FastInterval Gyldig

ContainerInfoID ErReflekstest LeverandoerNavn

KliniskInfoID LeverandoerType BestiltInvestigationsID

LaboratorieID LeverandoerBeskrivelse RekvisitionsID

Analysenummer LeverandoerAktiv id RekvisitionHandler

Analysenavn LeverandoerMasterInstrument id AnalyseHandler

Forkortelse LeverandoerHarModuler id ResultatLab

NumeriskForkortelse Koen id OrgRekvirerendeOrganisation

NPUKode LeverandoerGraenseSlutAlder id ResultatModtagerOrganisation

System LeverandoerGraenseStartAlder id BetalendeOrganisation

SystemSpec LeverandoerGraenseEnhedAlder id Borger

Prefix LeverandoerAlarmSymbol id AnalyseTypeLeverandoer

Komponent LeverandoerAlarmKommentar id BestiltSamplingsDato

KomponentSpec LeverandoerAlarmNote id BestiltSamplingsTid

Egenart LeverandoerNedreGraense id SampleModtagelseDato

Fremgangsmaade LeverandoerOevreGraense id SampleModtagelseTid

Enhed LeverandoerDecimalerNedreGraense id RigtigSamplingsDato

NedreAcceptgraense LeverandoerDecimalerOevreGraense id RigtigSamplingsTid
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Analysis

id RapportSamplingdato id ResultatReporteresDato Resultat

id RapportSamplingTid id ResultatReporteresTid NumeriskResultat

id FoersteResultatGodkendelsesDato id SidsteOpdateringsDato ResultatEnhed

id FoersteResultatGodkendelsesTid id SidsteOpdateringsTid InterntSvar

id SidsteResultatGodkendelsesDato id RekvisitionOprettetDato ReferenceVaerdi

id SidsteResultatGodkendelsesTid id RekvisitionOprettetTid OevreReference

id SamplingSlutDato id PrioritetStatusArketype Nedrereference

id SamplingSlutTid ReferenceIntervalTypeID NormaliseretNumeriskResultat
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C. Summary

The danish medical sector digitizes information about conducted medical procedures.

These medical procedures include information about patients’ analysis samples and

diagnoses. Doctors use observations gathered from medical properties as indicators

for beliefs about health states of patients. These indications are based on the knowl-

edge of the individual doctors, and are thereby not necessarily shared across all doc-

tors. Identifying the indicators used across all doctors to diagnose a given illness could

provide a means of knowledge sharing and improve the understanding of medical pro-

cedures. Thereby, this project aims to examine a medical data warehouse in order to

test the hypothesis of the existence of a relationships between medical properties and

illnesses.

The medical data warehouse available for this project contains information about

analysis samples and diagnoses. This data is used to train a non-parametric tempo-

ral model with the purpose of predicting the illness of a diagnosis based on a set of

analysis samples of a patient within a horizon with better performance than naive pre-

diction methods. This performance is measured through the accuracy of predictions,

and if the performance is better than naive approaches this is seen as a confirmation

of the hypothesis about the existence of a relationship between medical properties and

illnesses.

The model is based on the intuition of a naive Bayes model in which methods for

handling temporal aspects are applied. The prediction is based on the use of Kernel

Density Estimation for measuring normality of analysis samples in regards to an ill-

ness. These normality measures represent a likelihood that a patient is affected by an

illness. The model returns a likelihood for each illness. These likelihoods are normal-

ized into a probability distribution over each illness for a patient.

The evaluation of the model was performed on three sets of illnesses of different

sizes, and for each set of illnesses the model outperformed the naive approaches. This

indicates that there exists a relationship between analysis samples and diagnoses, and
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thereby confirms the hypothesis. This lead to an investigation of the model’s ability to

be used in diagnostic procedures, by evaluating its performance as a diagnostic deci-

sion support tool. It was shown that the model was capable of filtering out a subset of

illnesses, which had a large likelihood for containing the correct illness.
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