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Abstract:
This report consists of a 7’th semester

diploma project, which is the final project

in the education to be an electronic diploma

engineer. The assignment in this project is to

optimize an tube amplifier, to get a flat au-

dio spectrum response. The system is build

on a Xilinx FPGA platform, which has an

implemented Microblaze processor, which

has been build up to be a 5 stage pipeline

DSP. The input audio signal is the Spdif with

CD quality format of 44.1K hz 16bit, and

has been build from scratch in VHDL, and

implemented inside the FPGA. The output,

and feedback to, and from the amplifier has

been build up around the Wolfson WM8731

CODEC, and all interface communication

has also been build up in VHDL, such that

it does not strain the Microblaze. All equal-

izer, and analyser filters implemented in Mi-

croblaze, has been modelled from calculated

standardized octave bands.

The content in this report will first be an

introduction, followed by project proposals,

where an analyse and boundary will be de-

scribed. Then two chapters, one for hard-

ware solution, and one for signal process-

ing solution, which both describe a deeper

analyse, solution. Then a summarize part

with conclusion, and perspective, then a ap-

pendix with diagrams, tests, measurements,

and etc. And in the end, there will be a bibli-

ography over sources used in this report and

project.

The content of this report is freely available, however publication is only permitted with explicit permission from the author!!!
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1
INTRODUCTION

This report consists of Dennis Schmidt Nielsens 7th semester diploma project report. The

projects project proposal is to optimize an tube amplifier output to get a flat frequency re-

sponse. In chapter 2 there are the definition of the problem, which consists of a problem

description with project solution proposals, and a second part describing the analyse, and

choosing of solution proposal, and the the hardware platform.

In chapter 3 there is an hardware analyse, and solution part. The analyse part analyse the

hardware components, and shows the hardware components function. The solution part will

describe how the hardware has been developed, programet, and implemented.

In chapter 4 there is an signal processing solution part, which consists of an analyse, and so-

lution part. In the analyse part there will be an analyse over audio theory, and other theory

relevant for the chosen system. The solution part will describe how the methods has been cal-

culated, programet, and implemented.

In chapter 5 there is a conclusion and a perspective of this project. Chapter 6 consists of a

appendix, which consists of diagrams, interfaces, measurements, tests, and etc. In the end of

this report there is a bibliography list over the reference sources used in this project.

3





C
H

A
P

T
E

R

2
DEFINITION OF PROBLEM

2.1 Problem Description

The project proposal is to optimize a tube audio amplifier, to get a flat frequency spectrum

response. When an audio signal enters an amplifier it will first go trough the preamp stage to

gain the amplitude, after the preamp the signal will go trough a power stage to gain the current

of the signal. A tube amplifier is normally build up of good quality components, and as few

components as possible, however the components are far from ideal and flat in the frequency

spectrum. To get, and match components so they compensate for each other is a extreamely

expensive, and demanding task, and cost a lot of work time, and the result in the end will never

be total perfect.

In this project the proposal is to compensate this by measuring the signal of the amplifier, and

feed it back to some sort of Digital Signal Processing system, and analyse the difference be-

tween output and the input signal, and correct it to get a flat frequency spectrum response.

The input source has to be at a high quality, because in this project it is the goal to get as close

as possible to the input signal, in the best case scenario it will be very close to the sound of

the recorded signal. The goal is therefore to remove the colouring of the signal added through

the amplifier system, and compensate the signal by adjust an equalizer by the difference from

analysing the output vs input signal.

The audio spectrum goes from approximately 20hz to 20khz[1]. Below is 2 spectrum’s the first

is the uncorrected output signal, that shows the amplitude is different from frequency to fre-

quency. The second spectrum shows an corrected(ideal) audio spectrum where the spectrum

is flat, and has the same amplitude over all frequencies.
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CHAPTER 2. DEFINITION OF PROBLEM

Figure 2.1: Audio spectrum over uncorrected signal vs corrected signal.

There is lined up 3 possible proposals solutions to focus on.

1)The first one is to focus only on signal correction from the output of the amplifier, and feed-

back the output signal to a signal processing unit, where there is implemented an analyser

and an equalizer. The feedback from the output of the amplifier will go trough an analyser to

measure the energy spectrum, and compare it with the input signal energy spectrum, and out

from these data adjust an equalizer mounted on the signal line before output to the amplifier.

Below is a sketch over a system of signal correction.

Figure 2.2: Signal correction by feedback of the output signal.

2)The second solution could be to focus on the output of the speaker(room correction). By in-

stalling a microphone where the listener of the music normally is placed(the sweet spot). The

signal from the microphone will then be analysed, and thereby have the room characteristic,

and from these characteristics adjust an equalizer mounted on the signal line before output to

the amplifier. Below there is a sketch over how the room correction could be developed.

6



2.1. PROBLEM DESCRIPTION

Figure 2.3: Room correction by feedback output from speaker via a microphone.

3)The third solution proposal could be a combination of signal and room correction. By first

scan the room characteristic, and save these data in variables, and use these data in combi-

nation with the signal correction, and adjust in combination the equalizer mounted on the

signal line before the output to the amplifier. Bellow is shown a sketch over how such a system

solution could be developed.

Figure 2.4: Room and signal correction by feedback of a room characteristics,
and the output signal of the amplifier.

In the next section, there will be an analyse, boundary, and the goal over the system choice,

and of what there has to be developed in each block.
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CHAPTER 2. DEFINITION OF PROBLEM

2.2 Project Analyse, Boundary, And Goal

After some overall reflection, the solution was to go for the number 1), the signal correction of

the amplifier by measure the output signal, and compare it by feedback the input signal to an

analyser, and out from these data adjust an equalizer mounted on the signal line, before the

output to the amplifier. The main reason to boundary to this solution are the time limitation

of 3 months, given for this project. Below is number 1) sketch diagram again.

Figure 2.5: The chosen solution, Signal correction by feedback of the output from
the amplifier.

So the job in this project is to find or create a platform where the analyser and equalizer can

fit on. Below there is a sketch over what parts and choices there has be reflected over. The

input could be either an ADC(Analogy To Digital Converter), or the digital audio interface

Spdif(Sony/Philips Digital Interface Format). The Spdif is equipped in most audio systems on

the market, an gives a good quality source of audio. The ADC will be an analogue input so the

source quality will depend on equipment before this correction system. The platform could

consist of a DSP(Digital signal Processor) or a FPGA(Field Programmable Gate Arrays). A bene-

fit could be the FPGA, because of the support of parallel cores CPU’s, and the VHDL(Very High

speed Integrated Circuit) hardware implementation beside the cores. Below shows a sketch

diagram over the different blocks and choices there has to be made.

8



2.2. PROJECT ANALYSE, BOUNDARY, AND GOAL

Figure 2.6: Sketch diagram over the signal correction and the choices of its parts
there has to be taken.

As there can be seen on the sketch diagram there is different choices, below is the pros, cons,

and the chosen goal.

Input ADC Or Spdif ?

An table is set up to compare the ADC input vs the Spdif input.

ADC Spdif
Development time Short Long

Noise added There is noise added No noise added to signal
Quality Good Super

Table 2.1: Compare ADC with Spdif

The choice was to go for Spdif because of the good quality and no noise is added to the signal

as in the analogue ADC. In this project it is the goal to remove the colour of the audio signal

not add, so the choice is therefore to go for the Spdif, because of its digital representation, and

high quality.

Platform DSP Or FPGA ?

The platform to choose to implement the system on, requires a little reflection, but first a tabel

se tup to compare the platforms.

9



CHAPTER 2. DEFINITION OF PROBLEM

DSP FPGA
Speed Fast Extremely Fast

Peripherals Low Theoretical Unlimited
Number of CPU’s 1 Theoretical Unlimited

Development Time Fast Middle/Long
ADC/DAC’s Many 0

Table 2.2: Compare DSP vs FPGA

The choice is to go for the FPGA, especially the speed needed for the Spdif was an argument.

An DSP is not fast enough to shift in a Spdif-signal(easily go over 6Mbi t/s)[2], and have power

to also run the systems analysers, equalizers and other algorithms.The only advantages the

DSP has over the FPGA is the smaller development time, and the included ADC and DAC’s.

But the ADC and DAC required will anyway be external, because of the wanted quality of the

signal

ADC/DAC’s or CODEC

The choice if it should be ADC and DAC’s separately or a CODEC, will be open choice in this

project and up to what hardware there is available on the market, for a reasonably price. But

a CODEC will maybe be the best, because of the development time(shared interface), another

benefit is that in a CODEC the ADC and DAC’s will properly be closely matched.

The Desired System Set-up :

The desired system setup consist of a Spdif input, and a FPGA based platform to implement

the system on, and ADC and DAC’s or a CODEC. Below is a sketch diagram over the desired

hardware set-up.

Figure 2.7: Sketch diagram over the desired system set-up.
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2.2. PROJECT ANALYSE, BOUNDARY, AND GOAL

Choice of platform :

After some researches on the internet, an interesting development board based on the Xilinx

spartan6 lx9[3] FPGA showed up on ebay.com[4]. The board only consist of the FPGA system,

but with a little extra fee, an expansion board with a Wolfson WM8731 CODEC[5] could be

added to the ordre. This board are perfect to this project and the price is extremely low 80

dollars plus 11 dollars for ship, approximately 500 Dkr. Below shows the ordered boards.

Figure 2.8: To the left the core board, and to the right the expansion board[4].

Summarize System Goal:

A little quick summarize of this project system, and what there has to be developed.

• Choice 1) signal correction only

• The system input signal will consist of Spdif(Sony/Philips Digital Interface Format)

• The platform will consist of a Xilinx Spartan6 lx9 FPGA platform

• ADC/DAC’s will consist of a Wolfson WM8731 CODEC on an extension board

In the 2 next chapters, there is an deeper analyse and solution of the system. The analyse/so-

lution part are split up in 2 separately chapters, one for the hardware, and one for the signal

processing part.
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3
HARDWARE SOLUTION

In this chapter there is an analyse section, followed by a solution section, over the different

hardware components, and how these function, and how the hardware is developed. The

sketch diagram below shows the desired hardware set up, and is the outcome from the analyse

part, it is shown here for a better understanding of the developed hardware from the start.

Figure 3.1: Overview Over Hardware
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CHAPTER 3. HARDWARE SOLUTION

First will the Spdif(Sony/Phillips Digital Interface) go trough an interface, interfaced will con-

vert the optical Spdif signal into TTL(ransistor Transistor Logic) level. The TTL Spdif signal will

then enter an FPGA(Field Programmable Gate Arrays), where an hardware VHDL(Very High

speed Integrated Circuit) program will take care of receiving, and split the signal up into the

raw audio data. When the Spdif has been split up it will be send to the CODEC, there will take

care of sending the data to the Microblaze there is set up as a DSP(Digital Signal Processor).

The Spdif are controlling the system update clock cycles, which will be when a new Spdif audio

sample is ready. When an update from the Spdif appears, the CODECs VHDL code will send

the data from the signal processed signal, from the Microblaze to the CODEC DAC(Digital To

Analog Converter) via I2S(Integrated Interchip Sound). At the same time the CODEC code will

shift in the received output from the amplifier, via the ADC(Analog To Digital Converter) in

the CODEC. The first time the system starts up the Microblaze will setup the registers in the

CODEC by sending 2 wire I2C(Inter Integrated Circuit).

3.1 Analysing

In this section an deeper analyse of the Spdif(Sony/Phillips Digital Interface)[2], followed by

Microblaze[6] set up as a DSP(Digital Signal processor), and last the CODEC WM8731[5], will

be performed.

3.1.1 Spdif Protocol

Spdif stands for Sony/Phillips Digital Interface[2]. The purpose of the protocol is to inter-

face, and transceive digital audio data. There is 3 standard interfaces[2], Coax(coaxial cable),

Toslink(optical cable), and TTL. The Spdif protocol consist of 64 bit subframes, where the first

8 bita is an identification preamble, to detect whether it is the left or right audio channel, or a

start of a block.

Preamble

The preamble identification bits:

"0001.0111" or inverted signal "1110.1000" = Start of block, and is also left audio channel data.

"0001.1011" or inverted signal "1110.0100" = Left audio channel data.

"0001.1101" or inverted signal "1110.0010" = Right audio channel data.

Blocks and frames:

The protocol consists of a block, where each block consists of a group of 192 frames, each

frame consists of two subframes, where one subframe is for the left(start-block/not start-

block) channel, and the other is for the right channel. When the block has reached 192 frames

a new block starts, this will continue infinite, or until the Spdif source has been turn off.

14



3.1. ANALYSING

Frame Sub Frame Sub Frame
1 Start Block Left channel Right channel
2 Left channel Right channel
3 Left channel Right channel
. Left channel Right channel
. Left channel Right channel
. Left channel Right channel

192 Left channel Right channel

Table 3.1: Block with 192 frames, each frame consists of 2 subframes

BMC(Biphase Mark Code):

After the detection of the first 8bit subframe preamble, and which subframe channel there

has been detected, then the rest of the bits(from bit 8 to bit 63) is BMC(Biphase Mark Code)

encoded, which means that if two bits is "11" or "00" it is a 0, if the two bits is "10" or "01" then

it is a 1:

Figure 3.2: BMC(Biphase Mark Code) time diagram.[2]

Sub frame protocol:

After the BMC(Bi Phase Mark Code), the subframes is split up, from bit 4 to 7 a 4 bit AUX(auxiliary)

which can consist of free usable bits, some use the 4 bits to expand the audio resolution from

20 bit to 24 bit. The next 20 bits consist of PCM(Pulse Code Modulation) audio data, with LSB

first at bit 8 to MSB at bit 27. The last 4 bits from 28 to 31, consists of valid, user, control and

parity check.

15



CHAPTER 3. HARDWARE SOLUTION

Preamble AUX LSB—–20bit audio data—–MSB V U C P

Table 3.2: Subframe Protocol

Where

V = Valid : Data ok to output(practical not useful because there is no time to detect errors).

U = User : Serial data stream each channel, with format specified.

C = Control = Channel status : Consists of various information such as tittle, format, etc.

P = Parity check : For detection of errors in data transmission, set to "1" if bit 4 to 30 have

odd parity, and set to "0" if bit 4 to 30 have even parity.

Audio data format Normally CD(Compact Disk) audio data is send as 16bit PCM(Pulse Code

Modulation) over the Spdif.

Figure 3.3: PCM(Pulse Code Modulation)[7]
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3.1. ANALYSING

This has to be taken care of if the signal have to be represented as 2’s complement later.

Figure 3.4: PCM(2’s complement)[8]

Captured Spdif Signal:

A captured signal from a CD player used in this project, shows the sub frames with preamble

and all the BMC encoded bits.

Figure 3.5: Spdif signal captured from the cdplayer coax output by an digital
analyzer

As there can be seen 2 and ½ subframe is captured, the first"0001.1011" which shows that the

CD-player is not inverted, and it is a not start of block, and it is the left audio channel. The

next "00001.1101" shows the right audio subframe, the last is again "0001.1011" so no start of

block and it is the left audio channel data.

17



CHAPTER 3. HARDWARE SOLUTION

3.1.2 Microblaze

Microblaze was chosen because of earlier experiences with the processor. Microblaze[6] is a

32bit RISC processor, and is by default set up to 3 stage pipeline, but support 5 stage pipeline.

There is support of 64 bit MAC(multiplication accumulator). Microblaze architecture of the

memory is Harward, and address space is 32 bit and can handle up to 4Gb instructions and

data. I/O’s has a mapped address from "0xC0000000" to "0xFFFFFFFF" in the memory space.

The local memory stores the data and program instructions and the size varies between 8kb

and 64kb and is chosen when building the core.

Figure 3.6: Overview over the Microblaze.[6]

Microblaze consumes 536 LUTS and 276 to 1619 flipflops without any pheripherals in the

FPGA, and is optimized for being implemented on Xilinx FPGA’s.

18



3.1. ANALYSING

3.1.3 CODEC WM8731

The Wolfson WM8731 CODEC[5] is a stero CODEC, with 2xDAC, 2xADC, and a microphone

mono input. The sampling frequency is between 8khz and 96khz. It’s audio stream interface

is based on the I2S(Integrated Interchip Sound, or Inter IC Sound) developed by Philips[9] to

interconnect audio digital stream between chips. The CODEC has selectable inputs of 16, 20,

24, and 32 bits word-length’s(2’s complement), and the device can be selected to operate in

either slave or master mode. All the initialize of the peripherals set up in the CODEC, is in-

terfaced by the 2 wire I2C(Inter-Integrated Circuit)[10] originally developed by Philips, to inte-

grate communication between chips over a 2 wire line. Below is an overview over the WM8713

CODEC

Figure 3.7: Overview over the Wolfson WM8731 CODEC[5].

Peripherals setup I2C:

Before using the CODEC, it’s peripherals has to be initialized via the 2 wire I2C interface. I2C

has 2 wires one for clock(between 0−400khz), and the other for data.

Figure 3.8: Overview over the I2C 2 wire[5].

The data sequence is shifted in with the I2C’s clock one per bit, the sequence is first an ad-

dress(WM8713: "0011010" or "0011011") consisting of 7 bit and a R/W-bit, the CODEC will

19
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then respond by an ACK(acknowledgement). When an ACK has been send back, the data to

the device can be send each packet is of size 8 bit every time the CODEC will respond with an

ACK.

WM8731 CODEC registers:

WM8731 has a various of setup modes, below is a table with an overview of its different regis-

ters.

Figure 3.9: Overview over the WM8731 CODEC[5].

Every register has a 7bit register address, and 9 bit of register set up bits. The sequence has to

be combined to 2x8bit packets to send over I2C, where the first 7bits is the register address,

and the following 9bits is the register bits. In solution part there is specification, and set up of

the registers.

I2S audio stream:

When the CODEC has been initialized, a MCLK(Master Clock) has to be added to the CODEC,

this is for the cycle of the input stream of the I2S audio. There is a various of frequencies for

the MCLK(see solution part). When the MCLK is added, the CODEC is ready to receive and

transmit the audio stream via I2S. There is basically 2 modes, in the I2S, I2S-mode and DSP-

mode.

20



3.1. ANALYSING

I2S-mode:

Figure 3.10: Overview over the I2S-mode[5].

The I2S I2S-mode consists of 3 signals, DAC/ADC-LRC(Left Right Select), BCLK, and DAC/ADC-

data. LRC controls the left/right channel select, BLCK is the bit-stream clock one clock per bit,

and the data is the audio data. When sending data, the data starts at the second clock of BCLK.

The data is then sended in first with the left channel data with MSB first, then LRC change

stage, and the right channel data is send.

DSP-mode:

Figure 3.11: Overview over the DSP-mode[5].

In DSP-mode the LRC is a short pulse with the time of 1 BCLK(Bit Clock). The audio data

stream is send with the left concatenation with the right. The first bit is the MSB and has to

fall on the first BCLK after the pulse. After the data has been shifted in, the codec will process

the data, and wait for a new pulse on LRC, all data send between the data length and the pulse

will be ignored.
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3.2 Solution

In this section the solution of and how Spdif, Microblaze, and CODEC is implemented. First

there is Spdif, then Microblaze, and last CODEC.

3.2.1 Spdif

The clock frequency for the Spdif[2], has to be one clock cycle per bit of the Spdif frame. One

frame consist of 2 subframes where each consists of 64 bit so 2 · 64 = 128. In this project a

normal CD(Compact Disk) is chosen to be the Spdif input. A normal CD has the sampling fre-

quency of 44.1khz per channel so 44.1khz ·2 = 88.2khz, and the format is 16 bit PCM(Pulse

Code Modulation). So the clock frequency for the Spdif has to be:

64bi t ·2channel s ·44.1 ·103 = 5.644800Mhz (3.1)

By looking at values of crystals oscillators there is available at the market, there was no 5.644800Mhz,

so an 16.934400Mhz(3 ·5.644800Mhz = 16.934400Mhz) was chosen instead because it could

be divided up by 3:

16.934400Mhz

3
= 5.644800Mhz (3.2)

The VHDL code for dividing the clock:

. V HDL f or the clock di vi der :

.

. i f r i si ng _ed g e(Mclk) then

. clk_di v <= clk_di v + 1;

. i f clk_di v = 0 then

. clk <= ′1′;

. el si f cl k_di v = 1 then

. clk <= ′1′;

. el si f cl k_di v2 = 2 then

. clk <= ′0′;

. clk_di v <= "0000";

. end i f ;

. end i f ;
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The Spdif bit-stream is shifted in, in a 128 bit buffer, so there can be 2 subframes in it:

. V HDL f or shi f t i ng the Spdi f bi t − str eam i n :

.

. i f r i si ng _ed g e(clk) then

. Spdi f _F r ame <= Spdi f _F r ame(126 downto 0) & Spdi f _bi tStr eam;

. end i f ;

Every time the frame is shifted one place in the Spdif_Frame buffer, the hole buffer is checked

if there is preambles on place 127 down to 120(for the left) and place 63 down to 56. The VHDL

code looks:

. i f r i si ng _ed g e(clk) then

. C LOC K _cor r ect i on <= ′0′;

. i f (Spdi f _F r ame(127 downto 120) = "00011101" OR Spdi f _F r ame(127 downto 120) =

. "00010111") AN D (Spdi f _F r ame(63 downto 56) = "00011011") then

−− l e f t channel sub f r ame

. Gner i c_GPIO_GPIO_IO_pi n_l atchL(0) <= Spdi f _F r ame(73) XOR Spdi f _F r ame(72);

. Gener i c_GPIO_GPIO_IO_pi n_l atchL(1) <= Spdi f _F r ame(75) XOR Spdi f _F r ame(74);

. .

. .

. .

. Gener i c_GPIO_GPIO_IO_pi n_l atchL(15) <= Spdi f _F r ame(103) XOR Spdi f _F r ame(102);

−−Ri g ht channel sub f r ame.

. Gener i c_GPIO_GPIO_IO_pi n_l atchR(0) <= Spdi f _F r ame(9) XOR Spdi f _F r ame(8);

. Gener i c_GPIO_GPIO_IO_pi n_l atchR(1) <= Spdi f _F r ame(11) XOR Spdi f _F r ame(10);

. .

. .

. .

. Gener i c_GPIO_GPIO_IO_pi n_l atchR(15) <= Spdi f _F r ame(39) XOR Spdi f _F r ame(38);

−−Conver t to 2′s compl ement and shi f t the 2 sub f r ames i n the par al lel por t o f mi cr obl aze

. SPD I F _GPIO <= ((not Gener i c_GPIO_GPIO_IO_pi n_l atchL) +1) &

. ((not Gener i c_GPIO_GPIO_IO_pi n_l atchR) + 1);

−−Setcl ockcor ect i onto1toacti vatei nt ter upti nCODEC f uncti on

. C LOC K _cor r ecti on <= ′1′;

. end i f ;

. end i f ;

After this every thing should be okay, but problems with jitter does that the the two clocks in

this asynchronous serial receiving is not the same, and the result is a really bad sound with lots

of clicks and noise.
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Figure 3.12: Jitter in a signal[11].

In this project the solution was, not perfect but acceptable, when using good matched clocks,

to shift in the Spdif bit-stream 3 times by a clock phase of 1/3 of each other, and luckily the

16.934400Mhz was perfect. here is a sketch over the clocks:

Figure 3.13: The 3 clocks with phases for the Spdif shift in
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The VHDL code for the 3 clocks by a phase of 1/3:

. V HDL f or the 3 phases clocks :

.

. i f r i si ng _ed g e(Mclk) then

. clk_di v <= clk_di v + 1;

. i f clk_di v = 0 then

. clk_phase1 <= ′1′;

. clk_phase2 <= ′0′;

. clk_phase3 <= ′1′;

. el si f cl k_di v = 1 then

. clk_phase1 <= ′1′;

. clk_phase2 <= ′1′;

. clk_phase3 <= ′0′;

. el si f cl k_di v2 = 2 then

. clk_phase1 <= ′0′;

. clk_phase2 <= ′1′;

. clk_phase3 <= ′1′;

. clk_di v <= "0000";

. end i f ;

. end i f ;

The VHDL code for the 3 times buffer spdif bit-stream shift in is then:

. V HDL f or shi f t i ng 3 t i mes the Spdi f bi t − str eam i n :

.

. i f r i si ng _ed g e(clk_phase1) then

. Spdi f _F r ame1 <= Spdi f _F r ame1(126 downto 0) & Spdi f _bi tStr eam;

. end i f ;

. i f r i si ng _ed g e(clk_phase2) then

. Spdi f _F r ame2 <= Spdi f _F r ame2(126 downto 0) & Spdi f _bi tStr eam;

. end i f ;

. i f r i si ng _ed g e(clk_phase3) then

. Spdi f _F r ame3 <= Spdi f _F r ame3(126 downto 0) & Spdi f _bi tStr eam;

. end i f ;
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The VHDL code has now the job to check 3 buffers for preambles, and chose one, and skip

they others. The VHDL code below shows the how this is implemented, most of the code is

included because of understanding:

Figure 3.14: The 3-phase detecting preamble code
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Point description of the VHDL code of the 3 phase preamble detecting:.

• Spdi f _count is increasing by one on each clk

• C LOC K _cor r ect i on is set to zero(will only be one when updating CODEC)

• When Spdi f _count reach 3 the Spdi f _F r ame_er r or _detect is set to zero. It is for

detecting when one buffer has been detected, and used for ignore other detects

• There is 3 detectors, one for each buffer. When one of them has detect a preamble it will

set the Spdi f _F r ame_er r or _detect to high so they others will not execute. In each

detector it will do the following

– Sort out and inverse BMC(Bi Phase Mark Code) the specific buffer, and convert it

to 2s complement, and store it in Gener i c_GPIO_GPIO_IO_pi n_l atchL(which

is the signal port to the CODEC)

– Sort out and inverse BMC the specific buffer, and convert it to 2s complement, and

store it in Gener i c_GPIO_GPIO_IO_pi n_l atchR( which is the signal port to the

CODEC)

– F r ame_er r or _detect is equal to one

– C LOC K _cor r ect i on is equal to one(to tell the codec to update)

This VHDL code and all its functions will be running on every clock event, this shows the main

reason why a FPGA(Field Programmable Gate Arrays) is chosen in this project, the rate this

VHDL program has to run is 5644800 times a second, and beside that it has to switch in 3

times 5.644800 Mbit/s = 16.934400Mbit/s Spdif signal, and divide and route all the clocks, run

the codec, etc.

A DSP(Digital Signal Processor) will not have this sort of power, and also have power to do all

the calculations of the filters and other algorithms.

27



CHAPTER 3. HARDWARE SOLUTION

3.2.2 Microblaze

Microblaze[6] is build up to support the following peripherals.

• Sy stem clk i s set to maxi mum o f 86.333333Mhz

• 32kb i nstr ucti ons/d at a local memor y

• 32bi t GPIO(out ) f or out put to D AC

• 32bi t GPIO(i n) f or i nput o f ADC

• 32bi t GPIO(i n) f or i nput o f Spdi f

• 1bi t GPIO(i n) i nput f or i nter r upt

• 1 U ART to debug , etc..

• 1 i i c(I 2C ) f or i nti al i zi ng r eg i ster s i n CODEC

Beside the above peripherals, the processor is set up to be a 5 stage pipeline and 64 bit MAC,

and is set to floating point support.
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3.2.3 CODEC WM8731

The CODEC WM8713[5] is coded by shifting I2S[9] audio data stream in and out at the same

time, by using the DSP-mode, and is set in slave-mode. WM8713 has been added the MC LK =
16.9344Mhz. It’s interface is programmed in VHDL, so it runs parallel with the Spdif and the

Microblaze[6] processor, thereby not take resources from the processor. BC LK = 5.6448Mhz

this is the bit-rate of the I2S audio data bit-stream.

"C LOC K _cor r ect i on" from the Spdif is controlling the LRC witch determine when a new au-

dio samples has to be written, and a new one shifted in the CODEC(ADC from the amplifier

output). The code below followed by step by step trough the code, explain how the CODEC

interface are programmed:

.V HDL f or I 2S i nter f ace

.

. i f f al l i ng _ed g e(BC LK ) then

. D AC _count <= D AC _count + 1;

. D AC LRC <= ′0′;

. ADC LRC <= ′0′;

. D AC _out <= D AC _D AT A(31);

. D AC _D AT A <= D AC _D AT A(30 downto 0) & ′0′;

. ADC _D AT A <= ADC _D AT A(30 downto 0) & ADC _i n;

.

. i f (D AC _count = 1) then

. Mb_i nter r upt_contr ol l er <= "0";

. el si f (D AC _count = 33) then

. ADC _D AT A1 <= ADC _D AT A;

. ADC _GPIO <= ADC _D AT A1;

. el si f (C LOC K _cor r ect i on = ′1′) then

. Mb_i nter r upt_contr ol l er <= "1";

. D AC _D AT A <= D AC _GPIO;

. D AC LRC <= ′1′;

. ADC LRC <= ′1′;

. D AC _count <= "0000000000000000";

. end i f ;

. end i f ;

29



CHAPTER 3. HARDWARE SOLUTION

Steps for the code is:

• BCLK: bit-stream clk of 5.6448Mhz

• DAC_count: increases by one every BCLK ′event ′

• DACLRC/ADCLRC: is set to zero when no LRC pulse

• DAC_out(31): is the bit at the given time there is send to the CODEC DAC I2S

• DAC_DATA: is shifted one place

• ADC_DATA: is being shifted in by the bit at the given time, from the CODEC I2S ADC

• if DAC_count=1: Microblaze interrupt is set to zero

• if DAC_count=33: ADC_DATA is stored inADC_GPIO in the Microblaze ADC data port(32bit

parallel data port)

• if CLOCK_correction=1: Comes from the Spdif and tell that the system has to update

• Mb_intterupt_controller: is set to one to generate interrupt in Microblaze

• DAC_DATA<=DAC_GPIO: The processed data(Signal processing) from Microblaze DAC_-

GPIO is stored in DAC_DATA

• DACLRC/ADCLRC is set to one to generate the pulse in DSP-mode

• DAC_count: is set to zero and the process start again

A screen capture of the analyser shows that the ADC_DATA, DAC_DATA, DAC_LRC and ADC_-

LRC works. The BCLK looks like running faster than the MCLK this is not the case, and this is

due to the analyser is set bellow the nyquist rate for the MCLK.

Figure 3.15: Overview Over I2S communication to and from CODEC
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I2C setup:

A look again of the registers inside the CODEC, shows the functionality of the CODEC, and

what has to be set in its registers.

Figure 3.16: Overview over the WM8731 CODEC[5].

Basically in this project the overall set up of the CODEC has to be set to MCLK=16.934400Mhz,

sampling rate to 44.1Khz for both the ADC and DAC, and the word length to 16bit(Compact

Disk), and no microphone. The I2S interface has to be set in DSP-mode and in slave-mode.

A lot of other stuff has to be set up in the registers, below there is a table which explains how

the registers is set, and how the data is send over I2C. After the table a point explanation has

been set up to se the set up in deeper explanation.

Register Address 8-bit Address Reg-data(9-bit) I2C(2x8-bit) Description
R0(R1): 0x00 0x11f 0x01,0x1f Line-in (both L/R)
R2(R3): 0x04 0x17f 0x05,0x7f Line-out (both L/R)

R4: 0x08 0x016 0x08,0x16 Analog Audio Path Control
R5: 0x0a 0x000 0x0a,0x00 Digital Audio Path Control
R6: 0x0c 0x062 0x0c,0x62 Power Down Control
R7: 0x0e 0x003 0x0e,0x03 Digital Interface Format
R8: 0x10 0x022 0x10,0x22 Sampling Control
R9: 0x12 0x001 0x12,0x01 Active Interface

R15: 0x1e Not Set Not Set Reset All

Table 3.3: CODEC Register Setup table.
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Where

• R1 set to: "1.0000.1111" LRIN BOTH=1, LIN MUTE=0, N/A=0, N/A=0, LINVOL="11111"(ful

vol): 0x11f ={0x01,0x1f}

• R2 set to: "1.0111.1111" LROUT BOTH=1, LZCEN(zero cross detect)=0, LOUTVOL="1111111"(ful

vol): 0x57f ={0x05,0x7f}

• R4 set to: "0.0001.0110" N/A=0, SIDEATT=00, SIDE TONE=0, DACSEL=1, BYPASS=0, IN-

SEL=1, MUTE MIC=1, MIC BOOST=0: 0x816 ={0x08,0x16}

• R5 set to: "0.0000.0000", N/A, N/A, N/A, N/A, N/A, HPOR=0, DACMU=0, DEEMP=00,

ADCHPD=0: 0xa00 ={0x0a,0x00}

• R6 set to: "0.0110.0010", N/A, PWROFF=0, CLKOUTPD=1, OSCPD=1, OUTPD=0, DACPD=0,

ADCPD=0, MICPD=1, LINEINPD=0: 0xc62={0x0c,0x62}

• R7 set to: "0.0000.0011", N/A, BCLKINV=0, MS(master/slave)=0, LRSWAP(right chan

data right)=0, LRP(MSB available 1’st clk)=0, IWL(input data length (16bit))=00, Format(DSP-

mode)=11: 0xe03 ={0x0e,0x03}

• R8 set to: "0.0010.0010", N/A, CLKOUTDIV=0, CLKDIV2=0, SR[3:0](ADC and DAC set

44.1khz)="1000", BOSR(mclk=16.9344Mhz)=1, USB/NORMAL=0: 0x1022={0x10,0x22}

• R9 set to: "0.0000.0001", N/A, N/A, N/A, N/A, N/A, N/A, N/A, N/A, ACTIVE=1: 0x1201={0x12,0x01}

• R15 set to: "not do anything" if "0.0000.0000" then registers resets to default

The I2C is send from the Microblaze processor, and is only needed to be send once, because

the CODEC in this project project has no need to change functionality under running.
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SIGNAL PROCESSING SOLUTION

In this chapter there is an analyse, and a solution part of the signal processing, and audio

theory. There will be going trough how, and why, the different components has been chosen,

and developed. This chapter is build up of 2 sections, an analyse part, and a solution part. In

the analyse part there is focus a lot of the audio spectrum, and effects. The solution part focus

on the calculations, and implementations of the methods based on the analyse part.

4.1 Analysing

In this section there is a analyse of audio spectrum methods, and theory used in this project.

First there will be some analyse of the audio spectrum and how these can be divided up into

octave bands. Then a short description of effects of equalization different bands. Then there

will be a short description of the mean energy formula used to calculate the mean energy in

different bands.

4.1.1 Octaves And the Audio Band

The audio band spectrum goes from approximately 20Hz to 20Khz[1]. The spectrum can

then be divided into 11 octave bands. The octaves has been refereed to the "basic miracle

of music"[12]. The use of dividing the audio spectrum up into octaves is usually used in audio

systems, and may came from the harmonic series between an octave start and stop attenua-

tion. First the 7th octave is set to the ISO standard[13] fctr7 = 1K hz. Then all lower and higher

centre frequencies is calculated by:

lower:

fctrn−1 =
fctrn

2
(4.1)
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higher:

fctrn+1 = 2 · fctrn (4.2)

By calculating fctr7 = 1Khz the result of the lower fctr6 and the higher fctr8 is:

Lower fctr6 :

fctrn−1 =
fctrn

2
=⇒ fctr7−1 =

fctr7

2
=⇒ fctr6 =

1K hz

2
= 500hz (4.3)

Higher fctr8 :

fctrn+1 = 2 · fctrn =⇒ fctr7+1 = 2 · fctr7 =⇒ fctr8 = 2 ·1K hz = 2K hz (4.4)

By continuing calculating all the centre frequencies the fctr1→11 centre frequencies becomes:

15.62hz, 31.25hz, 62.50hz, 125hz, 250hz, 500hz, 1Khz, 2Khz, 4Khz, 8Khz, 16Khz

Then the nth octave attenuation frequencies fa1n , and fa2n is the half octave below fctrn for

the low fa1n , and a half octave above fctrn for the high fa2n is:

Lower fa1n :

fa1n =
fctrn

21/2
(4.5)

Higher fa2n :

fa2n = 21/2 · fctrn (4.6)

By calculating the attenuations for the fctr7 become:

Lower fa17 :

fa1n =
fctrn

21/2
=⇒ fa17 =

fctr7

21/2
=⇒ fa17 =

1K hz

21/2
= 707.103hz (4.7)

Higher fa27 :

fa2n = 21/2 · fctrn =⇒ fa27 = 21/2 · fctr7 =⇒ fa27 = 21/2 ·1K hz = 1414.210hz (4.8)

By calculating all the attenuations become:

Lower fa11→11 :

11.049, 22.0971, 44.1942, 88.3883, 176.777, 353.553, 707.107, 1414.21, 2828.43, 5656.85, 11313.7

Higher fa21→11 :
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22.097, 41.1942, 88.3883, 176.777, 353.553, 707.107, 1414.21, 2828.43, 5656.85, 11313.7, 22627.4

Now all the centre and attenuations frequencies are calculated, they can be substituted in a

table:

Audi oOct avebandn fa1n fctrn fa2n

1 11.049 15.625 22.097
2 22.0971 31.25 41.1942
3 44.1942 62.5 88.3883
4 88.3883 125 176.777
5 176.777 250 353.553
6 353.553 500 707.107
7 707.107 1Khz 1414.21
8 1414.21 2Khz 2828.43
9 2828.43 4Khz 5656.85

10 5656.85 8Khz 11313.7
11 11313.7 16Khz 22627.4

Table 4.1: This table shows the calculated octave audio spectrum.

4.1.2 Major Octave Bands Effects:

The audio spectrum octaves can be broken down into 6 major ranges[14], each of the 6 bands

can have a big impact on the sound. Below is a point explanation of each.

• Sub-Bass(16hz −60hz): Gives sound a feeling of power, to much boost will make sound

muddy

• Bass(60hz −250hz): Basic rythm in the sound, can make the sound thin or fat. To much

boost will make sound boomy

• Low-Mids(250hz −2K hz): Boosting 500hz −1K hz makes instruments sound like horn,

boosting 1K hz −2K hz will make sound tiny

• High-Mids(2K hz − 4K hz): Boosting make lisping quality of voices like v, m, and v, to

much boost makes sound fatigue, and puts instruments in background

• Presence(4K hz−6K hz): The clarity and definition of instruments, and voices. Boosting

can feel like the sound comes closer, reducing 5K hz makes sound more transparent and

distant

• Brilliance(6K hz−16K hz): Boosting this area creates clarity and brilliance, to much cre-

ates whistles in vocals
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4.1.3 Mean Energy

The energy in a signal has been chosen to see what difference there is in the filters. The formula

for energy is:

E =∑ |x[n]|2 =⇒ E [n] = x[n]2 (4.9)

By using the formula of mean from statistical:

x̄ =
1

N

∑
x[n] (4.10)

By substitute the two together, and the update of mean is selected to be every sample, then

N=2, gets:

Ē [n] =
Ē [n −1]+E [n]

N
=

Ē [n −1]+x[n]2

2
(4.11)
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4.2 Solution

This section consist of the solution of the digital signal processing part. First there will be an

overview over the system, next is the chosen frequencies for the filter from the data calculated

from the octaves part. Then there will be going trough the filters calculation, and simulations.

After this a description over a small algorithm program made to adjust the filters, to get the

maximum performance. In the last part of this section, the implementations of the filters and

other algorithm in the Microblaze.

4.2.1 Overview Over DSP Solution

After a lot of reflection, and sketching with a pen, the desired signal processing system looks.

Figure 4.1: Overview Over DSP Solution(only left side)
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The Spdif(Sony/Phillips Digital Interface) input signal will go trough 3 filters, a low, band, and

high-pass. After the filters the signal will go trough a gain control, to control the wanted gain in

the specific band. After this the signal will split, one to the DAC output(to amplifier), and the

other will go through a energy mean algorithm to calculate the mean energy. From the other

side the ADC(from output of amplifier) signal will pass 3 identical filters, the signal from the

ADC low, band, and high-pass filters will then also enter a mean energy algorithm. When the

mean energy has been calculated from both the Spdif and the ADC, energy data will be com-

pared. The compared band-pass filters are the reference, and the low and high-pass filters has

to adjust out from the band-pass reference.

The gain adjustment of the filters in the Spdif section works as an equalizer, and can be ad-

justed by an interface from the human user. When the signal go through the DAC, and am-

plifier it will get feedback to the ADC through a voltage splitter, the ratio of the splitter 10 to 1

so it not saturate the ADC. In appendix there is a diagram over the voltage splitter, and a table

shown measurements of the input(from DAC) and the output of the amplifier.

The filters are chosen to be first order butterworth filters. The choice of the butterworth filters

is because of the flat frequency response in the pass band.
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4.2.2 Choosing Of Octave Frequencies For The Filters

The goal is to create a 3 band equalizer(tone control). The choose of filters has been one low-

pass, one band-pass filters, and one high-pass filter. One low-pass for the low region, one

band-pass for the middle region and a high-pass for the high region.

Audi oOct avebandn fa1n fctrn fa2n Selected Band
1 11.049 15.625 22.097 Low-band
2 22.0971 31.25 41.1942 Low-band
3 44.1942 62.5 88.3883 Low-band
4 88.3883 125 176.777 Low-band
5 176.777 250 353.553 Mid-band
6 353.553 500 707.107 Mid-band
7 707.107 1Khz 1414.21 Mid-band
8 1414.21 2Khz 2828.43 Mid-band
9 2828.43 4Khz 5656.85 Mid-band

10 5656.85 8Khz 11313.7 High-band
11 11313.7 16Khz 22627.4 High-band

Table 4.2: This table shows the chosen octaves for the filters low, mid, high-band

A look at the calculated octave bands scheme gives the above choices:

Low Low-pass: Band 1 to 4 gives fa = 176.777hz for the bass region.

Mid Band-pass: Band 5 to 9 gives fa1 = 176.777hz and fa2 = 5656.85hz for the middle region.

High High-pass: Band 10 and 11 gives fa = 5656.85hz for the high region.

The low, mid, and high-band frequencies is chosen out from the description in the analyse

part where the low band is defined to be the bass area, and the mid is the mid tone area, and

the high is the highs area.
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4.2.3 Filter Calculations

In this part the filters a calculated. First is the analogies filter calculated, simulated and ad-

justed. Next the z transfer functions of filters is calculated by using bilinear z-transform method,

followed by simulation and adjustment. Then the filters will be transformed into difference

equations, and simulated in Matlab, and scaled up by 215, and a sinus wave will go through

the hole audio spectrum to check if any overflow occur the the equation. If an overflow is

detected the the gain in the difference equation will be scaled.

4.2.3.1 Low, Mid, and High Band Calculations

All analogies filters are calculated, out from the octave table and the chosen bands.

Low-pass: fa=176.777hz

H(S)nor m =
1

S +1
H(S)nor m→l p = H(S)nor m

S=
s

Ωa

H(s)l p =
Ωa

s +Ωa
wher e :Ωa = 2π · fa

H(s)l p =
2π ·176.777hz

s +2π ·176.777hz
=

1110.72

s +1110.72

(4.12)

Figure 4.2: Bode-plot over the Low-pass filter for the low band.
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Band-pass: fa1=176.777hz, and fa2=5656.85hz:

H(S)nor m =
1

S +1
H(S)nor m→bp = H(S)nor m

S=
s2 +Ω2

c

∆Ω · s

H(s)bp =
∆Ω · s

s2 +∆Ω · s +Ω2
c

wher e :

Ωa = 2π · fa

∆Ω=Ωa2 −Ωa1

Ωc =
p
Ωa1 ·Ωa2

Ωa1 = 2π · fa1 = 2π ·176.777hz = 1110.78[r ad/s]

Ωa2 = 2π · fa2 = 2π ·5656.85hz = 35543[r ad/s]

Ωc =
p
Ωa1 ·Ωa2 =

p
1110.78 ·35543 = 6283.35[r ad/s]

∆Ω=Ωa2 −Ωa1 = 35543−1110.78 = 34432.2[r ad/s]

H(s)bp =
34432.2 · s

s2 +34432.2 · s +39480487.2225

(4.13)

Figure 4.3: Bode-plot over the Band-pass filter for the mid band.
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High-pass: fa=5656.85hz:

H(S)nor m =
1

S +1
H(S)nor m→hp = H(S)nor m

S=
Ωa

s

H(s)hp =
s

s +Ωa
wher e :

Ωa = 2π · fa

H(s)hp =
s

s +2π ·5656.85
=

s

s +35543

(4.14)

Figure 4.4: Bode-plot over the High-pass filter for the high band.
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Adding Low, Mid, and High together:

Now all 3 filters has to be added together for an analyse of the frequency response. Below

there is a diagram explaining the addition.

Figure 4.5: Diagram over Low, Band, and High-pass added together.

Looking at the Bode-plot of the 3 filters added together, reveals an overshoot at theΩc =6283.35[rad/s]

of the band-pass filter, with a magnitude of 0.511dB.

Figure 4.6: Low, Band and High-pass added together, there is an overshoot at
Ωc =6283.35[rad/s] in the Band-pass region there has to be corrected.
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Scaling the Mid gain:

To scale the gain in the mid-bands band-pass filter, the gain scaling factor has to be calculated

by adding the overshoot magnitude of 0.511dB, by the length of the original magnitude of -

0.00978. By a litle bit of experiment it has to get a little more so the original was set to -0.08dB

this gives the bellow.

20 · log(A) = dB =⇒ wher e :

20 · log(∆A) =∆dB =⇒ dBmax = 0.511dB

20 · log(∆A) = dBmax +|dBmi n | =⇒ dBmi n =−0.08dB

20 · log(∆A) = 0.511+|−0.08| =⇒ ∆dB = dBmax +|dBmi n |
20 · log(∆A) = 0.591 =⇒ ∆A =∆mag ni tude

log(∆A) =
0.591

20
=⇒ A0 =

1

∆A
= scale f actor

∆A = 10(0.591/20) = 1.07041

A0 =
1

∆A
=

1

1.07041
= 0.934 ≈ 0.93

H(s)bp = A0 ·
∆Ω · s

s2 +∆Ω · s +Ω2
c
= 0.93 ·

34432.2 · s

s2 +34432.2 · s +39480487.2225
=

32021.9 · s

s2 +34432.2 · s +39480487.2225

(4.15)

A look at the bode-plot for the 3 bands with mid-band scaled down, bellow shows that the

filters added together is now correct and the gain is now below 1.

Figure 4.7: Low, Band and High-pass added together, where the Band-pass gain
has been scaled by 0.93.
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4.2.4 bilinear Z-transform(Tustin’s method)

4.2.4.1 Pre-warping:

Before the 3 filters in S-domain can be transformed over in the Z-domain, the attenuation fre-

quencies has to be pre-warped to fit over in the Z-domains unit circle, after this the bilinear

z-transform(Tustin’s method) can be calculated. The formulas for the pre-warping, and bilin-

ear z-transform is:

Pre-warping and z-transform formulas:

ωa = 2
Ts

· tan
2π · fa ·Ts

2
= 2

Ts
· tan

Ωa ·Ts

2
W her e :

Ωa = Analog ueat tenuati on

ωa = Di g i t alat tenuati on

fs = 1/Ts = Sampli ng f r equenc y

Ts = 1/ fs = Sampli ngper i od

H(z) = H(s)

s≈
2

Ts
·
1− z−1

1+ z−1

(4.16)

Pre-Warped Transfer Function Low-pass filter:

Thus is the transfer function pre-warped for the low-pass with theΩa = 1110.72, fs = 44.1khz.

ωa =
2

Ts
· tan

Ωa ·Ts

2
=

2

1/44100
· tan

1110.72 · (1/44100)

2
= 1110.78

H(s)l ppr e =
ωa

s +ωa
=

1110.78

s +1110.78

H(z)l p =
1110.78

2

Ts
·

1− z−1

1+ z−1 +1110.78

=
1110.78

2

1/44100
·

1− z−1

1+ z−1 +1110.78

=
1110.78+1110.78 · z−1

89310.8−87089.2 · z−1

(4.17)
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A look at the bode-plot over the H(z)l p shows that the filter is mapped fine on the H(s)l p :

Figure 4.8: Bode-plot over H(z)l p (green) maps fine on the H(s)l p (blue).
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Pre-Warped Transfer Function Band-pass filter:

The transfer function pre-warped for the band-pass with theΩa1 = 1110.72,

Ωa2 = 35543, fs = 44.1khz, and the scaling factor A0 = 0.93 gives.

ωa1 =
2

Ts
· tan

Ωa1 ·Ts

2
=

2

1/44100
· tan

1110.72 · (1/44100)

2
= 1110.78

ωa2 =
2

Ts
· tan

Ωa2 ·Ts

2
=

2

1/44100
· tan

35543 · (1/44100)

2
= 37600.81

ωc =p
ωa1 ·ωa2 =

p
1110.78 ·37600.81 = 6462.68

∆ω=ωa2 −ωa1 = 37600.81−1110.78 = 36490

H(s)bppr e = A0 ·
∆ω · s

s2 +∆ω · s +ω2
c
= 0.93 ·

36490 · s

s2 +36490 · s + (6462.68)2 =
33935.7 · s

s2 +36490 · s +41766232.78

H(z)bp =
33935.7 ·

2

Ts
·

1− z−1

1+ z−1

(
2

Ts
·

1− z−1

1+ z−1)2 +36490 ·
2

Ts
·

1− z−1

1+ z−1 +41766232.78

=

33935.7 ·
2

1/44100
·

1− z−1

1+ z−1

(
2

1/44100
·

1− z−1

1+ z−1)2 +36490 ·
2

1/44100
·

1− z−1

1+ z−1 +41766232.78

=
0.650315−0.650315 · z−2

z−2 −3.36222 · z−1 +2.39853

(4.18)
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A look at the bode-plot over the H(z)bp shows that the filter is mapped fine on the H(s)bp :

Figure 4.9: Bode-plot over H(z)bp (green) maps fine on the H(s)bp (blue).

Pre-Warped Transfer Function High-pass filter:

The transfer function pre-warped for the high-pass with theΩa = 35543, fs = 44.1khz gives.

ωa =
2

Ts
· tan

Ωa ·Ts

2
=

2

1/44100
· tan

35543 · (1/44100)

2
= 37600.81

H(s)hppr e =
s

s +ωa
=

s

s +37600.81

H(z)hp =

2

Ts
·

1− z−1

1+ z−1

2

Ts
·

1− z−1

1+ z−1 +37600.81

=
2

1/44100
·

1− z−1

1+ z−1

2

1/44100
·

1− z−1

1+ z−1 +37600.81

=
1− z−1

1.426313−0.573687 · z−1

(4.19)
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A look at the bode-plot over the H(z)hp shows that the filter is mapped fine on the H(s)hp :

Figure 4.10: Bode-plot over H(z)hp (green) maps fine on the H(s)hp (blue).

Adding Low, Mid, and High together:

The 3 filters added together H(z)tot maps fine on the H(s)tot :

Figure 4.11: Bode-plot over H(z)tot (green) maps fine on the H(s)tot (blue).
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4.2.5 Difference Equations

To convert the z transfer function over in the discrete time difference equation there is used

the following z transform.

X (z) =
∞∑

n=−∞
= X [n] · z−1 Let :

m = n −n0

n = m +nn0
∞∑

n=−∞
X [n −n0] · z−1 =

∞∑
m=−∞

X [m] · z−(m+n0) =

∞∑
m=−∞

X [m] · z−m · z−n0 = z−n0 ·
∞∑

m=−∞
X [m] · z−m = z−n0 ·X (z) =⇒

X [n −n0] = z−n0 ·X (z)

(4.20)

Difference equation for Low-pass filter:

H(z) =
Y (z)

X (z)
=

1110.78+1110.78 · z−1

89310.8−87089.2 · z−1 =⇒

Y (z) · (89310.8−87089.2 · z−1) = X (z) · (1110.78+1110.78 · z−1) =⇒

89310.8 ·Y (z) = 1110.78 ·X (z)+1110.78 ·X (z) · z−1 +87089.2 ·Y (z) · z−1 =⇒

Y (z) = 0.012437 ·X (z)+0.012437 ·X (z) · z−1 +0.975125 ·Y (z) · z−1 =⇒

y[n] = 0.012437 · x[n]+0.012437 · x[n −1]+0.975125 · y[n −1]

y[n] = 407 · x[n]+407 · x[n −1]+31952 ·Y [n −1] by ·215

(4.21)
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By input of a sinus ofΩa = 1110.72, the filter is scaled by 215 = 32768bi t smax , looks like:

Figure 4.12: Sinus response Low-pass filters difference equation atΩa = 1110.72.

A scan of frequencies from 1hzto20K hz, the filter is scaled by 215 = 32768bi t smax , :

Figure 4.13: Sinus response Low-pass filters from 1hzto20K hz.

Both plots most not exceed the limit of (+/-)32768 bits so the filter is accepted.
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Difference equation for Mid-pass filter:

H(z) =
Y (z)

X (z)
=

0.650315−0.650315 · z−2

z−2 −3.36222 · z−1 +2.39853
=⇒

Y (z) · (z−2 −3.36222 · z−1 +2.39853) = X (z) · (0.650315−0.650315 · z−2) =⇒

2.39853 ·Y (z) = 0.650315 ·X (z)−0.650315 ·X (z) · z−2 +3.36222 ·Y (z) · z−1 −Y (z) · z−2 =⇒

Y (z) = 0.271131 ·X (z)−0.271131 ·X (z) · z−2 +1.40178 ·Y (z) · z−1 −0.416922 ·Y (z) · z−2 =⇒

y[n] = 0.271131 · x[n]−0.271131 · x[n −2]+1.40178 · y[n −1]−0.416922 · y[n −2]

y[n] = 8884 · x[n]−8884 · x[n −2]+45933 · y[n −1]−13661 · y[n −2] by ·215

(4.22)

By input of a sinus ofΩa = 1110.72, the filter is scaled by 215 = 32768bi t smax , looks like:

Figure 4.14: Sinus response band-pass filters difference equation atΩa = 1110.72
shows a overflow with -32910.
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A scan of frequencies from 1hzto20K hz, the filter is scaled by 215 = 32768bi t smax , :

Figure 4.15: Sinus response Low-pass filters from 1hzto20K hz shows a overflow
with -32920.

Both plots shows an overflow by -32917(Matlab terminal), and has to be corrected by:

A0 =
215

|−32917| = 0.995473

y[n] = A0 ·0.271131 · x[n]− A0 ·0.271131 · x[n −2]+1.40178 · y[n −1]−0.416922 · y[n −2] =
0.995473 ·0.271131 · x[n]−0.995473 ·0.271131 · x[n −2]+1.40178 · y[n −1]−0.416922 · y[n −2] =
0.269904 · x[n]−0.269904 · x[n −2]+1.40178 · y[n −1]−0.416922 · y[n −2]

y[n] = 8844 · x[n]−8844 · x[n −2]+45933 · y[n −1]−13661 · y[n −2] by ·215

(4.23)
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After this correction the graph is okay and no overflow with a result of −32765max

Figure 4.16: Sinus response band-pass filters corrected from 1hzto20K hz shows
no overflow by −32765max .

Difference equation for High-pass filter:

H(z) =
Y (z)

X (z)
=

1− z−1

1.426313−0.573687 · z−1 =⇒

Y (z) · (1.426313−0.573687 · z−1) = X (z) · (1− z−1) =⇒

1.426313 ·Y (z) = X (z)−X (z) · z−1 +0.573687 ·Y (z) · z−1 =⇒

Y (z) = 0.701108 ·X (z)−0.701108 ·X (z) · z−1 +0.402217 ·Y (z) · z−1 =⇒

y[n] = 0.701108 · x[n]−0.701108 · x[n −1]+0.402217 · y[n −1]

y[n] = 22973 · x[n]−22973 · x[n −1]+13179 · y[n −1] by ·215

(4.24)
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By input of a sinus ofΩa = 1110.72, the filter is scaled by 215 = 32768bi t smax , looks like:

Figure 4.17: Sinus response high-pass filters difference equation atΩa = 1110.72
shows no overflow with -23220 bits.

A scan of frequencies from 1hzto20K hz, the filter is scaled by 215 = 32768bi t smax :

Figure 4.18: Sinus response high-pass filters from 1hzto20K hz.
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The first curve do not show any overshoot, but a full scan from 1 to 20khz shows an overflow

by -33148(Matlab terminal), and has to be corrected by:

A0 =
215

|−33148| = 0.988536

y[n] = A0 ·0.701108 · x[n]− A0 ·0.701108 · x[n −1]+0.402217 · y[n −1] =
0.988536 ·0.701108 · x[n]−0.988536 ·0.701108 · x[n −1]+0.402217 · y[n −1] =
0.693071 · x[n]−0.693071 · x[n −1]+0.402217 · y[n −1]

y[n] = 22710 · x[n]−22710 · x[n −1]+13179 · y[n −1] by ·215

(4.25)

A scan over the frequencies from 1hzto20K hz, shows no overflow, and the filter is now ac-

cepted:

Figure 4.19: Sinus response high-pass filter corrected from 1hzto20K hz shows
no overflow by −32767max (Matlab terminal).
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Difference equation added together:

A scan of the 3 filter added together, will determine if there is any overflow in the hole au-

dio spectrum:

y[n] = y[n]low + y[n]mi d + y[n]hi g h (4.26)

Figure 4.20: Sinus response for all 3 filters added together, from 1hzto20K hz
shows no overflow by −32767max (Matlab terminal).

The full scan shows no overflow in the filters, with a min at 1hz of -32591(Matlab terminal),

and a max at 1hz of 32710(Matlab terminal). Filters are ready to be implemented!!!
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4.2.6 Adjust gain in equalizer and lift to maximum

When the gain in equalizer is to be adjusted, the maximum gain point have to be at the max

gain point, to get the maximum out of the filters. The 2 smallest filters has to follow the high-

est. Below is shown how the signal is lifted up to the maximum gain point. To the left the filters

are not lifted, and to the right they are.

Figure 4.21: Left not lifted to maximum, Right lifted to maximum.

To do this job a small algorithm has been developed. The algorithm has not been imple-

mented, but has been simulated in Matlab. Below is the small program:
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.Gai n and ad j ust to zer o M atl ab

.

. boostL = g ai nl p ;

. boost M = g ai nbp ;

. boost H = g ai nhp ;

.

. i f (boost H > boostL)

. i f (boost H >= 1)

. boost M = boost M − (boost H −boost M);

. bu f L = 1− (boost H −boostL);

. bu f H = 1;

. el sei f (boost H < 1)

. bu f H = boost M − (boost M −boost H)

. bu f L = boost M − (boost M −boostL)

. boost M = 1;

. end

.

. el sei f (boostL > boost H)

. i f (boostL >= 1)

. boost M = boost M − (boostL−boost M);

. bu f H = 1− (boostL−boost H);

. bu f L = 1;

. el sei f (boostL < 1)

. boost M = 1;

. bu f H = boost M − (boost M −boost H);

. bu f L = boost M − (boost M −boostL);

. boost M = 1;

. end

.

. el sei f (boostL == boost H)

. i f (boost H < 1)

. bu f H = boost M − (boost M −boost H)

. bu f L = boost M − (boost M −boostL)

. boost M = 1;

. el sei f (boost H >= 1)

. boost M = boost M − (boost H −boost M)

. bu f H = 1;

. bu f L = 1;

. end

. end

. boostL = bu f L;

. boost H = bu f H ;
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There is 3 main functions in the code. One when high is biggest, one when low is biggest, and

one when they are equal. Inside each function there is 2 functions, one when high or low is

bigger or equal to 1.

When high or equal to 1 means that they are bigger than the mid(in this project mid is the

reference band), and is the dominate part. The other is saying when lower than 1, this means

that the high or low is below the mid, and the mid is now the dominate part there has to be at

the maximum point. When high, mid, or low is dominate, the other bands has to follow up,

this is done by subtract the length from the dominate part.

Figure 4.22: 1)lp, bp and hp is equal. 2)lp is higher, bp and hp is equal. 3)hp is
higher, lp and bp is equal. 4)both lp and hp is higher than bp. 5)lp is higher, hp is
lower 6)both lp and hp is lower than bp

Above is shown 6 screen shoots from Matlab over how the biggest is always at maximum gain

point. The first is all the same, then low band is highest, then high is highest, then both low

and high, then low is high and high is low, and last the mid is highest.
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4.2.7 Software Microblaze In C

In this part the implementation of the filters, and other algorithm is shown.

4.2.8 Overview Of Software

The overall program consist of an infinite loop and a interrupt function. When the system

starts up, it will first set up some global variables. All filter and energy variables are made

global, so if a variable has to be set somewhere in the code, it will work easily everywhere.

When the variables has been declared the code will initialize all ports, peripherals, and inter-

rupt. Then the I2C will send the register set up to the CODEC and then activate interrupt, the

code will now wait in the infinite loop for an interrupt. When a interrupt appears it will disable

the interrupt, and read the incoming data on Spdif and ADC port. Then the data from the to

ports will be signal processed, when the data has been processed, it will be send by the DAC

port, then then interrupt will be activated again, and jump back to the infinite loop. Below is a

simple sketch diagram over the overall system build up.

Figure 4.23: Overview over the C-code structure in the Microblaze DSP.

In appendix there is a speed test of the Microblaze to see how many filters there can be imple-

mented.
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4.2.9 Interrupt Code

Interrupt function is made up to be the main function, all algorithms and filter calculation etc

is implemented here. When an interrupt occurs, a jump from the infinite while loop to the

interrupt function will be performed. The interrupt function below shows the implementing

of the filters etc in this project. There is only demonstrated(for convenience) the 2 mid band

band-pass filters from the left side of the Spdif and ADC.

Figure 4.24: Overview over the interrupt code.
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When the interrupt occurs the interrupt function will disable further interrupts, and read the

data from Spdif, and DAC ports. When the data has been read it will be sorted out and OR in

a signed integer. The OR is necessary because the data from the port is stored in an unsigned,

therefore it will be OR in a signed integer to set the sign bit correct, after this it will be shifted

down so the LSB is on zero bits place. After the data has been sorted out and stored in a signed

integer(x0), it can be used in the implemented filter difference equations.

When the processed signal leaves the filter algorithm, there will be calculated the energy in the

signal. The energy in the signal will be summarised by the mean energy from in the past sam-

ples, and the new mean will be saved in the mean energy variable. All mean energy variables

from all filters will be compared and a calculation of the gain of each filter will be performed,

so the output to the amplifier will compensate for the no-flat to a flat spectrum.This correction

of the signal will be real time. The mid-bands bandpass filters are the reference, a proportion

between Spdif and ADC energy.

So the low and high-band filters has to have the same proportion mean energy as the mid-

band. The calculation of proportions between filters, and gain adjust values, are planned to

be located in the infinite while loop. This has not been implemented yet, because of the lack

of time given for this project. The main reason to implementing the correction in the infinite

loop instead of the interrupt, is because if lack of process time it will not matter if it takes 2 or

3 interrupt cycles before finishing. Another reason is the easy integration of a human interface

can be quickly implemented and upgraded, for example when an human controlled equalizer

is implemented.

After the calculation and storing of the mean energy, there are on the Spdif side implemented a

small gain adjustment, this gain adjustment variable will be interacting with the human equal-

izer, and the correction interface.

When all algorithms for the filter, energy storing , and equalizing has been done, it is time for

adding all the filters together. As there can be seen in the above reduced code all filters are

added together(again only mid-band filters are shown, but here is added other filters together

with the mid-band) to create a final output to the DAC(output to amplifier). The filter-total

will be OR into a unsigned variable. The unsigned variable is a 32 bit variable, capable of hav-

ing the capacity to both the left and right side channel. The signal will now be send out of the

system, and the interrupt is set to enable again, and the program will jump back to the while

loop, and wait there until the next audio sample generate an interrupt.
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SUMMATION

5.1 Conclusion

The ground idea in this project was to take the assignment of the project proposal like a job,

and see how far the development of product will progress. Taken in account of the limit of time

of 3 months(2months and 3weeks), the project was a success. However the desired real-time

correction of the signal is not implemented.Just when the basic system with the hardware and

implementation of the filter algorithms was finished, and the system development was ready

to the next step of making and implement the signal correction the time rand out.

But the project is still seen as a success, because of the learned theory combined with the prac-

tice implementation, and the basic system seems to have a strong and simple structure.

There is used a lot of hours in this project, and time to time, it seems that this project will never

get completed, and it did not totally, but then again it did because of the basic core works so

well, and the equalizers can be regulated, and mean energy works.

The Spdif is build from scratch, and a lot of time was spend on it, it is not perfect, but either

bad, and the sound is really good when using good matched clocks. There is a little click in

the sound, approximately every 2-3 seconds but is very low. There could have been chosen an

integrated chip with the Spdif receiver implemented, however there was a lot of practice and

theory to gain here, and also very interesting.

The CODEC was more strait forward to implement, but still learning-full, and gave more rou-

tine in developing interface and protocol communication. The choice of an FPGA as platform

seems to be the right choice. The FPGA is extreamly fast due to its parallelism , and combined

with the Microblaze set up as an DSP, and the posibility of implementing coprocessors and

parallel cores gives so much speed power, that a FPGA based system will total outperform a

DSP processor.

65



CHAPTER 5. SUMMATION

5.2 Perspective

The future perspective of this project could be huge, under development progress there was

constantly popping new ideas up. For example there could be developed correction of the left

and right channels stereo perspective, so they will be at the same level output. More bands in

the equalizer, and analysers could make a dramatically effect of the correction quality, and by

implement room correction could lead the sound quality in a positive direction.

Keeping the FPGA platform, and develop as much hardware in VHDL as possible, could lead

in making a high performance sound system at a low price. Other things like human interface

to communicate and interact with the system, could also be implemented within a low price

range. Actually the FPGA and its low price, could make a new product standard on the market.

The low price gives the possibility of using more expensive, and higher quality components in

the rest of the audio system beside FPGA. Also tacking in account of all the system wires, and

analog components exchanged by digital algorithms, could make an high quality audiophile

sound system, there normally cost thousand of dollars to entry the lower price end market.
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6.1 Appendix

6.1.1 Toslink Interface

For the interface of the Spdif(Sony/Phillips Digital Interface) there has been chosen Toslink(optical).

The receiver is Sharps GP1FAV50RK0F[15] optical receiver module, and has been simple build

from the information from the data sheet. The resistors has the values defined by data sheets,

Rso = 2.2KΩ, Rsi = 3.3KΩ, beside the data sheet specification there has been mounted a ca-

pacitor with the value of 47uF over VCC and GND. The capacitor removed a lot of fail bits,

which sounded like loud pops in the sound.

Figure 6.1: Sharp GP1FAV50RK0F optical circuit and receiver[15].
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6.1.2 Voltage Splitter for Feedback

The voltage divider for the feedback from the amplifier is build of ratio [10:1]. The reason for

the divider is not to saturate the ADC. There is chosen that Rtot = 2KΩ, so Rtot /10 = R2, then

R2 = 2K /10 = 200Ω, then R1 = 9 ·R2 = 9 ·200 = 1800Ω.

Figure 6.2: Circuit diagram over the voltage divider, for the [10:1] of the amplifier
feedback to the ADC.

6.1.3 Modification of Development board

The WM8731 data sheet[5] specify that when the codec is used in line out mode the capacitors

of the line out filter has to be 10uF instead of 220uF when using headphones. The expansion

board was equipped with 220uF, so it was made for headphones. Below shows a picture of the

modification.

Figure 6.3: Expansion board mod of the 2 capacitors from 220uF to 10uF
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6.1.4 Blink Audio Test CD

To test the difference between DAC output, and the output from the amplifier a audio test CD

called "Blink Audio Test CD"[16] has been downloaded see source under bibliography. Blink

audio test CD consist of the following test sinus with gain of -1db of each frequency. The test

frequencies are:

{16, 20, 25, 31.5, 40, 50, 60, 63, 70, 80, 90, 100, 125, 160, 200, 250, 315, 400, 500,

630, 800, 1.25K, 1.6K, 2K, 2.5K, 3.15K, 4K, 5K, 6.3K, 8K, 10K, 12.5K, 16K, 20K} hz
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6.1.5 Measurements Of Codec With Tube Amplifier

By using the Blink audio test CD, a measurement of the output of the DAC, and the tube am-

plifier has been performed, to get feeling of the complete audio system. Below is a table over

measured amplitudes:

H z DACL AMPL DACR AMPR

(max,mi n)V RMS (max,mi n)V RMS (max,mi n)V RMS (max,mi n)V RMS

16 (1.25,-1.25) 824mV (3.87,-5.06) 2.83V (1.37,-1.43) 822mV (4.06,-3.93) 2.71V
20 (1.25,-1.25) 825mV (4.06,-5.46) 3.07V (1.37,-1.37) 816mV (4.37,-5.31) 3.12V
25 (1.25,-1.25) 830mV (4.37,-5.78) 3.35V (1.43,-1.37) 824mV (4.68,-5.46) 3.37V

31.5 (1.25,-1.25) 835mV (5.00,-5.93) 3.68V (1.37,-1.37) 826mV (5.15,-5.62) 3.66V
40 (1.25,-1.25) 834mV (5.31,-5.62) 3.80V (1.43,-1.43) 835mV (5.46,-5.46) 3.78V
50 (1.25,-1.25) 846mV (4.84,-5.46) 3.60V (1.43,-1.37) 840mV (5.31,-5.31) 3.66V
60 (1.25,-1.25) 840mV (4.84,-5.46) 3.49V (1.43,-1.37) 838mV (5.15,-5.15) 3.57V
63 (1.25,-1.25) 836mV (4.84,-5.46) 3.52V (1.25,-1.25) 821mV (5.15,-5.31) 3.59V
70 (1.25,-1.25) 842mV (4.84,-5.62) 3.65V (1.25,-1.25) 828mV (5.15,-5.31) 3.66V
80 (1.25,-1.25) 835mV (5.31,-5.78) 3.77V (1.25,-1.25) 819mV (5.31,-5.46) 3.74V
90 (1.18,-1.25) 840mV (5.31,-5.78) 3.89V (1.25,-1.25) 826mV (5.46,-5.62) 3.83V

100 (1.25,-1.31) 839mV (5.46,-5.93) 3.92V (1.25,-1.25) 822mV (5.46,-5.62) 3.87V
125 (1.18,-1.31) 838mV (5.46,-5.93) 3.94V (1.18,-1.18) 817mV (5.62,-5.78) 3.89V
160 (1.18,-1.31) 835mV (5.31,-5.78) 3.82V (1.25,-1.18) 816mV (5.46,-5.46) 3.78V
200 (1.18,-1.31) 836mV (5.00,-5.62) 3.71V (1.18,-1.18) 818mV (5.31,-5.31) 3.68V
250 (1.18,-1.31) 835mV (5.00,-5.46) 3.61V (1.18,-1.18) 818mV (5.15,-5.15) 3.59V
315 (1.18,-1.31) 837mV (4.68,-5.31) 3.52V (1.18,-1.18) 819mV (5.00,-5.15) 3.51V
400 (1.12,-1.31) 833mV (4.68,-5.15) 3.45V (1.31,-1.37) 819mV (5.00,-5.00) 3.44V
500 (1.12,-1.31) 828mV (4.53,-5.15) 3.40V (1.18,-1.18) 813mV (4.84,-4.84) 3.39V
630 (1.12,-1.31) 818mV (4.68,-5.15) 3.41V (1.12,-1.18) 804mV (4.84,-4.84) 3.40V
800 (1.06,-1.25) 807mV (4.53,-5.00) 3.32V (1.12,-1.18) 796mV (4.68,-4.84) 3.33V

1250 (1.00,-1.25) 784mV (4.37,-4.84) 3.27V (1.12,-1.12) 770mV (4.68,-4.68) 3.26V
1600 (1.00,-1.18) 750mV (4.37,-4.68) 3.16V (1.06,-1.12) 737mV (4.53,-4.68) 3.17V
2000 (0.937,-1.18) 716mV (4.06,-4.53) 3.01V (1.06,-1.06) 705mV (4.21,-4.37) 2.97V
2500 (0.875,-1.06) 670mV (3.90,-4.37) 2.84V (1.00,-0.937) 660mV (4.06,-4.06) 2.78V
3150 (0.812,-0.937) 613mV (3.59,-3.90) 2.63V (0.875,-0.875) 605mV (3.75,-3.90) 2.55V
4000 (0.750,-0.875) 553mV (3.12,-3.59) 2.40V (0.812,-0.812) 548mV (3.43,-3.59) 2.25V
5000 (0.625,-0.812) 495mV (2.81,-3.43) 2.14V (0.750,-0.750) 483mV (3.12,-3.12) 1.94V
6300 (0.562,-0.750) 440mV (2.50,-2.96) 1.88V (0.625,-0.625) 428mV (2.65,-2.81) 1.62V
8000 (0.500,-0.625) 391mV (2.03,-2.65) 1.65V (0.562,-0.562) 382mV (2.34,-2.34) 1.33V

10000 (0.437,-0.562) 352mV (1.87,-2.34) 1.47V (0.562,-0.500) 340mV (2.03,-2.18) 1.15V
12500 (0.375,-0.562) 325mV (1.71,-2.18) 1.34V (0.500,-0.500) 310mV (1.87,-2.03) 1.06V
16000 (0.375,-0.562) 302mV (1.56,-2.03) 1.24V (0.437,-0.437) 290mV (1.71,-1.87) 1.10V
20000 (0.375,-1.06) 316mV (1.40,-1.87) 1.14V (0.437,-0.875) 290mV (1.71,-1.87) 1.11V

Table 6.1: This table shows the measured frequencies with blink audio CD, of the
tube amplifier trough the CODEC WM8731
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6.1.6 Test Microblaze Speed For Filters

For a test of the Microblaze[6] of how many filters it can handle, a small test has been made.

The test is created by implement a filter inside the infinite loop(while{}), and a counter variable

"Counter". "Counter" will increase by 1 every time the filter has completed, the filter will then

run again, and again, until an interrupt occur. When interrupt occur it will write the counter

variable "Counter" to the DAC port, and reset "Counter" to zero. Below is the test code.

Figure 6.4: Overview filter test to check the speed of Microblaze.

With an digital analyser the DAC value can be read. The result was taken when the lowest

value over a few seconds of analyse(1 second corresponds to 44100 interrupts), and the value

was 38. So the Microblaze is fast enough for this project, and can run about 38 second or-

der band-pass filters. This project requires 2x3 filters for Spdif(left/right), and 2x3 filters for

the ADC(left/right), so total 12 filters, and taken in account that not all filters will be 2 order

band-pass filters, plus all other algorithms. If more speed is needed, there could be made

coprocessors or multi kernels.

6.1.7 Test Of Hole System

There has been performed a small test of the system. The system Spdif input works, however

there are low clicks every 2-3 seconds in the sound, but is not annoying, and the sound quality

is really good. The CODECs DAC, and ADC works perfect, there has been made a test where

an audio signal has been input on the ADC, and output from the DAC, and the result sounded

really good, but a little hum. The equalizers can be adjusted up, and down. The correction

has not been implemented, because of the time rand out, but all energy mean values comes

out correct. The basic system build up seems strong, simple, and very stable, So the system is

ready for the signal correction implementation.
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