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Abstract:

The project at hand attempts to im-
plement a model capable of simulating
combined electric and acoustic stimu-
lation (EAS) in cochlear implant (CI)
users. To model acoustic stimulation
of human auditory system, the Matlab
Auditory Periphery (MAP) model, de-
veloped by the Hearing Research Lab
at the University of Essex, is used
by adjustments to mimic a hearing
loss. For modeling electric stimula-
tion a CI model provided by Neur-
elec/Oticon Medical is used. The Gold-
wyn point process framework serves as
a common platform for combination of
the acoustic and electric part. The
combination is based on the assump-
tion of superposition of neural firing in-
tensities evoked by the separate parts.
The complete model is evaluated by the
help of the neurogram similarity index
measure (NSIM) and problems occur-
ring during EAS (e.g. temporal desyn-
chronization and place-mismatch) are
investigated.





Abstract

The project at hand attempts to implement a model capable of simulating
combined electric and acoustic stimulation (EAS) in cochlear implant (CI)
users. To model acoustic stimulation of human auditory system, the Matlab
Auditory Periphery (MAP) model, developed by the Hearing Research Lab
at the University of Essex, is used by adjustments to mimic a hearing loss.
For modeling electric stimulation a CI model provided by Neurelec/Oticon
Medical is used. The Goldwyn point process framework serves as a common
platform for combination of the acoustic and electric part. The combina-
tion is based on the assumption of superposition of neural firing intensities
evoked by the separate parts. The complete model is evaluated by the help
of the neurogram similarity index measure (NSIM) and problems occurring
during EAS (e.g. temporal desynchronization and place-mismatch) are in-
vestigated.
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1 | Introduction

The first experiments on electrical excitation of the human auditory system
were conducted by Alessandro Volta in the 1800s [1] when he concluded
that hearing sensation can be elicited by electric stimulation. After a long
break, in the 1970s the first cochlear implants (CI) using single electrode were
implanted [2]. Despite their simplicity some patient showed benefit of using
these devices in their daily life. In the 1980s the first multielectrode arrays
were accepted for implantation [2]. These electrode arrays were capable of
using the tonotopic organization of the cochlea to provide a better hearing
sensation. Since then many speech processing strategies were developed to
improve CI performance.

The most recent surgical techniques make it possible to preserve hearing in
the low frequency range [1]. This residual hearing helps to improve speech
understanding [1][3]. Electroacoustic stimulation (EAS) based CIs tends to
have a less strict candidation criteria compared to regular CIs. This results
in an increase of patients who can be candidates for CIs [4]. As an example,
elder people not benefiting from casual hearing aids, but not classified for
regular CIs use, can be potential users in the future.

Until recently CIs and hearing aids (used for amplifying sound for the residual
hearing) were developed separately. This results in the suboptimal usage of
their combination [5]. To develop devices optimized for combined electric
and acoustic stimulation, the nature of EAS has to be investigated.

This project aims to develop a model simulating EAS in CI users. Addi-
tionally the possibilities of an objective method for fitting the acoustic and
electric part can be investigated. Moreover an optimal stimulation, by means
of frequency allocation and temporal synchronization of CI and hearing aid,
can be proposed.
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2 | Human hearing

This part first gives a theoretical overview of the human auditory system.
It is followed by a section discussing human sound perception for electri-
cal stimulation, hearing aids and cochlear implants and thoughts about the
combination of electric and acoustic hearing seals the chapter.

2.1 Human auditory system

It is a complex way until the pressure variation generated by a sound source
transforms to sensation at the human brain. The sound travels through a
medium before it reaches the outer ear. The waves are collected by the
pinna and directed through the ear canal, finally arriving at the tympanic
membrane. In the middle ear, vibrations of the membrane are conducted
by ossicles to the oval window located at the cochlea in the inner ear. This
causes motion of fluid and the basilar membrane inside the cochlea. These
mechanical changes are transferred to chemical changes by the inner hair
cells and eventually stimulate the connecting auditory nerves. These stimuli
are lead through various brain levels (cochlear nucleus, superior olivatory
nucleus, inferior colliculus and medial geniculate nucleus) to finally reach the
central auditory cortex where they are perceived as sound.

3



2.1. AUDITORY SYSTEM

Outer ear Middle ear Inner ear

Figure 2.1: Physiology of human ear [6]

Each of the aforementioned parts of the auditory system contributes to the
way in which the actual sound is perceived. The main parts are depicted in
Figure 2.1 and these are described in details in the following sections, relying
mainly on the work of Abbas[7].

2.1.1 Outer Ear

By the time sound arrives at the observer, it has already gone through sev-
eral changes. These can be related to the sound source itself, surroundings
around the source and properties of the medium in which it is situated in.
Environmental properties, such as surfaces and obstacles causing reflections
and absorptions as well as temperature, humidity, wind, etc. have a great
influence on the characteristics of the sound that reaches the ear. The listed
phenomenons are important for sound perception, but are not part of the
auditory system, so they are out of the scope for the present project thus not
discussed further.

Individual’s body properties contribute to spectral and temporal alternations
of the incoming sound. These mostly support sound localization and due to
their direct effect on the input to the ear canal it is necessary to include
them in any auditory model. The shape and absorption properties of the

AAU, Master Thesis, 2014
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CHAPTER 2. HUMAN HEARING

torso and the head have significant influence on the frequency characteristics
of the sound reaching the ear canal. The effect of these body parts can be
expressed by the head related transfer functions (HRTFs). HRTFs are the
transfer functions from the sound source to each ears with reference to the
sound to the position in the middle of the head without the listener being
present.

The head is also responsible for the interaural time and intensity differences
(ITD and IID) being the main cues for sound localization besides HRTFs.[8].
ITD is the difference in time needed for the sound to reach the observers ears
and IID is the difference in sound intensity measured at the ears.

Before the sound arrives at the tympanic membrane, it has to travel through
the ear canal that introduces further resonances in the spectrum of the sig-
nal. Finally the pressure fluctuation at the end of the ear canal causes the
tympanic membrane to vibrate. From this point the sound signal continues
its way in the middle ear as vibration.

2.1.2 Middle Ear

As it is depicted in Figure 2.2 the middle ear confines three ossicles - malleus,
incus, stapes - and two muscles - tensor tympani muscle and stapedius muscle.

AAU, Master Thesis, 2014
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2.1. AUDITORY SYSTEM

Malleus Incus Stapes

Stabilizing
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Tympanic
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Figure 2.2: Physiology of the middle ear
http://en.wikipedia.org/wiki/File:Blausen_0330_EarAnatomy_MiddleEar.png

This mechanical system is responsible for transforming energy from the air
to fluid in the inner ear, i.e impedance matching.[9] The transformation is
necessary due to the difference in characteristic impedance between air and
fluid. Since the impedance of the fluid inside the cochlea is much higher than
the impedance of the air at the external ear, a direct transition of energy
would be inefficient. This means that the pressure has to be increased at the
oval window. According to Abbas [7], the middle ear achieves this increase in
three different ways. First, there is a difference in the effective vibrating area
of the tympanic membrane and the area of the stapes footplate. Secondly,
as the malleus and incus acts as a unit, this structure can be considered
as a single lever, meaning that the movement of the incus is less than the
movement of the malleus and thus resulting in a higher force, hence more
pressure. The third phenomena, called the curved membrane effect is also a
leverage to the system, introduced by the fact that some parts of the tympanic
membrane vibrates more compared to the connection to the malleus. Due
to these properties of the middle ear a pressure increase is occurring at the
oval window, but at the same time it results in lower vibration velocity too.
This means that middle ear system behaves as a passive system, that is like
a transformer.

AAU, Master Thesis, 2014
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CHAPTER 2. HUMAN HEARING

The tensor tympani and stapedius muscle are responsible for active changes in
the middle ear’s transfer function. A sound event can result in the contraction
of the stapedius muscle, increasing the stiffness of the system. It is known
as the acoustic reflex, and is most dominant in the low frequency range
and has a relatively high threshold of 70dBSPL for pure tones [10]. Many
suggested theories are available for describing the role of the acoustic reflex.
One hypothesis is a protecting role, but due to the long (35 to 150ms [7])
latency this can not be applied for impulsive noises. An other role can be a
defensive mechanism against self-generated noises (e.g. muscle contraction,
breathing)[9].

2.1.3 Inner Ear

The inner ear consists of two organs, the semi circular canals and the cochlea.
The first is responsible for balancing, while the latter one functions as mi-
crophone by converting vibrations to electrical pulses [9].

The cochlea can be divided into three parts by three main canals, the scala
vestibuli, scala media (cochlear duct) and the scala tympani. The first two
canals are separated by the vestibular membrane and the basilar membrane
separates the latter two. All three parts are filled with different fluids, en-
dolymph can be found in the scala media and perilymph fills the other two
canals.

The organ of corti as it is shown in Figure 2.3 is located within the scala
media and comprises the basilar membrane, tectorial membrane, inner and
outer hair cells, besides this the place of auditory nerve contacts.

AAU, Master Thesis, 2014
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2.1. AUDITORY SYSTEM

Figure 2.3: Organ of Corti
http://physrev.physiology.org/content/physrev/88/1/173/F1.large.jpg

Basilar Membrane

The stapes directly contacts the cochlea through the oval window that is an
opening to the scala vestibuli. Its vibration travels further in the form of
pressure changes in the endolymph and perilymph resulting in displacements
along the basilar membrane (BM). The pressure in the fluids enters the scala
tympani throuh the helicoterma and it is finally released at the round window.

The membrane has a shape that narrows from the apex to the base (i.e.
narrow at the oval window and wide at the other end) and has a varying
compliance by means of being stiff at the base and loose at the apex [9].

The basic understanding of BM movements were grounded by Békésy György
in the 1960s. His stroboscopic illumination technique based experiments to
observe the motion of the membrane were made on cadaver ears and at high
stimulus levels (130 dB SPL [7]). These experiments described a traveling
wave behavior i.e. a vibration according to the input signal’s frequency
travels along the membrane with a base to apex direction and with different
amplitudes at different positions. The point with the highest response is

AAU, Master Thesis, 2014
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CHAPTER 2. HUMAN HEARING

characterized by the input frequency and thus it is called the characteristic
frequency of that particular point. Due to this property the BM can be
considered as the Fourier analyzer of the auditory system. The relation
between the characteristic frequency and the location is described by a species
dependent function published by Greenwood [11]:

F = A(10ax − k) (2.1)

Where F is the characteristic frequency of the position defined by x in mm
(x=0 corresponds to the most apical position). A is a constant of 165.4 for
human and it is used for obtaining F in Hz. The constant a arises from
the critical-band function and has a value of 0.06 when x is expressed in
millimeters. The integration constant k is 1 for humans.

The envelope of the traveling wave shows asymmetry, it grows gradually
until the peak and decreases rapidly afterward [7]. This phenomena results
in the fact that while a low frequency input stimulates a wide range of the
membrane, a high frequency input result in excitation concentrated more at
the basal part.

The wavelength of the traveling wave decreases towards the apex as it is
depicted in Figure 2.4. Consequently basal parts are vibrating in phase
while at the apical section it changes over distance, yielding a diminishing
traveling wave speed in the direction of the apex [7].

Figure 2.4: Traveling wave motion of the basilar membrane
http://jeb.biologists.org/content/208/1/157/F1.large.jpg
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2.1. AUDITORY SYSTEM

The frequency selectivity of the BM and the asymmetry of the traveling
wave’s envelope are consistent with the shape and compliance of the mem-
brane. Indeed the direction of the traveling wave is determined by the gradi-
ent of the compliance. These properties would suggest the modeling of this
organ as a simple resonance system [7], but due to the interaction of the BM
and the present fluid (i.e. fluid pressure results in membrane displacement
and membrane displacement causes fluid flow), this simple representation is
not possible.

To obtain information about the dynamic behavior of the BM more sophis-
ticated experimental methods had to be evolved compared to the ones used
by Békésy. The Mossbauer and the capacitive probe or interferometer tech-
niques are capable of recording much samller movements thus suitable for
experiments at low input levels as well [7].

Studies relying on the aforementioned techniques showed a nonlinear charac-
teristics of the BM’s input-output function. A significant response is apparent
even at very low stimulus levels e.g. several nm-s at 20dBSPL input [7] and
the characteristic is linear in this region (approximately until 20-30dBSPL
[9]). In the following region the function is compressed and above 90dBSPL
[9] it becomes linear again. The latter phenomena is the result of the active
mechanisms not being able to contribute an attenuation anymore [9]. In ad-
dition to the non-linear input-output function, the possibility of conducting
measurements at different input stimulus levels also revealed a level depen-
dent frequency tuning of the membrane. The frequency response is more
highly tuned for low level stimuli compared to responses for high input levels
[7].

Hair Cells

The hair cells are located at the organ of corti, between the basilar and the
tectorial membrane as it can be seen in Figure 2.3. This part of the auditory
system is responsible for an active amplification process within the cochlea.
Despite the similar general strucure (all hair cells consist of the cell body
and stereocilias on its top), two main types, the inner hair cells (IHC) and
the outer hair cells (OHC) can be distinguished due to their differences in
morphology and function.

Approximately 3500 [9] IHCs are organized in a row close to the base of

AAU, Master Thesis, 2014
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CHAPTER 2. HUMAN HEARING

the tectorial membrane, but without their stereocilia being connected to it.
These sensory cells are innervated by the afferent fibers, thus most of the
information is conducted to the brain by the IHCs.

12000 OHCs [9] construct three to five rows further away from the tectorial
membrane base clearly separated from the IHCs and with their tallest stere-
ocilia connecting the membrane. Despite the lack of contact to the afferent
fibers [7] they also contribute to the fiber response, meaning that the two
hair cell systems are in interaction. Furthermore, OHCs are also responsible
for an active feedback mechanism increasing the BM response for low level
input stimuli. This active mechanism is caused by the ability of OHCs to
produce motile response to electric potential and while it enhances low level
signals, it shows saturation at high levels.

IHCs have an intracellular potential of approximately -35mV [7] and the
surrounding endolymph has a potential of 80-90mV [7] resulting in a rest-
ing membrane potential of 120-150mV [7] that causes a steady state current
in the stereocilia. Motion of the BM results in the deflection of stereocilia
through a viscous coupling. When shorter stereocilias bend towards the taller
ones, current increases through the cell membrane yielding an increase in re-
ceptor potential. Similarly, current and receptor potential decreases when
the direction of deflection is the opposite. Hair cell’s sensitivity to stereocilia
displacement is in the range of 100nm [7]. These changes around the steady
state potential are caused by the change of conductance that is the result of
K+ ion flow. Individual hair cells show saturation in potential change for
high level input stimulus and a low-pass filter characteristic also describes
their behavior i.e. a lower response potential is produced for frequencies
higher than the best frequency1 of the cell. Besides the nonlinear amplitude
characteristics, a high degree of frequency selectivity is also an important
property of the hair cells. The tuning of the cells mainly reflects the ones
observed at the BM, but some inherent properties such as height and me-
chanical properties of the sterocilia varying along the cochlea also contributes
to the tuning of the sensory cells.

1the frequency generating the greatest BM displacement at hearing threshold at the
position
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2.1. AUDITORY SYSTEM

Auditory Nerve

The signal path from hair cells to the brain is established by the auditory
nerves (AN) connecting to the cells through a synapse. An AN fiber consist of
neurons having three main parts; the dendrite, that collects the input signal,
the soma being the main part of the neuron and the axon, that conducts the
information to other neurons.

Change in a hair cell’s receptor potential results in change of calcium concen-
tration within the cell. As the potential increases, the calcium concentration
near the hair cell-auditory nerve synapse also increases. When it is high
enough, vesicles of transmitter are released into the synapse, that elicits an
action potential in the AN. Action potentials can be interpreted as spikes
and are the basic elements of information taken to the brain. The process of
an action potential traveling through an AN fiber is usually referred as the
firing of the fiber.

Fibers transferring information towards the brain are called afferent fibers
and can be categorized due to their property of showing firing activity with-
out the presence of a sound. Fibers firing less than a half spike per second
are low spontaneous rate (LSR) fibers. Medium and high spontaneous rate
(MSR, HSR) fibers have firing rates of 0.5-18 and above 18 spikes/second
respectively. These types also show differences in threshold, dynamic range
and population. LSR fibers represent 16% [9]of ANs and possess the high-
est threshold up to 80dBSPL [9] with the largest dynamic range starting
from 50dBSPL [12]. 61% [9] of the fibers are HSR, being the most sensitive
with a threshold as low as 0dBSPL [9] and having the narrowest dynamic
range between 10-20dBSPL [12]. The rest of the fibers (23%) are MSR with
intermediate properties.

The frequency threshold or tuning curve shows the firing threshold of a nerve
with respect to frequency. The frequency with the lowest threshold is the
characteristic frequency (CF) of the fiber and it is determined by the place
of innervation [7]. Frequency selectivity of AN fibers are similar to the BM’s
and hair cells’, that is the tuning curves are asymmetric and nerves with a
higher CF have a longer tail in the curve towards the low frequencies. The
level of firing rate increases with sound intensity until a saturation is reached2

and so does its frequency range (the tuning curve is getting wider) that is

2Some fiber show decrease in firing rate in spite of saturetion [7].
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CHAPTER 2. HUMAN HEARING

consistent with the behavior described for the BM and the hair cells.

AN fibers have a phase locking ability i.e. action potentials tends to occur
at a certain phase of the input signal. Similarly to frequency selectivity,
phase locking is also level dependent and becomes stronger with higher levels.
Regarding input signal frequency, the strength of phase locking starts to
decrease above 6-800Hz and ceases around 4000Hz [7].

Due to synaptic transmission properties adaptation behavior in firing rates
of a neuron can be observed. A typical time course of firing can be seen in
th lowest panel of Figure 3.8. An overshoot is present at the onset of the
sound that is followed by a slow approximately exponential decrease to a
steady state level. A short period, called refractory period, of firing level
below spontaneous activity follows the signal’s offset, before it again reaches
the spontaneous level. This adaptation process is missing from hair cell
responses, thus it can be explained by chemical changes within the synapse.

Fibers transferring information from the brain to the hair cells are called
efferent fibers. Cells with synapse at IHCs have bodies at the lateral part
of superior olivary complex, while cells with synapse at OHCs have bodies
at the medial superior olive [7]. The latter effect is referred as Medial Olivo
Cochlear (MOC) attenuation by Meddis [10]. Efferent fibers are responsi-
ble for reducing the response of the afferent ones and show similar tuning
properties with the same frequency to position map. Their effect has a long
latency of 5-50ms[7].

AAU, Master Thesis, 2014
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2.1. AUDITORY SYSTEM

Brain stages

Figure 2.5: Brain stages of the auditory system [13]

The signal goes through several brain stages before it arrives to the auditory
cortex. Figure 2.5 illustares the signal path in the brain. All stages show
some form of tonotopic organization and tuning similar to the AN. ANs
terminate at the cochlear nucleus from where information is directed towards
the superior olivary nucleus. From this point signals from both ears are
processed that is binaural processing takes place also at the inferior colliculus,
the medial geniculate nucleus and the auditory cortex. These parts include
cells that are excited from both ears (EE cells) and cells that being excited
from the input of one ear and inhibited by the input from the other (EI cells).
Due to differences in EE and EI cells the superior olivary nucleus is sensitive
to interaural intensity and time differences so it is considered as an important
part for sound localization [7]. Besides EE and EI cells, the auditory cortex
also includes cells responding only to binaural atimulation [7].

AAU, Master Thesis, 2014
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CHAPTER 2. HUMAN HEARING

2.2 Electric hearing

Sensation of hearing can be elicited by direct electrical stimulation of ANs.
In this situation the parts of auditory system before the ANs are bypassed
and this comes with several consequences.

The most significant difference compared to normal hearing appears in the
highly reduced dynamic range. Usually the dynamic range of electrical hear-
ing is defined by the barriers of barely audible and uncomfortable or ex-
tremely loud levels [2]. Acoustic hearing possess a wide dynamic range of
approximately 120 dBSPL in contrast to the electric, that has a range as
narrow as 10-20 dB [1]. This reduction is also present at speech levels, that
varies in a 30dBSPL range corresponding to a 5 dB electric range [2]. This
huge reduction is originated in the loss of cochlear compression.

An other deviation is the loss of tuning caused by the active (OHCs) and
passive (BM) mechanisms present during acoustic stimulation. The tuning
of electrical hearing is completely determined by the electrical field inside the
cochlea [1].

At last the loss of stochastic nature of AN firing have to be mentioned.
Due to bypassing the hair cells and the AN synapse, being responsible for
the stochastic behavior of neuron firing, electric stimulation elicits a highly
synchronized firing pattern [1].

2.3 Hearing aids and cochlear implants

Hearing disorders can be categorized by time course, location in the ear,
cause and severity[14]. Regarding time course, the disorder can be hereditary,
congenital, acquired pre- or post-lingual. According to location in the ear
it can be conductive or sensorineural that can be categorized further into
cochlear and retrocochlear hearing losses (HL). A conductive HL can be
originated in the outer or middle ear while sensorineural HL are related to
the inner ear (cochlear HL is in connection with cochlea and the origin of
retrocochlear HL is beyond it in the auditory system). HL among others
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2.3. HEARING AIDS

can be caused by high noise levels, acoustic trauma or simply appears due to
aging. The severity of HL can be ranked by the raise in hearing threshold in
decibels with the base being the hearing threshold in free field of a normal
hearing 18-year-old, that is the definition of dB hearing level (dBHL)[14].
From 25 to 40 dBHL the loss is considered mild, from 40 to 70 dBHL it is
moderate, severe HL is between 70 and 90 dBHL and a hearing loss is marked
as profound when it lies between 90 and 110 dBHL [14].

Within this section the various hearing aid solutions are summarized with a
greater emphasis and a more thorough discussion on cochlear implants.

2.3.1 Hearing aid solutions

Hearing aids

In general a hearing aid consists of a receiver microphone an amplifier with
a gain control and a loudspeaker. Recent devices are built around a digital
signal processor, that provides a better adjustment that is needed during the
fitting the aid to the users HL. The basis of the fitting process is usually
a loudness model, but as a first approximation the so called half gain rule
can be applied. The half gain rule defines the applicable gains in dBHL for
the input sound as the half of the HL values in each frequency band of the
client’s audiogram.

The three main types of hearing aids are the behind the ear (BTE), in the
ear (ITE) and completely in the ear canal (CIC) types. The main purpose of
all types is the restoration of speech intelligibility for the user that can have
a sensorineural HL in the mild to profound range.

Bone anchored hearing aids

Bone anchored hearing devices bypass the outer and middle ear by conduct-
ing vibrations to the cochlea through the skull. The instrument is attached
directly to the skull behind the ear and uses a high power vibrator for trans-
mitting the collected sound waves.
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These devices also aim for reproducing normal levels of speech intelligibility
and can be applied for mild to moderate conductive HL e.g. congenital atresia
(lack of outer ear/ear canal), otosclerosis (fixation of middle ear ossicles) or
any middle ear malfunction.

Middle ear implants

Similarly to bone anchored hearing devices, middle ear implants also elicit
vibrations to excite the cochlea. In comparison to the latter device, in this
case the transducer is implanted and the vibrators directly excite the middle
ear ossicles or the round window.

Middle ear implants are applicable to patients with moderate to severe sen-
sorineural or conductive HL.

Cochlear implants

Cochlear implants are used in cases when the user has profound sensorineural
HL or a complete deafness. The device directly excites the auditory nerve
by electric stimulation that is going to be explained more in details in the
following section.

2.3.2 Cochlear implants

As it is mentioned in the previous section cochlear implants (CI) are used
when a sensorineural HL is in the profound range or the patient is completely
deaf. These cases can occur when hair cells are partly or completely missing
from the auditory system. As it is described in subsection 2.1.3, hair cell
are responsible for the active amplification within the inner ear and beyond
this stage the signal is conducted in the form of an electrical pulse by the
ANs. CIs rely on the latter phenomena and stimulates the nerves directly
with electrical pulses thus replacing the IHCs.
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Parts of the cochlear implant

In Figure 2.6 a general CI setup can be observed. The external parts consist
of a behind the ear device that usually contains a microphone and a speech
processor and its signal is lead to a transmitter coil. This coil is attached to
the head by a magnet that holds it in front of the receiver thus a transcuta-
neous connection is realized. The receiver confines a coil and a decoder that
is responsible for transforming the signal to electrical current that is con-
ducted to the electrodes. The electrodes enter the scala tympani [1] through
the round window or the cochlestomy that is an artificially drilled hole near
the round window.

Figure 2.6: Parts of the cochlear implant system; a - behind the ear speech processor,
b - transmitter coil, c - receiver, d - elecrode array
picture from: http://stvincentsent.com.au/index.php/otology-neurotology-and-lateral-
skull-base-surgery/cochlear-implant-the-bionic-ear/

CI candidacy

According to Moctezuma [6] candidates for implantation can be divided into
three main categories, post-lingually deaf adults, pre-lingually deaf children
and post-lingually impaired people. The achievable auditory performance i.e.
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Figure 2.7: Three-stage model of auditory performance of post-lingually deafened CI
users [2]

speech recognition after implantation depends on several factors [2], such as
duration of deafness before implantation, age at the onset of deafness, age at
implantation, duration of CI use. In general the less the duration of deafness,
the better the performance of post-lingually implanted patients and they also
perform better compared to pre-lingually deafened candidates. Regarding the
latter type of patients it is advised to start to use a device as early as possible.
Improvement in speech recognition is apparent immediately after surgery and
the performance tends to increase over years of use. Figure 2.7 illustrates
a three-stage model of auditory performance of post-lingually deafened CI
users [2]. Besides the aforementioned factors others, like, patients attitude
towards CI, physiological state of the cochlea and ANs, etc. also influence the
outcome of implantation. Furthermore, speech processing technique applied
by the instrument also has a great effect.

Signalprocessing techniques used in cochlear implants

The first implants in a 1970s and 1980s used only a single electrode for
stimulation that was fed by a band-pass filtered and compressed signal being
transmitted through a modulator/demodulator3 transcutaneous connection.

3In the 1970s the device made by House/3M was even implanted without a demodula-
tor, thus a in spite of the speech, its modulated signal was transmitted to the electrode[2].
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Figure 2.8: Signal processing strategies in cochlear implants[1].

These instruments can only take advantage of the temporal encoding of the
speech since the electrode only excites a single location of the cochlea. Due to
the refractory of the AN this can contain information up to approximately
1000Hz that is just a small part of the speech frequency range. Despite
their simplicity and limited capability of speech encoding, some patient could
benefit from these devices [2].

To overcome the limited frequency range of the single electrode implants,
CIs with multiple electrodes were developed which can exploit the tonotopic
organization of ANs. Figure 2.8 summarizes the different strategies applied
by multiple electrode CIs.

All strategies must use a compression at a point to compensate for the loss of
cochlear comression mentioned in section 2.2. Besides the common features
of exploiting the tonotopic organization of the ANs and the usage of com-
pression, evolved signal processing strategies can be discriminated by used
stimulus type or the preserved sound information. By applied stimulus type
CIs can be divided into two main groups, one using analog and the other us-
ing pulsatile stimulation. According to Zeng [1], strategis can aim to preserve
spectral features, wave or envelope information.

The first developed strategy for preserving spectral information of speech is
the F0/F2 strategy and uses pulsatile stimulation. The name referes to the
formants extracted from the speech signal by zero crossing detection within
a frequency band, i.e F0 is the fundamental frequency (below 270 Hz [2]) and
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F2 is the second formant (1-4kHz [2]). The extracted fundamental frequency
F0 determines the rate of stimulation4 at the electrode corresponding to ex-
tracted second formant F2. F0/F1/F2 applies a completely similar approach
but also extracts the first formant F1 in the frequency band of 280-1000Hz to
obtain more low frequency information [2]. The most recent MPEAK (Mul-
tiple Peak) spectral feature extracting strategy in addition to the latter ones,
also uses envelope detection at the high frequency range (2-2.8kHz, 2.8-4kHz
and 4-6kHz bands [2]).

The Compressed Analog (CA) strategy starts the series of strategies preserv-
ing wave information by using analog stimulation. After separating the sound
into distinct bands and applying a compression, the signal is sent directly to
the electrodes simultaneously. This simultaneous activation of electrodes is
the main drawback of this method due to the channel interaction i.e. electri-
cal fields generated by adjacent electrodes influence eachother. Simultaneous
Analog Strategy (SAS) tries to solve the problem of electrode interaction by
using neighbouring electrodes in pairs.

The Continuous Interleaved Sampling (CIS) method extracts envelope infor-
mation of the band-passed sound signal and presents it to the corresponding
electrodes as pules with a constant rate. Electrodes are activated in a non-
simultaneous fashion , that is, only one electrode is active at a time yielding a
mitigation of the electrode interaction problem. The oredr in which the elec-
trodes are used can vary according to patient preferences. The Paired Pul-
satile Sampler (PPS) and the Multiple Pulsatile Stimulation (MPS) develop
the CIS strategy further by allowing a pair or multiple distant electrodes to
work at the same time. Another branch of signal processing techniques pre-
serving envelope information uses an approach similar to MPEAK. The n of
m or Spectral Peak (SPEAK) strategy procsses the input signal in m distinct
freuency bands and stimulates n electrodes according to the highest observed
amlitudes. The stimulation is pulsatile with a rate depending on the number
of selected electrodes. The Advanced Combination Encoder (ACE) method
follows the idea of SPEAK with using higher stimulation rates.

4During unvoiced sounds a random stimulation rate is used.
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2.4 Electro Acoustic Stimulation

Recent improvements in surgical techniques make it possible to preserve
residual hearing after CI implantation even with long electrode arrays reach-
ing the residual hearing region [15]. This achievement offers patients the
benefit of a combined electric and acoustic stimulation (EAS) when a CI and
a hearing aid is used at the same ear.

The preserved hearing is usually restricted to the low frequency range. Usami
[15] reports postoperative hearing loss form 30 dBHL to 110 dBHL in the 125
Hz to 1000 Hz region. In Figure 2.9 the area of hearing loss in which EAS
can be used is represented by a gray color. It can be seen, that typical EAS
candidates can have a hearing loss up to 60 dBHL in the low frequency range
and must have a loss greater than 80 dBHL for the high frequency range. A
normal hearing aid is used in cases with milder hearing loss and standard CI
is implanted for the more severe ones.

Figure 2.9: Auditory profile of EAS candidates [4]

2.4.1 EAS benefits

By taking advantage of the residual hearing EAS users show better perfor-
mance than using CI or a regular hearing aid only [16]. Vaerenberg [3] also
showed a great improvement of speech recognition in noise compared to using
CI only.
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These improvements are mainly associated with the better representation of
temporal fine structure (TFS) cues. These cues are responsible for identifying
small temporal variations in the sound and [17]. CI users can only use TFS
cues up to 300 Hz [1], while this limit can be extended by the additional
acoustic stimulation.

2.4.2 Challanges of EAS implementation

Due to the nature of the combined stimulation two main issues have to be
taken into account. Temporal synchronization of electric and acoustic stim-
ulation and placement of the electrode array compared to the actual place
coding within the cochlea have to be fit.

Temporal difference arises from the different time that is needed for electrical
and acoustical stimulation of the cochlea. CI has a certain processing time,
then the signal is directly sent to the ANs. In comparison during acoustic
stimulation, besides the hearing aid having a processing time, the sound
also needs time to travel through the outer and middle ear and the final
excitation point of the BM depends on the actual frequency as well. The
most common solution is to delay the faster device to match the timing and
obtain simultaneous stimulation [5].

The second problem is usually referred as place-mismatch. It means, that
the frequencies assigned to the electrodes may differ from the ones that are
actually at the place where the electrode lies in the cochlea.

A frequently investigated question is the cross-over frequency of the electric
and acoustic stimulation i.e. which range should be covered by the electric
stimulation for a given hearing loss. Incerti [16] concludes that patients
with severe hearing loss can benefit from overlapping ranges, while patients
possessing better hearing may perceive an echo and a distorted sound quality,
thus the most common solution is separating the two ranges. This means that
electric stimulation is only done for frequencies without residual hearing.
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3 | Implementation

3.1 Auditory system modeling

Outer ear Middle ear Basilar Membrane Inner Hair Cells Synapse Auditory nerve

Figure 3.1: Block diagram of the applied part of Matlab Auditory Periphery model

For modeling the auditory system, the Matlab Auditory Periphery (MAP)
model developed by the Hearing Research Lab at the University of Essex is
used. A description of model stages depicted in Figure 3.1 is presented in
the following sections. The corresponding parameters can be found in [10].

In general the model consists of a series of stages representing parts of the
human auditory system. SI quantities are used for all parameters and the
processing of the input sound (given a .wav file format) is done in 0.01 second
time frames with a sampling frequency adapted from the input data.

3.1.1 Outer ear

The first stage of MAP takes a sound pressure wave as an input and represents
the concha and ear canal resonances by band-pass filters. The output of
the filters are summed and added to the direct input signal. According to
section 2.1 this part can be improved by incorporating HRTFs and the band-
pass amplification of the ear canal can also be improved.
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3.1.2 Middle ear

The input of this stage is the sound pressure at the tympanic membrane.
To fit human stapes displacement measurements first a scalar is applied to
convert pressure to velocity. It is followed by a low-pass filtering (that is
applied, because displacement decreases by the increase of frequency) and
application of another scalar to obtain displacements accurately above 2kHz.
A high-pass filter is used to introduce attenuation at the lower frequency
range.

The acoustic reflex discussed in subsection 2.1.2 is introduced by a variable
scalar in a negative feedback loop. This scalar is controlled by the brainstem
activity in the low spontaneous rate stream (discussed in subsection 2.1.3).

3.1.3 Basilar Membrane

Stapes displacement serves as an input to this stage that models basilar
membrane displacement at distinct locations by the help of a dual-resonance-
non-linear (DRNL) filter. The separate locations are identified by their best
frequency i.e. the frequency generating the greatest basilar membrane dis-
placement at hearing threshold at the position [10] (same as the characteristic
frequency (see 2.1.3) defined at the hearing threshold). By default these fre-
quencies are logarithmically spaced between a user defined low and a high
frequency limit.

The DRNL filter models the frequency selectivity of the auditory system and
represents changes in characteristic frequency, gain and phase according the
input signal level. As it can be observed in Figure 3.2, DRNL filter contains
a separate linear and non-linear path.
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Figure 3.2: Schematic of the dual-resonance-non-linear filter [10].

In the non-linear path the signal is first attenuated by a variable scalar gain
for representing the MOC reflex discussed in subsection 2.1.3. This scalar is
controlled by the sum of all firing of all types (LSR, MSR, HSR) of second
level neurons in a best frequency channel [10]. After the attenuation the
signal is lead through a cascade of gammatone filters with center frequencies
identical to the best frequencies and bandwidth increasing with the best
frequency. This is followed by an input level dependent compression and
finally the gammatone filters described before are applied again.

The linear path consists of a scalar gain and a cascade of gammatone filters
with a characteristics similar to the ones in the non-linear path, but with
different center frequencies.

The two separate paths are summed together to produce basilar membrane
displacement values at the corresponding positions as an output of this stage.
A more detailed description of the DRNL filter can be found in Appendix A.

This implementation is proven to model accurately the iso-intensity curves
obtained from experimental data [18]. This means that the physiological
behavior (e.g. non-linear input-output function, level dependent tuning) of
the basilar membrane is represented properly.
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3.1.4 Inner hair cell

This stage of the model produces receptor potential changes in the IHCs
according to the actual BM displacements. The process can be divided into
to two consecutive sections. First the conductance change of stereocilia can
be obtained from the BM displacement by modeling the viscous coupling
between them. After this, receptor potential change can be derived from the
conductance change by applying an electric circuit model of the IHC.

The work by Shamma [19] serves as a basis for this implementation, but
changes according to the usage of BM displacements in spite of BM velocities
are incorporated.

Conductance change

The stereocilia of an IHC is not connected to the tectorial membrane, thus
an indirect viscous coupling is realized between the basilar membrane dis-
placement dispt and the cilia displacement u(t) that can be written as[10]:

τc
du(t)

dt
+ u(t) = τcCciliadispt (3.1)

Where Ccilia is a scalar and τc is a time constant. The derivation of Equa-
tion 3.1 can be found in Appendix B. MAP model implements this function
as a high-pass filter and a scalar multiplication.

By being fit to empirical data, that shows level dependent asymmetry1, Equa-
tion 3.2 describes the relation between the stereocilia displacement and the
apical conductance change G(u)[10]:

G(u) = Gmax
cilia

[
1 + e

−u(t)−u0
s0

[
1 + e

−u(t)−u1
s1

]]−1

+Ga (3.2)

1For high input levels, changes in conductance are much larger for positive (when
smaller stereocilias deflect towards the taller ones), than for negative cilia displacement.
In contrast, conductance change is similar in both directions for low input levels.
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Where Gmax
cilia is the maximum of apical conductance that is responsible for

introducing saturation in the conductance for high stimulus levels, to be
consistent with experimental data. Ga is the passive conductance of the
apical membrane. The constants s0, u0, s1 and u1 are adjusted to describe
the exact shape of the empirical data.

Receptor potential change

Change in receptor potential V(t) can be modeled by a passive electric circuit
depicted in Figure 3.3 and its transfer function is as follows[10]:

Cm
dV (t)

dt
+G(u)(V (t)− Et) +Gk(V (t)− E ′k) = 0 (3.3)

Where Cm = Ca+Cb is the cell capacitance, Gk is the membrane conductance,
Et is the endocochlear potential and E ′k = Ek+EtRpc is the reversal potential
of the ionic current (dominated by K+[19])at the basal membrane corrected
for the resistance of the supporting cells Rpc = Rp

Rt+Rp
.
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Figure 3.3: Passive electric circuit model of IHC [10]

3.1.5 Inner hair cell / Auditory nerve synapse

As it is discussed in subsection 2.1.3 the firing of AN is directly related to
the transmitter release into the IHC-AN synapse. The transmitter release is
controlled by the calcium concentration within the hair cell, which is related
to the receptor potential.

The MAP system first models the calcium influx that is in direct relation with
the receptor potential. From the calcium influx, the calcium concentration
can be obtained. After the calcium concentration is available, it serves as an
input to a probabilistic model that is responsible for simulating transmitter
release to the synapse.
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Calcium influx

The following expression determines the relation between the calcium current
ICa and the receptor potential [10]:

ICa(t) = Gmax
Ca m

3
ICa

(V (t)− ECa) (3.4)

Where Gmax
Ca is the maximum calcium conductance when all calcium channels

are open, mICa is the ratio of calcium channels being open2 and ECa is the
reversal calcium potential.

Calcium concentration

Calcium concentration Ca2+ near to the synapse is calculated as follows [10]:

d[Ca2+](t)

dt
= ICa(t)−

[Ca2+](t)

τCa
(3.5)

Where τCa is the dwell time of calcium before the synapse and it varies ac-
cording to the spontaneous rate of the actual neuron. τCa is represented as a
row vector when more than one spontaneous rate is simulated. In this case
the model splits into parts according to the neuron types and continues the
processing separately. This means, that MAP does not take into account the
distribution of neurons (see: subsection 2.1.3) according to different sponta-
neous rates.

Probabilistic model of transmitter release

Figure 3.4 shows the probabilistic model of transmitter release.

2The actual value of mICa
is the low-pass filtered function of its steady state value that

is determined by a Boltzmann function.
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Figure 3.4: Probabilistic model of vesicle release at the IHC-AN synapse implemented
in hte MAP model [10].

In Figure 3.4 q(t) represents the actual number of vesicles waiting for release
in a stage referred as the immediate store, c(t) is the actual number of vesicles
in the synapse and w(t) is the number of vesicles in the reprocessing store
that models the reuse of released transmitters.

The transfer between the stages are represented by constants l, r, x corre-
sponding to the rate of vesicle loss from the synapse, the rate of transmitter
take back to the reprocessing store and the rate of reprocessing respectively.
The rate of transmitter release rate k is expressed as [10]:

k(t) = z
(
[Ca2+]3(t)

)
(3.6)

Where z is a scalar for transforming calcium concentration to vesicle release
rate. Finally for the rate of vesicle generation is calculated by y(M−q) where
M is the maximum number of vesicles that can be present in the immediate
store and y is the constant of the generation rate.

According to Figure 3.4 the synapse model can be summarized in the folowing
system of equations [10]:

AAU, Master Thesis, 2014

32
AAU, Master Thesis, 2014



CHAPTER 3. IMPLEMENTATION

dq(t)

dt
= xw(t) + y (M − q(t))− k(t)q(t) (3.7)

dc(t)

dt
= k(t)q(t)− lc(t)− rc(t) (3.8)

dw(t)

dt
= rc(t)− xw(t) (3.9)

3.1.6 Auditory nerve

For modeling the firing of auditory nerves a probabilistic point process gen-
eration method is used. This method is the inverse distribution function
technique and it is discussed further in Appendix D.

3.2 Cochlear implant model

Similarly to the auditory model, the Neurelec/Oticon Medical proprietary
CI model is also built up of a series of blocks representing different parts of
the device. The simulation chain takes a .wav file as an input and produces
an electrodogram as an output. An electrodogram represents the activity of
the electrode array for a given input signal i.e. the time course of electrical
current for each electrode. An example electrodogram can be observed in
Figure 3.5. The y axis represents electrode number starting from the apex,
thus Eaf0 is the most apical and Eaf19 is the most basal electrode respec-
tively. The top row in Figure 3.5 represents the frame sent to the implant.
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Figure 3.5: Example electrodogram

The chain consists of two main parts, the behind the ear speech processor
and the implant. The schematic of the complete simulation chain is depicted
in Figure 3.6. The signal types are denoted above the linking arrows between
the parts. The sign .wav represent a signal being in the time domain, while
.WAV denotes the signal in frequency domain. Numbers on top of the arrows
shows the number of simultaneous signal paths (the lack of number indicates
a single path).

Pre-accentuation STFT Regrouping Level-estimation
Compression Frame

Generator Implant

.wav .WAV .WAV dBSPL
Coded

ImpulseBDuration Pulsetrain.wav

n 20 20 20 20

dBSPL

Figure 3.6: Block diagram of CI model
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3.2.1 Speech processor

A wide range of speech processors is supported to be used, thus the most
suitable for the desired situation can be chosen. Each different type simulates
the signal processing strategy implemented in the corresponding device. En-
abling certain additional features such as noise cancellation or device specific
compression technique is also given.

The chosen speech processor model receives an the input signal in the form
of a .wav file and filters it by a pre-accentuation filter. This filter is used for
modeling the natural frequency response of the cochlea which is absent in CI
users. After this, a short time Fourier transformation is used to process the
signal in frequency domain further on. In the next step the frequency bands
(defined by the Fourier transformation) are grouped according to the prede-
fined frequency allocation of the electrodes. Within these frequency groups
the sound pressure level is estimated and it is passed forward to a compres-
sion function. The actual values of the compressed signal is then related to
impulse durations, from which a coded stimulation frame is generated.

3.2.2 Implant

Keeping in mind compatibility criteria, different implant types can be con-
nected to the selected speech processor. The implant model is responsible for
simulating the decoding of input frame (i.e. output of the speech processor
stage) and the conversion to actual electrical impulses at the 20 electrodes.
The output of the implant model (and also the complete CI model) consist
of 20 separate vectors, containing the timing and amplitude values of the
according electrode activity.

Although due to the nature of the device (i.e. can not be modified after
implantation) the adjustable parameters are more restricted compared to
the processor. During the current project, parameters were not adjusted
after choosing the suitable implant type.
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3.3 Goldwyn model

In order to obtain spike patterns as a response for electrical stimulus, a
point process framework developed in [20] that is parametrized to fit reported
statistics. Originally this model was developed to improve the reliability of
auditory nerve response models for high stimulus rates. With this upgrade
the desynchronization of auditory nerve fibers for high stimulation rates can
be modeled, which is a crucial point for mimicking the spontaneous activity
in the cochlea.

The statistics to which the model is adjusted includes the firing efficiency
curve, chronaxie, jitter and spike history effects.

The firing efficiency curve describes the relation of the current level of an
electrical pulse and the probability of nerve firing. It can be approximated
by the integral of a Gaussian distribution. The threshold of a neuron θ is
defined as the input stimulus level that elicits a spike with a probability of
one-half, thus it is directly related to the efficiency curve. The variability
in spike initiation is represented by the relative spread (RS), that is defined
as the standard deviation of the Gaussian distribution (underlying the firing
efficiency curve) divided by its mean.

The input pulse duration dependence of the neuron threshold (the threshold
is lower for a longer pulse) is described by the chronaxie that is by definition
the pulse duration at which the threshold level is twice what it would be for
a much longer pulse [20]. This phenomena is caused by the ability of the
neural membrane to integrate charge over time.

An additional randomness of spike timing is represented by the jitter. Jitter
depends on both pulse duration and level, but for the sake of simplicity this
model uses a value most commonly reported for a pulse at spiking threshold.

History effects are incorporated as transient increase in threshold and relative
spread after a spike. Another implemented history related behavior is the
summation effect. This represents the capacity of a neuron to integrate
consecutive sub-threshold pulses for high stimulus rates (i.e. pulses with
short interpulse intervals).
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3.3.1 Model stages and parameters

After clarifying the statistic and point process relations, that can be found
in Appendix C, a model for the conditional intensity function shown in Fig-
ure 3.7 can be built.

Figure 3.7: Cascade model of point process generation for electric input stimulus [20]

In Figure 3.7 it can be seen that the positive and negative parts of the input
stimulus I are treated separately by stimulus filters K+(t) and K-(t). Their
summed output is passed through a nonlinear function f(.) that is followed by
a filter J(t) responsible for the jitter effect. The final spike train is produced
by a probabilistic generator using inverse distribution function technique.
By controlling the stimulus filters and the nonlinear function according to
spike timing, the history effects are also included. Relying on this model the
conditional intensity function is [20]:

λ(t|I,H) = [J ∗ f(K+ ∗ I+ +K− ∗ I−)](t) (3.10)

Where ∗ represents the convolution operator and each function (f(x), K+(t),
K−(t) and J(t)) can be expressed by the response statistics (θ, RS, Dc,
Jitter and summation time). A detailed description of these expressions can
be found in Appendix C.
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3.4 Model modifications and combination

In order to connect the individual acoustic and electric models within a com-
mon interface, certain modifications have to be made. Besides the necessary
changes others are also made to improve the models or facilitate the problem.

3.4.1 Changes in MAP model

The MAP model is first modified at the basilar membrane part. Originally
the best frequencies by which the separate locations along the membrane
are identified (see subsection 2.1.3) are logarithmically spaced between a low
and high frequency limit. Although the positions of BM modeling can be
chosen arbitrarily, it is more natural to distribute them linearly and use
the Greenwood function [11] to declare the corresponding best frequencies.
This latter consideration is also necessary because as it will be described,
the electrical path calculation is extended to linearly spaced locations at the
BM.

The second important alternation from the original MAP model is the exclu-
sion of efferent effects. This means that neither the acoustic reflex, nor the
MOC attenuation is calculated. As it will be discussed later, the acoustic and
electric models are connected before the generation of neural spike patterns.
Due to this, the original neural activity reproduction of the MAP model,
from which the efferent effects are calculated, is discarded thus the efferent
activity can not be obtained directly. This modification of the MAP model
is a facilitation. In a future work the efferent effects can be calculated from
the common spike pattern of electroacoustic stimulation, but it requires a
more severe modification of both the MAP and Goldwyn model (that serves
as the interface for connecting the models).

A third change in the MAP model is required by the fact that for simulating
real situations, an impaired ear have to be modeled in spite of a normal one,
for which the MAP model is optimized in its default state. The implemen-
tation of an impaired ear requires the incorporation of several physiological
considerations thus it has to be explained more in details. This explanation
of the impaired ear parametrization can be found in subsection 3.4.3.
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CHAPTER 3. IMPLEMENTATION

The final modifications of the MAP model are related to fiber types with
different spontaneous rates. The dwell times of calcium τCa (being directly
related to spontaneous activity see: subsection 3.1.5) are corrected to have
a better fit to the empirical data discussed in subsection 2.1.3. Figure 3.8
shows the instantaneous and averaged3 firing rates of the three fiber types at
a characteristic frequency corresponding to the input tone’s frequency of 431
Hz. Although the MAP model is capable of modeling different types of fibers,
it does not take into account their distribution, discussed in subsection 2.1.3.
To overcome this deficiency the output of fibers within a CF (i.e. firing
probabilities) are summarized with weightings corresponding to the their
distribution. This summation can be done if firing at different fiber types
are assumed to be mutually exclusive events. In this case the total probability
theorem4 can be applied [21].
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Figure 3.8: Modified firing rates for high (HSR), medium (MSR) and low spontaneous
rate (LSR) fibers.

3a moving average is used with a time window corresponding approximately to one
period of the input signal

4P (B) = P (B|A1)P (A1) + ... + P (B|An)P (An) [21], where in our case P (B) is the
probability of firing, P (B|A1...3) is the probability of firing at a certain fiber type and
P (A1...3) represents the distribution of the different types

AAU, Master Thesis, 2014

39
AAU, Master Thesis, 2014



3.4. MODIFICATIONS

3.4.2 Extension of electric model

The auditory nerve can be used as the place of combination of the electric
and acoustic part, so the output of these have to be in the same form, that
is firing rates of the auditory nerve.

As it is discussed in section 3.2 the output of the cochlear implant model is an
electrodogram. To obtain firing rates at certain positions in the cochlea, first
the effect of electrode activity on auditory nerves has to be simulated. This
is done by mimicking the electrical spread caused by each pulse. Depending
on the distance between the electrode and the actual auditory nerve the
electrical stimulus observed by the nerve can be calculated by a predefined
function. Although it is rarely the case, but for simplicity a perfect electrode
placing is assumed, that is, an electrode lies above a place in the cochlea that
has a CF equal to the signal’s frequency delivered to the electrode.

After electric stimuli are available at the auditory nerves, the Goldwyn model
(see: section 3.3) is used to convert them to firing rates.

3.4.3 Implementation of hearing impairment

Hearing loss at cochlear implant users is profound sensorineural, mostly
caused by the loss of hair cells. The frequency characteristics of this loss
can be specified as ski-slopes, that is residual hearing is restricted to fre-
quencies approximately below 1000Hz and the loss shows a steep slope from
40dBHL to 100dBHL in the region of 250Hz to 1000Hz (similar hearing loss
is presented in [15]). This fact can serve as a constraint for modeling, such
thats representing the outer and middle ear should be kept intact and mod-
ifications should follow physiological changes occurring at patients. It has
to be mentioned that damages at the level of auditory nerves (that can be
present in real life situation) and beyond are not simulated.

Accorcing to Zilany [22] the loss of IHCs results in elevated tuning curves
and loss of OHCs is responsible for broadening (irrespective of input levels
[23]) and elevating the tuning curves, as well as reducing the nonlinear com-
pression observed at the BM since the active mechanisms inside the cochlea
are addressed to these cells [23].
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CHAPTER 3. IMPLEMENTATION

According to Moore [23], the phenomena, that the BM movement excites less
hair cells ,yields less neural activity in an impaired ear. This can explain the
relation between elevated tuning curves and hair cell loss. Furthermore, due
to its active amplification role, OHC loss is also in connection with reduced
BM response for low level signals.

As a summary, the three main physiological change that should be simulated
are the broadened and elevated tuning curves and the reduced compression
of BM. Regarding frequency characteristics of the hearing loss, a ski-slope
has to be constructed.

Parametrization for impaired ear

Bearing in mind the above mentioned aims, parameters of the BM, IHC and
synapse parts of the auditory model can be changed. MAP model imple-
ments the frequency analyzer property of human hearing in the BM part.
Within the nonlinear part of DRNL filter (used for modeling the traveling
wave at BM, see:subsection 3.1.3) the gain can be adjusted separately for
each frequency band to obtain a hearing loss resembling a ski-slope in char-
acteristics.

The nonlinear path of DRNL filter is dominant at low input levels only (see
discussion on DRNL filter behavior in Appendix A), thus changes in the linear
part also have to be introduced to model hearing impairment for high input
levels as well. Broadening the tuning curves can be done by reducing the
order of gammatone filters applied in the both paths. These modifications of
the BM part may seem controversial to the statement in the preceding para-
graphs, that BM motion remains the same and the elevation and widening of
tuning curves result from hair cell loss explicitly. On the other hand at the
current state, the model parameters can only be set at the nonlinear path of
DRNL filter with respect to frequency. Besides, the tuning and input level
dependency of hair cells are similar to the BM’s, thus this relation allows to
change parameters at latter one. Another reasoning can be that BM motion
is impeded by the presence of the electrode array within the cochlea. The
BM response and the tuning curves before and after modification can be
observed in Figure 3.9 and 3.10. Tuning curve elevation for the complete fre-
quency range and broadening for high frequencies is apparent as well as the
reduced compression that is an emerged property of the changed parameters.
Nevertheless, the obtained graphs for absolute threshold levels in Figure 3.11
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shows better hearing in the low frequency range compared to the desired
ski-slope. The aforementioned graphs are obtained by a modified version
of testBM and multiThreshold programs respectively. These programs are
provided with the MAP model and used for evaluating it. Incorporating the
modified MAP model is the only alternation from the original versions.
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Figure 3.9: Top row - Basilar membrane response for normal hearing; Bottom row -
Tuning curves for normal hearing; Data obtained by testBM program, provided with
MAP
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Figure 3.10: Top row - Basilar membrane response for impaired hearing; Bottom row
- Tuning curves for impaired hearing; Data obtained by testBM program, provided with
MAP

AAU, Master Thesis, 2014

42
AAU, Master Thesis, 2014



CHAPTER 3. IMPLEMENTATION

10
3

10

20

30

40

50

60

70

80

90

100

Frequency in Hz

H
e
a
ri
n
g
 l
o
s
s
 i
n
 d

B
H

L

 

 

Normal hearing
Implemented hearing loss
Hearing loss (DRNL)
Hearing loss (DRNL+M)

Hearing loss (DRNL+G
Ca

max
)

Figure 3.11: Absolute threshold levels obtained after BM modifications; Data obtaine
by MultiThreshold program, provided with MAP.

To introduce further loss to the auditory model the maximum calcium con-
ductance Gmax

Ca of IHCs and the maximum number of vesicles M in the pre-
synaptic store can be reduced. Reduction of M causes a broad band elevation
of hearing threshold because it reduces the number of vesicles that can be
released to the synaptic cleft at a time, thus neural activity decreases in gen-
eral. Due to its nature, this change also reduces the spontaneous activity that
can represent partial loss off hair cells. The indirect relation of IHC’s max-
imum calcium conductance Gmax

Ca through calcium current ICa and calcium
concentration Ca2+ to the transmitter release rate k is shown in section 3.1.
According to Sumner [24], the decrease in Gmax

Ca not only increases the firing
threshold of ANs, but also changes the input level dependency of firing from
saturating to sloping and straight for significant decrease. Figure 3.12 de-
picts the change of firing curve with respect to Gmax

Ca and the final absolute
hearing threshold curve after application of all parameter modifications can
be observed in Figure 3.11.
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Figure 3.12: Firing curve dependency with respect to GmaxCa . The arrow shows the
direction of increasing GmaxCa . [24]

3.4.4 Implementation of a hearing aid

A hearing aid model is built to simulate the compensation of hearing loss.
As a reference the input signal level is simply raised by 50 dBSPL. With this
reference hearing aid, errors introduced by more complex ones can be traced
back.

Besides the reference, a hearing aid model adjusted to the given hearing loss,
based on the half-gain rule introduced in subsection 2.3.1, is implemented.
A 128 long finite impulse response (FIR) filter is fitted to the calculated half
gains. The fir2 Matlab function is used for generating the filter coefficients.
The frequency response function of the model together with the half gains is
depicted in Figure 3.13.
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Figure 3.13: Transfer function of hearing aid (fitted with fir2 Matlab function) and
the half gains

Although the desired frequency response of the hearing aid is achieved, due to
its simplicity, in the time domain it introduces a delay to the signal passing
through the device. This bad design will have consequences when EAS is
evaluated in chapter 5.

3.4.5 Connection of models

After modifications are implemented in the acoustic and electric model, their
produced output is going to be firing intensity. After ascertaining that inten-
sities are calculated with the same rate (∆t in Equation D.3 is the same for
both cases) they are added together without calibration, since both models
were adjusted to fit empirical data. From this combined output the inverse
distribution function technique based probabilistic model in the Goldwyn
model produces the spike pattern. Figure 3.14 depicts the technique used
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for electroacoustic spike pattern generation. The usage of intensity super-
position is not verified, thus the general results of this project have to be
evaluated in the light of the assumption, that the superposition is considered
valid. This assumption gives the possibility of a future work in which the un-
derlying mechanisms of AN firings can be investigated during a simultaneous
electric and acoustic excitation.

μ
Σ

μ

Acoustic model

Figure 3.14: Flowchart of the modified Goldwyn model [20]; µ - firing intensity

Common input signal

To achieve correct results, a common input signal with the same amplitude
have to be used for both the acoustic and electric path. Unfortunately the
required format of input is different for the two parts.

The acoustic part works with quantities in SI units, thus it takes a sound
wave with its amplitude in Pa as an input. The average, by means of root-
mean-square (rms), level of a .wav file inputrms can be adjusted according to
a desired sound pressure level targetdBSPL to represent the input signal as
sound pressure. First the desired rms sound pressure targertrms is calculated
from targetdBSPL [10]:

targertrms = pref · 10
targetdBSPL

20 (3.11)

Where pref is the 20 µPa reference sound pressure. After targetrms is avail-
able, the conversion of .wav file to a sound wave can be achieved as follows:
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inputacou,Pa = inputacou ·
targetrms
inputrms

(3.12)

Where inputacou represents the vector containing the .wav file values and
inputacou,Pa is the input signal in sound pressure representation.

On the other hand the electric path requires a .wav file as an input, thus the
matching can not be done outside of the model, but at the point where the
level estimation is elaborated (see section 3.2). At this point the signal is
converted to estimated sound pressure levels in every frequency group. To
make the adjustment, first the input signal (at the same level as used for
the acoustic path) is introduced to the electric model in the form of a sound
wave (like it was the acoustic path). Before this signal would reach the level
estimation part, the processed signal is taken out. At this point the signal
is split according to the frequency groups, thus by taking the rms of each
group, reference values can be obtained, that can be used for adjustment
when the electric path is calculated.

inputelec,Pa,adjusted = inputelec,Pa ·
targetelec,rms
inputelec,rms

(3.13)

Where inputelec,Pa is the original signal in the electric path after level esti-
mation (and being converted to Pa-s), with the rms level of inputelec,rms for
every frequency group. The targetelec,rms is the rms obtained by the acoustic
signal as described above and inputelec,Pa,adjusted is the adjusted value of the
estimated sound pressures in the electric path.

By this adjustment the usage of a same input is ensured for the distinct
paths.

Figure 3.15 show the schematic block diagram of the combined model.
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Figure 3.15: Block diagram of EAS model
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4 | Validation methods

For performance evaluation of the combined electric and acoustic stimula-
tion both objective and subjective measures can be used. By comparing
the results obtained by the different measures and taking the benefit from
both makes a thorough investigation available. This chapter describes the
neurogram similarity index measure (NSIM) as the objective measure ap-
plied throughout the project. Development of a vocoder used for subjective
listening tests is the subject of future work.

4.1 NSIM

Objective measures make it possible to compare results without any individ-
ual bias. Being able to point out differences unseen by human evaluation
and the possibility of automatization are other advantages that make these
measures appealing.

The auditory, electric and combined models described in chapter 3 are ca-
pable of simulating the auditory nerve spike train corresponding to various
stimuli. There are several possibilities to choose from for comparing spike
trains, including relative mean absolute error (RMAE), relative mean squared
errors (RMSE) or cost based measures [25].

Spike patterns are built up of lines of spike trains obtained during the sim-
ulation and produced by neurons related to different frequencies along the
cochlea. Spikes are occurring as black dots according to the time and in a
line corresponding the neuron by which they are evoked thus as a whole it
can be interpreted as black and white picture. An example of a spike pattern
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is depicted in Figure 4.1. This similarity to an image allows us to use met-
rics originated in image processing. The chosen measure is the Neurogram
Similarity Index Measure (NSIM) that is a modified version of the Structural
Similarity Index Measure (SSIM) that was developed to asses perceptual im-
age quality. NSIM is proven to be superior over RMAE and RMSE [17][26],
thus after deciding on a suitable setup in terms of NSIM parameters discussed
later, it is more accurate and convenient to use.
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Figure 4.1: Spike pattern example. Response for ’acha’ VCV word at 40dBSPL. In
the y axis a lower number corresponds to a neuron with lower characteristic frequency.

4.1.1 Configuration of the similarity measure

SSIM was developed to compare images and is used to evaluate the quality
degradation of pictures after compressing processes. The underlying idea
of the metric is to analyze differences similarly as the human vision system
would do. Due to this approach, pictures are compared by small sections and
measures related to luminance, contrast and structure are used to quantify
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the discrepancy[27]. The weight of the latter mentioned measures has a great
influence on the behavior of the metric and have to be set depending on the
actual application [28]. The result of comparison is an image, reflecting the
differences between the compared pictures. By taking the mean value of the
of the result a general number, showing the general similarity is obtained.

The available spike patterns are black and white images and in this form
SSIM is not applicable on them, thus they need to be transformed in order
to resemble more a picture. The results of the transformation are called
neurograms and these are used as an input to SSIM evidently explaining the
name of NSIM.

Neurograms

Neurograms are created from spike patterns line by line, following the direc-
tions given by Hines in [28]. First spikes are accumulated within a predefined
time bin. This process is followed by a convolution with a 50% overlapping
Hamming window with a window size given in time bins. According to the
used bin and window size determining the temporal resolution of the gener-
ated picture, three main types of neurograms can be discriminated in connec-
tion with three different temporal features in speech. Envelope information
(2-50Hz) is related to articulation, voicing, vowel identity and prosody of
speech. Periodicity (50-500Hz) provides information of the signal’s periodic-
ity that can be related to a nasal or stop phoneme. Temporal fine structure
(TFS) (600Hz-10kHz) identifies small variations of the signal and helps sound
identification such as vowel formants [17]. In order to supply an adequate
amount of data (in case of a sparse spike pattern the produced neurogram
will not ’resemble a picture enough’) either several neurons per critical fre-
quencies or more trials have to be simulated. The used method for neurogram
generation is summarized in Figure 4.2.
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Figure 4.2: Block diagram of neurogram generation. A - Acoustic trial, E - Electric
trial, N - number of trials CF - Critical Frequency, HSR - High Spontaneous Rate fiber,
MSR - Medium Spontaneous Rate fiber, LSR - Low Spontaneous Rate fiber, ICEF -
Intra Cochlear Electric Field

In Figure 4.2 the a line at the top indicates the stage of the process and a
line at the bottom indicates the cardinality of the stage. The two parallel
paths used for simulating acoustic (A) and electric (E) stimuli by the help
of the modified MAP model and CI model can be observed.

The generator consists of six stages. The number of trials N i.e. repeating
the whole process can be set by the user.

In the acoustic path, within a trial the input signal (a sound wave) is pro-
cessed for 120 distinct location on the BM, characterized by their charac-
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teristic frequency (CF). Within each location three different fiber types are
simulated and their outputs (i.e. firing robabilities) are merged according to
the method described in section 3.4.

In the electric path 20 CFs are representing the 20 electrodes of the implant
and the intra cochlear electric field is calculated for 120 frequency points to
match the acoustic path.

The two separate paths are connected within the Goldwyn model that pro-
duces 120 spike trains in each trial. Under the filtering stage the spike trains
are first accumulated within a predefined time bin and then convolved with
a Hamming window with a given window size. This stage produces a picture
in a trial. Finally the corresponding lines obtained in every trial are added
together to obtain the final image i.e. the neurogram.

NSIM parameters

After the neurograms are available SSIM can be applied on them. According
to [17] a scanning window with a side length up to 5 pixels the algorithm can
be used safely and a 3x3 window is proposed to yield the best results thus
this size is used further on. Regarding the weights of luminance, contrast
and structure an according [1 0 1] vector is used proposed to be the most
suitable for phoneme discrimination [28]. These weights are adjusted such
that the NSIM results would reflect listening test results thus future work to
find more suitable parameters for cochlear implant simulations can be done.
The function for calculating NSIM throughout the project is based on the
work of Ian Bruce.
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5 | Results

This chapter contains a systematic evaluation of the auditory model, the
implemented impaired ear model and the electric model. These sections are
followed by a thorough investigation of electroacoustic stimulation. Finally
an attempt is made to find the optimal amount of electric stimulation, by
means of activated electrodes, in the residual hearing range for the hearing
loss at hand.

Neurograms described in chapter 4 are used for evaluating each part.

5.1 Evaluation of acoustic stimulation

First the frequency representation of the acoustic path is investigated by the
help of a linear sweep signal. After this a tone burst is used for evaluating
the time course of acoustic response. Investigation of a complex input signal
in the form of a VCV (vowel-consonant-vowel) word finishes the section.

The auditory model with the original parameters (provided in [10]), rep-
resenting normal hearing is used throughout the acoustic evaluation. The
basilar membrane is represented at 120 distinct locations thus the neurogram
representations contain 120 lines. To avoid difficult to read neurograms due
to broad excitation of the BM a relatively low input level of 40dBSPL is used
in the first two cases. When response to a VCV word is investigated, the
input level is set to both 40dBSPL and 60dBSPL using the latter to simulate
a general speech level.
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5.1. EVALUATION OF ACOUSTIC STIMULATION

5.1.1 Frequency course of acoustic stimulation

A one second linear sweep between frequency limits of 100Hz and 8kHz is fed
to the auditory model at a level of 40dBSPL. For generating the neurogram
from the spike pattern output of the acoustic model, time bin of 50 µs and a
smoothing Hamming window of 32 bin length is used, resulting in a 1250Hz
resolution. The procedure is repeated 100 times. The result can be observed
in Figure 5.1.
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Figure 5.1: Neurogram of a linear sweep between 125 and 8000 Hz at 40 dBSPL

In Figure 5.1 the horizontal axis represents time in seconds and the vertical
axis represents the neurons distributed according to the Greenwood function
and identified by their corresponding frequencies. Higher firing rates are
represented by brighter color, and the colorbar gives an approximation of
the instantaneous firing rates. It have to be pointed out, that due to the
usage of a smoothing window, it is not possible to recover the exact firing
rates. Furthermore, because of the representation of instantaneous firing
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rates, the maximum values tend to exceed the steady state values (see the
overshoot at the beginning of the signal in Figure 3.8).

The increasing frequency of the input signal produces the white diagonal
line in the figure. The nonlinear behavior of the curve is caused by the
nonlinear distribution of neurons along the cochlea. The thickness of the
curve (the vertical extension at a certain time) represents the tuning at the
actual neuron, and it reflects well the narrowing nature of tuning curves
towards higher frequencies.

The noise surrounding the actual pattern of the input signal represents the
spontaneous activity of neurons.

Phase locking property of neurons is reflected by distinct vertical lines within
the curve A horizontal tilt of these vertical lines can also be observed espe-
cially at the lowest frequencies i.e. at the beginning of the signal. This
tilt represents the traveling wave at the BM, that is, higher frequencies are
excited before lower ones.

5.1.2 Time course of acoustic stimulation

A 0.1 second 431Hz tone burst between 0.05 second silent parts is used for
evaluating the acoustic path in the time domain. The 40dBSPL test signal
is depicted in Figure 5.2.

For neurogram generation a time bin of 100 µs and a smoothing Hamming
window of 128 bin length is used, resulting in a 156.25Hz resolution. The
procedure is repeated 100 times. The result can be observed in Figure 5.3.
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Figure 5.2: 431 Hz tone burst
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Figure 5.3: Time course of neural activity at as a response for 431 Hz tone at 40
dBSPL

Figure 5.3 have to be interpreted similarly to Figure 5.1. The lower resolution
yields a more course representation, but it is necessary to reveal certain
properties of the model.

The dark gray and black columns at the beginning of the neurogram are
caused by the smoothing window. Activation of neurons in a wide frequency
range at the onset and offset of the tone burst is an artifact. The model
processes the signal in 0.01 second time frames thus at an abrupt change of
the input signal results in a broad band frequency domain representation.

Neural adaptation behavior is also represented in Figure 5.3. The oversoot in
firing activity can be observed as a more bright pattern after the onset signal
(approximately from 0.05 to 0.08 seconds, at the frequencies around 400 Hz)
compared to the rest, when firing reaches steady state values. The refrac-
tory period directly after offset of the signal is present as a darker pattern
(approximately from 0.16 to 0.19 seconds an at the frequencies around 400
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Hz) in the silent part following the signal where firing activity representing
the spontaneous activity should be present.

5.1.3 Excitation pattern of a VCV word

In this case the VCV word ’acha’ with time course depicted in Figure 5.4 is
first presented to the auditory model at 40 dBSPL.

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time in s

A
m

pl
itu

de
 in

 .w
av

 fi
le

Figure 5.4: Time course of VCV word ’acha’

Its neurogram is produced by a time bin of 50 µs and a smoothing Hamming
window of 32 bin length is used, resulting in a 1250Hz resolution. The
procedure is repeated 20 times. The result can be observed in Figure 5.5.
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Figure 5.5: Neurogram of VCV word ’acha’ at 40 dBSPL

Similarly to a spectrogram, the neurogram follows the spectral changes of the
input signal. Firing activity is more pronounced at low frequency neurons
at the ’a’ vowels and activity is shifted to the high frequencies during the
presentation of ’ch’ consonant. The first formant of ’a’ around 250 Hz causes
the highly phase locked firing appearing as organized vertical lines in the
figure. A wider firing activity pattern of vowels can be observed compared
to the pattern of the consonant. This is caused by the shape of the tuning
curve of the BM. As it is discussed in subsection 2.1.3 BM tuning curves have
a longer tail towards the base of the cochlea i.e. the higher frequencies, thus
signals with lower frequency content excite a wider range of the BM than
signals with high frequency content.

Figure 5.6 illustrates a neurogram constructed in the same way as Figure 5.5,
expect that the number of repetitions is 100 and the VCV word is now
presented at 60dBSPL.
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Figure 5.6: Neurogram of VCV word ’acha’ at 60dBSPL

Compared to the results in Figure 5.5 a broadening of the excitation pattern
can be noticed in Figure 5.6. This is the consequence of the tuning curves of
the BM, that are getting wider with an increasing sound pressure level. The
broad tuning curves for frequencies below 1000Hz can be seen in the lower
row of Figure 3.9. The saturation of hair cells in the low frequency range can
also be observed while comparing Figure 5.5 and 5.6. This effect results in
the approximately same dynamic range of the two figure.

5.2 Evaluation impaired ear implementation

During evaluation of the implemented hearing loss the VCV word ’acha’ is
used at 60dBSPL as an input for the auditory model with modifications
discussed in subsection 3.4.3. Figure 5.7 contains the results as neurograms
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both for an impaired ear only in the upper graph and for a hearing aid (fitted
to the half-gains) compensated loss in the lower one. A time bin of 50 µs, a
smoothing Hamming window of 32 bin length and 100 repetitions are used
for creating the neurograms.
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Figure 5.7: Top panel - Neurogram of VCV word ’acha’ at 60 dBSPL for the imple-
mented hearing loss; Bottom panel - Neurogram os VCV word ’acha’ at 60 dBSPL for
the fitted hearing aid compensated hearing loss

As it can be seen it the upper plot of Figure 5.7, most of the firing activity that
is present under normal hearing conditions is ceased. The residual hearing is
restricted to the low freqency range and even in this range the severe hearing
loss causes a limited neural activity. The decrease in spontaneous activity is
also significant, representing adequetly the lack of healthy neurons.

The situation with the fitted hearing aid compensation is presented in the
lower plot of Figure 5.7. As it is expected, the firing activity is increased
in the low frequency range, although the normal levels are still not met. At
high input levels, due to the relatively broad tuning curves at low frequencies,
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neural activity will be present also in the low frequency range for inputs with
high frequency content. This effect can be observed in the 0.2 to 0.45 seconds
time interval in Figure 5.7.

5.3 Evaluation of electric stimulation

Simulation of electric stimulation is completely separated from the auditory
system model. Similarly to the latter evaluations the ’acha’ word at 60dBSPL
is used as an input for the CI model that is extended with the model of intra
cochlear electric spread and the Goldwyn model that generates the neural
response.

The generated neurogram with time bin of 50 µs, smoothing Hamming win-
dow of 32 bin length and 100 repetitions can be seen in Figure 5.8.
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Figure 5.8: Neurogram of electric stimulation for the VCV word ’acha’ at 60 dBSPL
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As it can be observed in Figure 5.8 the electrode activity follows the fre-
quency changes through the time course of the input similarly to the acous-
tic excitation (see Figure 5.6). The effect of electrical spread is present as
simultaneous activation of a wide range of neurons besides the actual main
frequency content of the signal. For example, in the time interval of 0.02 to
0.15 second the main frequency content of the VCV word is around 1500Hz
and accordingly the neural response is the most vivid in this range, but the
rest of the frequency range is also activated with a lower intensity.

The first main deviation from acoustic response is the lack of spontaneous
activity, that is, no random noise is present during the absence of input. The
second difference is the significantly higher phase locking in firing, apparent
as vertical lines in the graph. As it is discussed in section 2.2, this phenomena
is caused by the lack of stochastic process present at the IHC-AN synapse.

5.4 Evaluation of EAS

During evaluation of electroacoustic stimulation, the VCV word ’acha’ at
60dBSPL is used as an input signal for the combined simulation chain. For
the auditory path, the model with hearing impairment is used and the block
of the designed hearing aid (see subsection 3.4.4) is placed before it. The
electric pathway is used with the extension of simulating the intra cochlear
electric field. The separate branches are connected according to the method
described in subsection 3.4.5.

The generated neurogram with time bin of 50 µs, smoothing Hamming win-
dow of 32 bin length and 10 repetitions can be seen in Figure 5.8.

AAU, Master Thesis, 2014

64
AAU, Master Thesis, 2014



CHAPTER 5. RESULTS

Time in s

F
re

q
u
e
n
c
y
 i
n
 H

z

 

 

0.0792 0.1592 0.2392 0.3192 0.3992 0.4792 0.5592 0.6392

 284

 628

1248

2365

4376

8000

Firing rate
in 1/s

   0

 205

 410

 615

 821

1026

1231

1436

1641

Figure 5.9: Neurogram of EAS for the VCV word ’acha’ at 60 dBSPL

Figure 5.9 can be compared to Figure 5.6 and 5.8 due to the identical cir-
cumstance (by means of input signal, input level and neurogram parameters,
expect the number of repetitions) used to obtain these results. Result of
the hearing aid compensated hearing loss in Figure 5.7 also helps with the
interpretation of the current result.

By looking at the low frequency range in Figure 5.9 the effect of the simulated
residual hearing is obvious. In the time intervals, where vowels are present
(0.02 to 0.2 and 0.45 to 0.65 seconds) interaction of the electric and acoustic
stimulation appears as an increased firing activity reflecting well the addition
of stimuli. During the representation of consonant (from 0.2 to 0.45 seconds)
with frequency content above the residual hearing, the effect of the hearing
aid can be seen.

The dark horizontal lines appearing in the neurogram are originated i the
spike pattern. The probabilistic spike generator in the Goldwyn model pro-
duces the spike trains for each characteristic frequency separately (i.e. line-
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by-line in the neurogram). Sometimes the generation of spikes ceases. So far
no further investigation was taken to reveal the underlying problem of this
behavior.

5.5 Evaluation of EAS performance

During evaluation of EAS the general assumption, that it performs better
than an electric stimulation alone, is taken. To use this assumption, neu-
rograms are created for normal hearing conditions, electric stimulation (ES)
and EAS when the acoustic part applies the impaired ear model and the in-
put signal is amplified with a hearing aid model. To compare performances
the mean value of NSIM, with parameters described in chapter 4, is used for
comparing normal hearing to ES and EAS.

VCV words with various spectral content and an tone signal with at 500Hz
with changing amplitude is used as input signals to the model. Spectrograms
of VCV words and the tone in time domain are shown in Figure 5.10 and
5.11 respectively. The vowel ’a’ in each word contains frequencies around
1000 Hz and a formant at 250 Hz is also significant. Frequency content of the
consonant varies from word to word. Frequencies around 4 kHz are dominant
in ’ch’ during the word ’acha’, consonant ’b’ in the second word, ’aba’, is
concentrated to the low frequencies below 250 Hz. Finally the consonant ’f’
in the last word ’afa’ mainly contains frequencies above 8 kHz (i.e. out of
the modeling range), while exciting the whole observed frequency range at
moderate level.
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Figure 5.10: Spectrograms of VCV words. In a left to right order: ’acha’, ’aba’, ’afa’
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Figure 5.11: Time domain representation of a 500Hz tone with varying level

5.5.1 EAS performance with respect to varying time
resolution

Before further evaluations EAS compared to ES performance has to be inves-
tigated with respect to the temporal resolution of neurograms. Later results
can only be considered valid if EAS outperforms ES at the applied resolu-
tion, otherwise results would be inconsistent with listening test data (see:
section 2.4).

During simulations with varying temporal resolution the ’acha’ VCV word
at a level of 60 dBSPL and 10 trials per neurogram is used. The EAS
model contains the reference hearing aid described in subsection 3.4.4 to avoid
complications that differences in the acoustic response for normal hearing
and impaired hearing can cause. The used combinations of time bin and
smoothing window size, resulting in different temporal resolutions can be
seen in Table 5.1.

Resolution in Hz 156.25 312.5 625 1250 2500
Time bin in µs 100 100 50 50 50
Window size in bin 128 64 64 32 16

Table 5.1: Time bin and smoothing window sizes used for different temporal resolu-
tions

Figure 5.12 illustrates the evolution of NSIM results for ES (dashed line)
and EAS (continuous line)with increasing temporal resolution. The graph
shows a monotonous decrease above 625Hz. This behavior can be associated
with the noise like spontaneous activity, that is present in the neurogram of
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normal hearing and getting more pronounced with increasing resolution. In
other words, as the picture resolution is getting higher an individual neural
spike is contributing more to one pixel. Both ES and EAS are compared to
the normal hearing neurogram thus the noise will affect both results. Besides
the general tendency of curves, a varying difference between ES and EAS
results is also noticeable.
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Figure 5.12: NSIM results for EAS and ES for the VCV word ’acha’ at 60 dBSPL,
with respect to neurogram temporal resolution

Figure 5.13 shows the difference between ES and EAS results normalized to
the actual EAS value. The diagram shows a peak at 1250 Hz, indicating that
the deviation is the most distinct at this resolution.
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Figure 5.13: Normalized advance of EAS over ES for the VCV word ’acha’ at 60
dBSPL, with respect to neurogram temporal resolution

5.5.2 Optimal activation of electrodes during EAS

To find the optimal number of active electrodes for EAS, apical electrodes,
responsible for the low frequencies, are deactivated systematically and NSIM
results for EAS as well as differences between EAS and ES are investigated.
Unfortunately the used CI model is not capable of deactivating the electrodes
inherently. To bypass this problem, the electrical spread within the cochlea is
not calculated for electrodes which are assumed to be switched off. It means,
that the neurons only receive electric stimulation from the active electrodes.

Throughout the simulations conducted for this evaluation 10 trials are ap-
plied to generate neurograms at an input level being set to 60dBSPL to
simulate normal speech conditions, and a resolution of 1250Hz is used. By
applying the latter parameter, TFS information is present in the neurograms

AAU, Master Thesis, 2014

69
AAU, Master Thesis, 2014



5.5. EVALUATION OF EAS PERFORMANCE

while the difference between ES and EAS results is definite. Investigation at
a temporal resolution, that can reflect TFS information is necessary because
these cues are related to the superiority of EAS over ES (see section 2.4),
that is the general assumption for evaluating EAS performance.

EAS with reference hearing aid

For the first simulations the reference hearing aid is used. Figure 5.14 shows
the evolution of NSIM results with respect to the number of switched off
electrodes. Various input signals are marked with different colors (’acha’-
blue, ’aba’ - red, ’afa’ - green, ’tone’ - black) while dashed and continuous
line show the results for ES and EAS respectively.

Results for VCV word show a decrease in similarity index with more elec-
trodes being switched off. ES and EAS results are clearly separated in all
cases with EAS showing better performance. The ’acha’ word gives better
NSIM values compared to the other inputs, independently of the number of
switched off electrodes. Results for the tone signal are only depicted up to
three turned off electrodes, because switching of more yields a lack of elec-
trode activation since the first four apical electrodes covers the range where
the tone lies. Further more, NSIM values for the tone signal are lower than
the ones obtained for VCV words, although EAS is still better than ES.
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Figure 5.14: NSIM results for EAS and ES with respect to the number of switched
off electrodes for various input signals at 60 dBSPL. Reference hearing aid is used in
the EAS model.

These results indicates, that according to the objective measure EAS has the
best performance when all electrodes are activated.

The differences in results regarding the VCV input stimuli are originated in
their frequency content. During EAS the electric stimulation is dominant if
the whole frequency range is investigated. The frequency content of ’acha’
is mostly out of the range of residual hearing, thus electric stimulation is
responsible for restoring it, yielding the overall superiority of NSIM results.

The lowest results obtained by the tone signal is due to the fact, that its
frequency lies completely in the residual hearing range. It means that both
the electric and acoustic part of EAS is restricted to the low frequency range,
and the spontaneous activity of neurons, that is present during normal hear-
ing conditions, in the high frequency range is missing. NSIM compares the
whole neurogram, thus the overall result for the tone stimulus is going to be
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low due to the differences in the dominant high frequency range.

To investigate further the effect of electric stimulation in the residual hear-
ing range, NSIM can be calculated only for the low frequency range of the
neurograms. Figure 5.15 shows the results when neurograms are compared
for frequencies below 1000 Hz. This figure shows increasing NSIM values for
EAS as the electric stimulation leaves the residual hearing range. This can
be interpreted such that the electric stimulation distorts the acoustic during
simultaneous stimulation. ES results show decreasing NSIM values, which is
natural, since there is no residual acoustic hearing in this case, thus neurons
are not stimulated without the presence of electric stimulus.
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Figure 5.15: NSIM results for EAS and ES with respect to the number of switched
off electrodes for various input signals at 60 dBSPL. Investigating the frequency range
below 1000 Hz. Reference hearing aid is used in the EAS model.

Figure 5.16 shows the evolution of advantage of EAS over ES NSIM results
normalized to the actual EAS values with respect to the number of switched
off electrodes. All curves show an increasing tendency with the increas-
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ing number of deactivated electrodes. Result for tone excitation with three
turned off electrodes show great deviation form the others, because in this
situation the electrical stimulus is limited due to the tone getting out of the
frequency range covered by the residual electrodes. Among the VCV words
’aba’ possesses the highest values, while ’afa’ and ’acha’ run close to each
other , the latter being smaller in every situation.
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Figure 5.16: Normalized advance of EAS over ES with respect to the number of
switched off electrodes for various input signals at 60 dBSPL. Reference hearing aid is
used in the EAS model.

Positive values for relative differences between EAS and ES indicate the su-
periority of EAS in all cases. Now the order of results is the revers compared
to the one depicted in Figure 5.14. This inversion can be associated with the
frequency content of input signals. Signal with more frequency content in the
low frequency range will benefit more from the residual hearing. The increase
of relative differences with less electric excitation in the low frequency range
is caused by the acoustic hearing being exploited during EAS. E.g. when
no electric excitation is present in the low frequency range, ES will have a
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blank band in the neurogram, while EAS will present similar excitation to
the normal hearing in this range.

EAS with fitted hearing aid

The second series of simulations apply exactly the same setup as the first,
only the hearing aid is changed to the half-gain rule based model.

Figure 5.17 shows the evolution of NSIM results with respect to the number
of switched off electrodes. Result for the tone signal are similar to the ones
presented in Figure 5.14. Result for VCV words show the same tendency
and distribution by means of input stimuli. An important deviation from
the results obtained in Figure 5.14 is the small difference between ES and
EAS results, furthermore ES is shown to be better in representing normal
hearing conditions in the case of ’aba’ and ’afa’. These latter observations
can also be seen in Figure 5.18, where differences are normalized to the actual
EAS value.
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Figure 5.17: NSIM results for EAS and ES with respect to the number of switched
off electrodes for various input signals at 60 dBSPL. Fitted hearing aid is used in the
EAS model.
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Figure 5.18: Normalized advance of EAS over ES with respect to the number of
switched off electrodes for various input signals at 60 dBSPL. Fitted hearing aid is used
in the EAS model.

These results are caused by the bad design of the hearing aid. Figure 5.19
shows sections of neurograms in the low frequency range at the onset of
a VCV word. Normal hearing and hearing aid compensated hearing loss
conditions can be observed in the top and bottom panel respectively. The
delay ∆t introduced by the hearing aid is illustrated by red vertical lines. As
it can be seen ∆t approximately coincides with the time period corresponding
to the fundamental frequency of vowel ’a’. This coincidence will result in
comparing black vertical patterns to white ones during calculation of NSIM.
Eventually cancelling out the positive effect of additional acoustic part in
EAS. Furthermore, this delay will result in lowering the performance of EAS
below ES, represented by negative values in Figure 5.18. This figure also
shows that input signals with more low frequency content1 are affected more
by the delay.

1’Although ’afa’ contains high frequencies, those are out of the investigated range, thus
the low frequency part is dominant in its the neurogram.
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NSIM results for the tone signal also show a decrease compared to the sim-
ulation with reference hearing aid, but since the period time of the tone is
larger, the complete cancellation will not be present.
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Figure 5.19: Illustration of delay introduced by the fitted hearing aid. Top figure
- Neurogram for the VCV word ’acha’ at 60 dBSPL for normal hearing conditions;
Bottom figure - Neurogram for the VCV word ’acha’ at 60 dBSPL for hearing loss
compensated by the fitted hearing aid.
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Result for simulating the auditory system reflects well the physiological data
discussed in section 2.1. Behavior of basilar membrane (tonotopic organi-
zation, tuning curves, traveling wave), inner hair cells (saturation), and au-
ditory nerves (neural adaptation - overshoot and refractory period) can be
observed in neurograms.

Although the representation of auditory system by neurograms is qualita-
tively correct, the obtained firing rates are higher than the reported empirical
data (discussed in subsection 2.1.3). Firing rate results shown in Figure 3.8
are consistent with empirical data, thus the problem can be related to the
spike generation method implemented in the Goldwyn model. Nevertheless
the same spike generator is used for acoustic, electric and EAS simulation,
thus the quantitative error of firing rates does not effect the final results.

Implementation of an impaired ear can be considered successful. A better
representation can be done by adjusting the bandwidth of gammatone filters
in the non-linear path of DRNL filter, that would result in the widening of
tuning curves for lower input levels. This would be noticeable in the residual
hearing range.

Results for electric stimulation represents well the case of a CI usage, i.e.
high phase locking of neurons, lack of spontaneous activity and presence of
intra cochlear electric field.

The problem of non-optimal simulation of electrode deactivation (see: sub-
section 5.5.2) can distorts the results. The actual solution for the problem
rather simulates damaged electrodes, than deactivated ones. Probably by
simulating turned off electrodes properly, NSIM results would change in the
same direction for both ES and EAS and the final results would be the same.
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This part must be investigated further in a future work.

EAS results show the properties discussed both for the acoustic and electric
part. Based on the assumption, that is taken in section 3.4 the connection
of paths is successful. EAS neurograms are similar to ES and acoustic neu-
rograms in the corresponding frequency ranges and the interaction in firing
activity appears where both stimuli are present.

Results obtained by deactivation of electrodes suggest that the best perfor-
mance can be achieved by all electrodes being activated. This result have
to be handled with care, because of the non-optimal electrode control. Fur-
ther investigation is needed in this case. On the other hand, investigation
restricted to the low frequencies, where the residual hearing is present, shows
that hearing is preserved in a better way without electric stimulation. This
can be caused by the nature of the combined stimulation or it can indicate a
synchronization problem in the electric stimulation. Results with the fitted
hearing aid show that NSIM can be used to evaluate temporal synchroniza-
tion. This property of the objective measure later can be used to evaluate
proper fitting of CI and hearing aid.
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7 | Conclusions

The main goal of implementing a working model that combines electric and
acoustic hearing can be considered successful, but the assumption of combina-
tion (see section 3.4) have to be validated by further experiments. A hearing
loss implementation according to a specific impairment, typically found in CI
users, is also done. The NSIM objective measure is used to evaluate the built
model and its eligibility for pointing out temporal synchronization problems
in EAS is shown. An attempt to find optimal electrode activation in CI
during EAS is made, but further work is needed to obtain reliable results.

As future work both the auditory model and the acoustic model can be im-
proved and further studies on EAS can be made. A better representation
of the outer and middle ear transfer function can be incorporated in the
acoustic model and reintroducing the efferent effects would also improve it.
The presence of an electrode array inside the cochlea also changes the be-
havior of the inner ear, thus the changes according to this also have to be
investigated. The electric stimulation model in the current state assumes a
perfect placement of electrodes, thus simulation of place-mismatch can serve
as a further development. A study on the optimal compression applied in
both the acoustic and electric part can be conducted besides investigating
the optimal crossover-frequency. The proposed method for connecting the
electric and acoustic path can be validated by a study using an EAS based
vocoder and an evaluation by CI users can also be conducted.
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A | Dual-Resonance-Non-Linear fil-
ter

The DRNL filter used in the MAP model (section 3.1) is based on the work
presented in [18], that aimed to fit the filter to empirical human psychophys-
ical data. This model uses stapes velocity as an input and basilar membrane
velocity as an output as it is depicted in Figure A.1. This a deviation from
the MAP model that uses displacements results in a simplification in the
parametrization, such that constant values can be used along the basilar
membrane and the low-pass filters are not needed.

Figure A.1: Schematic of the dual-resonance-non-linear filter.[18]

A.1 Parts of DRNL filter

The gammatone filters both in the linear and non-linear part are used to
approximate frequency selectivity of ear. The linear gain g is responsible
for adjusting the level when the basilar membrane response becomes linear
again for high input levels. The broken-stick nonlinearity contributes to the
basilar membranes input-output function both at the low input stimulus and
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A.2. OUTPUT OF DRNL FILTER

the compression range, and it is defined as follows[18]1:

y(t) = sign[x(t)] ·min[a|x(t)|, b|x(t)|c] (A.1)

Where x(t) is the input signal, y(t) is the output signal and a,b and c are
parameters of the function.2 As it can be seen in Figure A.2, this function
behaves linearly for low input levels and a compression introduced by c starts
only for higher x(t) input.

x

y

Figure A.2: Schematic representation of broken-stick compression.

A.2 Output of DRNL filter

Output of the DRNL filter at certain basilar membrane position for low and
high input sound level can be observed in Figure A.3.

The dominance of the nonlinear path for low level stimuli and the dominance
1The implementation of this function in MAP differs from the one represented here be-

cause of the velocity-displacement difference. Nevertheless the underlying idea of including
a broken-stick nonlinearity is the same.

2a, b and c are constant along the basilar membrane in MAP model due to the velocity-
displacement difference
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APPENDIX A.

of the linear path for high level stimuli is obvious from this illustration. Even
though the output of both paths grow with increasing input levels, the one
in the nonlinear path changes in a slower pace due to the compression and
that explains the exchange of superiority.

The change of bandwidth with level is also apparent in Figure A.3, as well
as the shift of characteristic frequency. The presence of these behaviors can
be related respectively to the difference in the gammatone filter bandwidths
and center frequencies used in the parallel paths.

Figure A.3: Output of DRNL for low- and high-level input stimulus.[18]

A.3 DRNL filter parameter roles

The basilar membrane input-output function described in subsection 2.1.3 is
attempted to be simulated for arbitrary frequencies by the DRNL filter.

The linear part of basilar membrane response for low input levels is controlled
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A.3. DRNL FILTER PARAMETER ROLES

by the nonlinear path of the DRNL filter, since this is the dominant in this
input level range (see Figure A.3). As it can be seen from Equation A.1 the
output of this path is linear for low levels and parameter a takes the main
role and it is adjusted to fit empirical data of basilar membrane response
at hearing threshold for normal hearing. The tuning of the membrane is
controlled by CFnl the bandwidth of gammatone filters3.

The starting point of the compressed part is controlled by parameter b4. Al-
though parameter c is responsible for the level of compression in the broken-
stick function (see: Equation A.1) it is just indirectly related to the nonlinear
part of the filter output, since it is the result of the whole system.

At the highest input levels (approximately above 85dB [19]) the linear part
of the filter becomes dominant as it can be seen in Figure A.3. The level
at which the filter behaves linearly again is set by parameter g and CFlin
the bandwith of the gammatone filters in the linear path. To obtain the
psychophysical property of less tuning high stimui (see subsection 2.1.3),
CFlin is set to be less than CFnl. At last a downward shift of best frequencies
with input levels between 65 and 95dB [19] is also introduced by setting a
constraint of CFlin/CFnl ratio being less than one.

3During implementation of an impaired ear, parameter a can be changed to raise hearing
threshold and bandwidth of gammatone filters in the nonlinear path can be increased to
lower the tuning of the membrane

4The MAP implementation uses a variable ctBM that explicitly sets the border of linear
and compressed part.
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B | Viscous coupling between basi-
lar membrane displacement
and stereocilia displacement

The underlying idea of the modeling of stereocilia displacement u as a re-
sponses to basilar membrane displacement ω is visualized in Figure B.1 and
can be summarized in the following expression [19]:

τc
∂u

∂t
+ u = τcC

∂ω

∂t
(B.1)

Where τc is a constant proportional to the geometry of stereocilia and the
viscosity of endolymph which are consider to be constant along the cochlea for
simplification. C is a constant depending on the geometry of space between
the hair cell and the tectorial membrane.

Equation B.1 represents the viscous coupling. The basilar membrane move-
ment evokes a fluid flow that is represented by Q the mean transverse com-
ponent of fluid velocity in Figure B.1.
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Figure B.1: Schematic of basilar membrane displacement and cilia displacement rela-
tion. [19]

Because of linearity the velocity1 of basilar membrane ∂ω
∂t

is proportional (by
C) to Q and it is proportional (by τc) to the force deflecting the cilia that
takes place in the right part of Equation B.1.

The restoring forces in the left part of Equation B.1 are the dissipative force
and the elastic force proportional to the cilia velocity ∂u

∂t
and displacement

respectively.

This model of coupling is independent of position along the cochlea. In reality
stereocilia length l varies with position [19] that could be represented by a
variable τc, because only the elastic force is independent of l and τc at the
same time.

1Note that in the MAP model uses basilar membrane displacement directly at this
point (See Equation 3.1). Because of this, the constants used in that model differs from
the ones used in [19], but the underlying idea remains the same.
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C | Relation of Goldwyn model
to point processes

This appendix contains the relation between response statistics used in the
Goldwyn model and point processes. Besides, expressions for functions used
in the Goldwyn point process model can be found in the second section.
[20] is used for creating the list of expressions and Table C.2 containing the
related parameter values.

C.1 Relation of response statistics to point pro-
cess

The conditional intensity function λ(t|I,H)1 (I and H stands for the ampli-
tude and the history of the input pulse respectively) completely defines the
point process as it is discussed in Appendix D and its integration can be
written as follows [20]:

Λ(t1, t2|I,H) =

∫ t2

t1

λ(s|I,H) ds (C.1)

The probability distribution function that can be interpreted as the proba-
bility that a spike will be produced in a time interval of [t1, t2] can be derived

1Note that in Appendix D µ(.) was used as a sign for the intensity function and λ(.)
denoted the rate of discharge, but as it was explained, for a Poisson process these two
values are equal.
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C.1. RELATION OF RESPONSE STATISTICS TO POINT PROCESS

from Λ(t1, t2|I,H) and known as the lifetime distribution function [20]:

L(t1, t2|I,H) = 1− e−Λ(t1,t2|I,H) (C.2)

Observe that Equation C.2 is similar to the desired probability distribution
function (D.9) applied in section D.4. It can also be seen that if C.2 is the
function of I, it represents the firing efficiency curve. Likewise if C.2 is the
function of t2, then it represents the probability that a stimulus will elicit
a spike before t2 i.e. the temporal dispersion of spiking is expressed in this
case. Consequently if t2 goes to infinity, C.2 shows the probability that a
spike will ever occur.

The relation among response statistics and lifetime distribution function
L(t1, t2|I,H) (or the integrated intensity function Λ(t1, t2|I,H)) is summa-
rized in Table C.1.

Where θ(Dc) is the threshold for chronaxie and θ(∞) is the threshold for
monophasic long pulse duration. The probability density function w.r.t I is
the derivative of the lifetime distribution is defined as [20]:

lI(0,∞|I) =
d

dI
[Λ(0,∞|I)]e−Λ(0,∞|I) (C.3)

and similarly the probability density function w.r.t t is the derivative of the
lifetime distribution [20]:

lt(0, t|θ) = 2λ(0, t|θ)e−Λ(0,t|θ) (C.4)

2

f(x) =

{
xα if x ≥ 0
0 else (C.5)

2The multiplier of two is originated in the definition of chronaxie that can be interpreted
such as the probability of producing a spike at any time for an input stimulus level of θ is
twice the probability of producing a spike in the [0,t] time interval i.e. 2L(0, t|θ).
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APPENDIX C.

Response statistics Definition Relation to point
process

Threshold (θ) Current level for which the
firing efficiency curve is one

half

1
2

= L(0,∞|θ)
or
Λ(o,∞|θ) = log 2

Relative Spread
(RS)

Standard deviation of
density function w.r.t. I

(lI(0,∞|I)), divided by its
mean

σ(lI(0,∞|I))
µ(lI(0,∞|I))

Chronaxie (Dc) pulse duration for which
the threshold is twice the
value as for a long pulse

θ(Dc) = 2θ(D∞)

Jitter Standard deviation of
density function w.r.t. t

(lt(0, t|θ))

σ(lt(0, t|θ))

Summation effect Same statement as for
threshold, but θ is defined

by a pair of pulses

Λ(0,∞|θpair) =
log 2

Refractory effect Dependency of θ on spike
times

History condition
(H) is introduced

Table C.1: Summary of the relation of response statistics - used for configuring
the point process framework - to point process expressions. The top four statistics
are measures for a single pulse and the bottom two are measures including history
dependence.
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C.1. RELATION OF RESPONSE STATISTICS TO POINT PROCESS

Response statistics Value Model Parameter Value
Threshold 0.852 mA κ 9.365
Relative spread 4.87% α 24.52
Chronaxie 276 µs τκ 325.4 µs
Jitter 85.5 µs τJ 94.3 µs
Summation time 250 µs β 0.333

Table C.2: Values for respose statistics and the corrsponding parameters

K+(t) =

{
κ
τκ
e−

t
τκ if t ≥ 0

0 else
(C.6)

K−(t) =

{
βκ
τκ
e−

t
τκ if t ≥ 0

0 else
(C.7)

J(t) =

{
1
τJ
e
− t
τJ if t ≥ 0

0 else
(C.8)

In equations C.5 to C.8 the parameters (κ, α, τκ, τJ and β) can be directly
related to the response statistics as follows:
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D | Point process theory

Neural activity is represented as action potentials occurring at the auditory
nerve. Point process is used for measurement and analysis of a sequence of
action potentials that represents a neural code [29], thus it is important to
have a basic understanding of it.

D.1 Definition of point process

The occurrence of an action potential in a time interval of ∆t in a regular
point process can be defined as a constraint probability function as follows
[29]:

P [one event in[t, t+ ∆t)|Nt,wt] = µ(t;Nt,wt)∆t (D.1)

where Nt is number of events occurred before time t, wt is is a vector con-
taining the times occurrences and µ(.) is the intensity of the point process.
It can be observed that the probability of occurrence is directly proportional
to the length of the time interval. The intensity function is related to the
instantaneous rate (defined as events per second) of the process and its varia-
tion can represent deterministic or stochastic external influences. µ(.) is also
dependent on Nt and wt i.e the history of the process that can account for
dynamic neural behaviors such as refractory effect.
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D.2. THE POISSON POINT PROCESS

D.2 The Poisson point process

The Possion process can be considered as the base of any more complex point
process. Its intensity function described in Equation D.2 does not contain the
part responsible for the process’s history, in other words the Poisson process
has no memory. For defining a stationary process, the rate of discharge λ(t)
is constant, while variation of λ(t) over time accounts for a doubly stochastic
Poisson process.[29]

µ(t;Nt,wt)∆t = λ(t) (D.2)

The rate of discharge λ(t) is defined as the limit of the expected number of
events occurring in a time interval divided by the length of the time interval
[29]:

λ(t) = lim
∆t→0+

ε[Nt+∆t −Nt]

∆t
(D.3)

For a Poisson process the expected value can be expressed as follows:

ε[Nt+∆t −Nt] =

∫ t+∆t

t

λ(α) dα. (D.4)

Due to this property the instantaneous rate is equal to the intensity [29].

D.3 Renewal process

By definition a renewal point processes can be described as a point process
that depends on the occurrence time of the last event:

µ(t;Nt,wt) = µ(t;Nt, wNt) (D.5)
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APPENDIX D.

If the intensity is independent of the absolute time, then it is only the function
of time since the last event:

µ(t;Nt, wNt) = h(t− wNt) (D.6)

For constant h(.) = h(τ), the Poisson process is obtained, that can be rewrit-
ten to describe a process with absolute refractory period:

h(τ) = µ0u(τ −∆) (D.7)

Where u(.) is a unit-step function and ∆ accounts for the absolute refractory
period during which the probability of an event is zero. After time exceeds
∆ the process behaves similarly to a Poisson process.

D.4 Point process generation

To produce a point process, calculation of subsequent interevent interval
durations is used. The most basic practice relies on Equation D.1 i.e. a
biased coin is flipped as a predefined ∆t passes and an event is produced
when ’the coin comes up heads’. In this method the probability of ’head’ is
the product of the intensity function and the interval duration.

Despite being the most straightforward method, it has undesirable properties.
First to accurately mimic neural discharges the probability of ’heads’ should
be significantly less than one, that is challenging to produce with a random
generator. Secondly the small probability of event generation results in a
huge computational loss for not producing an event.

D.4.1 Inverse distribution function technique

A more sophisticated and less computationally heavy technique uses the in-
verse distribution function for generating interevent time intervals. This
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D.4. POINT PROCESS GENERATION

method exploits the fact that the probability distribution function of a ran-
dom variable applied to the random variable itself results in a uniformly
distributed random variable (this statement can be extended to be applica-
ble for constrained random variables)[29]:

U = PX(X) (D.8)

First a uniformly distributed random variable U is generated. Then X is
calculated such that it satisfies Equation D.8. In this way X is going to have
a probability distribution function described by PX .

Applying this method for point process generation, the steps can be substi-
tuted as follows:

• define the desired probability distribution function:

Pτn+1|τn,...,τ1(τn+1|τn, ..., τ1) = 1− e−
∫ τn+1
0 µ̃(α;n,τ) dα (D.9)

• generate exponentially distributed random variables En1

• calculate τn interevent intervals until the following integral stands:

En+1 =

∫ τn+1

0

µ̃(α;n, τ) dα (D.10)

For a stationary renewal process the integral in Equation D.10 can be ana-
lytically expressed as:

En+1 =

{
0, τn+1 < ∆
λ0 · (τn+1 −∆), τn+1 ≥ ∆

(D.11)

Equation D.10 yields an ’integrate and fire’ [29] property, where the inte-
grated value is the intensity function of the process that incorporates all the
history related constraints of the process and an exponentially distributed
random variable is the threshold for firing is in this case.

1Although the original method uses uniformly distributed variables, due to the direct
relation (E = − lnU) an exponentially distributed variable can be used as well
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