
Cassiopeia - House of Computer Science

Student Report

Selma Lagerlöfs Vej 300

Telephone +45 9940 9940

Fax +45 9940 9798

http://www.cs.aau.dk

Title:
Applying Application-Level Cor-
rectness to the Paparazzi Autopilot

Theme:
Specialisation in Computer Science

Project period:
DAT10, spring semester 2014

Project group:
d103f14

Members:
Heine Gatten Larsen
Morten Turn Pedersen
Thomas Viesmose Birch

Supervisors:
René Rydhof Hansen
Mads Christian Olesen

Page count: 68

Appendix count: 4

Finished: June 3, 2014

Abstract:

Unmanned aerial vehicles (UAVs) are be-

coming increasingly available. As a result

of this, software which is cheap and acces-

sible to everybody is needed.

The open-source Paparazzi project aims to

provide a cheap software and hardware so-

lution for UAVs. However, the Paparazzi

software is not secured against outside fac-

tors resulting in individual bits changing

their values. In this report we introduce

a way of comparing different flight paths

to each other, and we present a method to

make the Paparazzi autopilot application-

level correct. Finally we test our method’s

performance when a single event upset is

injected into the autopilot during a flight.

The content of this report is freely available, but publication (with citations) is only allowed

after agreed upon by the authors.

This page intentionally left blank

Contents

1 Introduction 5

2 Terminology 7

2.1 Aviation . 7

2.2 Fault Tolerance . 10

2.2.1 Application-Level Correctness 11

3 Related Work 12

3.1 Soft Error Detection Through Software Fault Tolerance . . . 12

3.2 SWIFT-R . 14

3.3 AALCASE . 14

3.4 Rely . 15

3.5 Summary . 17

4 The Paparazzi Project 18

4.1 Hardware . 18

4.1.1 Architecture . 19

4.2 Ground Control Station . 19

4.2.1 Flight Plans . 22

4.2.2 Simulation . 24

4.3 Fixed Wing Autopilot in Paparazzi 24

4.3.1 Math Library . 25

4.3.2 Subsystems . 25

4.3.3 Simulator . 27

5 Analysis of the Paparazzi Autopilot 29

5.1 Overview . 29

5.2 Assumptions . 30

5.3 Modelling the System in UPPAAL 31

5.3.1 Results . 34

5.4 Fidelity Metric . 34

5.4.1 Comparing Paths . 35

3

6 Implementation & Test 37
6.1 Securing the System . 37

6.1.1 Alternatives . 38
6.2 Implementing Application-Level Correctness 38

6.2.1 Limitations . 39
6.3 Testing . 40

6.3.1 Base Flight Path . 41
6.3.2 Tests Without Single Event Upsets 41
6.3.3 The pprz mode Variable 41
6.3.4 The state.utm pos f->alt Variable 42
6.3.5 Other Variables . 44
6.3.6 Overhead . 47

6.4 Summary . 47

7 Conclusion 49

Bibliography 51

A Dependencies 53

B Paparazzi Source Code 56

C UPPAAL Trace Results 61

D Test Results 64

4

Chapter 1

Introduction

Today, technology is getting more autonomous, making human interac-
tion with technology less important. As the technology becomes more au-
tonomous, the tolerance for errors decreases. If an error occurs in a system
and the system cannot fix it itself, human interaction is required to correct
the error.
This is however not possible in e.g. autonomous drones, which may be de-
ployed thousands of kilometres away from the home base. In such cases,
errors can have dire consequences, even resulting in the loss of an important
piece of technology.
To prevent autonomous technology from being rendered useless, it is required
for them to not propagate small faults into larger, application-breaking er-
rors.

Unmanned aerial vehicles (UAVs) are becoming more popular as a hobby
and commercial tool due to their increased availability and decreased price.
However cheap, mass-market UAVs are relatively simple in software design
and are prone to single event upsets. A single event upset is where a single
bit changes its state caused by outside factors such as cosmic radiation [12].
Securing against single event upsets can increase the computational overhead
and mass-market UAVs do not posses much processing power. However
numerical correctness is not vital in a hobby UAV, therefore application-
level correctness is a viable and cheaper solution, with regards to processing
power. The approach for numerical correctness is to ensure that every single
value in a system is correct. Application-level correctness does not distin-
guish whether the values are correct or not, as long as the user does not
perceive the fault. The field of application-level correctness is not as well
researched as numerical correctness, but several solutions and methods have
been published [5, 10].

In the worst case scenario: if a UAV experiences a single event upset, com-

5

munication with the UAV could be lost. This could result in the UAV
crashing, harming people, or make it impossible to recover it. In both cases
the UAV would be lost.

In this project we will be looking into improving the autopilot system Pa-
parazzi [13]. Specifically we will look into Paparazzi’s fixedwing autopilot
and improve it to withstand single event upsets. Unlike most fault tolerance
work, we will stray from numerical correctness and look into application-
level correctness. The reasoning behind this choice is that as long as faults
are masked, goes unnoticed by the user, the program’s execution will be
perceived as correct.
Because of this choice, going through all functions and variables and im-
plementing numerical correctness would not be a solution. A numerical
correct solution would be a more effective, but also more processing power
demanding solution than we are aiming for with an application-level correct
approach. This is due to the trade-off between correctness and computation
overhead.

We will model the Paparazzi autopilot in the verification tool UPPAAL [2].
By analysing the UPPAAL model, we will discover the vulnerabilities in
the Paparazzi autopilot. We will also define a fidelity metric to imply the
similarity of two flight paths. A fidelity metric is a mathematical function
returning a numerical value e.g. describing how closely two flight paths re-
semble each other. An application-level correct solution for the Paparazzi
autopilot will be presented using selective triple modular redundancy. By
using the UPPAAL model in corporation with our fidelity metric, we will
argue about the correctness of the proposed solution.

In Chapter 2 we will look at basic aviation terminology which applies to
UAVs, fault tolerance, and application-level correctness. Chapter 3 will go
into detail about existing solutions to application-level correctness.
Chapter 4 will delve into details about the Paparazzi project and the autopi-
lot source code. In Chapter 5 we will analyse the Paparazzi implementation
and present our fidelity metric. Chapter 6 will showcase our solution to
ensure application-level correctness in Paparazzi and the testing of our so-
lution. Finally in Chapter 7 we will summarise the findings of this report.

6

Chapter 2

Terminology

In this chapter we will describe basic terminology from the aviation industry,
fault tolerance, and application-level correctness. This terminology will be
used throughout the report. The following section is heavily based upon our
previous work in [8].

2.1 Aviation

The aeroplane model used in this section is a Boeing 777, but the same
terminology also applies to UAVs. We have discarded all the terminology
not applicable to UAVs.

UAV: UAV is an abbreviation of Unmanned Aerial Vehicle and is com-
monly referred to as drone. As the name suggests, a UAV is an aircraft
which does not have a pilot aboard during flight.

Pitch: The pitch of an aeroplane describes the angle of the nose of the
aeroplane contra the tail of the aeroplane. If the pitch is increased, the nose
will go up and vice versa. In other words, the pitch describes whether the
aeroplane is facing upwards or downwards. See Figure 2.1 for an illustration.

Roll: An aeroplane can roll in two directions; left and right. The roll is
often used for changing the heading of the aeroplane. The change is achieved
by rolling the aeroplane and changing the pitch to turn. In other words, roll
means turning on the axis going through the cabin of the aeroplane. See
Figure 2.1 for an illustration.

Yaw: An aeroplane can yaw in two directions; left and right. When yaw-
ing, the direction, the aeroplane is facing, is turned left or right. Yawing is

7

Figure 2.1: Aeroplane axes. Source: NASA [7]

not used for changing the heading of the aeroplane. Yawing is used mid-
flight to counter crosswinds, and is also used for taxiing in the airport. See
Figure 2.1 for an illustration.

Angle of Attack: The angle of attack of an aeroplane is the angle of
the aeroplane’s wings compared to the relative motion of the atmosphere.
A higher angle of attack allows the aeroplane to ascend faster to a certain
degree. The angle of attack is illustrated in Figure 2.2.

Stall: Stall is a condition where the angle of attack, or pitch, is so high that
the wind travelling over the wing decreases to a point where the aeroplane
becomes unable to support its own weight. In a stall condition, the pilots
must decrease the pitch and increase travel speed in order to gain enough
lift from the wings again.

Slats: Slats are also known as leading-edge slats. They are positioned on
the front of the wing and are used to give the aeroplane a higher angle of

Figure 2.2: The angle of attack, α, illustrated. Source: Wikimedia [9]

8

Figure 2.3: Aeroplane overview of a Boeing 777. From [19]

attack. They are primarily deployed and used during landing to allow the
aeroplane to fly in at lower speeds.

Spoilers: A spoiler is used to reduce lift by corrupting the airflow over the
wing, thus creating a controlled stall. They are placed on top of the wings
and are normally used during descent to avoid picking up speed.

Flaps: There are two usages for flaps, during takeoff and during landing.
During takeoff they can be used to shorten the distance required to get
airborne. This effect is achieved by lowering the stall speed and by increasing
the amount of drag across the top of the wing, giving more lift.
During landing the flaps can be used to achieve the same effect as during
takeoff by allowing the aeroplane to have a sharper angle of descent and to
reduce the speed the aeroplane needed to be flown safely.

Aileron: The aileron is a small control surface placed near the wing tips.
They are used in pairs, one on each wing to allow the aeroplane to roll.

Flaperon: A combination of flaps and ailerons.

Trim: Trim is an extra tool for the pilots to ease their workload and give
them better control over the aeroplane’s behaviour. Trim locks one of the
controls of the aeroplane into a specific setting, such that the pilot e.g. does
not have to maintain backwards pressure on the yoke to gain altitude. There
are usually three trims, one for each of the axes of the aeroplane.

Rudder: The rudder is a directional control surface. It allows the aero-
plane to yaw. It is also used to stabilise the aeroplane against crosswinds.

9

Elevator: The elevator is a control surface which allows the pilot to change
the pitch of the aeroplane.

Stabilizer: The horizontal part of the tail. It is used to trim the elevation
of the aeroplane.

Overspeed: Overspeed is a condition where the aeroplane’s speed is higher
than the aeroplane was designed for. Overspeed is not a constant, it varies
depending on air pressure and other conditions.

Elevation: The elevation is the altitude of the aeroplane above a fixed
reference point. The reference point is usually the sea level, but is not
limited to sea level.

APS: APS is an abbreviation of AutoPilot System and is the general term
used to describe the autopilot on an aeroplane.

FBW: FBW is an abbreviation of Fly-By-Wire and is a system used by
e.g. Boeing. The FBW system translates the analogue input from the pilots
to hydraulic pressure used to affect the control surfaces of the aeroplane.
In UAVs hydraulic pressure is not necessarily used in the FBW systems.
More often electric power is used to run servos, this is possible since the
forces generated by the smaller plane is controllable using electric power.

Flight Plan: A flight plan is a series of checkpoints outlining a route
through the air which an aeroplane is supposed to follow.

Flight Path: A flight path is a route through the air which an aeroplane
has travelled.

2.2 Fault Tolerance

We differ between three types of threats towards the application: fault, error
and failure. These definitions are as in [8, 1].

Error: An error is a system state that may cause a subsequent failure.

Failure: A failure occurs when an error reaches the service interface and
alters the service. A system’s service is its behaviour as it is perceived by
its user.

10

Fault: A fault is the adjudged or hypothesised cause of an error. A fault
can have two states: it may be active when it creates an error, otherwise it
can be dormant.

2.2.1 Application-Level Correctness

For a UAV, only a limited amount of resources for computation is available,
therefore a full fault tolerant implementation is too costly to implement. A
solution for achieving fault tolerance without increasing the overhead too
much is application-level correctness.
A mission for a UAV could be to travel its route without diverging too much
from its flight plan. Therefore numerical correctness on the hardware level
is not necessary since some divergence is acceptable. The important parts
of the UAV’s control systems are that it does not crash, deadlock, or in any
other way prevent the UAV from completing its mission.
We define application-level correctness in regards to a UAV in Definition 2.1
which is based on the definition by Li and Yeung in [10].

Definition 2.1. A UAV is application-level correct if the UAV completes
its flight without diverging significantly from its planned course.

Application-level correctness has been used in other areas such as multi-
media decompression where e.g. a pixel error does not affect the user’s
multimedia experience [10].
With regards to UAV applications, application-level correctness (as defined
in Definition 2.1 above) is when a UAV completes a preplanned flight plan
without flying off course, thereby following the preplanned route within an
acceptable margin. A bit of deviation from the route is to be expected even
in a faultless run due to outside influences and the fact that a UAV cannot
make a perfect 90 degree turn.

11

Chapter 3

Related Work

In this chapter we present some of the previous research done within fault
tolerance and single event upsets detection focusing on application-level cor-
rectness.

3.1 Soft Error Detection Through Software Fault
Tolerance

Soft Error Detection Through Software Fault Tolerance techniques [14] or
SEDTSFT for short, is used to create fault-tolerance against soft errors
in high-level code. They focus on detecting errors by adding redundancy
and leave the recovery up to the user. Their targeted language is C, and
they provide rules for transforming all basic C constructs. They claim their
approach is general enough to also work for other high-level languages. Their
approach does require the user to disable compiler optimisation. This is
because the compiler optimisation will remove the fault tolerance operations
because it will be identified as redundant operations.

Code Modification

In Table 3.1 an example of transforming a variable assignment can be seen.
Each variable is now stored in two separate memory locations, and a variable
check is inserted on the variable each time it is used in an instruction. This
ensures that every time a variable is used it is checked with the duplicated
value, if they do not contain the same value, the special error function is
called.

In Table 3.2 an example of a function transformation can be seen. Note that
the return values has been removed, and two variables are instead passed
by reference. This is done because the function now needs to return two
values instead of one. Note again that they only check if variable contains
the correct value right after they are used in an assignment.

12

Original code Modified code

a = b; a0 = b0;
a1 = b1;
if(b0! = b1)

error();

a = b+ c; a0 = b0 + c0;
a1 = b1 + c1;
if((b0! = b1)||(c0! = c1))

error();

Table 3.1: Example of translation [14]

Original code Modified code

res = search(a); search(a0, a1,&res0,&res1);
· · · · · ·
int search(int p) void search(int p0, int p1, int ∗ r0, int ∗ r1)
{ {

int q; int q0, q1;
· · · · · ·
p = q + 1; q0 = p0 + 1;
· · · q1 = p1 + 1;
return(1); if(p0! = p1)

} error();
· · ·
∗r0 = 1;
∗r1 = 1;
return;

}

Table 3.2: Example of function translation [14]

13

ld r3 = [r4]

add r1 = r2, r3

st [r1] = r2

(a) Original code

majority(r4,r4’,r4”)
ld r3 = [r4]
mov r3’ = r3
mov r3”= r3
add r1 = r2, r3
add r1’= r2’, r3’
add r1”= r2”,r3”
majority(r1,r1’,r1”)
majority(r2,r2’,r2”)
st [r1] = r2

(b) SWIFT-R transformed code

Figure 3.1: Example of SWIFT-R transformation as seen in [4]

3.2 SWIFT-R

Unlike the approach in the previous section, the SWIFT-R approach [4]
triplicates all assembly instructions and uses a majority vote function to
not only detect errors, but also recover from these errors. An example can
be seen in Figure 3.1. In Figure 3.1a the original code is shown. The
purpose of the code is to add the values in register r2 and r3 and store the
result in r1. In Figure 3.1b the modified code is shown. In the first step,
the majority function is used to determine if any inconsistencies exist. It is
worth noting that SWIFT-R does not require hardware changes, but requires
that ECC1 memory is used. The ECC memory automatically detects and
corrects internal memory corruptions.

3.3 AALCASE

Cong and Guraraj present in [5] a way of securing application-level correct-
ness using a pre-compile analysis and runtime monitoring. We will now look
at the two different parts of the solution.

Analysis Cong and Guraraj have implemented their analysis techniques
as a pass in the LLVM2 compiler framework. We use the same example as
Cong and Guraraj uses, which can be seen in Listing 3.1 with the resulting
LLVM IR3 code is shown in Listing 3.2.

The analysis of the code starts by calculating the weighted program de-
pendence graph (PDG). The PDG shows which LLVM IR instructions are

1ECC is an abbreviation of Error-Correcting Code
2LLVM is an abbreviation of Low-Level Virtual Machine
3IR is an abbreviation of Intermediate Representation

14

� �
1 X=s q r t (Y) ;
2 f o r (i =1; i<N ; ++i)
3 {
4 C [i] = C [i −1] + i ;
5 output [i] = C [i] + X ;
6 }� �

Listing 3.1: Running example from [5]

� �
1 e n t r y :
2 X = c a l l s q r t (Y) ;
3 bb :
4 i = ph i [ent ry , 1] [bb , i i n c]
5 c i 1 = l o ad &(C [i −1])
6 add C = c i 1 + i
7 s t o r e add C , &(C [i])
8 c i = l o ad &(C [i])
9 o u t i = add c i , X

10 s t o r e o u t i , &(output [i])
11 i i n c = add i , 1
12 cond = cmp i l t , i i n c , N
13 br cond bb , e x i t� �

Listing 3.2: LLVM IR of example [5]

dependent on which. The weights in the PDG describes the maximum num-
ber of instances of the target nodes that are dependent on the source node.
The resulting PDG from analysing Listing 3.2 can be seen in Figure 3.2.

Using the weights of the edges, the analysis determines whether the instruc-
tion is critical or not. If an instruction is marked as critical, the instruction
is duplicated and checked at runtime. If an error is detected, the execution
is rolled back to the start of a basic block and instructions are re-executed.
A basic block is a sequence of instructions where there is only one entry
point and one exit point.

Runtime Monitoring The task of the runtime monitoring is to keep
track of the edge weights in runtime. If an edge weight increases above a
specified threshold, a signal is triggered for making the instructions critical
in runtime.

3.4 Rely

Carbin, Misailovic, and Rinard present in [3] the programming language
Rely, which enables the programmer to differentiate between reliable and
unreliable computations. The model of the machine Rely’s code is running

15

Figure 3.2: The resulting PDG by analysing the code in Listing 3.2. From [5]

Figure 3.3: Rely’s hardware illustration. The gray boxes are unreliable
components, where the white boxes are reliable components. From [3]

on can be seen in Figure 3.3.

The intuition behind Rely is that unreliable hardware is cheaper than reli-
able hardware. Unreliable hardware allows Rely to achieve more processing
power at a cheaper cost. However not all applications are able to function
without numerical correctness. This is dealt with by having both reliable
and unreliable hardware. Note that the registers on the CPU and the com-
putational unit are reliable, only the arithmetic logic unit has an unreliable
component as well as the memory.

Rely’s syntax is similar to ordinary C code. Listing 3.3 shows how variables
can be declared. Lines 1-3 shows how unreliable variables are declared, or in
other words the variables are stored in the unreliable memory. Line 4 shows
how reliable variables are declared.

Along with unreliable variable declaration, unreliable arithmetic and boolean
functions can be utilised. Listing 3.4 shows the difference between how re-

16

� �
1 i n t minssd = INT MAX ,
2 minb lock = −1 i n u r e l ;
3 i n t ssd , t , t1 , t2 i n u r e l ;
4 i n t i = 0 , j , k ;� �

Listing 3.3: Rely variable declaration example [3]

� �
1 i n t x r ;
2 i n t xu i n u r e l ;
3 x r = 5 + 4 ; // r e l i a b l e computation
4 xu = 5 +. 4 ; // un r e l i a b l e computation� �

Listing 3.4: Rely arithmetic functions example

liable and unreliable arithmetic calls are made. The syntax for unreliable
operations are almost the same as the reliable operations, a ’.’ is added after
the operator, as seen in Listing 3.4.

3.5 Summary

In the previous sections we have presented several solutions for fault toler-
ance. In the SEDTSFT solution, double modular redundancy was proposed
on a C code level. This solution will not suite our needs as it does detect
single events upsets, but cannot correct them.
In the SWIFT-R solution a triple modular redundancy on assembly level
is proposed. SWIFT-R has a suitable approach for our needs. However
we will focus on the C code level and use SWIFT-R as an inspiration. The
AALCASE proposed solution is, as with SWIFT-R, on a lower programming
level than the focus of this report.
Rely is a programming language which focuses on the unreliable region of
hardware, and tries to envelop it in the language. However Rely assumes
that the reliable region is reliable, meaning that errors cannot occur here.
This does not apply to modern computer architecture, as the correctness
is decreasing due to smaller components. Due to these factors, Rely is not
suitable for our needs.

17

Chapter 4

The Paparazzi Project

Paparazzi is an open-source autopilot system oriented towards inexpensive
autonomous aircraft of all types. The Paparazzi Project was started in 2003
and has been under continuous development ever since.
Paparazzi aims at developing a full system, hardware and software, for con-
trolling a fixedwing UAV [11, 13]. This includes the airborne processor with
its required sensors, the airborne autopilot software, a ground control sta-
tion, the communication protocols linking the different components, and a
simulation environment.
An overview of a Paparazzi setup is illustrated in Figure 4.1. This setup
will be explained further in the following sections.

4.1 Hardware

The autopilot hardware has been created using Atmel AVR and Philips
ARM7 LPC microcontrollers. The hardware includes a single or dual mi-
crocontroller and the required connectors to handle servos, motor controllers,

Figure 4.1: Paparazzi overview. From [13]

18

R/C receiver, and sensors.
The hardware includes a minimum set of sensors in an effort to keep costs
low and reliability high. Sensors are used to calculate e.g. position and
altitude using infrared sensors, GPS receiver, and an optional gyroscope.

4.1.1 Architecture

Paparazzi relies on cheap existing hardware for the UAV’s control system,
along with a laptop and an antenna on the ground. The aeroplane control
system consists of a control cord, GPS, infrared sensors, radio-modem, and
an optional gyroscope. The control system is interconnected with the ex-
isting components of the aeroplane such as battery, servos, and a data link.
It is possible to add a range of extra equipment to the aeroplanes. In [13],
Brisset et al. give examples of attaching a camera with a video transmitter
or a paintball gun.

The infrared sensors are used to calculate the pitch, roll, and altitude by
measuring the difference in temperature between the sky and the ground.
They measure the temperature over the wings, along the length of the aero-
plane, and on the top and bottom of the aeroplane.

The control system, which is the main hardware component, consists of
one or two microprocessors, either one controlling the autopilot and one
controlling the Fly-By-Wire process or both on one microprocessor. The
Fly-By-Wire process contain all the critical code and controls all the criti-
cal parts of the aeroplane’s operation, including servo control and the R/C
override. The R/C override makes it possible for the operators to take man-
ual control over the aeroplane to try and recover it in case of an error. The
autopilot process controls the navigation, sensors, payload (if any), commu-
nication, and most importantly the autonomous processing.

If we look into the autopilot, it is composed of three steps. First step is
the sensor acquisition where the data from the GPS, infrared sensor, and
the gyroscope is collected. The data is then sent to the state estimation in
the second step where it is used to smooth the input before it is passed to
the last step. The last step consists of a stack of control loops that calcu-
late what actions to take and send the commands to the actuators. For an
overview see Figure 4.2.

4.2 Ground Control Station

From the Ground Control Station (GCS) the user is able to monitor the sta-
tus of one or more UAVs and control them through a graphical user interface.

19

Figure 4.2: Paparazzi autopilot design. From [13]

20

Figure 4.3: Ground control station architecture. From [13]

The distributed architecture for the ground control station is illustrated
in Figure 4.3. The architecture is split into three main agents which are
connected to a bus:

• The link -agent is responsible for the hardware peripherals. It handles
message translation between the bus and the peripheral (usually a
serial link).

• The server -agent records the messages coming from the link -agents in
a log and dispatches synthetic information to other listening agents
(e.g. the graphical user interfaces). Configuration (airframe descrip-
tion, flight plan etc.) of the flying aircraft and making it available
on the bus is also handled by this agent. Finally the agent also com-
putes some environmental information (wind, ground speed etc.) and
broadcasts it on the bus.

• The gcs-agent is the graphical user interface. It displays all informa-
tion coming from the server agent and sends back orders from the
operator.

A screenshot of the Paparazzi ground station user interface is displayed in
Figure 4.4.

21

Figure 4.4: Ground control station GUI

4.2.1 Flight Plans

A flight plan in Paparazzi is an XML document which specifies how the
aircraft should travel in autonomous mode. The flight plan is composed of
waypoints and block elements. The Paparazzi system includes a flight plan
editor which can be used to create or edit flight plans.
Along with the flight plan, a definition of HOME is provided. HOME is the base
point of the flight plan and it is also the place that the UAV returns to if
something goes wrong.
The root flight plan element is specified with several attributes:

<flight plan name lat0 lon0 ground alt security height

home mode height qfu alt max dist from home>

• name - The name of the flight plan

• lat0, lon0 - Defines the latitude/longitude coordinates of the refer-
ence point {0,0}.

• ground alt - The ground altitude.

• security height - The altitude of which flying around is safe.

• home mode height - The altitude of which flying around the home
waypoint is safe.

• qfu - The magnetic heading in degrees.

22

• alt - Default altitude of waypoints.

• max dist from home - The maximum allowed distance from HOME.

A waypoint element is defined by:

<waypoint name wpx wpy [alt] [height]/>

• wpx, wpy - Real positional coordinates from your reference point {0,0}.

A waypoint with the name HOME is required for any flight plan, as the au-
topilot will use this waypoint in case of failure.

A block element is used group several navigation modes of where the aircraft
should travel to. Exceptions are also supported, where a giving condition
would let the autopilot go to another block.

The navigation modes includes:

• attitude - hold a fixed attitude,

• heading - keep a given course,

• go - fly to a given waypoint,

• path - fly to a given list of waypoints

• circle - circle around a waypoint,

• oval - fly around the two waypoints in an oval where the long sides are
straight,

• eight - fly a in figure of an eight through a waypoint and around
another,

• stay - hold the position,

• follow - follow another aircraft,

• xyz - circle around a moveable point giving with the R/C transmitter
stick.

The vertical control of the aircraft is achieved with the following properties:

• alt (default) - hold the given altitude,

• climb - hold the given vertical speed (m/s)

• throttle - set the given throttle (between 0 and 1),

• glide - hold the given slope between two waypoints.

23

Figure 4.5: Paparazzi functional diagram. Source: Paparazzi Wiki [16]

4.2.2 Simulation

The Paparazzi Project includes a simulator which is able to run the airborne
code on the host computer. Paparazzi includes three different simulator
”backends” for a Flight Dynamic Model (FDM). The FDM is used in the
simulator for calculating the physical forces acting upon the aircraft e.g. lift,
thrust, and drag. The differences between the three simulators are varying
degrees of realism and intended purpose. The three are:

1. sim: The basic fixedwing simulator written in OCaml

2. jsbsim: A more advanced fixedwing simulator. JSBSim is an open
source flight dynamics library.

3. nps: A more advanced rotorcraft simulator with sensor models and
currently also uses JSBSim as FDM.

4.3 Fixed Wing Autopilot in Paparazzi

In this section we will take a closer look at the Paparazzi source code. We will
mainly focus on the fixedwing autopilot source in detail. This is the default
UAV used in Paparazzi and also the UAV used in the Paparazzi examples.
In Figure 4.5 a functional diagram of the APS and FBW is illustrated.

24

Figure 4.6: The dependencies of main ap.c. Enlarged version in Appendix A

4.3.1 Math Library

Paparazzi includes their own math library which is used by all supported
autopilots. The math library is located in (paparazzi)/sw/airborne/math

and provides functions to the autopilot. These includes:

• Manipulate euler angles, quaternion and rotation matrix

• Basic trigonometry using fixed-point algebra

• Perform geodetic transformations (e.g rotation of vectors into ENU1

frame which are used to describe the aircraft’s attitude)

4.3.2 Subsystems

Every autopilot in Paparazzi uses one or more subsystems. These are located
in (paparazzi)/sw/airborne/subsystems. Subsystems is a convention
used to provide several implementations of a peripheral (microcontroller pe-
ripherals, an external IMU (Inertial Measurement Unit) board etc.), proto-
cols (GPS, communications etc.) and algorithms (control, estimation etc.).
An IMU is a sensor which is only used to measure the accelerations and
rotation rates. An IMU is not used on the fixedwing autopilot which uses
the infrared light sensor instead.

Main Autopilot Loop

This section explains the main files which are used in the autopilot. These
main files utilise the math library and several subsystems, explained in the
previous sections, for controlling the aircraft.
The main autopilot loop’s file dependencies can be seen in Figure 4.6. An
enlarged version of the dependency graph can be found in Appendix A.

Due to the complexity of the dependencies, we will now take a high level
look at the handle periodic tasks ap loop. The loop which handles the
periodic tasks in the autopilot can be seen in Listing 4.1. The code for

1ENU is an abbreviation of East, North, Up

25

� �
1 void h a n d l e p e r i o d i c t a s k s a p (void) {
2 i f (s y s t im e c h e c k a n d a c k t im e r (s e n s o r s t i d))
3 s e n s o r s t a s k () ;
4

5 i f (s y s t im e c h e c k a n d a c k t im e r (n a v i g a t i o n t i d))
6 n a v i g a t i o n t a s k () ;
7

8 #i f n d e f AHRS TRIGGERED ATTITUDE LOOP
9 i f (s y s t im e c h e c k a n d a c k t im e r (a t t i t u d e t i d))

10 a t t i t u d e l o o p () ;
11 #end i f
12

13 i f (s y s t im e c h e c k a n d a c k t im e r (modu l e s t i d))
14 modu l e s p e r i o d i c t a s k () ;
15

16 i f (s y s t im e c h e c k a n d a c k t im e r (mon i t o r t i d))
17 mon i t o r t a s k () ;
18

19 i f (s y s t im e c h e c k a n d a c k t im e r (t e l em e t r y t i d)) {
20 r e p o r t i n g t a s k () ;
21 LED PERIODIC () ;
22 }
23 }� �

Listing 4.1: Main loop for the autopilot from main ap.c

each of the functions in handle periodic tasks ap(void) can be seen in
Appendix B.

Each of the tasks are timed and should only be run in a certain frequency.
Therefore before each task, there is a check whether enough time has elapsed
since last execution. This is achieved via the function sys time check and

ack timer(tid t id). If enough time has passed since the last time the
task has executed, the task will execute.
Note that each task has its own specification of how often the function is
executed. This is saved in a struct which contains information of how much
time has to pass until the next execution, and how much time has passed
since last execution.

sensors task The sensors task collects the data from the sensors on the
fixedwing aircraft. It starts by collecting data from the data link (ahrs pro-

pogate) which may contain navigational data for the aircraft. The sensor
task also collects data from the AHRS, which is the infrared units calculating
heading, attitude and yaw. Afterwards, it checks whether the GPS unit is
available or not. Finally the sensors task calculates the state of the aircraft
using the function ins periodic.

navigation task The navigation task keeps track of which navigational
mode the aircraft is in and acts accordingly. It starts by checking whether

26

the GPS is available or not (using timeout), and afterwards calculates the
route according to its autopilot mode. The Paparazzi project uses the fol-
lowing modes:

• PPRZ MODE MANUAL - Manual control from the GCS.

• PPRZ MODE AUTO1 - Automatic stabilisation of the aircraft.

• PPRZ MODE AUTO2 - Automatic stabilisation and navigation of the air-
craft.

• PPRZ MODE HOME - The aircraft flies back to ”home”.

• PPRZ MODE GPS OUT OF ORDER - The GPS receiver fails or temporarily
loses signal, the aircraft navigates without access to the GPS.

• PPRZ MODE NB - Not used in the source code.

attitude loop The attitude loop handles the aircraft’s attitude meaning
that its position and heading are correct. This is done by manipulating the
pitch and the throttle accordingly.

modules periodic task This loop handles the control of the aircraft.
This task is generated specifically for each type of aircraft, due to them
having unique configurations.

monitor task The monitor’s task is to keep track of the flight time. After
updating the flight time it checks whether there is enough battery power left
to complete the mission or not. The monitor then checks whether the aircraft
has passed too far away from HOME. If this is the case, it kills the throttle.
Finally it checks whether the launch procedure has occurred or has been
completed correctly, if either of these are false, it resets the aircraft to the
beginning of a flight with regards to flight time and sending a signal to the
GCS that takeoff has begun.

reporting task The reporting task’s task is to send periodic telemetry to
the GCS on the ground. At the first iteration, it sends an additional signal
to the GCS that the aircraft has booted.

4.3.3 Simulator

When starting the simulator in Paparazzi the program compiles the autopi-
lot and uses the output files for running the autopilot and simulating the
flight.

27

Failsafe

Paparazzi includes several built-in failsafe features on different kind of lev-
els. At the high-level the flight plans, described in Section 4.2.1, includes
exceptions which makes it possible to make the flight plan failsafe. On the
lower level, the FBW system and autopilot include different failsafe features
e.g. losing RC connection, losing GPS connection, and a low battery voltage.

Should the aircraft reboot in midair, the aircraft would start over its flight
plan and climb to the altitude of which the takeoff altitude is defined. Af-
terwards the rest of the flight plan would be executed. This means that
waypoints already visited before the reboot will be visited again.

Scheduling

No real scheduling takes place in the normal version of Paparazzi, however a
real time version is in development [6]. In the normal version the main loop
runs as fast as possible, and each task executes at the specific programmed
interval. The tasks try to acquire the timer when they need to execute, and
then releases the timer once they finish. There is currently nothing to stop
a subroutine if it uses to much computation time or is stuck in an endless
loop.

28

Chapter 5

Analysis of the Paparazzi
Autopilot

In this chapter we will present an analysis of the Paparazzi autopilot. This
analysis will be used for applying application-level correctness to the Pa-
parazzi autopilot.

5.1 Overview

In Figure 5.1 a diagram of our view of the Paparazzi autopilot microcon-
troller architecture is illustrated. The program in our case is the Paparazzi
autopilot system. As the figure shows, the program does not have direct ac-
cess to the memory. All memory accesses go through the CPU. In our view
of the architecture, only the main memory can experience single event up-
sets. Everything inside the CPU is assumed to execute numerically correct
and the program is stored on a non-volatile numerical correct disk.

Program

CPUMemory

Figure 5.1: A figure of our assumptions

29

5.2 Assumptions

In our solution we will be making the following assumptions:

1. We assume that all computations performed in the GCS execute with
numerical correctness. The reasoning behind this assumption is that
the GCS runs on a normal laptop and the increase in computational
cost for running a numerical correct version of the software is achiev-
able.

2. We assume that no errors exist in the Paparazzi code and if any errors
exists, we assume it is intentional. We assume the source code is
intended to behave exactly the way it currently does and any errors
are supposed to exist. We will not try to improve on how Paparazzi
operates the aircraft.

3. We assume that no single event upsets occurs in the initialisation of
the aircraft and focus only on single event upsets which happen after
initialisation. The reasoning behind this and the previous assumption
is that the scope of this report is to secure the Paparazzi autopilot
system against single event upsets and not to improve the efficiency of
the Paparazzi autopilot implementation.

4. We assume that any errors in the radio waves are handled by the
underlying systems. This assumption is an extension to assumption 2.

5. No real CPU requirements are presented for Paparazzi, but we as-
sume the extra processing power and memory needed to make the
changes necessary for application-level correctness is available. This
assumption is based on the hardware specifications of Paparazzi [17].
Paparazzi is able to run on a system with 60 MHz clock speed and
32 kB RAM, but other available chips have 168 MHz clock speed and
1024 kB RAM. So even if we more than double the requirements on
the processing power, we only limit the number of microcontrollers
capable of running Paparazzi.

6. We assume the single event upsets only occur in the main memory.
This will exclude errors affecting the program counter and values saved
in registers as seen in Figure 5.1. Since we are looking at idealised
hardware, we assume that registers, program counter etc. are already
secured against single event upsets. The single event upsets will be
modelled in C by flipping a single bit in a variable. All of the code will
be compiled with the GCC flag -O0 to disable compiler optimisations
and code rearrangements to ensure that the code behaves as expected
when translated into assembly.

30

In short we look at single event upsets and the cascading errors they can
cause in the Paparazzi autopilot software.

5.3 Modelling the System in UPPAAL

Before implementing application-level correctness into the Paparazzi sys-
tem, we must know which variables are critical for the system. To find the
critical functions and variables, we have created a model in the verification
tool UPPAAL [2] for two functions in the main autopilot loop (Listing 4.1 on
page 26). The model can be compared to a control flow graph due to them
having the same structure and giving the same information of the system.
An observation about the autopilot is that it consists of one loop, which is
the main loop controlling the order of operations. Other loops are smaller
predetermined repeats e.g. a for loop running three times, calling the same
function, but with different input.
The two functions sensors task() and navigation task() have been cho-
sen because they are the most important functions to control the aircraft.
Another reason is that the functions are being executed at different frequen-
cies; sensors task() runs at 60 Hz while navigation task() runs at 4 Hz.
If every function had been modelled, the UPPAAL model would have been
more precise and given better insight on which variables were read the most
before getting rewritten. For simplicity and due to time constraints, only
these two functions will be modelled.

We suggest that if a variable is read often without getting rewritten, the
variable has a larger vulnerability to single event upsets:

Hypothesis 1. The number of times a variable is read before getting rewrit-
ten, indicates the impact of the variable on the system.

We believe this hypothesis holds, because if an error occurs right after a
variable has been written, the error will affect other parts of the system
each time this variable is being read.

The model has been manually created in UPPAAL which makes it pos-
sible for us to count the frequency of variables being used. The final model
consists of 214 templates and 904 locations. We modelled a total of one
second of a flight resulting in sensors task() being run 60 times and
navigation task() being run 4 times. This could be increased, but was
sufficient for our needs.
Every function called by going through the two chosen functions is imple-
mented in its own template. The main ap function template can be seen
in Figure 5.2. As it can be seen in the template, each function is called by
the main function and after calling, it waits for the called function to signal

31

Figure 5.2: UPPAAL template of the main loop in Paparazzi

that it has finished execution. This ensures that only a single function is
executing at a time, thus keeping the strict order from the original code.
Note that each function keeps track of whether they are allowed to run or
not.

Each global variable read or written during execution of these functions has
been modelled in their own template, using the same basic structure for
each variable template. An example of the variable template construct can
be seen in Figure 5.3. Along with the template, UPPAAL code was made
to keep track of how many times each variable has been written and read
during a run. Most notably, the code keeps track of the maximum number
of times each variable has been read before getting rewritten. This informa-
tion is saved in the variable maxreads. This code can be seen in Listing 5.1.

Our approach aims to identify variables which are read often before get-
ting rewritten, meaning that a single event upset could affect the system
several times before the variable is corrected.
By having the usage frequency for all variables and functions, we can deter-
mine how important they are for implementing application-level correctness
in Paparazzi.

Limitations

Certain limitations exist in the model. First and foremost; the model con-
tains some inaccuracy. Only some of the subsystems have been modelled.
Consequently some variables can seem less important due to them not being
used representatively in the modelled subsystems compared to the subsys-
tems which are not modelled. This can result in variables seemingly being

32

Figure 5.3: Template for the variable launch

� �
1 i n t r e ad s = 0 ;
2 i n t w r i t e s = 0 ;
3 i n t maxreads = 0 ;
4

5 void r ead () {
6 ++r e ad s ;
7 i f (r e ad s > maxreads) {
8 maxreads = r e ad s ;
9 }

10 }
11

12 void w r i t e () {
13 ++w r i t e s ;
14 r e ad s = 0 ;
15 }� �

Listing 5.1: UPPAAL variable code

33

of variables 153

of variables unread 41

of variables unwritten 78

of variables with a maxreads value above 1 on average 42

of variables with a maxreads value above 2 on average 24

of variables with a maxreads value above 5 on average 6

Table 5.1: Key numbers from running the model

read without ever being written to or vice versa.
Another limitation is that the model is an over-approximation of the real
system. This is because there exists some execution paths through the UP-
PAAL model which does not exist in the real Paparazzi implementation.

5.3.1 Results

We have computed 30 random traces through our model and observed each
variable, calculating the average maxreads of the different variables. We
compute the average to give an indication of the variables’ importance during
an average flight.
We are interested in the number of times a variable is read before it is
overwritten. This can be used to signify the importance of the variable’s
value being correct. A variable with a maxreads value of 1, will only be
read once before overwritten, therefore an error will only affect the system
once. However if a variable with a maxreads value of 60 will potentially
affect the system for the duration of the flight.
In theory the best option would be to use the build-in query language to
calculate the average over all possible paths through the model, but this is
not feasible due to the size of the model.
Table 5.1 shows key numbers from the traces. The complete list of results
can be seen in Appendix C. Due to the limitations stated in previous section,
variables with a maxreads value of 0 or 60 should be disregarded, because
they are most likely used in parts of the system which have not been modelled
in this report.

5.4 Fidelity Metric

When the Paparazzi autopilot has been modified according to the results
from the UPPAAL model, we need to compare the new autopilot with the
original. To accomplish this we must define a fidelity metric. The fidelity
metric is used to compare flight paths and return a numeric value represent-
ing the degree of deviation between the expected and the given path.

34

5.4.1 Comparing Paths

Each flight is recorded as a finite set of points in a three dimensional Carte-
sian coordinate system. A finite set of points corresponds to a flight path.
We want to find a function that, given two finite sets of points, will return
a value signifying how similar the two paths are. To achieve this we use the
Hausdorff distance also known as the Hausdorff metric. A definition of the
Hausdorff distance can be seen in Equation (5.1).

The Hausdorff distance, given two finite sets of points A and B, calculates
the shortest distance from any point in A to any point in B, resulting r1.
Then the calculations are done from B to A, resulting r2. In the end the
largest of the results r1 and r2 is returned. In Figure 5.4 an example of the
two candidates is shown.

h(A,B) = max{max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)} (5.1)

d(a, b) =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2 (5.2)

Algorithm 1: Hausdorff distance from [18]

Data: Two set of points A and B
Result: The longest minimum distance between the two sets of

points
1 h = 0;
2 for every point ai in A do
3 shortest = ∞;
4 for every point bi in B do
5 dij = d(ai, bj);
6 if dij < shortest then
7 shortest = dij ;
8 end

9 end
10 if shortest > h then
11 h = shortest;
12 end

13 end
14 return h;

We use the Hausdorff distance as our fidelity metric, because if two flights
paths are similar, we consider them identical. This implies that several
smaller deviations would be treated as insignificant, were as one large devi-
ation will have a large impact on the perceived flight.

35

Figure 5.4: Example of Hausdorff distance. Source: Wikipedia [15]

Hausdorff’s algorithm can be seen in Algorithm 1. Note that the algorithm
only shows the computations of the first pass and must be called with both
the arguments A,B and B,A and select the maximum.

36

Chapter 6

Implementation & Test

In this chapter, we will present the implementation for applying application-
level correctness into the Paparazzi autopilot. Also our test setup and the
results from testing the original and modified Paparazzi code will be pre-
sented.

6.1 Securing the System

We split the variables from the Paparazzi autopilot code into two types,
based on statistics from the UPPAAL model:

1. Non-secured variables - When maxread is [0, 2]

2. Secured variables - When maxread is]2,∞]

The exact bound set between the secured and non-secured variables can be
modified to affect the correctness of the execution. A lower bound will result
in increased execution time, but also an increase in correctness of execution.
A higher bound will result in decreased execution time, but also a decrease
in correctness of execution. If bound is set to 0, the execution would in
theory provide numerical correctness. Note that there is a possibility that
some variables are rarely read, but have a significant impact on the system.
These variables would most likely not be secured.

Non-secured variables Variables that are determined by the UPPAAL
model to have little effect on the system. This would be variables only read
in rare cases or variables often overwritten.
The code for these variables and their uses are unchanged compared to the
original implementation of the Paparazzi autopilot.

37

Secured variables Variables that are determined by the UPPAAL model
to have a large effect on the system. This would be variables that affect
several other variables or are read several times before getting overwritten.
The code for these variables are modified in a similar fashion to SWIFT-
R [4]: The variable is triplicated when written. Before a secured variable is
read, a majority vote is used to determine the correct value of the variable.
When a secured variable is written, it is written to all three instances.

6.1.1 Alternatives

A third type of security could be introduced to the code. However this ap-
proach requires extensive knowledge about the system to guarantee correct
execution. The code for variables with a medium impact on the system
are duplicated. Before a variable is read, the system checks whether both
variables are identical or not. If they are different, the function, or part of
the function, is skipped until the point where the value would be corrected.
This approach is similar to Rebaudengo et al. [14].
Another alternative would also to change the method used to analyse the
importance of variables, e.g. utilising a code dependency graph.

6.2 Implementing Application-Level Correctness

As mentioned in the previous section, we limit our implementation of fault
tolerance to only consider variables that on average were, at some point dur-
ing execution, read more than two times before getting overwritten through-
out simulating the model. Securing the variables is done with a majority
vote function, which can be seen in Listing 6.1. A majority vote function
was made for each data type, however these functions are identical in imple-
mentation. Note that the majority functions receives pointers securing that
the variables are corrected in memory.
In Listing 6.2 a segment of the secured code can be seen, specifically the
stateCalcPositionUtm f function which is used during navigation task.
In this example, only the variable state.pos status has a maxreads value
above 2. This variable has been triplicated by introducing two new vari-
ables; status pos status2 and status pos status3. In line 2 and 7 in
Listing 6.2, a majority vote is cast for state.pos status, securing that the
variables agree on the value at this point of execution.
In line 15, 16, and 17 an example of the other part of the application-level
correctness implementation can be seen. When the value of state.pos sta-

tus is set, the same value is saved in the copies of the variable. Note
that state pos status2 and state pos status3 are not explicitly set to
state.pos status, but actually requires a recalculation for each variable,
securing that if state.pos status is corrupted right after it has been given
its value, it will not corrupt the other two variables.

38

� �
1 void ma j o r i t y v o t e f (f l o a t ∗v1 , f l o a t ∗v2 , f l o a t ∗v3) {
2 i f (∗ v1 == ∗v2 && ∗v2 == ∗v3)
3 r e turn ;
4

5 i f (∗ v1 == ∗v2) {
6 ∗v3 = ∗v1 ;
7 r e turn ;
8 }
9

10 i f (∗ v1 == ∗v3) {
11 ∗v2 = ∗v3 ;
12 r e turn ;
13 }
14

15 i f (∗ v2 == ∗v3) {
16 ∗v1 = ∗v2 ;
17 r e turn ;
18 }
19 }� �

Listing 6.1: Majority vote float function

An important note is that the sensors task has not been modified since
all variables read and written in the function, has a maxreads of less than
or equal to 2.

6.2.1 Limitations

Our implementation of this application-level correctness has its advantages
and drawbacks. As mentioned earlier we wanted to secure the Paparazzi
system with little or no performance overhead. By only using the majority
vote function on variables read more than 2 times, we are decreasing the
amount of overhead compared to full numerical correctness.
A drawback of using this majority vote function before variables are being
read, is that a single event upset can happen in the majority vote function or
just after, which will result in Paparazzi reading an affected variable. This
could be fixed by having hardware support for the majority vote in the CPU.

We have chosen to use the majority vote function before, and not after,
a variable is read. This is because if the majority vote was used right after,
the variable would already have affected the system if a single event upset
had been present.

39

� �
1 void s t a t eC a l cPo s i t i o nU tm f (void) {
2 ma j o r i t y v o t e u i n t 1 6 t (& s t a t e . po s s t a t u s , &s t a t e p o s s t a t u s 2 , &←↩

s t a t e p o s s t a t u s 3) ;
3

4 i f (b i t i s s e t (s t a t e . po s s t a t u s , POS UTM F))
5 r e turn ;
6

7 ma j o r i t y v o t e u i n t 1 6 t (& s t a t e . po s s t a t u s , &s t a t e p o s s t a t u s 2 , &←↩
s t a t e p o s s t a t u s 3) ;

8

9 i f (b i t i s s e t (s t a t e . po s s t a t u s , POS LLA F)) {
10 u tm o f l l a f (& s t a t e . utm pos f , &s t a t e . l l a p o s f) ;
11 }
12 e l s e i f (b i t i s s e t (s t a t e . po s s t a t u s , POS LLA I)) {
13 /∗ trans form l l a i −> l l a f −> utm f , s e t s t a tu s b i t s ∗/
14 LLA FLOAT OF BFP (s t a t e . l l a p o s f , s t a t e . l l a p o s i) ;
15 Se tB i t (s t a t e . po s s t a t u s , POS LLA F) ;
16 Se tB i t (s t a t e p o s s t a t u s 2 , POS LLA F) ;
17 Se tB i t (s t a t e p o s s t a t u s 3 , POS LLA F) ;
18 u tm o f l l a f (& s t a t e . utm pos f , &s t a t e . l l a p o s f) ;
19 }
20 . . .� �

Listing 6.2: Code snippet of a secured function in Paparazzi

6.3 Testing

In our tests we run the modified fixedwing aircraft in the Paparazzi simula-
tor. We use FlightGear as a visualiser and as the aircraft’s black box. Each
test is run 10 times unless otherwise mentioned and the results are then
used to calculate the divergence from the expected path. The flight plan is
plotted in Figure 4.4 on page 22. Note that Paparazzi is not designed to fly
to and touch each corner point, but to fly within a fixed distance of the point.

First a baseline is presented and afterwards, the results from injecting a
single event upset into Paparazzi will be presented.

The variables chosen for testing are:

• pprz mode - This variable keeps track of which flight mode the autopi-
lot is in, ranging from manual to complete autopilot. See Section 4.3.2
for a complete list of modes.
This variable has been secured. It has been chosen due to its high
influence on the aircraft’s behaviour. Which could be observed by the
high maxreads average value of 5.2.

• state.utm pos f->alt - This variable keeps track of the altitude of
its current position.
This variable is not secured due to its maxreads average value being

40

exactly 2.0. This variable has been chosen due to it being the variable
with the highest maxreads value without being secured.

For each variable, a single event upset will be injected into each bit of the
variable. This is to make sure that the test is not run on a bit which has no
or abnormally large significance compared to the other bits. The injection
occurs at the 2500th iteration of the main autopilot loop. Due to simulated
effects, such as wind, the injection does not occur at the exact same spot on
the flight path.

6.3.1 Base Flight Path

For using the Hausdorff distance, a flight path is needed for comparison.
The flight path which is defined in the GCS is not the ideal path to compare
against for our purposes, since it does not represent the real flight behaviour.
An artificial flight path was created based on the average of 1000 runs of
the original unmodified Paparazzi code. This artificial flight path is used
for comparison throughout the rest of this chapter.

6.3.2 Tests Without Single Event Upsets

In each version of the Paparazzi code, the tests were run 1000 times. The
bars in Figure 6.1 show the average divergence during all flights calculated
using the Hausdorff distance. The error bars show the maximum and min-
imum divergence from the flight path. The difference between the two ver-
sions of the code are 0.5 metres in favour of the modified version. This small
distance is believed to be due to outside factors such as wind strength and
direction in the simulator.

The Hausdorff distances gathered from testing can be seen in Appendix D.

6.3.3 The pprz mode Variable

In Figure 6.2 the difference in Hausdorff distance between the original and
modified Paparazzi code with a single event upset present in the pprz mode

variable is shown. For this test, 10 runs were made for each bit in the un-
signed 8-bit integer pprz mode in each version of the code.

In the original Paparazzi autopilot code we observed that the aircraft’s be-
haviour changed drastically when injecting a single event upset. When bit
number 0 or 1 was flipped, the aircraft flew straight back to HOME and cir-
cled around. When bit number 2 to 7 was flipped, the aircraft continued
to fly in its current direction. This mostly occurred during a turn, causing
the aircraft to circle around. In some cases the aircraft was already finished
turning and just flew straight, ignoring the flight plan. This behaviour is

41

0

3

6

9

12

D
iv

er
ge

n
ce

in
m

et
re

s

Original Modified

Figure 6.1: Hausdorff distances without a single event upset present

what is causing the big outliers compared to the average. Note that in bit
number 2 to 6, only a single data point is far away from the average, where
in bit number 7, there are two which are a significant distance from the
average. Figure 6.3 shows each individual data point for bit number 7.

The modified code behaved as the user would expect. All average Haus-
dorff distances are in between the two tests without single event upsets.
From the user’s perspective, an error did not occur during the flight and the
aircraft behaved within the boundaries of what would be considered nor-
mal.
For a more in depth view of the modified code’s Hausdorff distances, see
Figure 6.4.

The Hausdorff distances gathered from testing can be seen in Appendix D.

6.3.4 The state.utm pos f->alt Variable

The Hausdorff distances from testing the state.utm pos f->alt variable
can be seen in Figure 6.5 and Figure 6.6. For this test, single event upsets
where injected in each bit of the 32-bit float.

From the results, one can see that the single event upset does not affect
the aircraft significantly. This is due to it being overwritten often by the
sensors, meaning the single event upset does not affect the aircraft’s flight
path for more than a fraction of a second. This also implies that the variable

42

0 1 2 3 4 5 6 7

0

200

400

600

800

1,000

1,200

Bit

D
iv

er
ge

n
ce

in
m

et
re

s

Original Modified

Figure 6.2: Hausdorff distances with a single event upset on the pprz mode

variable

1 2 3 4 5 6 7 8 9 10

400

600

800

1,000

1,200

Data point

D
iv

er
ge

n
ce

in
m

et
re

s

Figure 6.3: Hausdorff distances for the original code with a single event
upset in the pprz mode variable on bit number 7

43

0 1 2 3 4 5 6 7

0

3

6

9

12

Bit

D
iv

er
ge

n
ce

in
m

et
re

s

Modified

Figure 6.4: Hausdorff distances on the modified code with a single event
upset in the pprz mode variable

is less significant with respect to application-level correctness.

The Hausdorff distances gathered from testing can be seen in Appendix D.

6.3.5 Other Variables

To test Hypothesis 1, additional tests were performed. Each test was run
five times and an average of all tests on each variable was calculated.
First we ran tests on seven variables, which have an average maxreads in be-
tween the averages of the variables state.utm pos f->alt and pprz mode.
The results are shown in Figure D.1 on page 67. The tests showed that two
out of the seven had a major impact on the behaviour of the aircraft, while
one other had a small impact on the behaviour.

Secondly we ran tests on seven variables, which have an average maxreads

below 1.0. The first five variables have the highest average maxreads just
below 1.0. The last two have an average maxreads closer to 0. The reason
these variables have been chosen is to give a broad perspective on the im-
pact of variables with different average maxreads. The results are shown in
Figure D.2 on page 67. Only a single variable, gps lost, had an impact on
the perceived flight path.

44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

10

12

14

Bit

D
iv

er
ge

n
ce

in
m

et
re

s

Original Modified

Figure 6.5: Hausdorff distances with a single event upset in the
state.utm pos f->alt variable part 1

45

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

2

4

6

8

10

12

14

Bit

D
iv

er
ge

n
ce

in
m

et
re

s

Original Modified

Figure 6.6: Hausdorff distances with a single event upset in the
state.utm pos f->alt variable part 2

46

Average Overhead
st nt total st nt total

Original code 1µs 4µs 19µs 0% 0% 0%

Modified code 1µs 5µs 20µs 0% 25% 5%

Table 6.1: Results of performance test. The negative overhead of st has
been disregarded for the total overhead calculations due to the code of the
st-function being identical in both versions

6.3.6 Overhead

In this section we present the amount of overhead of our application-level
correctness implementation into Paparazzi. These results have been con-
ducted through a test of 100 runs on both the original and the modified
Paparazzi code.

As shown in Table 6.1, the results of our performance tests show that the
modified navigation task (nt) function has a 25% overhead compared
to the original function. The sensors task (st) has an overhead of 0%
compared to the original function, which is due to the two versions of
sensors task being identical. When accounting for sensors task run-
ning at 60 Hz and navigation task running at 4 Hz, the total amount of
overhead is 5%.

6.4 Summary

The results of the tests show that some variables are not to be considered
critical with regards to application-level correctness. This can be seen from
the results regarding state.utm pos f->alt where all tests showed, that a
single event upset did not impact the overall flight noticeably.
The tests also showed that the opposite case is true. Explicitly this was true
with regards to pprz mode, which showed that when a single event upset was
injected into the variable, it had a large impact on the perceived flight path.
All tests regarding the modified code, showed that the aircraft behaved
within the boundaries a user would expect. When a single event upset was
injected, the aircraft identified the error and recovered successfully.
Our testing of other variables in Section 6.3.5 indicated that Hypothesis 1
is true. Results showed that variables with a higher average maxreads value
are more likely to have a larger impact on the perceived flight path. Note
that the only variable with a low average maxreads value, which impacted
the system, is a boolean and therefore consists of only one bit.

The overall overhead calculations showed that the modified code has a
7.08% overhead. However, this number might be artificially low, because

47

navigation task, which was mainly responsible for the overhead, only runs
at 4 Hz, while sensors task runs at 60 Hz. If the entire system had been
modelled, it is likely that the overhead would be significantly larger, since
most of the other tasks runs at 60 Hz or 15 Hz.
Even if the entire system was modelled and if navigation task is represen-
tative, the total overhead might be close to the overhead of navigation task

which was 27.14%. This amount of overhead is acceptable. Note however
that changing the bound of which variables to secure, the overhead might
change accordingly.

48

Chapter 7

Conclusion

In this report, we introduced a new approach to application-level correct-
ness, inspired by previously published methods, designed for the Paparazzi
autopilot software. We have also introduced a method to compare the sim-
ilarity of flight paths.

We have studied the Paparazzi autopilot source code and discovered that the
Paparazzi source code is prone to single event upsets. By using application-
level correctness, it is possible to secure the system enough for it to behave
correctly from the user’s perspective, without a full n-modular replication.
This approach has shown that a solution securing part of the code was pos-
sible without a large increase in overhead.

We were unable to locate previous work regarding the comparison of flight
paths. We discovered that the Hausdorff distance algorithm satisfies our
needs for finding the largest divergence between two flight paths and served
its purpose as a fidelity metric. However the Hausdorff distance algorithm
requires the user to create an artificial base flight path.

We performed several tests on both our modified version of the Paparazzi
autopilot software and the original version. The tests showed, by using the
Hausdorff distance, the original Paparazzi autopilot software is prone to sin-
gle event upsets in some variables. The tests also showed our approach was
able to correct the single event upsets and complete each flight according to
the flight plan.

According to Hypothesis 1, we suggested that a variable which is read often
before getting rewritten had a larger impact on the system. The results of
the tests show that the amount of times a variable is read does give an indi-
cation of the significance of the variable. However, some variables are read
often, but does not affect the system from a user’s perspective. Likewise it is

49

possible that variables that seem insignificant, actually have a large impact
on the system if altered.
The UPPAAL model served well as a way to analyse the significance of the
variables. However due to the model being an overapproximation of the Pa-
parazzi autopilot, the importance of some variables may be artificially high.
A more precise indication could have been achieved by utilising a code de-
pendency graph from analysing the C code of the Paparazzi autopilot.

With respect to our definition of application-level correctness (Definition 2.1
on page 11), application-level correctness has been achieved, using the ap-
proach introduced in this report.

50

Bibliography

[1] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Depend-
ability and its threats - a taxonomy. In IFIP Congress Topical Sessions,
pages 91–120, 2004.

[2] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. UPPAAL - a tool suite for automatic verification
of real-time systems. In DIMACS/SYCON Workshop on Hybrid Sys-
tems III, pages 232–243, 1995.

[3] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quan-
titative reliability for programs that execute on unreliable hardware.
In Object Oriented Programming Systems Languages & applications,
OOPSLA ’13, pages 33–52, 2013.

[4] J. Chang, G.A. Reis, and D.I. August. Automatic instruction-level
software-only recovery. In Dependable Systems and Networks, 2006.
DSN 2006. International Conference, pages 83–92, 2006.

[5] Jason Cong and Karthik Gururaj. Assuring application-level correct-
ness against soft errors. In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference, pages 150–157, Nov 2011.

[6] David Conger. RT Paparazzi. http://wiki.paparazziuav.org/wiki/
RT_Paparazzi, January 2014. [Online; accessed 16-April-2014].

[7] NASA Glenn Research Center. Aircraft rotation. http://www.grc.

nasa.gov/WWW/k-12/airplane/Images/rotations.gif, 2013. [On-
line; accessed 30-September-2013].

[8] Morten Turn Pedersen Heine Gatten Larsen and Thomas Birch Mo-
gensen. FauToPilot. www.turn-pedersen.dk/projects/d902e13.pdf,
January 2014. [Online; accessed 20-March-2014].

[9] Theresa Knott. Angle of attack.svg. http://upload.wikimedia.org/
wikipedia/commons/6/6d/Angle_of_attack.svg, 2003. [Online; ac-
cessed 16-December-2013].

51

http://wiki.paparazziuav.org/wiki/RT_Paparazzi
http://wiki.paparazziuav.org/wiki/RT_Paparazzi
http://www.grc.nasa.gov/WWW/k-12/airplane/Images/rotations.gif
http://www.grc.nasa.gov/WWW/k-12/airplane/Images/rotations.gif
www.turn-pedersen.dk/projects/d902e13.pdf
http://upload.wikimedia.org/wikipedia/commons/6/6d/Angle_of_attack.svg
http://upload.wikimedia.org/wikipedia/commons/6/6d/Angle_of_attack.svg

[10] Xuanhua Li and Donald Yeung. Application-level correctness and its
impact on fault tolerance. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium, pages 181–
192, Feb 2007.

[11] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean paul Bahsoun, and
Marianne De Michiel. Papabench: a free real-time benchmark. Worst-
Case Execution Time, 4, 2006.

[12] E. Normand. Single-event effects in avionics. Nuclear Science, IEEE
Transactions, 43(2):461–474, Apr 1996.

[13] Michel Gorraz-Pierre-Selim Huard Pascal Brisset, Antoine Drouin and
Jeremy Tyler. The Paparazzi solution. Micro Aerial Vehicle, 2006.

[14] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, and
Massimo Violante. Soft-error detection through software fault-tolerance
techniques. In Defect and Fault Tolerance in VLSI Systems, 1999.
DFT’99. International Symposium, pages 210–218. IEEE, 1999.

[15] Claudio Rocchini. Example of Hausdorff distance, October 2007. http:
//en.wikipedia.org/wiki/File:Hausdorff_distance_sample.svg.

[16] Felix Ruess. Devguide/designoverview, January 2012. http://wiki.

paparazziuav.org/wiki/DevGuide/DesignOverview.

[17] Piotr Esden-Tempski Stephen Dwyer, Felix Ruess and Sergey
Krukowski. Category:autopilots. http://wiki.paparazziuav.org/

wiki/Autopilots, August 2013. [Online; accessed 25-March-2014].

[18] Godfried T. Toussaint. Hausdorff distance between convex polygons.
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/

normand/main.html, 1998. [Online; accessed 8-May-2014].

[19] YC Yeh. Triple-triple redundant 777 primary flight computer. In
Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,
volume 1, pages 293–307. IEEE, 1996.

52

http://en.wikipedia.org/wiki/File:Hausdorff_distance_sample.svg
http://en.wikipedia.org/wiki/File:Hausdorff_distance_sample.svg
http://wiki.paparazziuav.org/wiki/DevGuide/DesignOverview
http://wiki.paparazziuav.org/wiki/DevGuide/DesignOverview
http://wiki.paparazziuav.org/wiki/Autopilots
http://wiki.paparazziuav.org/wiki/Autopilots
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html

Appendix A

Dependencies

The next two pages contain the dependency graph of the main ap.c source
file for the Paparazzi Project’s fixedwing autopilot.

53

Figure A.1: First half of main ap.c’s dependency graph
54

Figure A.2: Second half of main ap.c’s dependency graph
55

Appendix B

Paparazzi Source Code

In the following appendix, the code of the main loop and its child functions
can be seen.

� �
1 void h a n d l e p e r i o d i c t a s k s a p (void) {
2

3 i f (s y s t im e c h e c k a n d a c k t im e r (s e n s o r s t i d))
4 s e n s o r s t a s k () ;
5

6 i f (s y s t im e c h e c k a n d a c k t im e r (n a v i g a t i o n t i d))
7 n a v i g a t i o n t a s k () ;
8

9 #i f n d e f AHRS TRIGGERED ATTITUDE LOOP
10 i f (s y s t im e c h e c k a n d a c k t im e r (a t t i t u d e t i d))
11 a t t i t u d e l o o p () ;
12 #end i f
13

14 i f (s y s t im e c h e c k a n d a c k t im e r (modu l e s t i d))
15 modu l e s p e r i o d i c t a s k () ;
16

17 i f (s y s t im e c h e c k a n d a c k t im e r (mon i t o r t i d))
18 mon i t o r t a s k () ;
19

20 i f (s y s t im e c h e c k a n d a c k t im e r (t e l em e t r y t i d)) {
21 r e p o r t i n g t a s k () ;
22 LED PERIODIC () ;
23 }
24 }� �

Listing B.1: Main loop

56

� �
1 void s e n s o r s t a s k (void) {
2 #i f USE IMU
3 i m u p e r i o d i c () ;
4

5 #i f USE AHRS
6 i f (a h r s t im e o u t c o u n t e r < 255)
7 a h r s t im e o u t c o u n t e r ++;
8 #end i f // USE AHRS
9 #end i f // USE IMU

10

11 //FIXME: t h i s i s j u s t a kludge
12 #i f USE AHRS && de f ined SITL && !USE NPS
13 ah r s p r op ag a t e () ;
14 #end i f
15

16 #i f USE BARO BOARD
17 b a r o p e r i o d i c () ;
18 #end i f
19

20 #i f USE GPS
21 g p s p e r i o d i c c h e c k () ;
22 #end i f
23

24 i n s p e r i o d i c () ;
25 }� �

Listing B.2: Sensors task

57

� �
1 void n a v i g a t i o n t a s k (void) {
2 #i f de f ined FAILSAFE DELAY WITHOUT GPS
3 /∗∗ This s e c t i o n i s used f o r the f a i l s a f e o f GPS ∗/
4 s t a t i c u i n t 8 t l a s t pp r z mode ;
5 /∗∗ I f a i r c r a f t i s launched and i s in autonomus mode , go in to
6 PPRZ MODE GPS OUT OF ORDER mode (F a i l s a f e) i f we l o s t the GPS ←↩

∗/
7 i f (l aunch) {
8 i f (GpsTimeoutError) {
9 i f (pprz mode == PPRZ MODE AUTO2 | | pprz mode == ←↩

PPRZ MODE HOME) {
10 l a s t p p r z mode = pprz mode ;
11 pprz mode = PPRZ MODE GPS OUT OF ORDER ;
12 au t op i l o t s e nd mode () ;
13 g p s l o s t = TRUE ;
14 }
15 } e l s e i f (g p s l o s t) { /∗ GPS i s ok ∗/
16 /∗∗ I f a i r c r a f t was in f a i l s a f e mode , come back in prev ious ←↩

mode ∗/
17 pprz mode = l a s t p p r z mode ;
18 g p s l o s t = FALSE ;
19 au t op i l o t s e nd mode () ;
20 }
21 }
22 #end i f /∗ GPS && FAILSAFE DELAY WITHOUT GPS ∗/
23 common nav pe r i od i c t a sk 4Hz () ;
24 i f (pprz mode == PPRZ MODE HOME)
25 nav home () ;
26 e l s e i f (pprz mode == PPRZ MODE GPS OUT OF ORDER)
27 nav w i t hou t gp s () ;
28 e l s e
29 n a v p e r i o d i c t a s k () ;
30 #i f d e f TCAS
31 CallTCAS () ;
32 #end i f
33 #i f n d e f PERIOD NAVIGATION Ap 0 // I f not sent p e r i o d i c a l l y (in ←↩

de f au l t 0 mode)
34 SEND NAVIGATION(Defau l tChanne l , De f au l tDev i c e) ;
35 #end i f
36 /∗ The nav task computes only nav a l t i t ud e . However , we are ←↩

i n t e r e s t e d
37 by d e s i r e d a l t i t u d e (= nav a l t+a l t s h i f t) in any case .
38 So we always run the a l t i t u d e con t r o l loop ∗/
39 i f (v c t l mode == V CTL MODE AUTO ALT)
40 v c t l a l t i t u d e l o o p () ;
41

42 i f (pprz mode == PPRZ MODE AUTO2 | | pprz mode == PPRZ MODE HOME
43 | | pprz mode == PPRZ MODE GPS OUT OF ORDER) {
44 #i f d e f H CTL RATE LOOP
45 /∗ Be sure to be in a t t i t ud e mode , not r o l l ∗/
46 h c t l a u t o 1 r a t e = FALSE ;
47 #end i f
48 i f (l a t e r a l mod e >=LATERAL MODE COURSE)
49 h c t l c o u r s e l o o p () ; /∗ aka compute n a v d e s i r e d r o l l ∗/
50

51 // c l imb loop () ; //4Hz
52 }
53 }� �

Listing B.3: Navigation task

58

� �
1 void a t t i t u d e l o o p (void) {
2

3 #i f USE INFRARED
4 a h r s u p d a t e i n f r a r e d () ;
5 #end i f /∗ USE INFRARED ∗/
6

7 i f (pprz mode >= PPRZ MODE AUTO2)
8 {
9 i f (v c t l mode == V CTL MODE AUTO THROTTLE) {

10 v c t l t h r o t t l e s e t p o i n t = n a v t h r o t t l e s e t p o i n t ;
11 v c t l p i t c h s e t p o i n t = n a v p i t c h ;
12 }
13 e l s e i f (v c t l mode >= V CTL MODE AUTO CLIMB)
14 {
15 v c t l c l i m b l o o p () ;
16 }
17

18 #i f de f ined V CTL THROTTLE IDLE
19 Bound (v c t l t h r o t t l e s e t p o i n t , TRIM PPRZ(V CTL THROTTLE IDLE∗←↩

MAX PPRZ) , MAX PPRZ) ;
20 #end i f
21

22 #i f d e f V CTL POWER CTL BAT NOMINAL
23 i f (v supp l y > 0 .) {
24 v c t l t h r o t t l e s e t p o i n t ∗= 10 . ∗ V CTL POWER CTL BAT NOMINAL /←↩

(f l o a t) v supp l y ;
25 v c t l t h r o t t l e s e t p o i n t = TRIM UPPRZ(v c t l t h r o t t l e s e t p o i n t) ;
26 }
27 #end i f
28

29 h c t l p i t c h s e t p o i n t = v c t l p i t c h s e t p o i n t ; // Copy the p i t ch ←↩
s e t po i n t from the guidance to the s t a b i l i z a t i o n con t r o l

30 Bound (h c t l p i t c h s e t p o i n t , H CTL PITCH MIN SETPOINT , ←↩
H CTL PITCH MAX SETPOINT) ;

31 i f (k i l l t h r o t t l e | | (! a u t o p i l o t f l i g h t t i m e && ! l aunch))
32 v c t l t h r o t t l e s e t p o i n t = 0 ;
33 }
34

35 h c t l a t t i t u d e l o o p () ; /∗ Set h c t l a i l e r o n s e t p o i n t & ←↩
h c t l e l e v a t o r s e t p o i n t ∗/

36 v c t l t h r o t t l e s l e w () ;
37 ap s t a t e−>commands [COMMAND THROTTLE] = v c t l t h r o t t l e s l e w e d ;
38 ap s t a t e−>commands [COMMAND ROLL] = −h c t l a i l e r o n s e t p o i n t ;
39

40 ap s t a t e−>commands [COMMAND PITCH] = h c t l e l e v a t o r s e t p o i n t ;
41

42 #i f de f ined MCU SPI LINK | | de f ined MCU UART LINK
43 l i n k mcu s end () ;
44 #e l i f de f i ned INTER MCU && de f ined SINGLE MCU
45 /∗∗Di r e c t l y s e t the f l a g i nd i c a t i n g to FBW that shared bu f f e r i s ←↩

a v a i l a b l e ∗/
46 i n t e r m c u r e c e i v e d a p = TRUE ;
47 #end i f
48 }� �

Listing B.4: Attitude loop

59

� �
1 void mon i t o r t a s k (void) {
2 i f (a u t o p i l o t f l i g h t t i m e)
3 a u t o p i l o t f l i g h t t i m e++;
4 #i f de f ined DATALINK | | de f ined SITL
5 d a t a l i n k t im e++;
6 #end i f
7

8 s t a t i c u i n t 8 t t = 0 ;
9 i f (v supp l y < CATASTROPHIC BAT LEVEL∗10)

10 t++;
11 e l s e
12 t = 0 ;
13 k i l l t h r o t t l e |= (t >= CATASTROPHIC BAT KILL DELAY) ;
14 k i l l t h r o t t l e |= l aunch && (d i s t 2 t o home > Square (←↩

KILL MODE DISTANCE)) ;
15

16 i f (! a u t o p i l o t f l i g h t t i m e &&
17 ∗ s t a t eGe tHo r i z on t a l Spe edNo rm f () > MIN SPEED FOR TAKEOFF) {
18 a u t o p i l o t f l i g h t t i m e = 1 ;
19 l aunch = TRUE ; /∗ Not s e t in non auto launch ∗/
20 u i n t 1 6 t t ime s e c = s y s t im e . nb sec ;
21 DOWNLINK SEND TAKEOFF(Defau l tChanne l , Defau l tDev i c e , &t ime s e c) ;
22 }
23 }� �

Listing B.5: Monitor task

� �
1 void r e p o r t i n g t a s k (void) {
2 s t a t i c u i n t 8 t boot = TRUE ;
3

4 /∗∗ i n i t i a l i s a t i o n phase during boot ∗/
5 i f (boot) {
6 DOWNLINK SEND BOOT(Defau l tChanne l , Defau l tDev i c e , &v e r s i o n) ;
7 boot = FALSE ;
8 }
9 /∗∗ then repor t p e r i o d i c l y ∗/

10 e l s e {
11 //PeriodicSendAp (DefaultChannel , Defau l tDevice) ;
12 p e r i o d i c t e l em e t r y s e n d Ap () ;
13 }
14 }� �

Listing B.6: Reporting task

60

Appendix C

UPPAAL Trace Results

This appendix lists the maxreads average values in Listing C.1 by running
the UPPAAL model 30 times.

� �
1 v a r b l o c k t im e . maxreads = 0.0
2 v a r d e s i r e d x . maxreads = 0.0
3 v a r d e s i r e d y . maxreads = 0.0
4 v a r d i s t 2 t o wp . maxreads = 0.0
5 v a r e r r n o . maxreads = 0.0
6 v a r g p s f i x . maxreads = 0.0
7 v a r h o r i z o n t a l mod e . maxreads = 0.0
8 v a r i n d a l t . maxreads = 0.0
9 v a r i n d l a t . maxreads = 0.0

10 v a r i n d l o n . maxreads = 0.0
11 v a r n a v c i r c l e r a d i a n s . maxreads = 0.0
12 v a r n a v c i r c l e r a d i a n s n o r e w i n d . maxreads = 0.0
13 v a r n a v c i r c l e r a d i u s . maxreads = 0.0
14 v a r n a v c i r c l e x . maxreads = 0.0
15 v a r n a v c i r c l e y . maxreads = 0.0
16 v a r n a v f l i g h t a l t i t u d e . maxreads = 0.0
17 v a r n a v p i t c h . maxreads = 0.0
18 v a r n a v s u r v e y a c t i v e . maxreads = 0.0
19 v a r n a v t h r o t t l e s e t p o i n t . maxreads = 0.0
20 v a r s t a g e t im e . maxreads = 0.0
21 v a r s t a t e b o d y r a t e s f p . maxreads = 0.0
22 v a r s t a t e b o d y r a t e s f q . maxreads = 0.0
23 v a r s t a t e b o d y r a t e s f r . maxreads = 0.0
24 v a r s t a t e e n u p o s f z . maxreads = 0.0
25 v a r s t a t e e n u p o s i x . maxreads = 0.0
26 v a r s t a t e e n u p o s i y . maxreads = 0.0
27 v a r s t a t e e n u p o s i z . maxreads = 0.0
28 v a r s t a t e e n u s p e e d f . maxreads = 0.0
29 v a r s t a t e e n u s p e e d f z . maxreads = 0.0
30 v a r s t a t e h s p e e d d i r f . maxreads = 0.0
31 v a r s t a t e h s p e e d n o rm f . maxreads = 0.0
32 v a r s t a t e n e d p o s f a l t . maxreads = 0.0
33 v a r s t a t e n e d p o s f e a s t . maxreads = 0.0
34 v a r s t a t e n e d p o s f n o r t h . maxreads = 0.0
35 v a r s t a t e n e d p o s i x . maxreads = 0.0
36 v a r s t a t e n e d p o s i y . maxreads = 0.0
37 v a r s t a t e n e d p o s i z . maxreads = 0.0
38 v a r s t a t e n e d s p e e d f . maxreads = 0.0

61

39 v a r s t a t e n e d s p e e d f z . maxreads = 0.0
40 v a r s t a t e r a t e s t a t u s . maxreads = 0.0
41 v a r t o o f a r f r om home . maxreads = 0.0
42 v a r s t a t e e c e f p o s i x . maxreads = 0.03
43 v a r s t a t e e c e f p o s i y . maxreads = 0.03
44 v a r s t a t e e c e f p o s i z . maxreads = 0.03
45 v a r s t a t e n e d o r i g i n i x . maxreads = 0.03
46 v a r s t a t e n e d o r i g i n i y . maxreads = 0.03
47 v a r s t a t e n e d o r i g i n i z . maxreads = 0.03
48 v a r d e l t a 2 z . maxreads = 0.07
49 v a r s t a t e e n u p o s f a l t . maxreads = 0.07
50 v a r s t a t e e n u p o s f e a s t . maxreads = 0.07
51 v a r s t a t e e n u p o s f n o r t h . maxreads = 0.07
52 v a r s t a t e e n u s p e e d i x . maxreads = 0.07
53 v a r s t a t e e n u s p e e d i y . maxreads = 0.07
54 v a r s t a t e e n u s p e e d i z . maxreads = 0.07
55 v a r s t a t e n e d s p e e d i x . maxreads = 0.07
56 v a r s t a t e n e d s p e e d i y . maxreads = 0.07
57 v a r s t a t e n e d s p e e d i z . maxreads = 0.07
58 v a r s t a t e u tm o r i g i n f x . maxreads = 0.07
59 v a r s t a t e u tm o r i g i n f y . maxreads = 0.07
60 v a r s t a t e u t m o r i g i n f z . maxreads = 0.07
61 v a r d e l t a 2 x . maxreads = 0.1
62 v a r d e l t a 2 y . maxreads = 0.1
63 v a r s t a t e e n u s p e e d f x . maxreads = 0.1
64 v a r s t a t e e n u s p e e d f y . maxreads = 0.1
65 v a r s t a t e u t m o r i g i n f a l t . maxreads = 0.1
66 v a r s t a t e u t m o r i g i n f e a s t . maxreads = 0.1
67 v a r s t a t e u tm o r i g i n f n o r t h . maxreads = 0.1
68 v a r s t a t e u tm p o s f e a s t . maxreads = 0.1
69 v a r s t a t e u tm p o s f n o r t h . maxreads = 0.1
70 v a r l t p o f e c e f m 0 2 . maxreads = 0.17
71 v a r s t a t e e c e f p o s f x . maxreads = 0.17
72 v a r s t a t e e c e f p o s f y . maxreads = 0.17
73 v a r s t a t e e c e f p o s f z . maxreads = 0.17
74 v a r s t a t e l l a p o s i a l t . maxreads = 0.17
75 v a r s t a t e l l a p o s i l a t . maxreads = 0.17
76 v a r s t a t e l l a p o s i l o n . maxreads = 0.17
77 v a r s t a t e n e d o r i g i n f x . maxreads = 0.17
78 v a r s t a t e n e d o r i g i n f y . maxreads = 0.17
79 v a r s t a t e n e d o r i g i n f z . maxreads = 0.17
80 v a r l t p o f e c e f m 0 0 . maxreads = 0.2
81 v a r l t p o f e c e f m 0 1 . maxreads = 0.2
82 v a r l t p o f e c e f m 1 0 . maxreads = 0.2
83 v a r l t p o f e c e f m 1 1 . maxreads = 0.2
84 v a r l t p o f e c e f m 1 2 . maxreads = 0.2
85 v a r l t p o f e c e f m 2 0 . maxreads = 0.2
86 v a r l t p o f e c e f m 2 1 . maxreads = 0.2
87 v a r l t p o f e c e f m 2 2 . maxreads = 0.2
88 v a r e c e f x . maxreads = 0.2
89 v a r e c e f y . maxreads = 0.2
90 v a r e c e f z . maxreads = 0.2
91 v a r s t a t e l l a p o s f a l t . maxreads = 0.2
92 v a r d e l t a x . maxreads = 0.3
93 v a r d e l t a y . maxreads = 0.3
94 v a r d e l t a z . maxreads = 0.3
95 v a r s t a t e n e d s p e e d f x . maxreads = 0.33
96 v a r s t a t e n e d s p e e d f y . maxreads = 0.33
97 v a r c i r c l e b a n k . maxreads = 0.37
98 v a r s t a t e h s p e e d d i r i . maxreads = 0.43
99 v a r s t a t e u tm p o s f z o n e . maxreads = 0.53

100 v a r s t a t e l l a p o s f l a t . maxreads = 0.6

62

101 v a r s t a t e l l a p o s f l o n . maxreads = 0.6
102 v a r v c t l a u t o t h r o t t l e s u bmo d e . maxreads = 0.6
103 v a r n a v r a t i o . maxreads = 0.73
104 v a r h c t l r o l l s e t p o i n t . maxreads = 0.83
105 v a r g p s l o s t . maxreads = 0.93
106 v a r v c t l c l i m b s e t p o i n t . maxreads = 0.93
107 v a r b o d y r a t e p . maxreads = 1.0
108 v a r b o d y r a t e q . maxreads = 1.0
109 v a r b o d y r a t e r . maxreads = 1.0
110 v a r l a t e r a l m o d e . maxreads = 1.0
111 v a r p r e s c a l e r . maxreads = 1.0
112 v a r s t a t e u t m i n i t i a l i z e d f . maxreads = 1.03
113 v a r h c t l c o u r s e p r e b a n k . maxreads = 1.17
114 v a r h c t l c o u r s e d g a i n . maxreads = 1.33
115 v a r h c t l c o u r s e p r e b a n k c o r r e c t i o n . maxreads = 1.33
116 v a r h c t l r o l l s l e w . maxreads = 1.33
117 va r s p e ed depend nav . maxreads = 1.33
118 v a r s t a t e n e d p o s f x . maxreads = 1.4
119 v a r s t a t e n e d p o s f y . maxreads = 1.4
120 v a r s t a t e n e d p o s f z . maxreads = 1.4
121 v a r n a v i n c i r c l e . maxreads = 1.57
122 v a r v c t l mod e . maxreads = 1.6
123 v a r v c t l a l t i t u d e p r e c l i m b . maxreads = 1.63
124 v a r v c t l c l imb mod e . maxreads = 1.63
125 v a r h c t l c o u r s e s e t p o i n t . maxreads = 1.7
126 v a r l a s t p p r z mod e . maxreads = 1.83
127 v a r d i s t 2 t o h ome . maxreads = 1.97
128 v a r v c t l a l t i t u d e e r r o r . maxreads = 1.97
129 v a r s t a t e u tm p o s f a l t . maxreads = 2.0
130 v a r s t a t e n e d i n i t i a l i z e d . maxreads = 2.1
131 v a r a l t i t u d e p g a i n b o o s t . maxreads = 2.17
132 v a r v c t l a l t i t u d e m a x c l i m b . maxreads = 2.17
133 v a r v c t l a l t i t u d e p g a i n . maxreads = 2.17
134 v a r v c t l a l t i t u d e p r e c l i m b c o r r e c t i o n . maxreads = 2.17
135 v a r v c t l a l t i t u d e s e t p o i n t . maxreads = 2.17
136 v a r l a s t n a v a l t . maxreads = 2.17
137 v a r g r o u n d a l t . maxreads = 2.2
138 v a r h c t l c o u r s e p g a i n . maxreads = 2.87
139 v a r n a v a l t i t u d e . maxreads = 2.87
140 v a r h c t l r o l l m a x s e t p o i n t . maxreads = 3.1
141 var nav mode . maxreads = 3.1
142 var waypoints WP HOME x . maxreads = 3.1
143 var waypoints WP HOME y . maxreads = 3.1
144 v a r n a v c i r c l e t r i g o q d r . maxreads = 3.3
145 va r GpsT imeoutEr ro r . maxreads = 4.0
146 v a r l a u n c h . maxreads = 4.0
147 v a r s t a t e e n u p o s f y . maxreads = 4.5
148 va r pprz mode . maxreads = 5.2
149 v a r s t a t e e n u p o s f x . maxreads = 8.37
150 v a r s t a t e s p e e d s t a t u s . maxreads = 9.33
151 v a r s t a t e p o s s t a t u s . maxreads = 10.67
152 v a r g p s l a s t m s g t im e . maxreads = 60.0
153 v a r s y s t im e n b s e c . maxreads = 60.0� �

Listing C.1: UPPAAL trace maxreads

63

Appendix D

Test Results

This appendix lists the results from testing Paparazzi’s autopilot code, orig-
inal and modified, against single event upsets. All distances are measured
in metres. Table D.1 shows the Hausdorff distances without the occurrence
of a single event upset. Table D.2 shows the Hausdorff distances with a
single event upset present in state.utm pos f->alt. Table D.3 shows the
Hausdorff distances with a single event upset present in pprz mode.
Figures D.1 and D.2 illustrates the divergence in metres for variables tested
on the original code. These variables was tested to confirm Hypothesis 1 on
page 31.

Type
Number Smallest Largest Average
of runs divergence

(m)
divergence
(m)

divergence
(m)

Original without errors 1000 10.11 13.81 11.41

Modified without errors 1000 9.37 12.93 10.90

Table D.1: Hausdorff distances gathered from testing without single event
upset

Type
Smallest Largest Average
divergence
(m)

divergence
(m)

divergence
(m)

Original with error in bit 0 9.68 11.75 11.14

Modified with error in bit 0 9.78 11.37 10.67

Original with error in bit 1 10.20 11.33 10.71

Modified with error in bit 1 9.53 12.22 10.95

Original with error in bit 2 10.12 11.37 10.84

Modified with error in bit 2 10.08 11.38 10.79

Original with error in bit 3 10.45 12.02 11.00

64

Type
Smallest Largest Average
divergence
(m)

divergence
(m)

divergence
(m)

Modified with error in bit 3 9.50 11.36 10.72

Original with error in bit 4 9.89 11.34 10.79

Modified with error in bit 4 9.76 11.82 10.66

Original with error in bit 5 9.95 11.68 10.93

Modified with error in bit 5 9.78 11.26 10.74

Original with error in bit 6 10.19 11.79 11.10

Modified with error in bit 6 10.37 11.50 10.92

Original with error in bit 7 9.83 11.80 10.98

Modified with error in bit 7 9.62 11.01 10.57

Original with error in bit 8 9.91 11.45 10.96

Modified with error in bit 8 9.73 11.83 10.67

Original with error in bit 9 9.36 11.68 10.58

Modified with error in bit 9 9.35 12.26 10.72

Original with error in bit 10 9.40 11.44 10.63

Modified with error in bit 10 9.82 11.25 10.85

Original with error in bit 11 9.72 12.31 11.09

Modified with error in bit 11 10.78 11.32 11.03

Original with error in bit 12 9.73 11.40 10.91

Modified with error in bit 12 9.39 11.58 10.78

Original with error in bit 13 9.91 12.10 10.89

Modified with error in bit 13 9.52 11.90 11.01

Original with error in bit 14 9.65 11.63 10.83

Modified with error in bit 14 10.07 11.27 10.73

Original with error in bit 15 9.39 11.27 10.44

Modified with error in bit 15 10.12 11.54 10.79

Original with error in bit 16 10.08 11.71 10.95

Modified with error in bit 16 9.83 12.47 10.82

Original with error in bit 17 10.13 12.39 11.05

Modified with error in bit 17 9.75 11.29 10.79

Original with error in bit 18 9.84 11.53 10.95

Modified with error in bit 18 10.49 11.64 11.14

Original with error in bit 19 9.37 11.25 10.79

Modified with error in bit 19 9.88 11.45 10.76

Original with error in bit 20 9.61 11.83 10.95

Modified with error in bit 20 10.24 11.72 10.97

Original with error in bit 21 10.09 11.76 10.80

Modified with error in bit 21 9.66 11.74 10.90

Original with error in bit 22 9.87 11.54 10.73

Modified with error in bit 22 10.70 11.26 11.00

65

Type
Smallest Largest Average
divergence
(m)

divergence
(m)

divergence
(m)

Original with error in bit 23 9.55 11.17 10.56

Modified with error in bit 23 9.51 11.45 10.78

Original with error in bit 24 10.01 11.64 10.71

Modified with error in bit 24 9.46 11.72 10.46

Original with error in bit 25 9.60 11.85 11.00

Modified with error in bit 25 10.21 11.39 10.88

Original with error in bit 26 10.25 11.49 10.87

Modified with error in bit 26 10.42 11.46 10.97

Original with error in bit 27 9.44 11.86 10.62

Modified with error in bit 27 9.67 11.42 10.61

Original with error in bit 28 9.35 11.92 10.72

Modified with error in bit 28 9.67 11.74 10.96

Original with error in bit 29 10.06 11.49 10.85

Modified with error in bit 29 10.51 12.11 11.23

Original with error in bit 30 10.12 12.51 10.91

Modified with error in bit 30 10.07 11.84 11.16

Original with error in bit 31 10.08 11.27 10.84

Modified with error in bit 31 10.37 11.96 11.18

Table D.2: Hausdorff distances gathered from testing with error in
state.utm pos f->alt

66

0

50

100

150

200

D
iv

er
ge

n
ce

in
m

et
re

s

no errors v ctl altitude setpoint ground alt
h ctl course pgain nav altitude h ctl roll max setpoint

nav mode waypoints[WP HOME].x

Figure D.1: Average error of variables with an average maxreads above
2.0. These variables where chosen because their maxreads are in between
state utm pos f->alt and pprz mode

0

50

100

150

200

D
iv

er
ge

n
ce

in
m

et
re

s

no errors v ctl climb setpoint gps lost
h ctl roll setpoint nav ratio v ctl auto throttle submode
state.lla pos i.alt state.ecef pos f.x

Figure D.2: Average error of variables with an average maxreads below 1.0

67

Type
Smallest Largest Average
divergence
(m)

divergence
(m)

divergence
(m)

Original with error in bit 0 230.78 231.49 231.04

Modified with error in bit 0 9.54 11.61 10.88

Original with error in bit 1 230.77 231.22 230.99

Modified with error in bit 1 10.30 11.06 10.78

Original with error in bit 2 333.45 700.24 370.41

Modified with error in bit 2 9.64 11.55 10.75

Original with error in bit 3 333.45 484.68 348.57

Modified with error in bit 3 10.27 11.55 11.09

Original with error in bit 4 327.31 831.90 387.84

Modified with error in bit 4 10.14 12.56 10.94

Original with error in bit 5 331.00 660.07 365.87

Modified with error in bit 5 10.21 11.29 10.74

Original with error in bit 6 329.18 1213.77 420.81

Modified with error in bit 6 10.74 11.79 11.25

Original with error in bit 7 331.00 1197.33 464.85

Modified with error in bit 7 9.69 12.11 11.05

Table D.3: Hausdorff distances gathered from testing with error in
pprz mode

68

	Introduction
	Terminology
	Aviation
	Fault Tolerance
	Application-Level Correctness

	Related Work
	Soft Error Detection Through Software Fault Tolerance
	SWIFT-R
	AALCASE
	Rely
	Summary

	The Paparazzi Project
	Hardware
	Architecture

	Ground Control Station
	Flight Plans
	Simulation

	Fixed Wing Autopilot in Paparazzi
	Math Library
	Subsystems
	Simulator

	Analysis of the Paparazzi Autopilot
	Overview
	Assumptions
	Modelling the System in UPPAAL
	Results

	Fidelity Metric
	Comparing Paths

	Implementation & Test
	Securing the System
	Alternatives

	Implementing Application-Level Correctness
	Limitations

	Testing
	Base Flight Path
	Tests Without Single Event Upsets
	The pprz_mode Variable
	The state.utm_pos_f->alt Variable
	Other Variables
	Overhead

	Summary

	Conclusion
	Bibliography
	Dependencies
	Paparazzi Source Code
	UPPAAL Trace Results
	Test Results

