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Synopsis:

The objective of the master thesis is to develop
a framework for the laser forming process, which
enables the production of a set of desired single
and double curved geometries.
The framework is based on a feedback loop which
utilises the required amount of strain to go from
current geometry to the desired geometry. A scan
path algorithm is developed, which determines
the placement of the scan paths. As the laser
forming process induces compressive strains per-
pendicular to a given scan path, it is desirable to
place the scan paths perpendicular to the orien-
tation of the minimum principal strains. Based
on a ratio between bending and in-plane strains,
a suited forming mechanism is selected for the
scan path. The forming mechanisms are prede-
fined with regards to laser power and laser beam
diameter, while the scan speed is selected as the
control variable and adjusted as a function of the
required strains. The framework iterates until a
stop criterion is met, which is based on the sum
of absolute error between the obtained geometry
and the desired geometry.
The geometries obtained by use of the framework
exert the appearance of the chosen set of desired
single and double curved geometries. Thereby,
validating the potential of the developed frame-
work. However, deviations between the obtained
and the desired geometries are present, why im-
provements are required.
The developed framework allows the production
of double curved geometries. However, further
work is required to ensure that the process limi-
tations are properly established and that the de-
veloped framework functions correctly in a phy-
sical setup.
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Resume

Hovedformålet med nærværende projekt, er at udvikle et framework, der muliggør produktionen
af dobbeltkrumme emner i plade materiale, ved brug af laserformgivningsprocessen. Behovet
for at undersøge, hvorvidt dobbeltkrumme pladedele kan formgives ved brug af laserformgivn-
ingsprocessen er affødt af en stigende efterspørgsel til kundetilpassede løsninger, hvilket stiller
krav til høj fleksibilitet i produktionsanlægget. Konventionelle produktionsmetoder til pladedele
fx dybtrækning og hydro formgivning, er ikke fleksible og dermed ikke egnede til at producere
kundetilpassede løsninger, idet nye geometrier kræver dyr udvikling og fremstilling af formgivn-
ings værktøjer. Derfor er der stort potentiale i en produktionsmetode der tillader høj fleksibilitet
og dermed produktion af kundetilpassede løsninger. Idet laserformgivningsprocessen ikke kræver
nogen formgivningsværktøjer og nye geometrier kan formgives ved justering af procesindstill-
inger, er det vurderet, at laserformgivningsprocessen er egnet til at producere kundetilpassede
pladedele.

Projektet er udført gennem to semestre, henholdsvis 9. semester og kandidatspecialet. Gennem
9. semester lå fokus på at opnå kendskab til laserformgivningsprocessen samt udvikle et kon-
trolsystem, der sikrede at et V-buk på 10 grader kunne produceres med høj repeterbarhed. Til
bestemmelse af parametre til kontrolsystemet, blev der udviklet en ikke-lineær simuleringsmodel.
Som nævnt, er formålet med nærværende kandidatspeciale, at udvikle et framework der muliggør
produktionen af dobbeltkrumme pladedele ved brug af laserformgivningsprocessen. Framewor-
ket er udviklet som et software program. Udvikling samt evaluering af det endelig framework
er sket ved hjælp af den tilegnede viden og simuleringsmodellen der blev udviklet gennem 9.
semester.

Indledningsvist er laserformgivningsprocessen beskrevet for at etablere et grundliggende kend-
skab til processen og de formgivningsmekanismer, der er nødvendige for at producere dobbelt-
krumme pladedele. Kendskabet indebærer, hvorledes mekanismerne aktiveres og kontrolleres.
Laserformgivningsprocessen afhænger af adskillige materialeparametre og procesvariable. Pro-
cessen er sårbar overfor varians i disse, eftersom dette medfører varians i slutproduktet. Derfor
er der benyttet en konservativ bestrålingsstrategi samt en tilbagekoblingssløjfe, hvor emnet be-
stråles ad flere gange for at opnå den ønskede geometri. Mellem hver bestråling kontrolleres pro-
cessen med henblik på at minimerer fejlen mellem den ønskede og den tilbagekoblede nuværende
geometri. Bestrålingsmønsteret samt procesvariablene, der bestemmer henholdsvis hvor og hvor
meget formgivning, der skal foretages, bestemmes ved hjælp af en tøjningsanalyse. Tøjnings-
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analysen foretages i hver iteration af tilbagekoblingssløjfen. Tøjningsanalysen foretages ved brug
af en simuleringsmodel, der indikerer størrelsen samt placeringen af de resterende tøjninger, der
kræves for at gå fra nuværende til ønsket geometri. Bestrålingsmønsteret placeres vinkelret
på de mindste hovedtøjninger i det resterende tøjningsfelt, eftersom de største kompressive
tøjninger opnået under formgivning optræder vinkelret på bestrålingsmønsteret. Procesvari-
ablene beregnes ud fra størrelsen af de resterende tøjninger der er i bestrålingsmønsteret. Da
laserformgivningsprocessen leverer en varierende mængde formgivning på tværs af en kvadratisk
blanket, grundet asymmetri i processen. Er det valgt at variere hastigheden af laseren henover
bestrålingsmønsteret for at styre mængden af formgivning. Variationen i hastighed bestemmes
ved hjælp af en fordelingsfunktion, da dette tillod hurtig implementering i program strukturen.
Bestrålingsmønster samt procesvariable benyttes i en simuleringsmodel af laserformgivningspro-
cessen hvilket resulterer i en formgivet plade. Den opnåede geometri holdes op imod et stop
kriterie, der tjekker den geometriske overensstemmelse mellem den opnåede og den ønskede ge-
ometri. Er stopkriteriet ikke opfyldt, køres tilbagekoblingssløjfen igen.

Det udviklede framework er testet på fire forskellige geometrier, hvoraf to af geometrierne kan
betragtes som enkeltkrumme geometrier og de resterende dobbeltkrumme. Ved brug af det
udviklede framework opnås overensstemmelse mellem de fremstillede geometrier og de ønskede
geometrier. Dog indikerer afvigelser fra de ønskede geometrier at frameworket kan forbedres.
En række af disse forbedringer af frameworket diskuteres slutteligt, med afsæt i resultaterne fra
de fire tests.
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Preface

This report contains the master thesis, written by the Manufacturing Technology group VT4-
2.215A, studying at the Department of Mechanical and Manufacturing Engineering at Aalborg
University. The project is conducted in the period between 03.02.14 and 03.06.14. The report
must be perceived as further work of the groups earlier work performed during 9th. semester,
however, the current report is written such that it can be read independently of the earlier work.
The 9th. semester report was written with respect to the project proposal: Laser Forming stated
by GRUNDFOS Holding A/S and is appended on the appendix-CD. The present report is based
on the problem statement:

. . . . . . . . .
"How can a framework capable of producing double curved geometries by utilisation of the laser

forming process be developed?"
. . . . . . . . .

The report is written in LATEX, software programs are written in Java, plots are generated using
gnuplot and Finite Element Analyses are solved in LS-Dyna on the Linux-cluster located at the
Department of Mechanical and Manufacturing Engineering at Aalborg University. Calculations
are performed using Java, Maple and Mathcad.

Great appreciation is dedicated to our supervisors Benny Endelt and Morten Kristiansen.

Reading Instructions

This thesis contains a main report with an appendix placed in the end. The report can be
read independently of the appendix, but for elaborating information, references are made to the
appendix. To maintain the flow in the report, programs are explained using pseudo code. A
commented version of the source code is appended in the appendix. Furthermore, all code is
found on the attached appendix-CD as is the main report and appendix. Source references in
the report are made according to the syntax [author, year], with the bibliography in the end
of the report. Titles, equations, tables and pictures are numerated in the format x.y, where x
indicates the chapter number and y indicates the consecutive number.

Aalborg University, June 3, 2014
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R Laser beam radius [ m ]
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Chapter 1

Introduction to the Master Thesis

The introduction consists of; a brief description of the challenges related to modern manufactur-
ing, a description of the impact these challenges has on a manufacturing facility and how these
must be coped with and an introduction to the Laser Forming Project. Furthermore, an overview
of the content of the report is given.

1.1 Challenges in Modern Manufacturing
A main objective within larger modern manufacturing companies has been to obtain a cost effi-
cient production, in order to comply with their customers demand for low prices. Traditionally,
a cost efficient production is obtained using a rigid mass production line, which is composed
of manufacturing equipment dedicated to specific tasks [Kalpakjian and Schmid, 2006]. This
results in a rigid system optimised for the production of only one product. However, customers
have started to require solutions customised for their specific requirements [Kumar, 2008]. The
rigid mass production line is not suited for the production of customer specific solutions, why
it is necessary to incorporate or develop new manufacturing technologies which allow a higher
level of flexibility. The rigid production line may consist of several different manufacturing tech-
nologies. In the present project it is chosen to focus on a flexible alternative to conventional
sheet metal forming processes.

1.2 Facing the Challenge in the Industry
Sheet metal is used in a wide range of products, with applicability within the automotive indus-
try, the aerospace industry, etc. For most applications the sheet metal must undergo a forming
operation to create either a single or double curved geometry, in order to comply with functional
or aesthetic requirements in the end product [Liu and Yao, 2005].

Sheet metal can be formed by using several different forming processes. Conventional processes
used to obtain double curved geometries are e.g. sheet hydroforming, press stamping and deep
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1.2. Facing the Challenge in the Industry

drawing. However, these processes require costly changeover time1 and development and manu-
facturing of new dies, whenever a new geometry is to be produced. To avoid costly development
and manufacturing of new dies for each customer specific product, it is necessary to utilise an
alternative manufacturing technology. The alternative technology must be capable of producing
similar geometries as the aforementioned processes, but without the drawback of changeover
times, and costly development and manufacturing of dies. A possible alternative is the laser
forming process, which is treated in this project.

The laser forming process is based on earlier thermal forming processes, such as flame forming,
utilised in the ship building industry. Laser forming enables the possibility of producing parts
with a double curved surface, without the use of any forming dies. The forming is performed by
introducing a controlled amount of thermal expansion in a workpiece, henceforth referred to as
a blank, thereby obtaining a permanent plastic deformation. Examples of components formed
with the laser forming process are shown in figure 1.1.

Figure 1.1: Examples of laser formed components (revised from [Dahotre and Harimkar, 2008] and [Thomson
and Pridham, 1998]).

Several final geometries can be obtained from one blank geometry, by programming different
process variables. As geometries can be formed by adjustment of the process variables and with-
out the need of expensive dies, the laser forming process is assessed suited for the production of
customised sheet metal parts. [Dahotre and Harimkar, 2008]

Besides increased flexibility, the laser forming process may also promote a competitive advantage
with respect to rapid prototyping. As the conventional forming processes require development
and manufacturing of new dies for each desired geometry, these processes may be considered
fixed. Whereas the laser forming process only requires a new set of process variables in order
to manufacture a new geometry. This potentially reduces the lead time from idea to finished
product.

1Changeover consists of the tasks performed when changing to another product e.g. changing of tools in a
conventional forming process.
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1.3. The Laser Forming Project

1.3 The Laser Forming Project
To ensure successful implementation of the laser forming process with regards to industrial appli-
cations, it is necessary to investigate several different subjects e.g. process design, profitability,
achievable geometries, achievable tolerances, achievable process lead times, effect on material
properties etc.

The present project focuses on the subject of process design i.e. which process variables are
required to form a desired geometry? This subject is chosen as the group has interest within the
field of process design. To solve the subject of process design, two projects are conducted, the
master thesis project and a former 9th. semester project, which is appended on the appendix-
CD. The master thesis must be considered as an extension of the 9th. semester project: "Control
System Development - for The Laser Forming Process" [Madsen and Søndergaard, 2013]. How-
ever, the present report is written independently of the 9th. semester report, such that a new
reader does not have to read the former report.

Figure 1.2 shows the structure of the 9th. semester project. The main objective was to answer
the problem statement:

"How can a controlled V-bend be obtained, when using the laser forming process?"

In order to answer this problem statement, the following subjects were treated; obtaining know-
ledge about the laser forming process, development of an experimental setup, development of a
feedback control system, development and evaluation of a Finite Element model, establishment
of controller parameters (gains) and tests of the feedback control system. It was concluded that
it is possible to design a feedback control system which ensures process stability with regards to
bend angle in rectangular stainless steel blanks, in this case a bend angle of 10±0.1◦ was pro-
duced using the Finite Element model. However, during experimental testing it was observed
that the measurement equipment used, did not allow sufficient precision, why only a tolerance
of ±0.6◦ could be obtained.

9th. Semester - Control System Development 
- for The Laser Forming Process

Development and
 evaluation of a

 Finite Element model

Obtain knowledge
 of the  laser

 forming  process

Development of an 
experimental setup

Development of a 
feedback control 

system

Establishment
 of controller 
parameters

Tests of 
the feedback 
control system

Figure 1.2: Structure of the 9th. semester project.
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1.3. The Laser Forming Project

The work performed during the 9th. semester project assured that a proper understanding of
the laser forming process was obtained. The obtained knowledge supports the work in the mas-
ter thesis. To expand the applicability of the laser forming process, the next step is to develop
a structured method i.e. a framework, which enables the transformation of a desired double
curved geometry into suitable process variables. This leads to the problem statement for the
master thesis.

"How can a framework capable of producing double curved geometries
by utilisation of the laser forming process be developed?"

To answer this problem statement the subjects in figure 1.3 are treated throughout the present
project. The listed subjects simultaneously define the structure of the master thesis.

Master thesis - Development of a Framework for The Laser Forming Process 
- For Forming of Double Curved Geometries

Tests of the developed
 framework on double

 curved geometries

Introduction to
 the laser forming

 process

Development of 
the framework 

Tests of the  developed 
framework on single 

curved geometries

Conclusion

Figure 1.3: Subjects treated in the master thesis.

The laser forming process is described in chapter 2. The chapter describes; the laser forming
process in general and the different forming mechanisms required to produce double curved ge-
ometries. Moreover, a Finite Element model developed in [Madsen and Søndergaard, 2013] is
introduced. An adjusted version of the Finite Element model is used to develop and test the
framework, throughout the master thesis.

In chapter 3, a concept for the framework is developed. The concept consists of several struc-
tured tasks related to the conversion of a desired geometry to suitable process variables.

Chapter 4 and 5 consists of four tests performed with the developed framework with regards to
two single curved and two double curved geometries respectively. The purpose of the tests is to
proof the concept of the developed framework.

The conclusion of the project is stated in chapter 6. The conclusion is composed of conclusions
obtained throughout the entire report, as well as a conclusion to the problem statement. Finally,
suggestions for future work is discussed in chapter 7.
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Chapter 2

Process Description

This chapter focuses on establishing an understanding of the laser forming process, as this is
essential before designing a framework capable of producing double curved geometries. Fur-
thermore, the Finite Element model of the laser forming process, developed in [Madsen and
Søndergaard, 2013], is introduced. Initially a description of the laser forming process is given.
Following the process description, the concept of developable and non-developable surfaces is
introduced along with the thermo-mechanical mechanisms utilised in the laser forming process
to produce these surfaces. To aid the explanation of the mechanisms and introduce the Finite
Element model the mechanisms are evaluated with respect to temperature distribution, strain
distribution and forming using the Finite Element model.

2.1 Description of the Laser Forming Process
The laser forming process forms a blank by irradiating the surface with a defocused laser beam.
Throughout this project a stainless steel 1.4301(AISI 304) blank with the material properties
appended in appendix A and dimensions equal to 30x30x1mm is used. Figure 2.1 shows the
terminology related to the laser forming process, which is described in the following. The
description is constructed as an enumerated sequence of steps from the initial laser irradiation
to final deformation of the blank. The description is based on [Dearden and Edwardson, 2003]
and [Dahotre and Harimkar, 2008].

Scan paths

Laser beam (P,d)

Blank

Length

Width

Thickness

Scan speed (V)

Figure 2.1: The concept of the laser forming process. A defocused laser beam with laser power P and laser
beam diameter d irradiates a blank along predefined scan paths with a scan speed V .
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2.2. Forming Mechanisms in the Laser Forming Process

1. Laser irradiation: The blank is irradiated with a defocused laser beam at a given laser
power P and laser beam diameter d. The laser beam follows a scan path, denoted with
dashed lines in figure 2.1, at a given scan speed V . The scan paths determine where the
blank is irradiated. These can be placed arbitrarily on the surface to produce different
geometries. The scan path, P , d and V are all process variables of the laser forming
process. However, the term process variable henceforth refer to P , d or V . Furthermore a
complete irradiation of a scan path is henceforth referred to as a laser scan.

2. Laser absorbance: The laser beam consists of electromagnetic waves. A part of the
energy in the electromagnetic waves is absorbed by the blank material, as the laser beam
traverses the blank. The remaining is either reflected or transmitted. The absorbance of
electromagnetic waves occurs as the electrons of the material are forced into motion or
excited by the electromagnetic waves. This results in an increase of internal energy in the
blank material.

3. Heat generation: The increase in internal energy leads to a local generation of heat in
the blank material. As heat is generated in the blank, various heat transfers occur i.e.
conduction of heat into the blank, and convection and radiation from the surface of the
blank. Dependent of the amount of generated heat and the heat transfers, a temperature
distribution forms in the material.

4. Blank deformation: The heat generated, induces localised thermal expansion in the
material. The thermal expansion introduces strains. The strains are resisted by the sur-
rounding cooler material, thereby introducing stresses in the blank. If the stresses exceed
the temperature dependent yield limit of the material, the blank deforms plastically. The
thermal expansion, and therefore the thermal strains, are dependent of the temperature
distribution, why different temperature distributions results in different types of forming.
This subject is elaborated in section 2.2.

2.2 Forming Mechanisms in the Laser Forming Process
As described in section 2.1, the final deformation depends on the achieved temperature distri-
bution in the blank. The temperature distribution is affected by the scan path and process
variables i.e. laser power, laser beam diameter and scan speed, but also by workpiece and equip-
ment parameters such as blank geometry, blank material, blank surface conditions, the use of
protective air/gas for the laser etc. The influence of the variables and parameters is discussed
in the 9th. semester report appended on the appendix-CD. [Shi et al., 2005]

In literature several thermo-mechanical mechanisms are suggested for understanding how differ-
ent temperature distributions link to different forming scenarios. A thermo-mechanical mecha-
nism is in the present project defined as an ideal heat distribution, which subsequently results
in a strain distribution, thereby creating a unique forming type. The mechanisms are based on
simple straight line scans across the blank in the width direction, as shown in figure 2.1, but are
applicable to arbitrary scan paths as well. The mechanisms are an idealisation of the forming.
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2.2. Forming Mechanisms in the Laser Forming Process

In practice the final forming is often a combination of the mechanisms.

In chapter 1, it was mentioned that the laser forming process must be capable of manufactur-
ing geometries similar to conventional sheet metal forming processes. Therefore, it is required
that the laser forming process enables manufacturing of both single and double curved geome-
tries with both positive and negative curvature. These geometries can be categorised as either
developable or non-developable surfaces. Figure 2.2 shows the concept of developable and non-
developable surfaces. The concept is related to how a flat blank may be transformed into a
surface. Developable surfaces are characterised as, surfaces, which are constructible without
tearing, compressing and stretching the blank e.g. a half pipe, as shown in figure 2.2. A non-
developable surface requires either tearing, compression or stretching. The dome geometry is
an example of a non-developable surface, which requires in-plane shortening, as shown in figure
2.2. [Abed et al., 2005]

Non-developable

Developable

Figure 2.2: The concept of developable and non-developable surfaces (revised from [Abed et al., 2005]).

In this project, the temperature gradient and upsetting mechanism are considered as the tem-
perature gradient mechanism is capable of creating out of plane bends that can be utilised in the
creation of developable surfaces, while the upsetting mechanism is capable of creating in-plane
shortening that can be utilised in the creation of non-developable surfaces. [Abed et al., 2005]

Each of the mechanisms are associated with different combinations of process variables [Dearden
et al., 2003]. The following descriptions of each mechanism are based on [Dahotre and Harimkar,
2008], [Dowden, 2009] and [Shi et al., 2005]. Each description is based on a three step figure,
chronologically describing the mechanism from laser beam irradiation, to final deformed geo-
metry. In practice the forming is three dimensional. However, for clarity the descriptions only
consider forming occurring perpendicular to the scan path. Hence, the forming is considered as
two dimensional.
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2.2. Forming Mechanisms in the Laser Forming Process

2.2.1 The Temperature Gradient Mechanism

The mechanism requires a steep temperature gradient through the thickness of the blank. The
different steps of the temperature gradient mechanism are shown in figure 2.3 and described in
the following.

Highest thermal
 expansion

Lowest thermal expansion

Plastic deformation and
 thermal contraction 

Temperature
 gradient

β

Temperature scale

Highest temp.

Ambient temp.

Counterbending1 2 3

Laser beam

Figure 2.3: The temperature gradient mechanism. Initially a temperature gradient through the thickness is
established. The gradient in temperature leads to differentiated thermal expansion through the blank which
results in counterbending. The uppermost part of the blank deforms plastically due to decreased yield stress and
high thermal expansion. When the blank cools the thermal expansion retracts. The plastic deformation results in
a shortening relative to the original length. This results in a V-bend (revised from [Dowden, 2009] and [Dahotre
and Harimkar, 2008]).

1. The blank is irradiated with a laser beam. A rule of thumb prescribes that the laser beam
diameter is equivalent to the blank thickness [Edwardson et al., 2010]. A fraction of the
energy from the laser beam is absorbed and causes a local temperature increase. The heat
energy, obtained from the laser is simultaneously conducted to the rest of the blank. Due
to the heat energy and the conductive properties of the blank a temperature gradient is
formed through the thickness of the blank.

2. Due to the temperature gradient through the thickness the blank experiences different
levels of thermal expansion. The thermal expansion varies from highest in the uppermost
part of the blank, to lowest in the bottommost part. This results in counterbending
away from the laser beam. The thermal expansion is resisted by the surrounding cooler
material. Thus the thermal expansion cause compressive stresses. In the uppermost part
of the blank the temperature is high, due to the irradiation of the laser beam. This lowers
the yield stress of the material, as shown if figure 2.4. If the compressive stresses exceed
the temperature dependent yield stress of the material, the blank deforms plastically.

3. After the surface has been laser scanned, the blank cools (dwell time). The cooling leads to
thermal contraction of the blank. Since the uppermost part of the blank has been plasti-
cally deformed, the thermal contraction leads to a shortening, which is most prominent in
the top of the blank. The shortening leads to a bend around the scan path. [Dowden, 2009]
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2.2. Forming Mechanisms in the Laser Forming Process

states that the bend angle β after one laser scan can be up to 2◦, however, this depends on
the process. In [Madsen and Søndergaard, 2013] bend angles up to approximately 1.3◦ per
laser scan were achieved. The achieved bend angle is controllable by varying the process
variables. Larger bend angles are obtained by utilising multiple passes of the laser beam.
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Figure 2.4: Temperature dependency of the yield stress for stainless steel 1.4301 (AISI 304).

2.2.2 The Upsetting Mechanism

The mechanism is given its name due to a local upsetting of the material beneath the laser
beam through the thickness. Figure 2.5 shows the upsetting mechanism. To simplify figure 2.5
only expansion perpendicular to the plane extended by the scan path and thickness direction
is considered. Ideally no temperature gradient across the thickness should exist. In practice
this requirement is difficult to fulfil, thus the temperature gradient mechanism is activated as
well. To minimise the influence of the temperature gradient mechanism, a high ratio of thermal
conductivity to blank thickness is preferable. Moreover, a rule of thumb prescribes that the laser
beam diameter must be approximately 10 times the blank thickness [Dahotre and Harimkar,
2008]. The different steps of the upsetting mechanism are shown in figure 2.5 and described in
the following.

1. The blank is irradiated with a laser beam. Assuming activation of the idealised upset-
ting mechanism (no temperature gradient through the thickness), the material deforms
uniformly perpendicular to the thickness direction, due to the thermal expansion. Due to
the stiffness of the cooler surrounding material, the expansion causes compressive stresses
in the heated area. If the stresses exceed the temperature dependent yield stress of the
material, the material deforms plastically and local plastic upsetting occurs in the scan
path.

2. As the laser beam is moved across the surface, the material near the laser beam continues
to expand due to the increased temperature, whilst the material behind the laser beam is

9
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Temperature scale

Highest temp.

Ambient temp.

1 2 3

Laser beam

Figure 2.5: The upsetting mechanism. Initially the blank expands due to heating from the laser beam. The
expansion induce uniform strains through the thickness, which causes plastic deformation if the temperature
dependent yield stress is exceeded. When the material starts to cool it contracts, resulting in a shortening
compared to the original shape, which is denoted with dashed lines. The arrows indicate material movement
(revised from [Dowden, 2009]).

allowed to cool. The cooling decreases the thermal expansion in the blank. This leads to
local shortening of the blank in the plastically deformed zone.

3. After a complete laser scan the blank is shortened, perpendicular to and in full length of
the scan path.

2.3 Simulation of the Forming Mechanisms

This section introduces the Finite Element model developed in [Madsen and Søndergaard, 2013].
The forming mechanisms explained in section 2.2 are simulated using the Finite Element model
of the laser forming process. The introduction briefly covers the main aspects of the Finite
Element model. For a thorough description of the Finite Element model developed during the
9th. semester, the reader is referred to the 9th. semester report appended on the appendix-CD.

In the present project the Finite Element model is used to develop a framework, which enables
the production of double curved geometries. To cope with this task, minor adjustments of the
Finite Element model are necessary. A description of the adjustments considering; reducing
the spatial discretisation of the blank and determination of process range for the upsetting
mechanism, is appended in appendix B. The adjusted model is appended in appendix C. The
adjusted Finite Element model has been compared to the model developed through the 9th.
semester with respect to physical behaviour. An acceptable correlation was observed, why it
is assessed that the adjusted Finite Element model is suitable for the development and testing
of the framework. However, experimental validation of the Finite Element model is considered
necessary before implementation in an experimental setup.
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2.3. Simulation of the Forming Mechanisms

2.3.1 Introduction to the Finite Element Model

The Finite Element model, developed in [Madsen and Søndergaard, 2013], was developed with
the purpose of establishing parameters for a feedback controller and to test a feedback control
system.

The feedback control system from [Madsen and Søndergaard, 2013] is shown in figure 2.6. The
control system controls the forming of a V-bend. The V-bend was formed by utilisation of the
temperature gradient mechanism in a single scan path. The bend angle obtained by use of
the temperature gradient mechanism is controllable by adjusting the average amount of energy
transferred from the laser beam to the blank [Thomson and Pridham, 1997]. The average
amount of energy was adjusted by controlling the scan speed with respect to the error between
the desired bend angle and the current bend angle.

Process

Feedback
Controller

Deformed blankInput
-

+ Error

Measurement

Model

Current 
bend angle

Desired bend angle

Figure 2.6: The control system developed in [Madsen and Søndergaard, 2013]. The arrow between Process and
Model indicates that a Finite Element model of the process is developed and used to establish the parameters for
the feedback controller.

The control system had to be capable of producing controlled V-bends in a stainless steel 1.4301
(AISI 304) blank. The temperature dependent material properties of the blank are appended in
appendix A. The blank was positioned in a clamp and scanned with the laser beam in a single
scan path, as shown in figure 2.7. To ensure correlation between the Finite Element model and
an experimental setup, the Finite Element model was fitted to experimental data.

The laser forming process is modelled as a nonlinear isotropic coupled thermo-mechanical analy-
sis, based on temperature dependent material properties. To simplify the Finite Element model,
it is assessed that no phase changes occur. The Finite Element model is simulated using the
nonlinear Finite Element Analysis code LS-Dyna. Figure 2.8 shows a visual representation of
the Finite Element model. The blank is fixed at one edge to simulate the fixation of the clamp.
In the solution of the coupled thermo-mechanical problem the thermal problem i.e. the temper-
ature distribution is determined initially. Subsequently, the temperature distribution is used in
the mechanical problem, to determine thermal expansion and the resulting forming. This proce-
dure is repeated for each timestep of the solution. The temperature distribution is determined
with respect to:

11
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xy

z

Clamp

Blank

Laser beam

Free end
Scan path

Figure 2.7: Sketch of the clamp and blank used
in [Madsen and Søndergaard, 2013]. After each ir-
radiation from the laser beam, the free end moves
towards the laser beam.

x
y

z

1098K
1018K
937K
856K
776K
695K
615K
534K
454K
373K
293K

Temperature [K]

Blank

Fixed edge

Laser beam

 

Free end

Figure 2.8: The developed Finite Element model of
the laser forming process. The fixed edge is incorpo-
rated in order to simulate the clamp utilised in the ex-
perimental setup [Madsen and Søndergaard, 2013].

• A laser beam expressed as a moving Gaussian heat flux function, as shown in equation
2.1.
• Three dimensional transient heat conduction occurring in the blank.
• Convection and radiation heat losses from all surfaces. Both convection and radiation are
expressed as heat flux leaving the surface of the blank.
• An ambient temperature and initial blank temperature of 293K.

The applied Gaussian heat flux function is given by equation 2.1 [Shi et al., 2005]. This approx-
imation of the laser beam has shown good correlation with respect to experimental results in
[Shi et al., 2005] and [Roll et al., 2011].

I(r) = 2 ·A · P
π ·R2 · e

(
-2·r2
R2

)
(2.1)

Where I is the heat flux density, A is the absorbance coefficient, P is the laser power, R is the
laser beam radius and r is the distance from center of the laser beam.

As mentioned the purpose of the Finite Element model in [Madsen and Søndergaard, 2013] was
to establish parameters for a control system. This implies running several simulations in a short
amount of time. Hence, solving the Finite Element model must be fast, while ensuring results
that correlate with experimental results. In the present project the Finite Element model is
used in the development and testing of a framework enabling the production of double curved
geometries, why a low solution time is still desirable. The following precautions were taken to
ensure low solution time in [Madsen and Søndergaard, 2013]:

• Reduction of the blank size in order to decrease the number of total elements and thereby
calculations.
• The spatial and temporal discretisation of the Finite Element model were selected to
comply with the discretisation requirements, for simulating the laser forming process,
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2.3. Simulation of the Forming Mechanisms

stated in [Zhang et al., 2004] i.e. a minimum of 2 elements per beam radius, a minimum of
3 elements in the thickness direction and a minimum of 4 timesteps per laser beam radius,
meaning that 4 timesteps must be evaluated during the time it takes the laser beam to
move a beam radius across the blank surface.
• The problem was scaled with a factor of 1000 with respect to time i.e. 3ms of simulation
time equals 3s of process time. The time scaling implies an equal scaling of the thermal
problem. This was treated by using LS-Dyna’s ”Thermal Speedup Factor” (TSF). The TSF
was used to artificially scale the thermal properties of a thermal problem e.g. conductivity,
heat convection coefficient etc. The TSF is set in correspondence to the time scaling i.e.
if the scan speed of the laser beam is scaled by a factor 1000, the TSF is equally set to
1000. The TSF is evaluated for a simple rod example in appendix D.
• The analysis approach was switched from explicit to implicit whilst solving the Finite Ele-
ment model. During the laser scan, when the deformation rate is high, the Finite Element
model was solved with an explicit analysis. The explicit analysis dictates the use of small
timesteps to maintain stability. Small timesteps provide a high precision solution of the
deformation during the laser scan. In the subsequent dwell time the deformation rate is
reduced why larger timesteps were sufficient to obtain a desired precision. During dwell
time an implicit analysis was used. The implicit analysis is computationally costly com-
pared to the explicit analysis. However, it is unconditionally stable, why large timesteps
may be used. By using analysis switching high precision was obtained by using many
computationally cheap explicit steps during the laser scan and few computationally costly
implicit steps, during dwell time. [Lund and Lindgaard, 2012]

The correlation between the Finite Element model and an experimental setup was ensured by
fitting the Finite Element model with respect to experimental data. The experimental data was
obtained in the experimental setup developed in [Madsen and Søndergaard, 2013].

As mentioned the average amount of energy was controlled by varying the scan speed. However,
control is only possible within a given process range. If the average energy is too high, the
surface melts, as a result of the high temperatures. If the average energy is too low no plastic
deformation is achieved, why no bend angle occurs. To determine a process range, that ensures
an acceptable behaviour, when utilising the temperature gradient mechanism i.e. produces a
significant bend angle whilst not melting the surface of the blank, a series of experiments were
conducted on the experimental setup. In the experiments, the laser beam diameter was varied
from 1mm to 5mm in 1mm increments. For each laser beam diameter, different scan speeds
were tested to identify the upper and lower limit of the process range. The laser power was
maintained at 380W to reduce the amount of experiments. All experiments with a laser beam
diameter smaller than 3mm resulted in a melted surface and were therefore not acceptable. The
experiments with a laser beam diameter above 3mm resulted in a narrow process range where
small adjustments in the scan speed either resulted in a melted surface or a small bend angle.
This was considered undesirable hence, it was decided to utilise the process range obtained for
the 3mm laser beam diameter being an upper scan speed limit of 7000mm

min and a lower scan
speed limit of 2750mm

min .
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2.3. Simulation of the Forming Mechanisms

The Finite Element model was fitted with respect to three scan speeds within the process range,
as shown in figure 2.9.

Melting Insignificant
bend angle

Process range

2750 mm
min 5000 mm

min 7000 mm
min

Significant bend angle without melting

Scan speed

Figure 2.9: Process range for the temperature gradient mechanism when varying the scan speed and maintaining
a fixed laser beam diameter of 3mm and a fixed laser power of 380W .

The model was fitted to the three scan speeds by systematic variation of the absorbance coeffi-
cient, as recommended in [Dowden, 2009]. Results of the fitted Finite Element model are shown
in figure 2.10.
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Figure 2.10: Comparison of the fitted Finite Element model and experimental results.

As mentioned, the purpose of the model in [Madsen and Søndergaard, 2013] was to aid in the
establishment of parameters for a control system. As the correlation between the model and the
physical behaviour achieved in experiments was found acceptable, it was assessed sufficient for
this task.

2.3.2 Simulating the Mechanisms

The introduced Finite Element model is used to demonstrate the mechanisms discussed in
section 2.2. In this demonstration a straight line laser scan in the Y direction is performed. The
demonstration focuses on the ability of the model to demonstrate correct physical behaviour
prescribed by the mechanisms with respect to temperature distribution, strains and forming.
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2.3. Simulation of the Forming Mechanisms

The behaviour is inspected at nodes located on the centerplane, perpendicular to the Y axis, as
shown in figure 2.11.

Centerplane

A

B

C

D
Scan path

Fixed edge
Nodey

z

x

Figure 2.11: Inspected nodes in the demonstration of the temperature gradient mechanism and upsetting
mechanism.

Table 2.1 shows the process variables used to activate the temperature gradient mechanism
and upsetting mechanism respectively. The temperature gradient mechanism is demonstrated
using the process variables accounting for the lower process range limit identified in [Madsen
and Søndergaard, 2013], as this is known to activate the temperature gradient mechanism. No
experimental tests have been conducted with respect to the upsetting mechanism1. Hence, the
process variables selected for this demonstration are based on rules of thumb i.e. the laser beam
diameter is set equal to 10 times the blank thickness, as suggested in section 2.2.2. The scan
speed is lowered as this facilitates a uniform temperature distribution through the thickness of
the blank and the laser power is maintained fixed.

Variable: Temperature gradient mechanism: Upsetting mechanism:
Laser beam diameter: 3mm 10mm
Scan speed: 2750mm

min 500mm
min

Laser power: 380W 380W

Table 2.1: Process variables used to activate the forming mechanisms.

Temperature Distribution

Achieving the temperature gradient mechanism implies selecting process variables, which guar-
antee a steep temperature gradient through the thickness of the blank. Achieving the upsetting
mechanism implies selecting process variables, which guarantee a uniform temperature distribu-
tion through the thickness. As shown in figure 2.12, a temperature difference from the top to
bottom surface is present in both mechanisms, why a temperature gradient through the thickness
is present. However, the gradient in the upsetting mechanism is less prominent. As mentioned
in section 2.2.2, it is difficult to achieve a uniform temperature through the thickness, due to
the conductive properties of the material. In both mechanisms the gradient in the centerplane is

1This demonstration of the mechanisms was conducted prior to determination of the process range for the
upsetting mechanism. Therefore, the process variables used throughout the demonstration correspond to rules of
thumb, instead of a determined process range.
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largest as the laser beam traverses the centerplane. After the laser beam has passed, the surface
temperature converges towards ambient temperature.
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Figure 2.12: Temperature developments for the temperature gradient and upsetting mechanism in node A and
node B, shown in figure 2.11.

Strain Distribution

[Liu and Yao, 2005] states that, the highest compressive strains in the laser forming process,
occur in the direction perpendicular to the scan path, why only the X directional strains are
investigated. As described in section 2.2, a temperature gradient through the thickness induces
differentiated thermal expansion. Figure 2.13a shows that, when utilising the temperature gra-
dient mechanism, the top surface is subject to negative X directional strain and the bottom
surface is subject to positive strain after a complete laser scan. Hence, the top surface is in
compression and the bottom surface is in tension, as is expected in a bending scenario. Figure
2.13b shows that the upsetting mechanism results in negative X directional strain through the
entire thickness. The difference in magnitude from top to bottom is assumed to be caused by
the influence of the temperature gradient mechanism. The strain implies that the entire scan
path is in compression perpendicular to the scan path, as is expected in a shortening scenario.
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Figure 2.13: Strain developments in the X direction for the temperature gradient and upsetting mechanism at
node A and node B, shown in figure 2.11.

Forming

Figure 2.14a shows the Z displacement of node C whilst utilising the temperature gradient
mechanism. Initially a negative displacement of node C is observed. This is assumed to be
caused by the counterbending of the blank, as a result of the differentiated expansion. This
is followed by a positive displacement of node C, which is a result of the development in bend
angle. Figure 2.14b shows the X displacement of node C and D whilst utilising the upsetting
mechanism. During heating, the blank expands causing an elongation of the blank in the X
direction. After heating the blank contracts and is shortened in comparison to the original
geometry. The shortening is more prominent in the top. This is assumed to be caused by the
influence of the temperature gradient mechanism.
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(a) Z displacement of node C shown in figure 2.11, as
a result of the temperature gradient mechanism.
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(b) X displacement of node C and D shown in figure
2.11, as a result of the upsetting mechanism.

Figure 2.14: Displacements from the temperature gradient and upsetting mechanism.
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2.4 Sub Conclusion
In the laser forming process a defocused laser beam irradiates a blank in predefined scan paths.
The absorbed laser energy causes heat generation in the material, which results in expansion of
the blank. The expansion is resisted by the surrounding material thereby inducing compressive
stresses. If the stresses exceed the temperature dependent yield stress, plastic deformation is
introduced. To produce double curved geometries it is necessary to utilise the temperature
gradient mechanism and the upsetting mechanism. The mechanisms are important, as they
enable the laser forming process to create developable and non-developable surfaces. Both
mechanisms were demonstrated using an adjusted version of the Finite Element model developed
in [Madsen and Søndergaard, 2013]. The Finite Element model successfully demonstrated correct
physical behaviour with respect to the temperature distribution, strain distribution and forming
obtained by both mechanisms.
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Chapter 3

The Developed Framework for the
Laser Forming Process

This chapter describes the developed framework for the laser forming process. The framework
is capable of transforming a desired geometry into the required scan path and process variables.
The framework is developed as a software program. The development and evaluation of the
framework is based on the Finite Element model of the laser forming process, described in chapter
2. However, the framework is developed with regards to a physical setup i.e. the framework can
be implemented directly in a physical setup. This chapter consists of an introduction to the
framework, where the background and structure of the framework are presented. Following the
introduction, the individual tasks performed in the framework are elaborated.

3.1 Introducing the Framework
This section introduces a concept for process design, for the laser forming process, developed
by [Liu and Yao, 2005]. The concept serves as the background for the framework, which is
described in section 3.1.2.

3.1.1 Background for the Framework

[Liu and Yao, 2005] developed a concept for calculating scan paths and selecting of process
variables suitable for creating double curved geometries. The concept must be utilised prior to
the execution of the laser forming process. Figure 3.1 shows the concept used by [Liu and Yao,
2005], which is described below.
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Figure 3.1: Flowchart of the concept used in [Liu and Yao, 2005].

Initially a Finite Element representation of the desired geometry is flattened between two rigid
planes in a large deformation Finite Element model. The desired geometry is flattened to
a thickness equal to the original blank thickness. From the Finite Element model a strain
field is obtained, which corresponds to the developed strains, when the desired geometry is
compressed to flat. The developed strain field is equal to the strain field required to obtain the
desired geometry. The required strain field is used to determine suitable scan paths and process
variables. The scan paths are oriented perpendicular to the average of the orientation of the
minimum principal strains in the topplane and in the midplane of the blank. This is shown
in figure 3.2, where the bars indicate the size and orientation of minimum principal strains.
The orientation of the bars are equal to the orientation of minimum principal strains, while the
lengths are equal to the relative size of the minimum principal strains. The red line in figure
3.2, indicates the chosen scan path with respect to the orientation of minimum principal strain.
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Figure 3.2: The orientation of the average of the minimum principal strains in the topplane and in the midplane
of the blank. An excerpt is shown, which illustrates a scan path located perpendicular to the orientation of
minimum principal strains.

As discussed in section 2.2 the temperature gradient mechanism and the upsetting mechanism
are required to develop double curved geometries. The selection of forming mechanism is based
on the remaining topplane and midplane strains. These are considered indicators of the in-plane
and bending strains required to achieve the desired geometry. The forming mechanisms are
controlled by proper selection of process variables. The process variables are selected from a
database, based on the required in-plane and bending strains in the scan path. The database
has been established, prior to the forming operation, using a Finite Element model of the laser
forming process. When a scan path has been calculated for the desired geometry and suited
process variables have been chosen, a laser scan can be performed.

The concept introduced in [Liu and Yao, 2005] was evaluated in an experimental setup with
respect to a dome and a saddle geometry. Correlation was obtained between the desired and
the obtained geometry for both the dome and saddle. The discrepancy between the desired
geometry and the obtained geometry was assessed to be caused by the discretisation of the
desired geometry, which is necessary when implementing the geometry in the Finite Element
program, as well as the finite number of scan paths.

3.1.2 Introduction to the Developed Framework

The concept developed by [Liu and Yao, 2005] proofed successful, for the tested geometries. The
approach used in [Liu and Yao, 2005], depends on achieving the desired geometry in one iter-
ation, while using process variables from a database, which are selected based on the required
strain field. However, the output of the laser forming process suffers from variance, residual
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stresses and non-linearities as described in the following.

• Process variance: The laser forming process depends on several variables and parameters
e.g. process variables and material parameters, which can be subject to fluctuation. This
results in variation in the end product [Thomson and Pridham, 1997].
• Residual stresses: From chapter 1 it was determined that the developed framework must

enable the production of double curved geometries. It is assessed that the production of
double curved geometries introduce residual stresses outside the scan path. These stresses
affect the output of the remaining process by either increasing or decreasing the obtainable
bending or in-plane strain.
• Process non-linearities: Furthermore, the laser forming process suffers from process
non-linearities. These are defined as edge effects and bend rate decay, which are thoroughly
described for the temperature gradient mechanism in [Madsen and Søndergaard, 2013] and
briefly described below.

– Edge effects refer to a varying amount of forming, when the laser beam approaches
the edge of a blank. The edge effect can be explained by the asymmetry of the process
[Shen et al., 2009]. The asymmetry is both due to a changing mechanical resistance
towards forming and an asymmetric temperature distribution along the scan path
[Dahotre and Harimkar, 2008].

– The bend rate decay refers to a decreased amount of bending achieved, when utilising
the temperature gradient mechanism through multiple laser scans in a single scan
path [Dahotre and Harimkar, 2008]. The decay in bend rate is caused by a series
of different effects e.g. strain hardening of the blank. As the material hardens it
becomes more reluctant to form. It is assumed that the effect of bend rate decay is
also present in a general forming scenario.

With respect to the variance, residual stresses and non-linearities present in the laser forming
process, it is assessed that the concept described in [Liu and Yao, 2005] using a single iteration
strategy and process variables selected from a database is not a robust approach. To increase
robustness of the laser forming process, it is selected to combine the concept developed by [Liu
and Yao, 2005] with process control.
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Basic Control Theory

Process control may be obtained with two basic control system approaches being, feedforward
and feedback. The approaches are shown in figure 3.3 and described in the following.

ProcessFeedforward
controller

OutputInput ProcessFeedback
controller

OutputInput

Reference

Reference

-

+

Feedforward approach: Feedback approach:

Error

Measurement

Figure 3.3: The two basic control system approaches. The feedforward approach relies on process knowledge to
control the process input, such that a desired output is produced. The feedback approach relies on measuring the
process output and correcting the input with respect to an error between the current and the desired output.

The feedforward approach relies on the ability to predict the process output, similar to the
concept presented by [Liu and Yao, 2005]. A reference of the process output is given to the
feedforward controller. Based on the reference output and knowledge of the behaviour of the
process, the processing input is calculated. The knowledge can be based on empirical results
or predictive models of the process, which is the case in [Liu and Yao, 2005] where a database
is used. The major disadvantage of the feedforward approach is the demand for high repeata-
bility of the process, in order to predict the process behaviour correctly. This is assessed to be
problematic as the laser forming process suffers from poor repeatability e.g. bending tests with
nominally identical process variables for a 10mm wide and 1mm thick mild steel blank, produced
a spread in bend angle around the process mean of ±15%, when formed with 30 minute intervals.
[Thomson and Pridham, 1997]

The feedback approach relies on measuring the output of the process and adjust the process
input accordingly. A reference for the output is given. By measuring the output of the process
with a sensor and comparing it with the reference, at each iteration k of the feedback loop, an
error is obtained1. Based on the error the feedback controller adjusts the input to the process
for the next iteration of the feedback loop k + 1. Compared to the feedforward approach, the
feedback approach is able to cope with poor repeatability, as the input is adjusted with respect
to the current output of the process. [Thomson and Pridham, 1997]

Based on the description of the basic control system approaches, it is assessed that feedback
control is the best suited control system approach for the laser forming process.

1The iteration counter k is introduced to designate the iterations of the feedback loop
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Incorporating Feedback Control in the Framework

The feedback system shown in figure 3.3, is the foundation for the framework developed in this
project, the structure of the framework is shown in figure 3.4. To allow feedback control of the
laser forming process a conservative multipass strategy is utilised, such that the laser forming is
conducted in small incremental steps defined by the iteration counter k of the framework. The
scan path and process variables are determined between every laser scan.

Current geometry

Create
desired

geometry

Conduct
path

planning

Determine
process 
variables

Finite Element
model of the laser 

forming process

Stop
criterion

User input

Desired geometry

Desired geometry

Required strains Scan path process variables
and scan path

Current
geometry

Perform
strain

 analysis

Current
geometry

Figure 3.4: Structure of the framework for the laser forming process. The yellow box indicates a task performed
by utilisation of SolidWorks and LS-Prepost, the green boxes indicate tasks solved by a Finite Element model
in the non-linear Finite Element code LS-Dyna and the blue boxes designate tasks performed by a developed
software program.

The boxes which constitute the framework shown in figure 3.4 are explained in the following
list, references are made to the sections where the boxes are elaborated further. Pseudo code is
used to assist the explanation of selected boxes.

• In “Create desired geometry” a desired geometry is defined by user input. The desired
geometry is used as a reference for the framework. This box is elaborated in section 3.2.
• In “Perform strain analysis” a strain field is determined, which define the strains required
to go from current geometry2 to the desired geometry. The strain field is obtained by use
of a Finite Element model and manipulated to suit the purpose of the subsequent path
planning. This box is elaborated in section 3.3.
• In “Conduct path planning” a scan path is determined on the basis of the strain field
obtained in “Perform strain analysis”. This box is elaborated in section 3.4.
• In “Determine process variables” process variables are determined based on the required
strain in the scan path. This box is elaborated in section 3.5.
• In “Finite Element model of the laser forming process” the Finite Element model of the

2Current geometry defines the initial flat blank in the first iteration and the formed blank in the following
iterations of the framework.
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3.2. Create Desired Geometry

laser forming process is solved with regards to the scan path and process variables de-
termined in “Conduct path planning” and “Determine process variables”. The “Finite
Element model of the laser forming process” is introduced in section 2.3.1. The keydeck
for the Finite Element model is appended in appendix C.
• In “Stop criterion” the current geometry received from “Finite Element model of the laser
forming process” is subtracted the desired geometry which results in a surface error. The
surface error is used as a stop criterion for the framework. This box is elaborated in section
3.6.

If the criterion in “Stop criterion” is not achieved, a new iteration of the framework must be
performed.

The boxes in figure 3.4 are marked with different colours. The yellow box designates the task of
creating a desired geometry which in the present project is solved in SolidWorks and LS-Prepost
respectively. The green boxes designate tasks which are solved using two separate Finite El-
ement models, which are solved using the nonlinear Finite Element code LS-Dyna. Remark
that the Finite Element model used for the strain analysis must be used during the execution
of the framework when implemented in a physical setup, whereas the Finite Element model of
the laser forming process, functions as a substitute for the physical process. The blue boxes
designate tasks which are performed by a software program. The software program is writ-
ten in the object oriented programming language Java. The software program consists of a
Java main program, utilising a chronological structure of the tasks which are to be performed.
To perform these tasks, a toolbox is utilised, which is a separate Java class containing "tools"
that are developed for the purpose of the individual tasks. The toolbox is used to reduce the
extent of the Java main program. Furthermore, a series of shell scripts are developed, these
shell scripts contain simple programs that may be written to the shell3, thereby performing
tasks based on shell commands. All developed software is executed on the Linux-based cluster
located at the Department of Mechanical and Manufacturing Engineering at Aalborg University.

For a thorough understanding of the software program, a commented version of the source code
for the Java main program, toolbox and shell scripts are appended in appendix E, F and G
respectively.

3.2 Create Desired Geometry
This section describes the box “Create desired geometry”, shown in figure 3.4. The box treats
the problem of creating a desired geometry for the framework by means of user input.

Figure 3.4 shows that an initial desired geometry must be developed prior to process execution.
The process of defining a geometry is shown for a CAD geometry of a 10◦ V-bend in figure
3.5. The 10◦ V-bend is used as an example geometry throughout the remaining sections of this
chapter. The desired geometry can be generated by the user in e.g. a CAD program or via

3Command-line interpreter for Linux based operating systems.
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3.3. Perform Strain Analysis

a point cloud file of a desired surface. In this project the desired geometries are modelled in
SolidWorks and exported to LS-Prepost, which is used for preprocessing. LS-prepost is used
to mesh various desired geometries, which are introduced in chapter 4 and 5. The desired
geometry must be saved in a LS-Prepost readable format e.g. .IGS or .vda. This file is manually
preprocessed in LS-Prepost, where a meshed shell representation of the blank is produced.

Surface Meshed componentCAD - geometry

Figure 3.5: The surface of the desired geometry is exported in .IGS format, which allows preprocessing in
LS-Prepost. This results in the meshed geometry.

3.3 Perform Strain Analysis
The approach for determining scan paths, utilised in this project resembles the approach used in
the concept developed by [Liu and Yao, 2005], introduced in section 3.1. The approach dictates
that scan paths are placed perpendicular to the orientation of the minimum principal strains.
This approach is utilised, as the most compressive strain introduced by the laser forming pro-
cess occurs perpendicular to the scan path. The orientation of the minimum principal strains
is determined with respect to a strain field. This section describes the box ”Perform strain
analysis”, shown in figure 3.4. The box treats the problem of determining the strain field used
in ”Conduct path planning”, with respect to a desired geometry and a current geometry received
from ”Create desired geometry” and ”Finite Element model of the laser forming process”, as
shown in figure 3.4.

In this project, a strain field is defined as a field representation of the required strains in a
certain plane to go from current to desired geometry. During the strain analysis several different
strain field representations are introduced. A brief description of all the introduced strain field
representations is appended in appendix H. All strain fields are approximated by means of a
Finite Element model. Therefore, a strain field is only known at discrete points dictated by the
element discretisation i.e. a continuous strain field εexample(x, y) is defined as εexample(m,n). m
and n refers to the utilised element discretisation. The element discretisation in the X and Y
direction and an example of the blank discretisation is shown in figure 3.6.
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Figure 3.6: Discretisation of strain fields and an example of the discretisation of a blank.

The description of the strain analysis is divided into two separate tasks being; determination of
the strain field, for generating scan paths and manipulation of the determined strain field. Each
task is elaborated in section 3.3.1 and 3.3.2.

3.3.1 Determination of the Strain Field

The framework for the laser forming process must be capable of producing double curved geome-
tries. In order to produce double curved geometries the placement of scan paths and selection
of process variables must correspond to the bending and in-plane strain required to go from the
current to desired geometry. Therefore, it is necessary to determine how bending and in-plane
strains can be obtained from the strain field determined by the strain analysis.

The laser forming process induces plastic deformation to permanently form a blank. To simplify
the problem of identifying the required bending and in-plane strains, it is assumed that the
deformation exhibits a linear elastic behaviour and that deflections are small. As the framework
is based on the feedback approach, errors introduced by the assumption are accepted, as these
are reduced in the subsequent iterations of the framework. [Ventsel and Krauthammer, 2001]
states that the general assumptions, when considering linear, elastic, small deflection theory of
bending for thin plates are analogous to the general assumptions in beam theory. Therefore, it is
assessed, that the distribution of required bending and in-plane strain can be approximated by
considering the strain distributions in an elastic beam in bending and in shortening, as shown
in figure 3.7. In the bending scenario the strains vary from positive to negative through the
thickness [Gere and Goodno, 2009]. Assuming a linear distribution of strains, bending is iden-
tified by investigating the strain fields εtop(m,n) or εbot(m,n) on the top or bottom surface
respectively. In the shortening scenario the strains are negative and of equal size through the
thickness. Therefore, shortening may also be identified by the surface strains. However, in the
case of combined deformation scenario, this is undesirable, as bending and in-plane shortening
are difficult to decouple. Instead εmid(m,n) is a better indicator of in-plane shortening, as the
strains induced by bending are assessed to be equal to zero in the midplane.

27



3.3. Perform Strain Analysis

-

-

-

+

-
εtop(m,n)

εbot(m,n)
+

-
0

Thickness

x

z

εbot(m,n) εbot(m,n)

εtop(m,n)εtop(m,n)

Bending Shortening Combined

+ = εmid(m,n)

Figure 3.7: 2D examples of strain distributions. In the bending scenario the strain varies through the thickness
and is indicated by εbot(m,n) or εtop(m,n). In the in-plane shortening scenario the strains are evenly distributed
through the thickness and are indicated by εmid(m,n).

εtop(m,n) and εbot(m,n) indicates bending strain and εmid(m,n) indicates in-plane strain. To
ease implementation, it is desired to establish one strain field εpath(m,n) for the determination
of scan paths. Therefore, εpath(m,n) must contain information regarding both the required
bending and in-plane strain, such that both can be accounted for during a laser scan by selec-
tion of process variables. To include information of the required bending and in-plane strain
εpath(m,n) is created as an average of εmid(m,n) and one of the surface strain fields.

From section 2.2 it is known that the temperature gradient mechanism is present in both forming
mechanisms, why the blank bend towards the laser beam. When the blank bend towards the
laser beam, the largest compressive strains occur in the laser scanned surface. Therefore, the
surface requiring the most compressive strain is selected for the average, creating εpath(m,n).
Figure 3.8 shows the combined bending and shortening scenario, where εpath(m,n) is the average
of εtop(m,n) and εmid(m,n).

εpath(m,n)

+

-
εtop(m,n)

εbot(m,n)

εmid(m,n)

Figure 3.8: The placement of εpath(m,n) in a combined bending and shortening scenario.

The pseudo code for determining εpath(m,n) is shown in algorithm 1 and described below. The
pseudo code corresponds to line 127 to 217 of the Java main program appended in appendix E.
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3.3. Perform Strain Analysis

Algorithm 1 Pseudo code for determining εpath(m,n).
1: Extract εtop(m,n) and εbot(m,n) from the OneStep solution
2: Calculate εmid(m,n) = average of εtop(m,n) and εbot(m,n)
3: Determine most compressive surface strain of εtop(m,n) and εbot(m,n)
4: if most compressive surface strain is located in εtop(m,n) then
5: εpath(m,n) = average of εmid(m,n) and εtop(m,n)
6: end if
7: if most compressive surface strain is locted in εbot(m,n) then
8: εpath(m,n) = average of εmid(m,n) and εbot(m,n)
9: end if

As shown in line 1 of algorithm 1 the determination of εpath(m,n) starts with an extraction
of εbot(m,n) and εtop(m,n) from LS-Dyna’s OneStep solver, the Finite Element model which
represents the OneStep solver is appended in appendix I. The OneStep solver is selected for de-
termining the strains constituting εpath(m,n). The OneStep solver is a complete piece of Finite
Element code provided in LS-Dyna, which eases the development of the framework. Further-
more, the OneStep solver provides a low computation time compared to the flattening model
introduced in chapter 5. The OneStep solver receives inputs in the form of a shell model rep-
resentation of either the current or desired geometry and the material properties of the blank.
Based on the input geometry and the material properties the OneStep solver determines an ini-
tial unformed flat state. The output is a flattened blank along with the strain tensor εij at the
outermost integration points of each element. εij represents the required strain to go from a flat
blank to the input geometry [LSTC, 2013]. The integration points are distributed through the
thickness, at the element centroid. The outermost integration points are the integration points
closest to the element surface. The uppermost integration point is used to generate εtop(m,n)
and the bottommost integration point is used to generate εbot(m,n). As the integration points
are not located precisely at the surface, the procedure is to use four or five integration points
through the thickness and ignore the error, when estimating a strain field located at the sur-
face [Support, 2013]. In this project five integration points are used. It is assessed that the
error introduced is insignificant, as long as the distribution of the strains demonstrate correct
behaviour. In the initial iteration k = 1, the input geometry to the OneStep solver is the desired
geometry e.g. the V-bend geometry in figure 3.5. Therefore, the output is the total εbot(m,n)
and εtop(m,n) required to go from flat blank to desired geometry. In the following iterations the
input is the current geometry i.e. the geometry achieved after each laser scan. The remaining
strain in each iteration, necessary to achieve the final geometry, is obtained by subtracting the
current result of the OneStep solver from the initial result.

The operations in Line 2-9 of algorithm 1 convert the extracted εbot(m,n) and εtop(m,n) into
εpath(m,n). As mentioned the surface, which requires the most compressive strain, is used to
calculate εpath(m,n) by averaging the surface strain field with εmid(m,n). Assuming a linear
distribution of strain through the thickness, as shown in figure 3.8, εmid(m,n) can be approxi-
mated as the average of εbot(m,n) and εtop(m,n).
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3.3. Perform Strain Analysis

Considering the V-bend from figure 3.5, the most compressive and tensile strains occur at the
surfaces in the X direction, while the midplane strain in this direction is assumed to be zero. The
X directional strain component for the initial iteration k = 1, is shown for εtop(m,n), εmid(m,n)
and εbot(m,n) in figure 3.9a, 3.9b and 3.9c respectively4.
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(a) εtop(m,n).
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(b) εmid(m,n).
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(c) εbot(m,n).

Figure 3.9: X directional strain component of εtop(m,n), εmid(m,n) and εbot(m,n). The most compressive
strains are required in εtop(m,n) while the largest tensile strains are required in εbot(m,n).

The X directional component of εpath(m,n), in the initial iteration k = 1 is shown in figure 3.10a.
The required strain in εpath(m,n) reduces after each successful laser scan. This is shown in figure
3.10b where 10 laser scans, activating the temperature gradient mechanism5, are performed in
the Y direction.
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(a) εpath(m,n) in the initial itera-
tion k = 1.
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(b) εpath(m,n) after 10 laser scans.

Figure 3.10: εpath(m,n) in the initial iteration k = 1 and after 10 laser scans with static process variables
activating the temperature gradient mechanism.

4Remark that the axes in figure 3.9 correspond to a 40x40 element discretisation of the 30x30x1mm blank
used in all tests of framework.

5Utilised process variables; scan speed V = 2750mm
min , laser power P = 380W and laser beam diameter d =

3mm.
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3.3.2 Manipulating the Strain Field

εpath(m,n) must be manipulated before path planning can be conducted. Three manipulated
fields of εpath(m,n) are calculated being; The size of the minimum principal strain ε2(m,n), the
orientation of the minimum principal strain θ2(m,n) and a threshold εthresh(m,n) of ε2(m,n).
This section focuses on the procedure for calculating the three manipulations. The utilisation of
the manipulations is elaborated in section 3.4.1. The pseudo code for manipulating εpath(m,n)
is shown in algorithm 2 and described below. The pseudo code corresponds to line 220 to 221
of the Java main program appended in appendix E.

Algorithm 2 Pseudo code for manipulating εpath(m,n).
1: Receive εpath(m,n)
2: Calculate size of the minimum principal strain ε2(m,n) of εpath(m,n)
3: Calculate orientation of the minimum principal strain θ2(m,n) of εpath(m,n)
4: Define percentage of ε2(m,n) to threshold
5: Calculate threshold εthresh(m,n) of ε2(m,n)

Calculating Size and Orientation of Minimum Principal Strain

Line 1-3 of algorithm 2 shows that the first manipulations are related to calculating the size
and orientation of the minimum principal strain. εpath(m,n) contains a strain tensor εij for
each element, describing the three dimensional state of strain required with respect to the
cartesian coordinate system. The element may be rotated to a unique principal orientation,
where only three principal strains are present and all shear strains are equal to zero. This
orientation is referred to as the principal orientation. It is necessary to determine the size and
orientation of the minimum principal strains as these are utilised in the scan path algorithm
presented in section 3.4.1. To simplify the determination of the size and orientation it is assumed
that through thickness deformations are negligible. Therefore, the problem is considered two
dimensional (εzz = εyz = εzx = 0). In this case only the maximum principal strain ε1 and
minimum principal strain ε2 corresponding to two principal orientations θ1 and θ2 acting in
the XY plane are considered for each element in εpath(m,n). The size and orientation of the
minimum principal strain is found by means of 2D strain rotation. Figure 3.11 shows that a 2D
strain element rotated by a given angle θ, creates a set of new strains, ε′xx, ε′yy and ε′xy acting
on the sides of the element. By varying θ it is possible to identify the principle orientation of
the element where only ε′xx, ε′yy act on the element and ε′xy is equal to zero. At this direction
ε′xx equals the maximum principal strain ε1 with the principal orientation θ1 and ε′yy equals the
minimum principal strain ε2 with the orientation θ2, as shown in figure 3.11. The equations for
determining the size and orientation of the minimum principal strain are appended in appendix
J. [Gere and Goodno, 2009]

31



3.3. Perform Strain Analysis

εxx
εxx

εyy

εyy εyx

εyx

εxy

εxy

Y

X

Y

X’

Y’

ε’xx

ε’xx

X

ε’yy

ε’yy

ε’xy

ε’xy

ε’yx

ε’yx

θ

Original 2D strain element Rotated 2D strain element

X

Y

X’

Y’

ε1

ε1

ε2

ε2

θ1

Principal strains and orientation

θ2 = θ1+90

Figure 3.11: Strain rotation of a 2D element.

To check the validity of the presented procedure for determining the size and orientation of the
minimum principal strain, the V-bend from figure 3.5 is considered. It is assessed that the most
compressive strains are required in the top surface in the X direction. Thus, ε2(m,n) should be
similar in size to the X directional strains of εpath(m,n). Figure 3.12a and figure 3.12b shows the
X directional strains of εpath(m,n) and ε2(m,n) of εpath(m,n). It is seen that the strain fields are
similar with respect to the size of the strains, as shown in figure 3.12a and 3.12b. Furthermore,
as the largest compressive strains occur in the X direction, θ2(m,n) produces orientations of
minimum principal strain parallel to the X axis, as shown in figure 3.12c6. Due to the results
presented in figure 3.12, it is assessed that the applied procedure for determining ε2(m,n) and
θ2(m,n) is satisfactory.
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(a) εxx of εpath(m,n).
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(b) ε2(m,n).
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Figure 3.12: Figure 3.12a and 3.12b shows the X directional strains of εpath(m,n) and ε2(m,n) of εpath(m,n).
Figure 3.12c shows θ2(m,n) for the V-bend.

Calculating the Threshold

The amount of forming required to create a desired geometry varies across the surface, depen-
dent of the desired geometry. When forming is induced in one area of the blank, residual stresses

6Remark that ε2(m,n) is shown with respect to the 30x30x1mm blank.

32



3.3. Perform Strain Analysis

are introduced in the blank. The residual stresses may form the areas outside the scan path.
This potentially over forms the blank in areas, where a smaller amount of forming is required.
To reduce the risk of over forming, it is chosen to form the area requiring the largest amount of
forming first. To ensure this, a threshold field εthresh(m,n) of ε2(m,n) is created in line 4-5 of
algorithm 2. An element in εthresh(m,n) is set equal to zero if ε2(m,n) of the element is larger
than a limit value and equal to 1 if ε2(m,n) is less than the limit. The limit value is determined
by use of a threshold percentage. A threshold percentage of 10% results in a εthresh(m,n) where
10% of the elements are set equal to 1 and the remaining are set to 0. As a result, 10% of the
elements requiring the most compressive strains are set equal to 1 in εthresh(m,n). The scan
path can only be created in the area, where εthresh(m,n) equals 1. This assures that forming is
performed, where the largest deformation is required.

Considering the V-bend from figure 3.5, the most compressive strains of ε2(m,n) are required
near the center along the Y direction. εthresh(m,n) with threshold percentages of 5%, 10% and
15% is shown in figure 3.13a, 3.13b and 3.13c respectively. It is seen that the allowable area
for the scan path increases with increasing threshold percentage. A threshold percentage of
5% results in a thin line across the surface, where εthresh(m,n) = 1. When the percentage is
increased to 10% the line becomes wider and when increased to 15% it is seen that elements far
from the bend are set equal to 1. This is due to a fixed amount of elements being set equal to
1. The task of selecting a threshold percentage depends on the selected desired geometry. In
chapter 4 and 5 four geometries are tested using the developed framework. In each test, the
chosen threshold percentage is discussed.
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(a) Threshold percentage equal to
5%.
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(b) Threshold percentage equal to
10%.
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(c) Threshold percentage equal to
15%.

Figure 3.13: εthresh(m,n) as a result of different threshold percentages. As the threshold percentage increases,
the amount of elements set equal to 1 in εthresh(m,n) increases as well.
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3.4 Conduct Path Planning
This section describes the box ”Conduct path planning”, shown in figure 3.4. The box treats the
problem of generating scan paths suited for achieving the desired geometry based on the received
strain fields from “Perform strain analysis”, as shown in figure 3.4. As mentioned in section
3.1, the scan path is placed perpendicular to the orientation of minimum principal strains. The
main component of ”Conduct path planning” is the scan path algorithm, which is elaborated in
section 3.4.1.

3.4.1 The Scan Path Algorithm

The manipulated versions of εpath(m,n) are used as input to the scan path algorithm. The
scan path algorithm generates a scan path for each iteration k of the framework by iteratively
scanning the manipulated versions of εpath(m,n). For this purpose, an iteration counter c is
introduced for the scan path algorithm. A search conducted by the scan path algorithm, iterates
until a complete scan path is generated. For each search the iteration counter c is iterated.
Scan paths are allowed to be placed similarly through several iterations. However, it is known
that this affects the formability of the blank, why it must be addressed when implementing
the framework in a physical setup [Madsen and Søndergaard, 2013]. The pseudo code for the
scan path algorithm is shown in algorithm 3 and described in the following. The pseudo code
corresponds to line 177 of the Java main program appended in appendix E.

Algorithm 3 Pseudo code for the scan path algorithm.
1: Receive θ2(m,n), ε2(m,n), εthresh(m,n) and define maximum accepted deviation angle αmax

2: Initialise iteration counter for the scan path algorithm c = 1
3: Determine initial start point pstart = element with largest compressive strain in ε2(m,n)
4: Determine appropriate search stencil for pstart

5: Determine movement option vectors of the search stencil
6: Determine angle α between movement option vectors and θ2(m,n)
7: Select pbest as the movement option with α closest to 90◦ satisfying:
8: Criterion 1. εthresh(pbest) = 1
9: Criterion 2. α must be equal to 90◦ ± αmax

10: Criterion 3. pbest not visited in current iteration k of the framework
11: if Criteria are met then
12: Define pstart = pbest

13: Iterate counter c = c+ 1
14: Repeat from line 4
15: else
16: # Only reset the scan path algorithm once per iteration k of the framework
17: Reset the scan path algorithm from line 2
18: end if
19: End scan path algorithm

Line 1-2 of algorithm 3, shows that the scan path algorithm starts with receiving θ2(m,n),
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3.4. Conduct Path Planning

ε2(m,n) and εthresh(m,n). Furthermore, a maximum accepted deviation angle αmax is defined
and the iteration counter c is initialised. αmax defines the acceptable deviation with respect to
perpendicularity between the scan path and the orientation of the minimum principal strain,
as shown in figure 3.15b. Line 3 shows that the initial start point pstart of the scan path
algorithm is determined as the element with the largest compressive strain of ε2(m,n). This
ensures that the scan path algorithm is started at the element requiring the largest amount of
forming. From pstart a search stencil is selected in line 4. In the initial iteration of the scan
path algorithm c = 1, an eight point search stencil is selected. This search stencil provides
eight movement options being the surrounding eight element centroids, as shown in figure 3.14.
The angle α between the vector of the movement option and the orientation of the minimum
principal strains is determined for all movement options, by means of the dot product, in line
6. The movement option which is closest to perpendicular and satisfies three criteria, given in
line 8-10, with respect to threshold, perpendicularity and point repetition is considered the best
solution pbest. pbest is used as pstart in iteration c+ 1 of the scan path algorithm.

Pstart
α Movement option vector

 θ2 in element 

Element centroid

Eight point search stencil
Angle α between movement

 option vector and θ2 

Figure 3.14: The eight point search stencil used if c = 1. This stencil provides eight movement options
corresponding to the surrounding elements. The angle α is calculated between all vectors of the movement
options and the orientation of the minimum principal strain in θ2(m,n).

Criterion 1, shown in line 8 of algorithm 3, relates to εthresh(m,n). The element located at
pbest must equal 1 in εthresh(m,n) to ensure that high areas requiring the largest amount of
forming are formed first. As mention in section 3.3.2 this prevents over forming of the blank.
The principle is shown in figure 3.15a. The blue squares denote the area where εthresh(m,n) = 1
and the white squares where εthresh(m,n) = 0. In figure 3.15a the scan path algorithm identifies
two equally good solutions with respect to perpendicularity. However, εthresh(m,n) determines
that only one solution is suitable, as this requires more forming.

Criterion 2, shown in line 9 of algorithm 3, relates to allowable angular deviation from perpen-
dicularity in the scan path. As the angle is determined by means of the dot product, the angle
is always in the range of 0◦→180◦. A movement perpendicular to the orientation of minimum

35
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principal strains ideally creates an angle α equal to 90◦. However, the scan path algorithm is
forced to search in discrete intervals dictated by the search stencil and the discretisation of the
blank used in the Finite Element model. Therefore, a perfect perpendicularity cannot always be
guaranteed. This is shown in figure 3.15b. To overcome this problem an angular deviation from
perpendicularity is allowed. The maximum amount of angular deviation from perpendicularity
is controlled by αmax.

εthresh(m,n) = 0

εthresh(m,n) = 1

Movement option
 vector

 θ2 in element 

(a) Criterion 1.

αmaxαmax α

(b) Criterion 2.

Figure 3.15: Figure 3.15a and 3.15b shows criterion 1 and 2 respectively. In criterion 1 the scan path algorithm
is only allowed to move to element centroids, where εthresh(m,n) = 1. Criterion 2 prescribes that the scan path
must not deviate more than αmax from perpendicularity. This is necessary as the discretisation of the Finite
Element model and search stencil does not guarantee perpendicularity.

Criterion 3, shown in line 10 of algorithm 3, ensures that the same element is not scanned twice
in a scan path. If the scan path algorithm is allowed to use the same element twice during path
planning, the scan path algorithm may stagnate between two points, as shown to the left in figure
3.16. The stagnation occurs when the previous point is providing a better perpendicularity than
the new movement option vectors. To overcome this, the scan path algorithm is not allowed
to go to previously visited element centroids. In the scan path algorithm this is managed by
”burning” the visited element in each iteration c, such that they are eliminated from the following
iterations of the scan path algorithm. In the framework this is solved by comparing pbest with
a new field εburn(m,n), where all burned points are set equal to 1 and all non-visited points are
0. The principle is exemplified to the right in figure 3.16.
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With burning implementedWithout burning implemented

Burned element

Movement vector 
of iteration c

 θ2 in element 

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

Figure 3.16: Criterion 3. To avoid stagnations of the scan path algorithm visited elements are burned, such that
only element centroids not visited before are considered in the following iterations of the scan path algorithm.

If pbest satisfies all three criteria, it is accepted as pstart for iteration c + 1 of the scan path
algorithm. As described in line 4 of algorithm 3, an appropriate search stencil is selected for
each iteration c of the scan path algorithm. Initially, the eight point search stencil, shown in
figure 3.14, was utilised for all iterations of the scan path algorithm. The use of the eight point
search stencil is exemplified in figure 3.17. The eight point search stencil determines a scan path,
which moves upwards from c = 1→ 2, but starts moving downwards right from c = 2→ 3 and
downwards from c = 3 → 4. This is considered undesirable, as the scan path may stagnate in
the bottom of the strain field, instead of producing a straight scan path, as shown in figure 3.17.

c = 1 c = 2 c = 3 c = 4

Burned point

Movement option
of stencil

Movement vector 
of iteration c

 θ2 in element 

Figure 3.17: The scan path selected by use of the eight point search stencil.

To avoid the complications exemplified with the eight point search stencil, eight reduced search
stencils are introduced, as shown in figure 3.18. The reduced search stencils correspond to the
movement option vector selected in the previous iteration of the scan path algorithm c− 1. The
correlation between the movement direction of iteration c − 1 and appropriate reduced search
stencil for the current iteration c, is shown in figure 3.18. E.g. if the movement in c − 1 is in
an upwards direction, search stencil 2 is utilised in iteration c. Search stencil 2 provides three
movement options in the upwards direction.

37



3.4. Conduct Path Planning

Movement vector of c-1
Movement option vector of c

Removed movement option,
compared to the eight point stencil

Stencil 1 Stencil 2 Stencil 3 Stencil 4 Stencil 5 Stencil 6 Stencil 7 Stencil 8

Figure 3.18: Correlation between the movement option vector selected in iteration c − 1 of the scan path
algorithm and the reduced search stencil selected for the current iteration c of the scan path algorithm.

The reduced search stencils are used to increase the robustness of the scan path algorithm, with
regards to stagnation. This is exemplified in figure 3.19, where the reduced search stencil is
applied to the same orientation field, as the eight point search stencil, for four iterations of
the scan path algorithm. However, the eight point search stencil is used in c = 1, in order to
initialise the scan path algorithm. In the following iterations the appropriate reduced search
stencil is applied. The reduced search stencils result in a preferred direction of the scan path
algorithm, as it continuously moves upwards in the present example. When moving upwards,
the selected search stencil limits the ability of the scan path algorithm to move in a downwards
oriented direction, in the following iteration c+ 1.

c = 1 c = 2 c = 3 c = 4

Burned point

Movement option
of stencil

Movement vector 
of iteration c

 θ2 in element 

Figure 3.19: A reduced search stencil dictates a continuous upwards movement and results in a straight scan
path.

The procedure of selecting an appropriate search stencil and identifying a new pstart = pbest

continues until no solutions are available for the scan path algorithm. When no solutions are
obtained by the scan path algorithm, it is restarted from the initial pstart, as shown in line 16
of algorithm 3. This is exemplified in figure 3.20. In the initial search, the scan path algorithm
searches upwards, until no solutions are available. In the second search, the scan path algorithm
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starts at pstart of the initial iteration c = 1. As the initial search has burned the movement
options in the upwards direction, the second best solution is moving downwards, until the scan
path algorithm does not obtain a solution. After two searches, all visited points are combined
to create a complete scan path for iteration k of the framework. In the scan path algorithm the
start point of the scan path is always set equal to the end point of the second search while the
end point of the scan path is set equal to the end point of the first search.

First search Second search Created scan path

Burned element

pstart in iteration c = 1

Start point of scan path
End point of scan path

Movement vector of iteration

 θ2 in element 

Figure 3.20: When no solutions are obtained by the scan path algorithm in the first search, it is restarted from
the initial pstart. Elements which have been visited are burned, such that the second best solution is to move
downwards. The two searches are combined to form one consecutive scan path.

Considering the V-bend from figure 3.5, figure 3.21 shows that the orientation of the minimum
principal strains is parallel to the X axis. Therefore, the scan path algorithm should produce
a scan path, moving in the Y direction. Figure 3.21 shows the scan paths obtained using the
scan path algorithm with a threshold set to 10% and αmax equal til 50◦. Figure 3.21a and 3.21b
shows the first and second search of the scan path algorithm respectively. The combined scan
path, for iteration k = 1 of the framework, is shown in figure 3.21c. The scan path algorithm is
tested in chapter 4 and 5.
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(c) Combined scan path.

Figure 3.21: Results of the scan path algorithm for the V-bend example. In search one, the scan path algorithm
searches downwards and in search two, it searches upwards. When the two searches are combined, they produce
the scan path for iteration k = 1 of the framework.
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3.5. Determine Process Variables

3.5 Determine Process Variables
This section describes the box "Determine process variables", shown in figure 3.4. The box
treats the problem of determining process variables with respect to the scan path received from
"Conduct path planning", as shown in figure 3.4.

The determination of process variables is performed by a developed control strategy, which de-
termines how a state variable is transformed into suited process variables. In the framework, the
state variable is defined as the required strain to go from current to desired geometry. Suited
process variables are defined as, process variables ensuring that the formed geometry converges
towards the desired geometry in each iteration of the framework.

It is chosen to use the Finite Element model of the laser forming process, to exemplify the
importance of a control strategy. Figure 3.23 shows the output of the Finite Element model
of the laser forming process, after one laser scan across the 30x30x1mm blank, introduced in
chapter 2. The laser scan is performed with the scan path shown in figure 3.22 and static process
variables, which activates the temperature gradient mechanism7.
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Figure 3.22: Scan path used in figure 3.23.
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Figure 3.23: Output of the laser forming process af-
ter one laser scan with the scan path shown in figure
3.22.

From figure 3.23 it is observed that the amount of forming introduced in the blank, varies along
the scan path, when using static process variables. To reduce the variance in the next iteration
k + 1 of the framework, the control strategy must adjust the process variables during the laser
scan.

It is necessary to determine the process variables, which are to be controlled by the control
strategy. During execution of the laser forming process, it is possible to adjust the laser beam

7Scan speed V = 2750mm
min , laser power P = 380W and laser beam diameter d = 3mm.
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diameter, laser power and scan speed [Thomson and Pridham, 1997]. In [Madsen and Sønder-
gaard, 2013], the control strategy adjusted the scan speed. An increase in scan speed results in
less energy being absorbed by the blank, which leads to less forming. Inversely, a decrease in
scan speed leads to increased forming. Acceptable results were obtained using the scan speed
as the control variable, why this is also utilised in the present project. The remaining process
variables i.e. laser beam diameter and laser power, are kept static through the process with
respect to the given forming mechanism.

The pseudo code for the control strategy is shown in algorithm 4 and explained in the following.
The pseudo code corresponds line 225 of the Java main program appended in appendix E. The
control strategy is applied for all elements in the scan path, but to ease the explanation, only
one element is covered in the pseudo code.

Algorithm 4 Pseudo code for Determine process variables in figure 3.4.
1: Receive scan path (array of element numbers)
2: Read required minimum principal surface strain in element ε2,surf

3: Read required minimum principal midplane strain in element ε2,mid

4: Calculate required in-plane strain in element εin and bending strain in element εbend

5: # Select forming mechanism based on the ratio between εbend and εin

6: if εbend
εin

< 1.0 then
7: The upsetting mechanism is chosen
8: else
9: The temperature gradient mechanism is chosen

10: end if
11: # Select process variables with respect to forming mechanism and required strain
12: Determine element with largest required strain εmax and smallest required strain εmin in

the scan path
13: if εmax > εmaxlim then
14: Element with εmax is assigned lowest scan speed
15: A scan speed for the remaining elements in the scan path is established with respect to

a fraction distribution
16: else
17: Determine scan speed for element with εmax

18: A scan speed for the remaining elements in the scan path is established with respect to
a fraction distribution

19: end if
20: if εmin < εminlim then
21: Set laser power to zero
22: end if
23: Repeat from line 2 until all element in the scan path are treated
24: Write scan path and determined process variables to files, which are used by the Finite

Element model
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3.5. Determine Process Variables

Initially, an array of the elements in the scan path is received from the scan path algorithm,
described in section 3.4. For each element, the size of the minimum principal strain is obtained
for the surface ε2,surf which is to be scanned and for the midplane ε2,mid. ε2,surf and ε2,mid are
used to calculate εin and εbend, as shown in figure 3.24. εin is set equal to ε2,mid and εbend is
equal to ε2,surf subtracted εin.

+

-

x

z
Midplane

εbend

εin = ε2,mid

ε2,surf

Element in scan path

Figure 3.24: Definition of εin and εbend, where the red line indicate εin and the blue line indicates εbend equal
to ε2,surf subtracted εin.

Line 6 of algorithm 4 defines the condition used to switch between the temperature gradient
mechanism and the upsetting mechanism. The switch condition is the ratio between εbend and
εin, if less than 1 then εin is dominant, why the upsetting mechanism must be utilised. If
the ratio is greater than 1 the temperature gradient mechanism is utilised. When a forming
mechanism has been determined, it is necessary to calculate suited process variables for each
individual element in the scan path. Line 11-22 of algorithm 4 introduces the control strategy
for determining process variables. In the following, the strategy is explained with regards to a
scenario, where the temperature gradient mechanism has been chosen with respect to the switch
condition. This implies that εmax and εmin in algorithm 4 are given with regards to bend-
ing strains, why these are reformulated as εmax,bend and εmin,bend respectively. If the upsetting
mechanism is chosen, the process variables would be determined with regards to in-plane strains.

Prior to the calculation, the largest bending strain εmax,bend and smallest bending strain εmin,bend

located in the scan path are extracted. These are used to evaluate whether a large or small
amount of forming is required to obtain the desired geometry. It is desired to design a control
strategy which ensures a fast rate of convergence, whilst maintaining robustness. Therefore, the
developed control strategy must ensure a maximum amount of forming when large strains are
required, whilst reducing the amount of forming when approaching the desired geometry. To
comply with this requirement, it is necessary to determine the limitations of the laser forming
process with regards to obtainable strains. These limitations represent the amount of forming
which can be produced with the lowest and highest scan speed within the process range for the
given mechanism. The limitations are defined as εmaxlim and εminlim for the lowest and highest
scan speed respectively. The limitations refer to bending strain with regards to the temperature
gradient mechanism and in-plane strain with regards to the upsetting mechanism. These limita-
tions assure that the maximum amount of forming is produced if the required strains are larger
than εmaxlim. If lower than εmaxlim, then the forming is reduced and if lower than εminlim the
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laser power is set equal to zero, such that no forming is induced.

As shown in line 13, if εmax,bend is larger than εmaxlim, then the element is prescribed the lowest
scan speed within the process range and a fraction distribution is used to determine the scan
speed Vel for the remaining elements. The fraction distribution is shown in equation 3.1. The
fraction distribution ensures that even if all elements are above εmaxlim, the scan speed is varied
as a function of strain. This is assessed to reduce the variance in the forming observed in figure
3.23, where static process variables resulted in variance.

Vel = 2750mm
min + (7000mm

min − 2750mm
min) ·

(
εmax,bend − |εbend|

εmax,bend

)
(3.1)

In equation 3.1, the fraction between εmax,bend and the bending strain εbend of the individual
element is multiplied by the process range of the temperature gradient mechanism (7000mm

min −
2750mm

min). If the fraction equals zero, the element requires the same amount of strain as εmax,bend

i.e. receives the lowest scan speed equal to 2750mm
min . The value of the fraction increases as smaller

εbend are measured, resulting in an increase in scan speed up to 7000mm
min .

If εmax,bend is lower than εmaxlim, it is necessary to increase the scan speed Vel assigned the
element requiring εmax,bend to avoid overforming. The scan speed Vel is increased with respect
to equation 3.2.

Vinc = 2750mm
min +

(
εmaxlim − εmax,bend

εmaxlim

)
·
(

7000mm
min − 2750mm

min

)
(3.2)

Where Vinc is the increased scan speed. The increase in scan speed, is based on the fraction
between εmaxlim and εmax,bend. The increased scan speed is subtracted the highest scan speed,
as shown in equation 3.3, in order to obtain a new range Vnew in which the temperature gradient
mechanism can be controlled. Vinc and Vnew are used to create the new fraction distribution,
shown in equation 3.4.

Vnew = 7000mm
min −Vinc (3.3)

Vel = Vinc + Vnew ·
(
εmax,bend − |εbend|

εmax,bend

)
(3.4)

Furthermore, εbend is checked with regards to εminlim, if lower, then the laser power is set to
zero for that element, such that no forming is introduced.

The control strategy explained through this section is exemplified in figure 3.25 and 3.26. Figure
3.25 shows the required bending strains to go from a current geometry to the desired V-bend.
The current geometry has been laser scanned 15 times with static process variables, activating
the temperature gradient mechanism8. It is seen, that the required bending strains vary across
the width of the blank, which corresponds to the uneven amount of forming shown in figure

8Scan speed V = 2750mm
min , laser power P = 380W and laser beam diameter d = 3mm.
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3.23. Using the control strategy introduced through this section, the scan speed is distributed
as shown in figure 3.26. In 3.26 it is shown that, the elements from figure 3.25, which requires
less strain are prescribed a higher scan speed.
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Figure 3.25: Required bending strains in order to
obtain a V-bend geometry.

 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000

 0  5  10  15  20  25

Sc
an

 S
pe

ed
 [m

m
/m

in
]

Scan Path Length [mm]

Iteration 15

 

Figure 3.26: Determined scan speed in order to ob-
tain the required bending strains in figure 3.25.

The functionality of the control strategy is tested in chapter 4 and 5.

3.6 Stop Criterion
This section describes the box ”Stop criterion”, shown in figure 3.4. The box treats the problem
of defining a stop criterion for the framework. The stop criterion is determined with respect to a
desired geometry and a current geometry received from ”Create desired geometry” and ”Finite
Element model of the laser forming process”, as shown in figure 3.4.

From section 3.1.2 it was determined to use a conservative multipass approach to allow the
implementation of feedback control in the laser forming process. The current geometry is eval-
uated with respect to the desired geometry in every iteration of the framework. The evaluation
is performed with respect to a stop criterion described in this section.

A stop criterion must be formulated, which terminates the framework, when the deviation be-
tween the current and the desired geometry is acceptable. The stop criterion can be formulated
in several different ways e.g. by curvature or maximum deviation between the current and the
desired geometry, the formulation depends on requirements to the end product. Since there is
no specific end product in this project, the stop criterion is formulated as the sum of absolute
error between the current and the desired geometry. The sum of absolute error means that
for every element centroid in the current geometry, the distance in the Z direction between the
current and the desired geometry is calculated in order to obtain an error. The absolute value
of this error is summed for all elements. This formulation of the stop criterion provides a scalar
measure of the correlation between the current and the desired geometry.
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To evaluate the current geometry with respect to the desired geometry, it is chosen to extract
the Z coordinates for all element centroids9. In order to compare the extracted Z coordinates
it is necessary to perform a mapping from the desired to the current geometry. Initially a 1-1
mapping between the element centroids of the current and the desired geometry was considered.
The 1-1 mapping approach is exemplified using a 2D scenario, which is shown in figure 3.27. An
error in the X direction is present between the element centroids of the current and the desired
geometry. This error increases as the desired geometry is more heavily formed. The error in
the X direction results in a misleading measurement of the Z coordinate and thereby a poor
approximation of the geometrical correlation between the current and the desired geometry.

Desired geometry

Current geometry Error

Error in measured 
Z coordinate

X

Z

Element centroid

Element node

Figure 3.27: 1-1 mapping approach between the blank and the desired geometry. The hollow circles represent
nodal points, the solid circles represent element centroids and the red area indicates the error in in-plane location
of the element centroid.

To overcome the issue related to the 1-1 mapping, it is chosen to evaluate the location of each
element centroid with respect to their X coordinate (2D example). The mapping is performed
by reading the X coordinates of all the element centroids in the blank and structure these with
respect to the value of the X coordinate. Subsequently, all elements in the desired geometry
are compared to the elements of the blank and the best match with regards to X coordinate
is stored. The improved mapping approach is shown in figure 3.28, where it is shown that the
error in X direction is generally minimised, thereby minimising the value of the misleading Z
coordinate. To improve the performance of this approach, it is chosen to increase the mesh
density of the desired geometry, thereby minimising the maximum distance to the best match.

9Through this project the information located at the element centroids is used, as all strain information used
for the path planning described in section 3.4 is given at the element centroids.
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Error
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Desired geometry

Current geometry

Element centroid

Element node

Figure 3.28: Improved mapping approach between the blank and the desired geometry. The hollow circles
represent nodal points, the solid circles represent element centroids and the red area indicates the error in in-
plane location of the element centroid.

The mapping is performed for all elements in the current geometry. The mapped Z coordi-
nates from the desired geometry are subtracted from the Z coordinates of the current geometry,
thereby, obtaining an error. The absolute value of the error is summed for all elements to create
the scalar measure i.e. the sum of absolute error.

As the purpose of this project is to proof the concept of the framework, no exact value of the
stop criterion is set. However, an analysis of the development of the sum of absolute error, is
performed in chapter 4 and 5. Since, no exact value of the stop criterion is set, it is chosen
to implement a requirement with regards to maximum number of iterations to ensure that the
framework is terminated.

3.7 Sub Conclusion

The developed framework is based on the concept developed by [Liu and Yao, 2005], in which scan
paths are placed perpendicular to the orientation of the minimum principal strain and process
variables are selected, based on the required strain in the scan path. The developed framework
was created as a feedback loop, to cope with the poor repeatability of the laser forming process.
The framework calculates a scan path and suited process variables based on the required strain
to go from the current to the desired geometry, in each iteration. The scan path is generated
with a developed scan path algorithm. To reduce the risk of over forming the blank, scan paths
are generated in areas requiring the largest amount of forming first. The scan path is placed
perpendicular to the orientation of minimum principal strain, in a scan path strain field, as the
largest compressive strains induced by the laser forming process occurs perpendicular to the scan
path. The scan path strain field is created as the average of the required midplane strain field
and the surface strain field requiring the largest compressive strain, as these strain fields indicate
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the in-plane and bending strain required to form a desired geometry. To ensure that the current
geometry converges towards the desired geometry, suited process variables are determined for
all elements in the scan path, with respect to the required bending and in-plane strains. The
scan speed was selected as the control variable, as it is possible to control the amount of forming
induced in the blank by adjustment of the scan speed. The scan speed is varied along the scan
path as a function of the required strains to reduce the variance in the process output. A stop
criterion was formulated to stop the framework. The stop criterion is formulated with respect
to the sum of absolute error, as this provides a scalar measure of the correlation between the
current and the desired geometry. As the purpose of this project is to proof the concept of the
framework, no exact value of the stop criterion was set.
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Chapter 4

Test of the Framework on Single
Curved Geometries

This chapter presents two tests performed on single curved geometries, using the framework
developed in chapter 3. The purpose of this chapter is to perform a proof of concept of the
framework, with regards to the production of single curved geometries. This chapter consists of;
tests of the framework and discussions of results and selected observations.

The desired geometries are formed from a square blank measuring 30x30x1mm, as mentioned in
section 2.1. The blank is fixed at X=0, as shown in figure 4.1. The desired geometries are shown
in figure 4.2. The desired geometries are a 10◦ V-bend geometry and a cosinusoidal geometry.
CAD-files of the desired geometries are appended on the appendix-CD. The geometries are single
curved, why forming is only required parallel to the XZ plane. Both desired geometries are
developable surfaces, why they are obtainable by utilising the temperature gradient mechanism.
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Figure 4.1: Dimensions of the square blank. The
blank is fixed at X=0.
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Figure 4.2: Tested geometries being; a 10◦ V-bend
geometry and a cosinusoidal geometry.

In tests of single curved geometries, the relative size and orientation of the minimum principal
strains, and therefore also placement of scan paths and selection of process variables, are pre-
dictable by intuition. The 10◦ V-bend was used for preliminary testing and debugging of the
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tasks constituting the framework. The cosinusoidal geometry was used to test the ability of the
framework to perform laser scans on both sides of the blank. As the tests function as proof of
concept, no concrete requirements are established for the output of the framework. Instead it is
chosen to analyse the output of a series of iterations of the framework.

The tests of the single curved geometries are conducted with the settings of the framework
shown in table 4.1. The selected settings were determined by trial of the framework. Settings
providing a higher rate of convergence or a better correlation between the current and desired
geometry may be found. However, as the purpose is to proof the concept of the framework, the
settings are accepted.

Parameter 10◦ V-bend geometry Cosinusoidal geometry
Threshold percentage 10% 50%
Allowable angular deviation αmax 50◦ 50◦
Maximum number of iterations 100 200

Table 4.1: Settings used for the tests performed on the single curved geometries.
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4.1. Test of the 10◦ V-bend Geometry

4.1 Test of the 10◦ V-bend Geometry
The framework receives the 10◦ V-bend geometry shown in figure 4.2 and the settings shown
in table 4.1. Test results are shown in figure 4.3. Figure 4.3a to 4.3c shows; the size of the
minimum principal strains ε2(m,n) in εpath(m,n), the threshold εthresh(m,n) of ε2(m,n) and
the orientation of the minimum principal strains θ2(m,n) and scan path, for the first iteration
of the framework. Figure 4.3d shows the development of the sum of absolute error as a function
of the iterations of the framework.
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Figure 4.3: Results from the 10◦ V-bend test, with a threshold percentage of 10%, a maximum amount of
iterations equal to 100 and αmax = 50◦. Figure 4.3a to 4.3c show the results from the first iteration of the
framework, while figure 4.3d shows the sum of absolute error for all 100 iterations.

The V-bend requires the largest compressive strains in the top surface near the bend. Therefore,
figure 4.3a to 4.3c relates to the upper εpath(m,n), shown in figure 4.4.
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4.1. Test of the 10◦ V-bend Geometry

Upper εpath(m,n)

εtop(m,n)

εbot(m,n)
x

z

Lower εpath(m,n)
Element thicknessεmid(m,n)

Figure 4.4: Placement of the strain fields.

Figure 4.3d shows, that the sum of absolute error converges towards zero. The smallest sum
of absolute error is reached at a value of 29.60 in iteration 100 of the framework. Figure 4.5a
shows a surface plot of the current geometry in iteration 100 of the framework. By comparing
the current geometry with the desired geometry, shown in figure 4.5b, the surface error, shown
in figure 4.5c, is obtained. It is shown, that the maximum deviation between the current and
the desired geometry is |-0.08mm|, which is assessed to proof the concept of the developed
framework. However, figure 4.5c, shows that there is a potential for improving the selection of
process variables, as the error distribution varies across the width of the blank. To improve the
selection of process variables, it is assessed that the utilised control strategy must be redesigned.
A suggestion for a redesign is discussed in chapter 7.
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Figure 4.5: Figure 4.5a shows the obtained geometry after 100 iterations of the framework. Figure 4.5b shows
the desired geometry and figure 4.5c shows the error between the current and the desired geometry.

4.1.1 Observations from the Test of the 10◦ V-bend Geometry

Through this section two observations are discussed with respect to the results presented in
figure 4.3.

Observation 1 - Decreasing Rate of Convergence from Iteration 1 to 36

Figure 4.3d, shows that the rate of convergence reduces with increasing iterations of the frame-
work from iteration 1 to 36. This is assumed to be a result of the determined process variables
during the laser scan. As mentioned in section 3.5, the control strategy adjusts the scan speed in
order to cope with the varying amount of required strain. Figure 4.6 shows the determined scan
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4.1. Test of the 10◦ V-bend Geometry

speed for iteration 1, 10, 20 and 30 of the framework. It is seen that the scan speed increases,
as the number of iterations increase.
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Figure 4.6: Scan speed iteration 1, 10, 20 and 30 of the framework.

As the scan speed is increased, the amount of forming performed in each iteration of the frame-
work decreases. Thus, the decreasing rate of convergence is assessed to be caused by the increase
in scan speed in each iteration.

Observation 2 - Fast Rate of Convergence from Iteration 37 to 42

A fast rate of convergence is achieved from iteration 37 to 42, compared to preceding iterations,
as shown in figure 4.7. By comparing the scan paths constructed from iterations 37 to 42 and
the scan paths constructed in the preceding iterations, it is observed that the scan paths from
iteration 37 to 42 are placed closer to the fixed edge of the blank than the preceding iterations.
Laser scans that are placed closer to the clamp, as shown in figure 4.8, have a larger impact
on the sum of absolute error, as the area of the blank moved towards the desired geometry is
increased i.e. the area between the scan path and the free end. Furthermore, several of the
preceding scan paths were identical. Performing laser scans in the same scan path increases
the amount of strain hardening in the area around the scan path. This is known to result in a
decreased bend rate [Dahotre and Harimkar, 2008]. Therefore, the amount of forming increases,
when moving the scan path to a new position.
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4.1. Test of the 10◦ V-bend Geometry
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Figure 4.7: The sum of absolute error, where itera-
tion 37 and 42 of the framework are designated.
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Figure 4.8: The scan paths of iteration 1 and 41 of
the framework. The scan path of iteration 41 is placed
closer to the fixed edge (X = 0).
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4.2. Test of the Cosinusoidal Geometry

4.2 Test of the Cosinusoidal Geometry
The framework receives the cosinusoidal geometry shown in figure 4.2 and the settings shown
in table 4.1. Results are shown in figure 4.9. Figure 4.9a to 4.9c shows; the size of the min-
imum principal strains ε2(m,n) in εpath(m,n), the threshold εthresh(m,n) of ε2(m,n) and the
orientation of the minimum principal strains θ2(m,n) and scan path, for the first iteration of
the framework. Figure 4.9d shows the development of the sum of absolute error as a function
of the iterations of the framework. The cosinusoidal geometry requires laser scans on both the
top and bottom surface. In the first iteration of the framework, the most compressive strain is
required on the bottom surface. Therefore, figure 4.9a to 4.9c relates to the lower εpath(m,n).
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Figure 4.9: Results from the test of the cosinusoidal geometry, with a threshold percentage of 50%, a maximum
amount of iterations equal to 200 and αmax = 50◦. Figure 4.9a to 4.9c show the results from the first iteration
of the framework, while figure 4.9d shows the sum of absolute error for all 200 iterations.
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4.2. Test of the Cosinusoidal Geometry

Through the iterations, the surface requiring the most compressive strain switch. Figure 4.10
shows the switching between the surfaces for the first 30 iterations of the framework. The test of
the cosinusoidal geometry shows that the framework successfully performs laser scans on both
surfaces of the blank. Figure 4.10, shows that the bottom surface is scanned in iteration 1,
while the top surface is scanned in iteration 2. Figure 4.11 show the orientation of the minimum
principal strains θ2(m,n) and generated scan path for iteration 2. By comparing figure 4.9c and
4.11, it is seen that θ2(m,n) is located inversely in the two iterations. This is a result of the
cosinusoidal geometry varying with respect to the function f(x) = −1.3 · cos(x

3 ).
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Figure 4.10: Switching of surfaces to be laser
scanned, with respect to iterations of the framework.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

Y
 [m

m
]

X [mm]

Path

Figure 4.11: θ2(m,n) and scan path for iteration 2
of the framework.

4.2.1 Observations from the Test of the Cosinusoidal Geometry

Through this section one observation is discussed with respect to the results presented in figure
4.9.

Observation 1 - Divergence of the Sum of Absolute Error

Figure 4.12, shows that the sum of absolute error converges in the initial 57 iterations of the
framework. However, divergence is seen from iteration 58 to 200. To investigate the cause of the
divergence, the constructed scan paths from iteration 58 to 200 are investigated. Figure 4.13
shows the distribution of laser scans performed on the top and bottom surface, within certain
intervals of the blank, from iteration 58 to 200. 84.6% of the laser scans are placed on the top
surface within an interval of 1-6mm from the fixed edge.
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Figure 4.13: Distribution of laser scans from iteration
58 to 200 of the framework.

To check the effect of the laser scans performed in the divergent interval, the current geometry
after 58 iterations and 200 iterations are compared. Figure 4.14 compares both geometries to
the desired geometry. It is seen that both geometries exert the appearance of a cosinusoidal
geometry. Furthermore, it is shown that the current geometry from iteration 200 has obtained a
greater bend, close to the clamp, as more laser scans have been performed here, as shown in figure
4.13. The increased amount of forming in the interval, results in a rotation of the cosinusoidal
appearance of the current geometry. The rotation causes a local geometrical convergence towards
the desired geometry. However, it is also assessed to be the reason for the increased divergence
in sum of absolute of error, as the current geometry further away from the clamp is moved away
from the desired geometry.

Iteration 58 Iteration 200

Formed geometry
Desired geometry

Fixed edge Fixed edge Local geometrical
 convergence

1-6mm

Figure 4.14: The formed geometries after 58 and 200 iterations of the framework.

As the current geometry after 200 iterations has converged locally and resembles the geometry
of a cosinusoidal geometry, it is assessed that the sum of absolute error can provide a misleading
measure of the current geometry’s progress towards the desired cosinusoidal geometry. It is
chosen to investigate the required strain to be achieved in the blank, as this can also be used
to check the progress of the process. This is suitable as each successive laser scan decreases
the required strain and the desired geometry is achieved when the required strain reaches zero.
As a measure of the required strain, figure 4.15 shows the sum of absolute size of minimum
principal strains for the upper and lower εpath(m,n), as a function of laser scans performed on
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4.3. Sub Conclusion

the respective surfaces. It is seen that both converge towards zero. As neither equals zero,
further forming is required to reach the desired geometry, which is also evident from the formed
geometry achieved in iteration 200, shown in figure 4.14.
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Figure 4.15: The sum of absolute size of minimum principal strains in the lower and upper εpath(m,n) with
respect to the amount of laser scans placed on the respective surface.

4.3 Sub Conclusion
Two geometries were tested in order to proof the concept of the framework. The geometries
being; a 10◦ V-bend and a cosinusoidal geometry. The framework formed the 10◦ V-bend
to a sum of absolute error of 29.6 with a maximum deviation of |-0.08mm| in 100 iterations,
thereby, proving the concept of the developed framework. The cosinusoidal geometry validated
the frameworks capability of forming on both sides of a blank. The framework was not able
to form the cosinusoidal geometry in 200 iterations of the framework. However, the obtained
geometry exerts the appearance of the desired cosinusoidal geometry. It was chosen to use a
combination of the sum of absolute error and the sum of absolute size of minimum principal
strain as the sum of absolute error provided a misleading measure of the progress of the process.
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Chapter 5

Test of the Framework on Double
Curved Geometries

This chapter presents two tests performed on double curved geometries, using the framework
developed in chapter 3. The purpose of this chapter is to perform a proof of concept of the
framework, with regards to the production of double curved geometries. This chapter consists of;
tests of the framework and discussions of results and selected observations.

Two desired geometries are tested throughout this chapter. The desired geometries are formed
from a square blank measuring 30x30x1mm, as mentioned in section 2.1. The blank is fixed
at four nodes on the bottom surface of the blank, as shown in figure 5.1. This is necessary to
assure that the blank is kept in place during forming.

30mm

30mm

1mm

x

y

Bottom surface

Fixed nodes
Center of blank

z

Figure 5.1: The blank used in the tests of the double curved geometries. The blank is fixed at four nodes on
the bottom surface to ensure that the blank is kept in place during forming.

The desired geometries are shown in figure 5.2. The desired geometries are a dome geometry and
a saddle geometry. Similar geometries are used in [Liu and Yao, 2005], why these are assessed
suitable for preliminary testing. Both geometries are created as swept surfaces, generated from
three point arcs. Nine coordinates describing the geometry are shown for each of the desired
geometries. CAD-files of the desired geometries are appended on the appendix-CD. Both desired
geometries are non-developable surfaces, why they require the utilisation of both the temperature
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gradient mechanism and the upsetting mechanism.
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Figure 5.2: Tested geometries being; a dome geometry and a saddle geometry.

As discussed in section 3.3.1 the strain field utilised in the framework is estimated by use of
LS-Dyna’s OneStep solver. This approach is inapplicable for the double curved geometries,
as the achieved orientation of the minimum principal strains, for the double curved geometries,
depends on the orientation of the input geometry to the OneStep solver. Tests documenting this
behaviour are appended in appendix K. As an alternative, the OneStep solver is substituted with
a developed ”flattening” Finite Element model. The flattening model is appended in appendix
L. Figure 5.3 shows the principle of the flattening model for a V-bend geometry.

Upper rigid plane
Desired or current geometry
Lower rigid plane

Figure 5.3: Principle of the flattening model.

In the flattening model, a shell representation of the desired or current geometry is placed be-
tween two rigid planes. The upper rigid plane is moved towards the lower rigid plane, which
is fixed in space. During the movement, the V-bend deforms, thereby, inducing strains in the
flattened geometry. The strain fields εtop(m,n) and εbot(m,n) are extracted from the flattened
geometry. In opposite to the OneStep solution of a V-bend, εtop(m,n) prescribes tensile strains
in the top surface and εbot(m,n) prescribes compressive strains in the bottom surface, due to the
deformation of the blank. Therefore, it is necessary to convert εtop(m,n) and εbot(m,n), such
that they represent the required strain instead of the induced strain. The conversion is done by
reversing the strain fields. This is done by multiplying all components in the strain tensor εij

with (-1.0). After the conversion εtop(m,n) and εbot(m,n) are used as described in chapter 3.

The tests of the double curved geometries are conducted with the settings of the framework
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shown in table 5.1. The selected settings were determined by trial of the framework. Settings
providing a higher rate of convergence or a better correlation between the current and desired
geometry may be found. However, as the purpose is to proof the concept of the framework, the
settings are accepted. Furthermore, the functionality of εminlim for the upsetting mechanism
and the temperature gradient mechanism, discussed in section 3.5, is deactivated as this caused
early stagnation of the convergence in both tests.

Parameter Dome geometry Saddle geometry
Threshold percentage 95% 95%
Allowable angular deviation αmax 50◦ 50◦
Maximum number of iterations 60 200

Table 5.1: Settings used for the tests performed on the double curved geometries.

Comparing the settings in table 5.1 with the settings utilised in the tests of the single curved
geometries, presented in chapter 4, shows that the threshold percentage is increased. This is
done to increase the solution space for the scan path algorithm. This is exemplified in figure
5.4, which shows εthresh(m,n) for the dome geometry with different values of the threshold
percentage. If the threshold percentage is low, the solution space is reduced which results in
short scan paths for the tests with the double curved geometries. The short scan paths resulted
in stagnation of the process, as insignificant amounts of forming was introduced.
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(a) εthresh(m,n) for a threshold percent-
age of 50%.
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Figure 5.4: εthresh(m,n) for different threshold percentages.
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5.1. Test of the Dome Geometry

5.1 Test of the Dome Geometry
The framework receives the dome geometry shown in figure 5.2 and the settings shown in table
5.1. Test results are shown in figure 5.5. Figure 5.5a to 5.5c shows; the size of the minimum
principal strain ε2(m,n) in εpath(m,n), the threshold εthresh(m,n) of ε2(m,n) and the orien-
tation of the minimum principal strains θ2(m,n) and scan path, for the first iteration of the
framework. Figure 5.5d shows the development of the sum of absolute error as a function of the
iterations of the framework.
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Figure 5.5: Results from the test of the dome geometry, with a threshold percentage of 95%, a maximum amount
of iterations equal to 60 and αmax = 50◦. Figure 5.5a to 5.5c show the results from the first iteration of the
framework, while figure 5.5d shows the sum of absolute error for all 60 iterations.

Figure 5.5d, shows that the smallest sum of absolute error is reached at a value of 63.71 in
iteration 38 of the framework. The sum of absolute error converges towards zero until iteration
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5.1. Test of the Dome Geometry

38, where it stagnates. Figure 5.6a shows the current geometry in iteration 38 of the framework.
By comparing the current geometry with the desired geometry, shown in figure 5.6b, the surface
error, shown in figure 5.6c, is obtained. The obtained geometry exerts the appearance of the
desired geometry with a maximum deviation of |0.25mm|, which is assessed to proof the concept
of the developed framework. However, deviations from the desired geometry are present, as
shown in figure 5.6c, why improvements of the framework are required.
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Figure 5.6: Figure 5.6a shows the obtained geometry after 38 iterations of the framework. Figure 5.6b and 5.6c
show the desired geometry and the error between the obtained and desired geometry respectively.

5.1.1 Observations from the Test of the Dome Geometry

Through this section, two observations are discussed with respect to the results presented in
figure 5.5.

Observation 1 - Remaining Strain in the Circumference of the Blank

From figure 5.5d it is seen that the development of the sum of absolute error stagnates after 38
iterations of the framework. As discussed in section 4.2, the sum of absolute error can provide a
misleading measure of the current geometry’s progress towards the desired geometry. Therefore,
the development in required strain is checked as well. Only the top surface of the blank is
laser scanned in the 60 iterations of the framework. Figure 5.7 shows the sum of absolute size of
minimum principal strain for the upper εpath(m,n). Similar behaviour with respect to stagnation
is observed in the sum of absolute size of minimum principal strain, thereby substantiating that
the process stagnates.
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Figure 5.7: The sum of absolute size of minimum principal strains in the upper εpath(m,n).

As both the sum of absolute error and sum of absolute size of minimum principal strain stagnates,
it is assessed that the laser forming process is unable to form the blank beyond iteration 38. To
identify the cause of the stagnation, ε2(m,n) of iteration 38 and 60 is investigated. ε2(m,n) for
the two iterations is shown in figure 5.8a and 5.8b.
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Figure 5.8: ε2(m,n) for iteration 38 and 60 of the framework.

Figure 5.8, shows that only small variations in ε2(m,n) are present from iteration 38 to 60 of
the framework. Furthermore, it is seen that the most compressive strains are required in the
circumference of the blank. By investigation of the generated scan paths from iteration 38 to 60,
it is seen that the scan paths are generally placed near the edge of the blank. This is exemplified
in figure 5.9 for iteration 60 of the framework. It is assessed that the scan paths determined by
the scan path algorithm are placed correctly. However, the laser forming process is not able to
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5.1. Test of the Dome Geometry

remove the required compressive strains in the circumference of the blank.
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Figure 5.9: Scan path placement in iteration 60 of the framework.

The inability to remove the required compressive strains in the circumference of the blank
is caused by limitations of the laser forming process. It is difficult to activate the forming
mechanisms close to the edge of the blank, as the surrounding material provides insufficient
mechanical resistance towards the thermal expansion. As a result no plastic deformation is
obtained.

Observation 2 - Asymmetry in the Final Geometry

The current geometry in iteration 38 of the framework exerts the appearance of a dome geo-
metry. However, the current geometry is asymmetrical, whereas the desired dome geometry is
symmetrical around the center with respect to the XZ and YZ plane.

Figure 5.10a shows the placement of scan paths for the first nine iterations of the framework.
Note that εthresh(m,n), shown in figure 5.5b changes between iterations of the framework, why
the scan paths from iteration 2 to 9, passing through the center, are related to a different
representations of εthresh(m,n). The generated scan paths are perpendicular to the orientation
of the minimum principal strains shown in figure 5.10b. This corresponds to the intended
placement of scan paths. However, as the laser scans are performed in separate iterations of the
framework, asymmetric forming cannot be avoided.
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(a) Scan paths generated for iteration 1 to 9 of the frame-
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Figure 5.10: Figure 5.10a shows the scan paths generated for iteration 1 to 9 of the framework. The placement
of scan paths correspond to the orientation of minimum principal strains, as shown in figure 5.10b.
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5.2 Test of the Saddle Geometry
The framework receives the saddle geometry shown in figure 5.2 and the settings shown in
table 5.1. Test results are shown in figure 5.11. Figure 5.11a to 5.11c shows; the size of the
minimum principal strains ε2(m,n) in εpath(m,n), the threshold εthresh(m,n) of ε2(m,n) and
the orientation of the minimum principal strains θ2(m,n) and scan path, for the first iteration of
the framework. Figure 5.11d shows the development of the sum of absolute error as a function
of the iterations of the framework. The saddle geometry requires laser scans on both the top and
bottom surface. In the first iteration of the framework, the most compressive strain is required
on the bottom surface. Therefore, figure 5.11a to 5.11c relates to the lower εpath(m,n).
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Figure 5.11: Results from the test of the saddle geometry, with a threshold percentage of 95%, a maximum
amount of iterations equal to 200 and αmax = 50◦. Figure 5.11a to 5.11c show the results from the first iteration
of the framework, while figure 5.11d shows the sum of absolute error for all 200 iterations.
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5.2. Test of the Saddle Geometry

Figure 5.11d, shows that the smallest sum of absolute error is reached at a value of 153.43 in
iteration 200 of the framework. The sum of absolute error converges towards zero, but fails to
reach zero before reaching the maximum amount of iterations. Figure 5.12a shows the current
geometry in iteration 200 of the framework. By comparing the current geometry with the desired
geometry, shown in figure 5.12b, the surface error, shown in figure 5.12c, is obtained.

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

[m
m

]

 5  10 15 20 25 30 35 40
Element m

 5
 10
 15
 20
 25
 30
 35
 40

El
em

en
t n

(a) Current geometry.

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

[m
m

]

 5  10 15 20 25 30 35 40
Element m

 5
 10
 15
 20
 25
 30
 35
 40

El
em

en
t n

(b) Desired geometry.

-0.3
-0.2
-0.1
 0
 0.1
 0.2
 0.3

[m
m

]

 5  10 15 20 25 30 35 40
Element m

 5
 10
 15
 20
 25
 30
 35
 40

El
em

en
t n

(c) Error between desired and cur-
rent geometry.

Figure 5.12: Figure 5.12a shows the obtained geometry after 200 iterations of the framework. Figure 5.12b and
5.12c shows the desired geometry and the error between the obtained and desired geometry respectively.

The obtained geometry exerts the appearance of the saddle geometry with a maximum devia-
tion of |0.3mm|, which is assessed to proof the concept of the developed framework. However,
deviations from the desired geometry are present, as shown in figure 5.12c, why improvements
of the framework are required.

5.2.1 Observations from the Test of the Saddle Geometry

Through this section two observations are discussed with respect to the results presented in
figure 5.11.

Observation 1 - The Scan Path Algorithm Suffers from Discretisation

The bottom surface is scanned in iteration 1, while the top surface is scanned in iteration 2 of
the framework. Figure 5.13a shows the orientation of the minimum principal strains θ2(m,n)
and generated scan path for iteration 2 of the framework. Figure 5.11c and 5.13a, shows that
straight scan paths are generated in the first two iterations of the framework. By investigation
of the remaining scan paths it is observed that the scan path algorithm continuously generates
straight scan paths for the first 62 iterations of the framework. Figure 5.13b and 5.13c show the
scan paths generated during the first 30 iterations, for the bottom and top surface respectively.
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Figure 5.13: Figure 5.13a shows the scan path generated in iteration 2 of the framework. Figure 5.13b and
5.13c show the scan paths generated during the first 30 iterations, for the bottom and top surface.

The generated scan paths have been compared with θ2(m,n) for the respective iterations. The
straight scan paths do not comply with the intend of generating scan paths perpendicular to
the orientation of the minimum principal strains. This is exemplified in figure 5.14, which shows
the scan path generated for iteration 19 of the framework. The red line indicates the scan path
generated by the scan path algorithm. The green line represents a scan path with the same
start point, but satisfying the intend of placing scan paths perpendicular to the orientation of
minimum principal strains.
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Figure 5.14: The generated scan path from the scan path algorithm and the desired scan path, which is
perpendicular to the orientation of the minimum principal strains, for iteration 19 of the framework.

The problem is caused by the search stencil, utilised in the scan path algorithm, described in
section 3.4.1. The problem is exemplified in figure 5.15. The search stencil dictates discrete
movement options in approximately 45◦ intervals. The movement options are dictated by the
vectors between the start point and the element centroids of the neighbouring elements. In the
example α1<α2, why a scan path moving upwards is generated. The movements orientated
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5.2. Test of the Saddle Geometry

upwards contradict the intended scan path, which is supposed to move perpendicular to the
orientation of minimum principal strains. However, this movement is not possible due to the
discrete movement options of the search stencil.

Orientation of minimum 
principal strains

α1 α2

α1<α2

Start point of the scan path
algorithm

45o
Movement of scan path
algorithm

Perpendicular scan path

Figure 5.15: The scan path generated by the scan path algorithm and the desired scan path with respect to
perpendicularity to the orientation of minimum principal strains.

Observation 2 - Short Scan Paths Generated by the Scan Path Algorithm

Straight laser scans, across the width of the blank, are generated for the first 62 iterations of the
framework. In the remaining iterations shorter scan paths are generated. The scan paths are
placed on the bottom surface near the edge closest to the X axis, as exemplified for iteration 110
and 120 in figure 5.16. The short scan paths are a result of an early violation of the criteria with
respect to threshold, perpendicularity and point repetition, as described in section 3.4.1. An
undesirable selection of the initial start point, for the scan path algorithm, can result in early
violation of the three criteria. The potential amount of forming introduced in a short scan path
is generally smaller than the potential amount of forming in a longer scan path. As a result the
convergence rate may be reduced when generating short scan paths.
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Figure 5.16: Scan paths generated in iteration 110 and 120 of the framework.
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5.3 Sub Conclusion
Two geometries were tested in order to proof the concept of the framework. The geometries
being; a dome geometry and a saddle geometry. The framework formed the dome geometry to a
sum of absolute error equal to 63.71 with a maximum deviation of |0.25mm| in 38 iterations of
the framework. The saddle geometry was formed to a sum of absolute error equal to 153.43 with
a maximum deviation of |0.30mm| in 200 iterations. The tested geometries exert the appearance
of the dome and saddle, thereby proving the concept of the developed framework. The two tests
assisted in identifying four areas in need of improvement in the current framework:
• The framework is unable to reduce the required strain in the circumference of the blank,
due to limitations in the laser forming process
• The formed dome geometry is asymmetric, as a result of the placement of scan paths in
each iteration of the framework
• The scan path algorithm is unable to generate scan paths perpendicular to the orientation
of minimum principal strains, as a result of the discrete search stencil
• The scan path algorithm generates short scan paths, as a result of an undesirable selection
of the initial start point.
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Chapter 6

Conclusion

In this project a framework was developed, which enables the development of double curved
geometries by use of the laser forming process. The framework was developed with respect to
the problem statement:

"How can a framework capable of producing double curved geometries
by utilisation of the laser forming process be developed?"

To develop the framework, it was necessary to establish an understanding of the laser forming
process. In the laser forming process a defocused laser beam irradiates a blank in predefined
scan paths. The absorbed laser energy causes heat generation in the material, which results in
expansion of the blank. The expansion is resisted by the surrounding material thereby induc-
ing compressive stresses. If the stresses exceed the temperature dependent yield stress, plastic
deformation is introduced. To produce double curved geometries it is necessary to utilise the
temperature gradient mechanism and the upsetting mechanism. The mechanisms are important,
as they enable the laser forming process to create developable and non-developable surfaces.

To develop and test the framework it was chosen to utilise a Finite Element model of the laser
forming process. The Finite Element model developed through the 9th. semester project was
adjusted to cope with both the upsetting mechanism and the temperature gradient mechanism,
as these are required when forming double curved geometries. The Finite Element model suc-
cessfully demonstrated correct physical behaviour with respect to the temperature distribution,
strain distribution and forming obtained by both mechanisms. However, experimental validation
of the Finite Element model is necessary to ensure correlation with the physical laser forming
process.

The framework was created as a feedback loop, to cope with the poor repeatability of the laser
forming process. The framework determines a scan path and suited process variables in each
iteration, based on the required strain to go from the current to the desired geometry. The scan
path is generated with a developed scan path algorithm. To reduce the risk of over forming the
blank, scan paths are placed in areas requiring the largest amount of forming first. The scan
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path is placed perpendicular to the orientation of minimum principal strains, in a scan path
strain field, as the largest compressive strains induced by the laser forming process occur per-
pendicular to the scan path. The scan path strain field is created as the average of the required
midplane strain field and the surface strain field requiring the largest compressive strain, as
these strain fields indicate the in-plane and bending strain, required to form a desired geometry.
To ensure that the current geometry converges towards the desired geometry, suited process
variables are determined for all elements in the scan path, with respect to the required bending
and in-plane strains. The scan speed was selected as the control variable, as it is possible to
control the amount of forming induced in the blank by adjustment of the scan speed. The scan
speed is varied along the scan path as a function of the required strains, in order to reduce the
variance in the process output. A stop criterion was formulated to stop the framework. The
stop criterion is formulated with respect to the sum of absolute error, as this provides a scalar
measure of the correlation between the current and the desired geometry.

The framework was tested with regard to four tests, which are divided into tests of single curved
geometries and tests of double curved geometries. The tests of the single curved geometries
considered a 10◦ V-bend geometry and a cosinusoidal geometry. The 10◦ V-bend geometry was
used for preliminary testing and debugging purposes, which ensured a functioning framework.
The cosinusoidal geometry was tested, to ensure the frameworks ability to perform laser scans
on both sides of the blank. The tests of the double curved geometries considered a dome geo-
metry and a saddle geometry. Both tests were used for preliminary tests of the double curved
geometries to proof the concept of the framework.

The framework formed the 10◦ V-bend to a sum of absolute error of 29.6 with a maximum devi-
ation of |-0.08mm| in 100 iterations, thereby, proving the concept of the developed framework.
The cosinusoidal geometry validated the frameworks capability of forming on both sides of a
blank. The framework was not able to form the cosinusoidal geometry in 200 iterations of the
framework. However, the obtained geometry exerts the appearance of the desired cosinusoidal
geometry. It was chosen to use a combination of the sum of absolute error and the sum of
absolute size of minimum principal strains, as the sum of absolute error provided a misleading
measure of the progress of the process.

The framework formed the dome geometry to a sum of absolute error equal to 63.71 with a
maximum deviation of |0.25mm| in 38 iterations of the framework. The saddle geometry was
formed to a sum of absolute error equal to 153.43 with a maximum deviation of |0.30mm| in 200
iterations. The tested geometries exert the appearance of the dome and saddle, thereby proving
the concept of the developed framework. The two tests assisted in identifying four areas in need
of improvement in the current framework:
• The framework is unable to reduce the required strain in the circumference of the blank,
due to limitations in the laser forming process
• The formed dome geometry is asymmetric, as a result of the placement of scan paths in
each iteration of the framework
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• The scan path algorithm is unable to generate scan paths perpendicular to the orientation
of minimum principal strains, as a result of the discrete search stencil
• The scan path algorithm generates short scan paths, as a result of an undesirable selection
of the initial start point.

In summation, the developed framework enables the forming of double curved geometries by
utilisation of the laser forming process. Thus, it is concluded that a framework based on a
feedback control loop, utilising strain information for the determination of scan paths and process
variables enables the forming of double curved geometries. However, several areas requiring
improvement were identified. These are discussed in chapter 7.
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Chapter 7

Future Work

In this chapter, the industrial potential of a framework for the laser forming process is discussed.
Furthermore, the future work required to improve the developed framework is discussed.

As discussed in chapter 1, the laser forming process is a potential substitute to conventional
sheet forming processes. Compared to conventional processes, laser forming introduces a higher
degree of flexibility, as the framework enables the production of new geometries by changing the
desired geometry, whereas conventional sheet forming processes require costly development and
manufacturing of new dies. The increase in flexibility introduces great potential within the area
of rapid prototyping, customised products and small-batch production. Furthermore, the laser
forming process may be combined with other processes performed with a laser source. Such that
a single work cell has the capability of performing e.g. laser welding, laser cutting and laser
forming. A successful implementation of the laser forming process with regards to industrial
application requires investigation of several subjects e.g. process design, profitability, achievable
geometries, achievable tolerances, achievable process lead times, effect on material properties etc.

This project focused on the area of process design. The subject of process design was handled
with the developed framework, capable of determining scan paths and process variables, with
respect to a desired geometry.

7.1 Improvements of the Developed Framework
To ensure the full potential of the developed framework, several tasks must be treated. The
tasks are discussed in the following.

Performance Requirements for the Framework

In this project four tests were conducted with the developed framework. The purpose of the
tests was to proof the concept of the developed framework and assist in identifying areas of
the framework which required further work. When these improvements have been treated, it is
necessary to perform new tests of the framework. Prior to these tests it is necessary to establish
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a set of performance requirements for the framework. The performance requirements must relate
to competing forming processes with respect to e.g. process lead time, achievable geometries and
achievable tolerances. The performance requirements must be satisfied to ensure the industrial
applicability of the framework.

Evaluation of the Finite Element Model of the Laser Forming Process

The framework was developed and evaluated using a Finite Element model. The utilised Finite
Element model was fitted to experimental data, with respect to the temperature gradient mech-
anism, in the 9th. semester project. However, the utilisation of the upsetting mechanism in the
present project, required adjustments of the Finite Element model. To ensure that the output
of the Finite Element model and the physical laser forming process correlates, it is necessary to
fit the simulation model with respect to both the temperature gradient mechanism and upset-
ting mechanism. When the Finite Element model has been fitted, it is necessary to update the
parameters used throughout the framework.

Development of an Experimental Setup for Testing of the Framework

To ensure that the results achieved using the developed framework correlates when implemented
in a physical setup, it is necessary to develop an experimental setup, that enables testing of the
framework. The experimental setup must enable forming of single and double curved geometries.
This requires considerations with respect to:
• Measurement of the blank: The framework requires that the surface of the current

geometry is measured in each iteration. The measurement must provide a satisfactory
representation of the current geometry that can be handled in the framework software e.g.
a point cloud representation.
• Irradiation of the blank: The framework requires that the entire surface of the blank
can be irradiated with respect to the determined scan path and control variables. The
movement of the laser beam must comply with the scan speed specified by the process
ranges defined for the temperature gradient mechanism and upsetting mechanism.
• Fixation of the blank: The laser forming process requires fixation of the blank. For
single curved geometries a fixation at one edge is sufficient. The forming of double curved
geometries require an alternative fixation method. The alternative fixation method must
not introduce any additional structural stiffness to the blank, as this will influence to
output of the process.

Improvement of the Strain Analysis

The strain analysis used in the framework relied on the use of LS-Dyna’s OneStep solver for the
single curved geometries and a developed flattening model for the double curved geometries. As
described in appendix K, the OneStep solver resulted in a misleading strain field for the double
curved geometries, why a flattening model was developed. However, the flattening model be-
comes unstable for heavily formed geometries. A new approach must be developed for obtaining
a correct strain field. The new approach should allow for fast determination of the required
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strain field, as it is used in each iteration of the framework. Furthermore, it must be applicable
for all geometries, achievable by the laser forming process.

Improvements of the Scan Path Algorithm

The scan path algorithm must be revised to ensure that scan paths are perpendicular to the
orientation of the minimum principal strains. In the current framework the algorithm suffers
from the discretisation of the search stencil. Therefore, the improvement must ensure a path
planning algorithm, independent of the limitation set by the discretisation.

Furthermore, it is assumed that the convergence rate can be improved by revising the scan path
algorithm. The current strategy is to start the scan path algorithm from the element requiring
the largest amount of strain and accepting the generated scan path. It is suggested to investi-
gate several different initial start points prior to execution of the laser forming process. Each
of the initial start points results in a new scan path. The scan path and corresponding process
variables providing the largest amount of forming can then be selected for the current iteration
of the framework. Another argument for considering different start points, is that the most
compressive strain in a single element may be a result of numerical errors in the Finite Element
model, thus leading to a wrong selection of the start point.

The current framework produces one consecutive scan path per iteration. An alternative to
this approach is to generate several scan paths for each iteration. By performing several laser
scans, a larger amount of the required strain is minimised in each iteration. However, several
considerations are necessary to address before implementing a solution, which performs several
laser scans, such as; how to define new start points for the scan path algorithm, how close
scan paths can be placed to each other without influencing the process output achieved in each
laser scan and how many laser scans can be performed per iteration while maintaining a robust
process.

Improvement of the Stop Criterion

The formulated stop criterion evaluated the geometrical correlation of the obtained geometry
with respect to the desired geometry. The formulated stop criterion calculates the sum of
absolute error between the current and the desired geometry. However, the sum of absolute
error can provide a misleading measure of the current geometry’s progress towards the desired
geometry. It was chosen to investigate the required strain to be achieved in the blank, as each
successive laser scan decreases the required strain. A converging development was observed,
why it is assessed that a stop criterion must be formulated with regards to both the geometrical
correlation and the required strain correlation.

Increasing the Size of the Blank

The laser forming process is unable to successfully reduce the required compressive strain in the
circumference of the blank, due to limitations of the process. A possible solution is to use a larger
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blank, to ensure that the required compressive stresses, at the circumference of the blank, can
be induced into the material. If this strategy is utilised it is necessary to consider the springback
which occurs, when the desired geometry is cut from the larger initial blank. The springback
is a consequence of the residual stresses in the blank. It is assessed that the springback can be
approximated using the Finite Element model of the laser forming process, as the results from
the Finite Element model contains the required stress and strain information. Furthermore it
must be investigated, how excess material is removed. The influence of the process used to
remove the excess material must be investigated e.g. if laser cutting is to be used, the thermal
effect of cutting must be investigated.

Historical Error Development

The laser forming process suffers from poor repeatability, as discussed in section 3.1.2. To
increase the repeatability of the laser forming process, the scan speed is controlled along the
scan path. The scan speed is determined with respect to the selected forming mechanism and the
required amount of either bending or in-plane strain. The scan speed is adjusted along the scan
path with regards to a fraction distribution. However, the output of the laser forming process
varies as more scans are performed, as a consequence of e.g. induced residual stresses and strain
hardening. Therefore, it is assessed that the historical error development of the process must
be utilised to select suitable process variables. If historical error development is considered,
the development in the introduced forming over several scans can be taken into account when
selecting process variables. E.g. If the forming is slower than expected, then the scan speed is
lowered, such that more forming is introduced.
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Appendix A

Data for the Simulation Models

This appendix lists the temperature dependent material data used in both the previous and
current simulation model [Deng and Murakawa, 2006] and [Samuel et al., 1992].
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Figure A.1: Temperature dependent material properties (figure 1 of 2).
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Figure A.2: Temperature dependent material properties (figure 2 of 2).
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Appendix B

Adjustments for the Finite Element
Model of the Laser Forming Process

This appendix describes the adjustments made to the Finite Element model of the laser forming
process. The Finite Element model was developed during the 9th. semester project, with the
purpose of simulating the temperature gradient mechanism. The adjustments are performed to
ensure that the Finite Element model is suited for the purpose of this project. It is chosen to
adjust the Finite Element model with regards to: Reduction of the discretisation of the blank
and implementation of the upsetting mechanism.

Reducing the Spatial Discretisation of the Blank

As mentioned in section 1.3, the Finite Element model is used to develop and test the framework.
During the development and tests of the framework, it is required to perform several simulations
of the Finite Element model, why a low computation time is desired. It is chosen to reduce the
spatial discretisation of the blank used in the Finite Element model, as this results in a decreased
computation time. The discretisation is reduced to 40x40x4 elements. This complies with the
requirements from [Zhang et al., 2004] concerning spatial discretisation i.e. a minimum of 2
elements per beam radius and a minimum of 3 elements in the thickness direction.

Determination of Process Range for the Upsetting Mechanism

In section 2.2, it is determined that the Finite Element model must be able to represent the
physical behaviour of both the temperature gradient mechanism and the upsetting mechanism,
as these are required when forming double curved geometries. The Finite Element model devel-
oped during the 9th. semester project, already provides an acceptable correlation with regards to
simulating the temperature gradient mechanism, why only the implementation of the upsetting
mechanism is considered in this appendix. To simulate the upsetting mechanism, it is necessary
to adjust the process variables used for the simulation of the temperature gradient mechanism.
The upsetting mechanism requires that the laser beam diameter is increased and the scan speed
is decreased. This facilitates a uniform temperature distribution through the thickness of the
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blank, thereby activating the upsetting mechanism.

It is desired to determine a process range for the upsetting mechanism with regards to scan
speed, such that the amount of in-plane strain can be controlled. The process range for the up-
setting mechanism is defined as the range which ensures an acceptable behaviour i.e. produces
a significant amount of in-plane strain whilst not performing a significant bend, which indicates
an undesirable influence of the temperature gradient mechanism. To determine a process range,
that ensures an acceptable behaviour, when utilising the upsetting mechanism, a series of ex-
periments were conducted using the Finite Element model. In the experiments, the laser beam
diameter was varied from 6mm to 10mm in 2mm increments. For each laser beam diameter,
different scan speeds were tested to identify the upper and lower limit of the process range. The
laser power was maintained at 380W to reduce the amount of experiments. The laser beam
diameter is chosen to be 6 mm and the process range, which ensures an acceptable behaviour is
given as 200mm

min to 400mm
min . Results of the experiments are appended on the appendix-CD.
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Appendix C

Keydeck for the Finite Element
Model of the Laser Forming Process

This appendix documents the keydeck constituting the Finite Element model of the laser for-
ming process. The keydeck consists of several keywords. All information with regards to the
keywords are provided by [LSTC, 2013] and [LSTC, 2007]. All keywords are shown throughout
this appendix and the overall functionality is described. To ease the reading, default values have
been removed. The keydeck and included files are appended on the appendix-CD.

The initial part of the keydeck is shown in listing L.1. The initial part designates the authors
of the present keydeck and displays the unit scheme chosen for the Finite Element model along
with a part summary.

1 *KEYWORD
2 *TITLE
3 Coupled thermal-mechanical simulation of the laser forming process in LS-Dyna
4 $ By Group VT4-2.215
5 $ - Kasper Madsen
6 $ - Martin Soendergaard
7 $ | |
8 $ |_______|
9 $ \ / /

10 $ \___/ /
11 $ <|> /
12 $ <|> /
13 $ <|> /
14 $ <|>/
15 $ _____________________|/
16 $
17 $The unit scheme used is given below:
18 $ Unit System Scheme (C): mm, ms, kg ==> kN, GPa ,Joule, kW
19 $ Part summary:
20 $ pid name nid-start elid-start
21 $ 1 blank 1 1

Listing C.1: The initial part of the keydeck.
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C.1. Include

C.1 Include
Listing C.2 includes the necessary files for the keydeck, extraction of these makes the keydeck
easier to read and allows alterations to be performed to the files between simulations. The
blank.k file is only included in the initial simulation, after that a dynain file is used. The dynain
file represents the deformed state of the blank after each scan i.e. geometry of the blank, stresses
and plastic strains. The SEGMENT file contains all segments used in the Finite Element model
e.g. surface segments of the blank, which are used to apply convection and radiation to the
model. The PARAMETRES file is used to alter the scan speed of the Finite Element model,
why this is updated between scans

1 *INCLUDE
2 blank.k
3 *INCLUDE
4 SEGMENTS
5 *INCLUDE
6 PARAMETRES
7 *INCLUDE
8 DEFINECURVES

Listing C.2: Including files.

C.2 Dynain
Listing C.3 consists of the INTERFACE_SPRINGBACK_LSDYNA and the SET_PART_LIST
keyword which creates a dynain file. As mentioned in section C.1, the dynain file contains the
geometry of the blank, stresses and plastic strains.

1 *INTERFACE_SPRINGBACK_LSDYNA
2 $ psid
3 1
4 $
5 *SET_PART_LIST
6 $ psid
7 1
8 $ pid
9 1

Listing C.3: Interface keyword which creates a dynain file.

C.3 Control Keywords
Listing C.4 is used to ensure that no cpu limit is set.

1 *CONTROL_CPU
2 $# cputim
3 0.000

Listing C.4: Control CPU.
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C.3. Control Keywords

Listing C.5 ensures that hourglass control is implemented, thereby preventing zero-energy modes.
1 *CONTROL_HOURGLASS
2 $# ihq qh
3 6 0.100000

Listing C.5: Control hourglass.

1 *HOURGLASS
2 $# hgid ihq qm ibq q1 q2 qb/vdc qw
3 1 6

Listing C.6: Hourglass.

Listing C.7 ensures that the Finite Element model is calculated as a coupled thermo-mechanical
analysis (soln=2).

1 *CONTROL_SOLUTION
2 $# soln nlq isnan lcint
3 2

Listing C.7: Control solution.

Listing C.8 sets the termination time for the Finite Element model, which in the present simu-
lation depends on the time of the laser scan and a fixed cooling time.

1 *CONTROL_TERMINATION
2 $# endtim endcyc dtmin endeng endmas
3 &dt2+1.6

Listing C.8: Control termination.

Listing C.9 controls the structural timestep of the analysis, in this present Finite Element model
LS-Dyna calculates the timestep.

1 *CONTROL_TIMESTEP
2 $# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st
3 0.900000

Listing C.9: Control timestep.

Listing C.10 is used to set parameters for the nonlinear coupled thermo-mechanical analysis.
1 *CONTROL_THERMAL_NONLINEAR
2 $# refmax tol dcp lumpbc thlstl nlthpr phchpn
3 1E-4 0.500000

Listing C.10: Control thermal nonlinear.

Listing C.11 defines the Finite Element model as a transient problem (atype=1) and a nonlinear
problem with material properties evaluated at gauss point temperatures (ptype=1). Solver 12
is used, as this is the default solver for MPP (Massively Parallel Processing) simulations. TSF
is set to 1000 which speeds up the thermal problem by a factor1000. This scaling is elaborated
in appendix D.
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C.3. Control Keywords

1 *CONTROL_THERMAL_SOLVER
2 $# atype ptype solver cgtol gpt eqheat fwork sbc
3 1 1 12
4 $# TSF
5 1000

Listing C.11: Control thermal solver.

Listing C.12 defines the timesteps used by the thermal solver, in the present Finite Element
model these are controlled by a load curve (Listing C.13).

1 *CONTROL_THERMAL_TIMESTEP
2 $# ts tip its tmin tmax dtemp tscp lcts
3 1 1.0E-03 4

Listing C.12: Control thermal timestep.

Listing C.13 is a load curve which defines the timesteps for the thermal solver, the size of these
timesteps is explained in the 9th. semester report appended on the appendix-CD.

1 *DEFINE_CURVE_TITLE
2 Time_step
3 $# lcid sidr sfa sfo offa offo dattyp
4 4
5 $# a1 o1
6 0.000 0.0032
7 &dt1 0.0032
8 &dt2 0.1
9 20.000 0.1

Listing C.13: Timestep for the thermal solver.

Listing C.14 is used to define the response of the solid element.

1 *CONTROL_SOLID
2 $# ESORT FMATRX NIPTETS SWLOCL
3 2

Listing C.14: Control solid.
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C.4. Database

C.4 Database
Listing C.15 contains the database keywords, which in the present simulation are used to obtain
a desired amount of plots of the simulation.

1 *DATABASE_BINARY_D3DUMP
2 $# dt lcdt beam npltc psetid
3 0.01
4 $
5 $
6 *DATABASE_BINARY_D3PLOT
7 $# dt lcdt beam npltc psetid
8 0.03
9 $

10 $
11 *DATABASE_EXTENT_BINARY
12 $ neiph neips maxint strflg sigflg epsflg rltflg engflg
13 3 1 1 1 1
14 $ cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat
15 2
16 $ nintsld pkp_sen sclp unused msscl therm iniout iniout
17 2 2 ALL STRESS_GL

Listing C.15: Database keywords.

C.5 Implicit
During the development of the Finite Element model through the 9th. semester, it was deter-
mined to run the Finite Element model as part explicit analysis and part implicit. The -5 placed
under IMFLAG in listing C.16 allows switching between explicit analysis and implicit analysis
to be performed by using a load curve. The load curve dictates that an explicit solver must be
used during the time of the laser scan and an additional 0.3ms, (dt1) + 0.3ms, and then switch,
such that an implicit solver is used during dwell time.

1 *CONTROL_IMPLICIT_GENERAL
2 $# IMFLAG DT0 IMFORM NSBS IGS CNSTN FORM ZERO_V
3 -5 0.001 1 0

Listing C.16: Control implicit general.

Listing C.17 is used to define parameters for the automatic step size control.

1 *CONTROL_IMPLICIT_AUTO
2 $# IAUTO ITEOPT ITEWIN DTMIN DTMAX DTEXP
3 1 11 5 0.2

Listing C.17: Control implicit auto.

Listing C.18 is used to define that a nonlinear solution is desired.
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C.6. Boundary Conditions

1 *CONTROL_IMPLICIT_SOLUTION
2 $# NSOLVR ILIMIT MAXREF DCTOL ECTOL RCTOL LSTOL ABSTOL
3 2 15

Listing C.18: Control implicit solution.

Listing C.19 is used to output the calculation summary given by LS-Dyna.
1 *CONTROL_IMPLICIT_SOLVER
2 $# LSOLVR LPRINT NEGEV ORDER DRCM DRCPRM AUTOSPC AUTOTOL
3 1 100 1 1.E-8
4 $# LCPACK MTXDMP
5 2

Listing C.19: Control implicit solver.

C.6 Boundary Conditions
Listing C.21 applies boundary convection to the Finite Element model.

1 *BOUNDARY_CONVECTION_SET
2 $# SSID
3 1
4 $# HLCID HMULT TLCID TMULT LOC
5 12 1 293

Listing C.20: Boundary convection.

1 *DEFINE_CURVE_TITLE
2 Convection
3 $# lcid sidr sfa sfo offa offo dattyp
4 12
5 $# a1 o1
6 0.000 1.5E-8
7 &dt1 1.5E-8
8 &dt2 1.5E-6
9 20.000 1.5E-6

Listing C.21: Load curve for the boundary convection heat transfer.

Listing C.22 applies boundary radiation to the Finite Element model, where FMULT is obtained
by equation C.1 [Shapiro and Lo, 2009]. Remark that FMULT is converted to the unit scheme
used in the present Finite Element model.

FMULT = σ · ε · F→ 5.67 · 10−8 J
s ·m2 ·K4 · 0.4 · 1 = 2.268 · 10−17 J

ms ·mm2 ·K4 (C.1)

Where σ is the Stefan Boltzmann constant, ε is the emissivity which describes the fraction of
energy radiated from the surface (set to 0.4 [Mikron Instrument Company Inc., 2013]) and F is an
exchange factor, which is set to 1 when radiation is between a component and the environment
[Shapiro and Lo, 2009].
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C.7. Laser Beam

1 *BOUNDARY_RADIATION_SET
2 $# SSID TYPE
3 1 1
4 $# FLCID FMULT TLCID TMULT LOC
5 0 2.268E-17 0 293

Listing C.22: Boundary radiation.

C.7 Laser Beam
To deliver heat flux to the blank, the keyword shown in listing C.23 is utilised, where ssid
designates the surface segment of the blank and lcid designates the load curve which must be
applied to this segment. Remark that the developed framework, adjusts ssid, such that both
the top and bottom surface can be irradiated. The load curve is defined as a Gaussian function,
which is created by means of the DEFINE_FUNCTION keyword, shown in listing C.24. The
working principle of this method is that a circle with a Gaussian heat flux distribution and with
the radius of the laser beam, is moved across the aforementioned surface segment. During this
movement, all surface elements are evaluated with respect to their euclidian distance from the
center of the laser beam (distc line 15 of listing C.24). If the elements are within the radius
of the laser beam, they receive a calculated amount of heat flux with respect to the Gaussian
distribution(fl line 18 and 20 of listing C.24). Similar implementation has been used by [Roll
et al., 2011] with good results, why this is assessed to be suited. Remark that the variables
marked “name”(time) listed in line 9-14 in listing C.24, contains process variables which are
included as DEFINECURVES. This is done as these are determined by use of the framework in
between every laser scan. E.g. the movement of the laser beam(xloc, yloc) is determined by the
framework as X and Y movement load curves.

1 *BOUNDARY_FLUX_SET
2 $# ssid
3 2 (top surface)
4 $# lcid mlc1 mlc2 mlc3 mlc4 loc nhisv fid
5 3 0 0 0 0

Listing C.23: Boundary flux set.

Listing C.24 contains the Gaussian function that is used to simulate the laser beam, the func-
tion was received from [Kennedy, 2013], but has been heavily altered for the purposes of the
simulation.
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C.8. Blank and Material

1 *DEFINE_FUNCTION
2 $# fid defintion
3 3 flux a function of position
4 float flux(float x,float y,float z,float vx,float vy,float vz,
5 float tinf,float time)
6 {
7 float radius, xspot, yspot, fl, distc, A, P, Pi ;
8
9 A = &A ;

10 P = Power(time);
11 Pi = 3.1416 ;
12 radius = radi(time);
13 xspot = xloc(time) ;
14 yspot = yloc(time) ;
15 distc = sqrt((x-xspot)**2 + (y-yspot)**2) ;
16
17 if ((x-xspot)**2 + (y-yspot)**2 <= radius**2)
18 fl = -((2 * A * P) / (Pi * radius**2) * exp((-2 * distc**2) / radius**2));
19 else
20 fl = 0. ;
21 return (fl) ;
22 }

Listing C.24: Gaussian function that is used to simulate the laser beam.

C.8 Blank and Material
Listing C.25 is the PART keyword for the blank used in the Finite Element model. It defines
the part ID, section ID as well as the mechanical and thermal material ID’s.

1 *PART
2 $# title
3 Blank
4 $# pid secid mid eosid hgid grav adpopt tmid
5 1 1 1 2

Listing C.25: Part keyword.

Listing C.26 defines the element formulation used, which in this case is a default formulation.
1 *SECTION_SOLID_TITLE
2 Blank
3 $# secid elform
4 1 1

Listing C.26: Section keyword.

To ensure that the model exhibits proper physical behaviour during both the thermal and
the mechanical analysis. It is assessed necessary to incorporate the nonlinear behaviour of the
material properties, as a function of temperature. It is assessed that phase change does not occur
during the process i.e. melting of the surface. The temperature dependency of the material is
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C.8. Blank and Material

coped with by introducing two material keywords in LS-Dyna. One which defines temperature
dependency of the thermal properties e.g. heat capacity and conductivity and one which defines
the temperature dependent mechanical properties e.g. yield stress. The material keywords are
listed in listing C.27 and C.28. For both material keywords it is assessed that the material shows
isotropic behaviour. Both material keywords consists of material properties which are linearly
interpolated between 8 discrete temperature values in the range 273K-1773K. This discretisation
is assessed to be sufficient for the purpose of the model. The material data for stainless steel
1.4301, which is used throughout this project is obtained through [Deng and Murakawa, 2006]
and [Samuel et al., 1992] and is appended in appendix A. The plastic hardening modulus (etan)
in listing C.27, is approximated by use of Hollomon’s equation, shown in equation C.2. This
was necessary as no data has been available. The approximation was performed by utilising
the temperature dependent strain index (K) and strain hardening exponent (n), obtained from
[Samuel et al., 1992]. The data is inserted into Hollomon’s equation and differentiated. Etan is
obtained by evaluating the differentiated expression, with respect to the strain value for which
etan is required. As the strain value varies across the surface of the blank, it is not feasible to
determine etan for all values, why it is chosen to determine etan from one strain value (0.1).
Calculations of etan are appended on the appendix-CD.

σ = K + εn (C.2)

1 *MAT_ELASTIC_PLASTIC_THERMAL_TITLE
2 Blank mechanical properties
3 $# mid ro
4 1 7.9000E-6
5 $# t1 t2 t3 t4 t5 t6 t7 t8
6 273.00 373.00 473.00 573.00 673.00 873.00 1073.00 1773.00
7 $# E1 E2 E3 E4 E5 E6 E7 E8
8 198.500 193.00 185.00 176.00 167.00 159.00 151.00 10.00
9 $# pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8

10 0.294 0.295 0.301 0.310 0.318 0.326 0.333 0.388
11 $# alpha1 alpha2 alpha3 alpha4 alpha5 alpha6 alpha7 alpha8
12 1.7000E-5 1.7400E-5 1.8000E-5 1.8600E-5 1.9100E-5 1.9600E-5 2.0200E-5 2.1600E-5
13 $# sigy1 sigy2 sigy3 sigy4 sigy5 sigy6 sigy7 sigy8
14 0.265000 0.218000 0.186000 0.170000 0.155000 0.149000 0.091000 0.010000
15 $# etan1 etan2 etan3 etan4 etan5 etan6 etan7 etan8
16 1.986 1.787 1.632 1.554 1.642 1.589 0.159 0.159

Listing C.27: Mechanical properties of the blank with respect to temperature.
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C.9. Miscellaneous

1 *MAT_THERMAL_ISOTROPIC_TD_TITLE
2 Blank thermal properties
3 $# tmid tro tgrlc tgmult tlat hlat
4 2
5 $# t1 t2 t3 t4 t5 t6 t7 t8
6 273.00 373.00 473.00 573.00 673.00 873.00 1073.00 1773.00
7 $# c1 c2 c3 c4 c5 c6 c7 c8
8 462.00 496.00 512.00 525.00 540.00 577.00 604.00 700.00
9 $# k1 k2 k3 k4 k5 k6 k7 k8

10 1.4600E-5 1.5100E-5 1.6100E-5 1.7900E-5 1.8000E-5 2.0800E-5 2.3900E-5 1.200E-4

Listing C.28: Thermal properties of the blank with respect to temperature.

C.9 Miscellaneous
Listing C.29 implements damping in the model in order to stabilise the deformation rate of the
blank.

1 *DAMPING_GLOBAL
2 50

Listing C.29: Damping global.

Listing C.30 is used to set the initial temperature of the blank to room temperature (293K ≈
20◦C).

1 *INITIAL_TEMPERATURE_SET
2 $ NSID TEMP LOC
3 0 293.

Listing C.30: Initial temperature set.

Listing C.31 is used to set a boundary temperature for the nodes at the fixed edge, in the tests
of single curved geometries. The boundary temperature represents the conductive cooling from
the clamp fixture. The boundary temperature is set to room temperature (293K ≈ 20◦C).

1 *BOUNDARY_TEMPERATURE_SET
2 $ NSID LCID CMULT LOC
3 7 293

Listing C.31: Boundary temperature set.
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Appendix D

Verification of the Temperature
Speedup Factor in LS-DYNA

LS-Dyna’s thermal solver allows utilisation of a ”Thermal Speedup Factor” (TSF). The TSF
is used to artificially scale the thermal properties of a thermal problem e.g. conductivity, heat
convection coefficient etc. The TSF is set in correspondence to the time scaling i.e. if the scan
speed of the laser beam is scaled by a factor 1000, the TSF is equally set to 1000. In cooperation
with a scaling of the speed the TSF allows a shorter simulation time. [LSTC, 2013]

To test if the TSF is applicable in the problem of laser forming a stainless steel blank with
nonlinear thermal properties with respect to temperature, a thermal test example is created.
The example is a stainless steel rod, shown in figure D.1. The rod has equivalent properties as
the blank used in the laser forming process. The rod is prescribed with a constant boundary
temperature of 1273K prescribed at the end nodes. Furthermore, all surfaces are subject to heat
loss from convection and radiation. The initial temperature of the rod is set equal to 293K. The
rod is discretised into 10 equally sized solid elements. The problem is solved using the same
thermal solver as in the simulation model for the laser forming process.

100 mm

10 mm

10 mm

Tboundary = 1273 K° 

Node 11
Node 19

Convection and radiation 
from all surfaces

Figure D.1: The rod example.

Three different TSF values being 1, 5 and 10 are tested. The temperature development with
respect to thermal timesteps is investigated in node 11 and 19, shown in figure D.1. The tem-
perature development of node 11, shown in figure D.2a increases with increasing size of the TSF
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hence the scaling affects that rate of heat transfer in the solution as, expected. Moreover, it is
observed that all solutions converge towards a steady state where the heat transferred to the
node equals the heat leaving the node.

To test if the TSF works i.e. if it is possible to decrease the simulation time, by scaling of the
thermal problem, the temperature development of the three different TSF values is compared
at predefined comparison points. For TSF = 1, a comparison point is set at every 100th thermal
step. As the solution for TSF = 5 is scaled by a factor of five a comparison point is set at
every 20th thermal step to compensate for the scaling. Similarly the solution with TSF = 10 has
comparison points at every 10th thermal step. In each comparison point the node temperature
should be similar for each of the three solutions. The comparison for node 11 is shown in figure
D.2b. It is shown that the scaled temperatures correlate with the unscaled.

Similar results are obtained for node 19, these are presented in figure D.2c and D.2d. In addition,
it is observed that the temperature converges towards a lower temperature in node 19. This
is due to the position of node 19, as the heat is required to be conducted into more material.
Moreover, a larger surface area is present between the heat source and node 19, why convection
and radiation removes more heat from the rod. Based on the obtained results from the example,
it is assumed that the TSF is applicable in the laser forming simulation.
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Figure D.2: Results from the rod experiment.
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Appendix E

LaserForm.Java

This appendix contains the Java main program. When executed the Java main program utilises
tools located in the ToolBox, which is appended in appendix F. The Java main program is also
appended on the appendix-CD.

1 /*
2 * | | VT4-2.215 Laser Forming
3 * | | 3 Februar 2014
4 * |_______|
5 * \ / /
6 * \___/ /
7 * <|> /
8 * <|> /
9 * <|> /

10 * <|>/
11 * _____________________|/
12 *
13 */
14
15 // Importing packages
16 import java.io.*;
17 import java.lang.*;
18 import java.util.*;
19 import bek.opti.ObjectUtility;
20
21 public class LaserForm extends ObjectUtility {
22 //%%%%%%%%%%%%%%%%%%%%%%%% USED VARIABLES %%%%%%%%%%%%%%%%%%%%%%%
23
24 //****************** Must be specified ******************
25 private String Geometry = "dome";//Desired geometry;
26 private int MaxScan = 60;//Max number of iterations
27 private int toleranceaccep = 1;//Acceptable sum of absolute error
28
29 //****************** Must be specified ******************
30 private int k = 1;//Iteration counter for the framework
31 private boolean doesExist = true;//Boolean used for conditioned wait functions
32 private int tolerancemeas = 1000;//Measured sum of absolute error
33 private String shell_clean = "./shellscripts/shell_clean.sh";//Shell-script
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which cleans the directory
34 private String shell_run = "./shellscripts/shell_run.sh";//Shell-script which

runs the Finite Element model of the laser forming process for k=1
35 private String shell_run2 = "./shellscripts/shell_run2.sh";//Shell-script which

runs the Finite Element model of the laser forming process for k>1
36 private String shell_runonestepinit = "./shellscripts/shell_runonestepinit.sh";

//Shell-script which runs the OneStep solver for iteration k=1
37 private String shell_runonestep = "./shellscripts/shell_runonestep.sh";//Shell-

script which runs the OneStep solver for iteration k>1
38 private String shell_generateshell = "./shellscripts/shell_generateshell.sh";//

Shell-script which generates the shell model used for the onestep analysis
39 private String shell_centroids = "./shellscripts/shell_centroids.sh";//Shell-

script which outputs the element centroids from prepost from the current
geometry

40 private String shell_centroidsinit = "./shellscripts/shell_centroidsinit.sh";//
Shell-script which outputs the element centroids from prepost from the
desired geometry

41 private String shell_centroidsblank = "./shellscripts/shell_centroidsblank.sh";
//Shell-script which outputs the element centroids from prepost from the
blank.k

42 private String shell_centroidsonestep = "./shellscripts/shell_centroidsonestep.
sh";//Shell-script which outputs the element centroids from prepost for the
flattened geometry in the OneStep solver

43 private String centroidfile = "centroidsblank.data";//Element centroids used in
the scan path algorithm

44 File myFile = new File("status.out");//Status.out is a file created by Dyna (
used to perform conditioned wait functions)

45 private double[][][] strainstopfirst = new double[40][40][6];//Top surface
strain field for k=1

46 private double[][][] strainsbotfirst = new double[40][40][6];//Bottom surface
strain field for k=1

47 private double[][][] strainscenterfirst = new double[40][40][6];//Midplane
strain field for k=1

48 private double[][][] strainsinfinalupper = new double[40][40][6];//Upper scan
path strain field for iteration k=1

49 private double[][][] strainsinfinallower = new double[40][40][6];//Lower scan
path strain field for iteration k=1

50 private double[][][] strainstop = new double[40][40][6];//Top surface strain
field extracted from OneStep solver for k>1 (Currently achieved strain)

51 private double[][][] strainsbot = new double[40][40][6];//Bottom surface strain
extracted from OneStep solver for iteration k>1 (Currently achieved strain)

52 private double[][][] strainscenter = new double[40][40][6];//Midplane strain
field extracted from OneStep solver for iteration k>1 (Currently achieved
strain)

53 private double[][][] strainsavgupper = new double[40][40][6];//Average of
midplane and top surface strain field extracted from OneStep solver for
iteration k>1 (Currently achieved strain)

54 private double[][][] strainsavglower = new double[40][40][6];//Average of
midplane and bottom surface strain field extracted from OneStep solver for
iteration k>1 (Currently achieved strain)

55 private double[][][] strainspathupper = new double[40][40][6];//
strainsinfinalupper-strainsavgupper = the required strain to be achieved in
the upper scan path strain field for iteration k>1
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56 private double[][][] strainspathlower = new double[40][40][6];//
strainsinfinallower-strainsavglower = the required strain to be achieved in
the lower scan path strain field for iteration k>1

57 private double[][][] strainscenterreq = new double[40][40][6];//The midplane
strain field = the required strain to be achieved in the midplane for
iteration k>1

58 private double[][][] strainssurreq = new double[40][40][6];//The required
strains in either the top or bottom surface strain field (dependent of the
surface scanned in the current iteration)

59 private double[][][] ZValue = new double[40][40][3];//Z coordinates of desired
geometry above element centroids in the deformed shell

60 private double[][][] strainspath = new double[40][40][6];//The scan path strain
field i.e. the remaining strain to be achieved in either the upper or lower
scan path strain field

61 private double[] AbSumError = new double[40 * 40];//Sum of absolute error in Z
for all iterations (for post processing)

62 private double[][] Thresh;//Threshold field of 2nd principal strain (1 if above
threshold value 0 if below)

63 private double[][][] Prin;//Size and orientation of minimum principal strains
for the scan path strain field

64 private double[][][] PrinSur;//Size and orientation of minimum principal strains
for the surface strain field used to create the scan path strain field

65 private double[][][] Princenter;//Size and orientation of minimum principal
strains for the midplane strain field

66 private int[][] ElPath;//Elements visited in the scan path
67 private double[][] ElPathPara;//Determined processing parameters in scan path
68 private String strainPathPosition;//Position of strain field (upper or lower)
69
70 //%%%%%%%%%%%%%%%%%%%%%%%%% MAIN METHOD %%%%%%%%%%%%%%%%%%%%%%%%%
71 public static void main(String[] args) {
72 LaserForm Autokoer = new LaserForm();
73 System.out.println("START - The Program is Started");
74 Autokoer.run();
75 System.out.println("END - The Program is Finished");
76 }
77 //%%%%%%%%%%%%%%%%%%%%% LASER FORMING METHOD %%%%%%%%%%%%%%%%%%%%
78
79 public void run() {
80 ToolBox tool = new ToolBox();// The Toolbox class is initialised
81
82 //Extract the desired geometry from directory storing all geometries
83 tool.SystemCall("cp /home/tube/Laserforming/new/desiredgeometries/kfiles/" +

Geometry + ".k desired.k");
84 tool.SystemCall("cp /home/tube/Laserforming/new/desiredgeometries/kfilesfine

/" + Geometry + "fine.k desiredfine.k");
85
86 //%%%%%%%%%%%%%%% CHECK INITIAL GEOMETRICAL ERROR %%%%%%%%%%%%%%%
87 //Centroids are extracted from the initial model (desired geometry)
88 System.out.println("Open prepost and output the coordinates of the element

centroids(desired geometry)");
89 tool.SystemCall(shell_centroidsinit);
90
91 //Remark in the following shell script, several tasks are performed, such as
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extraction of a shell model from the
92 //solid blank and extraction of centroids from the shell model
93 System.out.println("Open prepost and output the coordinates of the element

centroids for the undeformed blank.k");
94 tool.SystemCall(shell_centroidsblank);
95
96 //Check geometrical error (Surface error & sum of absolute error)
97 ZValue = tool.MapElementCentroidToCurrent("centroidsblank.data");
98 AbSumError[k - 1] = tool.ErrorData(ZValue, "centroidsblank.data");
99 tolerancemeas = AbSumError[k - 1];

100 System.out.println("Absolute error: " + AbSumError[k - 1]);//Current sum of
absolute error

101 ToFile(AbSumError, "debugplot/AbSumError.data");//File containing the sum of
absolute error

102
103 //%%%%%%%%%%%%%%%%%%% START LASER FORMING LOOP %%%%%%%%%%%%%%%%%%
104 while (toleranceaccep < tolerancemeas && k - 1 < MaxScan) {
105
106 //%%%%%%%%%%%%%%%%%%%%%%% CLEAN DIRECTORY %%%%%%%%%%%%%%%%%%%%%%%
107 System.out.println("Cleaning the directory");
108 tool.SystemCall(shell_clean);// run shell script which cleans directory
109
110 // Wait until the directory is cleaned
111 while (doesExist == true) {
112 System.out.println("Not finished cleaning the directory");
113 doesExist = myFile.exists();
114 }
115 doesExist = true;
116 System.out.println("Finished cleaning the directory");
117
118 //%%%%%%%%%%%%%%%%%% PERFORM ONESTEP SIMULATION %%%%%%%%%%%%%%%%%
119 if (k == 1) {
120 System.out.println("Performing the initial(k=1) onestep analysis for

the desired geometry");
121 tool.SystemCall(shell_runonestepinit);// must be run on fine meshed

desired geometry
122 } else {
123 System.out.println("Performing the " + k + ". onestep analysis");
124 tool.SystemCall(shell_runonestep);// must be run on the shell model

of current geometry created from the solid model
125 }
126
127 //%%%%%%%%%%%%%%%%%%%% ANALYSE ONESTEP RESULTS %%%%%%%%%%%%%%%%%%
128 //Strain fields are extracted from the results of the OneStep solver
129 //Furthermore, the size and orientation of minimum principal strains are

determined for the laser scanned surface strain field and the
midplane strain field (used for determining processing parameters)

130 //Extract centroids from flattened blank in onestep (d3plot)
131 System.out.println("Open prepost and output the coordinates of the

element centroids for flat geometry (d3plot)");
132 tool.SystemCall(shell_centroidsonestep);
133
134 if (k == 1) {
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135 //In first iteration the strain fields are determined by mapping the
strains from desired geometry to blank geometry

136 strainsbotfirst = tool.MapDesiredToShell("bottom", "flip", Geometry)
;

137 strainstopfirst = tool.MapDesiredToShell("top", "flip", Geometry);
138 strainscenterfirst = tool.AvgArray(strainstopfirst, strainsbotfirst)

;
139 Princenter = tool.PrincipalStrain(strainscenterfirst);
140
141 //Determine the surface to scan (surface with the largest negative

principal strain) and create scan path strain field
142 strainPathPosition = tool.PathPosition(strainsbotfirst,

strainstopfirst);//Determine surface with largest negative
principal strain

143 if (strainPathPosition == "upper") {
144 strainspath = tool.AvgArray(strainstopfirst, strainscenterfirst)

;//Use the upper scan path strain field
145 PrinSur = tool.PrincipalStrain(strainstopfirst);//Size and

orientation of minimum principal strains for the top surface
strain field

146 System.out.println("Upper surface has the largest negative
principal strain");

147 }
148 if (strainPathPosition == "lower") {
149 strainspath = tool.AvgArray(strainsbotfirst, strainscenterfirst)

;//Use the lower scan path strain field
150 PrinSur = tool.PrincipalStrain(strainsbotfirst);//Size and

orientation of minimum principal strains for the bottom
surface strain field

151 System.out.println("Lower surface has the largest negative
principal strain");

152 }
153 } else {
154 System.out.println("Open prepost and output the coordinates of the

element centroids for current geometry (d3plot)");
155 tool.SystemCall(shell_centroids);
156 centroidfile = "deformedcentroid.data";//Current geometry centroids

used in subsequent scan path
157
158 //In the second and following iterations, calculate required strain

fields by extracting the results from the OneStep solver (
current geometry) and subtracting these from the initial OneStep
result (desired geometry)

159 //Results from OneStep solution of current geometry
160 strainsbot = tool.StrainToShell("bottom");
161 strainstop = tool.StrainToShell("top");
162 strainscenter = tool.AvgArray(strainstop, strainsbot);
163 strainsavgupper = tool.AvgArray(strainstop, strainscenter);
164 strainsavglower = tool.AvgArray(strainsbot, strainscenter);
165
166 //Scan path strain fields from OneStep of desired geometry
167 strainsinfinalupper = tool.AvgArray(strainstopfirst,

strainscenterfirst);
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168 strainsinfinallower = tool.AvgArray(strainsbotfirst,
strainscenterfirst);

169
170 //Subtract the current OneStep results (current geometry) from the

initial OneStep results (desired geometry) to determine required
strain

171 for (int x = 0; x < 40; x++) {
172 for (int y = 0; y < 40; y++) {
173 for (int i = 0; i < 6; i++) {
174 strainspathupper[x][y][i] = strainsinfinalupper[x][y][i]

- strainsavgupper[x][y][i];
175 strainspathlower[x][y][i] = strainsinfinallower[x][y][i]

- strainsavglower[x][y][i];
176 strainscenterreq[x][y][i] = strainscenterfirst[x][y][i]

- strainscenter[x][y][i];
177 }
178 }
179 }
180
181 //Select scan path surface (Surface with largest remaining negative

principal strain) and determine the scan path strain field
182 strainPathPosition = tool.PathPosition(strainspathlower,

strainspathupper);
183 for (int x = 0; x < 40; x++) {
184 for (int y = 0; y < 40; y++) {
185 for (int i = 0; i < 6; i++) {
186 if (strainPathPosition == "upper") {
187 strainspath[x][y][i] = strainspathupper[x][y][i];
188 }
189 if (strainPathPosition == "lower") {
190 strainspath[x][y][i] = strainspathlower[x][y][i];
191 }
192 }
193 }
194 }
195
196 //Determine required strain in laser scanned surface
197 for (int x = 0; x < 40; x++) {
198 for (int y = 0; y < 40; y++) {
199 for (int i = 0; i < 6; i++) {
200 if (strainPathPosition == "lower") {
201 strainssurreq[x][y][i] = strainsbotfirst[x][y][i] -

strainsbot[x][y][i];//Use the lower scan path
strain field

202 }
203 if (strainPathPosition == "upper") {
204 strainssurreq[x][y][i] = strainstopfirst[x][y][i] -

strainstop[x][y][i];//Use the upper scan path
strain field

205 }
206 }
207 }
208 }

108



209
210 //Determine size and orientation of minimum principal strains
211 PrinSur = tool.PrincipalStrain(strainssurreq);
212 Princenter = tool.PrincipalStrain(strainscenterreq);
213 }
214
215 ToFile(tool.getComponent(strainspath, 0, 0), "debugplot/avg1.data");//

Data for post processing - Scan path strain field
216
217 //%%%%%%%%%%% DETERMINE SCAN PATH & PROCESS VARIABLES %%%%%%%%%%
218 //Path planning must be performed - This is done by means of the scan

path algorithm
219 //Furthermore process variables are determined with respect to the

required in-plane and bending strain
220 Prin = tool.PrincipalStrain(strainspath);//Size and orientation of

minimum principal strains for the scan path strain field
221 Thresh = tool.Thresh(Prin, 50.0);//50.0 refer to the threshold

percentage
222 ToFile(tool.getComponent(Prin, 0, 0), "debugplot/prinstrain.data");//

Data for post processing - size of minimum principal strain
223 tool.VectorPlot(Prin);//Data for post processing - Vector field plot of

the orientation of minimum principal strain field
224 ElPath = tool.ElementPath(Thresh, Prin, 50.0, centroidfile);//Determine

scan path w.r.t. scan path algorithm (50.0 refers to the allowable
angular deviation)

225 ElPathPara = tool.ElPathPara(ElPath, PrinSur, Princenter, 0,
strainPathPosition);//Determine process variables (0=fraction
distribution, 1=pure tgm with fixed variables, 2=pure um with fixed
variables, 3=combined um/tgm with fixed variables

226 tool.GenerateDefineCurve(ElPath, centroidfile, ElPathPara);//Generate
define curves (input for to the Finite Element model of the laser
forming process)

227
228 //%%%%%%%%%%%%%%% PERFORM LASER FORMING SIMULATION %%%%%%%%%%%%
229 if (k == 1) {
230 System.out.println("

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%");
231 System.out.println("%%%%%%%%% Simulation model is initiated

%%%%%%%%%");
232 System.out.println("

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%");
233 tool.SystemCall(shell_run);
234 } else {
235 System.out.println("

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%");
236 System.out.println("%%%%%%%%% Simulation model " + k + " is

initiated %%%%%%%%");
237 System.out.println("

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%");
238 tool.SystemCall(shell_run2);
239 }
240 System.out.println("Simulation " + k + " is finished");
241
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242 //%%%% GENERATE SHELL MODEL FOR NEXT ITERATION OF FRAMEWORK %%%%
243 //Generate shell model which is to be used in a new OneStep analysis
244 tool.SystemCall(shell_generateshell); // run shell script "generate

shell model"
245 System.out.println("A shell model has been created");
246
247 //%%%%%%%%%%% CHECK CURRENT GEOMETRICAL ERROR %%%%%%%%%%%
248 tool.SystemCall(shell_centroids);
249 ZValue = tool.MapElementCentroidToCurrent("deformedcentroid.data");
250 AbSumError[k] = tool.ErrorData(ZValue, "deformedcentroid.data");
251 tolerancemeas = AbSumError[k];
252 System.out.println("Absolute error: " + AbSumError[k]);
253 ToFile(AbSumError, "debugplot/AbSumError.data"); //Data for post

processing - File containing the sum of absolute error
254 //%%%%%%%%%%%%%% DATA LOGGING FOR POST-PROCESSING %%%%%%%%%%%%%
255 tool.SystemCall("mkdir Scan" + k);
256 tool.SystemCall("mkdir " + Geometry);
257 tool.SystemCall("cp deformedshell.k Scan" + k);
258 tool.SystemCall("cp d3dump01 Scan" + k);
259 tool.SystemCall("cp d3plot Scan" + k);
260 tool.SystemCall("cp d3hsp Scan" + k);
261 tool.SystemCall("cp -r debugplot Scan" + k);
262 tool.SystemSleep(1000); // Wait until the information is copied
263 tool.SystemCall("cp d3plot01 Scan" + k);
264 tool.SystemSleep(1000); // Wait until the information is copied
265 tool.SystemCall("rm d3plot01");
266 tool.SystemCall("mv deformedshell.data Scan" + k);
267 tool.SystemCall("mv deformedcentroid.data Scan" + k);
268 tool.SystemCall("mv PARAMETRES Scan" + k);
269 tool.SystemCall("mv X_DEFINE_CURVE Scan" + k);
270 tool.SystemCall("mv Y_DEFINE_CURVE Scan" + k);
271 tool.SystemCall("mv P_DEFINE_CURVE Scan" + k);
272 tool.SystemCall("mv laststate.k Scan" + k);
273 tool.SystemCall("mv laststatecomplete.k Scan" + k);
274 tool.SystemCall("mv dyna.temp Scan" + k);
275 tool.SystemCall("mv onestepresult Scan" + k);
276 tool.SystemCall("mv Scan* " + Geometry);
277 System.out.println("Done moving files! -> restart");
278 k++;
279 }
280 //%%%%%%%%%%%%%%% PRINT OUT STOP CRITERIA %%%%%%%%%%%%%%
281 if (k - 1 == MaxScan) {
282 System.out.println("MaxScan has been reached.");
283 }
284 if (tolerancemeas == toleranceaccep) {
285 System.out.println("Tolerance is acceptable");
286 }
287 tool.SystemCall(shell_clean);
288 tool.SystemCall("rm desired.k");
289 }
290 }
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Appendix F

ToolBox.Java

This appendix contains the ToolBox used by the Java main program. The ToolBox is also
appended on the appendix-CD.

1 /*
2 * | | VT4-2.215 Laser Forming
3 * | | 3 Februar 2014
4 * |_______|
5 * \ / /
6 * \___/ /
7 * <|> /
8 * <|> /
9 * <|> /

10 * <|>/
11 * _____________________|/
12 *
13 * This Toolbox is for the LaserForm.java program. The program is made by the VT4

-2.215 Laser Forming group.
14 *
15 * ’----------’’----------’
16 * |___ ===============___|
17 * | Toolbox |
18 * |_________________|
19 */
20
21 // Importing packages
22 import java.io.*;
23 import java.util.*;
24 import java.text.*;
25 import java.nio.*;
26 import bek.opti.ObjectUtility;
27
28 public class ToolBox extends ObjectUtility {
29 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 // Method for executing the System Calls.
31 public void SystemCall(String executing) {
32
33 //METHOD DESCRIPTION:
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34 /* The method is capable of executing the system calls.
35 */
36 try {
37 Process proc = Runtime.getRuntime().exec(executing);
38 try {
39 proc.waitFor();
40 System.out.println("Process " + executing + " executed");
41 } catch (InterruptedException e) {
42 System.err.println("process was interrupted");
43 }
44
45 proc.getInputStream().close();
46 proc.getOutputStream().close();
47 proc.getErrorStream().close();
48
49 } catch (IOException e) {
50 System.err.println("IOException starting process!");
51 }
52 }
53 //End of method
54 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 // Method for implementing a Sleep
56 public void SystemSleep(int time) {
57
58 //METHOD DESCRIPTION:
59 /* The method is capable of forcing the java code to sleep for a specified

amount of time (ms):
60 */
61 try {
62 Thread.sleep(time);
63 } catch (InterruptedException ex) {
64 System.out.println("Error, when trying to sleep for " + time + " ms");
65 }
66 }
67 //End of method
68 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 // Method for reading onestepresult file
70 public double[][] ReadOnestep(String surface, String onestepfile, int noElem) {
71
72 //METHOD DESCRIPTION:
73 /* The method is capable of reading files formated as a onestepresult file

and output an Array[element ID][strain component] by performing the
following step:

74 * - Select surface of interest
75 * - Read all lines in file
76 * - Identify strain part of file (*INITIAL_STRAIN_SHELL INDEX)
77 * - Create strings holding the strains of the selected surface
78 * - Split strings into components
79 * - Convert string to double format
80 * - Output array
81 */
82 System.out.println("Starting ReadOneStep");
83 //Variables used in the method
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84 String selector = surface;//Selects the surface of interest (top or bottom)
85 String input = onestepfile;//Title of the onestepresults file
86 int nElem = noElem;//No. of elements in the onestep file
87 int type = 3;//top/bottom selector variable (0 = top, 1=bottom) initiate at

value different than 1,0
88 int x = 0;//Index identified for specific String
89 String[] onestep = null;//Onestepresults string array initialiser
90 List<String> onestepList = new ArrayList<String>(); //Onestepresults in

list format
91 int c = 4;//Counter used to filter top and bottom strains from onestep[]
92 String[] StrainsString = new String[nElem];//Strains in String format
93 int[] Operational = new int[nElem];//Operational sign checker (required to

read the file)
94 String[][] StrainSplit = new String[nElem][6];//String split into the 6

strain components for the top of the blank
95 int r = 0;//start character used in split
96 int s = 9;//end character used if first operational sign is negative
97 int interval = 10;//character split interval
98 Double format = new Double("6.35");//Double format used in conversion from

String to double
99 double[][] StrainDouble = new double[nElem][6];//Strains in desired surface

of the blank, in double format
100
101 //CHOOSE TOP/BOTTOM SURFACE
102 if (selector.equals("top")) {
103 type = 0;
104 }
105 if (selector.equals("bottom")) {
106 type = 1;
107 }
108
109 //READ ONESTEPRESULTS AND DETECT *INITIAL_STRAIN_SHELL INDEX
110 try {
111 FileInputStream file = new FileInputStream(input);
112 DataInputStream data_input = new DataInputStream(file);
113 BufferedReader buffer = new BufferedReader(new InputStreamReader(

data_input));
114 String str_line;
115 while ((str_line = buffer.readLine()) != null) {
116 str_line = str_line.trim();
117 if ((str_line.length() != 0)) {
118 onestepList.add(str_line);
119 }
120 }
121 onestep = (String[]) onestepList.toArray(new String[onestepList.size()])

; //Convert list to array (each index correspond to a line in the
onestepresult file)

122 } catch (IOException e) {
123 }
124 try {
125 x = grepLineNumber(input, "*INITIAL_STRAIN_SHELL"); //Identify index of

*INITIAL_STRAIN_SHELL
126 } catch (IOException e) {
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127 }
128
129 //CREATE STRING ARRAYS FOR THE STRAINS (STRING)
130 if (type == 0) {
131 StrainsString[0] = onestep[x + 2];
132 } else {
133 StrainsString[0] = onestep[x + 1];
134 }
135 for (int k = 1; k < nElem; k++) {
136 if (type == 0) {
137 StrainsString[k] = onestep[x + 1 + c];
138 } else {
139 StrainsString[k] = onestep[x + c];
140 }
141 c = c + 3;
142 }
143
144 //SPLIT STRINGS INTO THE 6 STRAIN COMPONENTS FOR TOP AND BOTTOM
145 //Check operational sign (necessary as the substring commmand can’t handle

empty char. in positive strains)
146 for (int f = 0; f < nElem; f++) {
147 if (StrainsString[f].substring(0, 1).equals("-")) {
148 Operational[f] = 1;
149 }
150 }
151
152 //Split Array into 6 components
153 for (int k = 0; k < nElem; k++) {
154 if (Operational[k] == 1) {
155 for (int i = 0; i < 6; i++) {
156 StrainSplit[k][i] = StrainsString[k].substring(r, r + interval);

//split
157 r += interval; //Iterate split start character
158 }
159 } else {
160 StrainSplit[k][0] = StrainsString[k].substring(r, interval - 1);
161 for (int i = 1; i < 6; i++) {
162 StrainSplit[k][i] = StrainsString[k].substring(s, s + interval);

//split
163 s += interval; //Iterate split start character
164 }
165 }
166 r = 0;
167 s = 9;
168 }
169
170 //CONVERT STRINGS INTO DOUBLE VALUE
171 for (int k = 0; k < nElem; k++) {
172 for (int i = 0; i < 6; i++) {
173 StrainDouble[k][i] = format.parseDouble(StrainSplit[k][i]);
174 }
175 }
176 System.out.println("ReadOneStep done");
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177 return StrainDouble;
178 }
179 //End of method
180 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 // Method for appending strains in onestepresult to a structured element array
182 public double[][][] StrainToShell(String surface) {
183
184 //METHOD DESCRIPTION:
185 /* The method is capable of appending strains in the format (Array[element

ID][strain component]) to an ordered m by n array by performing the
following step:

186 * - Create ordered element array - [m][n] which corresponds to spatial
dimensions [x][y] of a square blank

187 * - Read strains from onestepresult
188 * - Combine strains with ordered element array [m][n][strain compontent]
189 * - Output ordered array with strains components
190 */
191 System.out.println("Starting StrainToShell");
192 //Variables used in the method
193 String DesiredSurface = surface;//Inspected surface of the model
194 int ex = 40;//Elements in the X direction
195 int ey = 40;//Elements in the Y direction
196 double[][] C = new double[ex][ey];//Array holding the ordered element ID’s
197 int nElem = 1600;//No. of elements in the shell model
198 double[][] StrainDouble = new double[nElem][6];//Strains in the desired

surface of the blank in double format
199 int ElstartID = 1;//Start element ID for the shell model
200 int ElId = ElstartID;//Iteration counter to loop through elements
201 double[][][] StrainFinal = new double[ex][ey][6];//Strains ordered with

respect to the element ID
202
203 //READ ELEMENT CENTROID FILE AND PLACE IN ARRAY C[][]
204 double A[][] = ReadFile("centroidsblank.data", " ");//Centroid coordinates

of flat model
205 ArraySort(A, 1, 2);//Sorting Array with respect to x and y coordinates of

the centroid
206 for (int m = 0; m < ex; m++) {
207 for (int n = 0; n < ey; n++) {
208 int a = n + ex * m;//Integer that allows me to scan entire array

length of A[][]
209 C[m][n] = A[a][0];//Generate array with ordered element ID’s
210 }
211 }
212
213 //READ STRAIN FROM ONESTEPRESULTS
214 StrainDouble = ReadOnestep(DesiredSurface, "onestepresult", nElem);
215
216 //COMBINE STRAIN VALUES WITH THE ORDERED ELEMENT ARRAY
217 while (ElId <= nElem) {
218 for (int z = 0; z < ex; z++) {
219 for (int y = 0; y < ey; y++) {
220 if (C[z][y] == ElId) {
221 for (int i = 0; i < 6; i++) {
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222 StrainFinal[z][y][i] = StrainDouble[ElId - 1][i];
223 }
224 }
225 }
226 }
227 ElId++;
228 }
229 System.out.println("StrainToShell done");
230 return StrainFinal;
231 }
232 //End of method
233 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
234 // Method for calculating size and orientation of minimum principal strain in a

strain field
235 public double[][][] PrincipalStrain(double[][][] Strains) {
236
237 //METHOD DESCRIPTION:
238 /* The method is capable of converting strains in format [m][n][strain

components] to the size of minimum principal strain and orientaion of
minimum principal strain (2D) in each element by performing the
following step:

239 * - Calculate size of minimum principal strain in each element
240 * - Calculate orientation of minimum principal in each element
241 * - Output ordered array [m][n][size / orientation] with size of minimum

principal strains and orientation of minimum principal strains
242 */
243 System.out.println("Starting PrincipalStrain");
244 //Variables used in the method
245 double[][][] StrainComps = Strains;//All strain components in the desired

surface of the shell model
246 int ex = 40;//Elements in the X direction
247 int ey = 40;//Elements in the Y direction
248 double[][][] PrincipalStrain = new double[ex][ey][2];//Size and orientation

of minimum principal strains ordered with respect to the element ID
249
250 //CALCULATE SIZE OF MINIMUM PRINCIPAL PRINCIPAL STRAIN
251 for (int x = 0; x < ex; x++) {
252 for (int y = 0; y < ey; y++) {
253 PrincipalStrain[x][y][0] = (StrainComps[x][y][0] + StrainComps[x][y

][1]) / 2 - Math.sqrt(Math.pow((StrainComps[x][y][0] -
StrainComps[x][y][1]) / 2, 2) + Math.pow(StrainComps[x][y][3],
2));

254 }
255 }
256
257 //CALCULATE ORIENTATION OF MINIMUM PRINCIPAL STRAIN
258 for (int x = 0; x < ex; x++) {
259 for (int y = 0; y < ey; y++) {
260 if (StrainComps[x][y][3] < 0 && StrainComps[x][y][0] < StrainComps[x

][y][1]) {
261 PrincipalStrain[x][y][1] = 0.5 * Math.atan((2 * StrainComps[x][y

][3]) / (StrainComps[x][y][0] - StrainComps[x][y][1]));
262 }
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263 if (StrainComps[x][y][3] > 0 && StrainComps[x][y][0] < StrainComps[x
][y][1]) {

264 PrincipalStrain[x][y][1] = (Math.PI) + 0.5 * Math.atan((2 *
StrainComps[x][y][3]) / (StrainComps[x][y][0] - StrainComps[
x][y][1]));

265 }
266 if (StrainComps[x][y][3] > 0 && StrainComps[x][y][0] > StrainComps[x

][y][1]) {
267 PrincipalStrain[x][y][1] = (Math.PI / 2.0) + 0.5 * Math.atan((2

* StrainComps[x][y][3]) / (StrainComps[x][y][0] -
StrainComps[x][y][1]));

268 }
269 if (StrainComps[x][y][3] < 0 && StrainComps[x][y][0] > StrainComps[x

][y][1]) {
270 PrincipalStrain[x][y][1] = (Math.PI / 2.0) + 0.5 * Math.atan((2

* StrainComps[x][y][3]) / (StrainComps[x][y][0] -
StrainComps[x][y][1]));

271 }
272 }
273 }
274 System.out.println("PrincipalStrain done");
275 return PrincipalStrain;
276 }
277 //End of method
278 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
279 // Method for producing a data file used to plot a vector plot in gnuplot
280 public void VectorPlot(double[][][] Principal) {
281
282 //METHOD DESCRIPTION:
283 /* The method is capable of converting the size and orientation of minimum

principal strains into a vector plot data file by performing the
following step:

284 * - Calculate scaling of vector size (scaling determined from normalised
absolute size of minimum principal strain)

285 * - Calculate component in the vector plot file
286 * - Output data
287 */
288 System.out.println("Starting VectorPlot");
289 //Variables used in the method
290 double[][][] PrincipalDirections = Principal;//Size and orientation of

minimum principal strains, ordered with respect to the element ID
291 int ex = 40;//Elements in the X direction
292 int ey = 40;//Elements in the Y direction
293 double lengthx = 30;//Original extent of the blank in the X direction
294 double lengthy = 30;//Original extent of the blank in the Y direction
295 int nElem = 1600;//No. of element in the shell model
296 double[][] PlotData = new double[nElem * 2][4];//All data necesarry to plot

vectorplot in gunplot (x,y,dx,dy), each line corresponds to [start x,
start y, length x, length y] of each vector

297 double[][] Abs = new double[ex][ey];//Absolute size of minimum principal
strains - used for scaling vector size

298 double[][] Norm = new double[ex][ey];//Normalised size of principal strains
- used for scaling vector size
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299 double min;//Minimum absolute size of the minimum principal strain - used to
normalise

300 double max;//Maximum absolute size of the minimum principal strain - used to
normalise

301 int a = 0;//Counter used generate correct ordering of x,y,dx,dy in PlotData
[][]

302 int b = 0;//Counter used generate correct ordering of x,y,dx,dy in PlotData
[][]

303 int c = 0;//Counter used generate correct ordering of x,y,dx,dy in PlotData
[][]

304
305 //CALCULATE SCALING OF VECTOR W.R.T. NORMALISED SIZE OF MINIMUM PRINCIPAL

STRAIN
306 //Determine absolute strain and identify minimum and maximum value for

normalisation
307 for (int x = 0; x < ex; x++) {
308 for (int y = 0; y < ey; y++) {
309 Abs[x][y] = Math.abs(PrincipalDirections[x][y][0]);
310 }
311 }
312 min = max = Abs[0][0];
313 for (int x = 0; x < ex; x++) {
314 for (int y = 0; y < ey; y++) {
315 if (Abs[x][y] < min) {
316 min = Abs[x][y];
317 }
318 if (Abs[x][y] > max) {
319 max = Abs[x][y];
320 }
321 }
322 }
323
324 //Normalise strain (values between 0-1)
325 for (int x = 0; x < ex; x++) {
326 for (int y = 0; y < ey; y++) {
327 Norm[x][y] = (Math.abs(PrincipalDirections[x][y][0]) - min) / (max -

min);
328 }
329 }
330
331 //CALCULATE X,Y,DX,DY
332 //x and y are placed in the centroid of the element - Two vectors are

plotted from each centroid one in the correct orientation of minimum
principal strain and one rotated 180 degress around the element
centroids

333 //this is necessary to achieve a better visual representation of the
orientation of minimum principal strain in the element

334 //Correct orientation (Note that all dx,dy are scaled further with a 0.3
value, this ensures that all arrows fit within the element size of 0.75
mm x 0.75mm

335 for (int i = 0; i < nElem; i++) {
336 if ((i) % 40 == 0 && i != 0) {
337 a++;
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338 }
339 if ((i) % 40 == 0 && i != 0) {
340 c++;
341 }
342 b = i - 40 * a;
343 PlotData[i][0] = lengthx / ex * 0.5 + lengthx / ex * (b);

//X
344 PlotData[i][1] = lengthy / ey * 0.5 + lengthx / ex * (c);

//Y
345 PlotData[i][2] = Math.cos(PrincipalDirections[b][c][1]) * Norm[b][c] *

0.3; //DX - correct direction
346 PlotData[i][3] = Math.sin(PrincipalDirections[b][c][1]) * Norm[b][c] *

0.3; //DY- correct direction
347 }
348 a = b = c = 0;
349 //Rotated orientation
350 for (int i = 1600; i < nElem * 2; i++) {
351 if ((i) % 40 == 0 && i != 1600) {
352 a++;
353 }
354 if ((i) % 40 == 0 && i != 1600) {
355 c++;
356 }
357 b = i - 40 * a - 1600;
358 PlotData[i][0] = lengthx / ex * 0.5 + lengthx / ex * (b);

//X
359 PlotData[i][1] = lengthy / ey * 0.5 + lengthx / ex * (c);

//Y
360 PlotData[i][2] = -Math.cos(PrincipalDirections[b][c][1]) * Norm[b][c] *

(0.3); //DX - negative direction
361 PlotData[i][3] = -Math.sin(PrincipalDirections[b][c][1]) * Norm[b][c] *

(0.3); //DY- negative direction
362 }
363 ToFile(PlotData, "debugplot/vector.data");
364 System.out.println("VectorPlot done");
365 }
366 //End of method
367 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
368 // Method for appending centroid coordinates to structured element array
369 public double[][][] CenterAppender(String centroidfile) {
370
371 //METHOD DESCRIPTION:
372 /* The method is capable appending centroid coordinates to an ordered

element array by performing the following steps:
373 * - Create ordered element array - [m][n] corresponds to spatial dimensions

[x][y]
374 * - Append coordinates to array [m][n][coordinates]
375 * - Output array
376 */
377 System.out.println("Starting CenterAppender");
378 //Variables used in the method
379 int ex = 40;//Elements in the X direction
380 int ey = 40;//Elements in the Y direction
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381 double[][] C = new double[ex][ey];//Array holding the ordered element ID’s
382 double[][][] CenterCoord = new double[ex][ey][4];//Array with ordered

centroid coordinates
383 int ElstartID = 1;//Start element ID
384 int ElId = ElstartID;//Iteration counter to loop through elements
385 int nElem = 1600;//No. of elements
386
387 //READ ELEMENT CENTROID FILE AND PLACE IN ORDERED ARRAY C[][]
388 double A[][] = ReadFile("centroidsblank.data", " ");
389 ArraySort(A, 1, 2);//Sorting Array with respect to x and y coordinates of

the centroid
390 for (int m = 0; m < ex; m++) {
391 for (int n = 0; n < ey; n++) {
392 int a = n + ex * m;//Integer that allows for scanning the entire

array lengh of A[][]
393 C[m][n] = A[a][0];//Generate array with ordered element ID’s
394 }
395 }
396
397 //COMBINE COORDINATES WITH THE ORDERED ELEMENT ARRAY
398 double B[][] = ReadFile(centroidfile, " ");
399 while (ElId <= nElem) {
400 for (int z = 0; z < ex; z++) {
401 for (int y = 0; y < ey; y++) {
402 if (C[z][y] == ElId) {
403 CenterCoord[z][y][0] = ElId;
404 for (int i = 1; i < 4; i++) {
405 CenterCoord[z][y][i] = B[ElId - 1][i];
406 }
407 }
408 }
409 }
410 ElId++;
411 }
412 System.out.println("CenterAppender done");
413 return CenterCoord;
414 }
415 //End of method
416 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
417 // Method for mapping strains in the desired geometry to the ordered array
418 public double[][][] MapDesiredToShell(String surface, String flip, String

geometry) {
419
420 //METHOD DESCRIPTION:
421 /* The method is capable of mapping the strains from the desired geometry to

the shell model by performing the following step:
422 * - Read centroid data for flattened desired geometry and shell model of

blank
423 * - Find "best match" element ID in desired geometry with shortest in-plane

centroid distance to the shell model
424 * - Map strain components from "best match" to the shell model
425 * - Output array [m][n][mapped strain components]
426 */
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427 System.out.println("Starting MapDesiredToShell");
428 //Variables used in this method
429 String DesiredSurface = surface;//Inspected surface of the model
430 int exs = 40;//Elements in the X direction (40x40 shell model of blank)
431 int eys = 40;//Elements in the Y direction (40x40 shell model of blank)
432 double[][] C = new double[exs][eys];//Ordered array with element ID
433 int nElem = exs * eys;//No. of elements in shell model of blank
434 int ElstartID = 1;//Start element ID
435 int ElId = ElstartID;//Iteration counter to loop through elements
436 double dist = 0;//Euclidean distance, in XY plane, between centroid in 40x40

shell model of blank and the flattened desired geometry
437 double minDist = 10000;//Variable storing the shortest distance between to

element centroids (Must be initiated at a value higher than the minimum
distance between elements)

438 int[] minDistElId = new int[nElem];//Element IDs corresponding to shortes
distances

439 double[][][] StrainFinal = new double[exs][eys][6];//Mapped strains ordered
with respect to the element ID

440
441 //READ CENTROID COORDINATES FOR DESIRED GEOMETRY (A[][]) AND SHELL MODEL OF

BLANK (B[][])
442 double A[][] = ReadFile("onestepcentroid.data", " ");//Centroids of the fine

meshed desired geometry (flat model)
443 double B[][] = ReadFile("centroidsblank.data", " ");//Centroid of the 40x40

shell model of blank (not formed)
444
445 //FIND BEST MATCH CENTROID (SHORTEST EUCLIDEAN DISTANCE IN XY PLANE) BETWEEN

B[][] AND A[][]
446 while (ElId <= nElem) {
447 for (int i = 0; i < A.length; i++) {
448 if (flip == "flip") {
449 dist = Math.sqrt(Math.pow(B[ElId - 1][1] - (A[i][1]), 2) + Math.

pow(B[ElId - 1][2] - (-A[i][2]), 2)); //Euclidean distance
in XY plane

450 } else {
451 dist = Math.sqrt(Math.pow(B[ElId - 1][1] - (A[i][1]), 2) + Math.

pow(B[ElId - 1][2] - (A[i][2]), 2));
452 }
453 if (dist < minDist) {
454 minDist = dist; //Save shortest distance
455 minDistElId[ElId - 1] = i + 1;
456 }
457 }
458 minDist = 10000; //reset distance variable
459 ElId++;
460 }
461 ElId = ElstartID;
462
463 //SORT AND ORDER ELEMENT ARRAY
464 ArraySort(B, 1, 2); //Sorting Array with respect to X and Y coordinates of

the centroid
465 for (int m = 0; m < exs; m++) {
466 for (int n = 0; n < eys; n++) {
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467 int a = n + exs * m; //Integer that allows scanning of the entire
array lengh of A[][]

468 C[m][n] = B[a][0]; //Generate array with ordered element ID’s
469 }
470 }
471
472 //READ STRAIN COMPONENTS
473 double strains[][] = ReadOnestep(DesiredSurface, "onestepresult", A.length);
474
475 //COMBINE STRAIN VALUES WITH THE ORDERED ELEMENT ARRAY
476 while (ElId <= nElem) {
477 for (int z = 0; z < exs; z++) {
478 for (int y = 0; y < eys; y++) {
479 if (C[z][y] == ElId) {
480 for (int i = 0; i < 6; i++) {
481 StrainFinal[z][y][i] = strains[minDistElId[ElId - 1] -

1][i]; //Find the strain value at the element
closest to the centroid of the 40x40 shell model of
the blank

482
483 }
484 }
485 }
486 }
487 ElId++;
488 }
489 System.out.println("MapDesiredToShell done");
490 return StrainFinal;
491 }
492 //End of method
493 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
494 // Method for identifying index of specific string in data file
495 public int grepLineNumber(String file, String word) throws IOException {
496 //METHOD DESCRIPTION:
497 /* The method is capable of identifying the index of a specific string in

data file by performing the following steps:
498 * - scan file until string is met and store index value
499 */
500
501 System.out.println("Starting grepLineNumber");
502 //Variables used in this method
503 String line;//String storing a line from the file
504 int lineNumber = 0;//Line number / index of line holding desired string (

word)
505
506 //READ FILE UNTIL THE STRING IS DETECTED AND RETURN THE INDEX
507 BufferedReader buf = new BufferedReader(new InputStreamReader(new

DataInputStream(new FileInputStream(file))));
508 while ((line = buf.readLine()) != null) {
509 lineNumber++;
510 if (word.equals(line)) {
511 return lineNumber;
512 }
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513 }
514 System.out.println("grepLineNumber done");
515 return -1;
516 }
517 //End of method
518 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
519 // Method for going from 3D to 2D array and manipulation
520 public double[][] getComponent(double[][][] Data, int component, double addition

) {
521 //METHOD DESCRIPTION:
522 /* The method is capable of converting a 3D array to 2D ,filled with one of

the components in the 3D arry, by performing the following steps:
523 * - Place Data[x][y][component] in ComponentArray[selected component at x][

selected component at y]
524 */
525
526 //Variables used in this method
527 int ex = 40;//Elements in the X direction
528 int ey = 40;//Elements in the Y direction
529 double[][] ComponentArray = new double[ex][ey]; //Selected 2D array in

ordered array
530
531 for (int x = 0; x < ex; x++) {
532 for (int y = 0; y < ey; y++) {
533 ComponentArray[x][y] = Data[x][y][component] + addition; //Addition

can be used to make an offset in the selected component if
desired

534 }
535 }
536 return ComponentArray;
537 }
538 //End of method
539 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
540 // Method for performing thresholding on size of minimum principal strain
541 public double[][] Thresh(double[][][] Strain, double ThreshPercentage) {
542 //METHOD DESCRIPTION:
543 /* The method is capable of thresholding the size of the minimum principal

strains [][] by performing the following steps:
544 * - Sort strains in ordered array
545 * - Identify the threshold limit with respect to threshold percentage
546 * - Perform thresholding
547 * - Output ordered array [m][n] with entry = 1 if the threshold is

satisfied and 0 if not
548 */
549
550 System.out.println("Starting Thresh");
551 //Variables used in this method
552 double[][] ThreshArray = new double[Strain.length][Strain.length];//Array

filled with ordered 1’s and 0’s (1 if >= thresh else 0)
553 int i = 0;//Counter used to generate sorted array
554 double[] Sorted = new double[Strain.length * Strain.length];//Array sorted

with sorted values from lowest to highest
555 int ThreshIndex = 0;//Index defining the index in the sorted array
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corresponding to the threshPercentage
556 double ThreshValue = 0.0;//Size of minimum principal strain value defining

threshold limit
557
558 //GENERATE AND SORT ALL STRAINS IN 1D ARRAY
559 for (int x = 0; x < Strain.length; x++) {
560 for (int y = 0; y < Strain.length; y++) {
561 Sorted[i] = Strain[x][y][0];
562 i = i + 1;
563 }
564 }
565 Arrays.sort(Sorted);
566
567 //DETERMINE THRESHOLD LIMIT WITH RESPECT TO THRESHOLD PERCENTAGE
568 ThreshIndex = (int) Math.round(((Strain.length * Strain.length) / 100) *

ThreshPercentage);
569 ThreshValue = Sorted[ThreshIndex - 1];
570
571 //PERFORM THRESHOLDING OF THE SIZE OF MINIMUM PRINCIPAL STRAIN
572 for (int x = 0; x < Strain.length; x++) {
573 for (int y = 0; y < Strain.length; y++) {
574 if (Strain[x][y][0] <= ThreshValue) {
575 ThreshArray[x][y] = 1.0;
576 }
577 }
578 }
579 ToFile(ThreshArray, "debugplot/thresh.data");
580 System.out.println("Thresh done");
581 return ThreshArray;
582 }
583 //End of method
584 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
585 // Method for performing pathplanning
586 public int[][] ElementPath(double[][] Thresh, double[][][] PrinData, double

angleaccept, String centroid) {
587 //METHOD DESCRIPTION
588 /* The method is capable of determining scan paths by performing the scan

path algorithm described in the main report.
589 */
590
591 System.out.println("Starting ElementPath");
592 //Variables used in this method
593 int ex = 40;//Elements in the X direction
594 int ey = 40;//Elements in the Y direction
595 double min = 1000;//minimum size of minimum principal strain (must be

initiated at a value above 0)
596 int startx = 0;//Starting X point of the scan path algorithm
597 int starty = 0;//Starting Y point of the scan path algorithm
598 double[][] orientation = getComponent(PrinData, 1, 0);//Orientation of

minimum principal strains field
599 double[][] grassFire = new double[ex][ey];//Burned elements field (visited

elements = 1, non visited elements = 0)
600 double[][][] Vectororientation = new double[ex][ey][2];//A vector
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representation of the orientation of principal strain
601 double[][][] coords = CenterAppender(centroid);//Coordinates of element

centroids
602 double[][] V = new double[8][2];//Search stencil representation of movement

options vectors in current point
603 double[] Angles = new double[8];//Search stencil representation of the angle

between the orienation of principals strain and movement option vector
604 int option = 0;//trigger, detecting when the scan path algorithm is out of

movement options
605 ArrayList<Integer> listxf = new ArrayList<Integer>();//X coordinates in the

1st search of the scan path algorithm
606 ArrayList<Integer> listyf = new ArrayList<Integer>();//Y coordinates in the

1st search of the scan path algorithm
607 ArrayList<Integer> listxb = new ArrayList<Integer>();//X coordinates in the

2nd search of the scan path algorithm
608 ArrayList<Integer> listyb = new ArrayList<Integer>();//Y coordinates in the

2nd search of the scan path algorithm
609 int dircount = 0;//Counter for the scan path algorithm
610 int a = 0;//Value used to check if the scan path algorithm has run to a dead

end (if equal to 7 = dead end)
611 int dir = 8;//variable used to determine appropriate redced search stencil
612 int length = 8;//size of the search stencil (3 points or 8 points)
613 int temp = 0;//temporary variable uses to select appropriate search stencil
614 int[] stencilx = {-1, 0, 1, -1, 1, -1, 0, 1};//X stencil updated during

iterations
615 int[] stencily = {1, 1, 1, 0, 0, -1, -1, -1};//Y stencil updated during

iterations
616
617 //IDENTIFY MOST COMPRESSIVE STRAIN I.E. START POINT OF SCAN PATH ALGORITHM)
618 for (int x = 1; x < ex - 1; x++) {
619 for (int y = 1; y < ey - 1; y++) {
620 if (Thresh[x][y] == 1 && PrinData[x][y][0] < min) {
621 min = PrinData[x][y][0];
622 startx = x;
623 starty = y;
624 }
625 }
626 }
627
628 System.out.println("min prin strain " + min + " start(" + startx + "," +

starty + ")");
629
630 //START SCANPATH ALGORITHM
631 while (dircount < 2) {
632 int pointx = startx;
633 int pointy = starty;
634 if (dircount == 1) {
635 option = 0;
636 }
637
638 //CREATE UNITIY VECTOR PRINCIPAL ORIENTATION FIELD (USED TO DETERMINE

ANGLE BETWEEN MOVEMENT OPTION VECTORS ORIENTATION OF MINUMUM
PRINCIPAL STRAIN)
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639 for (int i = 0; i < ex; i++) {
640 for (int j = 0; j < ey; j++) {
641 Vectororientation[i][j][0] = Math.cos(orientation[i][j]);
642 Vectororientation[i][j][1] = Math.sin(orientation[i][j]);
643 }
644 }
645
646 int[] stencilxs = {-1, 0, 1, -1, 1, -1, 0, 1};//X stencil at start point

(cannot be moved)
647 int[] stencilys = {1, 1, 1, 0, 0, -1, -1, -1};//Y stencil at start point

(cannot be moved)
648 stencilx = stencilxs;//X stencil updated during iterations
649 stencily = stencilys;//Y stencil updated during iterations
650
651 //START SEARCHING
652 while (option < 1 && pointx < orientation.length - 1 && pointy <

orientation[0].length - 1 && pointx > 0 && pointy > 0) {
653 //SELECT APPROPIATE STENCIL FOR SEARCH
654 //The appropriate search stencil is selected in the initial

iteration the 8pt stencil is selected in the remain iterations a
reduced search stencil is selected with respect to the movement
option vector

655 //selected in the previous iteration.
656 if (dir == 0) {//upwards-left - reduced search stencil
657 stencilx[0] = -1;
658 stencilx[1] = 0;
659 stencilx[2] = -1;
660 stencily[0] = 1;
661 stencily[1] = 1;
662 stencily[2] = 0;
663 length = 3;
664 }
665 if (dir == 1) {//upwards - reduced search stencil
666 stencilx[0] = -1;
667 stencilx[1] = 0;
668 stencilx[2] = 1;
669 stencily[0] = 1;
670 stencily[1] = 1;
671 stencily[2] = 1;
672 length = 3;
673 }
674 if (dir == 2) {//upwards-right - reduced search stencil
675 stencilx[0] = 0;
676 stencilx[1] = 1;
677 stencilx[2] = 1;
678 stencily[0] = 1;
679 stencily[1] = 1;
680 stencily[2] = 0;
681 length = 3;
682 }
683 if (dir == 3) {//left - reduced search stencil
684 stencilx[0] = -1;
685 stencilx[1] = -1;
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686 stencilx[2] = -1;
687 stencily[0] = 1;
688 stencily[1] = 0;
689 stencily[2] = 1;
690 length = 3;
691 }
692 if (dir == 4) {//right - reduced search stencil
693 stencilx[0] = 1;
694 stencilx[1] = 1;
695 stencilx[2] = 1;
696 stencily[0] = 1;
697 stencily[1] = 0;
698 stencily[2] = -1;
699 length = 3;
700 }
701 if (dir == 5) {//downwards-left - reduced search stencil
702 stencilx[0] = -1;
703 stencilx[1] = -1;
704 stencilx[2] = 0;
705 stencily[0] = 0;
706 stencily[1] = -1;
707 stencily[2] = -1;
708 length = 3;
709 }
710 if (dir == 6) {//downwards - reduced search stencil
711 stencilx[0] = -1;
712 stencilx[1] = 0;
713 stencilx[2] = 1;
714 stencily[0] = -1;
715 stencily[1] = -1;
716 stencily[2] = -1;
717 length = 3;
718 }
719 if (dir == 7) {//downwards-right - reduced search stencil
720 stencilx[0] = 1;
721 stencilx[1] = 0;
722 stencilx[2] = 1;
723 stencily[0] = 0;
724 stencily[1] = -1;
725 stencily[2] = -1;
726 length = 3;
727 }
728 if (dir == 8) {//8 point search stencil
729 length = 8;
730 stencilx = stencilxs;
731 stencily = stencilys;
732 }
733
734 //DETERMINE CURRENT MOVEMENT OPTION VECTORS BASED ON ACTIVE STENCIL
735 for (int i = 0; i < length; i++) {
736 for (int k = 1; k < 3; k++) {
737 V[i][k - 1] = coords[pointx + stencilx[i]][pointy + stencily

[i]][k] - coords[pointx][pointy][k];
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738 }
739 }
740
741 //DETERMINE ANGLES BETWEEN MOVEMENT OPTIONS VECTOR AND ORIENTATION

OF MINIMUM PRINCIPAL STRAIN (DOTPRODUCT)
742 for (int i = 0; i < length; i++) {
743 Angles[i] = Math.acos((Vectororientation[pointx + stencilx[i]][

pointy + stencily[i]][0] * V[i][0] + Vectororientation[
pointx + stencilx[i]][pointy + stencily[i]][1] * V[i][1]) /
(Math.sqrt(Math.pow(Vectororientation[pointx + stencilx[i]][
pointy + stencily[i]][0], 2) + Math.pow(Vectororientation[
pointx + stencilx[i]][pointy + stencily[i]][1], 2)) * Math.
sqrt(Math.pow(V[i][0], 2) + Math.pow(V[i][1], 2)))) * 180.0
/ Math.PI;

744 }
745
746 //SELECT MOVEMENT OPTION WHICH IS CLOSEST TO PERPENDICULAR AND

SATISFIES CRITERIA WITH RESPECT TO THRESHOLD, PERPENDICULARITY
AND POINT REPETITION

747 double minangle = 180;//Initialised minimum angle, must be greater
than 90 deg.

748 int minindex = 8;//Initialised mininum index must be equal to 8
749 int bestx = pointx;//initialise best x direction
750 int besty = pointy;//initialise best y direction
751 grassFire[bestx][besty] = 1;//Burn start point
752 for (int i = 0; i < length; i++) {
753 if (Math.abs(90.0 - Angles[i]) <= minangle && Thresh[pointx +

stencilx[i]][pointy + stencily[i]] == 1 && grassFire[pointx
+ stencilx[i]][pointy + stencily[i]] == 0) {

754 minindex = i;
755 minangle = Math.abs(90.0 - Angles[i]);
756 }
757 }
758 //UPDATE TEMPORARY VARIABLE WITH THE CHOSEN MOVEMENT DIRECTION, SUCH

THAT A NEW APPROPRIATE SEARCH STENCIL CAN BE SELECTED FOR THE
FOLLOWING ITERATION

759 if (minangle < angleaccept && a % 7 == 0) {
760 for (int i = 0; i < 8; i++) {
761 if (minindex == i) {
762
763 if (dir != 8) {//for the reduced stencil temp is set

equal to the correlating index in the 8pt stencil,
this is a requirement of the implementation method

764 if (dir == 0 && i == 0) {
765 temp = 0; //next search stencil is the upwards-

left reduced search stencil
766 }
767 if (dir == 0 && i == 1) {
768 temp = 1; //next search stencil is the upwards

reduced search stencil
769 }
770 if (dir == 0 && i == 2) {
771 temp = 3; //next search stencil is the left
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reduced search stencil
772 }
773 if (dir == 1 && i == 0) {
774 temp = 0; //next search stencil is the upwards-

left reduced search stencil
775 }
776 if (dir == 1 && i == 1) {
777 temp = 1; //next search stencil is the upwards

reduced search stencil
778 }
779 if (dir == 1 && i == 2) {
780 temp = 2; //next search stencil is the upwards-

right reduced search stencil
781 }
782 if (dir == 2 && i == 0) {
783 temp = 1; //next search stencil is the upwards

reduced search stencil
784 }
785 if (dir == 2 && i == 1) {
786 temp = 2; //next search stencil is the upwards-

right reduced search stencil
787 }
788 if (dir == 2 && i == 2) {
789 temp = 4; //next search stencil is the right

reduced search stencil
790 }
791 if (dir == 3 && i == 0) {
792 temp = 0; //next search stencil is the upwards-

left reduced search stencil
793 }
794 if (dir == 3 && i == 1) {
795 temp = 3; //next search stencil is the left

reduced search stencil
796 }
797 if (dir == 3 && i == 2) {
798 temp = 5; //next search stencil is the downwards

-left reduced search stencil
799 }
800 if (dir == 4 && i == 0) {
801 temp = 2; //next search stencil is the upwards-

right reduced search stencil
802 }
803 if (dir == 4 && i == 1) {
804 temp = 4; //next search stencil is the right

reduced search stencil
805 }
806 if (dir == 4 && i == 2) {
807 temp = 7; //next search stencil is the downwards

-right reduced search stencil
808 }
809 if (dir == 5 && i == 0) {
810 temp = 3; //next search stencil is the left

reduced search stencil
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811 }
812 if (dir == 5 && i == 1) {
813 temp = 5; //next search stencil is the downwards

-left reduced search stencil
814 }
815 if (dir == 5 && i == 2) {
816 temp = 6; //next search stencil is the downwards

reduced search stencil
817 }
818 if (dir == 6 && i == 0) {
819 temp = 5; //next search stencil is the downwards

-left reduced search stencil
820 }
821 if (dir == 6 && i == 1) {
822 temp = 6; //next search stencil is the downwards

reduced search stencil
823 }
824 if (dir == 6 && i == 2) {
825 temp = 7; //next search stencil is the downwards

-right reduced search stencil
826 }
827 if (dir == 7 && i == 0) {
828 temp = 4; //next search stencil is the right

reduced search stencil
829 }
830 if (dir == 7 && i == 1) {
831 temp = 6; //next search stencil is the downwards

reduced search stencil
832 }
833 if (dir == 7 && i == 2) {
834 temp = 7; //next search stencil is the downwards

-right reduced search stencil
835 }
836 dir = temp;
837 } else {
838 dir = i; //next search stencil is the eight point

search stencil
839 }
840 //Update the best point identified
841 bestx = bestx + stencilx[i];
842 besty = besty + stencily[i];
843 } else {
844 a++;
845 }
846 }
847 //write the best point to list
848 if (dircount == 0) {
849 listxf.add(bestx);
850 listyf.add(besty);
851 } else {
852 listxb.add(bestx);
853 listyb.add(besty);
854 }
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855 } else {
856 option = 1;
857 System.out.println("No further movement in this direction");
858 }
859 //update the start point for the next iteration of the algorithm
860 pointx = bestx;
861 pointy = besty;
862 grassFire[bestx][besty] = 1;//Burn visited point
863 }
864 a = 0;
865 dir = 8;
866 dircount++;
867 }
868
869 //GENERATE ORDERED ARRAY FROM FORWARD LIST, START POINT AND BACKWARDS LIST
870 int[][] Points = new int[listxb.size() + 1 + listxf.size()][2];
871 for (int i = 0; i < listxb.size(); i++) {
872 Points[i][0] = listxb.get(listxb.size() - 1 - i);
873 Points[i][1] = listyb.get(listyb.size() - 1 - i);
874 }
875 Points[listxb.size()][0] = startx;
876 Points[listyb.size()][1] = starty;
877 for (int i = listxb.size(); i < listxb.size() + listxf.size(); i++) {
878 Points[i + 1][0] = listxf.get(i - listxb.size());
879 Points[i + 1][1] = listyf.get(i - listxb.size());
880 }
881
882 for (int j = 0; j < Points.length; j++) {
883 System.out.println(Points[j][0] + " " + Points[j][1]);
884 }
885
886 System.out.println("ElementPath done");
887 return Points;
888
889 }
890 //End of method
891 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
892 // Method for averaging two arrays
893 public double[][][] AvgArray(double[][][] top, double[][][] bottom) {
894
895 //METHOD DESCRIPTION:
896 /* The method is capable of averaging the last components of two 3D arrays

by performing the following steps:
897 * - Take average between first and second array for all components
898 */
899 System.out.println("Starting AvgArray");
900 //Variables used in this method
901 double[][][] Avg = new double[top.length][top.length][6];//Array with

averaged components
902
903 //CALCULATE AVERAGE FOR ALL COMPONENTS
904 for (int x = 0; x < top.length; x++) {
905 for (int y = 0; y < top.length; y++) {
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906 for (int i = 0; i < 6; i++) {
907 Avg[x][y][i] = (top[x][y][i] + bottom[x][y][i]) / 2;
908 }
909 }
910 }
911 System.out.println("AvgArray done");
912 return Avg;
913 }
914 //End of method
915 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
916 // Method for selecting process variables
917 public double[][] ElPathPara(int[][] ElPath, double[][][] Prinsur, double[][][]

Princenter, int ControlOrMech, String strainPathPosition) {
918
919 //METHOD DESCRIPTION:
920 /* The method is capable of determining process variables for the scan path

by performing the following steps:
921 * - Calculate required bending and in-plane strain
922 * - Select forming mechanism with respect to required bending and in-plane

strain
923 * - Calculate required bending and in-plane strain
924 * - Select process variables with respect to selected forming mechanism and

required bending and in-plane strain (Fraction distribution)
925 */
926 System.out.println("Starting ElPathPara");
927 //Variables used in this method
928 double[][] Parameters = new double[ElPath.length][4];//Array with scan speed

, laser power, laser beam radius and selected surface
929 double[][][] PrinMidplane = Princenter;//Size and orientation of minimum

principal strains for the midplane strain field
930 double[][][] PrinSur = Prinsur;//Size and orientation of minimum principal

strains for the surface strain field
931 double[] BendingStrain = new double[ElPath.length];//Bending strain in the

scan path
932 double[] MidStrain = new double[ElPath.length];//In-plane strain in the scan

path
933 double[] ratio = new double[ElPath.length];//ratio between bending strain

and in-plane strain
934 double MaxUM = -1000;//The maximum in-plane strain in the scan path
935 double MaxTGM = -1000;//The maximum bending strain in the scan path
936 double MinUM = 1000;//The minimum in-plane strain in the scan path
937 double MinTGM = 1000;//The minimum bending strain in the scan path
938 double UMlimit = 0.027;//Absolute value of the maximum achievable in-plane

strain by the UM
939 double TGMlimit = 0.0021;//Absolute value of the maximum achievable bending

strain by the TGM
940 double UMpowerlimit = 0.014;//Absolute value of the minimum achievable in-

plane strain by the UM
941 double TGMpowerlimit = 0.00035;//Absolute value of the minimum achievable

bending strain by the TGM
942 double V;//Scan speed
943 double Vmoving; //Scan speed update value (V_new in project) used to ensure

movement within processrange
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944
945 //FIND ELEMENTS CORRESPONDING TO SCAN PATH, CALCULATE BENDING AND IN-PLANE

STRAIN AND SPECIFY SURFACE TO BE SCANNED
946 for (int i = 0; i < ElPath.length; i++) {
947 BendingStrain[i] = PrinSur[ElPath[i][0]][ElPath[i][1]][0] - PrinMidplane

[ElPath[i][0]][ElPath[i][1]][0];
948 MidStrain[i] = Princenter[ElPath[i][0]][ElPath[i][1]][0];
949 if (strainPathPosition == "lower") {
950 Parameters[i][3] = 1; //Define surface lower
951 }
952 if (strainPathPosition == "upper") {
953 Parameters[i][3] = 0; //Define surface upper
954 }
955 }
956
957 //SELECT MECHANISM BY RATIO
958 for (int i = 0; i < ElPath.length; i++) {
959 if (Math.abs(BendingStrain[i] / MidStrain[i]) < 1.0) {
960 ratio[i] = 0; //UM selected
961 Parameters[i][2] = 3;//Define beam radius
962 } else {
963 ratio[i] = 1;//TGM selected
964 Parameters[i][2] = 1.5;//Define beam radius
965 }
966 }
967
968 if (ControlOrMech == 0) {
969 //SELECT PROCESS VARIABLES WITH RESPECT TO FORMING MECHANISM AND

REQUIRED STRAIN
970 for (int i = 0; i < ElPath.length; i++) {
971 if (ratio[i] == 0) {//um selected
972 //calc largest and smallest in-plane strain
973 for (int j = 0; j < ElPath.length; j++) {
974 if (Math.abs(MidStrain[j]) > MaxUM) {
975 MaxUM = Math.abs(MidStrain[j]);
976 }
977 if (Math.abs(MidStrain[j]) < MinUM) {
978 MinUM = Math.abs(MidStrain[j]);
979 }
980 }
981
982 //Define scan speed
983 if (MaxUM > UMlimit) {
984 V = 200;
985 Parameters[i][0] = V + (400 * (MaxUM - Math.abs(MidStrain[i

])) / MaxUM);
986 } else {
987 V = 200 + ((UMlimit - MaxUM) / UMlimit) * 400;
988 Vmoving = 400 - V; //Adjusted upper speed, to ensure that

the scan speed is always within the processrange i.e.
200-400mm/min

989 Parameters[i][0] = V + (Vmoving * (MaxUM - Math.abs(
MidStrain[i])) / MaxUM);
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990 }
991
992 //Define power (kill if forming is low)
993 if (MinUM < UMpowerlimit) {
994 Parameters[i][1] = 0;
995 } else {
996 Parameters[i][1] = 0.38;
997 }
998 System.out.println("UM with V= " + Parameters[i][0] + " P =

" + Parameters[i][1] + " r = " + Parameters[i][2] + "
surface (0=t,1=b) = " + Parameters[i][3]);

999 }
1000
1001 if (ratio[i] == 1) {//tgm selected
1002 //calc largest and smallest bend strain
1003 for (int j = 0; j < ElPath.length; j++) {
1004 if (Math.abs(BendingStrain[j]) > MaxTGM) {
1005 MaxTGM = Math.abs(BendingStrain[j]);
1006 }
1007 if (Math.abs(BendingStrain[j]) < MinTGM) {
1008 MinTGM = Math.abs(BendingStrain[j]);
1009 }
1010 }
1011
1012 //Define scan veloity
1013 if (MaxTGM > TGMlimit) {
1014 V = 2750;
1015 Parameters[i][0] = V + (4250 * (MaxTGM - Math.abs(

BendingStrain[i])) / MaxTGM);
1016 } else {
1017 V = 2750 + ((TGMlimit - MaxTGM) / TGMlimit) * 4250;
1018 Vmoving = 7000 - V; //Adjusted upper speed, to ensure that

the scan speed is always within the processrange i.e.
2750-7000mm/min

1019 Parameters[i][0] = V + (Vmoving * (MaxTGM - Math.abs(
BendingStrain[i])) / MaxTGM);

1020 }
1021
1022 Parameters[i][1] = 0.38;
1023
1024 Define power (kill if forming {
1025 is
1026 }
1027 low)
1028 if (MinTGM < TGMpowerlimit) {
1029 Parameters[i][1] = 0;
1030 } else {
1031 Parameters[i][1] = 0.38;
1032 }
1033 System.out.println("TGM with V= " + Parameters[i][0] + " P =

" + Parameters[i][1] + " r = " + Parameters[i][2] + "
surface (0=t,1=b) = " + Parameters[i][3]);

1034 }
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1035 }
1036 } else {
1037 if (ControlOrMech == 1) { //Pure TGM
1038 System.out.println("Pure TGM without control selected");
1039 for (int j = 0; j < ElPath.length; j++) {
1040 Parameters[j][0] = 2750;
1041 Parameters[j][1] = 0.38;
1042 Parameters[j][2] = 1.5;
1043 }
1044 }
1045 if (ControlOrMech == 2) { //Pure UM
1046 System.out.println("Pure UM without control selected");
1047 for (int j = 0; j < ElPath.length; j++) {
1048 Parameters[j][0] = 200;
1049 Parameters[j][1] = 0.38;
1050 Parameters[j][2] = 3.0;
1051 }
1052 }
1053 if (ControlOrMech == 3) { //Combined UM/TGM without control
1054 for (int j = 0; j < ElPath.length; j++) {
1055 System.out.println("Combined TGM/UM without control selected");
1056 if (ratio[j] == 0) {
1057 Parameters[j][0] = 200;
1058 Parameters[j][1] = 0.38;
1059 Parameters[j][2] = 3.0;
1060 }
1061 if (ratio[j] == 1) {
1062 Parameters[j][0] = 2750;
1063 Parameters[j][1] = 0.38;
1064 Parameters[j][2] = 1.5;
1065 }
1066 }
1067 }
1068 }
1069
1070 ToFile(Parameters, "debugplot/parameters.data");
1071 System.out.println("ElPathPara done");
1072 return Parameters;
1073 }
1074 //End of method
1075 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1076 // Method for mapping Z values of element centroids in the desired geometry to

the current geometry
1077 public double[][][] MapElementCentroidToCurrent(String InitOrDeformed) {
1078
1079 //METHOD DESCRIPTION:
1080 /* The method is capable of mapping the Z values from the desired geometry

to the current geometry by performing the following steps:
1081 * - Read centroid data for both desired and current geometry
1082 * - Find "best match" element ID in desired geometry with shortest

euclidean(x,y) distance to the current geometry
1083 * - Subtract Z values from "best match" in the desired geometry and the

current geometry
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1084 * - Output an error array [m][n]
1085 */
1086 System.out.println("Starting MapElementCentroidToCurrent");
1087 //Variables used in this method
1088 String Iteration = InitOrDeformed;
1089 int exs = 40;//Elements in the X direction
1090 int eys = 40;//Elements in the Y direction
1091 double[][] C = new double[exs][eys];//Ordered array with element ID
1092 int nElem = exs * eys;//No. of elements
1093 int ElstartID = 1;//Start element ID
1094 int ElId = ElstartID;//Iteration counter to loop through elements
1095 double dist = 0;//Euclidean distance, in XY plane, between centroid in

current geometry and the desired geometry
1096 double minDist = 10000;//Variable storing the shortest distance between two

element centroids (Must be initiated at a high value)
1097 int[] minDistElId = new int[nElem];//Element IDs corresponding to shortest

distances
1098 double[][] ZValueFinal = new double[exs][eys];//Complete Z coordinate values

ordered with respect to the element ID
1099 double[][][] ValueFinal = new double[exs][eys][4];//Z coordinate value

ordered with respect to the element ID
1100 double D[][] = ReadFile("centroidsblank.data", " ");//Centroid of the blank

before forming
1101
1102 //READ CENTROID COORDINATES FOR DESIRED GEOMETRY (A[][]) AND CURRENT

GEOMETRY (B[][])
1103 double A[][] = ReadFile("centroiddesired.data", " "); //Centroids of the

fine meshed desired geometry
1104 double B[][] = ReadFile(Iteration, " "); //Centroid of the current geometry
1105
1106 //FIND BEST MATCH CENTROID (SHORTEST EUCLIDEAN DISTANCE) BETWEEN B[][] AND A

[][]
1107 while (ElId <= nElem) {
1108 for (int i = 0; i < A.length; i++) {
1109 dist = Math.sqrt(Math.pow(B[ElId - 1][1] - (A[i][1]), 2) + Math.pow(

B[ElId - 1][2] - (A[i][2]), 2)); //Euclidean distance in XY
plane

1110 if (dist < minDist) {
1111 minDist = dist; //Saves shortest distance
1112 minDistElId[ElId - 1] = i + 1; // Controls the placement of the

shortest minDist
1113 }
1114 }
1115 minDist = 10000; //reset distance variable
1116 ElId++; //The counter is iterated
1117 }
1118
1119 ElId = ElstartID; // The counter is reset
1120
1121 //SORT AND ORDER ELEMENT ARRAY
1122 ArraySort(D, 1, 2); //Sorting Array with respect to x and y coordinates of

the centroid
1123 for (int m = 0; m < exs; m++) {
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1124 for (int n = 0; n < eys; n++) {
1125 int a = n + exs * m; //Integer that allows scanning of the entire

array length of A[][]
1126 C[m][n] = D[a][0]; //Generate array with ordered element ID’s
1127 }
1128 }
1129
1130 //COMBINE COORDINATE VALUES WITH THE ORDERED ELEMENT ARRAY
1131 while (ElId <= nElem) {
1132 for (int z = 0; z < exs; z++) {
1133 for (int y = 0; y < eys; y++) {
1134 if (C[z][y] == ElId) {
1135 for (int i = 0; i < 4; i++) {
1136 ValueFinal[z][y][i] = A[minDistElId[ElId - 1] - 1][i];

//Find the coordinates (xyz) of the element closest
to the centroid of the current geometry

1137 }
1138 }
1139 }
1140 }
1141 ElId++;
1142 }
1143
1144 //Selecting the Z value
1145 for (int z = 0; z < exs; z++) {
1146 for (int y = 0; y < eys; y++) {
1147 ZValueFinal[z][y] = ValueFinal[z][y][3]; // Creates separate array

for the Z coordinate
1148 }
1149 }
1150
1151 System.out.println("MapElementCentroidToCurrent done");
1152 return ValueFinal;
1153 }
1154 //End of method
1155 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1156 // Method for sorting arrays
1157
1158 public double[][] ArraySort(double A[][], int i) {
1159 return QuickSort(A, i);
1160 }
1161
1162 public double[][] ArraySort(double A[][], int i, int j) {
1163 return QuickSort(A, i, j);
1164 }
1165 //End of method
1166 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1167 // Method for calculating the sum of absolute error w.r.t. Z-coord
1168 public double ErrorData(double[][][] ValueFinal, String centroids) {
1169
1170 //METHOD DESCRIPTION:
1171 /* The method is capable of calculating the sum of absolute of error w.r.t.

Z-coord by performing the following steps:
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1172 * - Determine absolute error in the Z directions, between the current and
desired geometry for each element

1173 * - Calculate sum of the absolute error in each elements
1174 */
1175 System.out.println("ErrorData started");
1176
1177 int exs = 40;//Elements in the X direction
1178 int eys = 40;//Elements in the Y direction
1179 double[][][] ZValueFinal = ValueFinal;//Z coordinate of desired geometry
1180 String Iteration = centroids;//Name of current geometry centroid file
1181 double A[][] = ReadFile("centroidsblank.data", " ");//Centroid of the

unformed geometry
1182 double B[][] = ReadFile(Iteration, " ");//Centroids current geometry
1183 double Error = 0;//Error in Z distance between current and desired geometry
1184 double[][] Error2 = new double[exs][eys];//Error field i.e. the error in Z

distance in all elements
1185 double AbSumError = 0;//The sum of absolute error
1186 double[][] C = new double[exs][eys];//Ordered array with element ID
1187 double[][][] ZCoord = new double[exs][eys][4];//Coordinates of current

geometry
1188 int nElem = exs * eys;//No. of elements in current geometry
1189 int ElstartID = 1;//Start element ID
1190 int ElId = ElstartID;//Iteration counter to loop through elements
1191 double[][] ZCoordCurrent = new double[exs][eys];//Z Coordinates of current

geometry
1192
1193 //SORT AND ORDER ELEMENT ARRAY
1194 ArraySort(A, 1, 2); //Sorting Array with respect to x and y coordinates of

the centroid
1195 for (int m = 0; m < exs; m++) {
1196 for (int n = 0; n < eys; n++) {
1197 int a = n + exs * m; //Integer that allows scanning of the entire

array length of A[][]
1198 C[m][n] = A[a][0]; //Generate array with ordered element ID’s
1199 }
1200 }
1201
1202 //COMBINE COORDINATES WITH THE ORDERED ELEMENT ARRAY
1203 while (ElId <= nElem) {
1204 for (int z = 0; z < exs; z++) {
1205 for (int y = 0; y < eys; y++) {
1206 if (C[z][y] == ElId) {
1207 for (int i = 0; i < 4; i++) {
1208 ZCoord[z][y][i] = B[ElId - 1][i];
1209 ZCoordCurrent[z][y] = ZCoord[z][y][3];
1210 }
1211 }
1212 }
1213 }
1214 ElId++;
1215 }
1216
1217 //CALCULATING THE SUM OF ABSOLUTE ERROR BETWEEN CURRENT GEOMETRY AND DESIRED
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GEOMETRY
1218 for (int z = 0; z < exs; z++) {
1219 for (int y = 0; y < eys; y++) {
1220 Error = ZValueFinal[z][y][3] - ZCoord[z][y][3];//Error in a single

array entrance
1221 Error2[z][y] = ZValueFinal[z][y][3] - ZCoord[z][y][3];//Complete

error array used for plots
1222 AbSumError = AbSumError + Math.abs(Error);//Saves the sum of

absolute error
1223 }
1224 }
1225
1226 ToFile(getComponent(ZValueFinal, 3, 0), "debugplot/Zdesired.data");//data

for postprocessing
1227 ToFile(getComponent(ZCoord, 3, 0), "debugplot/ZCurrent.data");//data for

postprocessing
1228 ToFile(Error2, "debugplot/Error.data");//data for postprocessing
1229 System.out.println("ErrorData finished");
1230 return AbSumError;
1231 }
1232 //End of method
1233 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1234 //Method for generating DEFINE CURVES and PARAMETRES file
1235 public void GenerateDefineCurve(int[][] ElPath, String centroid, double[][]

ElPathPara) {
1236
1237 //METHOD DESCRIPTION:
1238 /* The method is capable of generating the DEFINE_CURVES and PARAMETRES

input file for the Finite Element model of the laser forming process by
performing the following steps:

1239 * - convert scan path and process variables into DEFINE_CURVES AND
PARAMETRES format

1240 */
1241 //Variables used in the method
1242 double[][] A = new double[ElPath.length][2];//X and Y coordinates of scan

path used in DEFINE_CURVES
1243 double[] Nodes = new double[A.length];//Points in the scan path
1244 double[][][] coords = CenterAppender(centroid);//Coordinates of all element

centroids
1245 int exs = 40;//Elements in the X direction
1246 int eys = 40;//Elements in the Y direction
1247 int ElstartID = 1;//Start element ID
1248 int ElId = ElstartID;//Iteration counter to loop through elements
1249 int nElem = 1600;//No. of elements
1250 double[] DefineTime = new double[Nodes.length + 1]; //Array storing the

time, at which the laser beam must be at a given point in the scan path
1251 String name = null;//String used to designate function names in the generate

DEFINE_CURVES file
1252 int id;//Function id in DEFINE_CURVES
1253 double[] PLaser = new double[Nodes.length + 1];//Laser power for all points

in the scan path
1254 double[] radius = new double[Nodes.length + 1];//Laser beam radius for all

points in the scan path
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1255 double[] PLasersurface = new double[Nodes.length + 1];//The selected scan
surface for all points in the scan path

1256 int surface = 0;//Section set ID for the selected surface
1257
1258 //GENERATE X,Y COORDINATES FOR THE SCANPATH
1259 double[] PointElId = new double[ElPath.length];
1260 for (int i = 0; i < PointElId.length; i++) {
1261 PointElId[i] = coords[ElPath[i][0]][ElPath[i][1]][0];
1262 }
1263
1264 double[][] curvecoords = new double[PointElId.length][2];
1265 for (int k = 0; k < PointElId.length; k++) {
1266 for (int x = 0; x < exs; x++) {
1267 for (int y = 0; y < eys; y++) {
1268 if (PointElId[k] == coords[x][y][0]) {
1269 A[k][0] = coords[x][y][1];
1270 A[k][1] = coords[x][y][2];
1271 }
1272 }
1273 }
1274 }
1275
1276 ToFile(A, "debugplot/path.data"); //Data for postprocessing
1277
1278 //CALCULATE TIME BETWEEN POINTS (used to calculate scan time from point to

point in the scan path)
1279 for (int i = 1; i < Nodes.length; i++) {
1280 DefineTime[i] = DefineTime[i - 1] + (Math.sqrt(Math.pow(A[i][0] - A[i -

1][0], 2) + Math.pow(A[i][1] - A[i - 1][1], 2))) / (ElPathPara[i][0]
/ 60.0); //dist between points/determined scan speed

1281 DefineTime[i] = Math.round(DefineTime[i] * 1000000) / 1000000.0; //round
the time

1282 }
1283
1284 //WRITE OUTPUT AS X AND Y DEFINE CURVE
1285 for (int k = 0; k < 2; k++) {
1286 if (k == 0) {
1287 name = "X";
1288 id = 1;
1289 } else {
1290 name = "Y";
1291 id = 2;
1292 }
1293 try {
1294 PrintWriter writer = new PrintWriter(name + "_DEFINE_CURVE", "UTF-8"

);
1295 writer.println("*DEFINE_FUNCTION_TABULATED");
1296 writer.println("$# fid definition");
1297 writer.println(" " + id + " (t," + name + ") data pairs"

);
1298 writer.println("$# title");
1299 writer.println(name + "loc");
1300 writer.println("$# t " + name);
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1301 for (int i = 0; i < Nodes.length; i++) {
1302 writer.println(" " + DefineTime[i] + " " + A

[i][k]);
1303 }
1304 writer.println(" " + DefineTime[Nodes.length - 1] + "

" + A[Nodes.length - 1][k]);
1305
1306 writer.close();
1307 } catch (Exception ex) {
1308 }
1309 }
1310
1311 for (int i = 0; i < Nodes.length; i++) {
1312 PLaser[i] = ElPathPara[i][1];
1313 PLasersurface[i] = ElPathPara[i][3];
1314 radius[i] = ElPathPara[i][2];
1315 }
1316 PLaser[Nodes.length] = 0;
1317
1318 //WRITE OUTPUT AS P DEFINE CURVE for the laser model
1319 try {
1320 PrintWriter writer = new PrintWriter("P_DEFINE_CURVE", "UTF-8");
1321 writer.println("*DEFINE_FUNCTION_TABULATED");
1322 writer.println("$# fid definition");
1323 writer.println(" " + 9 + " (t,P) data pairs");
1324 writer.println("$# title");
1325 writer.println("Power");
1326 writer.println("$# t Power");
1327 for (int i = 0; i < Nodes.length; i++) {
1328 writer.println(" " + DefineTime[i] + " " + PLaser

[i]);
1329 }
1330 writer.println(" " + DefineTime[Nodes.length - 1] + "

" + PLaser[Nodes.length]);
1331 writer.close();
1332 } catch (Exception ex) {
1333 }
1334
1335 //WRITE OUTPUT AS Radius
1336 try {
1337 PrintWriter writer = new PrintWriter("RADIUS_DEFINE_CURVE", "UTF-8");
1338 writer.println("*DEFINE_FUNCTION_TABULATED");
1339 writer.println("$# fid definition");
1340 writer.println(" " + 11 + " (t,R) data pairs");
1341 writer.println("$# title");
1342 writer.println("radi");
1343 writer.println("$# t radi");
1344 for (int i = 0; i < Nodes.length; i++) {
1345 writer.println(" " + DefineTime[i] + " " + radius

[i]);
1346 }
1347 writer.println(" " + DefineTime[Nodes.length - 1] + "

" + radius[Nodes.length]);
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1348 writer.close();
1349 } catch (Exception ex) {
1350 }
1351
1352 //WRITE OUTPUT AS SWITCH FOR EXPLICIT IMPLICIT
1353 try {
1354 PrintWriter writer = new PrintWriter("EXP_IMP_SWITCH");
1355 writer.println("*DEFINE_CURVE_TITLE");
1356 writer.println("Explicit to implicit switching");
1357 writer.println("$# lcid sidr sfa sfo offa

offo dattyp");
1358 writer.println(" 5");
1359 writer.println("$# a1 o1");
1360 writer.println(" 0.000 0");
1361 writer.println(" &dt1+0.3 0");
1362 writer.println(" &dt2+0.3 1");
1363 writer.println(" 20.000 1");
1364 writer.close(); // Closing the file
1365 } catch (IOException ex) {
1366 }
1367
1368 //WRITE OUTPUT AS PARAMETER
1369 try {
1370 PrintWriter writer = new PrintWriter("PARAMETRES");
1371 writer.println("*PARAMETER");
1372 writer.println("R dt1 " + DefineTime[Nodes.length - 1]);
1373 writer.println("R A " + 0.4);
1374 writer.println("*PARAMETER_EXPRESSION");
1375 writer.println("R dt2 (&dt1+0.01)"); // Necessary to obtain

the format required by LS-Dyna
1376 writer.close(); // Closing the file
1377 } catch (IOException ex) {
1378 }
1379
1380 //WRITE OUTPUT BOUNDARY FLUX SET
1381 if (PLasersurface[1] == 0) {
1382 System.out.println("we choose the top");
1383 surface = 2;
1384 } else {
1385 surface = 4;
1386 }
1387
1388 try {
1389 PrintWriter writer = new PrintWriter("BOUNDARY_FLUX_SET");
1390 writer.println("*BOUNDARY_FLUX_SET");
1391 writer.println("$# ssid");
1392 writer.println(" " + surface);
1393 writer.println("$# lcid mlc1 mlc2 mlc3 mlc4");
1394 writer.println(" 3 0 0 0 0");
1395 writer.close(); // Closing the file
1396 } catch (IOException ex) {
1397 }
1398
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1399 //End of method
1400 }
1401 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1402 // Method for determining the surface to be scanned
1403
1404 public String PathPosition(double[][][] bottomstrains, double[][][] topstrains)

{
1405 //METHOD DESCRIPTION:
1406 /* The method is capable of determining the surface to be scanned by

performing the following steps:
1407 * - Determine most compressive strain in upper and lower surface
1408 * - Select surface with most compressive strain
1409 */
1410 System.out.println("PathPosition started");
1411 //Variables used in the method
1412 int ex = 40;
1413 int ey = 40;
1414 double[][][] botPrin = PrincipalStrain(bottomstrains);
1415 double[][][] topPrin = PrincipalStrain(topstrains);
1416 double minbot = 1000;
1417 double mintop = 1000;
1418 String PathPos;
1419
1420 //DETERMINE SIZE OF MINIMUM PRINCIPAL STRAIN (MOST COMPRESSIVE STRAIN)
1421 for (int x = 0; x < ex; x++) {
1422 for (int y = 0; y < ey; y++) {
1423 if (botPrin[x][y][0] < minbot) {
1424 minbot = botPrin[x][y][0];
1425 }
1426 if (topPrin[x][y][0] < mintop) {
1427 mintop = topPrin[x][y][0];
1428 }
1429 }
1430 }
1431
1432 //SELECT SURFACE WITH MOST COMPRESSIVE STRAIN
1433 if (mintop < minbot) {
1434 PathPos = "upper";
1435 } else {
1436 PathPos = "lower";
1437 }
1438
1439 System.out.println("PathPosition finished");
1440 return PathPos;
1441 }
1442 //End of method
1443 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%}
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Appendix G

Shell Scripts

This appendix consists of the shell scripts utilised by the Java main program, appended in
appendix E, to perform commands in the shell. The shell scripts are also appended on the
appendix-CD.

Shell Script: clean_centroidonestep

1 # Remove unwanted data from file
2 sed ’/*KEYWORD/,/*SHELL_ELEMENT_CENTROID/d’ flatcentroid.k > temp.data
3 sed ’$d’ temp.data > onestepcentroid.data
4 sync

Shell Script: shell_centroids

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=centroids.ses
3 # Remove unwanted data from file
4 sed ’/*KEYWORD/,/*SHELL_ELEMENT_CENTROID/d’ deformedcentroid.k > temp.data
5 sed ’$d’ temp.data > deformedcentroid.data
6 sync
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Shell Script: shell_centroidsblank

1 # combines the blank.k with the segments
2 cp blank.k blank1.k
3 cat SEGMENTS blank1.k > blankSEG.k
4 rm blank1.k
5
6 # Opens the solid blank in prepost and saves the midplane as a shell model
7 DISPLAYTEMP=‘echo $DISPLAY‘
8 Xvfb :7 -ac -screen 0 1600x1200x24 &
9 DISPLAY=:7.0

10
11 prepost -nographics c=generateshellblank.ses
12
13
14 DISPLAY=‘echo $DISPLAYTEMP‘
15 killall Xvfb
16
17 # Opens the shell blank in prepost and saves the centroids of the model
18 prepost -nographics c=centroidsblank.ses
19 # Remove unwanted data from file
20 sed ’/*KEYWORD/,/*SHELL_ELEMENT_CENTROID/d’ centroidsblank.k > temp.data
21 sed ’$d’ temp.data > centroidsblank.data
22 rm centroidsblank.k
23 sync

Shell Script: shell_centroidsinit

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=centroiddesired.ses
3 # Remove unwanted data from file
4 sed ’/*KEYWORD/,/*SHELL_ELEMENT_CENTROID/d’ centroiddesired.k > temp.data
5 sed ’$d’ temp.data > centroiddesired.data
6 rm centroiddesired.k
7 sync

Shell Script: shell_centroidsonestep

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=centroidsonestep.ses
3 # Remove unwanted data from file
4 sed ’/*KEYWORD/,/*SHELL_ELEMENT_CENTROID/d’ flatcentroid.k > temp.data
5 sed ’$d’ temp.data > flatcentroid.data
6 sync
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Shell Script: shell_clean

1 # Moving old simulation data files
2 rm new* messag nodout status.out d3* lspost* *~ tprint eloutdet part_des lsp* node*

new_temp* spoo* disk* dyna.temp unfolded.k temp.data flatname.tmp
3 sync

Shell Script: shell_generateshell

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=openplot.ses
3 # Combining segments and the data from the laststate of the d3plot
4 cat SEGMENTS laststate.k > laststatecomplete.k
5 # Generate shell representation of the current geometry
6 DISPLAYTEMP=‘echo $DISPLAY‘
7 Xvfb :7 -ac -screen 0 1600x1200x24 &
8 DISPLAY=:7.0
9

10 prepost -nographics c=generateshell.ses
11
12 DISPLAY=‘echo $DISPLAYTEMP‘
13 killall Xvfb
14
15 sync

Shell Script: shell_openplot

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=openplot.ses
3 sync

Shell Script: shell_openplotonestep

1 # Opens d3plot in prepost and the .ses file saves the last state of the plot
2 prepost -nographics c=openplotonestep.ses
3 sync

Shell Script: shell_run

1 # Starts the simulation in the initial iteration
2 dyna_d i=lasermodel.k ncpu=-8 memory=100M > dyna.temp
3 sync
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Shell Script: shell_run2

1 # Starts the simulation after initial iteration
2 dyna_d i=lasermodel2.k ncpu=-8 memory=100M > dyna.temp
3 sync

Shell Script: shell_runonestepinit

1 # Runs the onestep analysis for the initial iteration
2 dyna_d i=onestepinit.k ncpu=-8 memory=100M
3 sync

Shell Script: shell_runonestep

1 # Runs the onestep analysis after the initial iteration
2 dyna_d i=onestep.k ncpu=-8 memory=100M
3 sync
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Appendix H

Fields used in Strain Analysis

This appendix lists the field representations used in the strain analysis described in section 3.3.
Note that only the discrete representations of the fields are included.

• εtop(m,n) - A strain field placed on the top surface of the current geometry. Each element
in the strain field contains the required strain in all six components of εij related to go
from the current to the desired geometry, in the top surface.
• εmid(m,n) - A strain field placed on the midplane (between top and bottom surface) of the
current geometry. Each element in the strain field contains the required strain in all six
components of εij related to go from the current to the desired geometry, in the midplane.
• εbot(m,n) - A strain field placed on the bottom surface of the current geometry. Each

element in the strain field contains the required strain in all six components of εij related
to go from the current to the desired geometry, in the bottom surface.
• εsurf (m,n) - Is a common designation of either the top or bottom surface strain field.
• εpath(m,n) - A strain field placed between the midplane and a surface. εpath(m,n) is used

as the basis for the scan path algorithm, described in section 3.4.1. Each element in the
strain field contains the average of the corresponding element in εmid(m,n) and one of the
surface strain fields i.e. εtop(m,n) or εbot(m,n), for all six strain components. The surface
strain field with the most compressive strain is selected for the average.
• ε2(m,n) - A strain field containing the size of the minimum principal strains of εpath(m,n).
• θ2(m,n) - A strain field containing the orientation of the minimum principal strains of
εpath(m,n).
• εthresh(m,n) - A threshold field of ε2(m,n). Each element in the strain field contains either

0 or 1. The element equals 0 if ε2(m,n) < a limit defined by the threshold percentage and
1 if ε2(m,n) > the limit.
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Appendix I

Keydeck for the Onestep Analysis

This appendix contains the keydeck for the OneStep solver, used to establish a strain field for
the single curved geometries in chapter 4. The OneStep solver is a complete piece of Finite
Element code provided in LS-Dyna. The OneStep solver receives inputs in the form of a shell
model representation of either the current or desired geometry and the material properties of the
blank. Based on the input geometry and the material properties the OneStep solver determines
an initial unformed flat state. The output is a flattened blank along with the strain tensor εij at
the outermost integration points of each element. εij represents the required strain to go from
the flattened blank to the input geometry. [LSTC, 2013]

1 *KEYWORD
2 *TITLE
3 $# title
4 OneStep solution
5 $ By Group VT4-2.215
6 $ - Kasper Madsen
7 $ - Martin Soendergaard
8 $ | |
9 $ | |

10 $ |_______|
11 $ \ / /
12 $ \___/ /
13 $ <|> /
14 $ <|> /
15 $ <|> /
16 $ <|>/
17 $ _____________________|/
18 $
19 $
20 $ Unit System Scheme (C): mm, ms, kg ==> kN, GPa ,Joule, kW
21 $
22 $=============================Include Files=====================================
23 $
24 *INCLUDE
25 deformedshell.k
26 $
27 $
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28 $
29 $
30 $=============================Control Cards=====================================
31 $
32 *CONTROL_TERMINATION
33 $ ENDTIM
34 1.0
35 $
36 *CONTROL_IMPLICIT_GENERAL
37 $ IMFLAG DT0
38 1 0.25
39 $
40 *CONTROL_FORMING_ONESTEP
41 $ OPTION AUTODB
42 7 -1
43
44 $
45 *CONTROL_FORMING_ONESTEP_AUTO_CONSTRAINT
46 $ AUTOSPC
47 1
48 $
49 *CONTROL_IMPLICIT_TERMINATION
50 $ DELTAU
51 0.001
52 $
53 *CONTROL_IMPLICIT_SOLUTION
54 $ NSSOLVR ILIMIT MAXREF DCTOL ECTOL
55 2 11 1200 0.001 0.10
56 $
57 *CONTROL_IMPLICIT_SOLVER
58 $ LSOLVR
59 4
60 $
61 *CONTROL_IMPLICIT_AUTO
62 $ IAUTO ITEOPT ITEWIN DTMIN DTMAX
63 0 0 0 0.0 0.0
64 $
65 $========================Parts and Material Models=============================
66 $
67 *PART
68 $# title
69 Deformshell
70 $# pid secid mid eosid hgid grav adpopt tmid
71 2 1 1
72 $
73 *SECTION_SHELL_TITLE
74 blank
75 $# secid elform shrf nip propt qr/irid icomp setyp
76 1 16 1.000000 5 1 0 0 1
77 $# t1 t2 t3 t4 nloc marea idof edgset
78 1.0000 1.0000 1.0000 1.0000 1.000000
79 $
80 $
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81 *MAT_PIECEWISE_LINEAR_PLASTICITY
82 $# MID RO E PR SIGY ETAN FAIL TDEL
83 1 7.9000E-6 197.400 0.2942 0.2556 1.9462
84 $
85 *END

Listing I.1: Keydeck for the OneStep solver.
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Appendix J

Principal Strain Equations

This appendix documents the equations used for determining the orientation and size of the
minimum principal strains in a two dimensional strain element.

A given 2D strain element rotated by a given angle θ, creates a set of new strains, ε′xx, ε′yy and
ε′xy acting on the sides of the element. [Gere and Goodno, 2009]. By varying θ it is possible to
identify the principle orientation of the element where only ε′xx, ε′yy act on the element and ε′xy

is equal to zero. At this direction ε′xx equals the maximum principal strain ε1 with the principal
orientation θ1 and ε′yy equals the minimum principal strain ε2 with the orientation θ2, as shown
in figure J.1.
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Figure J.1: Strain rotation of a 2D element

The strain transformation equations for rotating a 2D element by θ degrees are given by equation
J.1 to J.3 [Gere and Goodno, 2009].

ε′xx = εxx + εyy

2 +
(
εxx − εyy

2

)
cos(2θ) + εxy sin(2θ) (J.1)

ε′yy = εxx + εyy

2 −
(
εxx − εyy

2

)
cos(2θ)− εxy sin(2θ) (J.2)
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ε′xy =
(
εxx − εyy

2

)
sin(2θ) + εxy cos(2θ) (J.3)

By varying θ it is possible to identify the principle orientation of the element where only ε′xx, ε′yy

act on the element and ε′xy is equal to zero. At this direction ε′xx equals the maximum principal
strain ε1 with the principal orientation θ1 and ε′yy equals the minimum principal strain ε2 with
the orientation θ2, as shown in figure 3.11. By setting ε′xy equal to 0 in equation in J.3 and
solving for θ it is possible to determine the principal orientation. As a result ε2, θ1 and θ2 are
found, as shown in equation J.4 to J.6. [Gere and Goodno, 2009]

ε1,2 = εxx + εyy

2 ±

√(
εxx − εyy

2

)2
+ ε2

xy (J.4)

θ1 = 1
2 arctan

(
2εxy

εxx − εyy

)
(J.5)

θ2 = 1
2 arctan

(
2εxy

εxx − εyy

)
+ π

2 (J.6)
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Appendix K

Issues Concerning the OneStep
Solver

This appendix concerns an issue detected, when using the OneStep solver with double curved
geometries. The appendix presents the obtained orientation of minimum principal strains from
three different tests of LS-Dyna’s OneStep solver. The input for each test is the dome geometry
tested in section 5.1. In each test the orientation of the dome geometry is changed i.e. rotated
around the Z axis. The following orientations are tested:
• Test 1 - 0.0◦ around Z axis (no rotation)
• Test 2 - 22.5◦ around Z axis
• Test 3 - 45.0◦ around Z axis

The orientations of the minimum principal strains are shown in figure K.1, K.2 and K.3 re-
spectively. The orientations of the minimum principal strains are obtained by using the post-
processing software LS-Prepost. The orientations of the bars correspond to the orientation of
minimum principal strain in the midplane. Fringes are omitted from the figures, as only the
orientation of minimum principal strain is of interest for this test.

The orientation of minimum principal strain must be independent of the orientation of the input
geometry. However, the three tests show that the orientation of minimum principal strain varies
with varying orientation of the input geometry, why it is concluded that the OneStep solver is
not suited for determination of the required strain in the developed framework.
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Figure K.1: Test 1 - The orientation of minimum principal strains with the dome geometry rotated 0.0◦ around
the Z axis.

158



Figure K.2: Test 2 - The orientation of minimum principal strains with the dome geometry rotated 22.5◦ around
the Z axis.
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Figure K.3: Test 3 - The orientation of minimum principal strains with the dome geometry rotated 45.0◦ around
the Z axis.
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Appendix L

Keydeck for the Flattening Model
used for Double Curved Geometries

This appendix contains the keydeck for the flattening model used to establish a strain field for
the double curved geometries in chapter 5. The flattening model is developed as a replacement
for the OneStep solver, as the OneStep solver provides misleading results when utilised on double
curved geometries, as explained in appendix K. In the flattening model, a shell representation of
either the desired or the current geometry is placed between two rigid planes. The upper rigid
plane is moved towards the lower rigid plane, which is fixed in space. During the movement,
the input geometry deforms, thereby, inducing strains in the flattened geometry.

1 *KEYWORD
2 $
3 $ Part summary:
4 $ pid name nid-start elid-start
5 $ 5 bottom 500000 500000
6 $ 4 top 400000 400000
7 $
8 *TITLE
9 $# title

10 Flattening of desired geometries.
11 $
12 $-------------------INCLUDE FILES---------------
13 $
14 *INCLUDE
15 top.k
16 *INCLUDE
17 bottom.k
18 *INCLUDE
19 desired.k
20 $
21 *PARAMETER
22 $# Materiale parametre:
23 R my 0.000100
24 R pr 0.294000
25 R th 1.000000
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26 R E 198.500
27 R K 425.70000
28 R n 0.256200
29 R ro 7.9000E-6
30 $
31 *INTERFACE_SPRINGBACK_LSDYNA
32 $ psid
33 1
34 $
35 *SET_PART_LIST
36 $ psid
37 1
38 $ pid
39 1
40 $
41 *CONTROL_IMPLICIT_GENERAL
42 $# IMFLAG DT0 IMFORM NSBS IGS CNSTN FORM ZERO_V
43 1 0.001 2 0
44 $
45 *CONTROL_IMPLICIT_AUTO
46 $# IAUTO ITEOPT ITEWIN DTMIN DTMAX DTEXP
47 1 11 5 0.2
48 $
49 $----------------Strains Out---------------------
50 $
51 *DATABASE_EXTENT_BINARY
52 $# neiph neips maxint strflg sigflg epsflg rltflg engflg
53 0 0 0 1 2 1 2 2
54 $# cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat
55 0 0 0 1 1 1 1
56 $# nintsld pkp_sen sclp unused msscl therm iniout iniout
57 0 0 1.000000 0 0 0ALL ALL
58 $
59 $----------------Control cards--------------------
60 $
61 *CONTROL_CONTACT
62 $# slsfac rwpnal islchk shlthk penopt thkchg orien enmass
63 0.000 0.000 2 1 0 1 1
64 $# usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj
65 0 0 0 0 0.000 1
66 $# sfric dfric edc vfc th th_sf pen_sf
67 0.000 0.000 0.000 0.000 0.000 0.000 0.000
68 $# ignore frceng skiprwg outseg spotstp spotdel spothin
69 0 0 0 0 0 0 0.000
70 $# isym nserod rwgaps rwgdth rwksf icov x ithoff
71 0 0 0 0.000 1.000000
72 $# shledg
73 0
74 $
75 *CONTROL_CPU
76 $# cputim
77 0.000
78 $
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79 *CONTROL_DAMPING
80 $# nrcyck drtol drfctr drterm tssfdr irelal edttl idrflg
81 0 0.000 0.000 0.000 0.000 0 0.000 0
82 $
83 *CONTROL_ENERGY
84 $# hgen rwen slnten rylen
85 2 2 2 2
86 $
87 *CONTROL_HOURGLASS
88 $# ihq qh
89 4
90 $
91 *CONTROL_OUTPUT
92 $# npopt neecho nrefup iaccop opifs ipnint ikedit iflush
93 0 0 0 0 0.000 0 0 0
94 $# iprtf ierode tet10 msgmax ipcurv
95 0 0 2 50
96 $
97 *CONTROL_SHELL
98 $# wrpang esort irnxx istupd theory bwc miter proj
99 0.000 0 0 1 25 2 1
100 $# rotascl intgrd lamsht cstyp6 tshell nfail1 nfail4 psnfail
101 1.000000 0 0 1
102 $# psstupd irquad
103 0 0
104 $
105 *CONTROL_TERMINATION
106 $# endtim endcyc dtmin endeng endmas
107 7.00000
108 $
109 *CONTROL_TIMESTEP
110 $# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st
111 0.000 0.000 0 0.000 -7.500E-4
112 $# dt2msf dt2mslc imscl
113 0.000 0 0
114 $
115 *DATABASE_BINARY_D3PLOT
116 $# dt lcdt beam npltc psetid
117 0.050000
118 $# ioopt
119 0
120 $
121 $
122 *DATABASE_RCFORC
123 $# dt
124 0.100000
125 $
126 $
127 $
128 $
129 $
130 $
131 $
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132 $------------------------CONTACT CARDS--------------------
133 $
134 *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
135 $# cid title
136 1
137 $# ssid msid sstyp mstyp sboxid mboxid spr mpr
138 1 4 3 3
139 $# fs fd dc vc vdc penchk bt dt
140 &my &my 0.000 0.000 0.000 1 0.0001.0000E+20
141 $# sfs sfm sst mst sfst sfmt fsf vsf
142 1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
143 $
144 $
145 *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
146 $# cid title
147 2
148 $# ssid msid sstyp mstyp sboxid mboxid spr mpr
149 1 5 3 3
150 $# fs fd dc vc vdc penchk bt dt
151 &my &my 0.000 0.000 0.000 1 0.0001.0000E+20
152 $# sfs sfm sst mst sfst sfmt fsf vsf
153 1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
154 $
155 $
156 $----------------------LOADS AND MOTION--------------------------
157 $
158 *BOUNDARY_PRESCRIBED_MOTION_RIGID
159 $# pid dof vad lcid sf vid death birth
160 4 3 2 2 1.000000 01.0000E+28
161 $
162 $
163 *PART_MOVE
164 $# pid xmov ymov zmov cid
165 1 0.000 0.000 1
166 *PART_MOVE
167 $# pid xmov ymov zmov cid
168 4 0.000 0.000 6
169 $
170 $-------------------------DEFINE CURVES------------------------
171 $
172 *DEFINE_CURVE
173 2 0 0.0000000 0.0000000 0.0000000 0.0000000
174 0 0
175 7.0 -11.75
176 7.1 -11.75
177 $
178 $---------------------------PARTS AND PROPERTIES---------------------------------
179 $
180 *PART
181 $# title
182 bottom
183 $# pid secid mid eosid hgid grav adpopt tmid
184 5 5 5
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185 *SECTION_SHELL
186 $# secid elform shrf nip propt qr/irid icomp setyp
187 5 2 0.000 0 1 0 0 1
188 $# t1 t2 t3 t4 nloc marea idof edgset
189 1.000000 1.000000 1.000000 1.000000
190 *MAT_RIGID_TITLE
191 top
192 $# mid ro e pr n couple m alias
193 5 &ro &E &pr &n 0.000 0.000
194 $# cmo con1 con2
195 1.000000 4 7
196 $#lco or a1 a2 a3 v1 v2 v3
197 0.000 0.000 0.000 0.000 0.000 0.000
198 $
199 *PART
200 $# title
201 top
202 $# pid secid mid eosid hgid grav adpopt tmid
203 4 4 4
204 *SECTION_SHELL
205 $# secid elform shrf nip propt qr/irid icomp setyp
206 4 2 0.000 0 1 0 0 1
207 $# t1 t2 t3 t4 nloc marea idof edgset
208 1.000000 1.000000 1.000000 1.000000
209 *MAT_RIGID_TITLE
210 top
211 $# mid ro e pr n couple m alias
212 4 &ro &E &pr &n 0.000 0.000
213 $# cmo con1 con2
214 1.000000 4 7
215 $#lco or a1 a2 a3 v1 v2 v3
216 0.000 0.000 0.000 0.000 0.000 0.000
217 $
218 *PART
219 $# title
220 desired geometry
221 $# pid secid mid eosid hgid grav adpopt tmid
222 1 1 1 0 0 0 0 0
223 *SECTION_SHELL
224 $# secid elform shrf nip propt qr/irid icomp setyp
225 1 16 5
226 $# t1 t2 t3 t4 nloc marea idof edgset
227 1.0 1.0 1.0 1.0 0.000 0.000 0.000 0
228 *MAT_PIECEWISE_LINEAR_PLASTICITY
229 $# MID RO E PR SIGY ETAN FAIL TDEL
230 1 7.9000E-6 198.500 0.294 265.0 1.986
231 $
232 *DAMPING_GLOBAL
233 0 50
234 *END

Listing L.1: Keydeck for the flattening model.
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