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Preface

This project is conducted at the 4th semester at the master programme of Manufacturing Technology at
Aalborg University, Department of Production and Mechanical Engineering, during the spring semester
2014.

The report is divided into 12 chapters, 10 appendixes, and a Danish summary (Resumé). Each chapter
begins with a short recap, in italic, explaining the content of the chapter. Figures, formulas, and tables
are numbered by an index number, corresponding to the respective chapter or appendix number. For
example is figure 2.1 the first figure in chapter 2.

Sources are specified as follows: [LaValle, 2006, p. 8]. Where [LaValle] is a reference for the author in
the source, [2006] is the year of publication, and [p. 8] is the page number in the source, where the page
number is optional. If the source is specified before a punctuation mark, then the reference is for the
specific sentence. If the source is specified after a punctuation mark, then the reference is for the whole
paragraph.

The report is divided into the following parts; Introduction, Main Report, Additional Work, and Con-
clusion, where chapter 2 in Introduction is only mandatory if the reader is not familiar with the related
work conducted by the project group, during the 3rd semester, and the Robotics and Automation Group
at Aalborg University. Supplementary written material is to be found in the Appendix.

In addition to the report, an appendix CD is enclosed. The CD contains; videos, source code, the 3rd

semester report, and the report of this project. When referring to contents on the CD, a footnote is used
to describe the path to the content.

The project group would like to thank the Robotics and Automation Group; especially Ph.D student
Rasmus Skovgaard Andersen, Ph.D student Jens Skov Damgaard, Ph.D student Casper Schou, Post doc
Dimitris Chrysostomou and Professor Ole Madsen at the Department of Mechanical and Manufacturing
Engineering at Aalborg University.

Aalborg University, June 03, 2014
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Resumé

Dette projekt omhandler design og implementering af baneplanlægningsløsninger for mobile manipula-
torer i et Skill-based system (SBS), med fokus på artikulerede manipulatorer.

Arbejdet er funderet i det SBS, som er udviklet, og eksisterer i flere udgaver, på Aalborg Universitet.
SBS bruges som en software struktur for den mobile manipulator familie "Little Helper". Fokus har
været på Little Helper 4, som er den nyeste mobile manipulator i familien. Little Helper 4 består af en
Universal Robots UR5 manipulator, en Robotiq RQ3 griber og en mobil platform. SBS ligger rammerne
for udviklingen af to konceptuelle løsningsforslag, til inkorporering af baneplanlægning for mobile ma-
nipulatorer; et langsigtet og et kortsigtet koncept forslag. Det langsigtede løsningsforslag omhandler
koncepter der ikke nødvendigvis kan implementeres i et eksisterende SBS, men det beskriver derimod
hvilke ultimative mål der kan arbejdes hen imod for at forbedre baneplanlægning. Mere præcist omhan-
dler det langsigtede løsningsforslag baneplanlægning, samt generering og opretholdelse af et verdens-
miljø til brug i baneplanlægningen. Derudover er et forslag til inkorporering af læring præsenteret,
for at gøre systemet mere intelligent og nedsætte brugerkravene. Det kortsigtede løsningsforslag, tager
udgangspunkt i det langsigtede løsningsforslag, men det er tiltænkt at skulle kunne blive implementeret
i det eksisterende SBS. Dette omhandler et forslag til en software struktur, som gør det muligt at bane-
planlægge for artikulerede manipulatorer. Der er ikke blevet fokuseret på baneplanlægning for mobile
platforme, i det kortsigtede løsningsforslag.

Som baggrund for den praktiske implementering af baneplanlægning, er en kort software analyse ud-
ført. V-REP, RobWork og MoveIt er analyseret, og på baggrund af det kortsigtede løsningsforslag,
er MoveIt valgt til at blive benyttet i implementeringen. Baneplanlægningsprogrammet MoveIt bruger
veldefinerede interfaces, hvilket gør det muligt at anvende brugerdefinerede baneplanlægningsalgoritmer
og kinematiske løsere.

I Moveit er der implementeret et baneplanlægningsbibliotek (OMPL), som indeholder en række sample
baseret baneplanlægningsalgoritmer. Algoritmerne fra dette bibliotek er blevet undersøgt gennem et
litteraturstudie, med fokus på de anvendte egenskaber for algoritmerne. Efterfølgende er algoritmerne
blevet sammenlignet gennem MoveIt, for at underbygge konklusionerne fra litteraturstudiet. På baggrund
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Resumé

af dette er baneplanlægningsalgoritmen RRTConnect valgt.

På baggrund af det kortsigtede løsningsforslag og det valgte baneplanlægningsprogram, MoveIt, er
baneplanlægning blevet implementeret i Little Helper 4 SBS, som proof of concept. Dette inkludere
ændringer i SBS, driveren for UR5 manipulatoren og kommunikationen imellem. Funktionaliteten af
implementeringen er verificeret gennem et kvalitativt forsøg.

Som supplement til implementering af baneplanlægning i et SBS, er baneplanlægning blevet anvendt
på baggrund af sensor input og til styring af to manipulatorer. Dette er gjort i to individuelle forsøg.
Sensor input er anvendt til etablering af verdensmiljø og efterfølgende baneplanlægning på baggrund af
det etablerede miljø. Derudover er baneplanlægning udført for både Little Helper 3 og Little Helper 4,
med overlappende arbejdsområder. Dette arbejde har inkluderet oprettelse af en fælles model for begge
mobile manipulatorer og håndtering af kommunikationen til begge.
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Chapter 1

Introduction

Production of today experience a paradigm-shift from mass production to mass customisation. This
creates a need for flexible and transformable production, as shown in figure 1.1. If the production in
addition shall be competitive, compared to countries with cheap labour, then automation is a need. A
combination of these needs calls for flexible, transformable, and cost-effective automation. [Hvilshøj
et al., 2012]

Introduction1
This project is an extended master’s thesis composed on the 3rd and 4th semester on Manufacturing
Technology at Aalborg University’s Department of Production and Mechanical Engineering. The project
contributes to the EU-funded research project TAPAS in which the Department of Mechanical and Man-
ufacturing Engineering participates. The basis of this project is the verification of a skill-based approach
on industrial assembly tasks.

Today industrial robots are widely used in many different production systems throughout the world. The
majority of these robots are inflexible, as they are fixed to a dedicated workstation. This inflexibility
makes it difficult and time consuming to reprogram and/or move the robot to another task. A solution
to this inflexibility could be a mobile robot. A mobile manipulation system can be described as an au-
tonomous industrial mobile manipulator (AIMM) which aims at developing integrated robotic systems
capable of performing work and assistance in industrial manufacturing environments. (M. Hvilshøj, S.
Bøgh, O. S. Nielsen & O. Madsen, 2011) Figure 1.1 illustrates the vision of a new production segment,
which offers a flexible mass production. In order to obtain this vision the need for flexible automation
equipment emerges, to which an AIMM is considered as a part of the solutions.

Volume, degree of automation
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Figure 1.1: The vision of a new production segment, which offers a flexible mass production. (M. Hvilshøj, S.
Bøgh, O. S. Nielsen & O. Madsen, 2011)

Production-wise flexibility today means "to produce reasonably priced customized products of high qua-
lity that can be quickly delivered to customers."(Dr. Viorica Frunza, 2012) A mobile manipulator with
the capability to be intuitive and easily programmed will have flexibility towards that of a human but
still have the repeatability and accuracy of a robot. Mobile robots in the industry will not alone solve the

1

Figure 1.1: Illustrates the vision for production systems in the future. [Hvilshøj et al., 2012]

Industrial manipulators are at present inflexible, by being fixed and dedicated to a specific task. To cope
with inflexibility, manipulators must have the ability to move around and perform various tasks, without
time demanding programming of the manipulator. Incorporation of mobility is however a challenging
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task in unstructured and changing environments. Another challenge, to increase the flexibility, is the
classical manipulator-centric programming, since programs are typically created from scratch, dedicated
to a specific environment. This calls for a paradigm-shift within programming of manipulators to a
task-level programming paradigm. [Bøgh et al., 2012]

Figure 1.2: The goal for little helper. [Hvilshøj et al., 2012]

The vision for industrial manipulators of the future can be described on the basis of figure 1.2. A robot,
which can assist and perform tasks in a production system with minimal human intervention. There are
scientific and engineering challenges, which must be solved in order to succeed, in creating a collabo-
rative industrial mobile manipulator [Angerer et al., 2012]. The challenges involves, among others, the
following:

• Safety

• Reconfigurability

• Knowledge integration

Safety is an important concern, regarding collaborative mobile manipulators, because harm on humans
and equipment must be avoided. Inclusion of vision sensors, which updates a representation of the
environment, is a way to make the manipulators aware of the humans and equipment. Mounting of the
sensors is a vital prospect, because it has to be ensured that all risks for a collision is captured, within the
sensors field-of-view. [Angerer et al., 2012]

Reconfigurability is the ability to adapt to a dynamic production system. The ability to adapt, for a
collaborative industrial mobile manipulator, is important, because manufacturing tasks can be changed
frequently. [Angerer et al., 2012]
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1.1. Abstraction of Motion Planning

Knowledge integration is the collaborative industrial manipulators ability to collaborate with humans
and interacting with the environment, with minimal human intervention. It is necessary that the manip-
ulator knows what to do, without demanding hourly programming to obtain a competitive productivity.
[Angerer et al., 2012]

1.1 Abstraction of Motion Planning

An abstraction on motion planning, and the definitions it entails, is provided in its essential form, since
these will be utilised throughout the report.

A computationally representation of the "world" is the basis for motion planning, for determining feasible
and infeasible configurations of a manipulator. The "world", is defined as the environment throughout
the report. A configuration space is defined as all possible transformations the manipulator can be in.
The configuration space can be formulated in different state spaces, such as joint state or Cartesian state.
The obstacle region Cobs and the free region C f ree are both derived from the configuration space. A basic
motion planning problem is shown in figure 1.3. The aim is to get from an initial state (A) to a goal
state (B) in C f ree. Together they form a query. If a result exists, then a path can be created in C f ree, as
illustrated by the arrow, from point A to point B. [LaValle, 2006, p. 159]

Obstacle

Obstacle

A BObstacle

Figure 1.3: A basic motion planning problem, where the goal is to move from point A to point B without colliding with the
obstacles in the configuration space.

5



1.2. This Project

1.2 This Project

One way for a mobile manipulator to obtain the ability to work in an unstructured environment, is by
utilisation of motion planning. Motion planning is the ability to plan (and execute) a collision free path.
This eases the programming of a mobile manipulator, allowing for lower set-up times. This conviction,
regarding motion planning, is the basis for the work described throughout this project. This project
will, from the point of view of a mobile manipulator, focus on articulated manipulation. The project
is going to concern design, development, and implementation of motion planning in a framework for
mobile manipulators. This will include conceptual design proposals for the mobile manipulator software
framework of today and of the future.

1.3 Related Work

The focus in this section is regarding motion planning for the articulated manipulation part of mobile
manipulators. The main difference between the articulated manipulation of a mobile manipulator and a
classical fixed manipulator is the possible unstructured environment and human collaboration.

A common frame of reference is created to compare different mobile manipulators and their capabilities.
This is followed by a description of motion planning, which is a common capability for each of the
investigated mobile manipulators. This is described to establish a baseline, regarding the motion planning
capabilities of mobile manipulators.

1.3.1 Frame of Reference

Different types of mobile manipulators are in the following compared, to determine their main capabili-
ties. The justification of the comparison, of different types of mobile manipulators, is elaborated in the
following:

Field of Research

The field of research regarding mobile manipulators can be divided into two main approaches; one con-
cerning specific designed mobile manipulators (PR2 [Oyama et al., 2009], Justin [Ott et al., 2006]) and
one concerning mobile manipulators created of commercial of the shelf (COTS) parts (The Industrial
Manipulation Platform [Hermann et al., 2011], Abby [Venator et al., 2013], TUM-Rosie [Kunze et al.,
2011]). The specific designed manipulators have the advantage that the developer knows the exact details
of the system [Zacharias et al., 2010], which can be used during modelling and low-level control of the
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1.3. Related Work

hardware. The COTS manipulators concerns mainly application and integration of hardware [Venator
et al., 2013] [Hermann et al., 2011], because exact data and accessibility to low-level control may not be
an option.

Field of Application

Two main fields of application for mobile manipulators are home/office environments and industrial
environments. The two fields of application have different requirements regarding manipulation toler-
ances[Hvilshøj et al., 2012]. There have been no distinction between the two fields of application because
the fundamentals of the capabilities are similar, for example motion planning in a changing environment
and collaboration with humans.

An extract of the mobile manipulators, within the groups described above, are shown in table 1.1.

1.3.2 Elaboration of Main Capabilities

The topics of the Main capabilities column, in table 1.1, are elaborated:

• Vision is used to create models of the environment or locate objects to be manipulated. [Venator
et al., 2013]

• Motion Planning is the movement of the manipulator without collision. Some mobile manipula-
tors are cable of conducting motion planning continuously (on-the-fly), where the motion planning
set-up can adopt to a changing environment. [Srinivasa et al., 2012]

• Grasp Planning is the ability to grasp objects, often identified and positioned by use of vision.
The grasping approach is determined from simulations or a database look-up for the concerned
object. [Hermann et al., 2011]

• Low level control of manipulators is for example is changing and optimisation of control param-
eters (PID) for the individual actuators, to obtain the desired response of the system. [Ott et al.,
2006]

• "Skill-based" executions of tasks which is the execution of a collection of device primitives
based on objects and not 3D coordinates. This can for example be to pick up a object, located
by the vision system [Hermann et al., 2011]. The skill-based execution of tasks is elaborated in
section 2.1.1

• Execution of bimanual tasks which are tasks requiring use of two manipulators/hands. This
can for example be unscrewing of a bottle cap, where one hand are fixing the bottle and one are
unscrewing the cap, or assembly of a bolt and nut. [Zacharias et al., 2010]
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1.3. Related Work

1.3.3 Motion Planning for Mobile Manipulators

Motion planning, described in the following, is focused on the capabilities of the mobile manipulators
from table 1.1.

Motion planning can be conducted for individual manipulators [Venator et al., 2013], two manipulators
at once [Srinivasa et al., 2012], and for both manipulators and locomotive platforms at once [Hermann
et al., 2011]. The goal for motion planning can for example be specified by a user or determined by use
of database look-up. Database look-up can be based on identified objects, and the most suited grasping
position can be determined, with the motion planning for the manipulator in mind [Hermann et al.,
2011]. Manipulation of objects can be combined with a motion planner, capable of specifying plans,
which includes rearranging of the environment, to be able to reach a desired goal. The environment can
be based on a model of the manipulator and obstacles, along with sensor input [Venator et al., 2013] or
consist of a full 3D model based on sensor input. [Srinivasa et al., 2012]

Motion planners can obey start and goal constraints, for example an end-effector position. In addition to
this, process constraints for the path can be obeyed [Srinivasa et al., 2012] [Hermann et al., 2011]. This
can for example be keeping a cup of water level to avoid spilling or opening of a door where the end
effector have to follow a constrained path.

To reduce the initial waiting time after initiating a planning request, mobile manipulators can have the
ability to execute an initial plan, even before the motion planner knows if the entire path is feasible. The
planning proceeds, while the initial plan is executed, possible correcting the path [Hermann et al., 2011].
A changing environment can be accounted for during execution of paths, by replanning the path. This
can be advantageous, when working in highly unstructured environments or working in close cooperation
with humans. [Srinivasa et al., 2012] [Hermann et al., 2011]

The total planning time can be reduced by reuse of former created paths. This can be efficient both in
static environments, but also in changing environments. This is because not all parts of the plan have to
be created all over again. [Hermann et al., 2011]
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Chapter 2

The Little Helper Concept

This chapter introduces the autonomous industrial mobile manipulator concept "Little Helper" design
and developed at Aalborg University. This includes both the members of the Little Helper family and a
presentation of the overall structure of the software framework. The latest member of the Little Helper
family, Little Helper 4, is described in more detail, since it is the basis for the work conducted throughout
this project.

2.1 The Little Helper Family

At Aalborg University the research regarding mobile manipulators are concentrated around a family of
mobile manipulators named Little Helper. At present the family consist of three different Little Helpers;
Little Helper 2, 3, and 4, shown in figure 2.1. The types may differ in type of hardware, but each
features an articulated manipulator, a gripper and a mobile platform. The platform is either manual or
autonomous. Little Helper 3 and Little Helper 4 can be programmed by use of task-level programming,
made in a skill-based system.

2.1.1 Skill-Based System

The skill-based system (SBS) is the core of all Little Helpers. The SBS on each of the different Little
Helpers varies at present, but they all share the same general structure. This project is based upon a SBS,
thus an introduction to the definitions are here given. The outlining of the SBS is based on [Bøgh et al.,
2012].

11



2.1. The Little Helper Family

(a) Little Helper 1. (b) Little Helper 2. (c) Little Helper 3. (d) Little Helper 4.

Figure 2.1: The Little Helper family at Aalborg University. Little Helper 1 does not exist anymore. [Machine Vision, 2013]

An overview of the layered structure of the SBS is given in figure 2.2. The top layer of the SBS is
missions, which are controlling the order and numbers of tasks to be executed. Tasks contains a sequence
of skills. Each skill consist of a sequence of motion primitives. The four layers are described in the
following.

Motion

Primitives

Gripper 
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Gripper 
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Move Search
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Tasks
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Pack 100 items

Task x Task y

Place

Place
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Figure 2.2: The layered structure of the SBS. Inspired by [Carøe et al., 2012].
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2.1. The Little Helper Family

Motion Primitives

Beginning at the lowest layer in figure 2.2, the motion primitives (also called device primitives) are
the basic commands of a SBS. They can be seen as the smallest building blocks of the SBS. Motion
primitives can either be directly or indirectly executable on the hardware. By indirectly is meant that the
motion primitive utilises a proxy, such that standard commands can be translated to hardware specific
commands that can be executed directly by the hardware. [VT3-2013, 2013]

A motion primitive is for example the ability to move the tool centre point (TCP) for a manipulator, or
open or close the gripper, as seen in the lowest layer of figure 2.2.

Skills

A skill utilises the current world state as input, as well as task specific parameters. Initially the skill
checks whether all preconditions are fulfilled, before executing the skill, based on the given inputs. If the
preconditions are satisfied, then the skill executes the sequence of motion primitives that are included in
the given skill. The sequence of motion primitives alters the state of the world. After the skill is executed,
then state variables of the world are compared to predicted variable states, to evaluate whether the task
is successfully completed. A graphical representation of a generic skill is shown in figure 2.3. [Pedersen
et al., 2013]

An example of the preconditions, post conditions and parameters for a pick skill is shown in table 2.1.
The motion primitive contained in a pick skill is shown in figure 2.4.

Fig. 1. Skill Model

The postconditions are two-part in relation to the skill;
prediction and evaluation. The prediction specifies formally
what the expected effect of executing the skill is, and can thus
be used to select an appropriate skill for achieving a desired
goal state. The evaluation checks that the state variables after
execution is within an expected range and updates the state
variables to reflect the actual state after the skill execution.

Since skills are goal-oriented, the postconditions of a skill
must predict a change in the state variables. This change can
either occur by letting the robot interact with objects or by
letting the robot inspect the scene to gain further information
on the task state. As such, no change is the environment is
required, as task state can be updated to include the required
information purely by ad hoc inspection.

According to our vision, we want to set up industrial robot
tasks on the task level. To do this we need to identify what
skills the robot has/needs in the possible application domains
of flexible mobile manipulators. By using the definition of
skills presented in this section, we now look for these patterns
in real-world industrial scenarios.

III. SKILL BASED ANALYSIS OF INDUSTRIAL
APPLICATIONS

Two approaches are taken in order to identify skills for
industrial applications. Firstly, the skills are found through
analysis of industrial tasks, industrial implementations and
laboratory experiments - Fig. 2 top - and secondly, skills are
identified through analysis of Standard Operating Procedures
(SOP), which are descriptions of how tasks are manually
performed by the operators, hence human-action to robot skill
mapping - Fig. 2 bottom.

One important aspect of the analysis is that it is implicitly
based on the natural language and communication between the
people who work in the production, so the identified skills are
identified based on what one finds intuitive for the given task
held against the definition of skill.

A. Analysis

In Bøgh et al. [4] more than 566 industrial tasks have
been analyzed to identify the application categories potentially
suitable for mobile manipulators, shown in Fig. 3. In this work,

Fig. 2. Background for Analysis - Industrial Implementation, Laboratory
Testing and Analysis of Standard Operating Procedures (SOP)

three classes of logistic tasks (transportation, multiple part
feeding and single part feeding) and two classes of assistive
tasks (machine tending and assembly) are investigated to
identify which skills are needed in these particular categories.

Fig. 3. General application categories for AIMM. Green - focus for first
approach: analysis of industrial implementation and laboratory test. Blue -
focus for second approach: analysis of Standard Operating Procedures

In logistics tasks, the robot needs to cover larger distances
so the mobility of the mobile manipulator is an essential factor.
For assistive tasks there can also be a need for mobility, but
typically in a more limited production area. Assistive tasks are
generally more value-adding tasks compared to logistic tasks.

1) Analysis of Logistic Tasks: In Fig. 4 the three logistic
tasks are illustrated with images provided by the industrial
partner. The basic skill sequences for transportation, multiple
part feeding and single part feeding are presented in the
following.

Transportation is the process of transporting parts and work
pieces between workstations and storages. Transportation tasks
contain physical separation larger than the workspace of the
robot manipulator. In general, many of the applications are
based on transportation as there is typically some kind of
transport of equipment or parts involved. However, in basic
transportation tasks, there is not necessarily any direct contact

Figure 2.3: Structure of a generic skill. [Bøgh et al., 2012]

Skills are intended to be object-oriented and not based on 3D coordinates, enabling the manipulator to
work in an unstructured environment. This means that a pick skill will be defined as "pick <object>"
and not "pick <3D coordinates>". This structure enables for teaching of skills, by choosing the object
and parameters for the given task.

13



2.1. The Little Helper Family

Topic State

Preconditions Gripper open?

Parameters:

Approach direction
Leave direction
Object (location)
Object size
Grasping force

Postconditions:
Gripper closed?
Correct (size) of object?

Table 2.1: Example of preconditions, parameters, and postconditions for a pick skill.

Pick

Move
Move 

Relative

Gripper 

Close

Move 

Relative

Figure 2.4: Example of the motion primitives a pick skill can contain. Inspired by [Carøe et al., 2012].

A skill in the Little Helper 4 software framework deviates slightly for the general definition. This is
described in section 2.2.2.

Tasks

A task is defined as a sequence of instantiated skills that either are programmed in pre-hand or generated
by a potential task-level planner [Pedersen et al., 2013]. In general tasks can be seen as a whole process,
as for example moving an object from A to B. A task consisting of a pick and a place skill is illustrated
in figure 2.5.
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Figure 2.5: Example of the skills a task can contain. Inspired by [Carøe et al., 2012].
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Missions

Missions are the controlling agency of the SBS. A mission consist of one or more tasks. The order and
number of tasks are defined based on the desired production output. The Enterprise Resource Planning
(ERP) software, controlling a whole production, can dictate the order and number. Missions can include
more than one Little Helper. [Schou et al., 2013]

2.2 Little Helper 4

Little Helper 4 is the latest addition to the Little Helper family. Little Helper 4 was developed during
the 3rd semester by the project group. The design, development, and creation included both the physical
hardware set-up for Little Helper 4 and the skill-based Little Helper 4 software framework. The report
"Creation of an Autonomous Industrial Mobile Manipulator" [VT3-2013, 2013] describing the work, is
appended on the enclosed CD1.

A brief introduction to the work done during the 3rd semester is given, since Little Helper 4 will be used
as the base for practical implementation through this project. The software developed and created during
the 3rd semester will in the following be referred to as the original Little Helper 4 software framework.
The modified software framework, which is described through this report is referred to as the Little
Helper 4 software framework.

2.2.1 Main Hardware Components of Little Helper 4

The main hardware components of Little Helper 4, are the Universal Robots UR5 manipulator (UR5),
the Robotiq 3-finger adaptive gripper (RQ3), and the mechanical platform. Each of the components are
shortly described in the following, regarding main functionalities and specifications.

Universal Robots UR5 Manipulator

The Universal Robots UR5 is a 6 degrees of freedom articulated manipulator with a payload of 5.0 kg
and a range of 850 mm [Universal Robots, 2013b]. The manipulator itself is allowed to work without any
safety precautions, due to the force in a collision cannot excess 150 N [Universal Robots, 2013a]. The
manipulator consist of an UR5 articulated arm, a teach pendant, and a CB2 control box. The hardware
is shown in figure 2.6. The three main interfaces to the manipulator are:

1See: <3rd Semester Report/Creation of an Autonomous Industrial Mobile Manipulator.pdf>
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2.2. Little Helper 4

• Polyscope online programming interface on the UR5 teach pendant. [Universal Robots, 2013c]

• URScript scripting language, to be executed via the existing Polyscope interface. [Universal
Robots, 2013c]

• C-API low-level language with most functionalities, but requires creation of a new controller.
[Universal Robots, 2013c]

Each interface has different pros and cons regarding functionality, ease of application, and cooperation
with peripheral equipment like a PC. The interfaces are described in detail in appendix B.

(a) The Universal Robots UR5 manip-
ulator.

(b) Universal Robots teach pendant and CB2
controller.

Figure 2.6: Universal Robots UR5 manipulator, teach pendant, and CB2 controller. [Universal Robots, 2013d]

Robotiq 3-finger Adaptive Gripper

The Robotiq 3-finger Adaptive Gripper (RQ3) is an adaptive, under-actuated 10 degrees of freedom
gripper. The under-actuation is due to only 4 of the degrees of freedom are actuated. This entails that the
fingers adapt around the object being grasped, but also that the size of object cannot exact be determined
from the position of the actuators. The RQ3 gripper is shown in figure 2.7a.

Little Helper 4 Platform

The platform was designed, based on the design of Little Helper 3. This basis was chosen due to appear-
ance and interchangeability of hardware. The convergence in the appearance of the two platforms was
created to emphasise that the two Little Helpers are closely related. The interchangeability of hardware
concerns a modular design of the Little Helper 4 platform, which consist of an upper and lower part.
The lower part has been prepared for replacement of the manual platform with the Neobotix MP-L655
platform. A Neobotix platform is currently mounted on Little Helper 2 and 3. The upper part contains

16



2.2. Little Helper 4

(a) Robotiq 3-finger Adaptive Gripper
(RQ3) [Robotiq, 2013].

Lower part  

Upper part  

 

(b) The Little Helper 4 platform.

Figure 2.7: The Robotiq adaptive gripper and the Little Helper 4 platform.

the Universal Robots CB2 control box, power supply for the gripper, relays and an Ethernet router. The
platform is shown in figure 2.7b. The platform has been equipped with a pan-tilt unit, with a stereo
camera system and a RGB-D sensor during this project. The mounting of the pan-tilt unit is described in
appendix I.

2.2.2 Original Software Framework for Little Helper 4

The original software framework for Little Helper 4 was developed based on a goal to make the motion
primitives, skills, and tasks hardware independent. This goal gave rise to a framework divided in two
layers, a generic layer, and a hardware specific layer. The generic layer contains a task level and a skill
level. The hardware specific layer consist of a branch for each specific piece of hardware, divided in
a proxy level and a hardware level. The structure of the framework is shown in figure 2.8, including
the type of communication between each level. The framework was created with offset in the Robot
Operation System (ROS), which is a set of tools and packages used to develop robot applications [ROS,
2013].
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Figure 2.8: Software framework. Each component of the Proxy level can consist of both a proxy and a driver. [VT3-2013,
2013]

To achieve hardware interchangeability in the framework, by use of this approach, the hardware are di-
vided into different categories. Each category is represented by a set of generic hardware functionalities,
which have to be fulfilled by a piece of hardware, to be represented in the category. Generic hardware
functionalities are common functionalities for a type of hardware, and could be the ability to conduct a
linear movement, for a manipulator, in either joint space or Cartesian space. All functionalities outside
the generic hardware functionalities are denoted hardware specific functionalities. The framework is only
generic as long as the used skills, and thereby motion primitives, utilise generic hardware functionalities.
This causes the skills and motion primitives to be divided generic or hardware specific categories.

The generic framework is supported by the structure, where the hardware proxies and drivers are de-
coupled from the skills and motion primitives. This also includes an interface between the two layers,
where hardware neutral commands are exchanged by use of ROS actionlibs. Actionlibs are used as the
interface, to control the order of execution among the motion primitives and making sure, the hardware
has executed the received commands before returning a succeeded status.

The proxy level can consist of a combined proxy/driver, which both handles the communication from the
hardware to the skill level, and control of the hardware, which is the case for the UR5 proxy. The driver
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2.2. Little Helper 4

part of the UR5 proxy is inspired from a driver, which is part of the robot simulation and control tool
RobWork [Ellekilde and Jorgensen, 2010]. The RQ3 proxy consist of a separate proxy and driver. The
driver is from the ROS-Industrial Robotiq package2 [Nicolas Lauzier, 2013].

The skills in the original Little Helper 4 framework are not object oriented, as described in section 2.1.1,
but based on 3D coordinates. This invokes the need for a way to teach 3D coordinates to skills. The ma-
nipulator of the original Little Helper 4 framework is used to teach 3D coordinates, based on kinesthetic
teaching, in which the operator moves the manipulator to the desired positions. Parameters, not directly
related to the positions are taught through the terminal user interface of the software framework.

2The package can be found at: https://github.com/ros-industrial/robotiq
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Chapter 3

Goal for the Project

This chapter presents the overall goal for the project. This gives rise to a proposal of how the goal
shall be achieved. The proposal is summarised into five hypotheses, which each has to be answered, to
ensure the overall goal is achieved. Each hypothesis is concluded with one or multiple subsidiary goal
statements that will ensure the respective hypotheses can be answered.

The overall goal for this 4th semester project is to conceptual implement and verify motion planning,
within a skill-based system for present and future research projects.

The development shall take its origin in two conceptual proposals that shall be created based on devel-
opment sessions. One proposal shall be a long-term proposal, where limitations regarding development
and implementation shall not be taken into account. The second proposal shall be a short-term proposal,
which has to be applicable for practical implementation in the skill-based system of the Little Helpers.

Next, a software motion planning tool for implementation shall be found. This shall be done by a
screening of applicable software solutions, to find the solution that is assessed to be most applicable for
a skill-based system. The chosen motion planning software tool shall be further analysed with respect to
types of motion planners, through a literature study and a benchmarking, to choose one or a set of the
most suitable motion planning algorithms.

As proof of concept, the short-term conceptual proposal shall lead to a solution, where motion planning
shall interact with a skill-based system. The skill-based system, which it is chosen to implement the
motion planning in, is the software framework of Little Helper 4. This shall clear the way and provide
practical experiences, for when motion planning shall be implemented in future research projects.

Practical tests to verify the implementation shall be conducted. The tests must show usage of motion
planning in a skill-based system, to proof the concept, and thereby the overall goal.
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The overall goal can be summarised into the following listed hypotheses. Each hypothesis is concluded
with one or multiple subsidiary goal statements that will ensure the respective hypothesis is answered.

Hypothesis 1

Concept proposals can be conceived, such that motion planning can be integrated into a
skill-based system.
A long-term and a short-term concept proposal shall be conceived. The short-term proposal shall
additionally be developed to the extent that it is possible, to confirm the applicability. The con-
cepts shall be discussed with some of the developers of the skill-based system for Little Helpers,
to receive feedback and verify the concepts. The aim is to confirm the legitimacy of the concepts.

Hypothesis 2

One or a set of suitable motion planning algorithms can be identified for Little Helper 4.
A literature study concerning motion planning shall be conducted, with focus on the applicability
for Little Helper 4. The correlation between the literature and practical experiences, with the
studied motion planning algorithms, shall be tested by benchmarking motion planning algorithms.

Hypothesis 3

Motion planning can in practise be implemented in a skill-based system.
Based on the conceived short-term concept proposal, motion planning shall be implemented in
the Little Helper 4 software framework. Testing shall be conducted on the Little Helper 4 set-up,
to confirm the implementation of motion planning within the software framework.

Additionally it is chosen to challenge some of the possibilities that arises, when incorporating motion
planning into a skill-based system for Little Helpers.

This is done by introducing motion planning to both Little Helper 3 and Little Helper 4 in simulation and
in practise. Motion planning with multiple manipulators may become relevant if a Little Helper shall be
developed with two manipulators in the future.

It is chosen to introduce environment perception by sensors. This enables the possibility to motion plan
in an unstructured environment, which is a beneficial addition to collaborative robotics, like the Little
Helper family.
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This can be summarised into the two following hypotheses that must be answered.

Hypothesis 4

Motion planning with two Little Helpers can be conducted.
To test the applicability of motion planning with two manipulators at the same time, then Little
Helper 3 shall be implemented in the motion planning software tool as well. The applicability
shall be tested in a real set-up, by placing the two Little Helpers within each other’s work envelope,
when motion planning.

Hypothesis 5

Motion planning can be conducted based on an environment representation with sensor
input.
To test the applicability of motion planning, in a changing environment, a sensor-input shall be
implemented, such that it can be utilised when motion planning. The test shall be conducted by
placing obstacles, which the manipulator shall avoid, between an initial and goal state.

The listed hypotheses, including their respective subsidiary goal statements, will be answered throughout
the report in the given order, and summarized in the final conclusion.
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Chapter 4

Concept Proposals for Incorporating
Motion Planning in a Skill-Based System

This chapter proposes two concepts for incorporating motion planning into a skill-based system (SBS).
One proposal is a long-term concept proposal and one is a short-term concept proposal.

4.1 Purpose

The main purpose of this chapter, is to answer Hypothesis 1 in chapter 3, and thereby to present concep-
tual ideas, which have been generated during the project, of how motion planning can be implemented
in a SBS. The result is two submissions, which are respectively considered a long-term concept and a
short-term concept proposal. The purpose of the long-term concept proposal is to introduce motion plan-
ning in a Little Helper SBS of the future. The aim of the short-term concept proposal is to present how
motion planning can be handled in the current Little Helper SBS. As proof of concept, for the short-term
proposal, an actual implementation of motion planning in the Little Helper 4 software framework, is
conducted and described in chapter 8.

4.2 Long-term Concept Proposal

The following proposal shall be seen as a long-term solution for motion planning in the skill-based
system, which may not be completely applicable to a Little Helper software framework at present. The
concept is obtained through brainstorm sessions within the project group, and afterwards presented,
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4.2. Long-term Concept Proposal

discussed, and verified in overall terms, in a session with a part of the Robotics and Automation Group
at Aalborg University. The proposed framework for the concept is shown in figure 4.1.
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Figure 4.1: Framework of the long-term concept proposal for implementation of motion planning in a SBS. The plus signs on
the figure illustrates communication from the arrows with a corresponding name. DB is an acronym for database.

4.2.1 Structure of the Skill-based System

The structural division of missions, tasks, skills, device primitives, and proxies are all maintained in the
skill-based system of the long-term concept proposal, as seen in figure 4.1. This is because there has not
been found any reasons to alter it, with respect to the concept proposal of incorporating motion planning
in it.

In practise, it is proposed that the structure will reflect figure 4.1, meaning decoupling the skill-based
system into multiple ROS nodes. This will benefit the maintenance and development processes. Addi-
tionally computationally expensive operations, such as handling vision or logging to a database, may be
outsourced to off-board computers by the peer-to-peer functionalities ROS offers, schematic illustrated
in figure 4.2.

The long-term concept proposal has to allow collaboration between multiple Little Helpers. Several
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4.2. Long-term Concept Proposal

Little Helpers can collaborate and share information by use of a the peer-to-peer functionalities and a
common database, as illustrated in figure 4.2.

SBS SBS SBS

Database server
Wireless Access point

DB

Figure 4.2: Illustrates how multiple Little Helpers can collaborate, and share information with each other via wireless network
and a database server.

4.2.2 Tasks, Skills, and Device Primitives in the Skill-based System

As seen in figure 4.1, it is proposed to centralise the stored information. Thus, information the missions,
tasks, skills, and device primitives may contain is moved to a common database in this proposal. The
main objective for centralising the information is for learning purposes, which will be elaborated later
in this section. The result of extracting the missions, tasks, skills, and device primitives into a common
database, is having handlers instead. A task handler’s assignment is to request the tasks stated in the
mission. A skill handler’s assignment is to request needed skills, to fulfil the given task. Likewise is the
assignment of a device handler to request for the needed device primitives, corresponding to the hardware
of the system and the skill to be executed.

The device primitives shall have continuously communication with some hardware components for su-
pervision of the system, such as vision sensors to keep the environment up to date. This means that the
device primitive handler may have some device primitives executing all the time.

Communication between the device handler and the skill handler includes skill functionalities not related
to motion planning. This can be communication related to force or vision. Keeping the communication
is additionally assessed beneficial, since this will maintain the possibility for the skill-based system to
function without motion planning. This may be applicable if situations occurs, where it is not feasible to
obtain the environment or where motion planning simply is not needed.
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4.2.3 Motion Planning Handler

Implementing motion planning abilities into a SBS is not limited to motion planning for an articulated
manipulator, if other actuated equipment is applied. Motion planning for, for example, grasping or
moving a mobile platform (locomotive) will be a necessity, if a skill-based system shall function more
autonomously. A motion planning handler is needed to encapsulate software packages, if not all these
possibilities are contained in one package. A motion planning handler is not needed, if a motion planning
software tool is able to cope with all needed types of motion planning. A selection of present motion
planning software tools are to be further presented in chapter 5.

4.2.4 Environment Handler

An environment representation is needed for the motion planning. Motion planning software for multiple
types of equipment’s are assessed to have different needs, concerning an environment representation.
This imposes a need for multiple types of sensors to create a representative environment.

Creating an environment based on sensor input, and not CAD models, is assessed to be less time con-
suming, because the environment does not have to be completely documented. The drawback is that the
sensor-based models are assessed to become less accurate, than if the same model is represented in a
CAD model and in addition it will be more computational expensive to create the model. Some parts
of the environment may therefore be created as CAD models, such as work pieces and the manipulator,
but it cannot be expected that every object in an environment is created as a CAD model. Thus, a need
for combining the sensor input and CAD models arises. Additionally it will be beneficial if the models,
generated by one mobile manipulator, is shared between multiple mobile manipulators. This gives rise
to the creation of an environment handler.

An environment handler is expected to interface to; the database for CAD models, the skill handler,
the device primitive handler, the motion planning handler, and other applications in relation to the en-
vironment, as shown in figure 4.1. Thus, the environment handler becomes a gathering point for all
information in relation to the environment. This enables the possibility to exploit the peer-to-peer capa-
bility of ROS, by having computationally expensive calculations on an off-board computer. This may, on
a greater scale, also be developed, such that multiple Little Helpers each can share and contribute with
their environment perception to a common database, as illustrated in figure 4.2.

An application that can interface to the environment handler may be the creation of a factory environment
for locomotive navigation. In [Henry et al., 2014] an example of creating such a large-scale environment
is done to an office environment, by use of sensor data. They have developed an iterated closest point
(ICP) algorithm that enhances a process called "simultaneous localization and mapping" (SLAM) [En-
dres et al., 2012]. The process is able to scan, and thereby map an entire office environment, by sampling
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depth images and combining these into a complete 3D environment. At present [Henry et al., 2014]
achieves a mean accuracy of 15-20cm. This will need to be further enhanced, if used for industrial tasks
- for comparison [Hvilshøj et al., 2012] states that an industrial assembly needs an accuracy of less than ±
1mm. Their solution is mainly aimed at locomotive motion planning, thus the two values are not directly
comparable.

4.2.5 Learning

Learning is seen as crucial for motion planning enhancement, and a tool for a SBS to become more
autonomously [Kallmann and Jiang, 2010]. Learning can be implemented in multiple manners with
varying complexities, whereas common for all, is that learning shall increase the performance of a skill-
based system, and ultimately make Little Helpers act based upon previously experienced tasks.

It is experienced that learning is typically based on experience. Experience is here seen as previous
conducted tasks, where the experience can be based on the tasks overall assignment and the collection
of executed trajectories in the tasks. Due to the changing environment, the Little Helpers are intended
to work in, iteration of a tasks do not necessarily include the same trajectories. This gives further rise
to the need for a shared database, allowing for exchange of the data basis for learning. The sharing
of data allows for maintaining the flexibility of conducting various tasks with a relatively low number
of iterations. Different research projects are introduced in the following, which all have implemented
learning in different manners.

One proposal is to use motion planning algorithms, which utilises iterative learning, based on paths
created in the past. Such a motion planning algorithm is created for example by [Li and Shie, 2002]1.
The motion planning algorithm is able to reuse previously created solutions, to create a new solution.

Optimising motion planning is achieved in [Srinivasa et al., 2012] for the mobile manipulator HERB 2.0,
previously mentioned in section 1.3 on page 6. They utilises a set of goals for the trajectory to be able
to optimise for a low-cost solution. Their aim is to learn to predict an initial goal, at which a trajectory
should end. The initial goal for the goal-set is made from learned data, where five learning algorithms are
compared against selecting a goal randomly. The best performing learning algorithm makes it possible
to achieve a final cost within 8% of the minimum cost of the given path, whereas the motion planner
achieves a final cost within approximately 35% of the minimum cost, when selecting the goal randomly.
[Srinivasa et al., 2012]

1Reconfigurable Random Forest algorithm.
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4.2. Long-term Concept Proposal

Learning based on motion planning in a SBS framework

It is chosen to elaborate learning suggestions from [Kallmann and Jiang, 2010], where a motion planning
framework for skills with learning, is introduced. [Kallmann and Jiang, 2010]

They have implemented learning to enhance motion planning of a tree-based search, by guiding the de-
velopment of the tree with their Attractor Guided Planner (AGP) algorithm. The utilisation of attractor
points, to attract a tree towards previously conducted trees, are beneficial, because it preserves the struc-
ture of a successful path, and even if a new obstacle collides with parts of the path, then the rest of the
path is still considered reusable. [Kallmann and Jiang, 2010]

The implementation of learning is done by saving previously conducted tasks and then later reusing the
paths, if the new task is assessed to be similar to a previously conducted task. Similarity metric is utilised
to analyse if previously planned tasks are similar to a new task. The metric similarity is utilised, when
comparing a query task, with a previous conducted task, found in the database. A previous conducted
task is only considered reusable, if the local environment and query has similar characteristics. The
main difficulty is to determine a strategy for what has to be taken into account, when comparing. To do
comparison, metric techniques are utilised, which are able to take relevant obstacles into consideration,
when considering candidate paths. Thus, obstacles that is too far from the initial or goal configuration
are ignored. [Kallmann and Jiang, 2010]

When the comparison has identified a similar task in the database, then the stored paths for the concerned
task is utilised to guide the planning of the new path, by use of extracted attractor points. This is done by
piecewise linear interpolating the previous path, and defining the points connecting two segments, in the
interpolation, for the attractor points. The interpolation, and thereby the attractor points, is next collision
checked. [Kallmann and Jiang, 2010]

If a set of attractor points are found applicable to be reused, during the development of the new path,
then the motion planning becomes biased towards regions of these attractor points. The biasing is done
by use of Gaussian distributions placed at the respective attractor points in the configuration space. The
distribution is used to replace the motion planning algorithm. The scale of the Gaussian is depended on
how close the tree is to the given attractor. [Kallmann and Jiang, 2010]

Experiences are;

"... a significant improvement in computation speed for dynamic environments which
maintain some structure between queries".

[Kallmann and Jiang, 2010]
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4.2. Long-term Concept Proposal

Learning may in the future also be beneficial to more general parts of a skill-based system. In [Kallmann
and Jiang, 2010] it is proposed to enable the possibility to improve the skills, or even create new skills
from learning, by interpolating between similar solutions. This can for example be; a pick skill and a
vision skill may be needed in the same task. If the task is executed multiple times, a learning phase
may interpolate the two skills into a pick-vision skill, and maybe thereby enhance the performance. The
same idea may be applicable on task level [Kallmann and Jiang, 2010]. The results for the Little Helper
SBS will be a redefinition of skills, being more dynamical, instead of pre-determined building blocks of
a task. This will obviously first be applicable, when the system has become so autonomously that no
user-interaction is needed for the skills.

4.2.6 Database

It is assessed that learning first can be utilised to its fullest, if system information is effectively saved and
made accessible. By system information is for example meant joint configurations to a given time or 3D
point cloud information to a given time. Additionally it is assessed beneficial to save system information
in a global database, such that it will not only be restricted to the individual SBS. It shall be emphasized
that the shown database in figure 4.1, not necessarily implies that all information shall be stored in one
common database in practise, thus exactly how the structure of such a database shall be, is not within the
scope of this project.

A generic database for fault analysis and performance evaluation, similar to the proposed, has been
presented in [Niemueller et al., 2012]. They utilises a system with a scalable database, to log system
information from ROS in real-time, controlling the mobile manipulator HERB 2.0. They categorise the
vast amount of data using the Data-Information-Knowledge-Wisdom (DIKW) hierarchy. Their aim is
to understand when Actionable Knowledge appears, which is usable knowledge for the manipulator to
make decisions based on. An example of a DIKW structure is seen in figure 4.3. [Niemueller et al.,
2012]

The aim is to make robotics behave based on a subset of Actionable Knowledge, thus reach the Wisdom
level.This is however not achieved at the publication time of [Niemueller et al., 2012].

Based on the developed database, two applications are presented; one where the system fails a task and
the necessary information for error recovery is retrieved from the saved data and one where it is shown
how to retrieve quantitative performance data of the manipulators behaviour. At present, the system is
local on one HERB 2.0 mobile manipulator, but they likewise see great potential in having a cloud-based
logging, such that information can be shared. [Niemueller et al., 2012]
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Figure 4.3: Example of how to classify a database utilising DIKW hierarchy. Inspired by [Niemueller et al., 2012].

4.3 Short-term Concept Proposal

The short-term proposal is seen as an applicable solution for the SBS for the Little Helpers. The proposal
shall be the foundation for the practical implementation of motion planning in the Little Helper 4 software
framework, described in chapter 8. The short-term concept proposal is first described in overall terms,
followed by a description of each of the parts of interest in the concept. The overall framework structure
of the concept proposal is seen in figure 4.4.

Both Mission and Task in figure 4.4 are faded, since these parts stay structural unaffected by the imple-
mentation of motion planning, in the short-term proposal. Only the content of task files will be altered,
due to the introduction of motion planning parameters. The rest of the framework is to be elaborated in
the following.

4.3.1 Skills and Device Primitives in the Skill-based System

The introduction of motion planning in the SBS eases the implementation of skills applied to objects,
because the system itself avoids obstacles between positions. This removes the need for via-points,
for example between pick and place skills. Pick and place skills of the Little Helper 4 SBS consist of
approach and leaving points, to avoid collision with objects being handled. If the object to be handled are
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Figure 4.4: Overview of the software framework of the short-term concept proposal.

represented in the environment, approach and leaving points can be omitted. This is because the object
has to be taken into account, during motion planning. The introduction of motion planning can therefore
induce changes in the structure of specific skills. Structural changes of skills have not been investigated
further. The model of the environment is further described in section 4.3.3.

Motion planning is, as seen in figure 4.4, conceived as a middle layer between device primitives and the
proxy/driver for the hardware, which corresponds to the long-term proposal, described in section 4.2.
Motion planning is therefore conceived as a device primitive, from the point of view of a skill. Motion
planning is also conceived as device primitive from the point of view of the proxy/driver.

By treating motion planning as a device primitive, seen from the skill point of view, then skills will
change from utilising a "move" device primitive to a "motionplan" device primitive. The parameters of
the "motionplan" device primitive, are send as a request for a motion plan to a specified position, to a
given motion planner.
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4.3. Short-term Concept Proposal

Device primitives that is not related to movement of the manipulator stays unaffected of the addition of
motion planning abilities.

4.3.2 Motion Planning Handler

As seen in figure 4.4, a motion planning handler is introduced in the SBS, corresponding to the long-term
proposal. The motion planning handler shall be able to receive a motion planning request, and pass it
along to the correct motion planning software tool.

The reason for also presenting a motion planning handler in the short-term proposal, is that it is assessed
that different motion planning software tools is needed for the articulated manipulator (for example
MoveIt [MoveIt, 2014b]) and for the gripper (for example GraspIt [Miller and Allen, 2004]).

The respective motion planning software tools shall use a motion planning request to initialise the cre-
ation of a trajectory. Additional needs for the motion planning software tools are a specification of fea-
sible and infeasible areas of the configuration space, hence the need for an environment representation.
The creation and maintenance of the environment is described in section 4.3.3.

Each motion planning software tool is expected to include motion planning algorithms with different
advantages. By advantages are meant that algorithms may be dedicated to a certain kind of motion
planning problem. This can be that some are faster converging in environments with no obstacles, and
some may be more capable of solving complicated motion planning requests. The general type of motion
planning problem could be defined as part of the teaching phase of a task. To be able to do this it is
proposed to categorise the motion planning algorithms, such that there can be chosen between a variety
of motion planning algorithms accordingly to the general type of the given tasks.

When a trajectory has been created, it shall be executed either on the real hardware or in a simulation.
Simulation in a SBS is elaborated in section 4.3.5. Execution on the real hardware is not of concern
here, since the implementation is hardware specific, the implementation for the UR5 manipulator is
described in chapter 8. Feedback from the simulation and real hardware is needed, to determine the
initial configuration of the hardware, and thereby the start configuration for the motion plan.

4.3.3 Environment

As the environment handler of the long-term proposal in section 4.2, the short-term proposal is expected
to include a service to create and maintain the environment. The environment representation is to be
created such that the motion planning software tools are able to check, whether a path is feasible or
infeasible. An environment representation is also expected to be used by skills, to require for example the
position of an object to be picked. Sensor-based localisation can both be based on existing CAD models
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4.3. Short-term Concept Proposal

of objects and objects without a known model [Saxena et al., 2011]. The creation and maintenance of an
environment is described with respect to a model-based representation and a sensor-based representation.

Model-based Representation

A model-based representation of the environment will be based on CAD models. Compared to sensor
information, these are assessed to give a more accurate environment representation. The drawback is that
they are inflexible and time consuming to obtain. A model-based representation is the obvious choice
for the platform of a mobile manipulator, because it does not change relative position to the manipulator,
and is always within the working envelope of the manipulator. Objects being handled by the manipulator
or workstations, requiring high precision, can be represented by use of model-based models.

Sensor-based Representation

An immediate choice for sensor type is vision, such as for example 3D time-of-flight sensors [May et al.,
2006] and RGB-D sensors [Henry et al., 2014]. RGB-D sensors are further elaborated in appendix H.3.
Both sensor types provides visual information and a depth perception.

Sensor information for the environment representation is expected to work as a supplement, to the model-
based representation in the short-term. This is because changes in the environment is expected to occur
for collaborative robotics.

Calibration of the Environment

Both model-based and sensor-based representation of an environment must be calibrated relative to the
mobile manipulator. Sensor input is assessed to be represented relative to the respective sensor, entailing
the need for a calibration of the sensor. Two calibrations approaches are proposed; calibration based
on haptic markers and calibration based on visual markers. Haptic calibration uses the manipulator and
force feedback, to determine placement of haptic markers or calibration surfaces for the object being
calibrated [Pedersen, 2011]. This could for example be the calibration of a manipulator relative to a
mobile platform. Calibration of vision sensors relative to a manipulator can be conducted by use of visual
markers, for example QR codes [Andersen et al., 2013]. Visual markers can also be used to calibrate the
mobile manipulator relative to model-based representations, for example workstations [Hvilshoej et al.,
2010].
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4.3.4 Error Handling

Error handling is an important aspect, and an effective error handling can aid lowering the needs for
user inputs. Even though processes are designed to be robust, error handling must be incorporated in the
system. Errors described here are focused on errors, related to, or caused by motion planning. Errors
concerning motion planning can be, among others:

• Failed motion planning (an algorithm fails to create a successful path).

• External activation of emergency stop.

• Collision (inconsistencies between the real and modelled environment).

The system shall in general handle errors in two different ways, automatic or manual. Automatic error
handling is applicable on known errors, with known solutions. Manual error handling is applicable on er-
rors, without a known solution or if the known solution is too complicated, compared to the occurrences,
to create an automatic recovery.

A failed motion planning attempt can be automatic handled by conducting the motion planning request
again - perhaps with changed parameters, as for example increasing the allowable planning time. If a
collision has happened, then an operator can be called to verify whether there is inconsistency between
the modelled and real environment or not, and if possible, correct the error.

4.3.5 User Interaction

A main reason for implementation of motion planning into the SBS of Little Helpers is to reduce the
need for user interaction. The ultimate goal is to do without user interaction. This is however assessed
to be infeasible in the short-term proposal, which is why some general ideas about how user interaction
can be reduced, with respect to motion planning, are presented.

The utilisation of motion planning makes use of via-points redundant, and thereby reducing the required
user input. Motion planning also lowers the demands to the user of the system, if the skills are applied
to 3D coordinates. This is because no intermediate configurations of the manipulator, is needed to avoid
obstacles contained in the environment.

Motion planning does however invoke a set of parameters to be determined. This can be with respect to
the utilised algorithm and corresponding parameters. It is assessed that this can be avoided with sets of
predefined parameters, suited for different applications. The needed user-inputs must be kept on a level
such that the SBS of Little Helpers can continue to be used by non-experts.
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Specification of Parameters

Specification of parameters for skills are done as a part of the teaching phase. Parameters can either be
specified by the user or specified from predefined values. By specifying all parameters related to skills
in the task file, then the tasks becomes independent from the specific SBS they are created on. They can
thereby be executed on any SBS with the intended parameters.

Specification of Process Constraints

In addition to position constraints, process constraints for motion planning may likewise be of concern.
Process constraints can be the velocity of the TCP or joints, the pattern of movements, the angle of a tool,
etc. In the long-term it is assessed that process constraints will be predefined through, specified work
sheets, currently being developed as a part of the ACAT project, which is shortly presented in appendix
I. Until this is fully developed, it is proposed to directly specify the process constraints.

In [Kallmann and Jiang, 2010] process constraints with respect to movements are specified by a hu-
manoid robot, imitating a person. By capturing and analysing the motion, then the respective constraint
is classified into one of the following five groups; stationary, translation-only, rotation-only, patterned-
translation, and patterned-rotation. The capturing of a constraint is done, by comparing the Cartesian
pose of the manipulator at different instances of time. To make the system robust, a set of thresholds
have been determined for the capturing. [Kallmann and Jiang, 2010]

By altering the application to kinaesthetically teaching, instead of imitation, then it is assessed this is an
applicable user interaction to Little Helpers, if process constraints becomes a concern.

Simulation

Simulation tools can be used to visualise created trajectories. The ability to simulate the result of motion
planning makes it possible to conduct a system test, without being connected to the real manipulator.
This eases the user interaction during development, the creation of functionalities for the system, and
avoid potential dangerous situations during debugging.

The complexity of the simulation is based on the desired output; if the need is to do a visual verification
of the trajectory to be executed, a simple position simulator can be utilised. More advanced simulators
can also include the dynamics of a manipulator, physics, and potentially the control parameters from the
controller of the manipulator. This will create a simulation response, which can be used to verify for
example velocities and accelerations of trajectories.
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4.4 Sub-conclusion

The main purpose of this chapter was to answer Hypothesis 1 in chapter 3, hence to introduce the
conceived conceptual proposals regarding integration of motion planning in a SBS, where the proposals
were divided into a long-term concept proposal and a short-term concept proposal.

The aim of the long-term concept proposal was to pave the way for how motion planning could be in-
corporated in a SBS of the future. This was done by proposing an incorporation of motion planning on
multiple types of equipment, such as; articulated manipulators, grippers, and locomotion, in a SBS soft-
ware framework. Based on this, it was deduced that a motion planning handler was needed, if one motion
planning software tool did not encompass all these functionalities. To suit the needs of the motion plan-
ning handlers multiple types of motion planning software tools, a need for an environment representation
was established. Based on this, it was determined that an environment handler was needed. The environ-
ment handler had to be able to both encompass CAD models, as well as sensor-based representations. It
was additionally proposed to conduct enhancement on the different motion planning software tools. To
cope with this, it was identified that learning had to be incorporated in the SBS. It was deduced that the
system would become more autonomously, by incorporating learning, hence the needed user interaction
was assessed to be negligible. Learning entailed the need for a common database for all Little Helpers,
where knowledge could be shared. The addition of a common database induced the possibility to extract
information from tasks, skills, and device primitives, to the common database, and thereby was handlers
introduced. This was determined necessary, to be able to share and enhance these. It was concluded that
the overall structure of a SBS was maintained, although handlers were introduced.

The short-term concept proposal was based on the long-term concept proposal, but aimed at being more
applicable for a present SBS. It was deduced to maintain the motion planning handler in the short-
term concept, to encompass for multiple types of motion planning software tools. The motion planning
handler did likewise induce the need for an environment representation to the SBS. It was determined to
maintain the rest of the overall structure of the original SBS of Little Helper 4. This was to support the
desire, to do an implementation on the Little Helper 4 software framework. Proposals to cope with the
user interaction, error handling, and calibration was likewise proposed.

The two concept proposals were, if possible, supported by exemplifications on how other research
projects tackles similar functionalities, as the given proposal within the concept proposals.

The resulting software framework for both the long-term and the short-term concept proposal, were
discussed and verified in overall terms with the Robotics and Automation Group at Aalborg University.
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Chapter 5

Applicable Software

The purpose of this chapter is first stated. This is followed by a screening of applicable software solu-
tions, which have to fulfil the needed functionalities, described in the short term proposal for the skill-
based system (SBS) in section 4.3. Based on the screening, a software is selected for implementation in
the SBS of Little Helper 4. At last, the selected software is elaborated.

5.1 Purpose

The purpose of this chapter is to probe different software solutions, which possess the functionalities
needed to implement motion planning in the Little Helper 4 software framework, as described in section
4.3. This comprises capabilities within motion planning, simulation, sensor usage, and utilisation of
CAD models and sensor input for environment representation. In addition to the selection, the selected
software is to be elaborated, to obtain a better insight, of how the software works. This is used for
implementation in the Little Helper 4 software framework.

5.2 Motion Planning Software Screening

There exists several software solutions capable of motion planning, and among those, three software
solutions is selected for screening. The first one is V-REP, which has been utilised by the The Robotics
and Automation Group at Aalborg University. The next is RobWork, which the project group acquired
knowledge about during a visit at University of Southern Denmark, as a part of the development of Little
Helper 4 [VT3-2013, 2013]. The last is MoveIt, which the project group became aware of, by working
with ROS. Each of the examined solutions is open source. The following subsections briefly outlines
V-REP, RobWork, and MoveIt.
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5.2.1 V-REP

V-REP is a simulation software, mainly used for simulating robotic motions, which was released in
2010. The architecture of V-REP makes it possible to individually control each object in the simulation
environment, from among others, ROS nodes. It is possible to insert objects, such as manipulators
and grippers. For those and any other type of mechanisms, forward and inverse kinematics can be
calculated. Furthermore, three physics engines are available, for simulation of real-world physics and
object interactions, such as collision response and grasping. At last, motion planning is possible for
kinematic chains, such as an articulated manipulator. [Coppelia Robotics, 2014]

5.2.2 RobWork

The development of RobWork was started in 2006 at the University of Southern Denmark and is a soft-
ware for simulation, and control of robotic systems. The goal of the framework is to:

“Provide a single framework for offline and online robot programming including mod-
elling, simulation and (real-time) control of robotics”

[Ellekilde and Jorgensen, 2014]

It is composed of a number of C++ libraries with various functionalities. The functionalities are mod-
elling of, among others, industrial manipulators; motion planning with path optimisation, collision de-
tection, and inverse kinematics; manipulator, controller, sensor, and grasping simulation with kinematics
and dynamics. RobWork features the possibility to integrate custom motion planning algorithms. [Ellek-
ilde and Jorgensen, 2014]

5.2.3 MoveIt

Willow Garage have in 2013 developed the software solution, MoveIt, that integrates motion planning,
kinematics, collision checking, manipulation, navigation, sensor input, and control [Chitta, 2013]. There
has been focus on making the architecture behind MoveIt flexible, thus the possibility for plug-ins is
enabled in the architecture. This entails that users are capable of integrating custom components, such
as motion planners, kinematic solvers, etc. Benchmarking abilities have been implemented in MoveIt, to
make it possible to test various motion planning algorithms, scenes, set-ups and parameters against each
other. [MoveIt, 2014b]
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5.3 Selection of Motion Planning Software

MoveIt is selected for implementation in the Little Helper 4 software framework, the reasons for the
choice are elaborated in the following.

MoveIt is developed directly for integration with ROS. This matches the software framework of Little
Helper 4, since it is based on ROS. This might ease the implementation of MoveIt in the SBS of Little
Helper 4 compared to V-REP and RobWork.

MoveIt contains a default motion library, Open Motion Planning Library (OMPL), which contains a
broad variety of motion planning algorithms. MoveIt has additionally the ability to include other motion
planning libraries, or users can implement their own motion planning algorithms. A wide range of motion
planning algorithms are desirable, to allow for a comprehensive benchmarking. MoveIt features, through
OMPL 20 algorithms, whereas RobWork per default includes five algorithms [Ellekilde and Jorgensen,
2014]. The number of algorithms have not been determined for V-REP.

MoveIt is the newest of the three software solutions, and this induces interest in exploring its function-
alities. There are some disadvantages with selecting a new software. One is the lack of experience in
MoveIt, compared to V-REP because the The Robotics and Automation Group at Aalborg University has
experience with it. It was assessed that the necessary information and help could be obtained through
online communities.

5.4 Functionalities in MoveIt

MoveIt is a motion planning software solution, with open interfaces for utilisation of motion planning
algorithms, kinematics solvers, manipulators, and sensors. The overall functionalities of MoveIt are
described in the following. The description is biased in the architecture of the system, in that each of the
components are described. The architecture of MoveIt is shown in figure 5.1. The outlining of MoveIt is
based on [MoveIt, 2014b].

Move_group

Move_group is the main node of MoveIt, which integrates functionalities from the other components
of MoveIt. Move_group handles the creation and maintenance of an environment. Maintenance can
be done based on sensor input, which concerns both Robot Sensors and Robot 3D Sensors. The 3D
sensor data is filtered before being used in the environment, which is also handled by the move_group.
The environment representation is divided in two; a representation of manipulators and a representation
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Figure 5.1: The high-level architecture of MoveIt, which shows the connections to the main node move_group. The rectangles
represent ROS nodes. Inspired by [MoveIt, 2014b].

of the scene. Manipulators are a representation of a chain of links and joints, which can be part of a
kinematics chain for motion planning. A scene is a presentation of the entire environment, without the
manipulator.

User Interface

It is possible to utilise the functionalities of the move_group node via three different user interfaces; C++,
Python or a graphical user interface (GUI). The GUI is implemented as a plug-in to the visualisation tool
Rviz. Kinematic solving and receiving of motion planning requests are for example furthermore handled
through the user interface.

Motion planning algorithms can be utilised through the user interface, allowing for use of custom al-
gorithms. OMPL is the default algorithm library in MoveIt and consist of a set of motion planning
algorithms, which are utilised through move_group. In addition to the algorithms, the library contains
post-processing capabilities, which improves the output trajectory.

When working with robotics, kinematics is a necessity. MoveIt makes use of a plug-in structure, al-
lowing the users to develop their own kinematics solvers. As default, MoveIt utilises the Kinematics
and Dynamics Library (KDL). Another option is to use IKFast, which is an inverse kinematics solver
provided in OpenRave. This solver is analytical and should provide more stable and faster solutions.

Collision detection is utilised, to validate paths and configurations. The Flexible Collision Library (FCL)
carries out the collision detection in MoveIt. It supports collision detection for meshes, primitive shapes,
such as boxes and cylinders, and filtered sensor data.
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ROS Param Server

The ROS Param Server is used for storing configuration parameters used by MoveIt. This can include
kinematic descriptions, collision disabling, and link to visualisation and collision files.

Robot Controllers

Robot controllers concerns the connection from MoveIt to manipulators. The information being send
through this connection is trajectories to be executed and an accepted response from the manipulator.

Robot 3D Sensors

Robot 3D sensors concerns 3D sensor input, which is divided in two categories: point clouds and depth
images. Image information is send to the move_group for filtering and further use.

Robot Sensors

Robot sensors concerns feedback from the manipulators in the environment. This is for example the
state of the joint configuration of a manipulator. This is used by the move_group to maintain a correct
representation of the environment.

5.5 Sub-conclusion

In this chapter, three software solutions, applicable for motion planning in the Little Helper 4 software
framework, were probed. MoveIt was the software of choice, based on the capabilities of the software and
the short-term concept proposal from section 4.3. The overall functionalities of MoveIt were outlined, to
lay the foundation for further work with MoveIt. MoveIt is created with an open structure, allowing for
interface to various types of hardware, corresponding to the generality of the SBS.
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Chapter 6

Motion Planning Study

This chapter first introduces the purpose of studying motion planning. Thereafter two philosophies is
introduced. The philosophy matching the requirements of this project is chosen. Finally, a study about
the algorithms in the Open Motion Planning Library is carried out. The study of the algorithms is in this
chapter on an application level, where some of the algorithms are described in appendix C.

6.1 Purpose

The purpose of this chapter is to partially answer Hypothesis 2 in chapter 3, by first introducing two
motion planning philosophies. The capabilities and the difference between the two are described to
validate the selection of MoveIt, which uses the Open Motion Planning Library (OMPL). Subsequent, an
examination of the motion planners on an application level is carried out, to make it possible to compare
the motion planners. Finally this chapter and a benchmark (see chapter 7) must enable a selection of a
single, or as few motion planners as possible, to be used in the skill-based system (SBS) of Little Helper
4.

6.2 Motion Planning Philosophies

Motion planning can be divided into two main philosophies: Combinatorial motion planning and Sampling-
based motion planning [LaValle, 2006, p. 185, 249]. The following introduces the two types of philoso-
phies, where sample-based motion planner also includes general definitions that are utilised in the rest of
the report.
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6.2.1 Combinatorial Motion Planning

Combinatorial motion planning algorithms, also referred to as exact algorithms, deals with motion plan-
ning, by finding paths in a discretised and complete representation of the continuous configuration space.
Either this type of algorithms will find a solution or correctly, report that no solution exits, such an algo-
rithm is defined as being complete. [LaValle, 2006, p. 249]

When using combinatorial motion planning, it is important to know the representation of the environ-
ment, in which a given algorithm has to function, since the performance of the algorithm is highly de-
pended on the input. This is the opposite philosophy to the sampling-based motion planning algorithms,
which does not need to know the complete representation in pre-hand. [LaValle, 2006, p. 185, 249]

It can be beneficial to use combinatorial algorithms for some special cases, because highly efficient
algorithms can be developed, since they do not rely on approximations. However since they have to be
developed to the specific representation of the environment, then they often will end of being impractical
to implement. [LaValle, 2006, p. 250]

6.2.2 Sampling-Based Motion Planning

Sampling-based motion planning algorithms have advanced motion planning since the 1990’s and are
at present considered the state-of-the-art philosophy within motion planning [Burns and Brock, 2006].
In contrast to combinatorial motion planning, the main idea about sampling-based motion planning is
that it does not explicit construct the obstacles in the configuration space (C-Space). Instead, a search
is conducted, which probes the configuration space by use of sampling vertices and connect these with
edges. The searching induces the need for collision detection that can detect the obstacles, and thereby
navigate in the obstacle free space. [LaValle, 2006, p. 185-187]

Geometric 

Models

Collision 

Detection

Sampling-Based Motion 

Planning Algorithm

Discrete

Searching

C-Space

Sampling

Figure 6.1: The Sampling-based motion planning philosophy. [LaValle, 2006, p. 185]

The collision detection is essential to get a valid path, but in practise it is not a part of the sampling-based
algorithms (seen in figure 6.1). The collision detection is typically conducted elsewhere, and provides
information whether a given state is valid or not. The process is often referred to as a collision checker,
since the motion planning algorithm enquires the validity of the state. Normally the collision check is
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done during sampling of a state, but sometimes it can be beneficial to postpone the collision check until
a full path is made. An algorithm is often prefixed with "Lazy" if the collision check is postponed.

The reason for postponing the collision checking is, for example, that the probabilistic roadmap (PRM)
algorithm uses up to 90% of its computational time on collision checking. The probability that a short
connection between two configurations is collision free is large, and most connections in the PRM are
not in the final path. This entails that the time used for checking collision for each connection, before a
final path is found, is redundant. [Sánchez and Latombe, 2003].

Sampling-based motion planners are typically categorised as single-query or multiple-query. The differ-
ence being that a single-query has a single initial-goal query pair given, for which, a tree data structure is
built to solve the query. Multiple-query planners first constructs a roadmap of undirected edges in a pre-
processing phase. This roadmap is then used to answer multiple queries. The multi-query planners are
beneficially in highly structured static environments, but if the environment changes the pre-processed
graph gets invalid. Hence, in dynamic or in pre-hand unknown environments single-query algorithms
are generally better suited. [Karaman and Frazzoli, 2011]

Contrary to combinatorial motion planning, sampling-based motion planning are not complete. Instead
the probabilistically completeness is used to characterise the ability to find a solution. To be probabilis-
tically complete means that with enough samples, the probability that the algorithm finds an existing
solution converges to one. Many sampling-based motion planning algorithms are probabilistically com-
plete, and the rate of convergence can be used as a performance parameter, thus rate of convergence,
which describes the performance of an algorithm, is a better way to evaluate different algorithms, but it
is in practice difficult to establish it. [LaValle, 2006, p. 185-186]

Sampling-based motion planning can be performed with differential constraints, which restricts the al-
lowable velocity in each configuration through a path. MoveIt typically generates kinematic paths i.e.
paths without differential constraints. The kinematic paths are time-parameterised afterwards to generate
a trajectory, which the manipulator and its controller tries to follow [MoveIt, 2014b]. If the plans are
made with differential constraints, then the plans are made to comply with the natural motions of the
manipulators mechanical system [LaValle, 2006, p. 713].

6.3 Open Motion Planning Library

MoveIt enables motion planning through a plugin interface, and the default motion planning library is the
Open Motion Planning Library (OMPL), which at present includes 20 different sampling-based motion
planning algorithms. The characteristic with respect to their applications will be examined. This section,
combined with appendix C, gives an introduction to these motion planning algorithms. Five planners is
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to be presented in-depth in this section. These are chosen, such that they represent the range of diversity
of motion planning algorithms in OMPL. The applicability for Little Helper 4 is assessed based on the
theory, after the introduction of each of the five motion planners.

6.3.1 Probabilistic Roadmap

The Probabilistic Roadmap (PRM) algorithm is presented in [Kavraki et al., 1996] as a tool to do motion
planning for manipulators with many degrees of freedom (five or more). PRM uses the multi-query
method, where the basic idea is to divide the algorithm into two overall steps; a pre-processing phase and
query phase. [Kavraki et al., 1996]

Obstacle

Obstacle

Figure 6.2: Illustrates the generation of random samples in the free configuration space. This is a part of the pre-processing
phase.

The pre-processing phase consists of the creation of a roadmap. This is done by attempting to make
connections between a set of randomly sampled configurations, in the obstacle free space, by use of
a local planner (See figure 6.2 and 6.3). The local planner is typical limited to only include samples
within a certain radius or a certain number of nearest neighbours. This is done until the roadmap is dense
enough. [Kavraki et al., 1996]

The second phase is the query-phase, where the algorithm answers queries. The process of the algorithm
is that a query first attempts to find a path from the initial configuration and the goal configuration, to two
samples. Next, a graph search is conducted to find a sequence of edges connecting these two samples in
the roadmap. The successive connection will at the end have created the path, as shown in figure 6.3 and
6.4.[Kavraki et al., 1996]
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Obstacle

Obstacle

Figure 6.3: A roadmap after a local planner have connected the randomly sampled configurations. This is a part of the pre-
processing phase.

Figure 6.4: A solution to a query, where the initial and goal state is connected to the roadmap and a path is found.

OMPL contains a set of algorithms, which are developed from the original PRM algorithm. These are
listed in the following:

• LazyPRM is inherited from the original PRM algorithm. The "Lazy" prefix means that the algo-
rithm postpones the collision checking to reduce the process time [Bohlin and Kavraki, 2000]. The
algorithm is further elaborated in appendix C.1.
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• PRMstar is similar to the PRM, but the connection radius is depended on the coverage of the
space. The algorithm is asymptotically optimal, which means the cost of the solution goes towards
optimum as the number of samples increases [Karaman and Frazzoli, 2011]. The algorithm is
further elaborated in appendix C.2.

• SPARS provides near-optimal solutions by building sparse sub-graphs from a roadmap created by
the PRMstar algorithm. The sparse sub-graphs, with fewer nodes and edges, gives faster solutions
to a query and are easier to handle for resource-constrained robots. Small roadmaps with multiple
paths are advantageous in dynamic environments if moving obstacles invalidates path segments
[Dobson et al., 2013]. The algorithm is further elaborated in appendix C.3.

• SPARS2 is comparable to SPARS in structure, but the memory usage under the construction of the
sparse sub-graph is lowered, and the path are increased in quality [Dobson and Bekris, 2013]. The
algorithm is further elaborated in appendix C.4.

Applications for the Skill-based System

In general it can be said that the PRM and the closely related planners mainly are suited for static
environments, where the algorithms can fully utilise the pre-processing phase [Hsu et al., 1997]. However
if a multi-query motion planning algorithm is to be used in a dynamic environment, then the SPARS2
will be the one to choose, since it utilises a sparse roadmap that should be relatively computational
inexpensive. In addition, the algorithm is able to use another of the pre-processed queries, if the ongoing
is obstructed.

Although probabilistic roadmap algorithms are able to answer multiple queries efficiently, they are not
suitable when only a single query is possible. This can for example be in a narrow assembly problem,
where it has to be determined whether there at all exist a path to assemble a component in a mechanical
part. In that case, it will be more desirable to build only the part of the roadmap that is relevant to the
query, like tree-based planners, compared to perform expensive pre-processing to construct a roadmap
of the entire configuration space. This means that the choice between using single-query or multi-query
motion planning algorithms is task-depended. [Hsu et al., 1997]

6.3.2 Rapidly-exploring Random Trees

The RRT algorithm is a single-query tree algorithm. This makes it suitable for online motion planning
with a dynamically changing environment. The algorithm functions by expanding incrementally from
a given initial state, thus it does not need to have a certain number of samples given in pre-hand. The
algorithm will give a solution, when the tree reaches the goal state or fails if a termination condition is
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fulfilled. Like the PRM algorithm, the RRT algorithm is probabilistic complete. [Karaman and Frazzoli,
2011]

Obstacle

Obstacle
A

B

Figure 6.5: The beginning of a RRT, where a tree-based structure starts growing from the initial state A. If the shortest distance
between the tree and a new sample is longer than delta, the sample is added to the tree at a length of delta. It looks like the tree
is biased towards the goal, but in the original RRT this is not the case.

An example of the incrementing RRT algorithm, at its basic form, is shown in figure 6.5 and 6.6. The
algorithm incrementally creates a tree of feasible edges, by randomly sampling new states in the free
configuration space. The tree is extended with a fixed length delta towards the newly sampled state, by
finding the nearest state in the tree. [Karaman and Frazzoli, 2011]

Figure 6.6: The RRT has reach the goal state (B).
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The most basic form of the RRT algorithm expands randomly in the configuration space. A tree expan-
sion can however also be biased, by means of Voronoi regions. Voronoi regions guides the tree towards
less explored areas of the configuration space, whereas the probability of sampling in a certain Voronoi
region is proportional to the size of the region [Kuffner and LaValle, 2000].

Tree-based algorithms can be divided into the following classes of algorithms, depending on the number
of trees included in the algorithm; uni-directional, bi-directional, or multi-directional. [LaValle, 2006,
p. 219]

Figure 6.7: (a) shows a cavity with a unidirectional algorithm. (b) shows bi-directional algorithm within a bug trap, which
is commonly used to illustrate high-dimensional obstacles regions, in the configuration space. (c) shows two bug traps, with
a multi-directional motion planner. (d) shows an example of problem, that multi-directional algorithm will have difficulties
solving. [LaValle, 2006, p. 219]

Unidirectional motion planning algorithms builds a single tree iteratively, as shown in figure 6.7 (a).
Figure 6.7 (a) shows a cavity for a unidirectional tree. The motion planner needs to avoid the cavity, to
build a path from the initial state qI to the goal state qG. The result may be, that the algorithm explores
too many regions inside the cavity, and thereby will not be able to retrieve a solution, within the given
solution time. In figure 6.7 (b) a bug trap is shown. A bug trap is used to illustrate high-dimensional
obstacles regions, in the configuration space. Here will a unidirectional algorithm, shown as the blue
tree, experience difficulties leaving the trap. Thus, this illustrates the reasons why unidirectional trees
may have difficulties with high dimensional problems in the configuration space. [LaValle, 2006, p. 219]
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Bi-directional algorithms are often more preferable, if it is not known whether the initial state, the goal
state, or both lies within a complicated region of the configuration space, such as a bug trap. A bi-
directional search is iteratively conducted, illustrated in figure 6.7 (b), between a blue tree being built
from the initial state qI , and a red tree being built from the goal state qG. A path is created, when the
two meet. In figure 6.7 (b) it is seen how bi-directional handles complicated configuration spaces better.
[LaValle, 2006, p. 219]

If both the initial state qI and the goal state qG lies within two different bug traps, then it might make
sense to try to grow a tree outside the bug traps, with the aim that this will be able to enter the bug
traps in another direction, as seen in figure 6.7 (c). Multi-directional algorithms are more complicated to
handle, and are not contained in OMPL. Figure 6.7 (d) illustrates a difficult problem for multi-directional
algorithms as well. [LaValle, 2006, p. 219]

The RRT algorithm is the main basis for a set of other algorithms, which are included in OMPL. These
are listed below:

• pRRT can do parallel processing on the RRT algorithm, to enhance processing time.

• LazyRRT combines the RRT algorithm with the "Lazy" function. Thus, the algorithm postpones
the collision checking. This shall reduce processing time. The algorithm is further elaborated in
appendix C.5.

• RRTstar can ensure that the vertices of the RRT algorithm are reached through a minimum-cost
path. The algorithm is further elaborated in appendix C.6.

• LBT-RRT algorithm is a combination of RRT and RRTstar, where it can interpolate between the
two. This gives a fast convergence, like the RRT, and with high quality, like the RRTstar. The
algorithm is further elaborated in appendix C.7.

• T-RRT combines the RRT algorithm with cost-function, to guide the growth of the tree into
minimum-cost paths. The algorithm is further elaborated in appendix C.8.

• RRTConnect consists of two parts, a bi-directional RRT algorithm and a Connect heuristic algo-
rithm that extends more aggressively than the original RRT algorithm, and thereby rapidly explores
the configuration space before uniformly covering it. It is designed for path planning problems
without differential constraints. The algorithm is further elaborated in appendix C.9.
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Applications for the Skill-based System

Common for all the algorithms are that they are single-query. As mentioned previously this can be
beneficial in situations where only one query is needed or in a dynamic environment. Furthermore, the
tree-based algorithms handles differential constrains better than its PRM counterparts do. [Karaman and
Frazzoli, 2011]

RRTConnect is bi-directional and designed for high dimensional systems, such as systems composed
of multiple manipulators. In addition, the algorithm demands a minimal amount of user-input, which
corresponds well to the general idea about the SBS. In contrary to other RRT algorithms, the RRTConnect
does not support differential constraints. It is however assessed that if differential constraint becomes a
need, then algorithms that are more suitable will be chosen. Thus, it is estimated that RRTConnect is to
be selected for a SBS.

6.3.3 Kinodynamic Planning by Interior-Exterior Cell Exploration

Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) is a tree-based planner, which is
designed for handling of systems with complex dynamics. KPEICE utilises parallel processing, if multi
core CPUs are available. A multiple-level grid-based discretisation is used to estimate the coverage of
the configuration space, to help guide the extension of the tree. [Şucan and Kavraki, 2010]

In OMPL the algorithm is simplified by use of only one grid. It is important to set this set grid, and if
none is set, then a default grid is chosen. [OMPL Rice University, 2014a]

The OMPL contains a set of algorithms, which are similar to KPIECE. These are listed in the following:

• BKPIECE is bi-directional, but is otherwise similar to the original KPIECE.

• LBKPIECE is in addition to BKPIECE, this algorithm includes lazy collision checking.

• PDST is a tree-based planner especially developed for systems with significant drift, severe under-
actuated systems, and in "discrete system changes". Thus, it handles complex differential con-
straints. The growth of the tree is guided towards less explored areas by a user-specified projection.
The algorithm is further elaborated in appendix C.10.

• EST is a single-query bi-directional tree-based planner. The algorithm is able to handle differential
constraints. The growth of the two trees are guided towards less explored areas by a user-specified
projection. The algorithm is further elaborated in appendix C.11.

• STRIDE is similar to EST and the latest addition to the tree-based planners that are able to handle
differential constraints. STRIDE uses a so-called GNAT function to guide the development of
the tree, thus STRIDE does not need to rely on a user specified projection grid. The STRIDE
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algorithm is especially able to handle many degrees of freedom (10 or more). The algorithm is
further elaborated in appendix C.12.

Applications for the Skill-based System

Common for all of these planners, except STRIDE, is that they rely on a projection of the grid being
set as input to guide the tree development. If no projection is given, then a default value for the grid is
attempted to be used. [OMPL Rice University, 2014a]

STRIDE has the best performance compared to the rest of this group of motion planners, with respect
to processing time and number of solved queries for high dimensional problems, such as with multiple
manipulators. [Gipson et al., 2013]

This implies that STRIDE will be the one to be selected for a skill-based system, if differential constraints
is to be implemented. However, the PDST algorithm’s ability to handle under-actuated systems may be
useful, if motion planning has to be conducted for the gripper, since the RQ3 gripper is under-actuated.

6.3.4 Single Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision
Checking

Single query bi-directional probabilistic roadmap planner with lazy collision checking (SBL) is based
upon the PRM algorithm, but this algorithm is single-query in contrast to PRM. As the name implies this
algorithm is bi-directional, which means that a roadmap of two trees are rooted at respectively the initial
and goal state. In addition, the algorithm applies lazy collision checking. By reducing the computational
time, then more complex motion plans can be made, such as motion plans for multiple manipulators or
complex environments with high dimensional problems. [Sánchez and Latombe, 2003]

The algorithm can be divided into three steps; a tree expansion, a tree connection, and a path testing.

The tree extend the roadmap by adding new sampling points to one of the two trees. First, a tree has
to be selected. Then a sampled vertex in the tree has to be found, from which the new extension shall
be made. To help deciding where to further expand the roadmap, the algorithm has a grid data structure
implemented. The grid contains information about where previous vertices have been visited. The area
in the grid that is least visited, has the greatest chance of being selected. In OMPL the grid is imposed
on a projection of the configuration space. This projection needs to be set before using the algorithm, but
if it is not set the planner attempts to set a default projection. [OMPL Rice University, 2014a]
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The next part is the tree connection. If a sample in one of the trees come within a certain radius of a
sample in the other tree, then a connection is made and a possible solution is found. The connection is
called a "bridge". Thus, the bridge connects the initial state with the goal state. [Sánchez and Latombe,
2003]

The final step is to test whether the solution path is valid or not. If the path is valid, then the algorithm
is done. If a collision is found, then the vertices and edges that are in collision are removed and a gap
between the two trees is created. The trees can inherit each other’s vertices and edges if a break is made
in one tree. Thereafter the algorithm goes back to tree expansion to find a new solution. [Sánchez and
Latombe, 2003]

There is one motion planner in OMPL, which resembles SBL:

• The parallel SBL (pSBL) enables the possibility to parallel process parts of the SBL algorithm,
such as the collision checking, for faster solution response. [OMPL Rice University, 2014a]

Applications for the Skill-based System

The SBL and pSBL algorithm should benefit compared to the PRM, by also including lazy collision
checking and bi-directional growth of the trees, although being single-query can affect the results. The
SBL variants handles high dimensional problems, thus the algorithm is applicable for multiple manipu-
lators.

If utilised, then the parallel SBL (pSBL) must be the one of choice, since it should enhance the perfor-
mance with parallel processing.

6.4 Sub-conclusion

The main purpose of this chapter was to answer Hypothesis 2 in chapter 3, with respect to a literature
study about motion planning algorithms. The literature study was delimited to sampling-based motion
planning algorithms, within the Open Motion Planning Library. It was chosen to divide the motion
planning algorithms into five main groups, where they were presented and one was elaborated. The
theory was used to assess the applicability for use of the motion planning algorithms in the Little Helper
SBS.
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Chapter 7

Benchmarking of Motion Planning
Algorithms

This chapter concerns the benchmarking of the motion planning algorithms, described in chapter 6.
The purpose for benchmarking is first clarified, followed by a description of how the benchmarking is
conducted. The data from the benchmark is next presented and interpreted. Practical information about
how the benchmark is created, is presented in appendix E.

7.1 Purpose

The main purpose of this chapter, in a combination with chapter 6, is to answer Hypothesise 2 in chapter
3. The motion planning algorithms in OMPL are benchmarked to be able to make a selection of a few,
or even a single motion planning algorithm, applicable for Little Helper 4. The motivation for selecting
motion planning algorithms, is described in chapter 4, where the main reason originates from the wish
to extend the capabilities of Little Helpers, without neglecting ease of usability. This can be achieved
by having a few, or even a single motion planning algorithm, with predetermined parameters, capable of
solving different problems.

7.2 Design of Benchmarking Experiment

The aim is to find one or, a set of applicable motion planners. It will be easiest if solely one motion
planner, without exception, is tested applicable, such that an end-user does not need to choose a motion
planning algorithm for any given problem.
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It is however challenging, and might not make sense to choose a single algorithm for all problems,
because of the variety of problems. [Cohen et al., 2012]

In [Cohen et al., 2012] a generic infrastructure for benchmarking of motion planning algorithms is intro-
duced. This infrastructure is implemented in MoveIt, where the aim is to make it possible for a developer
to select the motion planning algorithm, which best suits a particular problem. One single problem can-
not be identified for collaborative mobile manipulators, but general problems can be designed, to cover
the most common problems. The infrastructure is described in appendix E, where this section describes
how the benchmarking set-up is designed, conducted, and the choices made.

The motion planning algorithms are benchmarked in two different scenes. In the first scene, the manipu-
lator has to move around the pan-tilt unit pole, described in appendix I, without collision. This scene is
created to test how well motion planning algorithms handles relatively simple environments. The other
scene is used to test how well the motion planning algorithms handles narrow passages. This is appli-
cable for problems, where the manipulator places work-pieces into machines, such as a CNC machine.
The scenes can be seen in figure 7.1a and 7.1b respectively.

(a) Benchmarking scene around the pan-tilt unit
pole.

(b) Benchmarking scene with narrow passage.

Figure 7.1: The two scenes used for benchmarking of the motion planning algorithms. The manipulator has to motion plan
around the pan-tilt unit pole in figure 7.1a; this scene is called benchmarking scene a. In figure 7.1b the manipulator has to
motion plan into a narrow passage; this scene is called benchmarking scene b.
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Most motion planning algorithms utilises parameters, which can be adjusted to alter their performance for
a specific problem [Cohen et al., 2012]. To regulate the parameters for every motion planning algorithm
in the OMPL is assessed to be a comprehensive task. Even though the parameters are not altered, it is
assessed that applicable motion planning algorithms can be selected based on the default parameters. It is
assumed that the default parameters are chosen with care by the developers of MoveIt and OMPL, hence
the benchmarking of the motion planning algorithms are conducted with their default parameters. After
a single or a few motion planning algorithms are chosen, the effort for regulating the motion planning
parameters is less comprehensive, this have not been done in this project.

The benchmarking has been conducted with 40 runs for 17 of the 20 OMPL motion planning algorithms1,
with a maximum allowed time of 15 seconds for each run. It is important that the number of runs, also
called sample size, is large enough to give a correct insight into the behaviour of the motion planning
algorithms. [Walpole et al., 2007] recommends a sample size larger than 30, hence the choice of 40 runs.

7.3 Data Processing and Results

Statistical methods have to be applied to the benchmark data before drawing inferences. The log from
the benchmarking contains data for 18 different properties, such as the total time and whether the query
were solved. The raw data from the benchmarking is appended on the enclosed CD2.

The first property evaluated, is whether the queries were solved. A bar chart for the percentage of
solved queries is shown in figure 7.2, where the blue bars belongs to scene a and the red bars belongs
to scene b. The chart shows that most of the motion planning algorithms have a solving rate less than
100%. If the percentage of solved queries for each scene are compared, it is seen that some motion
planning algorithms fails more frequently for scene b compared to scene a. It is assessed desirable to
choose algorithms that always solve the queries. RRTConnect, LazyPRM, LBKPIECE and BKPIECE
fulfils this for both scenes, hence they are preferred if their performance regarding other properties are
satisfying.

The next property examined, is the total time used for solving each query. It is chosen to visualise the
total time used for solving the motion planning queries with Box-and-Whisker plots, which can be seen
in figure 7.3 and 7.4. Box-and-Whisker plots illustrates multiple samples, for which it shows the median,
variability, and the degree of symmetry. A description of how the Box-and-Whisker plot visualises the
samples follows. The boxes shows the interquartile range of the sample, which is from the 25% to the
75% quantile of the sample. The median is shown within the boxes as a line cutting the boxes into two.

1Note that since it has not been possible to implement STRIDE, pSBL, and LBTRRT, then these will not appear in the
benchmarking. Further information about the implementation of motion planners can be found in appendix F.

2See: <Benchmark/AroundThePole.txt> and <Benchmark/SmallSpaceTest.txt>
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Figure 7.2: Solved motion planning queries for scene a and for scene b.

The range of the whiskers are calculated as a multiple of the interquartile range and visualises extreme
observations within the sample. [Walpole et al., 2007, p. 236]. The total time can only be used as a
relative comparison between the algorithms in this benchmark, because the time is dependent on the
computer the benchmarking was conducted on.

Studying of the two Box-and-Whisker plots in figure 7.3 and 7.4 reveals that the motion planning algo-
rithm LazyPRM is the quickest in both scenes followed by RRTConnect. Furthermore, both algorithms
solved all the queries hence they are reliable. The plots shows also that RRTstar uses the maximum al-
lowed time for each run. This is assessed to be because RRTstar is asymptotic optimal. This is expressed
by, for each sample connected to the tree, all samples within a given radius is connected to the sample
and the shortest path is chosen.

It is questionable whether the motion planning algorithm LazyPRM is as good as the data indicates.
LazyPRM has, after the benchmark, been attempted validated by a simulated motion planning query,
where the manipulator has to move from the top of the platform and down, along the side, as illustrated
in figure 7.5. The fingers of the gripper collides with the Little Helper 4 platform, thus for this relatively
simple query, the LazyPRM algorithm failed multiple times. It can therefore be questioned whether the
benchmark shows the true behaviour of the LazyPRM algorithm. The same motion planning query has
been tested with several other algorithms, including RRTConnect, PRM and PRMstar, which solved the
query without collision.
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Figure 7.3: The total time used to handle the motion planning queries in scene a. Note that the solution time is relatively
in-between, since they are fully depended on the used computer.

Figure 7.4: Visualises the total time used to handle the motion planning queries in scene b. Note that the solution time is
relatively in-between, since they are fully depended on the used computer.
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Figure 7.5: Image from simulation of a motion planning query with the LazyPRM algorithm which collides with the Little
Helper 4 platform.

The last property tested is the path length. It has been discovered that the solutions sometimes are a
long detour. It is undesirable because it is inefficient with respect to energy and time. Furthermore, it is
unconvincing from the point of view of a user, especially if a close collaboration between manipulators
and users is intended. A shorter path means less detouring, hence this property is worth taking in mind
before selection of an algorithm.

The path lengths are visualised with Box-and-Whisker plots in figure 7.6 and 7.7 for scene a and scene
b respectively. The path length is measured as the total movement for all joints in radians. The KPIECE
algorithm and its variants produces paths much longer, than the rest of the algorithms, hence these al-
gorithms are undesirable. To make it possible to see the details and compare the other algorithms, the
KPIECE algorithms have been cut off.

If the LazyPRM is evaluated in figure 7.6 and 7.7 for the path length, it is seen that its path is shorter and
with zero variance compared to the other algorithms. The LazyPRM is not a good choice based on the
previous experiences. The second best motion planning algorithm, regarding path length is the RRTstar
algorithm. In addition to those two algorithms, most of the algorithms performs almost equally well.

The results of this benchmark does not encompass every motion planning problem a Little Helper can
encounter, hence the chosen algorithm might not be the best for motion planning problems, which signif-
icantly differs from the two tested. This can for example be motion planning with multiple manipulators.
In addition, Little Helper’s vary in manipulator type, hence the mechanical configurations differs. Thus,
the result will solely indicate a solution for Little Helper 4. If it is desired to have a more general for-
malism, within motion planning for all Little Helpers, then a comprehensive benchmarking has to be
conducted.
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Figure 7.6: The path lengths for the motion planning queries in scene a. The KPIECE algorithms are cut-off to make it possible
to evaluate the details of the other algorithms.

Figure 7.7: The path lengths for the motion planning queries in scene b. The KPIECE algorithms are cut-off to make it possible
to evaluate the details of the other algorithms.
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7.4 Result Analysis

Based on the results presented by the benchmarking in this chapter, and the study conducted about motion
planning algorithms in chapter 6, a single or a few motion planning algorithms have to be selected. The
selection will be based on three parameters: reliability, solution time, and path length.

Reliability

It is preferable to select a reliable algorithm, hence the selection narrows down to those algorithms which
have a success rate of 100% in figure 7.2. Four algorithms complies:

• RRTConnect

• LazyPRM

• LBKPIECE

• BKPIECE

It is observed that three (RRTConnect, LBKPIECE, and BKPIECE) out of the four motion planner
algorithms that performs best, concerning finding a solution, are bi-directional. This corresponds with the
theory about bi-directional, stated in section 6.3.2. Additionally it can be seen in figure 7.2 that the PRM
variants in general performs fairly, although LazyPRM obviously is the best. This is likewise assessed
to be reasonable, since PRM and its variants covers the entire configuration space. The experiences with
LazyPRM regarding collision have to be taken into account.

Solution Time

The solution time is also of concern during motion planning calculations. If the four algorithms, men-
tioned above, are compared with respect to the total time used for solving a motion planning query, seen
in figure 7.3 and 7.4, it is observed that the LazyPRM algorithm outperforms the others, where the second
best algorithm is the RRTConnect algorithm.

Again, it is questionable whether the results for LazyPRM is valid. Comparing the results within the
PRM variants in figure 7.3 and 7.4, with the study conducted in 6.3.1, it is reasonable that the LazyPRM
is faster than its siblings are, since the collision checking is postponed. A solution-time close to zero,
with no notable variance, is however assessed to be unlikely. By combining the observations made in
the benchmarking, with the motion planning study, it is assessed that the algorithm is not functioning
correctly in MoveIt at present.

The second best algorithm, concerning minimal time consumption, is the RRTConnect algorithm. This
corresponds well to the motion planning study in chapter 6, being a fast tree-based planner, since it
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extends more aggressively, than the original RRT algorithm, which results in a rapidly exploration of the
configuration space.

Path Length

Thirdly, the motion planner’s path lengths are compared. If LazyPRM is ignored, then the result indicates
that the RRTConnect algorithm performs best, with the shortest path, as seen in figure 7.6 and 7.7.

The KPEICE, and its siblings, behaves poorly concerning the path length. Based on the motion planning
study in chapter 6, it is assessed to be because a default grid is projected on the configurations space.
Thus, nothing guides the trees of the algorithms, and thereby the result may be relatively large path
lengths.

Thus, the immediate choice for Little Helper 4 is RRTConnect, based on the performance criteria and
with the reservations in mind, given throughout this chapter.

7.5 Sub-conclusion

The purpose of this chapter was to answer Hypothesis 2, stated in chapter 3. This was done by conduct-
ing a benchmark on the selection of motion planning algorithms available and functioning in OMPL.
To this, the method utilised for the benchmarking, was introduced. Next, the design of the experiment
was enlightened, including reasoning for the choices made, before conducting the benchmark. Here two
scenes was chosen to replicate some of the environments for Little Helper 4. Next, the data was presented
in a statistical manner, to make the result clear. It was realised that LazyPRM in general outperformed
most of its competitors, but after a more thorough examination of LazyPRM, it was assessed that the
results of LazyPRM might be invalid. Additionally an assessment on the validity of the results, based on
the two scenes, was given.

Finally an analysis of the results was conducted, on the four best performing motion planners, where
the literature study from chapter 6 was utilised to verify the credibility of the results. Here it was again
confirmed that the results of LazyPRM was invalid, thus these was ignored. The benchmarking ended
up selecting RRTConnect as the most applicable motion planning algorithms, based on the two scenes
conducted with Little Helper 4.
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Chapter 8

Implementation of Motion Planning in the
Little Helper 4 Software Framework

This chapter concerns the implementation of motion planning in the Little Helper 4 software framework,
where the implementation is based on the short-term concept proposal, described in section 4.3, and the
software selection in chapter 5. The implementation is a proof of concept for the short-term concept
proposal. The implementation is presented throughout this chapter, which is supported by appendix A,
regarding the set-up of MoveIt, and appendix B, regarding modification of the UR5 proxy and driver. The
implementation is the foundation for the additional work, described in chapter 9 and 10.

8.1 Purpose

The purpose of this chapter is to answer Hypothesise 3, in chapter 3. The basis for the implementation
of motion planning in the Little Helper 4 software framework is the short-term proposal, conceived in
section 4.3. The implemented motion planning software is based on the selection, described in chapter 5.
The implementation is verified based on a system test, where Little Helper 4 is provided with a sequence
of skills, via teaching, which must be executed. The skills shall include a motion planning request. The
implemented motion planning software tool, in the software framework of Little Helper 4, is verified
with a sequence of executed skills, without collision.
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8.2 Motion Planning in the Little Helper 4 Software Framework

Motion planning is implemented in the Little Helper 4 software framework, between the skill level,
and proxy level. The structure of the implementation is shown in figure 8.1. The motion planning
functionalities are in the figure illustrated with Motion planning level. The motion planning software tool
of choice in the motion planning level is MoveIt, based on the software selection described in chapter
5. The implementation of motion planning for the UR5 manipulator has not affected the implementation
of the RQ3 gripper. The changes to the original Little Helper 4 software framework are related to three
different levels; the skill level, the motion planning level, and the proxy level. The changes to each of the
three levels are described in the following.

Master

RQ3 proxy

MoveIt proxy

MoveItUR5 proxy

ROS-I driverRobotiq driver

Taskfile

Hardware level

Task level

Skill level

Proxy level

Motion Planning Level

Figure 8.1: The implemented motion planning in the Little Helper 4 software framework.
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Skill Level

The changes in the skill level concerns device primitives and addition of parameters. Device primitives
invoking motion, are changed from move to motionplan. The parameters for motion planning is added to
the task file during teaching of skills, which contains a motion planning device primitive. The parameters
are "read" from the task file during execution.

Motion Planning Level

The structural change to the overall framework, compared to the original Little Helper 4 software frame-
work, is limited to the addition of the motion planning level, as shown in figure 8.1. Since motion
planning is solely conducted for the articulated manipulator, then a motion planning handler, proposed
in the short-term proposal in chapter 4.3, becomes redundant, hence it is not implemented.

The motion planning level consist of a motion planning proxy (MoveIt proxy), the MoveIt program, and
a visualisation tool (Rviz). The MoveIt proxy handles the connection from the skill level to MoveIt. The
proxy translates motion planning requests, such that it follows the syntax of MoveIt.

The output from MoveIt is a trajectory. MoveIt utilises the ROS visualisation tool Rviz, to show a
graphical representation of the manipulator, the environment, and planned paths [Hershberger et al.,
2014]. A trajectory, from MoveIt, can be executed either by use of a simulated robot controller or a real
manipulator. The simulated controller can visualise the position and velocity of a trajectory [Edwards,
2014].

Proxy Level

The proxy level concerns hardware specific proxies and drivers. The UR5 proxy and driver, from the
original Little Helper 4 software framework, has been exchanged, to be able to cope with trajectories.
The driver originates from the ROS-Industrial Universal Robots package1. The changes necessary to
make the driver compatible with the Little Helper 4 software framework are described in appendix B.

8.2.1 MoveIt Proxy - Motion Planning Level

The MoveIt proxy translates a motion planning request send from a skill to MoveIt. A request consists
of a query and a set of parameters. A query consist only of a goal state, since the motion planning
is conducted with the actual position of the manipulator, as the initial state. The proxy only handles

1The ROS-Industrial Universal Robots package: https://github.com/ros-industrial/universal_robot
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Cartesian pose as input for goal state, thus not joint configurations. This is because skills in the Little
Helper 4 software framework are based on Cartesian poses, as an effort to make the motion planning
request generic [VT3-2013, 2013].

The motion planning parameters from the task file are passed along, with the planning request to MoveIt.
This is supplemented with parameters specified in the MoveIt proxy. The parameters includes speci-
fication of tolerances for goal position and goal orientation, which are specified to 10mm and 0.01rad
respectively. The tolerances are specified relative coarse, compared to an industrial task, which should
have position tolerances of ±1mm [Hvilshøj et al., 2012]. This is done throughout the development
phase, to reduce the planning time. No hurdles have been encountered, obstructing a lowering of the
tolerances. All parameters regarding motion planning, which are specified through the MoveIt proxy and
from task files, are described in appendix A.

Not all parameters are specified through the task file, as proposed in section 4.3. Parameters, assessed
to be changed often, during the development phase, are specified in the task file. This is to ease the
development phase and to prove that motion planning can be done, based on parameters from a task
file. The remaining parameters are specified in the MoveIt proxy, which can be added to the task file if
desired.

Process constraints, such as limited orientations of the tool, are suggested in the short-term concept
proposal, in chapter 4.3. No process constraints are defined as a part of a planning request at present. It
is also proposed to categories the motion planning algorithms, such that they can be chosen to appropriate
tasks, in section 4.3.2. However, since solely one motion planning algorithm was chosen in chapter 7,
based on the two tested motion planning problems, then this is not necessary. More motion planning
problems may need to be benchmarked, in order to provide a variety of motion planners.

8.2.2 MoveIt - Motion Planning Level

Motion planning is handled by MoveIt based on a query, parameters, and an environment representation.
The used motion planning algorithms are based on OMPL, described in chapter 6.

The practical implementation of MoveIt in the Little Helper 4 software framework, is conducted accord-
ing to the encapsulations shown in figure 8.2. The encapsulations are conceived based on the architecture
of MoveIt, described in section 5.4 on page 43. The encapsulations are illustrated with five main parts;
an environment representation, a collision checking, a motion planning, a post processing, and an execu-
tion. Environment, motion planning, and execution are described in the following sections, whereas post
processing is described in appendix D and collision checking is briefly described in section 5.4.
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Motion Planning

Collision 

Checking

Post Processing Execution

Real

Simulation

Environment

Parameters

Queries

Figure 8.2: Encapsulations used to described the implementation of MoveIt in the Little Helper 4 software framework.

Creation of a Static Environment

The environment representation is the foundation for collision checking; hence the environment shall
include all objects, which the manipulator is not allowed to collide with. The environment for this
implementation is composed of model-based representations of the components of the Little Helper 4.
This includes the UR5 manipulator, the RQ3 gripper, and the platform. A general representation of the
environment is described in appendix G.

Objects being manipulated must be taken into account, to ensure a collision free trajectory, during exe-
cution. An object can be assigned to the manipulator in MoveIt, and thereby be considered during the
motion planning [MoveIt, 2014b]. Inclusion of the object being manipulated will also remove the need
for approach and leave points, during execution of pick and place skills, as stated in section 4.3. This has
not been done in this project, and objects are accounted for by maintaining approach and leave points
during execution of pick and place skills.

Calibration of a Static Environment

The model of the platform is calibrated relative to the UR5 manipulator, based on measurements of the
translation of the real UR5 manipulator. The UR5 manipulator is presumed to be perpendicular to the
top of the platform. The rotation is determined from calibration, of where the real UR5 manipulator is
placed in a position, as shown in figure 8.3a. The model of the manipulator and platform is adjusted, to
obtain the same relative placement, as shown in figure 8.3b. This is repeated until the error is negligible.
The needed precision of the calibration is dependent of the size of the collision model; the bigger the
collision model, the coarser calibration is allowed. To improve the calibration, the platform could have
been designed with well-defined haptic calibration points. These points could be usable for a haptic
calibration, as described in section 4.3. This can also be used to calibrate the manipulator relative to the
platform.
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(a) A calibration point for the real manipulator. (b) Corresponding calibration point for the model.

Figure 8.3: Calibration of the UR5 manipulator relative to the platform.

Motion Planning - Path Calculation

Motion planning is conducted, based on a planning request from the MoveIt proxy. Five motion planning
algorithms are manually implemented in MoveIt, in addition to the 12 pre-implemented algorithms. The
manual implemented algorithms are:

• LazyPRM

• PDST

• SPARS

• SPARStwo

• pRRT

The process of implementing them into MoveIt is described in appendix F. The motion planning is
conducted, accordingly to the description in chapter 6. The motion planning software tool of MoveIt is
able to conduct post processing in multiple manners; a potential post processing regarding creation of a
trajectory based on the path is described in appendix D, whereas post processing of a path in OMPL is
described in appendix A.

Execution of Trajectories

MoveIt compares the actual execution time, for each manipulator configuration of a trajectory, to the
desired time of each configuration, to ensure that the manipulator follows the trajectory. If the execution
time deviates from the specified time, then MoveIt returns an error, which do not affect further execution.
The error can be created to be used as stopping criterion for the manipulator, but this has not been done
for this implementation. The time constraint of a trajectory affects the velocity and acceleration of the
manipulator. Timing becomes important in a changing environment, for example in an environment with
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two manipulators, as described in chapter 9. The entire trajectory is send via a ROS actionlib. Feedback
is send to MoveIt, containing the current joint configuration of the manipulator, by either the simulated
or the real manipulator. A trajectory can be simulated before execution on a real manipulator.

Execution on a Simulated Robot Controller

The response of the simulated controller is not the same, as of the real controller of the UR5 manipulator.
This is because the two controllers do not contain the same control algorithms and models of the manipu-
lator. The simulated robot controller is a part of the "industrial_robot_simulator package2. The simulated
motion is based on a linear interpolation of the position and time, for each part of the trajectories to be
executed, thus the simulation neglects all kinematics3 and dynamics of the manipulator, which can cause
deviation between the simulated and real trajectory. The potential deviation from the real response has
no effect during this development. This is because the simulated response has only been used for visual
verification of the planned trajectory and functionality test of the system.

The simulation enables for test of planned trajectories, without being connected to the real manipulator.
It is thereby possible to test the functionalities of the motion planning ability of the system, without the
real hardware.

Execution on the UR5 manipulator

Execution on the real manipulator is conducted by transferring the calculated trajectory to the proxy,
which handles the communication to the driver. The driver creates a cubic interpolation, between the
points of the trajectory, to obtain a smoother path, but this also deviates from the intended path. This
deviation is neglected due to the size difference, between the real objects and corresponding meshes used
during collision checking. The driver publishes the joint states of the manipulator, which MoveIt uses
to visualise the real manipulator and to check the timing of the movement. The driver is based on the
ROS-Industrial Universal Robots driver4. The changes to the driver, and the creation of the UR5 proxy,
are described in appendix B.

2The package can be found at: https://github.com/ros-industrial/industrial_core
3Note that the visualisation tool (Rviz) utilises kinematics.
4The package can be found at: https://github.com/ros-industrial/universal_robot
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8.3 Test and Verification

The implementation of motion planning in the skill-based system (SBS) has been verified by a system
test. Prior to this test, several test of sub-parts of the system are conducted. This is done to determine
different parameters.

The system test consist of a teaching phase and execution phase. Both phases are included in the verifi-
cation, because the teaching phase is a central part of a SBS. The test was created, such that a collision
would occur if the test was conducted with a basic move command - that is a movement without motion
planning. The test is shown in figure 8.4, where an object is picked, from the Little Helper 4 platform,
and placed next to the platform on a chair. A sequence from the test is shown in figure 8.5.

Pick Point

Place Point

Figure 8.4: Schematic overview of the verification test. The red box is picked from the platform and placed on to the chair.

The Little Helper 4 software framework was taught a pick skill and a place skill during the teaching
phase, to create a task file. The task file was executed through the software framework, which invoked
multiple motion planning request. The task file was executed several times, to ensure the result was rep-
resentative. The motion planning was successfully executed through the framework and the manipulator
followed collision free trajectories. A video of the test is appended on the enclosed CD5. During the
testing phase, the chair, which marked the place point, was pushed over by the manipulator. The chair
was not modelled in the environment, and therefore could not be accounted for by the motion planner,

5See <Video/LH4 motion planning.mp4>
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during the calculation of the trajectory. This underlines the importance of that a sufficient environmental
representation, not only being limited to a model of the Little Helper 4 mobile manipulator. An improve-
ment of the representation of the environment can be, by use of sensors, which is described in chapter
10.

Figure 8.5: Sequence from the verification test. The red box is picked from the platform and placed on to the chair.

Error handling was not a concern during the development of the framework. This causes the system
to continue, even though a motion planning attempt fails. An attempt can fail due to the complexity
of the needed trajectory, collision or "unlucky" planning attempts; both the motion planning algorithms
and kinematics solver creates numerical approximations, which results in small changes can occur in the
output between different attempts.

8.4 Sub-conclusion

The Little Helper 4 software framework was developed, based on the short-term proposal, described in
chapter 4 and to answer Hypothesise 3 in chapter 3. Motion planning was implemented as a proof of
concept. The developed framework was based on the original Little Helper 4 software framework. The
Little Helper 4 software framework contains all functionalities from the original software framework.
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The software framework was tested to work with motion planning, by execution of trajectories, without
collision.

For the implementation to include all aspects from the short-term proposal, some still needs to be in-
cluded, as for example error handling, calibration, and handling of constraints. A sensor-based en-
vironment representation are neither implemented in the Little Helper 4 software framework, but the
implementation in MoveIt is described in chapter 10. The capabilities, which was not implemented, are
refinements, and not directly connected to proving the concept.

78



Part III

Additional Work

79





Chapter 9

Motion Planning for Multiple
Manipulators

This chapter concerns the development and experiences gained from performing motion planning with
two manipulators, with overlapping work envelopes. This is carried out by adding Little Helper 3 to
the environment described in chapter 8. In this chapter, the described set-up concerns creation of a
dual manipulator model, motion planning, and communication to the respective manipulators. The
implementation is verified with a test.

9.1 Purpose

This chapter is created to answer Hypothesise 4, in chapter 3. The purpose is to implement motion
planning for a dual manipulator set-up, which in this instance includes Little Helper 3 and Little Helper 4.
This is to clarify possibilities and difficulties for motion planning with two manipulators, and ultimately
to be able to implement it in the skill-based system (SBS), which is outside the scope of this project.

The mechanical development of mobile manipulators have been focused towards a human-like design,
regarding number of articulated manipulators and degrees of freedom [Ott et al., 2006]. This is assessed
to be due to the flexibility and versatility of the human body. One way to obtain a more human-like
design is utilisation of two manipulators. Two manipulators can be used to conduct two individual
operations, in an overlapping work envelope or be used to conduct tasks requiring bimanual capabilities.
A demonstration task of individual tasks with overlapping work envelops, conducted in cooperation
between Little Helper 3 and Little Helper 4, is described in appendix J. These considerations are the
foundation for the following work, regarding motion planning for Little Helper 3 and Little Helper 4.
The work is solely focused on motion planning and not cooperation between the mobile manipulators.
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9.2 Design of Experiment

The differences between motion planning for one manipulator, described in chapter 8, and multiple ma-
nipulators, seen from a system integrations point of view, are the creation of an appropriate environment
representation and the communication to and from the controllers. Using the terms and encapsulations
from chapter 8, the structure, shown in figure 9.1 is created. MoveIt contains the same functionalities, as
described in section 8.2.2. The differences is the environment and the interface, which is elaborated in
the following.

MoveIt

Execution Simulation

Dual proxy

UR5 proxy

LWR DriverUR5 Driver

User interface

Figure 9.1: Structural overview of the software framework regarding motion planning for two manipulators.

The hardware utilised for the dual manipulator set-up is Little Helper 3 and Little Helper 4. Each consists
of a platform and an articulated manipulator. Little Helper 3 consists of a KUKA LWR manipulator
(LWR). The hardware of Little Helper 3 is further introduced in appendix G.3. Like with Little Helper 4,
the platform of Little Helper 3 is solely used statically in this test, thus the platform is treated as a fixed
joint.
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9.2.1 Environment for Two Manipulators

The environment for the dual manipulator set-up consist only of a manipulator model and not a scene.
The model is based on a merging of individual models, for each of the manipulators. The creation of the
model is described in appendix G.

The manipulators are calibrated relative to their platform, like described for Little Helper 4 in chapter
8. The platforms are calibrated relative to each other, by measuring their relative position. No changes
occurs to the environment, beside the movement of the manipulators, and the environment is therefore
considered static.

9.2.2 Motion Planning with Two Manipulators in MoveIt

Motion planning is based on planning groups within MoveIt. A planning group is a collection of joints or
links, which is part of the same kinematic chain. Three planning groups are used in the dual manipulator
set-up; one for each of the individual manipulators, and one for both manipulators at once. This makes
it possible to conduct motion planning for each of the individual manipulators and for both manipulators
at once.

9.2.3 Communication

A dual proxy handles the distribution of the trajectories from MoveIt, to both the UR5 and LWR manip-
ulator. A trajectory is distributed to one of the manipulators, or both of them, depending of the planning
request.

The utilised UR5 proxy and driver, are the ones introduced in section 8.2.2, and elaborated in appendix
B. The driver for the LWR manipulator is created by The Robotics and Automation Group at Aalborg
University, to obey the syntax of MoveIt. The LWR driver does not obey time constraints, which are
specified in a trajectory. This means that the LWR manipulator executes the path of the trajectory with
a predefined velocity. This can cause timing issues, if the paths of the two manipulators are intersecting.
Due to this shortage, no considerations have been made regarding timing, between the two controllers,
to ensure that the trajectories are executed simultaneously.

9.3 Proposal for Interface to the Little Helper 4 Software Framework

The interface to the system, during execution of motion planning, for two manipulators, is directly
through the GUI tool Rviz. This interface is utilised, since the purpose is to implement the function-
alities within motion planning for multiple manipulators. Implementation of the dual manipulator set-up
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into the software framework of Little Helper 4 will require changes to the following parts of the frame-
work, shown in figure 8.1.

• MoveIt proxy

– Addition of another goal query, which will be of the same structure as of the one for the UR5
manipulator.

• Skill level

– Addition of skills supporting dual manipulator movements. This can for example be pick
with two manipulators.

– Addition of a teaching functionality for the LWR manipulator. This can be a hybrid of exist-
ing individual teaching functionalities for both the LWR and UR5, to suit the Little Helper 4
software framework.

– Addition of a new teaching abilities and skills will require a change in the existing function-
alities, regarding write and read of tasks.

The work with creation of a motion planning set-up has not revealed any complications, for obstructing
the implementation of a dual manipulator set-up, in the Little Helper 4 software framework.

9.4 Test and Verification

The implementation of motion planning for multiple manipulators is verified, based on a functionality
test. The test is composed of a set of joint configurations for both the manipulators. The configurations
are executed, with movement of the individual manipulators and both at once. The configurations are
placed, such that the direct paths between them are intersecting. This is done to ensure that the test
cannot be conducted successfully without motion planning. A sequence from the test is shown in figure
9.2.

The functionality of dual manipulator set-up was successfully tested. This was even though the LWR
manipulator could potentially deviate from the specified trajectory, and thereby result in a failed test. A
video of the test is appended on the enclosed CD1.

1See <Video/Dual motion planning.mp4>
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Figure 9.2: Series of dual manipulator motion planning of Little Helper 4 (left) and Little Helper 3 (right).

9.5 Sub-conclusion

An environment including both the Little Helper 3 and Little Helper 4 was created, as the basis for motion
planning for multiple manipulators, to answer Hypothesise 4 in chapter 3. A dual proxy was used to
distribute the trajectories to the manipulators. To create the connection to the LWR manipulator, a driver
supporting a specified interface was developed for the project group. The LWR driver does not support
the time specification, associated with a position in a trajectory. The velocity can therefore deviate from
the intended velocity and can cause a collision between the manipulators, if paths of the manipulators
are intersecting.

No barriers were encountered regarding addition of the Little Helper 3 to the Little Helper 4 software
framework, which also was proposed. This would enable motion planning for multiple manipulators
through the SBS. Motion planning for a dual manipulator set-up, consisting of a UR5 and a LWR ma-
nipulator was successfully tested to verify the motion planning functionality.
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Chapter 10

Motion Planning in a Sensor-Based
Environment

This chapter concerns the development and experiences gained from introducing sensor-based infor-
mation into the environment of Little Helper 4. The implementing of a RGB-D sensor into MoveIt is
presented in appendix H.

10.1 Purpose

This chapter shall answer Hypothesis 5 in chapter 3 about the desire for motion planning in a sensor-
based environment. Thus, this chapter shall enlighten the possibilities and difficulties, encountered dur-
ing implementation of a scene with sensor input. The practical implementation is elaborated in appendix
H.

A step towards truly collaborative mobile manipulation is the integration of sensor-based motion plan-
ning. This reduces the necessity of a static model and enables motion planning to compensate for a
changing environment. A changing environment is for example moveable obstacles, like pallets or the
presence of humans, within the work envelope of a mobile manipulator. The safety requirements, be-
cause of humans in the work envelope, induce increased requirements regarding reliability and update
frequency of the sensor input and trajectories, compared to movable obstacles. No special precautions
regarding human safety have been taken into account throughout this work. This choice is enhanced by
the fact that the UR5 manipulator is allowed to work without any safety precautions.
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10.2 Design of Experiment

The experiment consist of a fixed RGB-D sensor, pointed towards the top of the platform. The entire top
of the platform is inside the work envelope of the UR5 manipulator. The sensor input is utilised to create
a scene, which creates the environment representation. This is further used for collision checking. To
acquire the 3D data for the scene, an off-the-shelf RGB-D Primesense Carmine 1.09 sensor and a mid-
range laptop is utilised. The RGB-D sensor is mounted on the pan-tilt unit pole, mentioned in appendix
I. The RGB-D sensor is placed approximately 400 mm above the top of the platform. The range of the
Primesense Carmine 1.09 is 350-1400mm, further specifications are to be found in appendix H.

10.2.1 Calibrating the RGB-D Sensor

To be able to transform, and thereby project the 3D data correctly, a virtual sensor has to be placed in the
model-based representation of the environment. This is further elaborated in appendix H.

The need for placing the RGB-D sensor in the model-based environment, such that it corresponds to the
real set-up, calls for a calibration. The calibration is done by localising the RGB-D sensor, in relation to
the base frame of the UR5 manipulator. It is done by having the real manipulator holding a QR code in
front of the sensor. By use of a calibration program, it is possible to get the position and orientation of
the real RGB-D sensor, and place the virtual RGB-D sensor within an uncertainty of ±4mm [Andersen
et al., 2013]. The accuracy is assessed applicable for the proof of concept set-up. The calibration is
further elaborated in appendix H.3.

10.2.2 Test Set-Up

It is chosen to test the motion planning in a sensor-based environment, with an obstacle placed in the
field of view of the RGB-D sensor, as shown in figure 10.1a and visualised through Rviz in figure 10.1b.
The motion planning algorithm then has to create a plan, such that the manipulator does not collide with
the obstacle or the model of the Little Helper 4 manipulator and platform. At present the implemented
proxy and driver for the UR5 manipulator are not capable of cancelling a trajectory, thus the obstacle has
to be stationary during the motion planning. Furthermore, it has not been confirmed nor denied, if this is
possible, through the current configuration of MoveIt.

10.2.3 Self-filtering of the Equipment

MoveIt utilises OctoMap library to filter the 3D data and to do self-filtering. The OctoMap library is
described in appendix H. Self-filtering is done for the model-based representation of the environment,

88



10.2. Design of Experiment

(a) The real set-up. A red box supporting the plate,
which is shadowed out on in the simulation, can be seen.

(b) The two manipulators symbolises the initial
state and the goal state, whereas the coloured boxes
are voxels (volumetric pixels) created by OctoMap.
The boxes represents obstacles.

Figure 10.1: A comparison between the real set-up and the simulated model, with a RGB-D sensor input.

such that MoveIt does not interprets for example the manipulator as an obstacle.

As mentioned in chapter 8, all model-based objects have a visualisation part and a collision part. Be-
sides utilising the collision part for collision checking, then it is likewise utilised for the self-filtering.
Thus, OctoMap ignores areas in the model-based environment, where the collision part of the respective
objectives are located.

The used collision meshes for the UR5 manipulator is relatively large, compared to the actual size of
the manipulator. This means the manipulator is self-filtered even though a cable-pipe is attached to the
manipulator, as long as the cable-pipe is kept along the manipulator. The cable-pipe is shown in figure
10.1a and the self-filtering is shown in figure 10.1b.

Challenges have emerged when self-filtering is done for the RQ3 gripper. An assessed combination of
relatively smaller collision meshes, and a relatively complex geometry, compared to the UR5 manipula-
tor, means that it is challenging to do self-filtering. The failing, regarding complete self-filtering of the
RQ3 gripper may also be due to a too inaccurate sensor calibration. Additionally the issue can be that the
fingers are not positioned alike in the model and on the real gripper, the gripper has in the environment
been treated as a static model. Due to the assessment regarding the calibration, a temporary solution is
chosen: To test the sensed environment with a closed gripper, where the collision mesh is changed to
a solid box, shielding the outer geometry of the gripper. The result is that the whole set-up becomes
self-filtered, but the gripper will not be able to grasp during testing in a sensor-based environment.
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10.3. Test and Verification

Both the RGB-D sensor and the platform are calibrated relative to the manipulator. This entails that
the calibration error between the RGB-D sensor and the platform is the difference between both errors.
This error could be the reason for the poor self-filtering of the platform, as shown in figure 10.1b. The
calibration error between the manipulator and the platform has not been determined.

10.2.4 Shadowing

Since the 3D data solely relies on one RGB-D sensor at present, then shadowing will occur. This is seen
by comparing figure 10.1a and figure 10.1b, where it can be seen that the red box does not appear in
the sensor-based representation of the environment. The result can be that the UR5 manipulator collides
with the box. The shadowing occurs for example behind the UR5 manipulator and RQ3 gripper, since
the RGB-D sensor obviously cannot see thorough the equipment. To remove the chance for shadowing,
more sensors can added to the sensor-based representation of the environment.

10.3 Test and Verification

The test for verification is composed of two manipulator configurations. The initial and goal configura-
tion are placed on opposite sides of the obstacle. The initial configuration is placed furthest away from
the sensor, to avoid shadowing from manipulator and gripper, in the area of the obstacle. This necessity
underline the advantage of multiple sensors. The process of calculating a motion plan between two sides
of the obstacle was conducted multiple times, without collision.

Issues with self-filtering the RQ3 gripper disappeared, when making a larger collision mesh. In the long
term this is obviously not applicable, thus more care has to be taken, when calibrating the set-up.

Issues with shadowing occurred occasionally, where Voxels could not be cleared. The solution was to
remove the obstacle and manipulator away from the field of view of the sensor, such that the whole view
could be updated.

The functionality of motion planning in a sensor-based environment was tested. An obstacle was detected
by use of a RGB-D sensor and a collision free trajectory avoiding the obstacle was executed. A sequence
of the test is shown in figure 10.2, whereas the video of the test is appended on the enclosed CD. 1

1See <Video/MoveIt with sensor input.mp4>
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10.4. Sub-conclusion

Figure 10.2: A sequence showing execution of a trajectory, based on motion planning based on sensor input.

10.4 Sub-conclusion

Motion planning through MoveIt, with sensor input to create an environment representation has been
conducted, to answer Hypothesise 5 in chapter 3. The basis for the environment was the model-based
representation of the Little Helper 4 environment, conceived in chapter 8. The RGB-D sensor was cali-
brated and the input filtered, to obtain a representative representation, of the sensor-based environment.
The difficulties have been exposed, and solutions to these, have been proposed during the design of this
experiment. An obvious improvement to motion planning, based on sensor input, is the addition of multi-
ple sensors, to reduce the effect of shadowing. The motion planning should be able to respond to changes
in the environment, which is still to be implemented. Motion planning was successfully conducted based
on a sensor-based representation of the environment.
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Chapter 11

Discussion

This chapter concerns a discussion aimed at providing a critical evaluation on the choices made through-
out the project.

The Concept Proposals

Two concept proposals were chosen to be conceived, prior to the integration of motion planning in the
skill-based system (SBS). The process of conceiving the proposals was based on brainstorming sessions
and exemplification by written literature, if this was possible to obtain. The concept proposals were
discussed and verified in overall terms, with the main developers of the Little Helper SBS, the Robotics
and Automation Group at Aalborg University, which are assessed to have extensive experiences within
the SBS. It can however be argued that the developers needed a more comprehensive understanding of
each specific functionality within the concept proposals, in order to make sufficient judgement.

Parts of the long-term concept proposals have not been supported. This mainly concerns the proposed
handlers, because the applicability of the handlers have not been verified by a proof of concept imple-
mentation, or by examples within written literature. The functionality of a handler can be compared to
the functionality of MoveIt; creating an architecture, which combines different software tools and en-
ables for plug-ins. Based on this assumption is it assessed that handlers with the desired functionalities
can be developed.
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Selection of Software

During the selection of a software solution for motion planning, a screening between three solutions
were conducted. It can be discussed, whether the chosen software solution is in fact the most applicable
solution for the Little Helper SBS, since the selection was based on a screening of only three candidates.
It can be argued that an in-depth analysis of which software solutions that are most applicable, based
on a demand analysis for Little Helpers, would have had been preferable. The result of the selection is
mainly relying on a hunch about which solution that would be most beneficial. The choice of conducting
a screening was mainly due to that the specific motion planning tool should not be the focus in this
project, but instead the remedy towards an implementation of motion planning in a SBS. Thus, the actual
software solution was immaterial to the project.

Selection of Motion Planning Algorithm

The selection of a motion planning algorithm to be utilised, in the Little Helper 4 software framework, is
based on the benchmark and literature study. The validity of the benchmarking results can be discussed,
which will be elaborated in the following. Based on the literature study, it is assessed that for example
the results of the benchmarking are depended on the set-up of the system and the given motion planning
problem. Thus the results does not encompass every motion planning problem, every Little Helper will
encounter. This means that it can be argued that the chosen algorithm might not be advantageous for
motion planning problems, which significantly deviates from the two tested. Thus to retrieve indicative
results from the benchmarking, it can be argued that more effort had to be taken into account, when
designing the motion planning problems.

Benchmarking was not conducted for the KUKA LWR (LWR) manipulator. It can be argued that this
had to be done, since the mechanical set-up is different from that of the Universal Robots UR5 (UR5)
manipulator. Motion planning with both manipulators at the same time will, in addition, provide a high
degrees of freedom motion planning problem, which may also provide different benchmarking results.

The specific motion planning algorithms of concern was limited to algorithms implemented in Open
Motion Planning Library (OMPL). Since the literature study and benchmarking was delimited to the
motion planning algorithms in OMPL, then it can be argued that the literature study had to be extended
with other algorithms, to determine if the algorithms of OMPL was sufficient. The amount of algorithms
was however assessed to be comprehensive enough to solely rely on OMPL.

During the benchmarking, it was chosen to use the default parameter values in OMPL for the motion
planning algorithms. It can be argued that the motion planning algorithms does not show their true
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performance, with the default parameter values. Some algorithms may perform better than the selected
motion planning algorithm, if correct parameter values were selected in respect to a given motion plan-
ning problem. It is however assessed that this would demand an extensive factorial experiment, which
was out of the scope at these initial development stages, within implementing motion planning in the
Little Helper SBS. The default parameter values were used based on the assumption that the developers
of OMPL have given a qualified estimate.

Manipulator Kinematics

It was chosen to implement both the UR5 and the LWR manipulator into MoveIt. The Kinematics and
Dynamics Library (KDL) handled kinematics calculations, which is the standard numerical kinematics
solver in MoveIt. Kinematics can also be solved with IKfast, which is an analytical solver for kinematics.
It is supposed to be faster and more reliable than its numerical counterpart is. Attempts for utilising IKfast
were conducted, but not succeed during this project. It can be argued that more effort should have been
offered in making IKfast working with the UR5 manipulator. It was however not a main concern of this
project, thus the numerical solver was used.

It has been experienced that MoveIt had difficulties in solving a motion planning problem with the true
joint limits of the UR5 manipulator, when using a Cartesian pose goal. This has been experienced neither
with reduced joint limits nor with the goal given, as a corresponding joint configuration. It is assessed
that the problem could be related to the kinematics solver, either because it cannot solve the kinematics
request or provides a poor solution for the goal state, with respect to the initial state. A poor solution
for the goal state can result in motion planning algorithms having difficulties in covering the size of the
configuration space with the true joint limits. It can be discussed whether reducing the joint-limits is
desirable, but it is assessed admissible for the proof of concept implementation.

Practical Verifications

During the practical verification, work pieces were not included in the environment. The reason for
not handling work pieces was that these are mainly aimed for grasping techniques, where the focus in
this project was limited to motion planning with articulated manipulators. This entailed problems, when
handling work pieces, since the motion planning algorithm was not able to account for work pieces and
thereby resulting in collision with the environment. Thus, it can be argued that the work pieces had to be
included in the simulations, even if grasping techniques was not the scope of the project.

The practical verification of two manipulators was conducted by letting the UR5 and LWR manipulator
motion plan within each other’s work envelopes. It can discussed whether this verification is comprehen-
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sive enough, to show the true potential within motion planning for dual manipulators. However, since it
was not possible to execute trajectories by use of the LWR, then it was assessed redundant to attempt to
utilise the two manipulators for for example a bimanual assembly task.

During the execution of motion planning, within a sensor-based environment, issues emerged because
of coarse calibrations and shadowing. It was chosen to utilise a quick and relatively coarse method
for calibrating the utilised sensor, since it at first was assessed to be sufficient to prove the concept.
The shadowing occurred because only one RGB-D sensor was utilised. It can be discussed if it had been
advantageous to introduce multiple sensors to avoid shadowing, but implementation of one sensor proved
the basic concept of motion planning in a sensor-based environment. In addition, more effort could have
been invested in enabling the possibility to alter a trajectory "on-the-fly", such that the system can react
based on a dynamic environment and thereby increase the capability to collaborate with humans. This
would put requirements to different parts of the software framework, for example the timing of the
proxy/driver, filtering of the sensor input and the calculation time for the motion planning algorithm.

Error handling was chosen to be delimited during the project. This was based on the belief that error
handling was first necessary, when the system was developed and functioning. During the practical
implementation, the assumption regarding error handling was proven wrong, because the execution of
planning request from a task continued even though a former request had failed. Thereby the need for
error handling occurred during the development phase.

98



Chapter 12

Conclusion

The conclusion seeks to verify that the hypothesis of chapter 3 are fulfilled, based on the work described
in this report.

This project concerned the conceptual implementation of motion planning in the skill-based system
(SBS) of Little Helper 4. The project had its origin in a long-term concept proposal, concerning how
to handle motion planning in a SBS of the future. A short-term concept proposal was conceived, based
on the long-term concept proposal, to propose how motion planning could be implemented in the current
SBS. An implementation to verify the short-term concept proposal was to be carried out. This gave rise
to conduct a selection of a motion planning software tools that were assessed to be applicable for the
SBS of Little Helper 4. Based on the selection, MoveIt was the motion planning software tool of choice.
It was chosen to work with the Open Motion Planning Library (OMPL), which is the default motion
planning library in MoveIt. OMPL provided a variety of motion planning algorithms, which a literature
study was based upon. A benchmark was conducted, where the results was compared to the literature
study. This provided a motion planning algorithm to be used, for the implementation of motion planning
in the SBS of Little Helper 4. The implementation of motion planning in the SBS of Little Helper 4 was
conducted, to realise some of the concepts from the short-term proposal.

The work was further extended by introducing motion planning for multiple manipulators in a set-up
consisting of both Little Helper 3 and Little Helper 4, and by introducing sensor-based environment
representation into MoveIt.
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The Concept Proposals

Priori to the implementation of motion planning, in the software framework of Little Helper 4, brain-
storming sessions, about how to incorporate motion planning, were conducted. As a result the long-term
concept proposal was proposed, where limitations regarding development and incorporation were not
taken into account.

The long-term concept proposal paved the way for how to incorporate motion planning in a SBS of the
future. This was done by introducing motion planning on multiple equipment, and to cope with these
via a motion planning handler. This entailed the need for an environment handler, to cope with the
environment representation, for multiple motion planning software tools. It was further proposed how to
encompass motion planning enhancement, by proposing learning and a common database for the Little
Helpers.

The aim of the short-term concept proposal was focused on a feasible incorporation of motion planning
in a present SBS, and thereby maintaining the overall structure. It was deduced to maintain the motion
planning handler in the short-term concept proposal, to encompass multiple types of motion planning
software tools. This entailed an incorporation of an environment representation in the SBS. Proposals
for how to cope with user interaction, error handling, and calibration was likewise given.

The concept proposals were, where it was possible, supported by exemplification from written literature,
to support the applicability. Both concept proposals were presented and discussed with parts of the
Robotics and Automation Group at Aalborg University, to overall verify the feasibility. Hereby it was
concluded that the concept proposals in general were feasible, within their respective time frames, and
that Hypothesise 1 from chapter 3 was answered.

Choosing of Motion Planning Algorithms

Selection of a motion planning algorithm was done by conducting a literature study of motion planning
algorithms, within the OMPL. This was done with focus on their applicability for the Little Helper 4
software framework. The motion planning algorithms were further benchmarked, to test their applica-
bility in practise. The benchmarking was done for Little Helper 4, in two different scenarios. The data
from the benchmarking was used to select algorithms for further investigation. The selected algorithms
were analysed, by comparing the results and the literature study. RRTConnect was the motion planning
algorithm of choice, still having in mind that the results were based on two dedicated motion planning
problems. It was hereby assessed that Hypothesise 2 was answered.

100



Practical Implementation

The practical implementation was conducted in three phases; implementation of motion planning in the
Little Helper 4 software framework, motion planning for multiple manipulators, and motion planning in
a sensor-based environment.

Motion planning was implemented in the Little Helper 4 software framework, based on the short-term
concept proposal. The implementation included creation of a proxy and driver for the Universal Robots
UR5 (UR5) manipulator and a MoveIt proxy. The implementation was tested, based on execution of a
task, taught through the user interface of the Little Helper 4 software framework. The implementation
proved the main concepts of the short-term concept proposal, by a successfully execution of the task, and
thereby answering Hypothesise 3. Error handling, and the capability to obey process constraints during
motion planning, was not implemented, which still leaves some parts of the short-term concept proposal
unanswered.

The utilisation of motion planning in the Little Helper 4 software framework additional paved the way
for motion planning with multiple manipulators. An environment representation, containing both the
Little Helper 3 and Little Helper 4, was created, including corresponding planning groups for the two
manipulators. A driver for the KUKA LWR (LWR) manipulator, the UR5 proxy/driver, and a dual proxy
were used to interface MoveIt with the hardware. The provided driver for the LWR was not able to
execute a trajectory, but instead executed the corresponding path, with a predefined velocity. Tests were
successfully conducted, by means of motion planning with two manipulators, with overlapping work
envelopes, despite the lacking ability to execute trajectories for the LWR manipulator. This was the
basis to answer Hypothesise 4. In addition to the hypothesis, a proposal for implementation of the dual
manipulator set-up in the SBS of Little Helper 4 was outlined.

Motion planning, based on an environment representation with both model and sensor input, has been
conducted, by use of MoveIt. This was done by introducing RGB-D sensor data into MoveIt. Challenges
with self-filtering and shadowing was clarified, and temporary solutions was created, to obtain the basis
for sensor-based motion planning to be implemented in the future. Tests were conducted, where an
obstacle was placed in the field of view of the RGB-D sensor, and the manipulator was able to avoid the
obstacle, by use of motion planning. Hereby it can be concluded that Hypothesise 5 was answered, as
the final hypothesis of this report.

Based on the work conducted during this project, a conceptual implementation and verification of motion
planning in a skill-based system has been presented.
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Appendix A

Motion Planning in the Little Helper 4
Software Framework

This appendix is a supplement to some of the statements from chapter 8. The appendix elaborates pa-
rameters, which is a part of the implemented motion planning.

A.1 MoveIt Proxy

The MoveIt proxy translates the output from a skill, to input for MoveIt. The output from a skill, re-
garding a query, is defined as a Cartesian pose. The rotation of the TCP specified in the Cartesian pose
is transformed from fixed XYZ angles1 to Quaternions. The motion planning goal, specified in XYZ
translation and Quaternions, are passed to MoveIt along with the parameters described in the following.

Parameters editable through the task file are specified below:

• Planning Time: The allowable planning time for the motion planning, without post-processing.

• Planning Algorithm: The used planning algorithm. The available planners are determined from
the benchmarking results from chapter 7.

• Planning Reference Frame: Planning based on the base coordinate frame ("absolute" movement)
or TCP coordinate frame ("relative" movement).

Parameters editable through the task file are parameters, which should be easy to change, either as a part
of the teaching phase of a task or as part of the system development. Making parameters editable through

1The UR5 manipulator specifies TCP rotation by use of fixed XYZ angles and are therefore stored in the task file during
the teaching phase. The teaching phase are shortly described in section 2.2 on page 15.
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a task file, is faster to change than changing the parameter in a program, which needs to be compiled
before execution.

Parameters, which are not editable through the task file, are specified directly in the MoveIt proxy and
listed below:

• Goal Orientation Tolerance: Orientation tolerance of the TCP when planning to a pose: 0.01rad

• Goal Position Tolerance: Position tolerance of the TCP when planning to a pose, radius of sphere
the TCP have to be within: 10mm

• Number of Planning Attempts: The number of times MoveIt are conduction motion planning
attempts, to aid a successful planned trajectory: 3

The values of the tolerances are discussed and justified in chapter 8.

A.2 MoveIt

The structure of MoveIt is shown in figure 8.2. A kinematics solver is used to translate the input query
to a joint configuration. The collision checking is assessed to be conducted in Cartesian space, because
the environment is specified in Cartesian space. Therefore are the potential joint configurations of the
manipulator validated in Cartesian space.

All information regarding a model of the manipulator, calibration, and kinematics are described in a
unified robot description format (URDF) file and a semantic robot description format (SRDF) file. The
URDF and SRDF files for the Little Helper 4 software framework are described in appendix G.

A.2.1 Kinematics solver

The specification of the kinematics solvers used for the individual planning groups are specified in a
kinematics file2. The standard solver in MoveIt is the numerical kinematics and dynamics library (KDL)3.
The KDL solver utilises kinematics information from the URDF file to determine a joint configuration
based on the received Cartesian pose. Attempts to implement an analytical solver have been conducted.
IKFast is an analytical solver, where kinematics expressions should be generated [MoveIt, 2013]. The
analytical solver reduces the calculation time, allowing for a faster motion planning.

The IKFast expressions have been generated for the original URDF containing the kinematics for the
UR5 manipulator. The URDF file has been change to make the model, based on the URDF file, corre-

2The file is appended on the enclosed CD, see <Source code/lh4_moveit_config/config/kinematics.yaml>
3More information about the used KDL package at: http://www.orocos.org/kdl
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spond to the real manipulator. The changes, regarding the manipulator, are limited to rotating joint 2,
180◦ and addition of a TCP link. The TCP link offset the tool centre point from the joint between the
two outermost links to the flange of the manipulator. The TCP link and additional changes to the URDF
file are described in appendix G. The IKFast expressions have not been possible to generate subsequent
to the changes.

The kinematics file also contains specific parameters, related to the kinematics solver, as for example the
number of attempts to solve a given configuration and the allowable time for each attempt.

A.2.2 Motion Planning

The motion planning is started with the specified parameters and the chosen motion planning algorithm.
Collision checking is conducted either during the motion planning or afterwards, depending on the cho-
sen algorithm, corresponding to the description in chapter 6. The collision checking is done, based on the
environment and the disabling of collision between some links, as specified in the SRDF file, described
in appendix G.

The trajectory post-processing operations, conducted by the motion planning algorithms, are described
in appendix D. The post-processing consist of a path simplification and a path merging.

Longest Valid Segment

During conduction of motion planning queries, it has been experienced that the parameter longest valid
segment has influence on whether a query succeeds or fails. The parameter is utilised by OMPL for
discrete validation of a path, and describes the distance between the states, which are to be validated.
An example of how a solution for a query can be found, without noticing a collision, is shown in figure
A.1. As default the parameter is set to 0.05%, and after it has been changed to 0.001%, more queries
have succeeded. The parameter is specified in the "ompl_planning.yaml" file4, which also contains a
specification of the planning algorithms.

Initial
state

Goal
state

States

Obstacle

Path

Figure A.1: Illustrates how a large longest valid segment parameter makes a path in collision succeed. With a smaller value,
the collision would have been found, and another path would have been taken.

4The file is appended on the enclosed CD, see <Source code/lh4_moveit_config/config/ompl_planning.yaml>
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A.2.3 Processing from a Path to a Trajectory

The output from the used OMPL motion planning algorithm can be either a path or a trajectory. If the
output is a path, then MoveIt uses trajectory processing to generate appropriate trajectories, based on the
path and the limits for each joint. The limits includes maximum velocity and acceleration, which are
read from a "joint_limits.yaml" file5. [MoveIt, 2014b]

A.3 Execution of Trajectories

Execution of trajectories from MoveIt is visualised by use of the GUI Rviz. The execution can conducted
either by a simulated robot controller or on the real hardware. Both executions make use of the same
interface to and from MoveIt. The interface from MoveIt makes use of the ROS FollowJointTrajectory
message type. An extract of the message type is shown in table B.3 and described in appendix B.2.1.
The feedback to MoveIt concerns the joint configuration of the manipulator. The feedback follows the
syntax of Joint State message6. A joint state message contains information of the name of the joints for
identification, the position, velocity and effort (torque for rotational joints) for each joint.

5The file is appended on the enclosed CD, see <Source code/lh4_moveit_config/config/joint_limits.yaml>
6Joint states are a submessage group to "sensor_msgs"
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Appendix B

Creation of Proxy and Driver for
Universal Robots UR5 Manipulator

This appendix is used to document the work conducted, to make the Little Helper 4 software framework,
created by [VT3-2013, 2013], compatible with motion planning. The motion planning is conducted by
use of MoveIt and the communication is handled by the middleware ROS.

Making the Little Helper 4 software framework compatible with MoveIt, consist of two primary tasks:
Handling trajectory commands from MoveIt and supporting the existing functionalities of the original
Little Helper 4 software framework. To satisfy these demands, three different approaches to create a
proxy/driver set-up are proposed. The approaches primarily concerns how to handle the connection
between MoveIt and the UR5 manipulator. The other functionalities already have been developed in
the proxy/driver from the original Little Helper 4 software framework [VT3-2013, 2013]. The structure
of the software framework is shown in figure 8.1. This structure entails that the approaches concerns a
proxy, a driver and perhaps a UR script:

1. Extension of the proxy/driver from the original Little Helper 4 software framework, to support the
MoveIt trajectory movement commands.

2. Creation of a C-API proxy, which is equivalent to the development of the proxy/driver, from the
original Little Helper 4 software framework, including support of the MoveIt trajectory movement
commands. This requires the development of a controller for the manipulator.

3. Use of the ROS-Industrial Universal Robots (ROS-Industrial UR) package, and extension with the
functionalities of the original Little Helper 4 software framework.
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B.1 Selection of Proxy/Driver Approach

The selection of the proxy/driver approach is based on the availability and the functionalities of the ap-
proaches. Approach 1 contains the functionalities of the original Little Helper 4 software framework, but
lacks the ability to handle communication to and from MoveIt (joint states and trajectories respectively),
including the ability to execute a trajectory. Approach 2 concerns creating a driver/proxy from scratch,
based on the UR C-API interface, which is a low level language, compared to the URScript used in
approach 1 and 3 The use of the C-API interface requires development of a new controller for the UR5
manipulator [Universal Robots, 2013e]. Approach 3 is capable of handling the communication between
MoveIt and the UR5 manipulator, allowing for execution of trajectories [Edwards et al., 2013]. Therefore
the work related to this approach, concerns implementation of the functionalities of the Little Helper 4
framework.

Approach 3 is chosen due to the implemented functionalities in the ROS-Industrial UR package, and
because the additionally needed functionalities have once been implemented in a proxy/driver by the
project group. The experiences from creating the original Little Helper 4 software framework can there-
fore be reused. Approach 3 does also comply with the desires, stated in [VT3-2013, 2013], to be able to
use existing ROS packages, with minor or none modifications in the software framework.

B.2 Additions to the Little Helper 4 Software Framework

The key components of the chosen ROS-Industrial UR package are an URScript program and a ROS
node created in the programming language Python. URScript is a scripting language, which can be
executed on Universal Robots manipulators, using build-in functionalities. The URScript of the package
is executed on the manipulator, while being controlled by the ROS node. This structure corresponds to
the structure of the proxy/driver of the original Little Helper 4 software framework [VT3-2013, 2013],
described in section 2.2. To obey the demand of maintaining the functionalities of the original Little
Helper 4 software framework, the functionalities of the package needs to be expanded, regarding both
the URScript and the python program. In addition, a proxy node must be developed to handle the
communication between the software framework and the driver. The proxy should be connected to both
the master node and MoveIt, as shown in figure B.1.

The communication between the driver and the proxy is handled by two actionlibs, one standard ROS
FollowJointTrajectory (FJT) actionlib, and one custom actionlib, created to suit the needs of the original
Little Helper 4 software framework. The actionlibs are described in section B.2.1. The needs from the
original framework consist of the following abilities:

116



B.2. Additions to the Little Helper 4 Software Framework

• Linear movement of the TCP with joint and Cartesian input.

• Joint movement with joint and Cartesian input.

• Use of the force functionalities embedded in the UR5 manipulator.

• Be able to return the Cartesian position of the TCP to the proxy.

Additionally demands, as a result of contributions to the ACAT project, concerns the possibility to off-
set the tool centre point and the mass and centre of gravity for the tool, described in appendix I. The
developed proxy is controlled either by the master node, handling commands directly, or controlled by
an execution request from the MoveIt motion planner. A request from MoveIt is initiated by the master
node.

Master MoveIt

UR5 Proxy

UR5 Driver

Services

UR5Action FollowJointTrajectoryAction

FJTAction

SocketTCP

ur_commandAction
Joint State Publisher

And

Pose State Publisher

Figure B.1: The detailed framework of the UR5 manipulator branch.

B.2.1 UR5 Proxy

A proxy is used to handle the communication between the generic commands from the master to the
hardware specific commands used by the driver [VT3-2013, 2013]. The functionality is expanded to
include commands from MoveIt also. The original ROS-Industrial Universal Robots package is capable
of handling the generic commands from MoveIt directly, but the added functionalities needs to be handled
by the proxy.

All communication to and from the proxy is handled by ROS actionlibs. An overview of the action-
lib connections is shown in figure B.1. The master is connected to the proxy through an ur5 actionlib.
MoveIt is connected to the proxy through a FollowJointTrajectory (FJT) actionlib. The actionlibs are

117



B.2. Additions to the Little Helper 4 Software Framework

described in the following. The proxy translates the input to two different actionlibs; another FJT action-
lib and a custom urcommands actionlib. All commands regarding movement of the manipulator, to the
driver, is handled by the FJT actionlib; commands from the master is translated into a FJT action and
send along with an urcommands action. Commands from MoveIt are send without translation (beside
changed from one actionlib to another), along with an urcommands action, to verify the execution. If
the master sends a goal regarding no-movement commands (force, set-tcp and get-data) then only the
urcommands actionlib is used.

ur5 actionlib

The ur5 actionlib, handling the communication between the master and proxy, is described in table B.1.
Because the driver handles all functionalities, regarding check of fulfilment of manipulator goals, there
have not been a need for feedback.

Action Name Type Description

Goal

movetype string The desired movetype: linear, joint or servo. Also
used to specify set TCP, force and get data.

inputtype string The inputtype, joint or Cartesian. Also used to spec-
ify set TCP, force and get data.

coord float64[6] Move coordinate (Cartesian or joint) and TCP.
speed float64 Velocity of leading joint or TCP and mass of tool.
acc float64 Acceleration of leading joint or TCP.
selection int8[6] Specifies if the manipulator is compliant in the cor-

responding degree of freedom.
wrench float64[6] Obtain or account for the specified force, depending

of the selection for the degree of freedom and TCP
centre of gravity (X, Y, Z).

limits float64[6] Allowed TCP velocity or TCP position deviation
from the specified path, depending of the selection.

Result
resPos float64[6] Result Cartesian position of the manipulator.
resJoint float64[6] Result joint configuration of the manipulator.

Table B.1: Overview of the ur5 actionlib, used to communicate between the master and the UR5 proxy.
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urcommands actionlib

The urcommands actionlib, handles the communication between the UR5 proxy and driver, and is de-
scribed in table B.2. Because the driver handles all functionalities, regarding check of fulfilment of
manipulator goals, there have not been a need for feedback during execution.

Action Name Type Description

Goal

tcppose float64[6] The Cartesian position of the TCP of the tool.
mass float64 Mass of the tool.
tcpcog float64[3] Centre of gravity of the tool.
selection int8[6] Specifies if the manipulator is compliant in the cor-

responding degree of freedom.
wrench float64[6] Obtain or account for the specified force, depending

of the selection for the degree of freedom and TCP
centre of gravity.

limits float64[6] Allowed TCP velocity or TCP position deviation
from the specified path, depending of the selection.

Result
resPos float64[6] Result Cartesian position of the manipulator.
resJoint float64[6] Result joint configuration of the manipulator.

Table B.2: Overview of the urcommands actionlib, used to communicate between the UR5 proxy and UR5 driver.

FollowJointTrajectory actionlib

The FollowJointTrajectory (FJT) is a standard message type, which is part of the ROS control_msgs
package. It consist of goals, feedback, and results related to movement. The most used topics will be
described in the following1 and shown in table B.3. The FJT actionlib is primarily used to create a
trajectory of a number of points, which consist of a set of manipulator configurations, velocities, and
accelerations for each joint. Furthermore, is the total time from start specified, to ensure the manipulator
is at a desired position at a desired time, which can be important, especially in a changing environment.
A trajectory can consist of an arbitrary large number of configurations, to be executed by the manipulator
(limited by the memory of the executing PC).

1The full list of topics from the actionlib can be found on: http://docs.ros.org/api/control_msgs/html/action/
FollowJointTrajectory.html
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Action Name Type Description

Goal

trajectory trajectory_msgs/ Joint-
Trajectory

The trajectory to be executed by the
manipulator. Part of FollowJointTra-
jectoryActionGoal action.

points trajectory_msgs/ Joint-
TrajectoryPoint[]

The points to be executed of the manip-
ulator. Goal as a part of "trajectory".

positions float64[] The joint position of one trajectory
point. Goal as a part of "points".

velocities float64[] The joint velocity of one trajectory
point. Goal as a part of "points".

accelerations float64[] The joint acceleration of one trajectory
point. Goal as a part of "points".

time_from_start duration The allowable execution time for a
trajectory point. Goal as a part of
"points".

Result status actionlib_msgs/GoalStatus The action status of the actionlib.

Table B.3: A extract of the FollowJointTrajectory actionlib. FollowJointTrajectory is part of the contol_msgs package [ROS,
2013].

B.2.2 ROS-Industrial Universal Robots driver

The driver is based on the ROS-Industrial Universal Robots package, where all core functionalities are
maintained and used. The main changes to the package are addition of further functionalities and another
actionlib server, as mentioned in section B.2.

The main structure of the driver is described in the following, to establish a baseline for the development
of additional functionalities. An URScript script is send from the driver by use of at socket connection
to the UR controller. The script is executed on the controller, listening for incoming commands from the
driver. The driver listen for incoming trajectories via FJT actionlib.

Between each configuration of a received trajectory (including the start/current configuration of the ma-
nipulator), the driver conducts a cubic interpolation, to ensure a smooth movement between the configu-
rations. Then each of the interpolated configurations from the trajectory are send to the manipulator, one
by one. Each configuration of the trajectory is executed as individual joint movement commands.

Within the time frame of the trajectory, the interpolated configurations are sent successive. If the manipu-
lator does not reach the final position of the trajectory, within the time frame, then the final configuration
is send. This approach can cause the driver to skip some of the interpolated configurations. The ac-
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tual configuration of the manipulator is compared to the desired, and the status of the trajectory is first
changed to succeeded after the two configurations are within a specified tolerance. After successfully
executing a command, then the driver returns to the listening state, ready for a new command.

Feedback from the driver, containing the current configuration of the manipulator, follows the syntax of
Joint State message2. A joint state message contains information of the name of the joints for identifica-
tion, the position, velocity, and effort (torque for rotational joints) for each joint.

The functionalities, described in section B.2, have been added to the original functionalities of the ROS-
Industrial UR driver. The movement functionalities are primarily modifications of existing functions
from the ROS-Industrial UR package. This has been done to maintain the ROS-Industrial approved
structure, and to stay true to the developed package. No-movement commands have been created to adapt
to the structure of the driver. An additional actionlib has been implemented, which handles specification
of what command to be executed. The execution of no-movement commands are handled without the
use of the FJT actionlib, using only the urcommands actionlib. When the no-movement commands have
been executed, the status is also set to succeeded. The Cartesian position of the manipulator is published
to a topic, enabling the framework to subscribe and continuous receive the position status.

Sum-up of the added functionalities, to the ROS-Industrial UR package:

• Send move, both linear and joint with joint and Cartesian input.

• Offset TCP, including centre of gravity and mass of the tool and placement of the tool centre point.

• Start and end force, including control of all related parameters.

The ROS packages described in this section is appended on the enclosed CD3. The packages have been
created using ROS Hydro Medusa, compiled using catkin on Ubuntu.

2Joint states are a submessage group to "sensor_msgs", more info at http://docs.ros.org/api/sensor_msgs/html/
msg/JointState.html

3See <Source code/ur5_rosi_proxy> and <Source code/ur_driver>
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Appendix C

OMPL Sample-based Motion Planner
Algorithms

This appendix introduces the motion planning algorithms in the Open Motion Planning Library (OMPL).
It serves as a supplement to the descriptions in chapter 6, underlining the structure and functionalities
of the motion planning algorithms.

C.1 Lazy Probabilistic Roadmap

The aim of the lazy probabilistic roadmap (LazyPRM) is to be faster than PRM, but otherwise hav-
ing similar capabilities as the original PRM algorithm. Its aim is to find the shortest path in an initial
roadmap, which is generated by randomly distributed configurations. If a path cannot be found between
the initial and goal configuration, then the algorithm enhances the roadmap by adding more configura-
tions to the roadmap. In contrast to the original PRM, the LazyPRM does not make use of collision
checking in the preprocessing phase, to make sure that the samples in the roadmap are collision-free.
Thus, the LazyPRM does not create a roadmap of only feasible paths. Instead, the algorithm builds a
roadmap of assumed feasible paths. The idea is to evaluate the feasibility of the roadmap after a short-
est path is found. If a collision is found in the path, the vertices and edges, which are in collision, are
removed. Afterwards a new shortest path is calculated and checked for collision. This continues until a
feasible path is found. This high level description of how the LazyPRM works is illustrated in figure C.1.
By minimising the use of a local planner, and thereby the usage of the collision checker, then the com-
putationally demands decreases and a feasible motion plan can be made more quickly. The LazyPRM
algorithm is mainly made for single query tasks. [Bohlin and Kavraki, 2000]
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Figure C.1: High level description of the LazyPRM planning algorithm. [Bohlin and Kavraki, 2000]

C.2 PRMstar

The PRMstar algorithm is made to give asymptotically optimal solutions. This means if the number of
samples goes towards infinity, then the solution found is the optimal solution. The standard PRM algo-
rithm utilises a fixed radius to select which samples the current sample shall be connected to. PRMstar
utilises the number of samples to define the radius. The result is that the connection radius decreases
as the number of sampled vertices increases. This furthermore decreases the number of connections the
algorithm attempts to make from a roadmap to vertices, as the number of samples increases. [Karaman
and Frazzoli, 2011]

C.3 Sparse Roadmap Spanner

Sparse Roadmap Spanner (SPARS) constructs a sparser good-quality roadmap, by relaxing optimality
guarantees by using graph spanners, for answering shortest-path queries. The algorithm is partly based on
PRMstar, which provides asymptotically optimal solutions. The difference is that in addition to building
the relatively dense PRMstar graph, and then a sparse spanner graph is built as well. The spanner is a
sub-graph of the PRMstar graph. Vertices from the dense graph is included in the spanner if they are
useful for coverage or if the vertices improves the path quality relative to paths of the dense graph. The
reason for using a spanner is that this reduces the number of edges. [Dobson et al., 2013]

The motivation for using a sparse roadmap spanner and thereby reducing the roadmap size, while keeping
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a good quality, is to comply with applications like resource-constrained manipulators, which can better
communicate, store and query smaller roadmaps that are computed offline.

Sparse roadmaps with multiple good quality paths is beneficial in dynamic environments, where some
edges might be invalidated by changes in the environment. [Dobson et al., 2013]

C.4 Sparse Roadmap Spanner 2

Sparse Roadmap Spanner 2 (SPARS2) is an updated alternative to the original SPARS algorithm. The
aim for SPARS2 is to create a compact graph: This is done based on a roadmap and a spanner sub-
graph. The used roadmap is less dense than the PRMstar used as part of SPARS. The returned sub-
graph spanner is similar to that of the SPARS, but slightly denser. The computed paths is competitive
to those of PRMstar and better than those of SPARS. The SPARS2 algorithm uses significantly less
computational memory than the SPARS algorithm and has improved online capabilities compared to
SPARS and PRMstar. [Dobson and Bekris, 2013]

C.5 LazyRRT

The algorithm of LazyRRT is similar to that of the original RRT. The difference is that, when moving
towards a new configuration state, then the LazyRRT does not check for collision to make sure the path
is valid. Thus, the algorithm attempts to find a path without checking for collision. When a path is
found, it is checked for collision. If collision is found in the path, then the invalid vertices and edges are
removed and the search process is continued. By decreasing the usage of the collision checker, then the
computationally demands are decreased. [Karaman and Frazzoli, 2011]

C.6 RRTstar

The RRTstar algorithm is similar to the original RRT in that it first attempts to connect a new sampled
vertex to the nearest vertex in the tree structure. The new vertex is added to the tree structure, if the
connection attempt is successful. RRTstar differs, in that every time a new vertex is added to the tree
structure, then connections are attempted from all other vertices within a given radius in the tree structure.
Next, the algorithm removes the connections that are not part of a shortest path from the root of the tree
to the new vertex. This avoids formation of cycles, as in roadmaps, and maintains the tree structure.
[Karaman and Frazzoli, 2011]
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C.7 LBT-RRT

Lower Bound Tree-RTT (LBT-RRT) is a single-query algorithm that has the properties of being asymp-
totically near-optimal. Being asymptotically near-optimal means that the solution of the algorithm is
within an approximation factor of 1 + ε of the optimal solution. For the LBT-RRT, this enables the pos-
sibility of interpolating between the RRT and the RRTstar. Thus when the approximation factor equals
one, then LBT-RRT behaves like a RRTstar. When the LBT-RRT approximation factor is unbounded,
then the LBT-RRT behaves like the original RRT. The aim is to have an approximation factor in-between.
This combines the desirable properties of the RRT and the RRTstar. The result is LBT-RRT converges
fast like RRT, and with a high-quality solution comparable to the RRTstar. [Salzman and Halperin, 2013]

C.8 Transition-based RRT

The transition-based RRT combines the original RRT algorithm with costmaps of the configuration
space, thus the algorithm is divided into two stages; the RTT stage and the Transition stage.

The first stage is to utilise the RRT algorithm previously mentioned, however before inserting a newly
sampled vertex, the second stage begins. The goal of the transition stage is to filter those configurations
that do not comply with the cost-function. The filtering relies on the Metropolis criterion1. [Jaillet et al.,
2010]

The implementation of a user-given cost-function in the RRT algorithm, as an additional input to RRT,
enables the possibility to both produce a path that are feasible and has good quality with respect to the
cost-function. [Jaillet et al., 2010]

C.9 RRTConnect

RRTConnect is based on the RRT algorithm, but in contrast, it is designed for path planning problems
without differential constraints. The algorithm consists of two parts; the RRT algorithm, that is similar
to the one of the original RRT, but the algorithm is however bi-directional. The second part is the
Connect heuristic algorithm that is implemented instead of the incremental extender of the original RRT.
The Connect heuristic iterates until the counter tree is found, or an obstacle is reached. The heuristic
approach allows for rapid convergence to a solution. [Kuffner and LaValle, 2000]

1Commonly utilised in stochastic optimisation methods.
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C.10 Path-Directed Subdivision Tree

Path-directed subdivision tree (PDST) is a tree-based planner, especially developed for systems with
significant drift, severe under-actuated systems, and in "discrete system changes". Drift occurs in dy-
namically systems when the system cannot instantaneously stop. Under-actuation occurs when the di-
mension of the control space is less than the dimension of the state space. Discrete system changes
occurs in hybrid dynamical systems, where hybrid dynamical systems are dynamic systems that exhibits
both continuous and discrete dynamic behaviour, thus this causes discontinuous dynamic constraints or
state variables. The PDST motion planner utilises a projection of a grid, to bias the tree to less explored
areas. [Ladd and Kavraki, 2005]

C.11 Expansive Spaces Trees

Expansive spaces trees (EST) is a bi-directional single-query algorithm that is able to handle differential
constraints. The algorithm builds the part of the roadmap that is connected to either the initial configura-
tion or the goal configuration. [Hsu et al., 1997]

Thus, the idea behind EST is to have an initial configuration and a goal configuration. The algorithm
then samples vertices at random in the configuration space, but only retains the vertices that are either
connected to the initial or goal configuration. The result is two trees being built with root in the initial or
goal configuration respectively. The two trees will keep growing until visibility regions of the two trees
intersect each other. By visibility is meant if a straight-line path, joining the two trees lies entirely in the
obstacle free space. [Hsu et al., 1997]

C.12 Search Tree with Resolution Independent Density Estimation

Search Tree with Resolution Independent Density Estimation (STRIDE) algorithm is a tree-based planner
that is similar to EST, PDST, and KPIECE. The main difference is that these makes use projections to
estimate the sampling density of the configuration space, whereas the STRIDE algorithm uses a data
structure to produce density estimates directly in the configurations space. The effects is that the planner
is guided towards unexplored regions of the configurations space. Experiments have shown that the
algorithm has beneficial performance especially in high dimensional problems (10 or higher), but also
within classical 6-dimensional problems. [Gipson et al., 2013]
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Appendix D

OMPL Trajectory Post-Processing

The chapter introduces two post-processing operations in OMPL, PathSimplifier and PathHybridization.
The post-processing is not within the scope of this project, which means that the set-up of the post-
processing has been the same during the whole project and is treated as a "black box".

The idea behind the two post-processing operations are to optimise by shorten and smoothing the trajec-
tories provided by the chosen motion planning algorithm. Thus, the quality of the resulting trajectory is
also depended on the post-processing.

D.1 PathSimplifier

The pathSimplifier attempts to simplify the path, as the name implies. It consists of four functions of
interest; collapseCloseVertices, reduceVertices, shortcutPath, and smoothBSpline. [OMPL Rice Univer-
sity, 2014b]

CollapseCloseVertices

The function tries to remove vertices that are close to each other, while still keeping the path valid with
respect to the collision checker. This result in the function attempting to make short-cuts iteratively
between non-consecutive states, thus states that are not directly followed by each other, but that are close
along the path. If the function is successful, then the function removes any in-between vertices. [OMPL
Rice University, 2014b]
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ReduceVertices

The function tries to reduce the amount of vertices by doing short-cutting along the path, while still keep-
ing the path valid with respect to the collision checker. The short-cutting is done by attempting to connect
non-consecutive samples iteratively, meaning samples that are not directly followed by each other. If a
connection is successful, then the in-between samples will be removed. [OMPL Rice University, 2014b]

ShortcutPath

The shortcutPath function also attempts to shorten the path while keeping it valid. It does so by attempt-
ing to connect between random points along the given path. Thus, the function does not only sample
the vertices produced by the motion planner, but also intermediate points on the path. If needed, new
vertices are created to shorten the path. [OMPL Rice University, 2014b]

SmoothBSpline

After the removal of vertices, this function attempts to smooth the path, while keeping the path valid.
The smoothing is done by applying a B-spline on the path. The B-spline is first applied to a given number
of maximal steps. If no progress is detected, meaning the states is updated less than a given minimum
change, then the amount of steps on which the B-spline is applied, is reduced. The path of the B-spline is
subdivided and the states along it is updated to improve the smoothness. [OMPL Rice University, 2014b]

D.2 PathHybridization

The PathHybridization class utilises the theory published in [Raveh et al., 2011]. The idea is that although
motion planners often can be effective in finding collision-free paths, then the produced paths are often
of poor quality, regarding standard quality measurements such as, path length, clearance, smoothness or
energy. [Raveh et al., 2011]

With hybridization, the approach is to merge multiple paths into one high-quality hybrid path. The
making of a hybrid path is based on observations that the quality of certain sub-parts of a solution may
be of higher quality, than the entire path itself. Thus, a combination of these high-quality sub-paths will
return a whole path of high-quality. The basic idea is illustrated in figure D.1. [Raveh et al., 2011]
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Figure D.1: The basic idea behind hybridization, where two sub-paths of high-quality are merged into one whole path of
high-quality.[Luna et al., 2013]
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Appendix E

Benchmarking in MoveIt

This appendix concerns the workflow for benchmarking in MoveIt. Next a description of the scenes,
which have been used for benchmarking, is given.

E.1 Work flow of the Benchmarking

In figure E.1 the workflow for conducting a benchmark is illustrated. The Rviz motion planning plug-
in is first started. This plug-in makes it possible to load scenes, in which manipulator movements can
be performed in, by motion planning. These scenes are created by a .scene text file and can contain
geometries, such as rectangles, balls, and cylinders. The .scene text file created for the benchmarking,
is described in appendix E.2. After a scene is loaded, a query can be set by moving the initial and goal
state of the manipulator. The scene and query is saved with a unique name to the Warehouse database.
The Warehouse is utilised by the benchmark configuration file. The configuration file is used to set-up
the benchmark, such as choosing the scene and query to use, number of runs, and the different motion
planning algorithms to use. When the configuration file is set-up, then the benchmark can be conducted.
The data from the benchmarking is saved to a log file, where different properties for each run are saved.
The log files for containing the result is appended on the enclosed CD1. These data are then processed, to
visualise and compare the results. Based on the results, a selection of motion planning algorithms with
the desired characteristics can be made.

1See: <Benchmark/AroundThePole.txt> and <Benchmark/SmallSpaceTest.txt>
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Figure E.1: The work flow of benchmarking. Inspired from [Coleman, 2013].

E.2 Scenes for Benchmarking

There has been conducted two benchmarks; one where the manipulator must move around the pan-
tilt unit pole, and one where it has to move into a narrow passage. The first benchmark does only
require itself (Little Helper 4), hence a scene is not needed. The second benchmark needs a scene for
representation of a narrow passage. MoveIt scenes can be created in various ways, and the narrow
passage scene has been created by manually creating a .scene file. A part of the .scene file is seen in table
E.1, with a description for each parameter2. The entire .scene file can be found on the enclosed CD 3.

Parameter Description

SmallSpaceBench The scene name

* Wall1 Defines an object with the name Wall1

1 Number of shapes

box The shape type

0.60 0.15 1.20 Shape measures; for a box it are its side-
lengths

0.40 0.50 0.60 Translation (x, y, z) from origo

0 0 0 1 Orientation in quaternions

0.75 0.75 0.75 1 Color in rgba.

Table E.1: Parameters, including description, of the .scene file.

2Further information about the format can be found at http://moveit.ros.org/wiki/Scene_Format.
3See: <Benchmark/SmallRoomBench.scene>
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Appendix F

Implementation of Motion Planning
Algorithms in MoveIt

This appendix outlines the changes made to the MoveIt source code, to implement five additional motion
planners, which was not contained per default. The changes concerns implementation of a number of
planning algorithms into the OMPL planning files.

MoveIt, used throughout this project been embedded as a part of the Little Helper 4 ROS workspace.
That is the MoveIt source code is cloned into the used workspace. This has been done for two main
reasons; the MoveIt functionalities are built as a part of the workspace, thus no additional installation is
necessary and it gives the ability to change the code to obtain the desired functionalities, as described in
the following.

MoveIt includes 12 functional motion planning algorithms, based on OMPL, per default. The full list of
all implemented algorithms can be seen on page 137. In addition to these, are another five implemented,
which are listed below:

• LazyPRM

• PDST

• SPARS

• SPARStwo

• pRRT

The implementation is based on the existing implementation of the original 12 algorithms. The header
files for each planner is present in OMPL, thus the implementation is limited to the planning_context
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1 # i n c l u d e <ompl / g e o m e t r i c / p l a n n e r s / r r t / pRRT . h>

2 # i n c l u d e <ompl / g e o m e t r i c / p l a n n e r s / p d s t / PDST . h>

3 # i n c l u d e <ompl / g e o m e t r i c / p l a n n e r s / prm / LazyPRM . h>

4 # i n c l u d e <ompl / g e o m e t r i c / p l a n n e r s / prm / SPARS . h>

5 # i n c l u d e <ompl / g e o m e t r i c / p l a n n e r s / prm / SPARStwo . h>

Table F.1: Inclusion of algorithm header files in the planning_context _manager.cpp file.

1 registerPlannerAllocator ( " g e o m e t r i c : : pRRT" , boost : : bind(&allocatePlanner<og : : pRRT←↩
> , _1 , _2 , _3 ) ) ;

2 registerPlannerAllocator ( " g e o m e t r i c : : LazyPRM" , boost : : bind(&allocatePlanner<og : :←↩
LazyPRM > , _1 , _2 , _3 ) ) ;

3 registerPlannerAllocator ( " g e o m e t r i c : : PDST" , boost : : bind(&allocatePlanner<og : : PDST←↩
> , _1 , _2 , _3 ) ) ;

4 registerPlannerAllocator ( " g e o m e t r i c : : SPARS" , boost : : bind(&allocatePlanner<og : :←↩
SPARS> , _1 , _2 , _3 ) ) ;

5 registerPlannerAllocator ( " g e o m e t r i c : : SPARStwo" , boost : : bind(&allocatePlanner<og : :←↩
SPARStwo > , _1 , _2 , _3 ) ) ;

Table F.2: Creation of allocators in the planning_context _manager.cpp file.

_manager.cpp file1. The file is written in C++.

The first step of the implementation, is inclusion of the algorithm header files, as shown in table F.1.

Each motion planning algorithm is created as a allocator (memory model), to be called through the
ompl_planning.yaml file. The implementation of each planner is created with a planner ID and a ref-
erence to a configured planner. The planner ID is corresponding to the ID parameter, specified in the
planning file. The configured planner is created by use of the boost::bind function, with placeholder ar-
guments (_1, _2, _3). This means that the placeholder arguments are replaced with the input arguments,
when the function is called. The implementations are listed in table F.2.

1The modified file is appended on the enclosed CD, see <Source code/planning_context_manager.cpp>
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The total list of successfully implemented motion planners in MoveIt, both the pre-implemented and the
ones described above, is shown below:

• RRT

• pRRT

• RRTConnect

• LazyRRT

• TRRT

• EST

• SBL

• KPIECE

• BKPIECE

• LBKPIECE

• RRTstar

• PRM

• PRMstar

• LazyPRM

• PDST

• SPARS

• SPARStwo

Three algorithms failed to be implement in MoveIt: STRIDE, pSBL, and LBT-RRT. The three planners
current development status are "Experimental" [OMPL Rice University, 2014a]. Due to the amount of
successfully implemented motion planning algorithms, no further investigation of why the implementa-
tion failed, was conducted.
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Appendix G

Modelling Little Helpers in MoveIt

This appendix concerns the creation of the models of Little Helper 3 and Little Helper 4, utilised during
the motion planning. The specification of geometric and kinematics information about the models are
described. This is followed by an elaboration of the modelling of Little Helper 4. Then a brief introduc-
tion to concerned hardware on Little Helper 3 is presented, since the implementation of Little Helper 3
is lastly described.

G.1 Creation of Models of the Environment

The mesh models and kinematic information, utilised by MoveIt for the kinematic solver, collision
checker, and self-filtering, are defined in a unified robot description format (URDF) file and a semantic
robot description format (SRDF) file. The general structure and content of the two file types are described
in the following subsections.

G.1.1 Unified Robot Description Format

A URDF file is a schematic description of a real robotic set-up. A URDF file consist of descriptions of
the links and joints present in the robotic set-up. The URDF file is created in the XML format.

A link consist of a visual representation and collision representation. These can either be included as
CAD files or directly specified as geometric shapes. The visual representation is used during visualisation
of the robotic set-up, whereas the collision is used during collision checking. Mass, centre of gravity,
and moment of inertia can furthermore be specified for each link. [ROS, 2013]

A joint specifies a parent and child link, along with a joint type. The rotation, translation, or surface
normal axis, of each joint, is specified, along with a specification of the transformation from the joint
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frame relative to the parent link frame. Each rotational joint is specified with limits for position and
velocity. Joints can also be specified with dynamic effects, such as friction and damping, which have not
been covered in this work. [ROS, 2013]

G.1.2 Semantic Robot Description Format

A SRDF file is a supplement to the URDF file, containing information about planning groups, states,
and collision disabling. Planning groups are groupings of links or joints, for which MoveIt can create a
motion plan. A planning group can be a kinematic chain containing the links from base link to TCP link
for a manipulator. States are predefined joint configurations for a planning group, for example a home
position. Collision can be disabled for individual pairs of links, for example adjacent links, which are
allowed to have contact due to their connection [ROS, 2013]. A SRDF file can be created by used of the
MoveIt tool Setup Assistant, specifying for example planning groups and states for kinematic chains. A
SRDF file is created from a URDF file.

G.2 Environmental representation of Little Helper 4 in MoveIt

The model for Little Helper 4 consist of three main parts; the UR5 manipulator, the RQ3 gripper, and
the platform. Meshes for the UR5 manipulator and RQ3 gripper are provided through the corresponding
ROS packages1. Meshes are used to specify both a visualisation and collision part for each object. The
meshes for the platform are based on a simplified CAD model. Simplified meshes are used to reduce the
calculation time during collision checking [Pan et al., 2012]. The CAD model for the platform originates
from the designing phase [VT3-2013, 2013], but is drawn to match the size of the actual platform. The
platform is subsequent equipped with a pole for a pan-tilt unit, which is added to the environment as
a part of the Little Helper 4 platform. The pan-tilt unit can be used to manipulate the mounted vision
system, but is fixed through all work conducted in this project. The design of the pan-tilt unit is described
in appendix I.

The following objects are included in the URDF file of Little Helper 42 3. Each of the objects are included
as links or groups of links:

1The packages can be found at: https://github.com/ros-industrial/universal_robot and https://github.
com/ros-industrial/robotiq

2The file is appended on the enclosed CD, see <Source code/lh4moveit/urdf/ur5_rq3_lh4.urdf>
3A graphical representation of the URDF file and the links and joints relative transformation and rotation is appended on

the enclosed CD, see <URDF overview/LH4 URDF.pdf>
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G.2. Environmental representation of Little Helper 4 in MoveIt

• Little Helper 4 platform

• UR5 manipulator

• RQ3 gripper

• TCP calibration

• RGB-D sensor calibration

• RGB-D sensor

The RGB-D sensor and calibration links are described in appendix H. The TCP calibration link is in-
cluded to move the tool centre point, to the flange of the UR5 manipulator. The tool centre point is
originally placed in the joint, between the two of the outermost links of the UR5 manipulator. This addi-
tion does also enable for specification of the TCP according to the used tool, by changing TCP calibration
link accordingly. This can be changed without any precautions, when a numerical kinematics solver is
used. If an analytical solver is used, the kinematics expressions must be created based on the changed
kinematics of the manipulator.

The base link of the UR5 manipulator is placed relative to the Little Helper 4 platform link. The RQ3
gripper links and TCP calibration link are placed relative to the last link of the UR5 manipulator. The
RGB-D sensor calibration link is placed relative to the UR5 manipulator, since the sensor link is cali-
brated relative to it, as described in appendix H. The collision representation for the palm of the RQ3
gripper was changed according to the description in chapter 10.

The set-up regarding the Little Helper 3, including the LWR manipulator, is described in section G.3.
The environment for the dual manipulator motion planning set-up, described in chapter 9, is created as a
combination of the URDF files for both Little Helper 3 and Little Helper 44 5.

The SRDF file6, based on the URDF file, has been modified subsequent to the creation from Setup
Assistant. The changes include allowing of collision between the palm and fingers of the RQ3 gripper,
because of the extended collision representation of the palm. Different group states have furthermore
been added for the UR5 manipulator. These was used during the test phase of the system.

4The file is appended on the enclosed CD, see <Source code/kuka_lwr/robots/dual.urdf>
5A graphical representation of the URDF file and the links and joints relative transformation and rotation is appended on

the enclosed CD, see <URDF overview/Dual-LH4_LH3 URDF.pdf>
6The files are appended on the enclosed CD, see <Source code/lh4_moveit_config/config/lh4.srdf> for the Little Helper 4

set-up and <Source code/dual_moveit_config/config/little_helper.srdf> for the dual manipulator set-up
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G.3 KUKA LWR 4+Manipulator

Little Helper 3 has been implemented in MoveIt, thus the concerned hardware of Little Helper is pre-
sented. Little Helper 3 consists of multiple types of hardware, such as a Neobotix MP-L655 mobile
platform, a Schunck WSG 50 gripper, and a KUKA LWR 4+ (LWR) manipulator.

In this project the LWR manipulator, seen in figure G.1, is the equipment of concern on the Little Helper
3. This is because it is utilised to prove the capabilities of motion planning with multiple manipulators,
as described in chapter 9.

Figure G.1: The KUKA LWR 4+. [METAL SUPPLY, 2010]

The LWR is a lightweight articulated manipulator, with a 7 degrees-of-freedom and in-line wrist. The
LWR is approved for 7 kg payload, with an approximately weight of 16 kg, excluding the controller.
[KUKA, 2012]

The LWR is, as the Universal Robots UR5, able to measure the force in each joint. Unlike the UR5
manipulator, which bases the force on current measurements in each motor, then the LWR bases the
force on torque sensors in each joint. [KUKA, 2012]

The maximum work envelope of the LWR manipulator is 790 mm in radius and 1178.5 mm in height,
from the base and up. [KUKA, 2012]
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G.4 Environmental representation of Little Helper 3 in MoveIt

The process of implementing Little Helper 3 into MoveIt is identical to the implementation of Little
Helper 4. Some challenges did however emerge, when implementing Little Helper 3, which this section
mainly concerns.

To be able to implement Little Helper 3 into MoveIt, a package of the system, containing a URDF file
and multiple CAD files for the respective parts, was needed. The Robotics and Automation Group at
Aalborg University has previously implemented Little Helper 3 into other software applications, needing
URDF and CAD files. Thus, a URDF file and the respective CAD models was available.

In theory, the process of implementing Little Helper 3 into MoveIt is the same, as described for Little
Helper 4, but in practise, this did not work at the beginning.

A URDF file can in addition to XML format be in a XACRO format. In theory, the two formats are
the same, except from the added possibility to include multiple URDF.XACRO files into one main
URDF.XACRO file. Little Helper 3 is original created with URDF.XACRO files, where each equip-
ment has its own URDF.XACRO, and the combined Little Helper 3 is created by a main URDF.XACRO
file. MoveIt did fail, when loading URDF.XACRO files of Little Helper 3. MoveIt should be able to cope
with URDF.XACRO files, but when creating the URDF.XACRO files into one URDF file instead, then
the failing ceased. The conversion from a URDF.XACRO file to a URDF file was done by the command
given in table G.1.

$ rosrun xacro xacro.py little_helper.urdf.xacro > litte_helper_expanded.urdf

Table G.1: Command for extending a URDF.XACRO file into a URDF file in XML format.

After changing the format type from URDF.XACRO to URDF, it was possible to load the file into MoveIt,
without failing at start-up. The next challenge that emerged was that nothing visual appeared in Rviz.
After comparing the COLLADA files of the LWR, with the COLLADA files of for example the UR5
manipulator, it became clear that the COLLADA files from Little Helper 3 included less libraries. After
implementing additional libraries into each COLLADA files of the LWR, such as "<library_lights>" and
"<library_cameras>", then the LWR manipulator appeared in MoveIt.

This was done for all COLLADA parts, to have the full Little Helper 3 visual represented in Rviz. It has
been chosen to solely implement the LWR manipulator and the Schunk WSG 50 gripper, whereas the
platform is a coarse model, made by the project group, with the outer dimensions of Little Helper 37.

7The COLLADA files are appended on the enclosed CD, see <Source code/kuka_lwr/kuka_lwr_mesh/meshes/kuka_lwr>
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Appendix H

Implementation of a RGB-D Sensor in
MoveIt

This appendix first outlines the gained knowledge of how to integrate a RGB-D sensor into MoveIt. Next,
the hardware specification of the RGB-D sensor is presented. Finally a brief introduction, to how the
sensor calibration is made, is given.

H.1 Utilisation of Sensors in MoveIt

To be able to have a dynamic environment representation in MoveIt, there is developed a plug-in named
"octomap updater plug-ins"1. This includes the OctoMap library, which by means of octrees2 is able to
represent the surroundings of a manipulator. This enables the possibility to represent an octree by means
of a sensor, which shall be able to produce 3D data. [MoveIt, 2014a]

An example of sensor input can be seen in figure 10.1b on page 89. OctoMap does not provide a driver
for the RGB-D sensor; hence, a driver is needed to publish the raw 3D data to OctoMap. For this the
OpenNI2 driver3 is utilised, which is a common driver for multiple RGB-D sensors.

As part of the implementation, MoveIt needs the configuration settings for the RGB-D sensor, stated in
table H.1, in a sensors_rgbd.yaml file4. An explanation of the different parameters, is listed at [MoveIt,
2014a].

1This plug-in is in the software named PointCloudOctomapUpdater, as shown in table H.1.
2Octrees are used to partition a 3D space, by recursively subdividing it into eight octants.
3The package for the driver can be found at: https://github.com/ros-drivers/openni2_camera and the package

for launch of the driver is found at: https://github.com/ros-drivers/openni2_launch.
4The file is appended on the enclosed CD, see <Source code/lh4_moveit_config/config/sensors_rgbd.yaml>
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H.1. Utilisation of Sensors in MoveIt

sensors:
- sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater

point_cloud_topic: /camera/depth_registered/points
max_range: 0.8
padding_offset: 0
padding_scale: 0.1
point_subsample: 1
filtered_cloud_topic: output_cloud

Table H.1: The settings needed for implementing the RGB-D sensor, when using PointCloudOctomapUpdater [MoveIt,
2014a]. The settings has been modified to suit the needs of the Little Helper 4 set-up.

The sensor has been implemented in the URDF file of the set-up, such that MoveIt is able to project the
sensed data relatively to the sensor. The name of the sensor is identical to the naming provided by the
driver of the RGB-D sensor. This ensures the correct transformation is done between the 3D data and the
rest of the environment. The overall structure of the URDF file, including the links related to the sensor
is shown in figure H.1. MoveIt will not show any 3D sensor data from OctoMap until the transformation
tree is set correctly. The driver provides "camera_link" in this case. In figure H.1 it is seen that an
additional transformation is provided, named "camera_link_calibration". The transformation is made
because MoveIt projects the 3D data along the X-axis, whereas the result from the calibration software
package projects it along the Z-axis. The calibration is described in section H.3.
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base_link

camera_link_calibration

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

shoulder_link

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

camera_link

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

lh4_link

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

camera_depth_frame

Broadcaster: /camera_base_link
Average rate: 10.168 Hz

Most recent transform: 1400222077.003 
Buffer length: 4.819 sec

camera_rgb_frame

Broadcaster: /camera_base_link1
Average rate: 10.168 Hz

Most recent transform: 1400222077.005 
Buffer length: 4.819 sec

finger_1_link_0

finger_1_link_1

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_1_link_2

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

palm

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_2_link_0

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_middle_link_0

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_1_link_3

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_2_link_1

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_2_link_2

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_2_link_3

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_middle_link_1

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_middle_link_2

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

finger_middle_link_3

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

wrist_3_link

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

tcp_link

Broadcaster: /robot_state_publisher
Average rate: 50.214 Hz

Most recent transform: 1400222077.442 
Buffer length: 4.939 sec

wrist_2_link

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

upper_arm_link

forearm_link

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

wrist_1_link

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1400222076.917 
Buffer length: 4.900 sec

camera_depth_optical_frame

Broadcaster: /camera_base_link2
Average rate: 10.177 Hz

Most recent transform: 1400222077.035 
Buffer length: 4.913 sec

camera_rgb_optical_frame

Broadcaster: /camera_base_link3
Average rate: 10.181 Hz

Most recent transform: 1400222077.037 
Buffer length: 4.911 sec

Figure H.1: An overview of the links of the environment of Little Helper 4, including links related to implementation of
sensors.
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H.2 Hardware Specifications

Hardware specifications for three RGB-D sensors are given in table H.2. The sensor is to be placed on
the pole for the pan-tilt unit, approximately 400 mm above the platform. This placement entails that the
PrimeSense Carmine 1.09 sensor is chosen to be used throughout this project, due to its range.

Attribute Microsoft Kinect PrimeSense Carmine 1.08 PrimeSense Carmine 1.09
for Windows (short range)

Range 400-3000mm 800 − 3500mm 350 − 1400mm

Introduction price 250$ 200$ 200$

Resolution / 1280x960 / 12 fps 1280x960 1280x960
frame rate RGB 640x480 / 30 fps

Resolution / 640x480 / 30 fps 640x480 / 30fps 640x480 / 30fps
frame rate depth 320x210 / 60fps 640x480 / 30fps

Field of view 43◦ vertical 45◦ vertical 45◦ vertical
57◦ horizontal 58◦ horizontal 58◦ horizontal

Dimensions 305x75x60mm 180x35x50mm 180x35x50mm

Table H.2: Selection of common RGB-D sensors [Muijzer, 2014]. In this project, the PrimeSense Carmine 1.09 is chosen.

H.3 Sensor Calibration

Calibration of the RGB-D sensor is needed, to estimate its position and orientation, relative to the envi-
ronment model. It is necessary if the 3D data information, which the RGB-D sensor provides, is to be
projected correctly in the environment. The calibration of the sensor is conducted by use of a method
developed by [Andersen et al., 2013]. The aim for the method is to do fast and easy calibration, by means
of a Quick Responds (QR) code. [Andersen et al., 2013]

The basic idea is that a QR code is placed with a known position in relation to the TCP of the manipulator.
This is in practice done by conducting a well-defined grasp on a plate with a QR code on. The software
recognise the corners of the QR code. After the QR code is correctly, detected, all 3D points inside
the code are extracted. A plane is fitted to the extracted 3D points, from which a translation and an
orientation of the coordinate system of the QR code can be produced. [Andersen et al., 2013]

148



H.3. Sensor Calibration

Based on subsidiary transformation from [Andersen et al., 2013], the following transformation between
the QR code and the base of the manipulator is given:

B
S T = B

T T · T
QR T ·

(
S

QR T
)−1

(H.1)

B
T T is the transformation between the base of the manipulator and the tool, holding the QR code, which
is predefined during previous calibrations. T

QR T is the transformation between the tool and the QR code,

which is known from the inverse kinematics of the manipulator.
(

S
QR T
)−1

is the inverse transformation
between the sensor and the QR code, which is based upon the translation and orientation found by
measuring the QR code. Multiplying these, results in the desired transformation between the base of the
manipulator and the sensor. The involved coordinate systems are seen in figure H.2a.

Fig. 3. All coordinate systems involved in calibration of the camera to 
the robot base frame. 

The sequence for calibrating the camera to the robot is 
summed up in Table 2. 

(1) The tool moves automatically to a 

predefined horizontal position, where the 

calibration board can easily be put into 

place. 

(2) The board is manually put into place. 

(3) The tool closes on the calibration plate. 

(4) The tool (now holding the plate) is 

manually moved to a position where the 

plate is clearly visible to the camera. 

(5) The pose of the QR code is estimated, and 

the camera is calibrated to the robot 

using Equation (8) . 
Table 2. Sequence for calibration of the camera to the robot. 

IV. RESULTS 

The QR calibration has been implemented on Aalborg 
University's AIMM, Little Helper [8,9]. The performance 
of the algorithm has been measured through laboratory 
tests described in Section IV.A and IV.B, and in Section 
IV.C, the performance of the algorithm is compared to 
existing methods. The usefulness of the algorithm has 
additionally been verified in a real-life industrial 
environment at a factory owned by Grundfos A/S, and 
this is described in Section IV.C. 

A. Calibration o/Camera 

The camera was repeatedly calibrated as described in 
Table 2 and the variation in the results is shown in Fig. 4. 
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Fig. 4. Normalized errors in the estimated position of the camera 
relative to the robot. The first three columns are the translations given in 
mm, and the last three are the rotations in ZYX Euler angles given in 
degrees. 

As it can be seen from the Figure, the translations were 
within ± 1 0 mm for all directions, and the rotation was 
within ± 1 0 for all angles. The variation was largest in the 

x-direction, which is also the direction where the distance 
is largest; cf. the base coordinate system in Fig. 3. A total 
of 11 calibrations were carried out, and the average 
execution time was 33.9 seconds with a standard 
deviation of 12.2 seconds. This includes all steps 
described in Table 2. 

B. Calibration to Workstation 

The accuracy of the calibration to a workstation was 
measured repeatedly using the test setup shown in Fig. 5. 
First, the camera was calibrated to the AIMM using one 
of the calibrations from Section IV.A. Then, the robot 
was taught the position of each of the three points relative 
to the QR code. In each test, the robot then had to (re
)estimate the pose of the QR code and indicate the 
position of the points. The reason that three points were 
used is, that this makes it possible to evaluate the 
accuracy in both the translational and rotational 
dimensions. The positions indicated by the robot were 
finally measured manually in both the X-, y-, and z
directions with a precision of 0.5 mm. The distance in the 
z-direction was measured as the distance between the tool 
and the board. 

Fig. 5. Test setup for measuring the precision of the QR calibration. The 
points are all located exactly 23 cm from the center of the QR code, and 

the angles between the center and each of the points are 120°. The 
distance between the AIMM and the board is approximately 75 cm. 

Two sets of measurements were carried out. In the 
first, the position of the robot relative to the board was 
static, and these tests measure the repeatability of the 
calibration. A total of 10 static tests were carried out. In 
the second, the relative position was variable; it was 
changed by moving the board between each calibration. 
The position of the board was changed up to ± 15 cm 
sideways (four tests), 5 cm forwards (one test), and ±9.2° 
turned (two tests). 

The normalized positions in the x- and y-direction are 
shown in Fig. 6 for the static tests and in Fig. 7 for the 
variable tests. It can be seen, that all errors are within 
± 1.1 mm for the static tests and within ±4 mm for the 
variable tests. In some cases, several tests yielded the 
same results (within the measurement precision), and this 
causes some dots in the Figures to be on top of each 
other. The results in the z-direction are not shown, but 
these were also within ± 1.1 and ±4.0 mm for the static 
and variable tests, respectively. 

Based on the measurements that are (partly) illustrated 
in Fig. 6 and 7, the normalized errors in the estimated co-

(a) The coordinate systems involved to calibrate the the
sensor with respect to the base of the manipulator. [An-
dersen et al., 2013]

Fig. 3. All coordinate systems involved in calibration of the camera to 
the robot base frame. 

The sequence for calibrating the camera to the robot is 
summed up in Table 2. 

(1) The tool moves automatically to a 

predefined horizontal position, where the 

calibration board can easily be put into 

place. 

(2) The board is manually put into place. 

(3) The tool closes on the calibration plate. 

(4) The tool (now holding the plate) is 

manually moved to a position where the 

plate is clearly visible to the camera. 

(5) The pose of the QR code is estimated, and 

the camera is calibrated to the robot 

using Equation (8) . 
Table 2. Sequence for calibration of the camera to the robot. 

IV. RESULTS 

The QR calibration has been implemented on Aalborg 
University's AIMM, Little Helper [8,9]. The performance 
of the algorithm has been measured through laboratory 
tests described in Section IV.A and IV.B, and in Section 
IV.C, the performance of the algorithm is compared to 
existing methods. The usefulness of the algorithm has 
additionally been verified in a real-life industrial 
environment at a factory owned by Grundfos A/S, and 
this is described in Section IV.C. 

A. Calibration o/Camera 

The camera was repeatedly calibrated as described in 
Table 2 and the variation in the results is shown in Fig. 4. 
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Fig. 4. Normalized errors in the estimated position of the camera 
relative to the robot. The first three columns are the translations given in 
mm, and the last three are the rotations in ZYX Euler angles given in 
degrees. 

As it can be seen from the Figure, the translations were 
within ± 1 0 mm for all directions, and the rotation was 
within ± 1 0 for all angles. The variation was largest in the 

x-direction, which is also the direction where the distance 
is largest; cf. the base coordinate system in Fig. 3. A total 
of 11 calibrations were carried out, and the average 
execution time was 33.9 seconds with a standard 
deviation of 12.2 seconds. This includes all steps 
described in Table 2. 

B. Calibration to Workstation 

The accuracy of the calibration to a workstation was 
measured repeatedly using the test setup shown in Fig. 5. 
First, the camera was calibrated to the AIMM using one 
of the calibrations from Section IV.A. Then, the robot 
was taught the position of each of the three points relative 
to the QR code. In each test, the robot then had to (re
)estimate the pose of the QR code and indicate the 
position of the points. The reason that three points were 
used is, that this makes it possible to evaluate the 
accuracy in both the translational and rotational 
dimensions. The positions indicated by the robot were 
finally measured manually in both the X-, y-, and z
directions with a precision of 0.5 mm. The distance in the 
z-direction was measured as the distance between the tool 
and the board. 

Fig. 5. Test setup for measuring the precision of the QR calibration. The 
points are all located exactly 23 cm from the center of the QR code, and 

the angles between the center and each of the points are 120°. The 
distance between the AIMM and the board is approximately 75 cm. 

Two sets of measurements were carried out. In the 
first, the position of the robot relative to the board was 
static, and these tests measure the repeatability of the 
calibration. A total of 10 static tests were carried out. In 
the second, the relative position was variable; it was 
changed by moving the board between each calibration. 
The position of the board was changed up to ± 15 cm 
sideways (four tests), 5 cm forwards (one test), and ±9.2° 
turned (two tests). 

The normalized positions in the x- and y-direction are 
shown in Fig. 6 for the static tests and in Fig. 7 for the 
variable tests. It can be seen, that all errors are within 
± 1.1 mm for the static tests and within ±4 mm for the 
variable tests. In some cases, several tests yielded the 
same results (within the measurement precision), and this 
causes some dots in the Figures to be on top of each 
other. The results in the z-direction are not shown, but 
these were also within ± 1.1 and ±4.0 mm for the static 
and variable tests, respectively. 

Based on the measurements that are (partly) illustrated 
in Fig. 6 and 7, the normalized errors in the estimated co-

(b) The normalised errors in estimating the position and
orientation of the sensor, where the x, y, z is translation
in mm and A, B, C is the Euler angles in degrees. [An-
dersen et al., 2013]

In figure H.2b the normalised errors are seen for the respective translations and orientations. It is seen
that overall translational precision is approximately ±4mm. [Andersen et al., 2013]
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Appendix I

Contributions to the ACAT Project

This chapter treats the work done to fulfil goals for the ACAT project, stated by the Robotics and Au-
tomation group at Aalborg University, which has gradual begun to include Little Helper 4. It shall be
clarified that most of the work done for ACAT during this semester, is not directly related to the scope of
this project, which is why the documentation is found in this appendix.

The ACAT project is an EU project consisting of participants from institutes and universities from Ger-
many, Lithuania, Slovenia, and Denmark. The goal of the ACAT project is to enable systems, like robots,
to understand and use information which intentionally was made for humans1.

The basis for the following contributions to ACAT, is the Little Helper 4 software framework created in
[VT3-2013, 2013]. The framework and functionalities are described in section 2.2.

I.1 Read and Instantiate Specified Task File

The goal is to make the Little Helper 4 software framework able to instantiate task files, which are not
instantiated. A task file, which is not instantiated, is in this context a task file containing a number of
ordered skills, without values for the parameters. Algorithm 1 was used during the development of the
functionalities:

The implementation of the pseudo code, in the software framework for Little Helper 4, is done as an
addition to the existing terminal user interface (TUI), keeping all prior functionalities in the framework.
This feature reads the skills in the specified task file, one by one, and asks the user to teach to needed
parameters, and/or coordinates for each skill. This information is written to a temporary file, which

1More information can be found at http://www.acat-project.eu/.
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Data: Load the "specified" task file
while i < total number of skills do

Read the skill type number i, from "taskfile";
Teach the skill type number i, to "taskfile1";
i = i + 1;

end
Add skill type 0 Finished to "taskfile1";
Delete "taskfile";
Rename "taskfile1" to "taskfile";

Algorithm 1: Pseudo code for reading and instantiating of a specified task file.

replaces the original file after completion. This implementation does only concern the master, which
is why this functionality is unaffected of the changes to the software framework, which is described in
appendix 8.

I.2 Framework Compatibility Among Little Helper 4 and Little Helper 3

To make the Little Helper 4 software framework comply with the Little Helper 3 software framework,
including GUI and teach functions, a set of additional functionalities is needed in the Little Helper 4
software framework. The two implemented functionalities, "Get Data" and "Set TCP" are described in
the following.

I.2.1 Get Data

A "Get Data" function is needed to return the position of the TCP in both Cartesian and joint values.
This need is fulfilled by adding a new set of keywords to the movetype- and inputtype-actionlib topics,
”get” and ”data”. These keywords are read by the proxy/driver and an "empty" function call with only
the keywords are send to the URScript on the manipulator. The URScript returns the position of the
manipulator, which is passed on to the master. This functionality concerns primary the proxy/driver and
the URScript, why it must be considered during the further development of the ROS-Industrial Universal
Robots package, described in appendix B.

I.2.2 Set Tool Centre Point and Payload for the Tool

A "Set TCP" function is needed to specify an offset TCP, relative to the original TCP of the UR5 ma-
nipulator. Furthermore, the possibility to set the mass and the centre of gravity is added to the "Set
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I.3. Pole for Pan-Tilt Unit

TCP" function. Along with the keywords "set" and "tcp", the parameters are send from the master, to the
proxy/driver via an actionlib. The proxy/driver sends the parameters to the manipulator, which enters a
function that sets the parameters and returns a "succeeded" status to the proxy/driver. The proxy/driver
changes the status of the actionlib to "succeeded". This functionality concerns primary the proxy/driver
and the URScript, why it must be considered during the further development of the ROS-Industrial Uni-
versal Robots package, described in appendix B.

I.3 Pole for Pan-Tilt Unit

Part of the ACAT project requires the use of a vision system. This is to be mounted on a FLIR PTU-D48
E pan-tilt unit. To obtain a desired distance from the vision system, to the top plate of the platform, the
pan-tilt unit is mounted on a pole. The pole is designed to be a bolt-on solution, to avoid reduction of the
functionality of Little Helper 4 without the pole. The pole is bolted directly on one of the platform’s top
plates. The finished pole, mounted on the platform is shown in figure I.1.

Figure I.1: Mounted pole for pan-tilt unit.
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Appendix J

Multiple Manipulator Collaboration at
MPCP

In the beginning of this project, the World Conference on Mass Customization, Personalization, and Co-
Creation 2014 (MPCP)1, was held at Aalborg University, where the project group was asked to exhibit
the Little Helpers in collaboration with the Automation and Robotics group.

At the exhibition, the Little Helper 3 and 4 were programmed to play a game of Tic Tac Toe, as seen
in figure J.1. It was the first time the two Little Helpers operated in the same work envelope, thus it
was required to implement a function, which could ensure collision free motion between the two. The
information was shared between the two by publishing to a topic, which the other could get information
from by a function call. The information published to the topic was a boolean, which was true if the
Little Helper was at a safe position, and the other was free to move. This implementation only allowed
one Little Helper to move at a time.

It was possible to share the information between the two, by connecting Little Helper 4 to the ROS Master
of Little Helper 3 over TCP/IP.

1For more information about MPCP see www.mcpc2014.aau.dk

155

www.mcpc2014.aau.dk


Figure J.1: The Little Helpers at the MPCP conference.
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Rune Etzerodt      Morten Palmelund-Jensen      Casper Abildgaard Pedersen

Motion Planning in a 
Skill-Based SystemThis project concerns incorporation of motion planning in a Skill-Based System (SBS). 

The vision with SBS is outlined first, whereupon the structure of it is explained. For this 
structure a long-term and short-term proposal is made for incorporation of motion plan-
ning. Among three, the motion planning software MoveIt is chosen for implementation.
A motion planning study is conducted for the sampling-based algorithms of the Open 
Motion Planning Library, which MoveIt utilises. A benchmark is made to select applicable 
motion planners in coherence with the theory examined in the motion planning study. After 
the selection, motion planning is implemented in the SBS to prove some of the concepts in 
the short-term proposal. Furthermore, motion planning with multiple manipulators and 
motion planning in a sensor-based environment is probed. 
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