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Abstract

Permanent-magnet synchronous motors provide, in conjunction with field-oriented con-
trol (FOC), a servo system with very high power density, efficiency and dynamic perfor-
mance. The drawback of the classical FOC configuration is the requirement of a position
or speed sensor for its reference frame transformations.

Sensorless control schemes aim to eliminate this sensor from the FOC topology, which
the back-EMF estimation methods have generally succeeded in for motor speeds above,
typically, 15 % to 20 % of rated value. The focus of this thesis is on developing sensorless
schemes that function reliably in the low-speed range, which is defined here as speeds at
or below 10 RPM, including operation at standstill.

In this thesis, in the framework of space vectors, high-frequency and voltage pulse injec-
tion methods are developed and tested by experiment.

The high-frequency injection methods are generally sensitive to the voltage error intro-
duced by the nonideal characteristics of voltage source inverter drives. Compensating
for the inverter voltage error typically requires offline characterization of the inverter,
which represents an impractical dependency.

Instead of compensating for the inverter voltage error, the voltage pulse injection meth-
ods are instead developed to be robust to it. The INFORM method is modified to
directly take into account the inverter voltage error, and measurements results show
reasonable tracking performance of the rotor position, which, due to the effect of mag-
netic saturation, degrades significantly above the rated current of the motor tested.

A new algorithm is developed based on the same fundamentals as the INFORM method,
but which deliberately utilizes less information. This restricts the estimate of the rotor
position to fixed 30◦ sectors, but in doing so, the algorithm is able to reliably estimate the
rotor position to within ±20◦ electrical, regardless of the level of load current. For low
levels of load current, the estimation error of the INFORM method is slightly lower.
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Key Symbols and Abbreviations

K Matrix
k Space vector (complex)

k Complex conjugate of k

k(r) Space vector k in reference frame (r)

AAF Anti-aliasing filter
DFT Discrete Fourier transform
DSP Digital signal processor
FIR Finite impulse response
FOC Field-oriented control
IIR Infinite impulse response
LPF Low-pass filter
LSB Least significant bit
IMPMSM Interior-mounted permanent-magnet synchronous motor
PM Permanent magnet
SMPMSM Surface-mounted permanent-magnet synchronous motor
SNR Signal-to-noise ratio
SVM Space-vector modulation
SVT Space-vector transformation
VSI Voltage source inverter

If not otherwise specified:

• Amplitudes are peak values.

• No windowing is used for the DFT.

• arg(z), z ∈ C gives the principal value in the range [−π;π].

ix





Contents

Preface v

Abstract vii

Key Symbols and Abbreviations ix

1. Introduction 1
1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Space-Vector Model of the Permanent-Magnet Synchronous Motor 3
2.1. Three-Phase Machine Equations . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The Space-Vector Transformation . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Conversion to Space-Vector Form . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1. Relationship to d-q Model . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2. Utility of a Complex Representation . . . . . . . . . . . . . . . . . 13

2.4. Electromechanical Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Hardware Platform 17
3.1. Inverter Voltage Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1. Measuring the Voltage Error . . . . . . . . . . . . . . . . . . . . . 22
3.1.2. Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. High-Frequency Voltage Injection 25
4.1. High-Frequency Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2. Four-Quadrant Estimation of Rotor Position . . . . . . . . . . . . . . . . 29
4.3. Polarity Detection of PM Field . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4. Effect of Stator Winding Resistance . . . . . . . . . . . . . . . . . . . . . 34
4.5. Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1. Linear Inverter Range . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.2. Nonlinear Inverter Range . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3. Spectrum of Current Response to Inverter Voltage Error . . . . . . 40

4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5. Voltage Pulse Injection 49
5.1. Clamping the Voltage Injection Angle . . . . . . . . . . . . . . . . . . . . 49
5.2. The INFORM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1. Interperiod Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



Contents

5.2.2. Estimation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3. Effect of Magnetic Saturation . . . . . . . . . . . . . . . . . . . . . 58
5.2.4. Measurement Results, Siemens Motor . . . . . . . . . . . . . . . . 61
5.2.5. Measurement Results, SEM Motor . . . . . . . . . . . . . . . . . . 64

5.3. Sector Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1. Measurement Results, Siemens Motor . . . . . . . . . . . . . . . . 80
5.3.2. Measurement Results, SEM Motor . . . . . . . . . . . . . . . . . . 80

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6. Conclusion 91
6.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A. Noise Filtering of the LEM LA-P Series Current Transducer 93

Bibliography 97

xii



1. Introduction

With the advent, in recent years, of cheap microprocessors, power electronics and new,
powerful magnet alloys, the applications for permanent-magnet synchronous motors have
expanded greatly. They are generally considered the benchmark for high power density
and efficiency, and combined with field-oriented control, they have excellent dynamic
performance. As such, they are often the motor of choice in high performance servo
systems, and especially so when the system package has to be compact.

The advantages of field-oriented control has generally caused it to become the de facto
standard control topology in modern servo drives. The pervasiveness of the technology
has led to a surge in interest in eliminating what is perceived as the main drawback of
the classical FOC configuration, namely the requirement of a rotor position or speed
sensor for its reference frame transformations. These sensors add cost and complexity
to the servo system.

For a low-cost motor, the cost of the sensor can represent a nontrivial share of its unit
price. For larger, more expensive motors, the predominant concern is the reliability of
the electrical and mechanical components of the sensor.

Sensorless schemes for PMSM, in which the rotor position is determined without direct
feedback, is an active area of research, but well-documented solutions, primarily based
on back-EMF estimation, already exist for motor speeds typically in excess of 15 % to
20 % of its rated value (Yongdong and Hao 2008). For low-speed operation, which we
will define here as speeds at or below 10 RPM, the low signal-to-noise ratio of the back-
EMF generally make these algorithms unusable. The focus of this thesis is on sensorless
schemes that can estimate the rotor position reliably at low speed to standstill.

Permanent-magnet synchronous motors are broadly classified according to the mounting
method of the permanent magnets. The two prevailing classes are:

• Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM).

• Interior-Mounted Permanent-Magnet Synchronous Motor (IMPMSM).

A schematic of the two classes are shown in Figure 1.1.

Motors of the IMPMSM type are generally better suited for low-speed sensorless control,
in that they have a significant air gap, effectively, that varies with the rotor position. It
is this anisotropic property of the motor that be utilized in low-speed sensorless schemes
to estimate the rotor position. This effect is also present in a SMPMSM due to a

1



1. Introduction

(a) SMPMSM (b) IMPMSM

Figure 1.1.: Schematic of a PMSM. Magnet alloy shown in grey.

directional-dependent saturation of the machine iron by the PM flux, but it is much less
prominent.

In this thesis, we will limit ourselves to working with surface-mounted permanent-magnet
synchronous motors, based on the hypothesis that: If it works for a SMPMSM, it will
work for a IMPMSM.

1.1. Problem Statement

The classical FOC configuration requires a position or speed sensor for its reference
frame transformations. In order to lower cost and increase reliability, this dependency
must be removed.

In order to do without the position or speed sensor, the angular position of the rotor
must be determined by other means. For low-speed operation, the sensorless schemes
based on back-EMF estimation are generally unusable.

New algorithms must be developed, if possible, that allow us to estimate the rotor
position at low speed.

2



2. Space-Vector Model of the
Permanent-Magnet Synchronous Motor

This chapter is dedicated to deriving a mathematical model of a wye-connected, three-
phase permanent-magnet synchronous machine with an isolated neutral for use in motor
control applications. A model of the PMSM in phase quantities of voltage, current and
flux linkage, followed by a conversion to its space-vector representation, will form the
outline of the chapter. Some basic properties of space vectors are included for reference
purposes, and the merits of using a space-vector representation is touched on briefly.

2.1. Three-Phase Machine Equations

Figure 2.1a shows a schematic diagram of a three-phase, one pole-pair SMPMSM. The
stator windings are pictured as coils of a single turn, but it is important to note they are
meant to portray the windings of a generalized machine. The physical stator windings
could be distributed or concentrated, but with the same magnetic axes as the windings
shown in Figure 2.1a.

A simplified diagram is shown in Figure 2.1b with the stator windings schematically
represented as concentrated coils aligned with their respective magnetic axes. Assuming
a symmetric machine, the schematic shown could then also represent a machine with an
arbitrary number of pole-pairs, reduced to its one pole-pair equivalent.

The derivation in this chapter makes the following assumptions:

(1) The machine is symmetric.

(2) The stator winding resistances are constant.

(3) The magnetic system of the machine is linear.

(4) For spatial distributions, only the fundamental component is considered. Harmonics
are disregarded.

(5) The spatial amplitude of the PM flux linkage is constant.

3



2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

(a) Peak location of winding distributions (b) Simplified representation

Figure 2.1.: Schematic of a three-phase, one-pole pair SMPMSM. Magnet alloy shown
in grey.

For the PMSM in Figure 2.1, enumerate the phase windings as a, b and c. The governing
system of equations is then:

va = Rsia +
dΨa
dt

(2.1a)

vb = Rsib +
dΨb
dt

(2.1b)

vc = Rsic +
dΨc
dt

(2.1c)

where:

• va, vb, vc are phase voltages,

• ia, ib, ic are phase currents,

• Ψa, Ψb, Ψc is the magnetic flux linkage with winding a, b and c, respectively,

• Rs is the stator winding resistance.

The total magnetic flux linkage with, for instance, phase a is given by:

Ψa = Ψaa + Ψab + Ψac + Ψaf (2.2)

where:

• Ψaa, Ψab, Ψac is the component of flux linkage induced by current in phase a, b, c,
respectively.

4



2.1. Three-Phase Machine Equations

• Ψaf is the component of flux linkage generated by the magnetic field of the perma-
nent magnets.

The flux linkage components Ψaa, Ψab, Ψac can be expressed in terms of phase currents
as:

Ψaa = Laaia (2.3)

Ψab = Mabib (2.4)

Ψac = Macic (2.5)

where:

• Laa is the self-inductance of phase a,

• Mab is the mutual inductance between phase a and b,

• Mac is the mutual inductance between phase a and c.

Define the self-inductance of phase a as:

Laa , Lσ + LMa (2.6)

where:

• Lσ is the stator winding leakage inductance,

• LMa is the magnetizing inductance of phase a.

Since the difference in magnetic permeability of air and magnet alloy is usually considered
negligible, the SMPMSM effectively has a non-salient rotor and, as a consequence, a near-
uniform air gap. A slight distortion of this air gap occurs, though, as a consequence of
saturation of the stator iron by the PM flux. Saturation has the effect of increasing the
reluctance along the magnetic axis of the PM field, which can be visualized as a localized
increase in the effective air gap, thus introducing rotor-saliency in the SMPMSM. This
is schematically illustrated in Figure 2.2 for the PM field axis aligned and in quadrature
with the magnetic axis of phase a.

For the position of the rotor in Figure 2.2a, the flux linkage with phase a, induced by
current in phase a, should be at a minimum, since the phase is aligned with the path of
maximum reluctance.

Similarly, for the position of the rotor in Figure 2.2b, the flux linkage with phase a,
induced by current in phase a, should be at a maximum, since the phase is aligned with
the path of minimum reluctance.
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2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

(a) Aligned with axis of phase a (b) In quadrature with axis of phase a

Figure 2.2.: Variation of the effective air gap due to saturation of the stator iron along
the PM field axis.

It follows that Ψaa, and thereby Laa, is a periodic function of θr. Neglecting harmonics,
the Fourier series expansion of Laa is then:

Laa = Lσ + LMa = Lσ + LA − LB cos2 θr, LMa = LA − LB cos2 θr (2.7)

where LA, LB are the Fourier coefficients of the partial sum.

Note that:

cos2(x) , cos(2x) (2.8)

Under the assumptions of this section, it can be shown that (Krause, Wasynczuk, and
Sudhoff 2002):

LMaia +Mabia +Macia = 0⇔ LMa +Mab +Mac = 0 (2.9)

Constrained by symmetry, (2.9) is solved by:

Mab = −1

2
LA − LB cos2

(
θr −

π

3

)
(2.10)

Mac = −1

2
LA − LB cos2

(
θr +

π

3

)
(2.11)

Finally, since the PM flux links with phase a at an angle θr, it follows that:

Ψaf = Ψf cos θr (2.12)

6



2.1. Three-Phase Machine Equations

where Ψf is the peak amplitude of the PM flux linkage.

Following the derivation of (2.2)–(2.12) for phase b and c yields:

Ψa = Laaia +Mabib +Macic + Ψf cos θr (2.13)

Ψb = Mabia + Lbbib +Mbcic + Ψf cos

(
θr −

2π

3

)
(2.14)

Ψc = Macia +Mbcib + Lccic + Ψf cos

(
θr +

2π

3

)
(2.15)

Laa = Lσ + LA − LB cos2 θr (2.16)

Lbb = Lσ + LA − LB cos2

(
θr −

2π

3

)
(2.17)

Lcc = Lσ + LA − LB cos2

(
θr +

2π

3

)
(2.18)

Mab = −1

2
LA − LB cos2(θr −

π

3
) (2.19)

Mac = −1

2
LA − LB cos2(θr +

π

3
) (2.20)

Mbc = −1

2
LA − LB cos2 θr (2.21)

The system of (2.1) and (2.13)–(2.21) represents the model of the PMSM in phase
quantities1, which in matrix form is given by:

Vs = RsIs +
dΨs
dt

(2.22)

Ψs = (Lσ1 + LAK − LBΛ)Is + ΨfM (2.23)

where:

Vs =
[
va vb vc

]T
(2.24)

Is =
[
ia ib ic

]T
(2.25)

Ψs =
[
Ψa Ψb Ψc

]T
(2.26)

K =

 1 −1
2 −1

2
−1

2 1 −1
2

−1
2 −1

2 1

 (2.27)

Λ =

 cos2 θr cos2
(
θr − π

3

)
cos2

(
θr + π

3

)
cos2

(
θr − π

3

)
cos2

(
θr − 2π

3

)
cos2 θr

cos2
(
θr + π

3

)
cos2 θr cos2

(
θr + 2π

3

)
 (2.28)

M =

 cos θr
cos
(
θr − 2π

3

)
cos
(
θr + 2π

3

)
 (2.29)

1A full mathematical treatise can be found in Krause, Wasynczuk, and Sudhoff (2002).
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2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

2.2. The Space-Vector Transformation

Define the space-vector transformation as:

k ,
2

3

[
ka(t) + akb(t) + a2kc(t)

]
(2.30)

where {ka(t), kb(t), kc(t)} is a set of related phase quantities and:

a = ej2π/3 = −1

2
+ j

√
3

2
(2.31)

The inverse space-vector transformation is then given by (Kazmierkowski and Tunia
1994):

ka(t) = Re(k) + k0 (2.32a)

kb(t) = Re(a2k) + k0 (2.32b)

kc(t) = Re(ak) + k0 (2.32c)

where:

k0 =
1

3
[ka(t) + kb(t) + kc(t)] (2.33)

Eq. (2.30) can be expressed as:

k =
2

3

(
ka + akb + a2kc

)
=

2

3

ka +

(
−1

2
+ j

√
3

2

)
kb +

(
−1

2
+ j

√
3

2

)2

kc


=

2

3

(
ka −

1

2
kb −

1

2
kc + j

√
3

2
kb − j

√
3

2
kc

)
(2.34)

Therefore, we have:

Re(k) =
2

3

(
ka −

1

2
kb −

1

2
kc

)
(2.35)

Im(k) =
2

3

(√
3

2
kb −

√
3

2
kc

)
(2.36)

Eq. (2.33), (2.35) and (2.36) can then be combined in matrix form as:Re(k)
Im(k)
k0

 =
2

3

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

kakb
kc

 (2.37)
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2.2. The Space-Vector Transformation

(a) Clarke transformation (b) Space-vector transformation

Figure 2.3.: Geometry of the resultant vectors of the Clarke and space-vector transfor-
mations.

Compare (2.37) to the amplitude-invariant Clarke, or αβγ, transformation:

Kαβγ =

kαkβ
kγ

 =
2

3

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

kakb
kc

 (2.38)

Now define:

Kαβ ,

[
kα
kβ

]
(2.39)

It is apparent, then, that the space vector k is simply a complex representation ofKαβ:

k = kα + jkβ (2.40)

In a geometrical sense, k and Kαβ represents the same vector, but where the Clarke
transformation employs a real basis, the space-vector transformation substitutes in the
complex plane, as shown in Figure 2.3.

The space-vector transformation has a simple matrix form, given by:

k =
2

3

(
ka + akb + a2kc

)
=

2

3
AKabc (2.41)

where:

A =
[
1 a a2

]
(2.42)

Kabc =
[
ka kb kc

]T
(2.43)

9



2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

We can then interpret 2
3A as a space-vector operator. Additionally, since:

Re(k) =
2

3

[
Re(ka) + Re(akb) + Re(a2kc)

]
=

2

3

[
ka +

1

2
(akb + a2kb) +

1

2
(a2kc + akc)

]
(2.44)

Im(k) =
2

3

[
Im(ka) + Im(akb) + Im(a2kc)

]
=

2

3

[
1

j2
(akb − a2kb) +

1

j2
(a2kc − akc)

]
(2.45)

we have:

k = Re(k)− j Im(k)

=
2

3

[
ka +

1

2
(akb + a2kb) +

1

2
(a2kc + akc)

− 1

2
(akb − a2kb)−

1

2
(a2kc − akc)

]
=

2

3

(
ka + a2kb + akc

)
(2.46)

where k and k are complex conjugates.

2.3. Conversion to Space-Vector Form

Recall the model of the PMSM in phase quantities:

Vs = RsIs +
dΨs
dt

(2.22 revisited)

Ψs = (Lσ1 + LAK − LBΛ)Is + ΨfM (2.23 revisited)

Applying the space-vector operator:

2

3
AVs = Rs

2

3
AIs +

2

3
A

dΨs
dt

(2.47)

2

3
AΨs = Lσ

2

3
AIs + LA

2

3
AKIs − LB

2

3
AΛIs + Ψf

2

3
AM (2.48)

Converting (2.47) is trivial using the definition of the space-vector transformation:

2

3
AVs = Rs

2

3
AIs +

2

3
A

dΨs
dt
⇔ (2.49)

vs = Rsis +
dΨs

dt
(2.50)

10



2.3. Conversion to Space-Vector Form

where vs, is and Ψs are space vectors for phase voltages, currents and flux linkages,
respectively.

Converting (2.48) requires expansion of its terms:

LA
2

3
AKIs = LA

2

3

[
1 a a2

]  1 −1
2 −1

2
−1

2 1 −1
2

−1
2 −1

2 1

iaib
ic


=

3

2
LA

2

3
(ia + aib + a2ic)

=
3

2
LAis (2.51)

LB
2

3
AΛIs = LB

2

3

[
1 a a2

]
·

 cos2 θr cos2
(
θr − π

3

)
cos2

(
θr + π

3

)
cos2

(
θr − π

3

)
cos2

(
θr − 2π

3

)
cos2 θr

cos2
(
θr + π

3

)
cos2 θr cos2

(
θr + 2π

3

)
iaib

ic


=

3

2
LB

2

3
(ia + a2ib + aic)e

j2θr

=
3

2
LBise

j2θr (2.52)

Ψf
2

3
AM = Ψf

2

3

[
1 a a2

]  cos θr
cos
(
θr − 2π

3

)
cos
(
θr + 2π

3

)


= Ψfe
jθr (2.53)

Substituting (2.51)–(2.53) in (2.48), we have:

Ψs =

(
Lσ +

3

2
LA

)
is −

3

2
LBise

j2θr + Ψfe
jθr (2.54)

Define:

L1 , Lσ +
3

2
LA (2.55)

L2 ,
3

2
LB (2.56)

The space-vector representation of the PMSM model is thus given by:

vs = Rsis +
dΨs

dt
(2.57)

Ψs = L1is − L2ise
j2θr + Ψfe

jθr (2.58)
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2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

Figure 2.4.: Cartesian coordinates of the space vector k in a stationary and rotating
reference frame with angular velocity ωr.

2.3.1. Relationship to d-q Model

Under the reference frame transformation:

k(r) = kd + jkq = ke−jθr ⇔ k = k(r)ejθr (2.59)

where k(r) is k as seen from the rotating frame of reference of the rotor, illustrated in
Figure 2.4, (2.57) and (2.58) become:

v
(r)
s ejθr = Rsi

(r)
s ejθr +

d

dt

(
Ψ

(r)
s ejθr

)
(2.60)

Ψ
(r)
s ejθr = L1i

(r)
s ejθr − L2i

(r)
s ejθrej2θr + Ψfe

jθr (2.61)

m

v
(r)
s = Rsi

(r)
s +

dΨ
(r)
s

dt
+ jωrΨ

(r)
s (2.62)

Ψ
(r)
s = L1i

(r)
s − L2i

(r)
s + Ψf (2.63)

where ωr is the electrical angular velocity of the rotor.

We have further, assuming L1 and L2 does not vary in time, substituting (2.63) in
(2.62):

v
(r)
s = Rsi

(r)
s +

d

dt

(
L1i

(r)
s − L2i

(r)
s + Ψf

)
+ jωr

(
L1i

(r)
s − L2i

(r)
s + Ψf

)

= Rsi
(r)
s + L1

di
(r)
s

dt
− L2

di
(r)
s

dt
+ jωrL1i

(r)
s − jωrL2i

(r)
s + jωrΨf (2.64)

12



2.3. Conversion to Space-Vector Form

The Cartesian form of (2.64) is given by:

vd + jvq = Rs(id + jiq) + L1
d

dt
(id + jiq)− L2

d

dt
(id − jiq)

+ jωrL1(id + jiq)− jωrL2(id − jiq) + jωrΨf (2.65)

Separating the real and imaginary parts of (2.65), we have:

vd = Rsid + (L1 − L2)
did
dt
− ωr(L1 + L2)iq (2.66)

vq = Rsiq + (L1 + L2)
diq
dt

+ ωr(L1 − L2)id + ωrΨf (2.67)

With:

Ld , L1 − L2 (2.68)

Lq , L1 + L2 (2.69)

Eq. (2.66) and (2.67) become:

vd = Rsid + Ld
did
dt
− ωrLqiq (2.70)

vq = Rsiq + Lq
diq
dt

+ ωrLdid + ωrΨf (2.71)

Eq. (2.70) and (2.71) represent the now-widely utilized d-q model of the PMSM. See,
for instance, Harnefors and Nee (1998), Mobarakeh, Meibody-Taba, and Sargos (2000),
and Morimoto et al. (2001).

Additionally, from (2.68) and (2.69), we have:

L1 =
Ld + Lq

2
(2.72)

L2 =
Lq − Ld

2
(2.73)

2.3.2. Utility of a Complex Representation

One might ask as to why represent the PMSM model in terms of complex-valued space
vectors instead of, for instance, the real-valued components of the Clarke transform?

For one thing, when interpreted as vectors in the complex plane, complex numbers
provide a compact and, arguably, very convenient form for manipulating the geometry

13



2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

(a) s1 = A cos(ω1t)
= 1

2A
(
e−jω1t + ejω1t

) (b) s2 = Ae−jω1t (c) s3 = Aejω1t

Figure 2.5.: Examples of magnitude plots of the Fourier transform of real- and complex-
valued signals.

Figure 2.6.: Frequency shifting of the complex signal s2 = Ae−jω1t.

of vectors. Compare, for instance, the rotation operator in terms of complex and linear
algebra2:

R(θ) = ejθ︸ ︷︷ ︸
Complex algebra

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
︸ ︷︷ ︸

Linear algebra

(2.74)

The processing of complex-valued signals is also a very well-developed and rich field. The
Fourier transform and its discrete counterpart, one of the cornerstones of modern signal
processing, is defined for both real- and complex-valued signals. As illustrated with the
examples of Figure 2.5, the Fourier transform of a complex signal is not constrained
by symmetry. Components at positive frequencies are distinct from those at negative
frequencies.

An interesting property of working with complex signals is the ease at which frequency
shifting is handled. Multiplying a complex signal by ejωst shifts the magnitude plot of
its Fourier transform by ωs. If we were interested in determining the amplitude of, for
instance, the signal in Figure 2.5b, we could shift it by ωs = ω1:

s2e
jω1t = Ae−jω1tejω1t = Aej(−ω1+ω1)t = Ae0t = A (2.75)

2RV rotates the point given by the column vector V ∈ R2.
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2.4. Electromechanical Torque

Which leaves us with a DC component, as illustrated in Figure 2.6, that is directly
proportional to the amplitude A of the signal.

2.4. Electromechanical Torque

The instantaneous power supplied to the PMSM is given by:

P (t) = vaia + vbib + vcic (2.76)

Using the definition in (2.30), it can be readily verified by algebraic expansion that space
vectors have the general property:

3

2
Re
(
k1k2

)
+ 3k10k20 = k1ak2a + k1bk2b + k1ck2c (2.77)

Thus:

P (t) =
3

2
Re
(
vsis

)
+ 3v0i0 (2.78)

Since the isolated neutral of the PMSM forms the constraint i0 = 0, (2.78) reduces to:

P (t) =
3

2
Re
(
vsis

)
=

3

2
Re

(
v
(r)
s ejθr i

(r)
s ejθr

)
=

3

2
Re

(
v
(r)
s i

(r)
s

)
(2.79)

Substituting (2.62) in (2.79), we have:

P (t) =
3

2
Re

[(
Rsi

(r)
s +

dΨ
(r)
s

dt
+ jωrΨ

(r)
s

)
i
(r)
s

]

=
3

2
Re

(
Rs|i(r)s |2 +

dΨ
(r)
s

dt
i
(r)
s + jωrΨ

(r)
s i

(r)
s

)
(2.80)

The number of ways to derive an expression for the electromechanical torque produced
are many and can vary a great deal in terms of complexity3. We will derive it qualitatively
from (2.80) using a few key observations:

• The PMSM model has:

– A single loss mechanism in terms of power dissipated in the stator winding
resistance. Denote it Pres.

– A single storage mechanism in terms of power supplied to change the energy
stored in the magnetic field of the stator. Denote it Pmag.

3See, for instance, Vas (1992).
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2. Space-Vector Model of the Permanent-Magnet Synchronous Motor

• The electromechanical power supplied by the motor, denote it Pe, is directly pro-
portional to its angular velocity.

Since energy is a conserved quantity, it follows that:

P (t) = Pres + Pmag + Pe (2.81)

Based on our observations, we can then decompose (2.80) as:

Pres =
3

2
Rs|i(r)s |2 (2.82)

Pmag =
3

2
Re

(
dΨ

(r)
s

dt
i
(r)
s

)
(2.83)

Pe =
3

2
Re

(
jωrΨ

(r)
s i

(r)
s

)
(2.84)

The electromechanical torque produced by the PMSM, denote it Te, is then given by:

Pe = ωmechTe =
ωr
npp

Te ⇔ (2.85)

Te =
npp
ωr

Pe =
3

2

npp
ωr

Re

(
jωrΨ

(r)
s i

(r)
s

)
= −3

2
npp Im

(
Ψ

(r)
s i

(r)
s

)
(2.86)

where:

• ωmech is the mechanical angular velocity of the rotor,

• npp is the number of pole pairs of the PMSM.

Substituting (2.63) in (2.86):

Te = −3

2
npp Im

[(
L1i

(r)
s − L2i

(r)
s + Ψf

)
i
(r)
s

]
= −3

2
npp Im

(
L1|i(r)s |2 − L2i

(r)
s

2

+ Ψf i
(r)
s

)
=

3

2
nppL2 Im

(
i
(r)
s

2
)

︸ ︷︷ ︸
Reluctance torque

+
3

2
nppΨf Im

(
i
(r)
s

)
︸ ︷︷ ︸
Interaction torque

(2.87)

Recall that L2 and Ψf represent the peak spatial amplitude of inductance and PM flux
linkage, respectively. With no spatial variance in inductance, L2 = 0, and no PM field,
Ψf = 0, the PMSM would develop no reluctance- or interaction torque4, respectively.
Since L2 and Ψf appear as a factors in the terms of (2.87), the reluctance and interaction
torque components are readily separated, as shown.

4Torque produced by the interaction of the rotor field and winding current.
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3. Hardware Platform

The measurement results presented in this thesis are from experiments performed on the
hardware platform that is schematically illustrated in Figure 3.1 and implemented with
the products listed in Table 3.1. Motor parameters are given in Table 3.2.

The PMSM is fed from a standard IGBT voltage source inverter with phase currents ia,
ib and ic and DC-link voltage VDC measured by isolated current and voltage transducers,
respectively. A single-pole RC anti-aliasing filter with cut-off frequency fc filters these
signals and a digital signal processor samples them at a frequency fs, calculates vs

according to its control algorithm and determines, using space-vector modulation, the
duty cycles da, db and dc required to synthesize it.

d′a = 1− da (3.1a)

d′b = 1− db (3.1b)

d′c = 1− dc (3.1c)

The IGBT gate drivers protect against shoot-through by implementing a dead time TDT.
The parameters for the hardware platform are listed in Table 3.3.

A schematic of the interconnection of the VSI and the wye-connected motor is shown in
Figure 3.2. We have thus:

va = van (3.2a)

vb = vbn (3.2b)

vc = vcn (3.2c)

Product Vendor Model

Voltage source inverter Danfoss VLT AutomationDrive FC302
Voltage transducer LEM LV 25-P
Current transducer LEM LA 100-P
Digital signal processor Texas Instruments TMS320F28335
SMPMSM Siemens 1FT6084
SMPMSM SEM HR92C4-64S

Table 3.1.: Hardware platform implementation.
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3. Hardware Platform

Figure 3.1.: Schematic of hardware platform.

Parameter Symbol Value (Siemens) Value (SEM) Unit

Rated power Pn 9.42 0.47 kW
Rated speed nn 4500 2850 RPM
Rated torque Tn 20 1.58 N m
Rated current In 19.5 2.9 A
Stator winding resistance Rs 0.18 2.35 Ω
Direct-axis inductance Ld 2.0 10.0 mH
Quadrature-axis inductance Lq 2.2 15.4 mH
PM flux linkage Ψf 0.123 0.132 Wb
No. of pole pairs npp 4 2 ·

Table 3.2.: Motor parameters.
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Parameter Symbol Value Unit

Filter frequency fc 20 kHz
Switching frequency fs 10 kHz
Inverter dead time TDT 4 µs
Quantization step size Q 15.8 mA/LSB

Table 3.3.: Hardware platform parameters.

Figure 3.2.: Interconnection of VSI and wye-connected motor.
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3. Hardware Platform

Further, we have that:

vaN = van + vnN (3.3a)

vbN = vbn + vnN (3.3b)

vcN = vcn + vnN (3.3c)

Applying the space-vector transformation:

vpN = vaN + avbN + a2vcN

= van + vnN + a (vbn + vnN ) + a2 (vcn + vnN )

=
(
van + avbn + a2vcn

)
+
(
vnN + avnN + a2vnN

)
= van + avbn + a2vcn

= vs (3.4)

since:

c+ ac+ a2c = 0, c ∈ R (3.5)

From (3.4), we see that, even though we do not directly control the phase voltages
va, vb and vc, it does not matter since the space vectors vpN and vs can be used
interchangeably.

3.1. Inverter Voltage Error

Figure 3.3 shows a schematic of a single leg of the inverter and its voltage waveforms
for ip > 0 and ip < 0. The schematic includes the capacitance of the IGBT and any
snubber as a lumped element. For the case of ip > 0, at:

t1: gL goes low and the leg enters dead time. DL continues to conduct.
t2: gU goes high and TU starts conducting, which rapidly charges the lower capaci-

tance through the DC-link.
t3: gU goes low and the leg enters dead time again. Now ip must switch from TU to

DL, but DL cannot be forward-biased until the lower capacitance is discharged.
ip instead flows through the capacitances and vpN is determined by how quickly
the load current can charge/discharge the upper/lower capacitance.

t4: gL goes high and TL starts conducting, which rapidly charges the upper capaci-
tance through the DC-link.

During the dead time, vpN is thus determined by the load current. If ip is large in
magnitude, the magnitude of the average voltage error introduced by the dead time over
a switching period Ts is approximately TDT

Ts
VDC.

20



3.1. Inverter Voltage Error

(a) Single leg (b) Switching waveforms

Figure 3.3.: Low-side voltage of a single inverter leg.
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3. Hardware Platform

Figure 3.4.: Configuration for measuring the inverter voltage error.

3.1.1. Measuring the Voltage Error

Consider the configuration in Figure 3.4, where two phases of the PMSM is connected
between two legs of the VSI. For a DC current IDC, we have:

〈V1〉 = 2RsIDC + 〈V2〉 (3.6)

where 〈V1〉 and 〈V2〉 are the average values of V1 and V2, respectively.

The inverter voltage error can then be characterized offline with the procedure:

1. Fix the duty cycle of the left leg.

2. Adjust the duty cycle of the right leg until IDC is at its target value.

3. Measure 〈V1〉 with the DC-link voltage transducer1.

4. Iterate as required.

1The bandwidth of the sensor is not a concern since it just has to pass the DC-component of V1 at
unity gain.

22



3.1. Inverter Voltage Error
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Figure 3.5.: Map of the inverter voltage error for a selection of duty cycles.

3.1.2. Measurement Results

If we define the voltage error as:

〈V1〉err = 〈V1〉∗ − 〈V1〉 (3.7)

where 〈V1〉∗ is the reference value of V1.

Figure 3.5 shows the result of automating the procedure of Section 3.1.1 for the Siemens
motor. For currents below approximately 1 A, the inverter has the property that its
voltage error is directly proportional to the load current. In this current range, the
inverter effectively acts as a voltage source with a large internal resistance. The slope of
〈V1〉err gives it a value of approximately 17.5 Ω.
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4. High-Frequency Voltage Injection

Recall the space-vector representation of the PMSM model:

vs = Rsis +
dΨs

dt
(2.57 revisited)

Ψs = L1is − L2ise
j2θr + Ψfe

jθr (2.58 revisited)

Substituting (2.58) in (2.57), we have:

vs = Rsis +
d

dt

(
L1is − L2ise

j2θr + Ψfe
jθr
)

= Rsis +
d

dt
(L1is)−

d

dt

(
L2is

)
ej2θr︸ ︷︷ ︸

(1)

− j2ωrL2ise
j2θr︸ ︷︷ ︸

(2)

+ jωrΨfe
jθr︸ ︷︷ ︸

(3)

(4.1)

If we are interested in determining the angular position θr of the rotor without direct
feedback, the terms (1), (2) and (3) in (4.1) are of particular interest. For low-speed
operation, the terms (2) and (3) present us a problem, though, since they are directly
proportional to the angular velocity of the rotor ωr. We can then assume, if we are
interested in continued operation down to zero angular velocity, that the signal-to-noise
ratio of estimating θr from terms (2) and (3) will, at some point, become too low to yield
valid results. We are then left with term (1) as our basis for robustly estimating θr when
operating from low speed to standstill. The dependence of term (1) on L2 suggests that
it is the spatial variation in inductance, introduced by the magnetic field of the rotor,
that allows us to estimate its angular position.

For low-speed operation, we will consider terms (2) and (3) in (4.1) to be of negligible
magnitude due to their scaling by ωr. L2 is also generally small in magnitude for a
SMPMSM. We can then instead work with the low-speed model:

vs = Rsis︸︷︷︸
(1)

+
d

dt
(L1is)︸ ︷︷ ︸
(2)

− d

dt

(
L2is

)
ej2θr︸ ︷︷ ︸

(3)

(4.2)
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4. High-Frequency Voltage Injection

4.1. High-Frequency Model

With the low-speed model (4.2) in hand, it becomes a question of how to extract θr from
it. A useful strategy relies on a further simplification:

Let us make sure that terms (2) and (3) in (4.2) are large in magnitude compared to
term (1). Consider the case of:

vs = vc = Vce
j(ωct+φm) (4.3)

where φm is the possible phase shift introduced by modulation1.

For pulse-width modulation, the fundamental is delayed by half a switching period.
Assuming use of a digital control system, we can additionally factor in the update delay
of its output, which we will consider to be limited to one sample period. For synchronous
sampling, we have then:

Ts/2 + Ts
Tc

=
φm
2π
⇔ φm = 3π

Ts
Tc

= 3π
fc
fs

(4.4)

where:

• Tc and fc is the period and frequency of vc, respectively.

• Ts and fs is the switching period and frequency, respectively.

If we were to make vc rotate with a very high frequency ωc, intuitively, we would
expect the machine to respond with a very high-frequency current ic. We should thus
be able to make the sum of terms (2) and (3) in (4.2) approximately equal the applied
voltage vc by assuring that ωc is sufficiently high in value. How high exactly depends
on machine parameters, but for now we will simply consider term (1) in (4.2) to be of
negligible magnitude. The effect of the stator winding resistance Rs will be treated in
Section 4.4.

By injecting the high-frequency voltage vc, (4.2) then simplifies to the high-frequency
model:

vc =
d

dt
(L1ic)− d

dt

(
L2ic

)
ej2θr (4.5)

The subscript c refers to carrier, which stems from a telecommunications viewpoint
that a voltage carrier signal vc is modulated by the machine itself and measured as the
current ic.

Eq. (4.5) gives us a simplified model to work with, but it does not directly allow us any
way to extract θr. Thankfully, (4.5) is a relatively simple differential equation to solve,

1The phase shift of, for instance, an anti-aliasing filter, if significant, should be included in φm.
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4.1. High-Frequency Model

so we do have the means to determine the current response to an applied high-frequency
voltage. Note that the following derivation applies whether L1 and L2 are constant or
vary in time.

Define:

Ψsi , L1ic + L2ice
j2θr (4.6)

Since θr varies very slowly at low speed, we will consider the variable to be constant in
time, so we have: ∫

vc dt =
Vc
jωc

ej(ωct+φm) = Ψsi + C (4.7)

where C is a constant of integration.

We can further express (4.6) as:

Ψsi = L1ic + L2ice
j2θr

= L1(iα + jiβ) + L2(iα − jiβ)
[
Re
(
ej2θr

)
+ j Im

(
ej2θr

)]
=
[
L1 − L2 Re

(
ej2θr

)]
iα − L2 Im

(
ej2θr

)
iβ

− jL2 Im
(
ej2θr

)
iα + j

[
L1 + L2 Re

(
ej2θr

)]
iβ (4.8)

Separating the real and imaginary parts of (4.8), we have:

Re(Ψsi) =
1

2

(
Ψsi + Ψsi

)
=
[
L1 − L2 Re

(
ej2θr

)]
iα − L2 Im

(
ej2θr

)
iβ

=

[
L1 −

L2

2

(
ej2θr + e−j2θr

)]
iα −

L2

2

(
ej2θr − e−j2θr

)
iβ (4.9)

Im(Ψsi) =
1

j2

(
Ψsi −Ψsi

)
= −L2 Im

(
ej2θr

)
iα +

[
L1 + L2 Re

(
ej2θr

)]
iβ

= −L2

2

(
ej2θr − e−j2θr

)
iα +

[
L1 +

L2

2

(
ej2θr + e−j2θr

)]
iβ (4.10)

The system of (4.9) and (4.10) is solved in terms of iα and iβ by:

iα =
1

2

1

L2
1 − L2

2

(
L1Ψsi + L2Ψsie

j2θr + L1Ψsi + L2Ψsie
−j2θr

)
(4.11)

iβ =
1

j2

1

L2
1 − L2

2

(
L1Ψsi + L2Ψsie

j2θr − L1Ψsi − L2Ψsie
−j2θr

)
(4.12)
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4. High-Frequency Voltage Injection

(a) Magnitude spectrum of ic (b) Magnitude spectrum of ice
jωct

Figure 4.1.: Signal processing of current response ic to voltage vc.

We have then:

ic = iα + jiβ

=
1

2

1

L2
1 − L2

2

(
L1Ψsi + L2Ψsie

j2θr + L1Ψsi + L2Ψsie
−j2θr

)
+

1

2

1

L2
1 − L2

2

(
L1Ψsi + L2Ψsie

j2θr − L1Ψsi − L2Ψsie
−j2θr

)
=

1

L2
1 − L2

2

(
L1Ψsi + L2Ψsie

j2θr
)

(4.13)

Substituting (4.7) in (4.13) with C = 0:

ic =
1

L2
1 − L2

2

[
L1

(
Vc
jωc

ej(ωct+φm)

)
+ L2

Vc
jωc

ej(ωct+φm)ej2θr
]

=
Vc

jωc(L2
1 − L2

2)

[
L1e

j(ωct+φm) − L2e
j(−ωct−φm+2θr)

]
(4.14)

With (4.14) we have determined the current response ic to the applied high-frequency
voltage vc. We see that the complex signal ic has frequency components at −ωc and ωc,
which is illustrated in Figure 4.1a.

If the objective is to extract θr, the component at −ωc is of particular interest. We
are specifically interested in determining the phase of this component. Shifting the
magnitude spectrum of ic by ωc:

28



4.2. Four-Quadrant Estimation of Rotor Position

ice
jωct =

Vc
jωc(L2

1 − L2
2)

[
L1e

j(ωct+φm) − L2e
j(−ωct−φm+2θr)

]
ejωct

=
Vc

jωc(L2
1 − L2

2)

[
L1e

j(2ωct+φm) − L2e
j(−φm+2θr)

]
(4.15)

we are left with frequency components at DC and 2ωc, which is illustrated in Figure 4.1b.
The component at DC encodes θr in its phase and is readily separated with a linear low-
pass filter:

LPF
(
ice

jωct
)

= − VcL2

jωc(L2
1 − L2

2)
ej(−φm+2θr) = j

VcL2

ωc(L2
1 − L2

2)
ej(−φm+2θr) (4.16)

We have then:

arg

[
LPF

(
ice

jωct
)]

= −φm + 2θr + 90◦ ⇔ (4.17)

θr =
1

2

(
arg

[
LPF

(
ice

jωct
)]

+ φm − 90◦
)

(4.18)

where arg gives the principal value with range [−180◦; 180◦]2.

4.2. Four-Quadrant Estimation of Rotor Position

From (4.18), we see that:

θr ∈ [−135◦ +
1

2
φm; 45◦ +

1

2
φm] (4.19)

Which gives θr a two-quadrant span of 180◦. We can interpret this as the ability of
the algorithm to estimate the position of the magnetic axis of the rotor but not the
polarity of its field. Consider, for instance, the example given in Figure 4.2: It is the
spatial variation in inductance, produced by saturation of the stator iron by the PM
flux, that provides us with information on the angular position of the rotor. Since the
PM flux saturates the stator iron equally in Figures 4.2a and 4.2b, we have no basis for
determining the polarity of the PM field. This poses a problem, since θr at a time t and
t+ δt might give opposite directions for the PM field, which, in the case of FOC, would
case the torque control loop to reverse in direction.

The ambiguity of θr is illustrated in Figure 4.3. In order to avoid a reversal of polarity,
we must somehow extend the range of tracking to all four quadrants. Let θ4qr denote a
version capable of four-quadrant operation.

2A complex number z = a + jb is commonly stored in Cartesian form in computer memory with
arg(z) = atan2(b, a). The return value of atan2 in, for instance, the C and C++ standard libraries is
the principal value with range [−π;π].
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4. High-Frequency Voltage Injection

(a) θr = 0◦ (b) θr = 180◦

Figure 4.2.: Examples of magnetically identical systems in terms of saturation of the
stator iron by the PM flux.

Figure 4.3.: Example of how θr tracks the magnetic axis of the PM field but not its
polarity.
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4.3. Polarity Detection of PM Field

Figure 4.4.: Subdivision of the range of θ4qr into 180◦ sectors I and II.

θr is limited by (4.19), but if we keep track of its state from sample to sample, we
can detect any large difference in value of θr(t) and θr(t − Ts). If we subdivide the
plane as shown in Figure 4.4, such a signal would indicate a change of sector for θ4qr . If
|θr(t)− θr(t− Ts)| > 90◦, it would be highly unlikely for the actual position of the rotor,
from one sample to the next, to have changed by more than 90◦. Such a change would
require a very low sampling frequency and/or a very high angular rotor velocity.

With this in mind, Algorithm 1 implements a very simple state machine to monitor
sector transitions and calculate θ4qr accordingly, thus effectively extending the range of
tracking to all four quadrants. It does, however, require a choice of sector to initialize
with, since the estimation algorithm has no intrinsic knowledge of the polarity of the
PM field.

4.3. Polarity Detection of PM Field

With an initial estimate from (4.18) of the angular position of the PM field axis, denote
it θ̂r, a relatively simple strategy to determine its polarity relies on purposefully driving
the iron of the machine into deep saturation.

Consider the example shown in Figure 4.5: Voltage pulses are sequenced in diametrically
opposite directions on the estimated rotor axis. Since the machine is already partially
saturated along this path by the PM flux, driving current in the same direction as the
PM field can fully saturate the machine, thus decreasing its inductance significantly (Lu
et al. 2010). However, driving current in the opposite direction of the PM field can
bring the machine fully out of saturation, thus increasing its inductance. Assuming the
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4. High-Frequency Voltage Injection

Algorithm 1 Calculate the four-quadrant angular position of the rotor

Require: Initialize sector to the correct PM field polarity
Ensure: Four-quadrant position is given by θ4qr

1: if |θr(t)− θr(t− Ts)| > 90◦ then
2: if sector = I then
3: sector← II
4: else
5: sector← I
6: end if
7: end if
8: if sector = I then
9: θ4qr (t) = θr(t)

10: else
11: θ4qr (t) = θr(t) + 180◦

12: end if

resulting current pulses are large enough in magnitude to impact the saturation level of
the machine3, their peak magnitudes should show a significant difference (Holtz 2008),
as illustrated in Figure 4.6. Whichever current pulse has the largest peak magnitude
corresponds to the voltage pulse with the same direction as the PM field.

Combining the estimate θ̂r, the state machine to determine θ̂4qr , polarity detection and
a FOC topology yields the algorithm shown in Figure 4.7. The lower section depicts the
estimation part, which ultimate goal is to determine θ̂4qr in order of:

1. Calculate an estimate θ̂r from (4.18).

2. If uninitialized, detect field polarity by voltage pulse injection. Skip otherwise.

3. Process Algorithm 1 to determine θ̂4qr .

The top section is a standard FOC topology with a few alterations to accommodate the
high-frequency voltage injection:

• A low-pass filter separates the fundamental machine current if from the high-
frequency carrier signal.

• The high-frequency voltage vc is added to the fundamental component vf .

• The bandwidth of the current controller must be below the frequency of vc.

3Current magnitudes several times the rated value of the machine are commonly used. Care should be
taken not to surpass the demagnetization current of the permanent magnets.
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4.3. Polarity Detection of PM Field

(a) v1 = |v1|ejθ̂r (b) v2 = −v1 = |v1|ej(θ̂r+180◦)

Figure 4.5.: Injection of voltage pulses on estimated rotor axis.

Figure 4.6.: Current response to injection of voltage pulses on estimated rotor axis as
shown in Figure 4.5.
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4. High-Frequency Voltage Injection

Figure 4.7.: Complete topology of the high-frequency voltage injection algorithm.

4.4. Effect of Stator Winding Resistance

If we are to evaluate the effect the stator resistance has on the current response iRc
4 to an

applied high-frequency voltage vc, we must, instead of the high-frequency model (4.5),
work directly with the low-speed model (4.2):

vc = Vce
j(ωct+φm) = Rsi

R
c +

d

dt

(
L1i

R
c

)
− d

dt

(
L2iRc

)
ej2θr (4.20)

Under the assumption that L1, L2 and θr are constant in time, (4.20) can be expressed
in Cartesian form as:

Vc cos(ωct+ φm) = Rsi
R
α + [L1 − cos(2θr)L2]

diRα
dt
− sin(2θr)L2

diRβ
dt

(4.21)

Vc sin(ωct+ φm) = Rsi
R
β + [L1 + cos(2θr)L2]

diRβ
dt
− sin(2θr)L2

diRα
dt

(4.22)

Eq. (4.21) and (4.22) is a system of coupled linear differential equations that, while
solvable, is very cumbersome. Its general solution is extensive and is better suited for

4The superscript R is to remind us that iRc is a solution to a system that takes into account the effect of
stator resistance. Not to be confused with the superscript (r), which denotes a rotor-fixed reference
frame.
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4.4. Effect of Stator Winding Resistance

the algorithmic engine of a computer algebra system. Its steady-state, zero-state solution
is thus given here in complex form without proof5:

iRc = κ
[
z1e

j(ωct+φm) + z2e
j(−ωct−φm+2θr)

]
(4.23)

where:

κ =
Vc[

R2
s + ω2

c (L1 + L2)2
][
R2
s + ω2

c (L1 − L2)2
] (4.24)

z1 = R3
s +Rsω

2
cL

2
1 +Rsω

2
cL

2
2 + j

(
L1L

2
2ω

3
c − ω3

cL
3
1 − ωcL1R

2
s

)
(4.25)

z2 = ωcL2

[
2ωcL1Rs + j(ω2

cL
2
1 − ω2

cL
2
2 −R2

s)

]
(4.26)

Substituting (4.23) in (4.20) verifies it as a solution, and it is worth noting that (4.23)
reduces to (4.14) for Rs = 0.

As in Section 4.1, the current iRc is frequency shifted and low-pass filtered:

LPF
(
iRc e

jωct
)

= κz2e
j(−φm+2θr) (4.27)

Since κ ∈ R, z2 ∈ C, we have:

arg

[
LPF

(
iRc e

jωct
)]

= −φm + 2θr + arg(z2) (4.28)

Let us instead express (4.28) as:

arg

[
LPF

(
iRc e

jωct
)]

= −φm + 2θr + 90◦ − 2φR (4.29)

where:

φR =
1

2

[
90◦ − arg(z2)

]
(4.30)

From (4.29), we have:

θr − φR =
1

2

(
arg

[
LPF

(
iRc e

jωct
)]

+ φm − 90◦
)

(4.31)

Compare (4.31) to (4.18):

θr =
1

2

(
arg

[
LPF(ice

jωct)

]
+ φm − 90◦

)
(4.18 revisited)

5A Maple v17.00 worksheet detailing the solution is included as Supplement 1.
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4. High-Frequency Voltage Injection

We see, then, that the effect of stator winding resistance is to introduce an estimation
error φR.

Increasing L2 in (4.26) decreases Im(z2), decreasing arg(z2), which in turn increases φR.
For a SMPMSM, a saliency ratio above Lq/Ld = 3/2 is somewhat atypical, so we will
use this as a worst-case condition. For a selection of injection frequencies fc and machine
inductances Lq, Figure 4.8 then shows plots of φR as a function of stator resistance Rs.

For a machine with Rs < 5 Ω, an injection frequency of fc = 500 Hz or above is recom-
mended if φR is to remain uncompensated. Adding a nominal value of φR to (4.31) can
reduce the estimation error significantly but naturally requires knowledge of machine
parameters.

In general, (4.30) should be used to characterize φR for the machine in question.

4.5. Measurement Results

The results of Section 3.1.2 showed that the inverter has a linear range of operation
below approximately 1 A, where the inverter voltage error is well-modeled as the voltage
drop across an additional resistance in series with the stator winding resistance. As a
way to validate the results of this chapter, we will initially run the inverter in its linear
range as to minimize the impact of the inverter voltage error. Additionally, for the
results presented in this section, no load current if is present in the machine.

4.5.1. Linear Inverter Range

Operating the inverter in its linear range has the consequence of effectively increasing
the stator winding resistance Rs to approximately 17.5 Ω. Since the effect of resistance
is to introduce an estimation error φR, we should expect φR to increase accordingly. For
a selection of injection frequencies fc, Figure 4.9 shows a plot of φR as a function of
stator resistance Rs for the Siemens motor specifications listed in Table 3.2.

Recall the solution to the low-speed model (4.20):

iRc = κ
[
z1e

j(ωct+φm) + z2e
j(−ωct−φm+2θr)

]
(4.23 revisited)

For Rs = 17.5 Ω, Vc = 20 V, fc = 100 Hz, we have:

κ|z1| = 1.14 A, κ|z2| = 4.08 mA

For Rs = 17.5 Ω, Vc = 20 V, fc = 500 Hz, we have:

κ|z1| = 1.07 A, κ|z2| = 18.0 mA
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Figure 4.8.: Example plots of estimation error φR for a selection of injection frequencies
fc = 2πωc and machine inductances Ld = 2

3Lq.
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Figure 4.9.: Estimation error φR for the Siemens motor for a selection of injection fre-
quencies fc = 2πωc.

Injecting vc = 20ej(2π500t) V thus narrowly keeps the inverter in its linear range while
increasing the amplitude κ|z2| of the component required for estimation of θr. Figure 4.10
shows a measurement of the three-phase current response and the DFT of its equivalent
current space vector ic. Note that the currents are measured with a quantization step
size of 488 µA/LSB. Measuring a component with an amplitude of 18.0 mA with a
quantization step size of 15.8 mA/LSB would not be feasible due to the quantization
noise it introduces.

As seen in Figure 4.10, the components at 500 Hz and −500 Hz have amplitudes of
approximately 0 dBA = 1 A and −35 dBA = 17.8 mA, respectively.

Define the angular position estimation error as:

θ̃r , θr − θ̂4qr (4.32)

Processing the current ic according to Figure 4.7 yields the estimate θ̂4qr and estimation
error θ̃r shown in Figure 4.12. Angles are wrapped to the range [−π;π] with:

θwrap = θ − 2π

⌊
θ + π

2π

⌋
(4.33)

For the low-pass filter, a fourth-order Chebyshev Type II filter was used with a stop-band
frequency of 100 Hz and 40 dB attenuation6. Figure 4.11 shows the gain spectrum and
impulse response of the LPF. As seen, any transient state of the filter will have decayed

6The digital IIR filter is implemented as a cascade configuration of biquadratic sections to minimize
the effects of filter coefficient quantization.
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(b) DFT of current space vector ic, 2.5 Hz/bin

Figure 4.10.: Measured current response for Vc = 20 V, fc = 500 Hz.
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4. High-Frequency Voltage Injection

fully after approximately 60 ms, though, the bandwidth of the filter is generally not a
critical design parameter. The output of the filter does continuously vary in phase as a
function of the angular position of the rotor, which might make one consider how the
transient performance of the filter affects the position estimate. For low-speed operation,
though, the phase changes so slowly that the LPF is effectively always in steady state
regardless of filter bandwidth.

Since the only objective of the LPF is to isolate the DC component, the choice of
LPF type is also not critical. The Chebyshev Type II filter was only chosen here since
its design method allows specifying the order, stop-band frequency and attenuation
directly7, which is useful for prototyping digital filters for a range of applications. An
equivalent FIR design would be much more efficient if, for instance, the current is to be
downsampled before filtering takes place.

As shown in Figure 4.12, the estimation error is approximately in the range [−12◦; 12◦]
around a mean of 72◦, as predicted by Figure 4.9. Although this result is of little practical
use, due to the large estimation bias and restriction on inverter current range, it does
verify the derivation that lead to its prediction.

4.5.2. Nonlinear Inverter Range

For Rs = 0.18 Ω, Vc = 30 V, fc = 500 Hz, we have:

κ|z1| = 4.56 A, κ|z2| = 217 mA (4.34)

Figure 4.13 and Figure 4.14 shows the three-phase current response and DFT of the
equivalent current space vector without and with compensation enabled for the inverter
voltage error, respectively. As seen, for both cases, the nonlinearity of the inverter adds
significant distortion in the 100 Hz filter bandwidth of the component at −500 Hz.

Figure 4.15 shows the tracking performance for both cases, and, as shown, there is
little to no correlation between the measured angular position of the rotor θr and the
estimate θ̂4qr . Decreasing the bandwidth of the LPF gives similar results, which means
the inverter voltage error must, for both cases, contain a component at −500 Hz that
is significant enough in magnitude to completely distort the phase of the component
present in Figure 4.10b.

4.5.3. Spectrum of Current Response to Inverter Voltage Error

If we decompose the output voltage of the inverter vs into a command, or reference,
voltage v∗s and an error component ṽs, we have:

vs = v∗s + ṽs (4.35)

7MATLAB v8.1 with the DSP System Toolbox v8.4 was utilized for digital filter design.
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Figure 4.11.: Gain spectrum and impulse response of fourth-order Chebyshev Type II
filter with a stop-band frequency of 100 Hz and 40 dB attenuation.
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Figure 4.12.: Measured tracking performance for Vc = 20 V, fc = 500 Hz. Inverter in its
linear range.
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(b) DFT of current space vector ic, 2.5 Hz/bin

Figure 4.13.: Measured current response for Vc = 30 V, fc = 500 Hz.
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(b) DFT of current space vector ic, 2.5 Hz/bin

Figure 4.14.: Measured current response for Vc = 5 V, fc = 500 Hz with compensation
for the inverter voltage error enabled.
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Figure 4.15.: Measured tracking performance without and with compensation enabled
for the inverter voltage error. Inverter in its nonlinear range.
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4. High-Frequency Voltage Injection

Assuming a linear system, the machine will respond with a current:

is = i∗s + ĩs (4.36)

where i∗s and ĩs are the individual current responses to v∗s and ṽs, respectively.

If we let v∗s = Vce
jωct, where ωc is high enough in value for the high-frequency model

(4.5) to be a valid approximation, we have:

i∗s =
Vc

jωc(L2
1 − L2

2)

[
L1e

j(ωct+φm) − L2e
j(−ωct−φm+2θr)

]
(4.37)

The amplitude of the component of i∗s at −ωc can be increased by increasing either Vc
or L2. For the example in Section 4.5.2, Vc is already large enough in magnitude to
yield a significant torque-producing current, and L2, a measure of the effective saliency
of the machine, is determined solely by the configuration of the machine itself. The
limits, it would seem, have, for the Siemens motor, been reached in an effort to make
the estimation of θr function outside the linear range of the inverter.

It would be interesting to be able to answer the question of what, exactly, determines
the frequency component of ĩs at −ωc? With that knowledge, the circumstances that
would allow the estimation of θr to function outside the linear range of the inverter,
could be found. This amounts to analytically determining the spectrum of ĩs, which
foremost requires an analytical expression for ṽs. From Section 3.1.2 we know that such
an expression would have to be a nonlinear function of both v∗s and is:

ṽs = ṽs(v
∗
s , is) (4.38)

Determining its current response ĩs, a solution to (4.5), would be the next step. If it
exists, its Fourier series would then analytically give its spectrum.

If possible, such an analysis would represent in and of itself a significant body of work.
We will merely conclude here that the sensitivity of the method presented in this chapter
to distortion from the inverter voltage error is something to be aware of, especially for
machines with very low saliency ratios, as the Siemens motor tested here. It should
be noted that the Siemens machine is built as a high-performance servo motor, and
as such, its type of construction is not typically found among standard industrial AC
motors. If the sole objective is to reduce the unit price of the motor, it will typically be
built with less iron, which tends to enhance its anisotropic properties due to magnetic
saturation. Kim and Sul (1994), Xiang and He (2007), and Jianmin and Jianwei (2011)
present positive results for machines with higher saliency ratios and/or, presumably,
more effective compensation of the inverter voltage error.
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4.6. Summary

4.6. Summary

In this chapter, an algorithm to estimate the angular position of the rotor of a SMPMSM,
based on its anisotropic magnetic properties, was developed in the framework of space-
vectors.

By injecting a balanced set of high-frequency voltages into the machine, signal processing
of its current response reveals information about the angular position of the magnetic
axis of the PM field, and thereby the angular position of the rotor itself. Tracking the po-
larity of the PM field requires additional processing, for which a method was developed.
Additionally, the effect of stator winding resistance was analytically determined and was
found to result in an estimation error of the rotor position, which can be significant for
low-inductance machines.

The estimation algorithm was tested on the Siemens servo motor with the specifications
listed in Table 3.2. For a current range that keeps the inverter voltage error linear, the
measurement results validated the estimation algorithm to within ±10◦. Driving the
machine outside this current range, however, which can easily occur while loaded, would
cause the algorithm to fail to track the rotor position. This can be seen as an effect
of the very low saliency ratio of the Siemens motor and/or poor compensation of the
inverter voltage error. The method has been verified in the referenced works to function
accurately for machines with higher saliency ratios.
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5. Voltage Pulse Injection

The measurement results of Chapter 4 showed an example of where very accurate com-
pensation of the inverter voltage error was necessary. In general, the high-frequency
injection methods, that estimate the angular position of the rotor by frequency-domain
signal processing, require some form of compensation of the voltage error introduced by
the inverter (Holtz 2008). This typically requires off-line characterization of the inverter
in use, which ties the user of the estimation algorithm to a specific hardware platform
and configuration. In an effort to remove this dependency, this chapter will present
methods that specifically take into account the effects of the inverter voltage error. In
contrast to the method introduced in Chapter 4 and its variants, the methods of this
chapter are time-domain based.

5.1. Clamping the Voltage Injection Angle

As an example, assume that we want to inject a voltage vs with arg(vs) = 0◦, which
makes vs purely real:

vs = vα + jvβ = vα, vβ = 0 (5.1)

The equations for SVM synthesis of vs are given by:

da =
1

2
+

3

4

vα
VDC

(5.2a)

db =
1

2
− 3

4

vα
VDC

(5.2b)

dc =
1

2
− 3

4

vα
VDC

(5.2c)

The duty cycle values (5.2) then ideally produce the reference voltages:

〈vaN 〉 = v∗aN = daVDC =
1

2
VDC +

3

4
vα (5.3a)

〈vbN 〉 = v∗bN = dbVDC =
1

2
VDC −

3

4
vα (5.3b)

〈vcN 〉 = v∗cN = dcVDC =
1

2
VDC −

3

4
vα (5.3c)
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Applying the space-vector transformation:

vs =
2

3

[
〈vaN 〉+ a〈vbN 〉+ a2〈vcN 〉

]
=

2

3

(
v∗aN + av∗bN + a2v∗cN

)
=

2

3

[
1

2
VDC +

3

4
vα + a

(
1

2
VDC −

3

4
vα

)
+ a2

(
1

2
VDC −

3

4
vα

)]
=

1

2
vα − a

1

2
vα − a2 1

2
vα

= vα (5.4)

Due to the nonideal characteristics of the inverter, the output voltage of each leg will
include an error component ṽpN that is a function of its duty cycle and current:

〈vaN 〉 = v∗aN + ṽaN (da, ia) (5.5a)

〈vbN 〉 = v∗bN + ṽbN (db, ib) (5.5b)

〈vcN 〉 = v∗cN + ṽcN (dc, ic) (5.5c)

where:

|ṽpN | .
TDT

Ts
VDC (5.6)

Applying the space-vector transformation again:

vs =
2

3

[
〈vaN 〉+ a〈vbN 〉+ a2〈vcN 〉

]
=

2

3

[
v∗aN + ṽaN + a (v∗bN + ṽbN ) + a2 (v∗cN + ṽcN )

]
=

2

3

(
v∗aN + av∗bN + a2v∗cN

)
+

2

3

(
ṽaN + aṽbN + a2ṽcN

)
= vα + ṽs (5.7)

where:

ṽs =
2

3

(
ṽaN + aṽbN + a2ṽcN

)
(5.8)

For this example, the error component ṽaN affects only the magnitude of vs, but ṽbN
and ṽcN affects its angle. Depending on the magnitude of vα, since TDT

Ts
VDC can be a

significant fraction of VDC, ṽs can indeed greatly affect the angle of vs, especially for
opposite polarities of ṽbN and ṽcN .
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5.1. Clamping the Voltage Injection Angle

Consider again synthesizing vs = vα, but instead of (5.2), we use the duty cycle values:

da =
3

2

vα
VDC

(5.9a)

db = 0 (5.9b)

dc = 0 (5.9c)

The reference voltages are then:

v∗aN = daVDC =
3

2
vα (5.10a)

v∗bN = dbVDC = 0 V (5.10b)

v∗cN = dcVDC = 0 V (5.10c)

And again we have:

vs =
2

3

[
〈vaN 〉+ a〈vbN 〉+ a2〈vcN 〉

]
=

2

3

(
v∗aN + av∗bN + a2v∗cN

)
+

2

3

(
ṽaN + aṽbN + a2ṽcN

)
= vα + ṽs (5.11)

For ia > 0, ib > 0, ic < 0, Figure 5.1 shows the output voltages of the inverter for both
cases (5.2) and (5.10). What is important to note is that, by not switching legs b and
c, we are effectively clamping ṽbN and ṽcN to −VD and VT , respectively. Since typically
VD � VDC, VT � VDC, we can consider ṽbN and ṽcN to be negligible in magnitude, so
we have:

vs = vα +
2

3
ṽaN (5.12)

Thus, by using (5.10) instead of (5.2), we are effectively clamping the voltage injection
angle to the axis of phase a. Since we could just as well have constructed the example
for phase b or c, we conclude that there are exactly three voltage vectors we can inject,
aligned with the phase axes, where the injection angle is accurately controlled, despite
the voltage error introduced by the inverter. This requires, however, that we use a
switching pattern as shown in Figure 5.1b instead of the de facto standard symmetrical
SVM shown in Figure 5.1a.
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5. Voltage Pulse Injection

(a) Symmetrical SVM (b) Single-leg switching

Figure 5.1.: Schematic of inverter output voltages for the synthesis of vs = vα.

5.2. The INFORM Method

The estimation algorithm presented here is based on the ’INdirect Flux detection by
On-line Reactance Measurement’ method, first published by Schroedl (1992). The name
stems from the framework within the method was originally developed, but here we will
instead present it in the framework of space vectors and with an emphasis on controlling
the influence of the inverter voltage error.

Recall the low-speed model:

vs = Rsis +
d

dt
(L1is)−

d

dt

(
L2is

)
ej2θr (4.2 revisited)

Eq. (4.2) can be expressed as:

vs = Rsis︸︷︷︸
(1)

+
dL1

dt
is︸ ︷︷ ︸

(2)

+L1
dis
dt︸ ︷︷ ︸

(3)

− dL2

dt
ise

j2θr︸ ︷︷ ︸
(4)

−L2
dis
dt
ej2θr︸ ︷︷ ︸

(5)

(5.13)

A step change in applied voltage vs must be balanced by terms (1)-(5) in (5.13). For
vs � is, terms (1), (2) and (4) are typically small in magnitude relative to terms (3)
and (5). Rs does not scale is significantly in term (1) and changes in L1 and L2 do not
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5.2. The INFORM Method

typically occur abruptly in time unless the machine is being driven into deep saturation.
We can then work with the simplified model:

vs = L1
dis
dt
− L2

dis
dt
ej2θr (5.14)

Solving (5.14) for dis
dt follows the same derivation as led to (4.13). We have then:

dis
dt

=
1

L2
1 − L2

2

(
L1vs + L2vse

j2θr
)

(5.15)

Approximating (5.15) with a finite difference, we have:

∆is
∆t

=
1

L2
1 − L2

2

(
L1vs + L2vse

j2θr
)
⇔ (5.16)

∆is =
1

L2
1 − L2

2

(
L1vs + L2vse

j2θr
)

∆t

=
(
c1vs + c2vse

j2θr
)

∆t (5.17)

where:

c1 =
L1

L2
1 − L2

2

(5.18)

c2 =
L2

L2
1 − L2

2

(5.19)

Section 5.1 showed that we can accurately control the injection angle, if not magnitude,
of vs as an average over a switching period:

vs =
2

3

[
〈vaN 〉+ a〈vbN 〉+ a2〈vcN 〉

]
(5.20)

Consider now instead the instantaneous voltage:

vs(t) =
2

3

[
vaN (t) + avbN (t) + a2vcN (t)

]
(5.21)

For the example shown in Figure 5.2, for t ∈ [t1; t2], we have:

vs(t) ≈
2

3

[
VDC + a (0 V) + a2 (0 V)

]
=

2

3
VDC (5.22)

Thus, for the three, phase-aligned voltage vectors, if we are able to do interperiod sam-
pling, we can accurately control not only the angle, but also the magnitude of the injected
voltage.
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5. Voltage Pulse Injection

Figure 5.2.: Single-leg switching with vs(t) ≈ VDC, t1 ≤ t ≤ t2.

Figure 5.3.: Sequential injection of the three, phase-aligned voltage vectors with inter-
period sampling.
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5.2. The INFORM Method

If we sequentially inject the three, phase-aligned voltage vectors, as shown in Figure 5.3
with n ∈ N+, we have:

vs(t) = vA =
2

3
VDC, t1 ≤ t ≤ t2 (5.23a)

vs(t) = vB =
2

3
VDCa, t3 ≤ t ≤ t4 (5.23b)

vs(t) = vC =
2

3
VDCa2, t5 ≤ t ≤ t6 (5.23c)

The current response to (5.23) is then given by:

∆iA =
(
c1vA + c2vAe

j2θr
)

∆t

=
2

3
VDC

(
c1 + c2e

j2θr
)

∆t (5.24a)

∆iB =
(
c1vB + c2vBe

j2θr
)

∆t

=
2

3
VDC

(
c1a + c2a

2ej2θr
)

∆t (5.24b)

∆iC =
(
c1vC + c2vCe

j2θr
)

∆t

=
2

3
VDC

(
c1a

2 + c2ae
j2θr
)

∆t (5.24c)

Now define:

Γ , ∆iA + a∆iB + a2∆iC (5.25)

Substituting (5.24) in (5.25), we have:

Γ = ∆iA + a∆iB + a2∆iC

=
2

3
VDC

(
c1 + c2e

j2θr
)

∆t

+ a
2

3
VDC

(
c1a + c2a

2ej2θr
)

∆t

+ a2 2

3
VDC

(
c1a

2 + c2ae
j2θr
)

∆t

=
2

3
VDC

(
c1 + c1a + c1a

2 + 3c2e
j2θr
)

∆t

= 2VDCc2∆te
j2θr (5.26)

Finally, we can thus estimate θr with:

θr =
1

2
arg Γ (5.27)

As in Section 4.2, Algorithm 1 extends the tracking range of (5.27) to four quadrants.
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5. Voltage Pulse Injection

Figure 5.4.: Time division of voltage pulse. Figure 5.5.: Quantization angle.

5.2.1. Interperiod Sampling

Figure 5.4 shows an example of the output voltage and current of a single inverter leg
divided into time slices. For:

t1 ≤ t < t2: The inverter is in dead time with its output voltage determined by the
load current.

t2 ≤ t < t3: The inverter is in a well-defined state with vpN ≈ VDC and constant current
slope. t3 marks the end of the transient response of any prefilter, if present.

t3 ≤ t < t4: The current increment vectors ∆iA, ∆iB and ∆iC can be accurately sam-
pled.

We have:

TDT = t2 − t1 (5.28)

Define also:

Tf , t3 − t2 (5.29)

Taq , t4 − t3 (5.30)

For the prefilter, it is important that it, while in steady state, does not alter the current
slope. The steady-state error of the ramp response of, for instance, a single-pole, resistor-
capacitor filter, with resistance R and capacitance C, is constant in time. After a period
of two time constants τRC = RC, the transient response of a RC-filter has decayed to
approximately 13.5 %. Using this as a criteria to fix t3 in time, we have, for a RC-filter:

Tf = 2τRC (5.31)
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5.2. The INFORM Method

We can determine Taq by considering the magnitude of Γ:

|Γ| = 2VDCc2∆t = 2VDCc2Taq (5.32)

Let Q be the quantization step size of the sampling system. Define then:

q ,
2

3
Q (5.33)

Consider now the space vector k shown in Figure 5.5, which we will regard as quantized.
Due to quantization, any sampled space vector can exist only at discrete points in the
complex plane. For k in Figure 5.5, its neighbouring quantization points are also shown.
Connecting these with a circle with radius q, we can, for the quantization angle, determine
its upper bound φq:

tanφq =
q

|k|
(5.34)

If we assume quantization to be the dominant source of measurement error, we have
then:

tanφq =
q

|Γ|
=

q

2VDCc2Taq
⇔ (5.35)

Taq =
q

2VDCc2 tanφq
=

Q

3VDCc2 tanφq
(5.36)

A lower bound on the required duty cycle dp for interperiod sampling is then given by:

dp =
TDT + Tf + Taq

nTs
(5.37)

5.2.2. Estimation Rate

As shown in Figure 5.6, the INFORM method produces an estimate θ̂r by periodically as-
suming control of the machine and sequencing the three, phase-aligned voltage vectors in
order to determine the current increments ∆iA, ∆iB and ∆iC. Since the average voltage
over an INFORM period is approximately zero, the method presents little disturbance
to the current loop of, for instance, field-oriented control.

Updates of θ̂r arrive then with a period Tu. If we require that:

|θr(t)− θr(t− Tu)| < θu, θu > 0 (5.38)

We must then have:

Tu <
θu

max |ωr|
(5.39)
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5. Voltage Pulse Injection

Figure 5.6.: Timing pattern of INFORM periods.

The estimation rate fu is thus constrained by:

fu >
max |ωr|

θu
(5.40)

Combining again the estimate θ̂r, the state machine to determine θ̂4qr , polarity detection
and a FOC topology yields the algorithm shown in Figure 5.7. θ̂4qr is determined in order
of:

1. Calculate an estimate θ̂r from (5.27).

2. If uninitialized, detect field polarity by voltage pulse injection as shown in Sec-
tion 4.3. Skip otherwise.

3. Process Algorithm 1 to determine θ̂4qr .

Note that the INFORM method requires no filters and therefore introduces no phase lag
into the FOC loop.

5.2.3. Effect of Magnetic Saturation

In (5.24) we assumed that c1 and c2 did not vary between sampling of ∆iA, ∆iB and
∆iC. In practice, however, we must allow for the possibility that c1 and c2 vary as a
function of the current path followed when sequencing vA, vB and vC, as shown in
Figure 5.8. We could thus have slightly different values for c1 and c2 between sampling
of current increments:

∆iA =
(
c1AvA + c2AvAe

j2θr
)

∆t (5.41a)

∆iB =
(
c1BvB + c2BvBe

j2θr
)

∆t (5.41b)

∆iC =
(
c1CvC + c2CvCe

j2θr
)

∆t (5.41c)
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5.2. The INFORM Method

Figure 5.7.: Complete topology of the INFORM algorithm.

Figure 5.8.: Current path for sequenc-
ing vA, vB and vC.

Figure 5.9.: Locus of Γ for a linear mag-
netic system.
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5. Voltage Pulse Injection

Figure 5.10.: The effect of magnetic saturation on the locus of Γ.

We have then instead:

Γ =
2

3
VDC∆t

(
c1A + c1Ba + c1Ca2

)
+ 2VDC∆t (c2A + c2B + c2C) ej2θr

= Γ1 + Γ2 (5.42)

where:

Γ1 =
2

3
VDC∆t

(
c1A + c1Ba + c1Ca2

)
(5.43)

Γ2 = 2VDC∆t (c2A + c2B + c2C) ej2θr (5.44)

For a linear magnetic system, we have Γ1 = 0, but in practice, the components of Γ1

may not exactly sum to zero.

Figure 5.9 shows the locus of Γ for a linear magnetic system as θr traverses 180◦. In
Figure 5.10, we again show the locus of Γ, but for the case where it is offset by Γ1 and
scaled by different magnitudes of Γ2. In practice, |Γ1| and |Γ2| would vary with θr, so
the locus of Γ would not be perfectly circular, as depicted. Consider instead Figure 5.10
to be a simple schematic meant to show how the saliency ratio of the machine can
mitigate the effect of magnetic saturation. As seen, since Γ2 is scaled by L2, a higher
saliency ratio can lessen the impact Γ1 has on arg Γ.

This result is of limited practical use, though, since bounds on the magnitudes of Γ1 and
Γ2 are not easily predicted without detailed knowledge of the construction and geometry
of the machine in use. Suffice it to say that as the saliency ratio tends to unity, arg Γ,
and thereby the estimate θ̂r, will be determined not by the actual rotor position θr, but
by arg Γ1 instead.
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5.2. The INFORM Method

c1 477 H−1

c2 22.7 H−1

Q 15.8 mA/LSB
φq 1 deg
TDT 4 µs
Tf 15.9 µs
Taq 23.6 µs
dp 43.5 %
fu 500 Hz

Table 5.1.: Parameters for the INFORM method (Siemens motor).

5.2.4. Measurement Results, Siemens Motor

For the Siemens motor, Table 5.1 shows the relevant parameters for the INFORM
method. The estimation rate fu is set to 500 Hz in order to gauge the performance
of the estimation algorithm during motor transients. This rate is naturally much higher
than would be required for low-speed operation.

Figure 5.11: With no load, the motor is manually turned slowly through a mechanical
revolution and Γ is sampled at 5◦ intervals. The figure shows the locus of Γ and
the tracking performance of the INFORM algorithm. As seen, the estimation error
θ̃r is approximately in the range [−15◦; 15◦].

Figure 5.12: Same test as with Figure 5.11, but with a bias current of 10ej0
◦
A, approx-

imately one third of its rated value, present while the motor is turned through a
mechanical revolution. The figure shows the measured effect that saturation has
on the locus of Γ and the resulting degradation of the tracking performance of the
INFORM algorithm. Varying the angle of the bias current gives similar results.

Table 5.1 gives an insight into why the Siemens motor is also ill-suited for sensorless
control based on the INFORM algorithm. The relative magnitudes of c1 and c2 determine
how great an impact saturation can have on the locus of Γ. If c1 is much larger in value
than c2, the small relative differences between c1A, c1B and c1C can potentially produce
a vector Γ1 that is large in magnitude compared to Γ2. For the Siemens motor, the
offset produced by Γ1 is considerable, as shown in Figure 5.12, even at a relatively low
current level for the machine.

As the algorithm fails to track the rotor position under these static conditions, we con-
clude that dynamic load testing of the Siemens motor is not possible using the INFORM
method presented here.
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Figure 5.11.: Locus of Γ and resulting tracking performance. No load (INFORM,
Siemens motor).
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Figure 5.12.: Locus of Γ and resulting tracking performance. Bias current of 10ej0
◦
A

(INFORM, Siemens motor).
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5. Voltage Pulse Injection

c1 82.5 H−1

c2 17.5 H−1

Q 15.8 mA/LSB
φq 1 deg
TDT 4 µs
Tf 15.9 µs
Taq 30.5 µs
dp 50.5 %
fu 500 Hz

Table 5.2.: Parameters for the INFORM method (SEM motor).

5.2.5. Measurement Results, SEM Motor

For the SEM motor, Table 5.2 shows the relevant parameters for the INFORM method.

Figure 5.13: As with the Siemens motor, with no load, the motor is manually turned
slowly through a mechanical revolution and Γ is sampled at 5◦ intervals. The figure
shows the locus of Γ and the tracking performance of the INFORM algorithm.
As seen, the estimation error θ̃r is again in the range [−15◦; 15◦], although the
algorithm performs slightly better here than with the Siemens motor.

Figure 5.14: Same test as with Figure 5.13, but with a bias current of 1.5ej0
◦
A, approx-

imately one third of its rated value, present while the motor is turned through a
mechanical revolution. In contrast to the Siemens motor, the locus of Γ is here
hardly affected by the bias current, and the estimation error θ̃r remains in the
range [−15◦; 15◦]. Varying the angle of the bias current gives similar results. As
seen from Table 5.2, for the SEM motor, the difference between c1 and c2 is also
significantly lower than for the Siemens motor.

Figures 5.15 and 5.16: These figures show the tracking performance of the INFORM
algorithm at no load under field-oriented control1 with a constant velocity refer-
ence. Note that the load current peaks are samples from the INFORM periods and
are not seen by the FOC loop. The tracking performance at 2 RPM and 50 RPM
is similar and is seemingly more accurate than with the static tests of Figures 5.13
and 5.14, but note that only a fraction of a mechanical revolution is traversed in
Figures 5.15 and 5.16.

1Current control in the FOC loop is implemented, without decoupling, with a pair of proportional-
integral controllers for the direct and quadrature current components, respectively. An outer PI loop
forms the necessary cascade configuration for velocity control. All controllers are heuristically tuned
with the Ziegler-Nichols method for quarter-wave decay.
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5.3. Sector Estimation

Figures 5.17 and 5.18: From 125 RPM to 175 RPM, the tracking performance of the
INFORM algorithm degrades significantly. Recall that the derivation of the IN-
FORM method is based on the low-speed model (4.2). As the name implies, the
model is only a valid approximation at low speed, and at some point we should
expect the neglected terms of (4.1) to influence the current response. Predict-
ing the extent of this influence would require a general solution of (4.1), which
mathematically poses a significantly more difficult problem. We will here, for the
SEM motor, consider 125 RPM to be an adequate speed margin for the INFORM
algorithm to function correctly.

Figure 5.19: This figure shows the tracking performance during the transient state of re-
versing the velocity of the motor. As seen, for a peak load current of approximately
2 A, the transient has little impact on the estimation error θ̃r of the INFORM al-
gorithm.

Figure 5.20: For a load current of approximately 2.5 A, the estimation error θ̃r begins
to show the effect of magnetic saturation. For a load current between 2.5 A and
4 A, approximately the rated current of the SEM motor, the estimation error is in
the range [−25◦; 25◦].

Figure 5.21: Shifting the load current above the rated current of the SEM motor by
approximately 1 A degrades the tracking performance of the INFORM algorithm
significantly.

As the measurement results show, compared to that of the Siemens motor, the load
current generally affects the tracking performance of the INFORM algorithm to a much
lesser extent for the SEM motor, which can be seen as an effect of the large difference
in saliency ratios of the motors.

5.3. Sector Estimation

With the INFORM method and interperiod sampling, we have an algorithm that can
estimate the angular position of the rotor and is robust to the inverter voltage error. Its
accuracy, however, is affected by load current, as shown in Section 5.2.5.

Here we will present a new algorithm that makes use of the same fundamentals as the
INFORM method, but is not affected by magnetic saturation, and does not require
interperiod sampling.

Consider again the current increment:

∆is =
(
c1vs + c2vse

j2θr
)

∆t (5.17 revisited)
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Figure 5.13.: Locus of Γ and resulting tracking performance. No load (INFORM, SEM
motor).
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Figure 5.14.: Locus of Γ and resulting tracking performance. Bias current of 1.5ej0
◦
A

(INFORM, SEM motor).
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Figure 5.15.: Tracking performance under FOC. Reference velocity of 2 RPM (INFORM,
SEM motor).
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Figure 5.16.: Tracking performance under FOC. Reference velocity of 50 RPM (IN-
FORM, SEM motor).
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Figure 5.17.: Tracking performance under FOC. Reference velocity of 125 RPM (IN-
FORM, SEM motor).
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Figure 5.18.: Tracking performance under FOC. Reference velocity of 175 RPM (IN-
FORM, SEM motor).
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Figure 5.19.: Tracking performance under FOC. Step change in reference velocity of
100 RPM to −100 RPM (INFORM, SEM motor).
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Figure 5.20.: Tracking performance under FOC. Reference velocity of 10 RPM. Load
current of approximately 2.5 A (INFORM, SEM motor).
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Figure 5.21.: Tracking performance under FOC. Reference velocity of 10 RPM. Load
current of approximately 5 A (INFORM, SEM motor).
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5.3. Sector Estimation

(a) Reference frame (v) (b) Quadrants of (v)

Figure 5.22.: Reference frame of injected voltage vs.

If we have:

vs = Vse
jθv (5.45)

Then under the reference frame transformation:

k(v) = ke−jθv ⇔ k = k(v)ejθv (5.46)

where k(v) is k as seen from the reference frame of the injected voltage, (5.17) becomes:

∆i
(v)
s ejθv =

(
c1v

(v)
s ejθv + c2v

(v)
s ejθvej2θr

)
∆t

=
(
c1Vse

jθv + c2Vse
−jθvej2θr

)
∆t⇔ (5.47)

∆i
(v)
s = Vs∆t

(
c1 + c2e

j2(θr−θv)
)

= Vs∆t
(
c1 + c2e

j2θ̃v
)

(5.48)

where:

θ̃v = θr − θv (5.49)

Eq. (5.49) is illustrated with an example in Figure 5.22a. For the quadrants of reference
frame (v), shown in Figure 5.22b, we have then:
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5. Voltage Pulse Injection

Figure 5.23.: Sequential injection of the three, phase-aligned voltage vectors with sample
period nTs.

θ̃v ∈ I⇒ arg ∆i
(v)
s > 0 (5.50a)

θ̃v ∈ II⇒ arg ∆i
(v)
s < 0 (5.50b)

θ̃v ∈ III⇒ arg ∆i
(v)
s > 0 (5.50c)

θ̃v ∈ IV⇒ arg ∆i
(v)
s < 0 (5.50d)

From the sign of arg ∆i
(v)
s , we can thus determine if the axis of the rotor is in quadrants

I,III or II,IV relative to the injection angle θv.

Note that the sign of arg ∆i
(v)
s depends only on the rotor position θr and injection angle

θv, and not c1, c2 and Vs. As per Section 5.1, θv is something we can accurately control
without the need for interperiod sampling.

If we now sequentially inject the three, phase-aligned voltage vectors, as shown in Fig-
ure 5.23, we have:
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5.3. Sector Estimation

vs = vA =
2

3
(v∗aN + ṽaN ) , t1 ≤ t < t2 (5.51a)

vs = vB =
2

3
(v∗bN + ṽbN ) a, t2 ≤ t < t3 (5.51b)

vs = vC =
2

3
(v∗cN + ṽcN ) a2, t3 ≤ t < t4 (5.51c)

The current response to (5.51) is then given by:

∆i
(a)
A = |vA|Ts

(
c1 + c2e

j2θr
)

(5.52)

∆i
(b)
B = |vB|Ts

(
c1 + c2e

j2(θr−120◦)
)

(5.53)

∆i
(c)
C = |vC|Ts

(
c1 + c2e

j2(θr+120◦)
)

(5.54)

where (a), (b) and (c) are reference frames aligned with the phase axes.

If we let:

v∗pN = v∗aN = v∗bN = v∗cN = dpVDC (5.55)

We have:

v∗pN + ṽpN ' dpVDC −
TDT

Ts
VDC =

(
dp −

TDT

Ts

)
VDC (5.56)

And for:

k = Vs∆tc2e
j2θ̃v

=
(
v∗pN + ṽpN

)
nTsc2e

j2θ̃v

=

(
dp −

TDT

Ts

)
VDCnTsc2e

j2θ̃v (5.57)

We can then again determine dp from a constraint on the quantization angle:

tanφq =
q

|k|
=

q(
dp − TDT

Ts

)
VDCnTsc2

⇔ (5.58)

dp =
q

VDCnTsc2 tanφq
+
TDT

Ts

=
2

3

Q

VDCnTsc2 tanφq
+
TDT

Ts
(5.59)

Figure 5.24 shows the result of overlaying the quadrants of reference frames (a), (b) and
(c). As seen, this effectively divides the plane into twelve, 30◦ sectors. If we now let θr
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5. Voltage Pulse Injection

Figure 5.24.: Superposition of quadrants of reference frames (a), (b) and (c).

θr in sector Nom. angle [deg] sgn
(

arg ∆i
(a)
A

)
sgn

(
arg ∆i

(b)
B

)
sgn

(
arg ∆i

(c)
C

)
1 15 1 1 −1
2 45 1 −1 −1
3 75 1 −1 1

4 105 −1 −1 1
5 135 −1 1 1
6 165 −1 1 −1

7 −165 1 1 −1
8 −135 1 −1 −1
9 −105 1 −1 1

10 −75 −1 −1 1
11 −45 −1 1 1
12 −15 −1 1 −1

Table 5.3.: Sequence of signs of the current increment angles as θr traverses 360◦.
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5.3. Sector Estimation

Figure 5.25.: Complete topology of the sector estimation algorithm.

traverse 360◦ in this plane, we can record the signs of arg ∆i
(a)
A , arg ∆i

(b)
B and arg ∆i

(c)
C

as θr moves between sectors. Table 5.3 shows the result along with nominal angles for
the sectors.

As seen in Table 5.3, as θr traverses 360◦, a pattern emerges with a period of six sectors,

or 180◦, and within these six sectors the combination of signs of arg ∆i
(a)
A , arg ∆i

(b)
B

and arg ∆i
(c)
C is unique. As expected, the combination only allows us to determine the

position of the magnetic axis of the rotor. If the pattern did not repeat itself every 180◦,
we would be able to determine the polarity of the PM field as well.

Combining yet again the estimate θ̂r, the state machine to determine θ̂4qr , polarity detec-
tion and a FOC topology yields the algorithm shown in Figure 5.25. θ̂4qr is determined
in order of:

1. Resolve the sector of θr from the combination of signs of the current increment
angles2. The nominal angle of the sector gives an estimate θ̂r with a maximum
estimation error of ±15◦.

2. If uninitialized, detect field polarity by voltage pulse injection as shown in Sec-
tion 4.3. Skip otherwise.

2The process of determining the sector from the combination of the current increment angles can be
conveniently implemented as a simple lookup table.
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5. Voltage Pulse Injection

c1 477 H−1

c2 22.7 H−1

Q 15.8 mA/LSB
φq 1 deg
TDT 4 µs
nTs 100 µs
dp 51.1 %
fu 500 Hz

Table 5.4.: Parameters for sector esti-
mation (Siemens motor).

c1 82.5 H−1

c2 17.5 H−1

Q 15.8 mA/LSB
φq 1 deg
TDT 4 µs
nTs 100 µs
dp 65.1 %
fu 500 Hz

Table 5.5.: Parameters for sector esti-
mation (SEM motor).

3. Process Algorithm 1 to determine θ̂4qr .

As with the INFORM method, sector estimation requires no filters.

5.3.1. Measurement Results, Siemens Motor

For the Siemens motor, Table 5.4 shows the relevant parameters for sector estimation.

From Figure 5.24 and Table 5.3, we have that, if θr starts out in a sector and moves

counterclockwise, the current increments arg ∆i
(a)
A , arg ∆i

(b)
B and arg ∆i

(c)
C changes sign

in sequence and is separated, ideally, by 30◦. This is the basis for the sector estimation
algorithm.

Figure 5.26 shows arg ∆i
(a)
A , arg ∆i

(b)
B and arg ∆i

(c)
C as the Siemens motor is manually

turned slowly through a mechanical revolution. As seen from the figure, the zero cross-

ings of arg ∆i
(a)
A , arg ∆i

(b)
B and arg ∆i

(c)
C have no clear sequence or angular separation

and thus cannot provide the required signals for estimating the sector of θr.

In general, we must conclude that, for its spatial variation in inductance, the Siemens
servo motor does not posses the fundamental component required for the sensorless
schemes presented here to function.

5.3.2. Measurement Results, SEM Motor

For the SEM motor, Table 5.5 shows the relevant parameters for sector estimation.

Figure 5.27 shows arg ∆i
(a)
A , arg ∆i

(b)
B and arg ∆i

(c)
C as the SEM motor is manually turned

slowly through a mechanical revolution. Compared to that of the Siemens motor, the
profile for the SEM motor shows both the proper sequence of zero crossings and clear
angular separation between them.
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Figure 5.26.: Angle of current increments as θr traverses 360◦ mechanical (Siemens mo-
tor).
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Figure 5.27.: Angle of current increments as θr traverses 360◦ mechanical (SEM motor).
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5. Voltage Pulse Injection

Figures 5.28 and 5.29: The tracking performance of the sector estimation algorithm
under field-oriented control is similar at 2 RPM and 50 RPM. The estimation error
θ̃r is generally in the range [−20◦; 20◦]. This is outside the range of [−15◦; 15◦]
predicted for an ideal machine, but we must allow for the possibility that, in
practice, the machine is not perfectly symmetrical.

Figures 5.30 and 5.31: As is the case for the INFORM algorithm, from 125 RPM to
175 RPM, the tracking performance of the sector estimation algorithm degrades
significantly.

Figures 5.32–5.34 : For the velocity reversal transient and both the 2.5 A and 5 A load
currents, the tracking performance of the sector estimation algorithm is unaffected.
Compared to the INFORM algorithm, this could be a significant advantage.
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Figure 5.28.: Tracking performance under FOC. Reference velocity of 2 RPM (sector
estimation, SEM motor).
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Figure 5.29.: Tracking performance under FOC. Reference velocity of 50 RPM (sector
estimation, SEM motor).
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Figure 5.30.: Tracking performance under FOC. Reference velocity of 125 RPM (sector
estimation, SEM motor).
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Figure 5.31.: Tracking performance under FOC. Reference velocity of 175 RPM (sector
estimation, SEM motor).
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Figure 5.32.: Tracking performance under FOC. Step change in reference velocity of
100 RPM to −100 RPM (sector estimation, SEM motor).
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Figure 5.33.: Tracking performance under FOC. Reference velocity of 10 RPM. Load
current of approximately 2.5 A (sector estimation, SEM motor).
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Figure 5.34.: Tracking performance under FOC. Reference velocity of 10 RPM. Load
current of approximately 5 A (sector estimation, SEM motor).
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5. Voltage Pulse Injection

5.4. Summary

In this chapter, two algorithms were presented that are able to estimate the angular
position of the rotor of a SMPMSM based on its anisotropic magnetic properties. These
algorithms differ from the one presented in Chapter 4, in that they are based directly on
time-domain measurements instead of frequency-domain signal processing, and as such,
require no filters that introduce delay.

The INFORM algorithm and its applications are generally well-document in the liter-
ature, but here it is presented with additions specifically for making it robust to the
inverter voltage error. The effect of prefilters and quantization in digital control systems
is also taken into account. Additionally, the sensitivity of the algorithm to magnetic
saturation is discussed. As in Chapter 4, measurement results show that the Siemens
motor is ill-suited for sensorless control based on the INFORM algorithm. For the SEM
motor, however, the estimation error is generally in the range [−25◦; 25◦] up to its rated
current. Above its rated current, the estimation error increases significantly due to the
effect of magnetic saturation.

In an effort to simplify the INFORM method, based on the same fundamentals, a new
algorithm was developed that restricts itself to utilizing less information than available
to the INFORM method. This, in turn, has the effect of restricting the estimate of the
rotor position to fixed 30◦ sectors, which, compared to the INFORM method, results in
a slightly worse estimate at low levels of load current. The benefit, however, is that the
algorithm is not affected by magnetic saturation and thus its accuracy does not depend
on the level of load current. Additionally, its implementation is somewhat simpler.
Measurement results show that the Siemens motor is also ill-suited for sensorless control
based on the sector estimation algorithm. For the SEM motor, the estimation error is
generally in the range [−20◦; 20◦], regardless of the level of load current.

For both the INFORM and sector estimation algorithms, the speed is limited to approx-
imately 125 RPM for the SEM motor. Above this speed, the quality of the models on
which the algorithms are based deteriorate quickly. As a result, the tracking performance
of the algorithms degrade significantly.
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6. Conclusion

Field-oriented control of permanent-magnet synchronous motors provides a hardware
platform capable of excellent power density, efficiency and dynamic performance, and
all with the ease of controlling a DC motor. It is thus no wonder that this technology
has become ubiquitous in recent years with the advent of cheap microprocessors and
power electronics. The classical FOC topology does, however, come with the added cost
of requiring a position or speed sensor for its reference frame transformations. Ridding
the FOC topology of this requirement would represent a significant boon to its users
in terms of reduced cost and improved reliability. The methods based on back-EMF
estimation have already provided suitable solutions for this problem at higher speeds
than dealt with here. In this thesis, for low-speed operation, we have found:

The high-frequency injection methods, an example of which was presented in Chapter 4,
provide a continuous estimate of the angular position of the rotor by signal processing
of the current response to an injected high-frequency voltage. Their main drawback is
that this voltage component must coexist with the fundamental voltage of the machine,
and as such, little can be done to work around the error component introduced by the
inverter. For these methods, the inverter voltage error must generally be compensated
for somehow, which typically requires offline measurements of parameters specific to the
inverter.

The INFORM method can generally work in the presence of significant voltage error
from the inverter, but it requires synthesizing its voltage vectors with single-leg switching
patterns and oversampling the current within a switching period. The accuracy of the
algorithm is also sensitive to large variations in load current, the extent of which is
difficult to predict as it depends on the construction and geometry of the motor.

The sector estimation algorithm incorporates the robustness of the INFORM method
to the inverter voltage error and avoids the complexity associated with oversampling
the current. It is a simpler algorithm that has the additional benefit of being able
to accurately estimate the position of the rotor regardless of the level of load current
present in the motor. The loss of accuracy at low current levels, compared to that of
the INFORM method, is considered negligible.

For all the algorithms presented in this thesis, a necessary condition for them to func-
tion properly is the presence of a certain degree of effective rotor saliency. This was
particularly evident for the case of the Siemens servo motor.

In summary, the main contributions of this thesis are:
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6. Conclusion

• Development of the high-frequency and voltage pulse injection methods in a unified
framework of space vectors.

• Modification of the INFORM algorithm to account for the inverter voltage error.

• Development of the sector estimation algorithm.

6.1. Future Work

This thesis has been mostly concerned with the ability of the algorithms to accurately
and robustly estimate the angular position of the rotor. That is adequate for the purpose
of torque control, but for industrial applications of FOC, speed control is predominantly
the main concern. As the speed is usually estimated from changes in position between
samples, recommendations for future work are:

• Since the high-frequency injection methods can continuously provide an estimate
of the rotor position, they might, in terms of speed estimation, have an advantage
compared to the INFORM and sector estimation methods, which only provide
estimates when they periodically assume control of the machine. It would be
worthwhile to consider how this estimation rate impacts the accuracy of the speed
estimate.

• The estimate of the rotor position produced by the sector estimation algorithm is
inherently quantized. The algorithm effectively has the same output as a very low
resolution incremental encoder. It would be interesting to explore what limitations
this imposes on the dynamic performance of the speed control loop.
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A. Noise Filtering of the LEM LA-P Series
Current Transducer

Figure A.1 shows a schematic of a LEM LA-P series current transducer. The current in
the primary winding IP creates a flux in the surrounding magnetic core that is sensed
by the Hall element in its gap1, which produces a voltage in direct proportion to the flux
density, and thereby IP . The Hall voltage is amplified and used to drive a secondary
current IS , that creates a flux in the magnetic core in opposition to that of IP . This
feedback loop eventually results in IS mirroring IP by its turns ratio. Inserting a mea-
surement resistor RM in the secondary winding thus allows sensing IP while galvanically
isolated from the primary circuit.

A possible issue with these types of current transducers, is how their amplifier stage is
implemented. The simple push-pull stage shown in Figure A.1 can introduce significant
distortion in the feedback loop if the transistors are not well matched.

For the hardware platform presented in Chapter 3, Figure A.2 shows the DFT of IP at
the input of the DSP as measured by a Tektronix DPO 2014 oscilloscope2. The output
of the current transducer shows significant noise content above 200 kHz.

Figure A.3 shows IP as seen from the DSP with and without a single-pole RC anti-
aliasing filter with a cut-off frequency of 20 kHz. As seen, the addition of the anti-aliasing
filter reduces the RMS value of sensor noise significantly.

1IC is the control current for the Hall element.
2The Tektronix DPO2014 oscilloscope specifies at least 40 dB attenuation at the Nyquist frequency of

its sampling system.
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3.1.9 Typical applications

Open loop current transducers are used in numerous
industrial applications as the key element of a regulation loop
(e.g. current, torque, force, speed, position) or simply to drive
a current display.

Typical applications include:

• frequency inverters and 3-phase drives, for the control of
the output phase and DC bus currents

• power factor correction converters, for monitoring of the
mains current(s)

• electric welding equipment, for the control of the welding
current

• uninterruptible power supply (UPS) or other battery
operated equipment, for the control of charge and discharge
currents

• electric vehicles, for motor drives and battery current control

• electric traction systems, trackside circuit breaker and
rectifier protection, rolling stock traction converters and
auxiliaries

• energy management systems, switching power supplies,
electrolysis equipment, and other applications

3.1.10   Calculation of the measurement accuracy

As indicated previously, the accuracy indicated in the
datasheets applies at the nominal current at an ambient
temperature of 25 °C. The total error at any specific current
includes the effects of offset, gain, non-linearity, temperature
effects and possibly remanence. The LEM datasheet provides
the worst-case value of each of these factors individually.
The theoretical maximum total error corresponds to the
combination of the individual worst-case errors, but in practice
this will never occur.

Example: Current transducer HAL 200-S (see datasheet)
In this example it is assumed the power supplies are accurate
and stabilized and magnetic offset is negligible. A current of
200A is measured at an ambient temperature of 85 °C.

The datasheet indicates the output voltage is 4 V at the
200 A nominal current. The worst-case accuracy at IPN, 25 °C
and with ±15 V supplies is 1 %, or 40 mV.  In addition there is
a maximum offset voltage at Ip = 0 and 25 °C of 10 mV. These

two values are independent because the accuracy (40 mV)
is confirmed with an AC signal while the offset (10 mV) is a
DC measurement. Therefore, when measuring a 200A DC
current at 25 °C the output could be in error by as much as
50 mV, which is 1.25 % of the 4 V output.

Operating at a different temperature causes both offset and
gain drift. The maximum offset drift is specified as 1 mV/K
and the maximum gain drift is 0.05 %/K. When we operate
the transducer at 85 °C there can be an additional 1 mV/
K • (85 – 25) °C = 60 mV of offset voltage and 0.05%/K • 
4 V • (85 – 25) °C = 120 mV of gain drift. The total error from
all of these effects is 230 mV, or 5.75 % of the nominal 4 V
output.

3.2 Closed loop Hall effect current transducers

Compared to the open loop transducer just discussed, Hall
effect closed loop transducers (also called Hall effect
‘compensated’ or ‘zero flux’ transducers) have a
compensation circuit that dramatically improves
performance.

3.2.1 Construction and principle of operation

While open loop current transducers amplify the Hall
generator voltage to provide an output voltage, closed loop
transducers use the Hall generator voltage to create a
compensation current (Fig. 10) in a secondary coil to create
a total flux, as measured by the Hall generator, equal to
zero.  In other words, the secondary current, IS, creates a flux
equal in amplitude, but opposite in direction, to the flux
created by the primary current.

Figure 9:  Dynamic behavior of an HAL 600-S transducer at 600 A

Figure 10:  Operating principle of the closed loop transducer

IP

IS

IS

IC

I
P

IS

0

600 A

-50 A/µs

Operating the Hall generator in a zero flux condition
eliminates the drift of gain with temperature. An additional
advantage to this configuration is that the secondary winding
will act as a current transformer at higher frequencies,
significantly extending the bandwidth and reducing the
response time of the transducer.

When the magnetic flux is fully compensated (zero), the
magnetic potential (ampere-turns) of the two coils are
identical. Hence:
NP • IP = NS • IS  which can also be written as  IS = IP • NP / NS

Figure A.1.: Schematic of a closed-loop Hall effect current transducer. Image from Iso-
lated Voltage and Current Transducers (2004).
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Figure A.2.: DFT of IP as seen from the oscilloscope.
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(a) Without anti-aliasing filter. IP,RMS = 158 mA
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(b) With anti-aliasing filter. IP,RMS = 15.1 mA

Figure A.3.: IP waveform as seen from the DSP.
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