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SYNOPSIS: 

The Modular Multilevel Converter (MMC) has 

proven itself to be a good solution for High Voltage 

Direct Current Applications due to its high 

modularity, scalability and low output voltage 

harmonic distortion. 

One the main challenges of the MMC is the control. It 

is known that commercially available solutions use a 

centralized control topology, where a single controller 

is used to perform all the necessary calculations and 

processing of the MMC control. 

The aim of this thesis is to develop a control strategy 

using the hierarchical control topology approach.   

Using EtherCAT communication network a method 

for synchronizing the carrier waves of the MMC is 

developed and the resampled phase shifted PWM 

algorithm is implemented for different configurations 

of the MMC.  

In order to improve the reliability of the system an 

algorithm is developed to reconfigure the system in 

case of a fault in one of the MMC sub-modules. The 

averaging and balancing control of the MMC is 

studied through simulations. 
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Summary 

The present work is divided in six main chapters and one appendix. 

In chapter number one a small introduction to the modular multilevel converter (MMC) technology 

for high voltage direct current is made. The evolution of the different converter types until the MMC is 

given starting with line commutated converters. Problem formulation, problem objectives and project 

limitations are also presented in this chapter. 

In the second chapter the one phase MMC with eight half-bridge sub-modules is explained. The 

phase shifted – PWM technique is explained and analyzed. The equations which model the behavior of the 

MMC are derived and a small introduction to the different control topologies for MMC is given. At the end 

of the chapter EtherCAT communication protocol and some of its feature are introduced. 

The third chapter covers two of the main aspects developed throughout the project. The first aspect 

is the development of a method to synchronize the carrier waves of the sub-modules controllers using 

EtherCAT Distributed Clocks mechanism. The second aspect is the development of the resampled phase 

shifted PWM algorithm for different MMC configurations employing 4, 6 and 8 sub-modules. 

The fourth chapter of the project explains the philosophy of the system by means of different state 

machine diagrams. 

The fifth chapter covers the inner control of the MMC. The averaging capacitor voltage control and 

individual balancing control are explained and simulation results are presented.  At the end of the chapter 

measurement of the upper and lower voltage waveforms using 3 and 4 sub-modules per arm are shown. 

In the appendix a copy of the paper based on the work carried out during this project which was 

published in 2014 OPTIM conference is attached.   
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Chapter 1: Introduction 
 

 

1.1. High Voltage Direct Current. 

High Voltage Direct Current (HVDC) is, along with High-Voltage-Alternating-Current (HVAC), one of the two 

technologies used for electric power transmission over long distances. When transmission distances of several 

hundreds of kilometers are exceeded, the pertinent viability study is executed in order to decide between the HVDC 

or HVAC implementation. In Figure 1 a typical cost comparison curve between the two technologies is shown taking 

into account station terminal costs, line costs and losses costs [1]. 

DC Losses

AC Losses

Total AC Cost
Total DC Cost

DC Line

DC Terminals

AC Line

AC Terminals

Break-Even
Distance

Transmission 
Distance

Costs

 

Figure 1.  Typical HVDC and HVAC costs comparison curve [1]. 

The usage of HVDC starts being economically attractive when the break-even distance is exceeded. The reason 

for this is that the capacitive and inductive losses associated with AC links become very large and the total costs are 

higher than those of HVDC technology. This translates into more transmission lines needed and more land coverage 

for AC systems.  The break-even distance lays somewhere between 500 and 800km [1]. For underwater cables, this 

range decreases to values between 50-100km, depending on the grid conditions and transmitted power. The main 

advantages of HVDC technology over HVAC in long transmission distances are 1) lower costs due to lower losses, 2) no 

cable length limit, 3) possibility of underground cables usage, 4) allows connections of asynchronous grids, 5) static 

magnetic fields which no cause electromagnetic interference and 6) no need of intermediate stations [2]. 
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Some examples of different transmissions applications where HVDC technology is favorable are connection of 

generation centers which are very far from the load centers, like islands, off-shore wind power plants, connection of 

oil and gas platforms or connection of AC grids for energy trading and stabilization [3]. 

1.2. Line Commutated Converters and Voltage Source Converters HVDC Technologies. 

Traditionally, HVDC technology has been based on so called ‘line-commutated converters’, with thyristors 

being the key switching devices [2], [4] . This technology, however, has some technical drawbacks which limit its 

application for the new decentralized power generation system trend. Classic HVDC needs a strong driving AC voltage 

system on both sides of the system, the reactive power control is limited, it introduces harmonic distortion on the AC 

systems and it requires a large space [4], [5]. Hence, even though line-commutated converters are still suitable for 

bulk power transmission due to low losses (up to 10000MW according to ABB [2]), in order to fulfill future field 

systems requirements, ‘self-commutated converters’ or voltage source converters (VSC) are more suitable [4], [5]. 

Some of the advantages of VSC HVDC over LCC HVDC are: 1) built-in STATCOM functionality  allowing full active and 

reactive power flow control, 2) ability of operation into very week (low active power transmission) or passive AC 

systems (only active power transmission), 3) capability of generating its own voltage waveforms or black-start 

capability, 4) compact station layout, 5) suitability for multi-terminal HVDC networks given that power flow reversion 

does not imply a change in the voltage polarity, as in LCC HVDC, only a change in the current direction which also 

allows the use of lower cost polymeric cables for submarine and underground applications [2], [4]-[6]. 

1.3. Voltage Source Converter topologies for HVDC application. 

The different VSC discussed in the literature suitable for high power high voltage transmission are the two-level 

VSC, diode-clamped multi-level converter (DCMC) and flying capacitor multi-level converter (FCMC). The two-level VSC 

uses the classical two-level converter topology where a high number of switching devices are connected in series in 

order to withstand the high voltage value when they are in OFF state. This topology basically presents the following 

drawbacks, bulky passive AC filters at the output, very high switching frequency needed and high arm current 

variations (di/dt) [7]. In the diode-clamped multilevel converter the DC bus of the DCMC is divided into a number of 

levels by using capacitors connected in series. When the number of levels is increased, the control of the converter 

and the balancing of the capacitors become very complex requiring an external capacitor voltage balancing circuit [8], 

[9]. The Flying Capacitor Multilevel Converter has a similar structure to DCMC with the difference of using capacitors 

instead of diodes. Two of its main disadvantages are the control complexity and an increase in building and 

assembling difficulty as the number of level is increased [9].  Hence, because of the commented drawbacks, DCMC 

and FCMC technologies present a limit number of levels from the practical point of view [10]. 

As an alternative to the above mentioned converter types a new topology has been proposed for high voltage 

applications, the ‘modular multilevel converter’ (MMC), which will the focus of this master thesis. The MMC is formed 
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by a number of sub-modules connected in series, which have exactly the same hardware configuration. The MMC has 

proved to be superior to its competitors for HVDC applications presenting the following main advantages [10]:  

 hundreds of voltage levels can be achieved  

 easier voltage balancing control 

 no series-connected semiconductor switches  

 high modularity  

 easily scalability to different power and voltage levels 

 low total harmonic distortion and low switching frequencies which translates in small filters and low 

switching losses 

Although different MMC sub-module topologies for HVDC can be found in the literature, as ‘clamped-doubled 

sub-module’, ‘five level cross connected sub-module’ or the ‘current source inductor’ sub-module, the most common 

topologies are the ‘half bridge’ and ‘full-bridge’ sub-modules. Generally speaking, both full-bridge and half bridge 

MMC offer similar performances for active and reactive power control in normal operation as well as transients. 

However, even though the full bridge configuration is able to block the fault current during a DC short-circuit fault, it 

utilizes the double of switching components which translates into higher switching losses and hence, an increase of 

the converter costs [11]-[13]. This project is based on MMC with half-bridge sub-module configuration.  

1.4. State of the art of MMC and project motivation.  

High Voltage Direct Current systems based on half bridge MMC topology have become a commercially available 

solution offered by different companies in the recent years under names like HVDC PLUS of SIEMENS and HVDC Light 

of ABB. In the case of ALSTOM, even though they also have a prototype based on half-bridge MMC, they will use 

hybrid topologies in the future [5], [14].  Some examples of real MMC based HVDC systems are given in Table 1, Table 

2 and Table 3. 
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Table 1. SIEMENS HVDC projects based on MMC [15]. 

Company Project name Installed year Power 
Dc link 

voltage 

SIEMENS 

Trans Bay Cable 2010 400MW ±200kV 

BorWin2 2013 800MW 300kV 

HelWin1 2013 576MW 250Kv 

INELFE 2014 2x1000MW ±320kV 

SylWin1 2014 864MW ±320kV 

HelWin2 2015 690MW ±320kV 

 

 

Table 2. ABB HVDC  projects based on MMC [16]. 

Company Project name 
Installed 

year 
Power 

Dc link 

voltage 

ABB 

BorWin1 2009 400MW ±150kV 

Caprivi Link Interconnector 2009 300MW 350kV 

Valhall’s Platform 2010 78MW 150kV 

East-West Interconnector 2012 500MW ±200kV 

DolWin2 2013 900MW ±320kV 

Skagerrak 4 2014 715MW 500kV 

DolWin1 2014 800MW ±320kV 

NordBalt 2015 700MW ±300kV 

 

Table 3. ALSOM projects based on MMC. 

Company Project name 
Installed 

year  
Power 

DC link 

voltage 

ALSTOM 
South West Link 2014 1440MW - 

Las Tres Amigas Superstation 2014 750MW 345kV 

 

One of the main points regarding the MMC topology is the control strategy. It is known that some of the 

commercially available solutions, like SIEMENS HVDC Plus, use a centralized control topology called PLUSCONTROL [4]. 

In a centralized control topology, there is only one control unit which performs all the control tasks. In the case of 

PLUSCOTROL, the control unit receives the current and voltage measurements of all sub-modules, and then the new 
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references for the output and capacitors voltage control is performed at times intervals of a few microseconds [4]. The 

requirements of the centralized control topology are the following: 

 Very high communication bandwidth given that hundreds of measurements need to be performed 

 Very high processing speed of the controller because hundreds of new switching states need to be 

calculated in a very limited time of several microseconds  

1.5. Project formulation. 

The control of the MMC is not an easy task and it is known that a centralized control topology has been 

successfully adopted for commercially available HVDC based on MMC products like SIEMENS HVDC PLUS. Besides this, 

a different control topology has been proposed and needs further study and investigation; this is the hierarchical 

control topology. The aims of this topology are: 

 To reduce the required processing speed by adding more processors to the system and distributing 

the different control task between them. In addition to the main controller of the centralized control 

topology each sub-module of the MMC will have its controller. The main or central controller will 

perform the high level control tasks and the sub-modules processors the low level control tasks. 

 To reduce the required communication bandwidth. As the control tasks are split between the different 

controllers, less data needs to be sent to the central controller. 

 

1.6. Project objectives. 

The main objective of the current project is to develop a new hierarchical control strategy based on EtherCAT 

communication protocol. In order to achieve this, the following objectives need to be fulfilled:  

 Synchronization of the carrier signals of all the MMC sub-modules. 

 Implementation of Phase Shifted PWM based on resampled technique. 

 Implementation of system reconfiguration technique in case of communication or electric fault. 

 Implementation of arm voltage ‘averaging’ control. 

 Implementation of individual capacitor voltage balancing control. 

 Implementation of output current control. 
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1.7. Project limitations. 

 From a full HVDC transmission system, only the rectifier end is considered in this project, as shown in 

Figure 1.  

DC Link

Rectifier Inverter

Power Flow

AC AC

 

Figure 2. Full HVDC transmission system scheme. 

 Only a single phase MMC with a total of eight sub-modules is available. 

 A DC source will be used as a DC link and will be constant; hence no DC link control will be implemented. 
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Chapter 2: Introduction to the modular multilevel converter 
 

 

In this chapter a description of the modular multilevel converter is given. Its functionality is explained starting 

with a general description of the elements of the MMC. Afterwards, the phase shifted PWM technique is also 

explained starting from the most basic element of the MMC, a single sub-module, and adding different sub-modules 

until the full design is obtained. All the descriptions given are focused only on the single phase MMC with a total of 8 

sub-modules. The MMC is considered to be working only as an inverter; hence the power flow will always be 

considered from the DC side to the AC side. A description of the suitable control topologies for MMC and EtherCAT 

communication protocol are also given. 

2.1. MMC elements description. 

A scheme of a single phase MMC with 8 sub-modules for HVDC application is shown in Figure 3. 

E/2

Lla

Lua

SM1

SM3

SM4

SM2

SM7

SM8

SM6

SM5
E/2

Rla

Rua

Load

vu(t)

iu(t)

il(t)

vl(t)

io(t)

vo(t)

MMC upper arm

MMC lower arm

 

Figure 3. MMC scheme. 

The circuit is comprised of the following elements: 1) two DC power supplies (E/2) with middle point which 

represent the HVDC, 2) a number of sub-modules connected in series, SM1 to SM4 for the upper arm and SM5 to SM8 

for the lower arm, 3) two arm resistances, Rua and Rla, which represent the resistance of the connection wires and are 

considered equal, 4) two arm inductances, Lua and Lla, whose function is to limit the current increase during normal 

operation or fault and are considered equal, and 5) a generic load which can include the grid or not, depending on the 

connection point. 

The sub-modules SM1 to SM4, the resistance Rua and the inductance Lua form the upper arm of the MMC, 

meanwhile the sub-modules SM5 to SM8, the resistance Rla and the inductance Lla form the lower arm of the MMC. 
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The voltages vu(t) and vl(t) represent the voltages at the series-connected sub-modules terminals in the upper and 

lower arm respectively. iu(t) and il(t) are the currents in the upper and lower arm. vo(t) and io(t) are the output voltage 

and current of the MMC. The number of levels of the output voltage depends on the number of sub-modules and is 

given by N+1, where N represents the total number of sub-modules in the MMC. Hence, if the total number of sub-

modules is 8, the output voltage will have 9 levels, as shown in the following sections.    

2.2. MMC sub-module elements description.  

As previously mentioned the most basic element of the modular multilevel converter is the sub-module. There 

are different sub-module topologies however in this project the chosen topology is the half-bridge, shown in Figure 4. 

S1

S2

VC

VSM

C

D1

D2R1
T1

ISM

 

Figure 4. MMC sub-module half bridge configuration. 

The half bridge sub-module has two electric terminals through which it is connected to other sub-modules, + 

and - . It consists of two semiconductor switches, in this case two MOSFETs S1 and S2, each of them with an 

antiparallel connected diode, D1- D2, and a capacitor, C , used as an energy storage device. The different operation 

states of the sub-module are summarized in Table 4.  

 Table 4. MMC half bridge sub-module operation states. 

Current direction S1 state S2 state VSM value Capacitor status Conducting device  

ISM > 0 

ON OFF VC Charging D1 

OFF ON 0 By-passed S2 

ISM < 0 

ON OFF VC Discharging S1 

OFF ON 0 By-passed D2 

Between the main terminals, by-passing devices can also be included in the design. In the case of the sub-

modules used for the project, the PCB was designed to include a relay, R1, and a thyristor, T1, however on the physical 

board only the relay has been placed. The functionality of both devices is the same, by-pass the sub-module in case of 

a fault or reconfiguration of the system. The triac has a faster commutation time than the relay however it has higher 

conduction losses than the relay. In case a fault is detected, both components will be switched on, however the triac 
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will conduct only at the beginning until the relay is closed, then it will be turned off and only the relay will be 

conducting. 

In order to obtain a correct operation mode, the voltage in the capacitor must be kept to a relatively constant 

value of Vc = 2E / N. For the present project, the voltage E has a value of 400V and N is equal to 8, hence the capacitor 

voltage must be kept close to 100V. This is achieved through the capacitor voltage averaging control and capacitor 

voltage balancing control which will be discussed in the following chapters. 

2.3. Phase shifted PWM and MMC operation principle. 

Different PWM techniques can be found in the literature for MMC. Some of these techniques, known as multi-

carrier PWM techniques, are based on comparing a sinusoidal reference signal with a triangular carrier signal. The 

best known multi-carrier PWM techniques are Phase Disposition (PD), Phase Opposition Disposition (POD), Alternative 

Phase Opposition Disposition (APOD) and Phase Shifted PWM technique (PS) [17], [18]. In this project Phase Shifted 

PWM technique is used for the lower harmonic content generated at the output voltage and its easy usage for 

hierarchical control [17] and because it presents the best natural performance for the capacitor voltage balancing of 

the sub-modules [19], [20]. 

2.3.1. Single sub-module analysis.  

In order to understand the operation principle of the MMC and the phase shifted PWM technique, a single half-

bridge sub-module as the one from Figure 4 is considered in first place. Considering that there is no current flowing 

through the sub-module and that the capacitor voltage is kept at its nominal value, Vc = 100V, a general analysis of the 

voltage waveform at the sub-module terminals is shown below by applying the classical PWM modulation technique. 

Different figures showing the different wave forms are given below. The reference signal is a sinusoidal function with a 

frequency of 50Hz and the carrier a triangular function with a frequency of 1kH. The equations describing the 

reference signal, vref(t), the maximum value of the carrier signal, vcarpeak(t) and the modulation index ma are given 

below: 

    ( )    
  
 
(     )                     ( )    

 

 
(     ) 

          
  
 
 
 

 
     

 

 ffdffdf           
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Figure 5. vref(t) and vcar(t). 

 

Figure 6. PWM signal. 

 

Figure 7. vSM(t). 

 Figure 8. vSM(t) furrier analysis. 

Focusing on the dc and fundamental frequency components the output voltage of the sub-module is given by: 
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2.3.2. Upper arm series connected sub-modules analysis with no phase shift between the carrier waves.  

Four sub-modules of the upper arm are connected in series as shown in Figure 9 and the same voltage 

reference and carrier signal as mentioned in the previous case is applied to each of them with no phase difference 

between the carriers of the sub-modules , α = 0.  

SM1
α1=0 Vc = 100v

SM2
α2=0

SM3
α3=0

SM4
α4=0

Vsm1 

Vsm2 

Vsm3 

Vsm4 

Vu 

Vc = 100v

Vc = 100v

Vc = 100v

 

Figure 9. Upper arm series connected sub-modules. 

As the same voltage reference and carrier signal is applied to each of the sub-modules, the output voltage vu(t) 

will have the same shape as vSM(t) but with different amplitude, depending on the number of sub-modules. 

 

Figure 10. Vu(t). 

 

Figure 11. Vu(t) furrier analysis. 

Focusing on the dc and fundamental frequency components the voltage at the terminals of the series 

connected sub-modules Vu(t) is given by the following expression:  

  ( )  
 

 
   ( )  

 

 
 (
 

 
     

 

 
   (  )           ) 
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   (  )            

 

  ( )            (  )                                 

 

2.3.3. Upper arm series connected sub-modules analysis with phase shift between the carrier waves.  

If a phase difference of 4π/N is introduced between the carriers of each sub-module as shown in Figure 12 

meanwhile the same reference signal is used for all the sub-modules, a number of levels appears at the output voltage 

vu(t) as shown in Figure 18. The number of levels is given by the number of sub-modules connected in series + 1. 

SM1
α1=0 Vc = 100v

SM2
α2=π/2

SM3
α3=π 

SM4
α4=3π/2

Vsm1 

Vsm2 

Vsm3 

Vsm4 

Vu 

Vc = 100v

Vc = 100v

Vc = 100v

 

Figure 12. Upper arm series connected sub-modules. 
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Figure 13. vref(t), vcar1(t), vcar2(t), vcar3(t) and vcar4(t). 

 

Figure 14. PWM signal  SM1. 

 

Figure 15. PWM signal  SM2. 

Figure 16. PWM signal  SM3. 

 

Figure 17. PWM signal  SM4. 

 

Figure 18. Vu(t). 

 

Figure 19. Vu(t) furrier analysis. 

Focusing on the dc and fundamental frequency components the voltage at the terminals of the series 

connected sub-modules, Vu(t) is given by the same expression as in the previous case. However, if the furrier analysis 

of Figure 11 and Figure 19 are compared, it can be seen that the harmonic component is greatly reduced when a 

phase shift is introduced between the different carriers. 
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2.3.4. Upper and lower arm series connected sub-modules analysis with phase shift between the carrier 

waves. 

In order to obtain the output voltage of the MMC, vo(t), both upper and lower arm terminal voltages, vu(t) and 

vl(t), have to be taken into account. In order to obtain vl(t) a displacement angle of 2π/N is added to the phase shift of 

carrier signals of the upper arm as shown in Figure 20. The reference signal of the lower arm sub-modules is the same 

as the reference for the upper arm but with the sign changed. 

SM1
α1 = 0 Vc = 100v

SM2
α2 = π/2

SM3
α3 = π 

SM4
α4 = 3π/2

Vsm1 

Vsm2 

Vsm3 

Vsm4 

Vu 

Vc = 100v

Vc = 100v

Vc = 100v

 

SM5
α5 = α1 + π/4 Vc = 100v

SM6
α6 = α2 + π/4

SM7
α7 = α3 + π/4

SM8
α8= α4 + π/4

Vsm5 

Vsm6 

Vsm7 

Vsm8 

Vl 

Vc = 100v

Vc = 100v

Vc = 100v

 

Figure 20. Upper and lower arm series connected sub-modules 

As it will be shown in the next section, when there is no connected load the output voltage of the MMC is given 

by the expression: 

  ( )   
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Focusing only on the dc and fundamental frequency components the output voltage expression for MMC is: 

  ( )   
  ( )    ( )

 
  
 

 
 (
 

 
    

 

 
   (  )   

 

 
    

 

 
   (  )) 

  ( )       
 

 
   (  ) 



 

15 
 

 

Figure 21. vo(t). 

 

Figure 22. vo(t) furrier analysis. 

 As can be observed above, for eight sub-modules the output voltage of the MMC has 9 levels with no dc 

component, Figure 21, and very low harmonic component, Figure 22.   

2.4. MMC fundamental equations. 

In MMC the output current io(t) is assumed to be equally shared between the upper and the lower arms of the 

converter, hence iu(t) and il(t) will carry half of the output current each. In addition, another fundamental parameter 

of the MMC is the circulating current, icirc(t). The circulating current flows between the DC voltage source, E, through 

the converters arm and it has different frequency components besides a dc component, icirc,dc. The dc component of 

the circulating current is given by the output power of the converter, hence, neglecting the arm losses the output 

power of the converter is given by the expression Po = E icirc,dc . The rest of components of the circulating current are 

caused by the unbalance of the DC voltage source E and the inserted sub-modules at a particular moment. Taking this 

into account and the current senses defined in Figure 3, the current equations of the MMC are the following:  

 
  ( )       ( )   

  ( )

 
 

 => 
     ( )   

  ( )    ( )

 
 

 

(1) 

 

 
  ( )       ( )   

  ( )

 
   ( )    ( )     ( ) (2) 

From Figure 3 and considering that Rua = Rla = Ra and Lua = Lla = La, applying Kirchhoff’s law the following 

equations are obtained:  
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From (1), (2) and (3) the equation which dictates the behavior of the circulating current is obtained:  

     ( )     (   ( )    ( ))      
      ( )

  
          ( ) 

 

(6) 

 From (1), (4) and (5) the output voltage equation of the MMC is obtained:  
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Combining (4), (5), (6) and (7) the equations shown below are obtained. These equations have a fundamental 

importance for control purposes because they describe the reference signals for the upper and lower arm. 

  ( )   
 

 
    ( )        ( ) (8) 
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      ( ) (10) 

2.5. MMC control topologies. 

The MMC control task for HVDC application can be very challenging due to the large number of sub-modules 

present in the converter. The control tasks to be carried out for this project can be divided into the following 

categories: 1) output current control in order to control active and reactive power, 2) average capacitor voltage level 

control, 3) individual capacitor voltage balancing control and 4) fault tolerant control. Taking this into account two 

different control approaches can be adopted: centralized control and hierarchical control [17]. 

The centralized control topology implies the usage of only one single controller, which is carrying out all the 

needed processing and control operations. It is required to the controller to be very powerful in order to be able to 

handle all the intense processing. Besides this, also a large amount of signals wires need be available [17], [21]. A 

simplified scheme of the centralized control topology applied to a single phase MMC with eight sub-modules is shown 
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in Figure 23 where the wires carrying the PWM and capacitor voltage measurement are only two examples of the 

signals needed for performing the control. This control approach generates reliability issues and hinders the 

modularization of the converter [17]. 
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Figure 23. MMC centralized control strategy diagram. 

In the case of hierarchical control strategy, besides a central controller, each of the sub-modules has an 

individual controller. With this approach, the central and the local controllers need to interchange information 

between then and hence; a communication network must be established.  The processing load is distributed between 

the different controllers as the central controller does not perform all the control tasks alone. The central controller is 

in charge of the high level control tasks as: 1) output current control 2) averaging capacitor voltage control and 3) 

reconfiguration of the system in case of fault. The local controller will perform the following tasks 1) PWM algorithm 

2) local fault control and 3) individual voltage balancing control. Furthermore, the measurements of the current and 

capacitor voltage are also performed locally in each sub-module. With this approach the number of signal wires is 

decreased and hence the modularization and reliability of the system increased [17].  It has to be taken into account 

that additional communication hardware is required. A simplified scheme of the hierarchical control topology applied 

to a single phase MMC with eight sub-modules and using EtherCAT communication network is shown in Figure 24.  
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Figure 24. MMC hierarchical control strategy diagram.  

In order to build the setup used for this project, the hierarchical topology was used due to its higher reliability 

and modularity. For the communication network, the EtherCAT protocol was adopted for its real time and 

synchronization capabilities. 

2.6. EtherCAT. 

2.6.1. Basic operation principle. 

As previously commented, for hierarchical control strategy a communication network needs to be integrated 

into the MMC in order to interchange the needed information between the central and the local controllers. For this 

project an EtherCAT network is used. EtherCAT is an open source communication protocol based on Ethernet, 

developed by Beckhoff and supported by the EtherCAT Group. EtherCAT uses the classical master – slave 

configuration in which only the master can initiate the communication [22]. The EtherCAT slaves process the data on 

the fly. When the master sends a telegram, this passes through the first sub-module, which reads and writes the data 

which is addressed to it and then sends the telegram further to the next slave. This process continues until the 

telegram arrives to the last slave, and then it is sent back to the master. Each telegram is delayed only by the 

processing delay introduced by each of the slaves and the wire propagation delay [23]. 

2.6.2. Distributed Clocks. 

As previously commented, for hierarchical control topology, each of the sub-modules of the MMC has a local 

controller besides the central controller. In order to perform a correct control of the system it is important to have all 

the tasks performed by the different controllers synchronized. In order to achieve this, an external tool is needed. 
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‘Distributed clocks’ is an EtherCAT protocol feature which can be used for generating of synchronous output 

signals with very low jitter and high precision clock synchronization. Each of the EtherCAT slaves is equipped with an 

internal clock. It is desired the time of these clocks to be the same; however differences between them may exist due 

to the following reasons.  In first place when the slaves are turned-on the register in which the current time is hold is 

set to zero, however an initial offset between them will exist because the set to zero does not happen at the same 

time in all slaves. In second place, the internal differences of the slave’s oscillators will lead to a drift between the 

different clocks.  

The Distributed Clocks algorithm is a mechanism to synchronize all the clocks of the sub-modules with a 

reference clock, which is usually the clock of the first slave. In order to do this, the propagation delay of each slave, 

the initial time offsets and the different local drifts are calculated and then compensated. By means of synchronizing 

the internal clocks of the slaves the EtherCAT network is able to generate synchronized outputs with a jitter down to 

nanoseconds. This is a key feature for the synchronization of the MMC sub-modules.  

2.6.3. Galvanic isolation.  

In case of a fault in the MMC a very potential difference could drop on one or more sub-modules. Without the 

proper isolation this high voltage could cause serious damages in the different components of the system. As 

EtherCAT uses optic fibers for communication instead or electric wires the different elements connected to the 

network are galvanically isolated.    

2.6.4. Integration of EtherCAT in the MMC design 

In order to integrate the EtherCAT communication network into the small scale MMC the following 

commercially available products were used. As master of the network a ‘BECKHOFF C 9030-0040’ industrial PC, Figure 

25 a, was employed along with the software TwinCAT 3.1 in order to program the high level control tasks. The 

‘BECKHOFF piggyback FB1111-0141’, Figure 25 b, was utilized as a slave board. These boards allow SPI communication 

with the local controller.  
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a) EtherCAT IPC  

 

b) EtherCAT piggyback controller board 

Figure 25.   

The master sends data using EtherCAT protocol to the slave board and the data is interchanged with the local 

controller using SPI. In order to synchronize all the controllers of the sub-modules the signal SYNC 0 of the ‘piggyback’ 

is used. The difference between the signals generated in the different sub-modules will be of a few nanoseconds. 

These times have been measured in the laboratory obtaining values between 5 and 15ns. A diagram showing how 

EtherCAT is integrated into the MMC is displayed in Figure 26. 
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Figure 26. EtherCAT integration into MMC diagram.  
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Chapter 3: Resampled phase shifted PWM 
 

 
In this chapter the practical implementation of the phase shifted PWM will be explained. In order to correctly 

perform the modulation using hierarchical control topology an algorithm called resampled phase – shifted PWM will 

be implemented for different MMC configurations. A comparison between the simulated results and the measured 

ones in the laboratory will be given. The lack of synchronization between the different controllers of the sub-modules 

will also be commented and a solution for it will be given.  

3.1. Resampled phase shifted PWM for MMC. 

As commented in the previous chapter for phase shifted PWM implementation there are as many carrier waves 

as number of sub-modules in the MMC. In order to introduce the voltage levels at the output voltage a phase shift 

between the different carrier signals must be introduced. The introduced phase shift depends on the number of sub-

modules. At the implementation stage, however, two practical conditions have to be fulfilled: 

1) All the carrier signals need to be perfectly synchronized between each other 

2) The local controllers should read the reference value at the same time in order to perform the PWM 

algorithm.   

3.1.1. Sub-module counters synchronization. 

In hierarchical control each controller of the sub-modules will be in charge of performing the PWM algorithm. 

The reference signal will be sent by the master and the carrier signal will be generated by the internal counter of the 

sub-module controller. The counter value of the controller will be increased by the controller internal clock, 

generating in this way the carrier signal. The carrier will be continuously compared with the reference signal and when 

they match the proper actions will take place in order to generate the PWM pulses for the switches. If the counter 

reaches the period value, then the counter value is set to zero and the process is repeated again.  

In order to perform a precise and correct phase shifted PWM algorithm all the counters of the local controller 

must be synchronized. This means that they should start counting and count at the same time. However, without an 

additional synchronization signal these two conditions will not be fulfilled due to the following two reasons. In first 

place, when the sub-modules are powered up and the controllers start the counting process delays between them will 

exists and the counting will not start at the same time. In second place, small drifts between the different internal 

oscillators of the controllers will exist due to manufacturing tolerances. Because of these two factors the counting will 

not occur at the same time in the controllers and the different carrier signals will be out of synchronization within few 

seconds. In this way distortions are generated in the output voltage of the MMC. It has to be mentioned that this 
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problem is only given in hierarchical control. When using centralized control topology a single oscillator is used to 

generate all the PWM outputs and hence, the signals will be synchronized. 

In order to synchronize the counters of all the local controllers a method based on the usage of EtherCAT 

‘Distributed Clocks’ mechanism has been implemented. The local controller used for MMC system is a TMS320F28069 

Texas Instruments MCU which is connected to the ‘piggyback’ EtherCAT slave board. The slave board digital pin for 

generating synchronized events, SYNC0, is connected to one of the local controller inputs. Because of the ‘Distributed 

Clocks’ feature, each slave is able to generate a synchronized cyclic event through the SYNC0 pin. The differences 

between the generated signals have been measured in the laboratory obtaining values in the range of 5 to 15ns. In 

order to correctly perform the synchronization, the cycle period of the SYNCH0 event has to match the local controller 

counter period. SYNC0 will usually be at a high state, however when a cycle period is completed it will go to a low 

state for a very short time. This falling edge will generate an external interrupt in the local controller and the value of 

the counter will be set to 0. 

Two captures of the PWM outputs of four sub-modules made when no synchronization technique was applied 

are shown in Figure 27. The cycle period of the master was set to 1ms, which means that a new reference value will be 

send and a synchronization event will be generated each millisecond. The counter period of the local controllers is 

also set to 1ms. The counter of the controllers was configured in up-count mode with no phase difference between 

them. Ideally all the PWM signals should be in phase but as it can be seen in the figure random phase differences 

between the signals exist.  

 

a) 

 

b) 

Figure 27. Sub-module 1 to 4 PWM output when no synchronization technique is applied. 

In order to synchronize the counters of the controllers, each time the external interrupt is detected the 

software forced synchronization bit is set to 1 and therefore the value of the internal counter is set to 0. Two 

measured PWM signals when the synchronization technique is applied are shown in Figure 28. The maximum jitter of 
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the PWM synchronized signals is in the range of 10 to 15us. This time is very small compared with the period of the 

PWM signal and does not affect the performance of the MMC. 

  

Figure 28. Sub-module 1 to 3 PWM outputs when the synchronization technique is applied. 

3.1.2. Resampled Phase Shifted PWM Carrier signal implementation. 

In order to implement the carrier signal in the TMS320F28069 MCU three different configurations exist for the 

internal counter, 1) ‘up-count’ mode, 2) ‘down-count’ mode and 3) ‘up-down count’ mode [24]. For each of these 

configurations the following options exist for choosing when the reference value is updated [24]:  

1) Update the reference when the value of the counter is equal to the period  

2) Update the reference when the value of the counter is equal to zero 

3) Update the reference when the value of the counter is equal to the period or zero 

The ‘up-down’ carrier signal with a generic counter period value, PRD, and the different options for updating 

the reference value are shown Figure 29.  

PRD 

0

update 0 update 1 update 2

update 0 update 1

update 0 update 1 update 2 update 3 update 4

counter value

time

 

Figure 29. 
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From the three reference updating options, the last one (the reference value is updated when the value of the 

counter is equal to zero or equal to the period) is the best when using ‘up-down count’ mode given that it provides 

twice the bandwidth with respect to the first two options. 

For the phase shifted PWM a delay between the different carriers is introduce and hence, if the configuration 

commented above is used delays between the update times of the different references will occur. An example of 

these delays for an MMC configuration with 4 sub-modules per phase is shown in Figure 30. In this case the reference 

of sub-module 1 and 2 will be updated at the same time, however, between this point and the update of the 

reference for sub-modules 3 and 4 a delay exists. In this example, the delay is equal with the quarter of the carrier 

signal period. This delay between the update instants of the references leads to a distortion in the output voltage [19]. 

Another disadvantage of this method is that the bandwidth of the controllers is limited by the delay between the 

update times. 
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Figure 30. PS PWM references update instants for sub-modules 1 to 4.  

In order to avoid the local controllers reference value updates at different time instants and to increase the 

bandwidth of the system the resampled PS PWM algorithm will be implemented in the MMC setup. 

The resampled PS PWM algorithm consists on substituting the ‘up-down count’ carrier signal (also called 

triangular waveform in the literature) and the use of only one register for updating the reference value by a ‘up-count’ 

signal (also called sawtooth waveform) with higher frequency and the use of two registers. The time period of the 

sawtooth carrier signal will then be smaller than the time period of the triangular signal depending on the number of 

sub-modules of the MMC. For example, if the number of sub-modules is four, the time period of the sawtooth signal 

will be a quarter of the triangular signal (see Figure 31), if the number of sub-modules is six then it will be six times 

smaller (see Figure 37) and if the number of sub-modules is eight, it will be eight times smaller (see Figure 40).  The 

sawtooth wave counter period will also be smaller than the triangular signal counter period depending on the number 

of sub-modules. The relationships of both time period and counter period as a function of the number of sub-modules 

between the two types of carrier waves are given by:  
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Taking as example the MMC with four sub-modules, N=4, the triangular carrier wave with generic counter 

period value 2PRD is substituted by a sawtooth carrier signal which has a half the counter period value, PRD.  This 

translates into four times the frequency of the triangular carrier, fsawtooth-car = 4* ftriangular-car, as can be seen in Figure 31. 

Each of the sawtooth signal time periods which fit in the time period of the triangular signal has associated a number 

depending on its position, from 0 to 3 in Figure 31. From now on, it will be referred to this number as ‘PWM state’. 

The ‘PWM state’ number is needed in order to obtain the same PWM signal using the sawtooth signal as using the 

triangular signal and introduce the phase shift between the different carriers of each sub-module. 

PRD 

2PRD 
0 1 2 3

0

PRD 

0
0 1 2 3

counter value

counter value

time

time

 

Figure 31. 

Depending on the value of ‘PWM state’, different actions will be performed in order to obtain the same PWM 

signal using the triangular carrier signal and the sawtooth carrier signal. These actions form the resampled phase 

shifted PWM algorithm. Depending on the ‘PWM state’ and the value of the reference, different offset values need to 

be removed from the reference value in order to obtain the correct PWM signal. 

When the system is initialized, a number from 0 to 3 considering the case presented in Figure 31, will be 

assigned to PWM state depending on the carrier initial phase shift. Then, when a sawtooth period is completed the 

PWM state value is increased. Hence, considering the example shown in Figure 31 with no initial phase shift, the PWM 

state is initialized at 0 and then is increased to 1, 2, 3 and then back to 0 as the different time periods are completed. 

This process is repeated continuously. Different algorithms have been created for 4, 6 and 8 sub-modules MMC. For 

the algorithms two comparator registers have been used instead of one as shown in Table 5, Table 6 and Table 7.  

The phase delay is introduced in the algorithm by setting a different initial ‘PWM state’ value to each local 

controller. In order to explain this, Figure 32 will be used. In Figure 32 a) two carrier signals with a phase shift between 

them are shown. These two signals correspond to the sub-module 1 and sub-module 3 carriers of a 4 sub-modules 

MMC. Hence, the phase shift of the sub-module 1 carrier is α1=0 and the phase shift of the sub-module 3 carrier signal 
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is α3 = 2π/4 + α1 = π/2, following the rule explained in the previous chapter. In order to introduce this phase shift using 

resampled phase shifted PWM technique the initial ‘PWM state’ values for sub-module 1 and 3 are set to 0 and 3 

correspondingly as shown in Figure 32 b) and c), taking as a reference the triangular signal of sub-module 1. As can be 

seen in Figure 32 a), when the sub-module 1 carrier ‘PWM state’ value is equal to 3, the sub-module 1 signal 

waveform (with red) corresponds to the sub-module 3 carrier signal waveform, when the sub-module 1 PWM state is 

equal to 0 (with yellow). 
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0
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time
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c) 

Figure 32. 

For reading ease, all the necessary information for understanding the algorithms is given from a graphical point 

of view in Figure 34, Figure 37 and Figure 40. Each of the figures can be divided into four parts. The upper left part 

shows the phase-shifted carrier signals of the sub-modules using different colors with the possible ‘PWM state’ values 

taking the carrier signal with no phase shift as reference. In the upper right part, the initial ‘PWM state’ value for all 

the sub-modules is shown. This is done in order to achieve the phase shift effect as commenter in the previous 

paragraphs.  
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In the lower left and right parts it is shown how to obtain the same PWM signal by using a sawthooth carrier 

instead of triangular carrier by means of offset subtraction from the reference value for different reference values. 

The method used to perform this is explained through Figure 33. In Figure 33 when the signal ref is higher than or 

equal to the triangular signal the PWM output is set high and when it is lower the PWM is set low. In order to obtain 

the same PWM output using the sawtooth carrier different criteria need to be applied in order to obtain ref’ from ref. 

If ‘PWM state’ equal to 0 and ref is greater than PRD then ref´ is set to PRD. The register used to set high the 

PWM output (comp A) is set to 0 and the register used to set low the PWM output (Comp B) is set to PRD+1.  

If ´PWM state’ is equal to 1 and ref is greater than PRD then ref’ is equal to ref minus PRD. The register used to 

set high the PWM output (comp A) is set to 0 and the register used to set low the PWM output (Comp B) is set to ref’.  

If ‘PWM state’ is equal to 2 and ref is greater than PRD then ref’ is equal to 2PRD – ref. The register used to set 

the PWM output high (comp A) is set to ref’ and the value of the register used to set the PWM output low (Comp B) is 

set to PRD+1.  

If ‘PWM state’ equal to 3 and ref is greater than PRD then ref´ is set to PRD. The register used to set high the 

PWM output (comp A) is set to 0 and the register used to set low the PWM output (comp B) is set to PRD+1. 
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Figure 33. 
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The same procedure as commented above is used for different reference values and for different number of 

sub-module obtaining the resampled PS PWM algorithm. The algorithms are given in Table 5, Table 6 and Table 7. 

After each explanation of the algorithm a capture of the PMM signal measured in the laboratory using the resampled 

method is presented and compared with the PS PWM signals obtained by simulations. As it can be observed in those 

plots, besides small differences in certain cases, the results obtained in the laboratory are the same as the results 

obtained in the simulations. 

3.2. Resampled PWM for MMC with 4 sub-modules. 
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Figure 34. Resampled PS PWM for a 4 sub-modules MMC. 
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Table 5. Resampled PS PWM algorithm for a 4 sub-modules MMC. 

 PWM _ state = 0 PWM _ state = 1 PWM _ state = 2 PWM _ state = 3 

ref = 2PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD + 1 

 

Comp B = PRD + 1 

 

Comp B = PRD + 1 

 

Comp B = PRD + 1 

 

2PRD >ref ≥ PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 2PRD – ref 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = ref - PRD 

 

Comp B = PRD + 1 

 

Comp B = PRD + 1 

 

PRD > ref ≥ 0 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = PRD – ref 

 

Comp B = ref 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = PRD + 1 
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3.2.1. Measured and simulated resampled PS PWM signals at 1.1818 kHz switching frequency. 

Figure 35. Measured PWM out of the MMC sub-modules 1 to 4 applying the resampled PS PWM algorithm.  

 

Figure 36. Simulated PWM output of the MMC sub-modules 1 to 4 applying phase shifted PWM.  
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3.3. Resampled PWM for MMC with 6 sub-modules. 
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Figure 37. Resampled PS PWM for a 4 sub-modules MMC. 
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Table 6. Resampled PS PWM algorithm for a 6 sub-modules MMC. 

 PWM_state = 0 PWM_state = 1 PWM_state = 2 PWM_state = 3 PWM_state = 4 PWM_state = 5 

ref =  3PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0  

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = PRD+1 

 

Comp B = PRD+1 

 

Comp B PRD + 1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

3PRD > ref ≥  2PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 3PRD – ref 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = PRD+1 

 

Comp B = ref – 2PRD 

 

Comp B = PRD + 1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

2PRD > ref ≥ PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 2PRD – ref 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = ref - PRD 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B =  PRD +1 

 

Comp B = PRD +1 
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 PWM_state = 0 PWM_state = 1 PWM_state = 2 PWM_state = 3 PWM_state = 4 PWM_state = 5 

PRD > ref ≥ 0 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0  

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = PRD – ref 

 

Comp B = ref 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = PRD + 1 
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3.3.1. Measured and simulated resampled PS PWM signals at 1kHz switching frequency. 

 

Figure 38. Measured PWM out of the MMC sub-modules 1 to 6 applying the resampled PS PWM algorithm.  

 

 

Figure 39. Simulated PWM output of the MMC sub-modules 1 to 6 applying phase shifted PWM.  
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3.4. Resampled PWM for MMC with 8 sub-modules. 

PRD 

2PRD 

0 1 2 3

3PRD 
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4PRD 

0

SM1 SM5 SM2 SM6 SM3 SM7 SM4 SM8 SM1

counter value

time

 

Initial sub-modules PWM state or phase-shift: 

 SM1 initial PWM state: 0 

 SM2 initial PWM state: 6 

 SM3 initial PWM state: 4 

 SM4 initial PWM state: 2 

 SM5 initial PWM state: 7 

 SM6 initial PWM state: 5  

 SM7 initial PWM state: 3 

 SM8 initial PWM state: 1 

PRD 

PRD 

2PRD 

ref 3

PWM 3

0 1 2 3

3PRD 

4 5

PWM 2

ref 2

PRD 

6 7
4PRD 

ref 2'
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Figure 40. Resampled PS PWM for an 8 sub-modules MMC. 
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Table 7. Resampled PS PWM algorithm for an 8 sub-modules MMC. 

 PWM_state = 0 PWM_state = 1 PWM_state = 2 PWM_state = 3 PWM_state = 4 PWM_state = 5 PWM_state = 6 PWM_state = 7 

ref = 4PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0  

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

4PRD > ref≥ 3PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0  

 

Comp A = 0 

 

Comp A = 4PRD – ref 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = PRD+1 

 

Comp B = PRD+1 

 

Comp B = ref – 3PRD 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

3PRD > ref≥ 2PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A =0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 3PRD - ref 

 

Comp A = 0 

 

Comp A = 0 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = ref – 

2PRD 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = PRD +1 

 

Comp B = PRD +1 

 

Comp B = PRD +1 
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 PWM_state = 0 PWM_state = 1 PWM_state = 2 PWM_state = 3 PWM_state = 4 PWM_state = 5 PWM_state = 6 PWM_state = 7 

2PRD > ref ≥ PRD 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A =2PRD - 

ref 

 

Comp A = 0 

 

Comp B = PRD + 1 

 

Comp B = ref - PRD 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = PRD + 1  

 

Comp B = PRD + 1 

 

PRD > ref ≥ 0 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = 0 

 

Comp A = PRD - ref 

 

Comp B = ref 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = 0 

 

Comp B = PRD + 1 
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3.4.1. Measured and simulated resampled PS PWM signals at 1.1818kHz switching frequency. 

 

Figure 41. Measured PWM out of the MMC sub-modules 1 to 8 applying the resampled PS PWM algorithm. 

 

 

Figure 42. Simulated PWM output of the MMC sub-modules 1 to 8 applying phase shifted PWM.  
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Chapter 4: Description of the MMC system 
 

 

In dis chapter a general explanation of the different state machines implemented in the MMC system is given. 

In order to completely understand the behavior of the system three different entities which will interact with each 

other must be distinguished:  the system operator, the central controller and the sub-module controllers as shown in 

Figure 43. The functions of each one are explained below. 

Central Controller 

Operator

Sub-Module 1 Sub-Module 2 Sub-Module 3 Sub-Module 4

Sub-Module 5 Sub-Module 6 Sub-Module 7 Sub-Module 8
 

Figure 43. MMC system entities.  

4.1. Operator of the system. 

The operator of the system will be in charge of powering the system on or off, initializing the system, 

synchronizing the system and running the system. For this, the operator will have access to the following commands 

which will be the control inputs of the central controller: ‘Power’, ‘System Initialization Enable’, ‘Synchronization 

Enable’ and ‘PWM Enable’. This is done through a control panel as shown in 

1

0

System Initialization
Enable

(push button)

PWM
Enable

(switch)

1

0

Synchronization
Enable

(switch)

1

0

Power
(switch)

Figure 44 (only illustrative). After turning the system on, ‘System Initialization Enable’ is the first command the 
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operator must give. If the system is not initialized it will not be able to run in normal operation. More details about the 

system initialization are given in the following paragraphs. Once the system has been initialized, the operator has to 

turn on first the switch ´Synchronization Enable´ and afterwards the switch ´PWM Enable´ to start normal operation. 

The system can also run when the switch ´Synchronization Enable´ is off, however, this should be done only for testing 

purposes and never when the load is connected to the system. 

1

0

System Initialization
Enable

(push button)

PWM
Enable

(switch)

1

0

Synchronization
Enable

(switch)

1

0

Power
(switch)

Figure 44. Illustrative control panel of the system. 

4.2. Central Controller. 

The central controller is the interface between the operator and the sub-modules controllers and performs the 

following main tasks: 1) communication status checking for the sub-modules, 2) initialization of the system when the 

operator gives the order, 3) control of the system in running condition, 4) reconfiguration of the system in case of an 

electric fault. In order to better understand the relationships between the entities of the system the following figure is 

presented with focus on the central controller. 



 

41 
 

1.
Commands
Operator 
master  

System Operator

Sub-module 
controller

Slave number 1

Sub-module 
controller

Slave number N

2.
Damaged 

Sub-Module 

.

.

.

A/D
External

Slave

1. Upper arm 
current 

measurement 

2. Lower arm 
current

measurement 

1. By-passed state 

2. Initial PWM state

5. Number of phase 
sub-modules

4. Voltage 
reference

3. Commands 
master- slave 

Central 
controller

and master 
of the 

network

number of 
variables 
= 5 x N

1. Capacitor voltage 
measurement

1. Capacitor voltage 
measurement

number of 
variables = 1 x N

EtherCAT 
communication 

bus

EtherCAT 
communication 

bus

number of 
variables = 2

number of 
variables = 1

number of 
variables = 1

number of 
variables = 5

number of 
variables = 5

EtherCAT 
communication 

bus

number of 
variables = 2

EtherCAT 
communication bus

.

.

.

1. Inputs of the central 
controller 

Colors Legend 

1. Outputs of the 
central controller 

 

Figure 45. MMC system entities relationships diagram. 

The central controller has the following input variables from the different entities of the system: 

System Operator: 

1. Commands operator master: a 16 bits variable from which the first three bits are used to transmit the 

commands ‘System Initialization Enable’, ‘Synchronization Enable’ and ‘PWM Enable’ as shown in Figure 

46.  
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PWM Enable

Synchronization 
Enable

System 
Initialization 

Enable  

Figure 46. Commands Operator Master variable 

System Initialization Enable: when activated (1), all initial parameters needed for the system to run are 

calculated. More details are given in ‘Central Controller State Machine’ and ‘Sub-module Controller State 

Machine’ sections. 

Synchronization Enable: when enabled (1), the EtherCAT synchronization technique is activated and the 

sub-module controller carrier wares are synchronized, when disabled (0) the carriers are not 

synchronized. It should always be enabled when running with connected load. 

PWM Enable: once the system has been initialized, when enabled (1), the system will start normal 

operation, when disabled (0) the system will stop the operation and all the semiconductor switches of the 

sub-modules will be open. More details are given in following sections. 

2. Damaged sub-modules: an electrical fault in one of the sub-modules of the MMC can be simulated through 

this variable. Depending on the damaged sub-module the system will reconfigure in a different way as 

commented below. 

External Slave: 

1. Upper arm current measurement: necessary measurement for capacitor voltage averaging control and 

sub-module individual balancing control. 

2. Lower arm current measurement: necessary measurement for capacitor voltage averaging control and 

sub-module individual balancing control. 

Sub-module controller: 

1. Capacitor voltage measurement: necessary measurement for capacitor voltage averaging control and sub-

module individual balancing control.  

The central control has output variables only toward the sub-modules controllers, and they are the following: 
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1. By-passed state: if a communication error is detected in the network the master may need to by-pass the 

sub-module in order to perform a correct resampled PS PWM given that the number or operational sub-

modules in both arms must be always equal.   

2. Initial PWM state: this variable indicates the initial phase shift of each sub-module. 

3. Commands master-slave: a 16 bits variable from which the first three bits are used to transmit the 

commands ‘System Initialization Acknowledged’, ‘Synchronization Enable’ and ‘PWM Enable’ to the local 

controllers as it can be seen in Figure 47. 

PWM Enable

Synchronization 
Enable

System 
Initialization 

Acknowledged  

Figure 47.  Commands Master Slave variable 

System initialization acknowledged: this variable will be at low state (0) then the system is turned on. It 

will go to high state (1) when the central controller has initialized the system. In order to initialize the 

variables the operator of the system must give the order ‘System Initialization Enable’. 

Synchronization Enable: when enabled by the operator, the EtherCAT synchronization technique is 

activated and the sub-module controller carrier wares are synchronized, when disabled (0) the carriers 

are not synchronized. It should always be enabled when running with connected load.  

PWM Enable: when enabled by the operator, the system will start normal operation, when disabled (0) 

the system will stop the operation and all the semiconductor switches of the sub-modules will be open. 

4. Voltage reference: the voltage reference for each sub-module is calculated. This reference includes the 

output voltage reference and the capacitor voltage averaging control reference. 

5. Number of leg sub-modules: in order to perform the proper resampled phase-shifted PWM the number of 

sub-modules in one leg is necessary. 
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4.3. Central controller state machine. 

In the figure shown below the different machine states of the central controller are presented from a graphical 

point of view. Each state and the conditions by which it is determined have associated a color. In practice, these states 

are implemented using C++.  A description of the states and the transition conditions are given in the paragraphs 

which follow the diagram. If a variable has the values ‘x’, means that the value of the variable is irrelevant for the 

given state or transition evaluation.  

S0
STAND-BY

S1
INITIALIZATION

S2
READY-TO-RUN

T01
 sys init en = 1 

 sys init acknow = 0
 PWM enable = x
 num leg sm = x

T00
 sys init en  = 0

 sys init acknow = 0
 PWM enable = x
 num leg sm = x

T23
 sys init en = 0

 sys init acknow = 1
 PWM enable = 1
 num leg sm ≥ 6

T32
 sys init en = 0

 sys init acknow = 1
 PWM enable = 0
 num leg sm ≥ 6

S3
RUNNING

T12
 sys init en = 0

 sys init acknow = 1
 PWM enable = 0 
 num leg sm ≥ 6

Boolean inputs received from the operator:
 Sistem Initialization Enable - > sys init en
 PWM enable

Internal central controller initialization finished flag:
 System initialization acknowledged -> sys init acknow
Internal central controller number of sub-modules per leg counter:
 Number of leg sub-modules -> num leg sm 

T22
 sys init en = 0

 sys init acknow = 1
 PWM enable = 0
 num leg sm ≥ 6

T13
 sys init en = 0

 sys init acknow = 1
 PWM enable = 1 
 num leg sm ≥ 6

T33
 sys init en = 0

 sys init acknow = 1
 PWM enable = 1
 num leg sm ≥ 6

S4
NOT 

OPERATIONAL

T24
 sys init en = 0

 sys init acknow = 1
 PWM enable = 0
 num leg sm < 6

T34
 sys init en = 0

 sys init acknow = 1
 PWM enable = 1
 num leg sm < 6

T42
 sys init en = 0

 sys init acknow = 1
 PWM enable = 0
 num leg sm ≥ 6

T43
 sys init en = 0

 sys init acknow = 1
 PWM enable = 1
 num leg sm ≥ 6

T14
 sys init en = 0

 sys init acknow = 1
 PWM enable = x
 num leg sm < 6

 

Figure 48. Central controller state machine diagram. 

State S0: STAND-BY. The central controller is in this state after the system has been powered on and has not 

been initialized yet. The controller is waiting for the initialization order to be activated (‘System Initialization Enable’ = 

1) by the operator. During this state the master performs the following tasks:  

1) Communication status checking with the sub-modules and number of sub-modules counting. 
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2) Reading of the sub-modules capacitor voltage. 

Transition T00: the central controller remains in STAND-BY state if the initialization order is not given by the 

operator, this is, if ‘System Initialization Enable’ = 0. 

Transition T01: when the operator gives the initialization order, ‘System Initialization Enable’ = 1, the controller 

moves to the only possible next state, S1: INITIALIZATION. 

State S1: INITIALIZATION. The master is in this state when the initialization order is given, ‘System Initialization 

Enable’ = 1. During this state the master performs the following tasks: 

1) By-pass the corresponding sub-modules: given that the number of sub-modules per arm must be the same 

for normal resampled PS PWM MMC operation, if a fault is detected in a sub-module, then another sub-module from 

the opposite arm has to be by – passed in order to achieve an equal number of sub-modules in both arms.  

If the number of leg sub-modules is 8 then the position of each sub-module in the leg will correspond with the 

EtherCAT sub-module address. In this case, no sub-module is either under fault condition or by-passed. This 

configuration is shown in Figure 49. 

EtherCAT 
comunication 

BUS

Port A

BECKHOFF 
C6930-0040

Central
Controller 

Port B

EtherCAT 
SM address 4
SUB-MODULE

Leg position = 4

EtherCAT 
SM address 3
SUB-MODULE

Leg position = 3

EtherCAT 
SM adrress 2
SUB-MODULE

Leg position = 2

EtherCAT 
SM address 1
SUB-MODULE

Leg position = 1

EtherCAT 
SM address 8

SUB-MODULE
Leg position = 8

EtherCAT 
SM address 7

SUB-MODULE
Leg position = 7

EtherCAT 
SM address 6

SUB-MODULE
Leg position = 6

EtherCAT 
SM address 5

SUB-MODULE
Leg position = 5

Low arm = 0 Low arm = 0 Low arm = 0 Low arm = 0

Low arm = 1Low arm = 1Low arm = 1Low arm = 1

Initial PWM state = 2 Initial PWM state = 4 Initial PWM state = 6 Initial PWM state = 0

Initial PWM state = 1 Initial PWM state = 3 Initial PWM state = 5 Initial PWM state = 7

 

Figure 49. Complete MMC configuration with 8 active sub-modules. 

When one of the sub-modules is under fault condition, then the number of sub-modules is 6 given that other 

sub-module must by- passed. The different configurations of the system when a sub-module fault occurs are 

presented in Figure 50, Figure 51, Figure 52 and Figure 53. The black cross indicates that the sub-module is either by-

passed or under fault condition.  
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Figure 50. MMC configuration with SM 1 and 5 by-passed or not-active. 
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Figure 51. MMC configuration with SM 2 and 6 by-passed or not-active. 
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Figure 52. MMC configuration with SM 3 and 7 by-passed or not-active. 



 

47 
 

EtherCAT 
comunication 

BUS

Port A

BECKHOFF 
C6930-0040

Central
Controller

Port B

EtherCAT 
SM address 4
SUB-MODULE

Leg position = 3

EtherCAT 
SM address 3
SUB-MODULE

Leg position = 3

EtherCAT 
SM adrress 2
SUB-MODULE

Leg position = 2

EtherCAT 
SM address 1
SUB-MODULE

Leg position = 1

EtherCAT 
SM address 8

SUB-MODULE
Leg position = 6

EtherCAT 
SM address 7

SUB-MODULE
Leg position = 6

EtherCAT 
SM address 6

SUB-MODULE
Leg position = 5

EtherCAT 
SM address 5

SUB-MODULE
Leg position = 4

Low arm = 0 Low arm = 0 Low arm = 0 Low arm = 0

Low arm = 1Low arm = 1Low arm = 1Low arm = 1

Initial PWM state = 2 Initial PWM state = 2 Initial PWM state = 4 Initial PWM state = 0

Initial PWM state = 2 Initial PWM state = 2 Initial PWM state = 4 Initial PWM state = 0

 

Figure 53. MMC configuration with SM 4 and 8 by-passed or not-active. 

2) Assignment of the initial PWM state to each sub-module depending on the configuration of the system as 

shown in the figures above. 

Transition T12: if the number of leg sub-modules is 6 or 8 but the operator has not given yet the ‘PWM Enable’ 

order, the system will jump to state S2, READY-TO-RUN. 

Transition T13: if the number of leg sub-modules is 6 or 8 and the operator has given the ‘PWM Enable’ order 

the system will jump to state S3, RUNNING. 

Transition T14: if the number of leg sub-modules is less than the necessary minimum for normal operation the 

system will jump to state S4, NOT-OPERATIONAL. 

State S2: READY-TO-RUN. In this state the system has been already initialized and has all the necessary 

parameters to run, however the operator has not given yet the ‘PWM Enable’ order and hence the modulation is 

stopped. The central controller is continuously checking for sub-module faults and it is ready to reconfigure the 

system if a fault is detected. The number of detected sub-modules is compared with the number of previously 

detected sub-modules. If a change in the number of sub-modules is given, the system is reconfigured depending on 

the case, if not, the actual configuration is maintained. 

Transition T22: the system will remain in state S2 until the operator gives the order ‘PWM Enable’. 

Transition T23: when the operator gives the order ‘PWM Enable’ the system will jump to state S3, RUNNING. 

Transition T24: if the number of active sub-modules is less than the minimum for normal operation the system 

will jump into S4, NOT-OPERATIONAL state.  

State S3: RUNNING. In this state, all the necessary conditions for normal operation are fulfilled and the 

operator has given the order ‘PWM Enable’. In this state the semiconductor switches are commutating according to 
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the resampled PS PWM and the implemented control techniques. As in the previous state, the central controller is 

continuously checking for sub-module faults. The number of detected sub-modules is compared with the number of 

previously detected sub-modules. If a change in the number of sub-modules is encountered, the system is 

reconfigured depending on the given case, if not, the actual configuration is maintained. 

Transition T32: the system will jump to the READY-TO-RUN state when the operator stops the modulation, 

‘PWM Enable’ = 0. 

Transition T34: if the number of leg sub-modules is less than the necessary minimum for normal operation the 

system will jump to state S4, NOT-OPERATIONAL.  

State S4: NOT-OPERATIONAL. The system will stay in this state as long as the ‘System Initialization’ order has 

been given by the operator and the detected number of leg sub-modules is less than 6. 

Transition T42: if the detected number of leg sub-modules is 6 or 8 and the order ‘PWM Enable’ is not given by 

the operator, the system will jump to READY-TO-RUN state. 

Transition T43: if the detected number of leg sub-modules is 6 or 8 and the order ‘PWM Enable’ is given by the 

operator, the system will jump to READY-TO-RUN state. 
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4.4. Sub-module local controller. 

One single controller is installed in each sub-module. The main tasks of the local controller are the following: 1) 

faults control, 2) resampled PS PWM algorithm. In order to better understand the functions and behavior of the local 

controller the following diagram with all the controller inputs and outputs is presented. A description of them is 

provided in the following paragraphs. 
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6. Capacitor voltage 
measurement 

7. Sub-module current 
measurement 
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Figure 54. Sub-module controller I-O diagram. 

The local controller inputs variables in the range 1 to 5 come from the central controller of the system and their 

description was previously given in section 4.2 and is not repeated here. Only the variables 6 and 7 are discussed. 

Capacitor voltage measurement: the voltage in the capacitor of the sub-module is measured locally and the 

data is converted from analog to digital through the controller A/D converters. The measurement is needed for the 

averaging, balancing capacitor voltage control and to activate the over-voltage protection. 
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Sub-module current measurement: the current flowing through the sub-module is measured locally and the 

data is converted from analog to digital through the controller A/D converters. The measurement is needed for the 

over-current protection. 

The local controller has the following digital outputs which are connected to a Complex Programmable Logic 

Device (CPLD). 

DSP_PWM: PWM digital output of the controller. The pulses are the result of the control and resampled PS 

PWM techniques. This is a single output, and it is connected the CPLD of the sub-module. Inside the CPLD, the 

opposite PWM signal is also computed obtaining two PWM signals, one for each MOSFET, which are connected to the 

gate driver (see Figure 57). 

DSP_DRIVER_DISABLE: digital output which is used to disable the driver. When is set to a high value, the 

switches will be open independently on the PWM signals (see Figure 57). 

 SM_BY-PASSED_ENABLE: in certain cases which will be discussed in the next paragraphs the commutation of 

the sub-module will be stopped and it will be passed by closing the RELAY of the sub-module (see Figure 57). 

The local controller also has one output variables which will be transmitted to the central controller via 

EtherCAT communication bus. 

Capacitor voltage measurement: as previously commented, in order to perform the capacitor voltage averaging 

control, the central controller needs the values of the capacitor voltage of all the sub-modules.  
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4.5. Sub - module controller state machine. 

In the figures shown below the different states of the sub-module controller are presented from a graphical 

point of view. Each state and the conditions by which it is determined have an associated color. In practice, these 

states are implemented using C++. A description of the states and the transition conditions are given in the 

paragraphs placed below the diagrams. If a variable has the values ‘x’, means that the value of the variable is 

irrelevant for the given state or transition evaluation. 

For simplicity the diagram is split in two. In the first diagram, the states when the number of sub-modules in 

the leg is equal or greater than six are shown. In the second diagram a new state is introduced, this is the state NOT-

OPERATIONAL. The two diagrams are superposed.  

S0
STAND-BY

S2
READY-TO-RUN
PWM stopped

T02
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0
 num leg sm ≥ 6

T00
 sys init acknow = 0

 SM by-passed = x
 PWM enable = x
 num leg sm = x

T12
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0
 num leg sm ≥ 6

S1
BY-PASSED

PWM stopped

T01
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = x
 num leg sm ≥ 6

T21
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = 0
 num leg sm ≥ 6

T22
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0

 num leg sm ≥ 6

T11
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = x

 num leg sm ≥  6

T13
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 1
 num leg sm ≥ 6

T31
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = 1
 num leg sm ≥ 6

T23
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 1
 num leg sm ≥ 6 

T33
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 1
 num leg sm ≥ 6

T32
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0
 num leg sm ≥ 6

Boolean inputs received from the master:
 Sistem initialization acknowledged - > sys init acknow
 Sub-module by-passed - > SM by-passed
 PWM enable (controller by the operator)
 Number of leg sub-modules -> num leg sm

SM controller communication status flag:
 Communication fault -> comm fault

S3
RUNNING

PWM active

 

Figure 55. MMC sub-module state machine diagram when the number of sub-modules in the leg is ≥ 6. 
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S0
STAND-BY

S2
READY-TO-RUN
PWM stopped

S1
BY-PASSED

PWM stopped

T04
 sys init acknow = 1

 SM by-passed = x
 PWM enable = x
 num leg sm < 6

T24
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0

 num leg sm < 6

T14
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = x

 num leg sm <  6

T34
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 1
 num leg sm < 6

Boolean inputs received from the master:
 Sistem initialization acknowledged - > sys init acknow
 Sub-module by-passed - > SM by-passed
 Syncronozation Enable -> synch en (controlled by the operator)
 PWM enable (controller by the operator)
 Number of leg sub-modules -> num leg sm

SM controller communication status flag:
 Communication fault -> comm fault

S3
RUNNING

PWM active

S4
NOT

OPERATIONAL

T43
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 1
 num leg sm ≥ 6

T42
 sys init acknow = 1

 SM by-passed = 0
 PWM enable = 0

 num leg sm ≥  6

T41
 sys init acknow = 1

 SM by-passed = 1
 PWM enable = x

 num leg sm ≥  6T44
 sys init acknow = 1

 SM by-passed = x
 PWM enable = x
 num leg sm < 6

T44

 

Figure 56. MMC sub-module state machine diagram when the number of sub-modules in the leg is < 6. 

State S0: STAND-BY. When the system is turned on by the operator and the sub-module has not been initialized 

yet, the sub-module controller will stay in this state. In STAND-BY state the system is not able to operate because the 

needed parameters are unknown. The variables which need to be initialized by the central controller in order for the 

sub-module to be able to run are the following: 

1) Total number of leg sub-modules, it can be 8 or 6. This parameter is needed because the resampled phase-

shifted PWM algorithm is different depending on the number of sub-modules of the MMC (See tables). 
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2) By-pass state of the sub-module. A sub-module can be by-passed by the central controller in order to 

maintain the same number of sub-modules in the upper and lower arms. 

3) Initial PWM state. The initial PWM state or initial phase-shift of each sub-module is needed in order to 

implement the resampled phase-shifted PWM technique. This value depends on the position of the sub-module in the 

leg. 

4) System initialization acknowledged. When this variable received from the master is set to high (1), it 

indicated that the three variables commented above have been initialized and the system is ready to run.  

During this state the sub-module sends the value of the voltage in the capacitor to the master. This task, as the 

previous one is performed in all the states. 

The physical states of the sub-module switches in STAND-BY state are shown in Figure 57. 

CPLD 
XC9572XL
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Figure 57. Physical representation of the sub-module in STAND-BY / READY-TO-RUN / NOT-OPERATIONAL states. 

Transition T00: the local controller remains in STAND-BY state if the initialization order is not given by the 

operator , this is if ‘System Initialization Enable’ = 0.  

Transition T01: the local controller will jump to state S1, BY-PASSED if the system is initialized by the master 

and an order to by-pass the module is received. 
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Transition T02: if the system is initialized by the master and no order to by-pass the sub-module is received, the 

system will jump to state S2, READY-TO-RUN. 

Transition T04: if the system is initialized by the master and the number of leg sub-modules is less than the 

minimum necessary for normal operation the local controller will jump to state S4, NOT-OPERATIONAL. 

State S1, BY-PASSED. As commented before, the local controller will be in BY-PASSED stated if the proper order 

is received from the central controller. The physical states of the sub-module switches in BY-PASSED state are shown 

in Figure 58. 
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Figure 58. Physical representation of the sub-module in BY-PASSED state. 

 

Transition T12: if the order to remove the by-passed condition is received from the master and the order ‘PWM 

Enable’ has not been given by the operator the local controller will jump to state S2, READY-TO-RUN. 

Transition T13: if the order to remove the by-passed condition is received and the order ‘PWM Enable’ has 

been given by the operator the local controller will jump to state S3, RUNNING. 

Transition T14: If the number of sub-modules in the leg is less than 6, the controller will jump to state S4, NOT-

OPERATIONAL. 
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State S2, READY-TO-RUN. The sub-module controller has received all the needed parameters in order to start 

normal operation, however, the operator has not given the starting order ‘PWM Enable’ yet. The states of the 

different switches of the sub-module are the same as in STAND-BY state and can be seen in Figure 57. 

Transition T21: if the proper order is received from the master the local controller will jump to state S1, BY-

PASSED. 

Transition T22: the local controller will remain in state S2, READY-TO-RUN if the running order is not given by 

the operator. 

Transition T23: if the operator gives the running order, ´PWM Enable = 1´, the sub-module controller will jump 

to state S3, RUNNING. 

Transition T24: in case the number of sub-modules per leg is less than the minimum necessary for normal 

operation the sub-module will jump to state S4, NOT-OPERATIONAL. 

State S3: RUNNING. In this state the operator has given the order to run the system, ‘PWM Enable’ = 1. The 

converter is working in normal conditions, the reference is received from the master and the different control and 

resampled PS PWM algorithms are computed. 

Transition T31: if the proper order is received from the master the local controller will jump to state S1, BY-

PASSED. 

Transition T32: if the operator gives the order to stop the modulation, ´PWM Enable = 0´, the local controller 

will jump to state S2, READY-TO-RUN. 

Transition T33: the controller will remain in state S3, RUNNING, if no different order is given from the operator 

or fault occurs. 

Transition T34: if a fault occurs and the number of sub-modules in the leg is less the six, the sub-module 

controller will jump to state S4, NOT-OPERATIONAL. 

State S4, NOT-OPERATIONAL: the local controller will remain in this state as long as the number of sub-modules 

in the leg is less than the minimum necessary for normal operation. . The states of the different switches of the sub-

module are the same as in STAND-BY state and can be seen in Figure 57. 

Transition T41: if the number of sub-modules per leg is 6 or 8 and the by-pass order is received from the master 

the local controller will jump to state S1, BY-PASSED.  

Transition T42: if the number of sub-modules per leg is 6 or 8 and no order to run has been given by the 

operator the local controller will jump to state S1, READY-TO-RUN. 
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Transition T43: if the number of sub-modules per leg is 6 and 8 and the operator has given the order to run the 

system, the local controller will jump to state S3, RUNNING. 

Transition T44: while the number of leg sub-modules is less than 6, the controller will remain in state S4, NOT-

OPERATIONAL. 
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Chapter 5: Control of the MMC 
 

 

In this chapter the inner control of the MMC is considered. The main function of the inner control of the MMC 

is to control the capacitor voltage value of the sub-modules in order to obtain the desired output voltage. The phase 

shifted PWM technique provides the best performance to naturally balance the voltage in the capacitors of the MMC 

[19], [20]. However, a voltage drift from the initial values still exists when the modulation is started unless a control 

technique is applied in order to keep the voltage in the capacitors to the same value as a reference.  

5.1. MMC capacitor voltage unbalancing.  

At the start up stage, the capacitor voltages of the MMC sub-modules are charged to the nominal value. For 

the setup used in this project the nominal value of the capacitors is 100V if 8 sub-modules are being used and 133.33V 

is 6 sub-modules are used. Considering that 8 sub-modules are being used and that the modulation of the MMC is 

started at time t = 0 a simulated example of the capacitor voltage drift when no control is applied is shown in Figure 

59.  

Vc SM1

Vc SM2

Vc SM3

Vc SM4

Vc SM5

Vc SM6

Vc SM7

Vc SM8

 

Figure 59. Simulated capacitor voltage unbalancing. 

The unbalancing of the voltages depends on the load and leads to a distortion of the output voltage. In order to 

avoid this problem the capacitor voltage control strategy studied and applied in this chapter is based on [8], [9] and it 

is composed by: 
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1) Averaging capacitor voltage control 

2) Individual capacitor voltage balancing control 

5.2. Capacitor Voltage Averaging Control 

The capacitor voltage averaging control is in charge of keeping the average value of the voltage in the 

capacitors of the MMC equal to a reference value. The average capacitor voltage is given by equation (11):  

           ∑       

 

   

 (11) 

 

The averaging control is based on adjusting the value of the vcirc(t) component of equations (8) and (9) in 

Chapter 2. By controlling the value of vcirc(t) an extra component of circulating current can be added from the DC link 

in order to charge or discharge the capacitors and follow the average reference value. vcirc(t) has been defined in 

equation (6) in Chapter 2. The block diagram of the averaging control is shown in Figure 60. 

+-+- K1 +
K2
s K3 +

K4
s

+ 1
2

Vc avg ref 

Vc avg meas 

Iu meas

Il meas

Icirc meas

Icirc ref Vcirc ref

+

Figure 60. Capacitor averaging control block diagram  

5.3. Individual capacitor voltage balancing control. 

The capacitor voltage balancing control is in charge of maintaining the capacitor voltage of each sub-module, 

vcj_meas(t), close to the reference value, vcj_ref(t). The block diagrams of the balancing control for the upper and lower 

arms are respectively shown in Figure 61 a) and Figure 61 b). The output of the voltage balancing control is added to 

equations (8) and (9).  

+- K5 x
Vcj  ref 

Vcj meas 

Iu meas

vbalj ref

(j: 1  ~  4)

a) 

+- K5 x
Vcj  ref 

Vcj meas 

Il meas

vbalj ref

(j: 5  ~  8)

b) 

Figure 61. Capacitor voltage balancing control block diagram. 
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Two models of the MMC have been built using PLEX in order to simulate the commented control strategies 

before its implementation in the real setup. The first model has been built using eight sub-modules per phase and the 

second one using six. The model with eight sub-modules simulates the MMC behavior under normal operation and 

the model with six sub-modules simulates the behavior of the system after a fault reconfiguration. 

5.4. Simulation results 8 sub-module MMC. 

Taking into account that the capacitor voltage of the sub-modules must be kept equal to Vc = E /4, the upper 

and lower arm reference equations for each sub-module are the following 
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If the capacitor voltage of all sub-modules is kept equal to Vc = 2E /N by then control algorithm, where N is 

equal to 8, then:   
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The voltage commands of each sub-module are normalized by each capacitor voltage value and then compared 

with a triangular wave with a maximum and minimum value of 1 and 0 respectively and a frequency fcar. As a result of 

this a nine level output voltage is obtained with an equivalent switching frequency of 8*fcar. The circuit parameters 

and control gains used for the simulations are presented below: 

DC supply voltage ±200V 

Number of sub-modules 8 

Sub-module capacitor value 6mF 

Nominal capacitor voltage 100V 

Arm resistance 0.01Ω 

Arm inductance 1.8e-2H 

Load resistance 35Ω 

Load inductance 6.8mH 

Carrier frequency 250Hzh 

Equivalent switching frequency 250Hz *8 = 2kHz 

Sampling frequency  2kHz 

K1 10 

K2 100 

K3 10 

K4 140 

K5 0.4 

 

In the figures presented below some simulated waves are shown. In Figure 62 the behavior of the capacitor 

voltage is presented. In this case the reference for the capacitor voltages is kept constant to a value of 100V. As can be 

observed the reference is being correctly followed and no voltage drift if present. A zoom of capacitor voltage waves is 

given in Figure 63. 

In order to test the performance of the control a voltage step is applied as a capacitor voltage reference in 

Figure 65. At the bottom of the figure, the red line is the capacitor voltage reference and the blue line is the measured 

capacitor voltage. As can be seen the behavior of the system is satisfactory and the reference is followed by the 

system.  The output voltage and current of the system with eight sub-modules are presented in Figure 65. 
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Figure 62. Simulated capacitor voltage with averaging and balancing control and a constant voltage reference. 
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Figure 63. . Simulated capacitor voltage with averaging and balancing control and a constant voltage reference. 
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Figure 64. . Simulated capacitor voltage with averaging and balancing control and a step voltage reference. 

 

Figure 65. Simulated output voltage and output current. 

  



 

63 
 

5.5. Simulation results 6 sub-module MMC. 

In the case of the MMC with six sub-modules the capacitor voltages must be kept equal to Vc = E /3, the 

command voltage equations are the following:  
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As a result of this a seven level output voltage is obtained with an equivalent switching frequency of 6*fcar. The 

circuit parameters and control gains used for the simulations are presented below: 

DC supply voltage ±200V 

Number of sub-modules 6 

Sub-module capacitor value 6mF 

Nominal capacitor voltage 100V 

Arm resistance 0.01Ω 

Arm inductance 1.8e-2H 

Load resistance 35Ω 

Load inductance 6.8mH 

Carrier frequency 333.33Hzh 

Equivalent switching frequency 333.33*6 = 2kHz 

Sampling frequency  2kHz 

K1 10 

K2 100 

K3 3 

K4 60 

K5 0.3 
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In the figures presented below some simulated waves are shown. In Figure 66 the behavior of the capacitor 

voltage is presented. In this case the reference for the capacitor voltages is kept constant to a value of 133.33V. As can 

be observed the reference is being correctly followed and no voltage drift if present. A zoom of capacitor voltage 

waves is given in Figure 67. 

In order to test the performance of the control a voltage step is applied as a capacitor voltage reference in 

Figure 68. At the bottom of the figure, the red line is the capacitor voltage reference and the blue line is the measured 

capacitor voltage. As can be seen the behavior of the system is satisfactory and the reference is followed by the 

system. The output voltage and current of the system with six sub-modules are presented in Figure 69. 

 

Figure 66. Simulated capacitor voltage with averaging and balancing control and a constant voltage reference. 
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Figure 67. Simulated capacitor voltage with averaging and balancing control and a constant voltage reference. 
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Figure 68. Simulated capacitor voltage with averaging and balancing control and a step voltage reference. 
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Figure 69. Simulated output voltage and output current. 
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5.6. Measured results 

Even though the simulations show a correct behavior of the system, the inner control of the MMC has not been 

successfully implemented by the submission date of this master thesis and further work need to be performed. When 

the control is implemented in the laboratory a fast unbalancing of the capacitor voltages occurs and overvoltage 

protection is triggered in some of the sub-modules. This phenomenon is not presented in the report due to the 

inability of measuring the eight capacitor voltages at the same time in the laboratory. The needed eight differential 

probes were not available at the time the tests were to be performed.  Because of this reason, the reconfiguration 

algorithm of the system has been tested without connecting the upper and lower arm into the system. A diagram of 

the setup is shown in Figure 70.  
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Figure 70. Test setup. 

The measured upper and lower arm voltage when no fault is detected, and hence the eight sub-modules of the 

system are performing the modulation is shown in Figure 71 and Figure 72. The green wave is the measured lower 

arm voltage and the purple wave the upper arm voltage. As there are four sub-modules per arm, the voltage waves 

have 5 levels. In order to emulate the 9 levels output voltage waveform corresponding to an 8 sub-modules MMC the 

upper arm voltage is subtracted from the lower arm voltage. The obtained waveform is shown in Figure 73 and Figure 

74.  
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Figure 71. 4 sub-modules lower (green) and  upper (purple) arms voltage measurement. 

 

Figure 72. 4 sub-modules lower (green) and upper (purple) arms voltage measurement. 
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Figure 73. Lower arm voltage minus upper arm voltage wave. 

 

Figure 74. . Lower arm voltage minus upper arm voltage wave. 
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When a fault is detected the system is reconfigured and the modulation is performed only with 6 sub-modules, 

by-passing two of the sub-modules. One of the sub-modules by-passed is the sub-module with the fault; the other by-

passed sub-module belongs to the opposite arm. The four levels lower and upper voltage waveform are showed 

Figure 75 and Figure 76. In order to emulate the 7 levels output voltage waveform corresponding to a 6 sub-modules 

MMC the upper arm voltage is subtracted from the lower arm voltage. The obtained waveform is shown in Figure 77 

and Figure 78. 

 

Figure 75. 3 sub-modules lower (green) and  upper (purple) arms voltage measurement. 

 

Figure 76. 3 sub-modules lower (green) and  upper (purple) arms voltage measurement. 
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Figure 77. Lower arm voltage minus upper arm voltage wave. 

 

Figure 78. Lower arm voltage minus upper arm voltage wave. 
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Chapter 6: Conclusions and future work 
 

 

6.1.   Conclusions 

The work carried out during this project can be divided into the following aspects. 

The first aspect is the implementation of a synchronization mechanism for the sub-module controller’s carrier 

waves using EtherCAT communication protocol. The EtherCAT Distributed Clocks mechanism has been found to be a 

suitable tool for synchronizing the carrier waves of the sub-modules with a maximum jitter in the range of 10 to 15 us.  

The second aspect is the implementation of the modulation technique. The resampled phase shifted PWM 

algorithm has been implement and tested for different MMC configurations including, four, six and eight sub-modules. 

The quality of the measurements carried out shown the suitability of this technique for hierarchical control topology. 

This method allows the updating of the reference at the same time in all the sub-modules and increases the updating 

frequency. 

The third aspect is the communication fault tolerance of EtherCAT protocol. One important feature that 

EtherCAT offers is communication redundancy in networks using ring configuration. This feature allows the normal 

functioning of the system even if the communication cable between two elements of the network is damaged. The 

implementation of this feature in the MMC system however has not been possible. EtherCAT communication 

redundancy is not compatible with Distributed Clocks. This is decreases the reliability of the system. 

The fourth aspect is the implementation of a fault tolerant reconfiguration algorithm of the MMC system. If a 

fault is detected in one of the MMC sub-modules the algorithm reconfigures the system without interrupting the 

operation of the system. The algorithm has been successfully implemented and tested in the laboratory.  

The fifth and last aspect is the implementation of the inner control of the MMC which includes the averaging 

capacitor voltage control and the individual balancing control. Two PLECS models for six and eight sub-modules MMC 

configuration have been implemented and different gain values have been tested obtaining good results. The 

laboratory implementation of the inner control algorithm, however, has been unsuccessful due to the time limitation. 

When the modulation is stated a fast unbalance in the capacitors voltages occurs and the over-voltage protection in 

some of the sub-modules is triggered.     

5.7. Future work. 

Due to the time limitation of the project the following tasks were not implemented and could be interesting for 

the future: 
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Finishing the implementation of the control strategy. The MMC cannot run without the averaging and 

balancing control strategy properly implemented. This is the most fundamental task to be implemented in the future.  

Communication speed limit. So far the minimum tested stable cycle time is 500us. The cycle time limits the 

performance of the system and its reduction suppose an increase in the sampling and switching frequencies.   

Reconfiguration when two sub-modules are under fault condition. In this project an algorithm which 

reconfigures the system when one sub-module is under fault condition has been created. The improvement of this 

algorithm in order to reconfigure the system when two sub-modules are under fault condition will improve the 

reliability of the system even further.  

In order to increase the usability and comfort when using the system the development of a user interface for 

the operator of the system should be considered. 
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Abstract – The half-bridge modular multilevel converter has 
proven itself to be a suitable solution for HVDC application. In 
order to achieve high modularity and fault tolerance, distributed 
control strategy is one possible solution and is discussed in this 
paper. When distributed control strategy is used, there is a 
central controller and a local controller in each sub-module 
(SM). A problem appears when implementing the modulation 
using this type of control strategy; this is the lack of 
synchronization between the internal clocks of the different sub-
modules controllers of the MMC. This will cause a drift between 
the PWM outputs of each sub-module increasing the total 
harmonic distortion of the output voltage. This paper presents a 
solution to synchronize the PWM outputs of the MMC sub-
modules using EtherCAT communication protocol focusing on 
phase shifted PWM modulation technique. 

INTRODUCTION 

High Voltage Direct Current (HVDC) is typically used as 

an efficient solution for transmitting electric power over long 

distances. HVDC technology starts being economically 

attractive when transmission distances of 500 to 800 km are 

exceeded, depending on different factors. For underwater 

cables is economically feasible even for smaller distances like 

50km [1]. 

Although line-commutated converters are still viable for 

bulk power transmission due to their low losses, in order to 

fulfill future field systems requirements, ‘self-commutated 

converters’ or voltage source converters (VSC) are more 

suitable [2]. Advantages of VSC are active and reactive 

power flow control, high reliability in weak or passive 

systems, flexible and compact station layout, asynchronous 

connection and black start [3],[4].  

The different VSC discussed in the literature suitable for 

high power high voltage transmission are the two-level VSC, 

diode-clamped multi-level converter, flying capacitor multi-

level converter and cascaded H-bridge multilevel converter. 

As an alternative to the above mentioned converter types a 

new topology has been proposed, the Modular Multilevel 

Converter (MMC).  

The MMC is composed of a number of several sub-

modules connected in series. A configuration employing half 

bridges in each sub-module is shown in Fig. 1. In this 

solution each sub-module of the MMC has two terminals and 

consists of two controlled switching components, S1- S2, 

each of them equipped with a diode connected in antiparallel, 

D1-D2 and a storage capacitor, noted with C [5]. Two 

protection devices can also be included in the design, a relay, 

R1, paralleled with a Triac, T1.  In case the sub-module 

suffers any damage these protection devices will be used to 

by-pass the sub-module ensuring the continuous flow of the 

current. The Triac T1 is used because of the ability to switch 

independently of the current direction and its fast reaction 

times. The relay is slower than the Triac; however it has 

lower losses when conducting. In case the sub-module needs 

to be bypassed the Triac will be turned on first because of its 

faster response. Afterwards, when the relay is on, the Triac is 

turned off again and the current will flow only though the 

relay minimizing the losses. 

The terminal voltage of the sub-module, VSM, can be equal 

to 0 or Vc depending on the switching devices states. The 

value of VC will depend on the number of sub-modules per 

phase, N, and the DC-link voltage, VC = 2Vdc / N. The basic 

operation of a sub-module is resumed in TABLE I. 

When talking about the whole system, each of the phases 

of a MMC is also called leg. At the same time a leg has two 

arms, the upper arm and the lower arm, both composed by n 

sub-modules, where n = N / 2.  The number of different 

voltage levels at the output of an MMC is equal with N + 

1[6].  

TABLE I 
SUB-MODULE OPERATION STATES 

 

Current 

direction 

S1 

state 

S2 

state 

VSM 

value 

Capacitor 

status 

Conducting 

Device  

Ism > 0 

ON OFF VC Charging D1 

OFF ON 0 By-passed S2 

Ism < 0 

ON OFF VC Discharging S1 

OFF ON 0 By-passed D2 

S1

S2
VC

VSM

Ism C

D1

D2
R1 T1

 
 

Fig. 1.  Sketch of the MMC half bridge sub-module circuit. 
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As all the sub-modules are connected in series, the MMC is 

easy to adapt to different power and voltage levels. In Fig. 2 a 

three phase MMC with N = 2n sub-modules in each phase is 

shown. The number of modules is variable, for example 

Siemens presented MMC converter topologies where more 

than 200 sub-modules per arm are used [7], [8]. The two 

inductors are installed on each arm, Larm with the purpose to 

limit the circulating current and current rise in case of a DC-

link short circuit fault.  

As the number of sub-modules is increased the blocking 

voltage rating of the switching components is reduced and the 

THD of the output voltage waveform is also reduced. This 

translates in a reduction in the size of the necessary filters [9]. 

The MMC has proved to be superior to its competitors for 

HVDC applications presenting the following main 

advantages: no need to connect semiconductor switches in 

series [10], no need to employ a bulky capacitor at DC 

terminals, high modularity can be achieved, redundant 

modules can be inserted increasing this way the reliability, 

easily scalability to different power and voltage levels, low 

total harmonic distortion, low switching frequencies which 

translates in small filters and low switching losses [8]. 

In this paper the MMC with a focus on distributed control 

and a solution for PWM synchronization is presented. The 

outline of this paper is as follows: in section II centralized 

and distributed control topologies for MMC are presented. In 

section III phase shifted PWM and synchronization issues are 

described. EtherCAT protocol and Distributed Clocks 

systems used for distributed control are presented in section 

IV. Test setup description and implementation method are in 

section V. Results and conclusions are presented in sections 

VI and VII respectively.   

 

MMC CONTROL TOPOLOGIES 

For HVDC applications the number of sub-modules of the 

MMC can go up to a large number making the control a very 

complex task [9]. The control to be carried out for the MMC 

can be divided into five different categories: 1) converter 

output current control in order to control the active and 

reactive power, 2) DC link voltage control, 3) the sub-

modules capacitors voltage levels control, 4) circulating 

current control, 5) the control in case of faults. Taking this 

into account, two different control strategies have been 

discussed in the literature, centralized control and distributed 

control [4]. 

In case of centralized control only one single controller is 

carrying out all the control operations and needed processing. 

The controller needs to be very powerful given that the 

processing requirements are intense and also a large amount 

of signals need to be available [11], [4]. A simplified diagram 

of centralized control applied to a single phase MMC with 

eight sub-modules is shown in Fig. 3. As an example of the 

control signals needed, PWM output signal and capacitor 

voltage measurement input signal for each sub-module are 

shown in the figure. This approach hinders the 

modularization and originates reliability issues [4]. 

When distributed control configuration is used, each sub-

module has an individual controller along with a central 

controller. A communication network must be established 

between the central and the sub-module controllers. The 

processing load is distributed between the central and the 

individual controllers of each sub-module decreasing the 

number of signal wires and hence, increasing the reliability 

and the modularization of the system [4]. Besides the 

mentioned advantages, costs are increased when this control 

topology is used because of the additional communication 

hardware required [4]. 

For the distributed topology the central controller will take 

care of the high level control, which includes the current 

control, DC link control and averaging control. The averaging 
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Fig. 2.  Three phase modular multilevel converter. 
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Fig. 3.  Block diagram of the MMC centralized control 

strategy. 
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control performs the circulating current control and the 

overall capacitor voltage level control [12], [9], [11].  

Each sub-module will carry out the PWM computations 

along to the fault control and an individual capacitor voltage 

level control, also called balancing control. Furthermore, the 

measurements of current and voltage will also be performed 

locally in each sub-module [9]. A general diagram with the 

distributed control structure is shown in Fig. 4. 

Due to the higher modularity and reliability, the distributed 

topology has been chosen when building the small scale 

MMC used for the experimental tests presented in this paper. 

The real time communication protocol chosen for its good 

performances, synchronization and fault tolerance capabilities 

is EtherCAT. 

 

MMC MODULATION AND SYNCHRONIZATION ISSUES 

Several PWM techniques have been proposed in the 

literature for MMC. These techniques are based on the 

comparison of a reference signal with different triangular 

carrier signals and are also known as multi-carrier PWM 

techniques. The most common multi-carrier PWM techniques 

are Phase Disposition (PD), Phase Opposition Disposition 

(POD), Alternative Phase Opposition Disposition (APOD) 

and Phase Shifted (PS) [4], [13]. In this paper the PS 

technique is used due to its easy usage for distributed control 

and its lower harmonic content generated in the output 

voltage [4]. 

The phase-shifted PWM technique uses as many carrier 

signals as number of sub-modules, noted with N. Between all 

of the carriers a phase shift of α=360ᵒ/N, where 360ᵒ 
corresponds to the period of the carrier signals, should be 

maintained. Half of the carriers, n, belong to the upper arm 

and the other half to the lower arm. The triangular signals 

which belong to the same arm will have a phase shift of 

(2*360ᵒ)/N between each other. Two reference signals are 

also used, one for the upper arm and one for the lower. Both 

references are equal with a phase difference of 180ᵒ [5]. If 

the reference signal is grater that the carrier, S1 is turned ON 

and S2 is turned OFF (see Fig. 1). In the same way if the 

reference signal is less than the carrier then S1 is turned OFF 

and S2 is turned ON. In Fig. 5 the reference and carrier 

signals, with frequencies of 50HZ fundamental and 1KHz 

carrier, are illustrated for a 9 level converter upper arm. 

With the distributed control and phase-shifted PWM 

practical issues appears at the implementation stage, this is a 

drift or lack of synchronization between the PWM waves of 

the different sub-modules.  

In distributed control method each of the sub-modules has 

a local controller which will be in charge of performing the 

modulation algorithm. The carrier signal used for PWM is 

generated by using the internal counter of the controller and 

will be compared with the reference signal sent by the central 

controller. The number of pulses of the controller internal 

oscillator will be counted increasing the counter value. When 

the value corresponding to the carrier period is reached the 

counter value is set to zero and the process starts again. 

In order to implement the phase shifted PWM technique, 

the counters of the different controllers should be perfectly 

synchronized. They should start the counting and count at the 

same time. In a real application however, this two conditions 
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Fig. 4.  Block diagram of the MMC distributed control 

strategy. 

  

 

 
 

Fig. 5.  Carrier waveform and the puls generation fo the SM 

with PS-PWM technique. 

  



 

81 
 

will not be fulfilled without an additional synchronization 

method, which will be discussed later in the paper. In first 

place, when powering up the controllers from the SM there 

will be different delays until the counters are started. In 

second place, due to manufacturing tolerances, there will be 

small drifts between the internal oscillators of the controllers. 

These two factors are causing that the counting will not occur 

at the same time. When the carrier signals of each sub-

module of the MMC are not synchronized, the output voltage 

will be distorted increasing the total harmonic distortion. This 

phenomenon is not given in centralized control topology as 

only one central controller is used and hence, the same 

oscillator gives the time base for the PWM counters. 

In this paper a method for PWM synchronization is 

proposed. The method is based on the usage of the EtherCAT 

‘Distributed Clocks’ (DC) mechanism.  

 

ETHERCAT COMMUNICATION PROTOCOL AND DISTRIBUTED 

CLOCKS 

EtherCAT is an open source protocol based on Ethernet 

which allows full duplex communication and uses the 

classical master-slave configuration. Only the master of the 

network is allowed to send an EtherCAT frame [14]. Each 

EtherCAT slave reads and writes data ‘on the fly’. When the 

master sends a telegram it goes to the first slave of the 

network which processes the data and then sends the telegram 

further to the next slave. This process goes on until the last 

slave of the segment is reached. The last slave will send the 

message back to the master. The telegram will be delayed by 

the wire propagation delay and the processing delay 

introduced by the slaves [15]. 

‘Distributed Clocks’ mechanism is an EtherCAT protocol 

feature used for high precision clock synchronization and 

generation of synchronous output signals. Each EtherCAT 

slave has an internal clock. Similar to the PWM case 

commented above, a difference between the slave clocks may 

exist due to the following two reasons. First, when the slaves 

are turned on the internal register holding the current time is 

set to zero, however this does not occur at the same time in 

all the slaves and an initial offset between the clocks will be 

present. Second, a small difference between the frequencies 

of the internal oscillators of the slaves will always exist. 

One of the clocks, usually the clock of the first slave, is 

used as a reference. The DC algorithm will be in charge of 

synchronizing the EtherCAT master and slaves clocks with 

the reference clock. This will be done by calculating and 

compensating the propagation delay between each slave, the 

initial time offset and the local clock drifts [16],[9],[7],[11], 

[15].  

Generation of synchronized output signals is also possible 

due to DC mechanism. As the internal clocks are 

synchronized, all the slaves in an EtherCAT network will be 

able to generate a synchronized output with a jitter down to 

nanoseconds. This is a key feature for the synchronization of 

the MMC modules as discussed in the next section [14]. 

Other important EtherCAT feature is that it allows 

communication redundancy in the network using a ring 

configuration as shown in Fig. 7. Each EtherCAT device has 

two ports, A and B. The master will send the telegram at the 

same time through both ports; hence, if the communication 

cable between two sub-modules is broken the MMC can 

continue normal operation as the master is still able to 

communicate with all slaves. This provides better reliability 

to the system.   

 

TEST SETUP DESCRIPTION AND SYNCHRONIZATION METHOD 

IMPLEMENTATION 

For the experimental tests a small scale MMC with 

EtherCAT communication bus was built and it is shown in 

Fig. 6. Following the distributed control distribution, the 

‘BECKHOFF C6930-0040’ industrial PC is used as the 

central controller and master of the network. This PC has 

already built-in EtherCAT hardware with master capabilities 

and the different configurations and high level control were 

implemented in C++ using TwinCAT 3 software. 

The EtherCAT slave board used for the sub-modules 

implementation is the ‘BECKHOFF piggyback FB1111-

0141’ which can be controlled through SPI communication 

with an external controller. The piggyback board is the 

interface between the central and the sub-module local 

controllers. The master communicates with the piggyback 

through EtherCAT and the piggyback will communicate with 

the local controller through SPI.  

The sub-module local controller is a TMS320F28069 

Texas Instruments MCU. The MCU will perform the low 

level control and PWM algorithm. The slave board SYNC0 

signal is also connected to the MCU. SYNC0 is used to 

synchronize the PWM signals of the sub-modules. For the 

synchronization test the master along with four sub-modules 

were used. A diagram with the general configuration is 

showed in Fig. 7. 

The PWM synchronization method is based on EtherCAT 

slave capability of generating a cyclic synchronization output 

signal. Each slave will generate this signal though the 

 

 
 

Fig. 6.  Picture of the MMC test setup sub-modules. 
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SYNC0 output line. The SYNC0 line is connected to the local 

MCU. The difference between the signals generated will be 

of a few ns. This has been tested obtaining values in the range 

of 5 to 15 ns. SYNC0 will be normally at high level but when 

a cycle period is completed it will generate a small duration 

low pulse. When the synchronization output SYNC0 goes 

from high to a low state the MCU will detect the falling edge 

generating an external interrupt. When the external interrupt 

is detected the PWM counter register of the MCU is set to 0. 

For the tests the system was configured as follows. The 

master was set into cyclic mode with a cycle time of 1ms. 

Hence, the master will send a new reference value and 

generate a synchronization signal every millisecond. The 

MCU is configured to generate a PWM with period of 1ms. 

The counter is configured in up-count mode. The reference 

value sent by the master is loaded into a register. When the 

counter is equal to zero the output is set ‘HIGH’, when the 

counter is equal or greater than the reference value the output 

is set ‘LOW’. 

MEASUREMENT RESULTS 

In first place, some captures made when no 

synchronization technique is applied are presented. All sub-

modules have the same configuration and the same software 

is running in them. Ideally, all the PWM signals generated by 

the sub-modules should be in phase but as can be seen in Fig. 

8, 9 and 10 a drift exists due to the effects mentioned before. 

The phase difference between the signals is random and 

varies in time. 

In second place some PWM waves measured when the 

synchronization method described in the previous point are 

presented. The method uses the capability of the 

microcontroller for software forced synchronization. When 

the external interrupt is detected the software forced 

synchronization bit is set to 1 and hence the value of the 

internal counter is set to 0. The measurement results obtained 

when using this method are presented in Fig 11, 12 and 13. 

For clarity only three PWM are shown. As it can be observed 

the synchronization between the PWM signals is successfully 

obtained.  
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Fig. 7.  Test setup diagram. 

 
Fig. 8.  PWM output when no synchronization technique is 

applied. 

 

 
Fig. 9.  PWM output when no synchronization technique is 

applied. 
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CONCLUSIONS 

This paper focuses in distributed control topology using 

phase shifted PWM algorithm for MMC. A particular 

problem of this control topology is the lack of 

synchronization between the PWM output signals of each 

sub-module. This problem is explained and a solution based 

on EtherCAT ‘Distributed Clocks’ mechanism is presented. 

The measured results obtained when the synchronization 

technique is applied are satisfactory. The PWM signals of the 

sub-modules are synchronized with a maximum jitter in the 

range of 10 to 15us maintaining the performance of the 

MMC. 
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