6 YN;
0y

r ?
AALBORG UNIVERSITY COPENHAGEN 2 ({‘ 3
a4 ¥

Q +
Snmp®

BROWSER AS GAME ENGINE - EXPERIMENTAL
APPROACH ON INVESTIGATING WAYS TO IMPLEMENT
MUSIC ELEMENTS INTO GAMES WHICH ARE
PROGRAMMED WITH MODERN WEB TECHNOLOGIES.

MEDIALOGY MASTER THESIS

BY: KRISTJAN KALMUS
MAIN SUPERVISOR: JANNICK KIRK SGRENSEN
C0-SUPERVISOR: STEFANIA SERAFIN

DEPARTMENT OF ARCHITECTURE, DESIGN AND MEDIA TECHNOLOGY
COPENHAGEN, SPRING 2014

Fo oG

Table of contents

TabDIE OF CONTENTS. ..ottt e e e 3

P ETACE ... e e 6

L INEFOAUCTION ...t s 7

2. BACKGIOUNG ... ettt e st st e e reesbeenee s e ns 9
2.1 The game aUdiO NISTOMYcciiiiiice ettt sae e eesne e 9
2.2 The importance Of SOUN IN QAMESccveiiieiie e be e re e e e snees 10
P2 N Y] T3 0 o 10 [o PSS 12

3. WOrking WIth QUAIOocueeiiie e 14
B L LIMITATIONS ..ottt b bbb bbbt et 14
3.2 Practices to cope wWith the lIMItationS...........ccceiiiiiciie e e 17
B A T= YT To I 11 L= T3 o o OSSP 17
3.2.2 Downsampling and COMPIESSIONcoveveieiriiriirientesiee ettt 18
3.2.3 Frequency analysis and CONCAtENATIONcueirirerieieieieese e 18
3.2.4 Saving file at tWice the SPEEUcc.eii i 19
3.2.5 Different playback SPEEUSvcivi i e 20
3.2.6 RedUCING 1080 TIME......cueiiie e e e e ee e sree e 20

4. Audio implementation methods and file types ..o 21
4.1 STALE OF TNE AIT ... s 21
4. 1.1 AAODE FIAS ... e 21
4.1.2 <AUAIOSTAY «uveiveitieie ittt b e e bt e r s 23
A.1.3WED AUGIO APttt bbbttt bbbt et eas 25
A.1.4 AUAIO DATA AP ...ttt et bbbttt b e e e e e 28
4.2 SOUNG Tl TYPES ...ttt s n e r e 28
O RNV 1H T [T USSP 28
A.2.2 IMIP3 e r e r ettt Ee e E e b e e Rt e b e e b e e ebe e ene beenreenree e 28
4.2.3 0GG VOIDIS ..ttt ettt bbbttt b et ettt b n e 29
A28 WEDM ... bttt bttt e nren s 29
A.2.5 AAC . e b bbbt Rt e b e e abe e abe e as eabe e beenre e e 29

5. Implementation and Methodology ... 30
5.2 The technical solution of the implementation.............cccccooe v 30
5.3 Implementation to test looped background audiocccceeveeiieviec s 33

5.4 Computers’ specifications used fOr tESTINGccevveiii e e

5.5 Measuring and data 10gQiNgcccuereiieiiiiiie ettt e e enes

6. Implementation and tESTING.........cociiiiiieii e e s 35

6.1 Data network speeds and download tIMES.........c.ccovivveiieiie e
6.1.1 Introduction and teSt CONTITIONSccuoiriirieieieier s
6.1.2 WAYS OF MEASUIIING ...veeneeieieiieiee ettt sttt ettt seeste s e steste s e naesaeeneenee e e enes
6.2.3 TESTING AN FESUITS.....c.eetiiieieie bbbttt e

6.2 Web Audio API deCOTING TIMEScoiiiiiiiiieeieee et e
6.2.1 Introduction and teSt CONITIONSccceiriiiiiiiieire e
6.2.2 WaYS OF MEASUIINGveiieiieiieeite e e e s st st e st e et e e te e sre e sreesreesteesteestaesneesneeanes eenns
6.2.3 Decoding times Of MP3-aUTIOceeiieieeiee e te e s e e e enne s
6.2.4 Decoding times OF OGG-AUTIOc..eiuvieeieieiie ettt see e seeeneas
6.2.5 Decoding times OF AAC-QUAIOccoiiiiiiiiiiieieise e
6.2.6 Decoding times and different audio qUAIILIESccccveviiieic i
6.2.7 Decoding times and different number of fileS ...

TG 0T o110 TR 11] o SR
6.3.1 Introduction and teSt CONTITIONScccvireriiiieieieeee s
6.3.2 WAYS OF MEASUIIING ...veeneeieieiieiei ettt sttt e bt esaeseeeneeaesaeaneeneesee e enes
6.3.3L00PING ANA MP3-TIlES ...t e
6.3.4 Lo0PING AN OGG-IES.....c.uiiviiiciectece e ene
6.3.5 L00PING AN MPA-FIESc.oocveiiee e ene

6.4 Overcoming limitations Of [00PINGccveiiiiii i e e
6.4.1 Introduction, test conditions and MEASUINGcccvvveirririereseeie e
6.4.2 TSt reSUILS (AUIO-TAG) ...c.vevvrverreriiierieeieie ettt e
6.4.3 TeSt results (WD AUIO API) ..ot

7. Reducing the usage Of SYSTEM FESOUICESccveieeieiierieeieseesiesee e eee e sie e e eseeenes 58
8. CONCIUSIVE ANAIYSISoveeieiiiesieee et 60
9. CONCIUSION ...ttt ettt e 64
10. FUTUIE WOTKS. ...ttt bbb 66
RETEIEINCES ...t e 68
List of figures, tables and code eXamPples ..o 72
DY o] 0= Lo) USSR 74
APPENAIX B ettt 75
LY o] 01=] [0) OSSR PPR TSR 76

DY o] 0= o) USSP SSRTPRIN 77

APPENAIX E.ooeee bbbt 80
Y o] 0= Lo D SRS ROSPSIN 82
Y o] 0= [0 TS SS SRR 84
APPENTIX H .ottt ettt e b b nne e 85
Y o] 0= o [SRS SS TSRS 88

LY o] 01=] 0 [0) OO TTR PP RUURTTRPTR 89

Preface

The thesis includes some informatory icons to make the reading and finding related

additional materials easier.

Information in Appendix

E When this icon is present it means that some of the relevant data has been
included in the Appendix. The text on the right of the icon explains what kind
3- of data the Appendix has, so that the reader could make an informed
decision whether checking the Appendix immediately is beneficial to the
topic at hand or not. Also it makes it easier later on to locate the place in the

text where one or another appendix is relevant.

Information on DVD

“\ This paper is accompanied by a DVD. When the DVD icon is present in the
\ text, it means that visual or audio examples have been included to the DVD
to illustrate the point made in the text. The text beside the icon explains the

type of related data, where exactly it could be found from the disk and how

it could be viewed (if applicable).

1. Introduction

Audio elements play an important role in the world of computer games. In the world of
browser based gaming, the majority of games have required some sort of third party plug-
in to overcome the limitations of the multimedia support in web browsers. The new HTML5
standard, introducing native audio-video support, has added new features to the web,
making it possible to implement audio into web applications and to create multimedia
games solely by using proprietary web technologies. The HTML5 audio-tag is the
standardized way to include audio elements to web. In addition — the Web Audio API is in
development, which should open up even more possibilities when it comes to audio,

including audio panning, filtering and effects to name a few.

The goal of this paper is to look into the world of audio in games — the limitations,
differences and possibilities of audio-tag and Web Audio APl when it comes to
implementing audio using web languages. This work covers the topics like the ease of use,
the differences in implementation, the suitability for different purposes and how one
method or another might affect the possible gaming experience (through usage of

computer resources, loading times and differences in audio playback).

Problem formulation:

As a more specific problem formulation, the following postulation has been presented:
How well do audio-tag and Web Audio API perform compared to each other and how
they can be used in a most optimal way to deliver the best user- and aural experience in

browser based games.

The process of analyzing the problem stated above will consist of different parts — the
efficiency of using data delivery networks (loading times, file request times);
implementation method specific characteristics; performance related aspects when using
different types of audio files; how implementation methods and audio file types behave
when used under possible real life condition (in a form of looped background audio). The
results will be analyzed and some of the downsides will be looked into in more detail, to
inspect possible workarounds to the limitations imposed by the implementation methods

and audio encoding technologies.

The research question was tested using two web pages — one for each audio
implementation method — which acted as frameworks and were modified based on the
nature of each individual test. To make the tests comparable, a set of guidelines were put

in place to which both frameworks had to comply with.

This paper is focused on the domain of PC-games and deals with audio which is recorded
and sampled before implementation; the field of audio synthesis or MIDI-technology is
beyond the scope of this paper. The reason is that limitations applying to the sampled
audio are different from the limitations on synthesized or programmatically generated

audio.

2. Background

This chapter gives an overview of the history and the evolution of audio in games, why the
development of audio technologies is of great importance to the games and how audio can
influence the gaming experience. The second half of the chapter will cover the list of
different audio types used in games and their roles. The history of the development of the
game audio is essential to understanding the current situation of the industry and what

kind of expectations a developer might have when working with game audio.

2.1 The game audio history

Audio playback has always been limited. The best example is the hardware development of
gaming consoles. First generation consoles didn’t have any audio support or it was very
limited. Magnavox Odyssey, the very first home video game system, had no sound. The
following machines also started to implement sound — simple built-in sound speakers at
first, later on more capable sound chips which generated sound for playback through TV-
speakers [1]. One of the quite common solutions for sound generation was using 4 channel
chips — 3 sound channels and 1 noise generator — which could be found from many gaming
consoles throughout the 70’s and 80’s [2]. Over the decades manufacturers added more
channels which enabled programmers and composers to create more complex musical
pieces. With the Nintendo Entertainment System (NES) (released in 1983 in Japan and 1985
in US) the Programmable Sound Generator (PSG) was introduced to the gaming consoles
and one of the PSG audio channels could have also been used to play audio samples [2, 3,
4]. This was a step forward in the direction of how majority of the audio has been
implemented today — the audio consists of recorded and sampled CD-quality stereo audio
and is not generated on fly by sound synthesis chips [5]. NES used 5 channels of
monophonic audio, a year later (in 1986) Sega introduced sound generators which were
able to generate sounds in four octaves each. In 1989 the NEC TurboGrafx-16 had 6

channels with stereo output, during the same time Sega Genesis brought 10 audio channels
[5].

In the 90’s games’ audio started to put more demand on the system resources. This
becomes evident when we look at the specification of the game consoles released since the

early 90’s — Play Station (released in 1994) already had 24 audio channels and 512KB

9

dedicated memory, Nintendo 64 (released 1996) used shared memory of 4MB, Sega
Dreamcast (released 1998) had 64 channels and 16MB of shared memory, Sony Playstation
2 (released 2000) allowed programmers to work with 32MB of shared memory. A year later
Microsoft released Xbox which had 64MB of memory, Xbox later version — Xbox360 (2005)
—had 512MB of shared memory [2].

2.2 The importance of sound in games

The capabilities of audio have been varied a lot over the decades as seen from the previous
quick overview of the game audio — the early game consoles lacked audio support or had
primitive internal speakers to generate simple beep sounds. Later on multiple channel
sound generation chips were added to the console boards, but there was still a long way to
go until the technology allowed the usage of pre-recorded audio [2, 5]. It is understandable
why audio has gotten and gets less attention in computer games since for players, the two
most important features in computer games are playability and graphics, when they are

choosing a game to buy [6].

Even though players don’t consider audio as important, having a quality in-game audio can
benefit the game in various ways. The game development studios have understood this and
as a result they often have on-site sound engineers, working with games, to create the best

possible aural environment for the games [1, 5].

One might ask why is audio so important to the games. Sound plays different roles in games
— it separates the player from the surrounding distractions, reflects the game state, acts as
a feedback medium for player actions, helps the storyline progression, and makes the

fictional world seem more realistic [1, 5, 7, 8].

Lately more and more attention is given to the immersive qualities of games which are
important in many ways. Immersion by definition is a state where entire player’s attention
is on the game [9, 10, 11], the sense of time is reduced [9, 11, 12] and in some sense the
player becomes a part of the experience itself [10, 13]. On one side, when players are
immersed then different shortcomings in usability and conflicts between expectations may
often remain unnoticed [14]. On the other hand, the goal of player-centered game design
approach, is to increase player enjoyment [15], making immersion a vital element for the
success of a game. If players do not enjoy the game, they will not play it [11]. Studies have

shown that sound plays vital part in the immersive qualities of a computer game [1, 9, 13,

10

16]. As noted above, immersion has been associated with number of features: lack of
awareness of time, loss of awareness of the real world by being completely focused on the
game at hand, involvement and a sense of being in the task environment. Also emotional
involvement seems to be one of the key factors [13, 17] and sound/music is a very powerful
medium to affect one’s emotions [5, 18]. In addition it has been suggested that immersion
correlates to the number of attentional sources (visual, auditory and mental) needed as

well as the amount of each attentional type [9].

Gameplay immersion can have different dimensions [10] — this means that one could have
an immersive experience with early “Pong” game where audio is very primitive and does
not contribute that much to the overall immersive experience — but increasing the realism
of a soundscape can increase the strength of the sense of immersion [16]. In addition,
better audio quality improves the overall experience - sensory immersion is related to the
audiovisual execution of the game, and audiovisual quality and style has been regarded one
of the central aspects of a good digital game, meaning that often higher quality audio leads
to the higher level of immersion [10]. As audio hardware has matured, the quality of audio
has tried to keep up with the hardware improvements; this includes adding surround sound
to games [1]. Even though web games may not include surround sound, it is still important
to deliver a reasonably high quality audio, since obviously it adds to the overall look and

feel of the game and contributes to the gaming experience.

Immersion in terms of audio, is a presentation of a soundscape in a way that listener has an
impression of being entirely within a realistic sound environment [19] and it can be used to
create the illusion that the world extends beyond the screen [6]. Sweetser and Wyeth have
introduced a framework to rate the criterions of enjoyment in games [11] and some of the

areas in which audio has a role to play are highlighted as follows:

e games should provide a lot of stimuli from different sources;
e players should receive immediate feedback on their actions;
e players should become less aware of their surroundings;
e games should have a high workload, while still being appropriate for the players’
perceptual, cognitive, and memory limits.
As it becomes clear from the text above, sound and music have a distinct role to play in

games. Even though players don’t consider the sound to be very important when they

11

choose games for playing [20] it still has a lot to contribute to the gameplay experience. It
has been even theoretized that video games will eventually become interactive movies

where the psychological effects of music and sound will be dominant [5].

2.3 Types of sounds

To keep the topic from becoming too broad, | am focusing on the audio which is present
only during gameplay (background music and gameplay-related sound effects), leaving out

sounds played during menu screens, intro and credit sequences, and cinematic cutscenes.

In an average PC or console game', a player is exposed to multiple types of audio. In the
movie industry, the sounds are most commonly divided into two categories — diegetic and
non-diegetic. Diegetic sounds are part of the physical realm of the actors, non-diegetic
sounds are external to the story world and often are there to bind the images and

contribute to the overall mood like conventional background music [21].

Similarly to the film industry, diegetic sounds in games are those which have a physical
source in the game environment and could be heard by the character in the game, i.e
environmental sounds (wind, rain, thunder, birds etc), character sounds (breathing,
footsteps), action sounds (sword swinging, gunshots, opening a door). The most commonly
recognized non-diegetic sound in games is also background music. As in films it can convey
the mood but it often gives feedback about the state of the game (i.e music changes during
combat scenes or when time starts to run out) and therefore can influence the gameplay.
Other types of non-diegetic sounds can include different audiocues which accompany
banners or signs. The signs or banners are instructions, tips, and rules. These instructions
are presented not as objects belonging to the fictional world but rather superimposed text,

although part of the game [16, 22].

Since games are dynamic entities, the audio in games can broadly categorized as
diegetic/non-diegetic, but within those categories it can be separated even further. In
games we can also talk about interactive and adaptive sounds — environmental sounds and

background music which react to the in-game day-night cycle, action sounds which are

! author considers “an average PC or console game” as something which has meaningful game audio
(gives feedback to the player), requires mouse/keyboard or game controller as an input device and
requires some time commitment by the player.

12

played according to the player’s actions and changing environmental sounds [1]. The game
audio can be classified even in a more detailed level - in a literature another layer has been
introduced to the game audio, dividing diegetic and non-diegetic sounds also into masking
sounds (sound signal is diegetic but signifies a non-diegetic event) and symbolic sounds
(sounds relate to the in-game events while signals remain non-diegetic) [22]. Since in this
paper the implementation is not focusing on to 3D game world, most of the sounds are

non-diegetic and can be regarded as symbolic sounds.

13

3. Working with audio

This chapter gives an overview of the limitations the audio designers have to work within,
how those limitations might limit games/gameplay and how one could cope with them to

some extent.

3.1 Limitations

Since the quality of the games are strictly in direct correlation with the amount of
computing power at hand, programmers have often developed techniques to overcome
certain limits or to have a best possible solution inside the system restrictions. The game
audio programming is no different. Implementing audio in games has always had
limitations and restrictions the developers have had to cope with. Even though it often
feels that with the huge advancements in terms of processing power and system memory
one should not worry about the system resources, it is still an issue. The number of sound
channels used in games has grown from nothing to basically an infinite number of channels
(dependent of the amount of system resources) and from the piezo-speakers to high
quality surround sounds, but as technology advances new restrictions have emerged in the
process. The system resources are shared between different processes and in games, audio
processing is often not the main priority. In some cases it might even be necessary to

discard a number of sound assets because of the limits stated above [23].

There is a paradoxical conflict between different variables of the audio. Stevens and

Raybould in their book call it the triangle of compromise [7].

erton,

|

(=] L
: o
% &

Figure 1 - The triangle of compromise in game audio by Stevens & Raybould

14

The “triangle of compromise” in game audio development consists of three elements —
variation, memory and quality. The audio designer has to keep in mind that there is a
constant battle between these three properties and a balance has to be found between
them. For example having a huge number of different high quality effects is very
demanding on the memory. If an amount of memory is limited, then one has to decrease

the number of used samples or decrease their quality.

Theoretically each sound implemented in the game has a certain position in the “triangle of
compromise” — having a sound element (for example sound of footsteps) with a small
memory footprint?> means that also the quality has to be low and not many variations can
be used, meaning that the same low quality sound will be played over and over again. A
good example here are the footsteps sounds in the game Final Fantasi XIl — in real life when
a person walks on the same surface the footsteps will still sound differently, but in Final
Fantasi XII there is only one sample for each surface type, which eventually gets very

annoying and tend to break immersion.

WEB

=

5 ©

> &
& <
&, 5

Figure 2 - Triangle of compromise for web conditions
The “triangle of compromise” also holds well in terms of web-based games. In case of the
web the triangle should also include bandwidth, since even though memory still remains an
issue, the usage of audio in web is also strongly influenced by the bandwidth limitations.
Most of the audio features are more-less dependent on the JavaScript which introduces

another layer of limitations [24].

JavaScript is the programming language of the web. In web JavaScript is mainly used
alongside other web technologies such as HTML (used to describe the content of pages)

and CSS (used to change the presentation of pages). Through JavaScript one can interact

2 Memory footprint — the amount of memory software uses when running.

(http://www.pcmag.com/encyclopedia/term/60598/memory-footprint)

15

with HTML and CSS and manipulate the web elements, thus making it the language which
enables developers to specify the behavior of pages [25]. JavaScript makes it possible to
add animations, interactivity and dynamic visual effects to the web page [26], so it is also
the main language for creating visuals for the web based games. It is also vital when it
comes to implementing and manipulating audio elements in browsers. Using the HTML5
audio-tag to include audio to the page doesn’t require any scripting — by including the
“controls” attribute to the audio-tag the default playback controls will be displayed on
the page, which enables visitors to listen to the included audio. When the “controls”
attribute has been left off, then usually the audio has been controlled through dedicated
script [27]. In the current paper the HTML-page for presenting audio files with different
qualities (can be found from the DVD) rely solely on the playback controls provided by the
browser itself. The testing environments and the rest of the pages with audio use only
JavaScript for controlling the playback, since many different audio manipulations are not

supported natively (e.g fading one audio clip into another).

Audio and test environment examples — A number of examples have been included to the
<> DVD. Examples have also made available in the web and are accessible from
\2 http://www.webgamesaudio.com/masters/

JavaScript is not as well optimized as some other programming languages and cannot take
advantage of different performance improvement techniques — meaning that running a lot
of JavaScript code can be quite CPU-intensive. There are number of bottlenecks, which

could affect the performance and cause different glitches in audio playback [24].

Probably one of the most influential issues in web is latency — the time between user input
event and corresponding audio playback. In Web Audio API specification documents, there
are listed number of factors, which may cause latency: input device latency, internal
buffering latency, digital signal processing (DSP) latency, output device latency, distance of
user's ears from speakers etc. All the elements contribute to the total audio latency. Long
audio latency is an unwanted property — it may affect timing, give the impression of sound
lag or the game being non-responsive [24] thus directly affect the gameplay and lower the

quality of the experience.

16

Sound effect triggered Time Gamer hears
by gamer Delay the sound

Figure 3 - The basics of latency

Multiple studies have made about audio-visual simultaneity and in case of films and videos,
audio is considered to be out of sync with video when a sound is approximately 75ms early
or 90ms late (some of the studies have came to different conclusions with longer times
from 130ms early and up to 250ms late). [28] In games the early audio timing doesn’t
apply, since audio playback is dependent on the gamers’ actions. | would theorize that in
case of games, the latency should be smaller, since gamer usually can expect a sound based
on his/her actions. Web Audio APl documentation mentions latency from 3-6 milliseconds
up to 25-50 milliseconds to be reasonable (of course it depends on the type of application)
[24].

3.2 Practices to cope with the limitations

Because of the limited nature of audio processing, different techniques, solutions and
practices have been developed over time to cope with the limitations and fully utilize the
capabilities of the audio. In a book ,,The Game Audio Tutorial* Richard Stevens and Dave
Raybould (with the help of numerous contributors) discuss different ways how to work with
audio in games and to make audio memory footprint smaller by finding a compromise
between audio quality and required resources, while giving gamers the best aural
experience possible [7]. The following is a list of techniques represented, in the book, on
how to reduce the usage of resources by audio elements. Each list element also includes a
little analysis on if and how it would be possible to implement that specific method using

the audio implementation methods for web.

3.2.1 Saving file as mono

Saving an audio file as mono is the quickest way to reduce the file size two times. Saving
audio files as mono has been mentioned by different sources - Adobe Community Help
suggests that if no compression has been used then it is a good practice to use mono
sounds [29], game{closure} DevKit Docs suggest that mono files should be used when

possible [30], sound effects and speech audio are usually saved as mono files [5].

17

3.2.2 Downsampling and compression

The easiest way to reduce the amount of used resources is to make sound files smaller by
downsampling or by using some compression algorithms. Downsampling usually results in a
loss of audio quality. Using compression algorithms means that to some extent it is possible
to reduce the file size while maintaining the audio quality relatively well. The problem with
compressed audio is that even though the file size is smaller, it often takes slightly more
computing power to play it because it has to be decoded first. Additionally in some cases
there might arise support problems with compressed audio — for example using
compressed audio in web browsers can be tricky, since different browsers support different
compression algorithms [27, 31, 32], making the implementation more complicated
(programmer have to make different compression types available to the browser which
then chooses the file it can play). The browser support for different file types will be

covered in later chapters.

Downsampling and compression examples — Examples have been included to the DVD,
where audio has been saved on different qualities to give an overview how different rendering
settings can affect audio quality. Examples have also made available in the web and are
accessible from http://www.webgamesaudio.com/masters/

*us(,

3.2.3 Frequency analysis and concatenation

WAV-file with sample rate 44100 Hz, allows one to recreate all the possible frequencies in a
human hearing range, which is approximately from 20Hz to 20000Hz. To have a digital
representation of sound which has harmonics up to 20000Hz one has to have a sample rate
at least twice the size [7, 33]. If the audio signal doesn’t contain any high frequency
content, it is possible to render the audio using lower sample rate thus making the file size
smaller without losing quality. If some part of audio file has high frequency elements in the
beginning or in the end of it, then one of the special techniques mentioned in the book is to
cut the audio file up and save the part with the high frequency audio in a separate high
sampling rate file, and the rest of the file with a low sampling rate. During playback one file
will be played instantly after another, resulting in a seemingly one audio file but in total

with smaller memory footprint.

18

Sampling freq: 44100 Sampling freq: 22050

Figure 4 - Differences in frequency data when different sampling frequencies have been used. Colors represent the
volume level of the sound on different frequencies (cyan is lowest, light orange is highest)

The previous figure represents the visual audio spectral data of a sound effect | created. As
one can see, there are only a limited amount of high frequencies present in the beginning
of sound file, which means that concatenation could be successfully used on this audio file.
Also if the lack of high frequencies do not affect the audible quality of the audio, one can

simply save audio with a lower sampling rate.

This is an advanced functionality that game engines are able to provide, but implementing
it in the web can be more complicated, since this is not a native functionality that web

languages could provide.

3.2.4 Saving file at twice the speed

One way of decreasing the file size but not sacrificing much of the quality is to increase the
raw audio source playback 2 times before rendering it out as a game audio asset. It could
be done in different audio editing programs with a time compression functionality which
allows manipulating with the audio playback speeds. In the game itself, the file would be
played back 2 times slower, thus creating the feel of the original sound effect. This
technique makes it possible to save 50% of the audio file size compared to the original

“unstretched” audio.

In the web both HTMLS5 audio-tag and Web Audio API support playback speed changes [24,
27].

19

3.2.5 Different playback speeds
One fairly common technique is to use the same audio file for multiple effects simply by
changing the playback speed of the audio file. This allows a reducing of audio memory load

and also reducing the number of files included in the game.

3.2.6 Reducing load time

One of the techniques used in computer games is to concatenate the audio effects into one
single file. Reading a number of different audio files from hard drive or from optical disk
induces delay — even though it may not be a very long delay it still can result in unwanted
effects not acceptable by game developers. By including audio markers to a single file it is
possible to start playing from different places. The problem in this case is the following — is
it possible to make browsers to recognize media markers inside a sound file? The technique
itself would benefit page loading time, because for each file the browser loads during the
opening of a web page, it has to send a separate request to the server. Reducing the
number of requests made by the browser decreases the page loading time (as we can see

from the test results covered in later chapters).

20

4. Audio implementation methods and file types

This chapter talks about the ways the audio can be implemented in browser based games,
covering the currently most widely used Adobe Flash and the native browser technologies
including their technical possibilities and characteristics. In the second part of the chapter

the sound file types, which can be used in browsers, have been covered.

4.1 State of the art

4.1.1 Adobe Flash

When talking about browser based games, then these games are more casual type of
games. Casual games are commonly described as games which allow people to have a
meaningful play experience within a short time frame [34]. For example one game round of
Bejeweled Blitz, one of the most popular games in Facebook [35], lasts for one minute,
while in case of hardcore games® one round may take up to an hour or sometimes even
more. This has a lot to do with web browsers’ and bandwidth limitations, therefore also the
audio of browser based games tend to be rather limited, for example one background

music loop plus a handful of sound effects.

Currently most of the games which can be played through browser will need the browser to
support of Adobe Flash which has been the de facto standard for web-based gaming [31].
Adobe Flash has been on the web gaming scene for a long time. It was originally designed
for doing web drawings and animations but has evolved a lot since [36]. Today one can do
many things using Flash — it includes creating animations, 3d effects, play audio (in which
this paper is most interested in), multimedia streaming, Flash can be used for
presentations, creating interfaces for info kiosks, creating games, mobile and desktop

applications [37].

In terms of Flash’s audio capabilities most of it is available through a Flash-specific scripting
language called ActionScript. ActionScript is a language used to program interactive Flash
content. It has some similarities with JavaScript but also inherits some elements from

languages like Java and C and it can be used to control animations, data, playing audio and

® Hardcore game is traditionally considered to require a large time commitment for a meaningful experience
and to make demands on the skills and commitment of a player itself. [23]

21

video, user events etc and for accessing Flash libraries and APIs [38]. ActionScript was
introduced in 2000, its latest third version was released 2006 and it introduced a number of
new possibilities [37]. In Adobe Flash there are two types of sounds: event sounds (has to
be downloaded before playing) and stream sounds (playback will start as soon as enough
data has been downloaded). These types of sounds can be used in different ways: to have a
sound played continuously or synchronize it with a specific animation. In Flash there is even
a special event that can be used if one wants to trigger another event after the sound has
finished playing. In Flash one can load sounds dynamically and have access to audio

envelopes [29].

In Adobe Flash audio playback uses different classes. Each sound has to be encapsulated
into Sound object, which also deals with loading and buffering audio data. The playback of
Sound object is controlled through SoundChannel class. The panning and volume of a
SoundChannel can be controlled with SoundTransform class. From there the sound is
forwarded to SoundMixer class, which is the global mix of all played sounds. If overall
volume and panning has to be changed, then it can be done through SoundMixer’s own
SoundTransform class. At any given point the maximum number of mixed SoundChannels is
32 [38].

Sound
w
SoundChannel >
}
¥
F Y o
= 5
= 2111
SoundTransform = =
o
I

SoundTransform }—)

Figure 5 - The class structure of Adobe Flash sound system

22

The previous figure shows in overall the hierarchy of sound system classes in Adobe Flash.

This kind of approach makes it possible to tweak each sound or group of sounds separately.

A list of functionality what Adobe Flash allows to do according to [38]:

“Seek” functionality or in other words to determine the starting point of the playback in

the audio file.

e Looping (the number of loops has to be set).

e Possibility to access MP3-files’ metadata (i.e song name, artist, track number, album
name etc).

e Display sound’s waveform or frequency spectrum.

e Change audio playback sample rate/speed.

e Extract any portion of audio and modify its data.

e Audio synthesis and dynamic writing to audio buffer

In Flash there are multiple ways how to implement sound — it is possible to work with audio

by using ActionScript or to add audio to the timeline. The way of implementation depends

on the usage of the sound — for example when sound has to be exactly in sync with an

animation then it is done by including a sound file to the animation timeline. If syncing is

not a priority then it is also possible to stream audio, but if the audio has to match with

some animations, then on slower connections it could result in a bad user experience [37].

Adobe Flash has set high standards to how one could work with audio in the web. Since
usage of Flash for websites is declining quite rapidly [39] and Adobe is paying more and
more attention on creating tools to allow content to be exported into web standards [40], it
also means that a browsers native audio support has to keep up with the developments in

this area.

4.1.2 <audio>-tag

Implementing sound elements to a web page has always been a problem. This is one of the
reasons Flash become standard for web-based gaming. Before HTML5 there was no
standardized native support for audio embedding to the page. The new tag included in
HTMLS is <audio> tag [31]. The most basic code for embedding an audio file into a web

page looks like the following:

23

<audio controlss
<source src="myAudio.ogg" type="audio/ogg">
<source src="myAudio.mp3" type="audio/mpeg">
Your browser does not support the audio element.

</audio>

Code 1 - The minimum amount of code necessary for adding audio to page. Source: W3Schools

This is how the previous block of code works:

<audio controls> defines sound content, the "control” part instructs the
browser to show playback controls (i.e play-pause button, volume slider).

Two source tags define media source file (of course more than two sources can be
included). The reason why there are two media sources with different audio formats
is because browsers do not support the same formats, mainly because of patent

issues [27, 32].

2. Appendix A - More information about the support of different file formats across
2. browsers can be found from the Appendix A.

The text “Your browser does not support the audio element” will be displayed only
when a browser doesn’t recognize <audio> tag — older browsers will skip all the
tags they do not understand (in this case <audio> and <source> tags) and since
the only thing browser understands is the line of simple text, it will be displayed; in
modern browsers audio controls will be displayed (if instructed) and the regular text
inside the tags will be hidden as standard [41]. The text between the tags is just an
illustrative example — in real life, a better practice would be to include a download
link to the intended audio file, so those who use older browsers would still have an

access to the audio.

The audio tag also has a number of global attributes which make it easier to access specific

media element or set necessary parameters.

-

Appendix B — The full list of audio -tag global attributes can be found from the Appendix B.

There are also a number of media-specific attributes. Most useful tags are the following:

src, preload, autoplay, mediagroup, loop, muted, controls, volume. Most of the attributes

are self-explanatory but | will cover their functionality shortly: src — The URL of the

24

embeddable content; preload — attribute to hint browser whether it should download the
content automatically or wait for a specific input from user; autoplay — file can be set to
start playing as soon as enough data has been downloaded; mediagroup — a way to group
more than one media file together (can be used to start the playback of multiple files
simultaneously); loop — audio file will be looping; muted — media plays without the sound
(user has to unmute manually); controls — if attribute present, then media playback
controls will be shown in the browser; volume — sets or returns the volume of the audio

[27, 41, 42]. The list of attributes is longer but it is not convenient to list them all here.

In HTML5 it is possible to seek through media (audio and video) and also specify the
playback range (play only a portion of the media) [43]. The latter functionality should
become handy in browser-based games. As mentioned previously in the “Working within
the limits” chapter — concatenating audio files can reduce loading times and be especially

beneficial in reducing the number of request made to the server.

<audio> element has also number of limitations. Among other things it is difficult to
implement precise timing controls, the number of sounds playable at once is limited, pre-
buffering a sound is not very reliable, no real-time audio effects, no audio analyzing

capabilities [44].

In addition while going through the list of functionality and attributes one could notice that
one of the most common parameter is missing — panning. While using audio-tag for audio
playback it is not possible to pan audio sources to right or left (there is no reference to
panning mentioned in the W3C documentation). If dynamic panning (panning audio
elements based on the location of the audio source on the screen) is absolutely necessary

then it has to be done through other means.

4.1.3 Web Audio API

Web Audio API is created to enable audio processing and synthesizing in web applications.
Its modular structure can somewhat be compared with the Adobe Flash’s sound system —
the overall audio rendering is defined by number of connected AudioNode objects (the
matter of AudioNodes will be covered in more detail later). The Web Audio API standard is

currently in the state of Working Draft, which means that it is prone to change [24].

Web Audio API is completely separate from the audio-tag (although it has integration

points with other web APIs). Web Audio API overall goal is to make the functionality found

25

in game engines and audio production applications (mixing, filtering and processing)
available to web browsers. The API can be used for multiple cases — games, web audio

applications, sound synthesis [44].

Hierarcically the Web Audio API is structured in the following way: all the magic happens
inside the AudioContext where all the AudioNode objects are situated. AudioNodes can be
connected with each other and any AudioNode’s output can also be another one’s input.

There are four different types of nodes:

e Source node — sources can be audio buffers, live inputs (i.e microphone), audio-tags,
oscillators

e Modification nodes — include filters, convolvers, panners etc

e Analysis nodes — analyzers

e Destination node — audio outputs and offline processing buffers. Audio doesn’t have
to be played, but can also only have a visual representation acting as a final
destination.

The number of nodes can vary depending on the certain case. Separate sound sources can

have a different number of nodes in the signal flow path [24, 44].

AudioContext

LowPass Waveshaper
Filter Distortion

(wiatl)(wiat2) [watd :}
P

Convolution

Reverb

(mastar wat asin)

master dry gain

Dynamics

Destination
Compressor

Figure 6 - AudioContext with different AudioNodes. Source: W3C [24]

26

Web Audio APl W3C documentation lists a number of predefined features which can be
used for processing the sound. Many of the features are made specifically for games to
improve the gaming experience and increase the immersive qualities of the game. Some of
the more relevant features for this paper are: low latency sound playback, automations,
audio spatialization (different panning modes, distance attenuation, occlusion, obstruction,
Doppler shift, source-listener* model), high quality room effects (small/large room,
cathedral, concert hall, cave, comb filter effects to name a few), dynamics compression,
audio filters. Most importantly this list of features supported by the Web Audio APl makes
it possible to use it for 3D games since audio sources can be placed in the 3D space and
playback parameters being changed depending on the relative location of the audio source

from the listener [24].

Since Web Audio API is meant to extend the capabilities of web browser, there are still
some performance considerations which come with it. One of the most relevant issues is
latency (discussed above in more details) — the time between user action and a sound being

heard.

To deal with the resource limitations (especially with CPU power), there are some measures
implemented into the Web Audio APl which help to cope with the processing limitations.
The Web Audio API offers a way to monitor CPU load to dynamically implement
adjustments, preventing it from going too high. Another option offered by the API is voice-
dropping — limiting the number of sounds played at the same time to keep the CPU usage in
a reasonable range. This can be done either by setting a certain number of allowed voices
or monitor and drop them dynamically. Other recommendations for conserving resources
include simplifying audio effects used in the audio signal path and running audio rendering

at a lower sample rate [24].

Web Audio API extends the possibilities of web to a greater extent, allowing programmers
to create more complex audio solutions. Working with JavaScript in browsers has its
limitations, but the API introduces different ways to cope with the limitations to deliver the

best possible audio experience.

“Source-listener acts as a microphone-like device. It receives audio from any given audible sound source in the
game space. (http://docs.unity3d.com/Documentation/Components/class-AudiolListener.html)

27

4.1.4 Audio Data API

One has to remember not to confuse Web Audio API with the Audio Data API (sometimes
also referenced as Audio API). Audio Data APl was developed by Mozilla to extend HTML5
audio and video elements by exposing audio metadata and raw audio data (similarly to
Web Audio API to enable working with sample data) but has since been deprecated and its

usage is not recommended [27, 45].

4.2 Sound file types

As mentioned previously there are multiple limitations which affect the sound in games and
especially when implementing it using web technologies. There are multiple types of sound
that one can use. This chapter will cover the principles and differences related to the file
types which can be used in web. When implementing audio in the web three audio types
will be used — MP3-files, audio encoded with Vorbis inside the OGG-container and AAC

encoded audio inside the MP4-container.

4.2.1 WAV audio

Audio files with WAV-extension usually consist of uncompressed soundform data in Pulse-
Code Modulation (PCM) representation [27]. PCM sound data is a binary digital
representation of an analog sound [1]. Files with .wav extension is a standard for PC, the
equivalent file type for Mac-computers has .aiff extension. Since both of these file types are
uncompressed it means large file sizes [5]. The large file sizes make the usage of WAV-audio
inefficient; also WAV-audio has not been supported by all of the major browsers (without
an equivalent file type to fall back to) which is the reason why this type of audio will not be

used during testing.

4.2.2 MP3
MPEG-1 Audio Layer 3 is the most well-known audio compression method, commonly
referred as MP3 because of the file extension (.mp3). MP3 is a lossy format — in other

words it means that some of the audio data will go missing during compression [27].

MP3 compression method is based on psycho-acoustic principles — sounds that are hard to
hear (high-frequency sounds or quieter sounds masked by other ones) are removed from

the audio data resulting in a smaller file size. Since decoding MP3-files for playback takes

28

some processing time and power, it is not the best option for instantaneous playback.

Using a high compression rates may also result in an unwanted audio artifacts [7, 46].

4.2.3 OGG Vorbis

OGG Vorbis is also a lossy audio compression similarly to the MP3. The OGG is the name of
the container format (beside audio OGG can also contain video and metadata). Vorbis is the
name of the compression scheme designed to be contained in OGG. The OGG Vorbis is
completely open and patent free standard and according to the developers it should deliver

better audio quality than MP3 file with the same size [27, 47].

4.2.4 WebM

The WebM is also a file container type, which is designed to specifically use only Vorbis
audio codec. According to Mozilla developers network, WebM is preferred over Ogg, since
it should provide a better compression to quality ratio [32]. WebM project homepage

(http://www.webmproject.org/) states that this format has been developed specifically for

delivering media over web (including live streaming) and is open source and patent free, so
everybody could use it freely. WebM would not be in later implementations due to the lack

of support for this audio format by audio editing programs.

4.2.5AAC

The Advanced Audio Coding (AAC) belongs also into the family of lossy codecs’ and was
originally considered to be a successor to MP3 [27]. It uses same basic coding paradigm (as
MP3), but delivers better sound quality — through different improvements AAC should
reach the same quality as MP3 at about 70% of the bit-rate [48].

In Appendix A there are listed number of different audio file types which can be included to

web under certain conditions.

V.. Appendix A - a list of audio codecs and containers with the corresponding browser supports
A can be found from Appendix A.

Ogg and WebM containers can also be used for video, but discussing video related topics is

not part of this paper.

29

5. Implementation and methodology

This chapter gives an overview of the methodology used to test different aspects of the
performance of audio implementation methods in web — test approach, used test

environments,

5.2 The technical solution of the implementation

Based on my understanding how game audio might be implemented in the web based
games, and to make the tests more easily comparable across both implementation
methods (audio-tag and Web Audio API), two web pages have been programmed to act as
frameworks. Both pages have been programmed to comply with the following technical

requirements:

e Uses compressed audio file to save bandwidth.
e Streamed over the Internet (audio data doesn’t have to be fully loaded before
playback).

e Possibility to change playback volume
Most of the tests were made with 1 minute long audio files; the number and the quality of
audio files were changed based on the type of the test. For testing network speeds, a 1-
minute long MP3 file (with approximate file size of 938KB) was used as a standard. For tests
related to background audio it was made sure that the audio clips were also about 1 minute
long, so the test outcomes could be compared more easily. All the audio is in stereo - this
means bigger audio files but soundwise is more pleasurable to work with. Also the audio
cross-over functionality has been added to the frameworks, since it is important for
creating dynamic background music in a form of changing background audio, based on the
game state or other parameters. The frameworks have been set to start audio playback
automatically after the page has finished loading, which can be done through JavaScript by
calling a “play”-method. In case of audio-tag all the audio included to the page are counted
and the first audio element added to the page is played; in case of Web Audio API no
specific tags have been added to the body of the page, but all audio files are listed in a
JavaScript array and the first audio file in the list is played (the audio data also has to be

decoded first before the playback could be initiated).

30

Also the user interface was standardized - both implementations include the following

custom Ul elements:

Volume slider — enables user to change the playback volume. The default volume
assigned during page load is 20% of the file’s original volume. Volume slider will
affect the playback volume of the currently playing file (the current file will be
tracked by the script).

Playback buttons — enables user to start or stop the sound. Buttons which cannot be
pressed (or when a button press would not change the playback state) are disabled
(e.g. when a sound is already playing then “Play” button is grayed out). In case of
audio-tag there is no dedicated stop method, which means that the playback will be
paused and the playback time set to 0. For WebAudipAPI the play and stop buttons
will either create the connection from the source to the destination of the
AudioContext class or destroy it.

Crossfade button — enables to fade from one audio into another. When the button
is pressed, a next audio file will start to play (with a playback volume of 0), then
over a period of 1 second the next audio clip’s playback volume will be increased to
the level of the previous audio; at the same time the currently played audio file’s
volume will be decreased to 0. At the end of the crossfade the next audio clip will be
assigned to be as the current audio clip and the previous audio clip’s playback will
be stopped. The approach to the crossfade is quite the same for both
implementations but the complexity of the code is very different —in case of audio-
tag, the referencing audio files are as easy as referencing to the id-attribute of the
tag; in Web Audio API the way audio data has been referenced is completely
different, making the implementation more complex (the current implementation
method utilizes the possibilities of multidimensional arrays).

Audio selection list — this area lists all the audio elements one could select between
when doing a crossfade. The equivalent for the selection list are the changes in the
game conditions or views (i.e background music changes when going from title
window into the game) based on the user interactions. When audio-tag has been
used for the implementation, the number of audio elements are counted, added to
an array and then the selection list is dynamically created based on the array. A

similar process takes place when Web Audio API has been used with the difference

31

that the audio files included to the page has already been listed as an array and the

selection list is generated based on this.

Playback controls

Music Yolume
[
[Play

lllustration 1 — Part of the user interface of the test pages

Each page also includes some explanatory information about the current implementation

and what type of processes take place during user interaction.

All test pages have been included to the DVD accompanying this paper. Because of the

* 2 technological reasons Web Audio API-pages has to be run in a server environment. For that

\é reason all the web examples have also made available in the web and are accessible from
http:.//www.webgamesaudio.com/masters/

After standardization the basic implementation (leaving in only the necessary lines of code)
the lenght of the implementation is 144 lines of code for the Audio-tag (the page includes 3
audio files) and 204 lines for Web Audio API (the number of audio files included does not
change the lenght of the implementation). The implementation relies on jQuery® and a
custom jQueryUI° libraries to provide necessary functionality for tracking user events,

manipulating with Ul-elements’ attributes and controlling Ul-widget logic.

® jQuery is a JavaScript library, which provides API for working with and manipulating HTML documents,
handling events, animations and working with AJAX. (http://jquery.com)

® jQueryUl complement jQuery by simplifying the creation of certain user interface elements

(http://jqueryui.com)

32

5.3 Implementation to test looped background audio

One of the most prevalent test cases is to find out the suitability of the audio
implementation methods for implementing looped background audio and compare the
performances. These tests should also bring out the possible bottlenecks of the
technologies when sound effects are to be used and implemented. During testing only
nondiegetic music has been used, which plays on the background and is not part of the
possible game world itself (i.e environmental sounds like weather, birds or scenery), but
also often environmental sounds may suffer the same problems as music (i.e clearly

noticeable looping or moments of silence in between loops).

From the early history of games the background music has often been a looped sound
sequence or a looped audio file. This was mostly because of the limited nature of system
resources and therefore the same piece of music was used over and over again. The
downside of this approach was the repetitive nature of the background music [1]. Many of
the games use the approach of dynamic audio — the music changes over the course of the
gameplay based on the location or game state thus eliminating the repetitiveness from
it [5]. According to the game audio academicians the preferred length of the audio file is 3-
to 4-minutes without a noticeable breakpoint, if audio is suppose to loop continuously [5].
In this case the lengths of the used audio clips are around 1 minute (as mentioned in the
previous subchapter), cut in the way to create a possibly seamless transition at the
breakpoint. A 1 minute loop is quite short but it was chosen to reduce the server load

during testing.

5.4 Computers’ specifications used for testing

Depending on the nature of the test, the patterns and the tendencies between conditions
become evident only when tested on multiple systems with different capabilities. Some of
tests were carried out on 3 different computers with diverse hardware setups. Hardware
configuration data has been gathered using a free hardware identifier “CPU-Z""; to put the
CPU-performances into perspective the CPU-benchmark scores® have been included at the

end of the computer specification details. The hardware specifications are following:

" http://www.cpuid.com/softwares/cpu-z.html

8 The scores are based on the information at http://www.cpubenchmark.net

33

Computer number Hardware specification

Computer no. 1 Dell Latitude D630 (laptop); CPU: Intel Mobile Core 2 Duo T7100 @ 1.8GHz;
Cores: 2; Threads: 2; Memory: 2GB @ 333MHz (CPU benchmark score 1042)
“Computerno.2 | Acer Aspire 7739 (laptop); CPU: Intel Core i3 380M @ 2.53GHz; Cores: 2;

Threads: 4; Memory: 4GB @ 533 MHz (CPU benchmark score 2117)

Computer no. 3 HP Pavilion 500 (desktop) CPU: Intel Core i5 3350P @ 3.10GHz; Cores: 4;
Threads: 4; Memort: 8GB @ 800MHz (CPU benchmark score 6143)

Table 1 - Hardware specifications of the computers used for testing

From computer one to three, the hardware gets better and enables us to see, how different
hardware (and the amount of processing power available) affects the performance of
different aspects of audio in web. All the tests have been carried out using the latest
version of Google Chrome, since it can be considered to be the flagship of browsers (it gets
the highest score in “HTML5 TEST”® and has the best score in HTML5 audio support). During
testing, each computer run only the necessary programs and default background processes

to get the most unified results across the systems.

Tests which results are theoretically not affected by the processing capabilities of a

computer but by other factors instead, have been conducted only on one setup.

5.5 Measuring and data logging

During testing a number of diverse aspects have been measured. Google Chrome
Developer Tools' offer a great variety of possibilities for developers to get an overview of
the overall page loading times which are useful for optimizing web pages. By default the
feedback data is limited as browsers’ developer tools don’t give any information about the
execution of certain processes or separate JavaScript functions unless breakpoints have
been set or some specific logging functionality has been programmed into the web page.

Google Chrome provides developers with a Console API*

, which provides methods for
outputting various data in the console window. The more specific usage of the logging

solutions has been covered in more details alongside the explanation of each separate test.

® HTML5 TEST analyses browser support of various HTML-tags and attributes. Test can be found from
http://beta.htmli5test.com/index.html

1% Developer Tools window can be openedby clicking Customize and control menu -> Tools -> Developer tools
or by right-clicking on a web page and then clicking on “Inspect element”.

' Console API documentation: https://developers.google.com/chrome-developer-tools/docs/console-api

34

6. Implementation and testing

This chapter is focusing on the different aspects of implementing sounds in real life and
how different variables influence the usage experience. Implementations involving audio-
tag and Web Audio API have been covered separately (if applicable) to compare the ups

and downs of each separate method.

6.1 Data network speeds and download times

6.1.1 Introduction and test conditions

Data networks (Internet) speeds and throughput is one of the first things that come into
play and might influence the overall user experience. The following graph shows how much
time it theoretically takes to download a 1 minute long 128kbps MP3-file. The size of the
file would be ~938KB (128kbps * 1000 * 60sec / 8 bit / 1024 = 937,5 KByte).

Download times —o=Time in seconds
1357
100 L ~o_ 60
F /I\ 30
15
% GPRS
S10 -+ - e
I EDGE 3,75
. 15
g /[\ 0,75
: HsPA36 |
HSPA 7.2
0,1

56,6Kbps 128Kbps 256Kbps 512Kbps 1Mbps 2Mbps 5Mbps 10Mbps
Download speed

Figure 7 - Download times of 1 minute long MP3 file in case of different download speeds. Red arrows appoint to the
approximate position, where mobile connections reside on the speed graph. (based on
http://www.techspot.com/guides/272-everything-about-4g/).

The times are true only under the assumption, that the connection throughput is 100% at
any given moment (a theoretical maximum); the graph doesn’t take into account request

times, network delays or other possible factors which affect the real connection speed.

The real loading times are usually slightly different from the idealistic model. To test the

real download speed the implementation frameworks were changed to only download and

35

start playing a 1 minute long MP3-file (with size ~938KB). The test has been made under

the following conditions:

e Average server ping time: 25ms
e Trace route analysis showed 7 hops to reach the destination server.
e The download speed on paper should be 5Mbps, average real download speed is

~4.9Mbps. (based on the Ookla Internet speed test at www.speedtest.net)

Among other things the relationship between the number of requested files, the lengths of
audio files and server response times have been analyzed, which from the perspective of

webpage optimization are important [49].

6.1.2 Ways of measuring

For measuring the speed Google Chrome developer’s network tool has been used, which
shows how much time it took to download the file and from which parts the total
download time consists of. The data is visualized on a timeline, giving developers an

overview of the downloaded files, loading order and timings.

® O ¥ = Preserve log
Name Size
Path Type Initiator Coner Timeline Hiile i e
= Jjquery-ui-1.10.3.custom.min.js T background audi... 59.4KB
= /ckalmus/masters/audioExamples/websy: L 223KB 2
‘ bg-img.jpg . i jguery-2.0.3.min.js:4 109KB —
image/jpe —
| fkkalmus/masters/audioExamples/fwebsy: Lol Script 109KB |
bg-track.pn jguery-2.0.3.min.js:4 4268
. .g p - ; image/png 5 Blocking |2.000 ms
= /kkalmus/masters/audioExamples/websy: Script 1488 Sending 1.000 ms
.| handle.png i background audi... 1.4KB Waiting 276000 ms
o : ; . image/png e
= /kkalmus/masters/audioExamples/websy: Farser 11KB Receiving 1495
testB0sekl.mp3 diof background audi... 939KB e —
| /kkalmus/masters/audioExamples/Audio e 938KB S
8 requests | 1.1 MB transferred | 2.26 5 (load: 950 ms, DOMContentl oaded: 492 ms)

Illustration 2 - Google Chrome developer tools' network tab with timings information.

The download phases are described by the Google developer tools documentation*?:

e Blocking — Time the request spent waiting for an already established
connection to become available for re-use.

e Sending — Time spent sending request.

e Waiting — Time spent waiting for the initial response.

e Receiving — Time spent receiving the response data.

2https://developers.google.com/chrome-developer-tools/docs/network

36

When the total download time of multiple audio files have been measured, the Network
tool’'s view does not provide accurate timings data. Analyzing the request-download
timings of multiple files requires working with the Google Chrome Developer Tools’ console
window, because getting exact timing information from the Network tab’s timeline area is

rather impossible.

LT Jkkalmus/masters/audiobxamples/websy: T EEF NCApE 1.1KH

_| testblsekl.mp3 dio/ background Web... 939KB
U /kkalmus/masters/audioExamples/Audio T ' Seript 938KB
| test60sekl.mp3 . background Web... 939KB
| e . audio/m... J—
__J /kkalmus/masters/audioExamples/Audio script 938KB

testblsekl.mp3 . background Web... 939KB
| TN 3 audio/m... 5 s
1 /kkalmus/masters/audioExamples/Audio Script 938KB

10 requests | 2.9 MB transferred | 6.49 s (load: 1.54 s, DOMContentLoaded: 118 5)

Illustration 3 - Google Chrome developers tools’ network tab in case of three audio files. Tests showed that there is no
consistency in the order of downloads.

From the visual representation it is difficult to accurately determinate the timings — the
download times of each individual file is available, but often it is impossible to get the total
download time from the download start of the first audio file until the finish of the last
audio file. By entering a specific command into the developers tools console window it is
possible to access the same raw timings data the visual representation relies on —the
command “window.performance.getEntries()[‘entry number’]” (where ‘entry number’ is
the number of the file requested by the parser or by script) returns the full overview of the
timings related to that specific file (the ‘entry numbers’ were initially determined by trial
and error). By comparing the timings of audio files to each other it is possible to determine
how much time it takes to request and download the files. The method is based on Google

Chrome Developer Tools documentation (https://developers.google.com/chrome-

developer-tools/docs/network).

6.2.3 Testing and results

The test has multiple stages to cover many possible loading cases. Each test case was made
in two sets — loading audio for audio-tag and for Web Audio API. The download speeds
were carried out 10 times for each type of audio to eliminate the possibility that the test

would be influenced by random fluctuations of the connection.

The first test was to measure download times of 1 minute of MP3-audio. The timings data
was based on the Google Chrome developers tools network window and the average

results are shown in the following table:

37

Audio type \ Sending Waiting Receiving
Download phase

AUDIO-tag 1,4ms 281ms 1,49s

Web Audio API 0,9ms 118ms 1,481s

Table 2 - Average loading times of 1 minute long MP3-file in case of AUDIO-tag and Web Audio API

Appendix C — The full table of all the test results can be found from Appendix C.

|-
-

The differences in the sending times are negligible and can be discarded from the
measurements in the future. The reason for a clear difference in waiting times is unknown.
It might be due to the fact that in case of audio-tag the audio element is part of the DOM

I*) and the request to the server has been made by the parser',

(Document Object Mode
leading to a longer response time by the server. In the case of Web Audio API, the request
to get the audio file has been made separately by the script and is independent from the
loading of the rest of the page. The receiving times in both cases were very close to the

theoretical download time (see Figure 7 above) and the differences were also negligible.

A web game might also include multiple audio files, therefore the same test was conducted
multiple times with different number of audio files (each a minute long 128kbps MP3-file).
The following table summarizes the waiting times when 2, 3 or 5 minutes of audio have

been added to the page. All the times are in milliseconds.

Audio type \ Request Response Response Total time Request Receiving
Properties start start end time time
AUDIO-tag 2x1min 577,8 948,6 4058,5 3480,7 370,8 3109,9
Web Audio API 2x1min | 709,8 868,9 3942,9 3233,1 159,1 3074
AUDIO-tag 3x1min 681,6 1209,9 5849,3 5167,7 528,3 4639,4
Web Audio API 3x1min | 883,3 1074 5806,1 4922,8 190,7 4732,1
AUDIO-tag 5x1min 859,3 1463,7 9800,1 8940,8 604,4 8336,4
Web Audio API 5x1min | 961,9 1254 9092,3 8130,4 292,1 7838,3

Table 3 - Average loading times in milliseconds of 2 (2x1 minute), 3 (3x1 minute) and 5 (5x1 minute) minutes of audio
data in case of AUDIO-tag and Web Audio API.

BDOMisa programming APl for HTML and XML documents, which defines their logical structure and enables
to access and modify elements and content. (http://www.w3.0rg/TR/1998/WD-DOM-
19980720/introduction.html)

 parser is responsible for taking the HTML-file, converting it into an DOM object and processing it
(http://www.w3.org/html/wg/drafts/html/master/syntax.html#parsing)

38

L

b Appendix D — The raw data of the tests can be found from Appendix D.

By increasing the used amount of audio data step by step some of the patterns in loading
times become more evident. When Web Audio API has been used, the time of the first
request to fetch audio from the server has been made in average 145ms later (compared to
audio-tag). The most reasonable explanation is that since for Web Audio API the request is
sent by the script and not by the parser, the script will be triggered after the rest of the
page has been completely loaded, delaying the start of the first request by a few hundred

milliseconds.

With each additional audio file the initial waiting time before the request will be made
(request start time) becomes longer. Also the request time becomes longer (time between
request and server response) - not so much for Web Audio API but noticeably in case of
audio-tag. When audio-tag has been used the request time for one audio file is in average
280ms, for 2 files 370ms, for 3 files 528ms and for 5 files 604ms. The request time seems to
get longer when more audio files have been added to the page, but it is difficult to see any
specific growth patterns behind it. Receiving times of the audio deviate slightly from the

perfect download timings as shown on the Figure 7.

Whether the differences were conditioned by the increasing number of the requests made
to the server, a similar test was carried out as a comparison using one 2 minutes long and
one 3 minutes long MP3-file (at bitrate of 128kbps). The following table summarizes the

test results:

Audio type \ Request Response Response Total time Request Receiving
Properties start start end time time
AUDIO-tag 1x2min 530,8 810,2 3905,9 3375,1 279,4 3095,7
Web Audio API 1x2min | 942,3 1105,3 4236,7 3294,4 163 3131,4
AUDIO-tag 1x3min* 540,33333 847,33333 16381,666 15841,33 307 15534,33
Web Audio API 1x3min | 775,7 892,1 5633,6 4857,9 116,4 47415

Table 4 - Average loading times in milliseconds of 2 and 3 minutes (in a single file) of audio data.
*The test with 3 minutes of audio data (in a single file) in case of audio-tag was cancelled
after third test round. After buffering 2MB of audio data (the total file size of 3 minutes
long MP3-file is ~2.74MB) the download speed was reduced significantly probably because

of how browser handles the buffering of bigger audio files (possibly implementing some

39

sort of network load optimization). This led to download time of ~15 seconds in average,
making it impossible to compare it with the rest of the tests. A line from the W3C
documentation states the following about how the resource fetching algorithms for media
elements can be implemented into browsers: ,, The rate of the download may also be
throttled automatically by the user agent, e.g. to balance the download with other
connections sharing the same bandwidth” [41]. It also states that user agent may stop
downloading content at any moment and wait for an user interaction and based on this
decide what to do next (continue downloading or suspend the media element). Because of
the load optimization the test was never carried out for 5 minutes of audio in a single audio

file, since it would not have resulted in any reliable data.

Y. Appendix F - the raw data of the previous tests (the download timings of 2 minutes and 3
A minutes long MP3-files) can be found from Appendix F.

This test shows that when it comes to the downloading times it does not matter much
whether one has included 3 minutes of audio in a single file or uses three 1-minute long
files. The timings are roughly the same, therefore the deviation form the ideal download
timings has to be caused by other reasons — one of the most likely possibilities is that
during the lifetime of a connection it will not be able to maintain the possible maximum

speed and drops slightly during the download process.

In addition a quick set of tests with ten 3-seconds and ten 20-seconds long audio files was
performed to see, how the number of the included audio files influences the request times.
The following table concludes the average of the request times to make it easier to

compare them.

40

Amount of time Audio-tag Web Audio API
1x1min 281 118

2x1min 370,8 1591

3x1min 528,3 190,7

S5x1min 604,4 292,1

1x2min 279,4 163

1x3min 307 116,4

10x3sec 525,6 253,1
10x20sec 609,8 302

Table 5 - Comparative table of request times. All times are in milliseconds.
The comparison shows that the times are not in a straightforward correlation of the total
number of audio files included to the page, but also the lenght of the audio files influence

the request times.

| - Appendix F — raw data of the tests with 10 x 3 seconds and 10 x 20 seconds of audio and 5 x
% Iminutes of audio can be found from Appendix F.

The data indicates that the most efficient way is to concatenate files and use only one file,
but often this may not be the most convenient way, i.e when working with sound effects it
most likely will be easier to use one audio file per sound effect than concatenate them
together and then fine-tune manually the playback regions. The specific solution and used

techniques depend on the nature of the game and used audio.

6.2 Web Audio API decoding times

6.2.1 Introduction and test conditions

As showed previously, in case of Web Audio API the server response times were smaller;
file loading times were pretty much the same meaning that in overall the file loading times
were slightly smaller. This does not mean that when using Web Audio API the overall user
experience will be better due to the smaller loading times. While using audio-tag the
playback starts when enough of the first audio element (which was set to start playing
immediately after the page has been loaded) has been buffered. In case of Web Audio API
there is a noticeable delay between the point when the page seems to be loaded and when

audio playback begins. By design the Web Audio APl normally works with buffer arrays

41

(there are some special cases which will be mentioned later) and files have to be loaded
and decoded first, which introduces additional waiting time. The goal of the test is to

analyze the factors that influence the decoding time.

The test was conducted in multiple parts: to test the decoding differences across different
audio file types, the decoding timings were tested in case of 128kbps MP3, OGG and AAC
(in MP4 container). A separate test was conducted to determine if the differences in the
audio quality affects the decoding times, for which MP3-files were used with different
bitrates (96kbps, 128kbps, 192kbps and 256kbps); for each bitrate there were 5 different
test cases — 1, 2, 3 or 5 minutes of audio in the form of 1 minute long audio and to test if
the decoding time is affected by the number of file requests made to the server the
decoding time of one 5 minute long MP3 file was compared to time which takes to decode
five 1 minute long files. To find out, how the computer hardware affects the decoding time,
all test conditions were carried out on all 3 different hardware setups (systems detailed

specifications can be found from Table 1).

Since Web Audio API requires the page to be in a web server environment, a local web
server was created in each test computer using WampServer. WampServer is a web
development environment, which enables developing web applications on a local computer

without the necessity of having an online hosting solution.

6.2.2 Ways of measuring

To measure the delay time before the playback one has to measure the time it takes to
execute the function which decodes the files. To measure the function execution time the
console.time (label) and console.timeEnd (label) commands will be used. When
console.time (label) is called, a timer will be started and run until
console.timeEnd (1abel) Will be called (with the same label) which stops the measuring

and outputs the time value into console window.

42

var request = new XMLHttpRequest () ;
request.open ("GET", url, true);
request.responseType = "arraybuffer";
var loader = this;
request.onload = function() {
console.time ("AudioFile" + index) ;
loader.context .decodeAudioData (
request .response,
function (buffer) ({
if (!buffer) {

console.timeEnd ("AudioFile"

}

request.onerror = function() {
alert ('BufferLoader: XHR error') ;
}

request.send () ;

}

Buf ferLoader.prototype.loadBuffer = function(url, index) {

alert ('error decoding file data: ' + url);
return;

}

loader.bufferList [index] = buffer;

player.bf [index] = loader.bufferlList [index];

+ index) ;

if (++loader.loadCount == loader.urlList.length)
loader.onload (loader.bufferList) ;

Code 2 - JavaScript code responsible for decoding audio data and creating array buffer in Web Audio API with the timer

start and end commands (marked in red).

This technique can be used to get information about any JavaScript function performance.

In this case those command lines have used and inserted into the code to measure

decoding times of audio files. The function represented in Code 2 will be initiated every

time an audio file is decoded. By inserting the timer commands in the specific positions

(shown in red) it is possible to measure the decoding time of each separate file. To measure

the overall length of the decoding process another timer has been set to start before the

first call of this code block and stopped before the audio playback begins. After the

implementation the console window returns the following data:

0 ¥ <topframe> ¥
»XHR finished loading: "http://localhost/audiooo/Audio/menu loop.mp3™.

background WebAudioAPT.html:117

»XHR finished loading: "http://localhost/audicoo/Audio/menu loop3.mp3".

background WebAudioAPI.html:117

»XHR finished loading: "http://localhost/audiooo/Audio/menu loop2.mp3".

background WebAudioAPI.html:117

AudioFile® decoded: 3155.888ms
AudioFile? decoded: 6165.886ms
AudioFilel decoded: 9536.888ms
TotalTime: 9719.068ms

background WebAudioAPI.html:182

background WebAudioAPI.html:182
background WebAudioAPT.html:182

background WebAudioAPI.html:155

Illustration 4 - Google Chrome console window with the custom timings data.

43

When looking at the results it becomes evident, that the decoding of audio files are
overlapping (decoded partly at the same time) since the sum on of each decoding time is
way bigger than the total decoding time (3155 + 6165 + 9536 = 18856 while the total time
is 9719). For that reason the decoding time analysis will be based only on the length of the

total decoding time.

6.2.3 Decoding times of MP3-audio

The overall timing differences for MP3-files are the following (average decoding times):

E 15000 14538
§ 13000 /
% 11000
£ 9000 874 LT —=—Comp. 1
3
g 7000 —Comp. 2
= 0654
s sgs. e 59214
£ 5000 Comp. 3
5 4 3995
8 3000 -
2 2141
1000 1QRR T T T 1
Imin 2min 3min 5min
Amount of audio data in minutes

Figure 8 — Web Audio API average decoding times across 3 different computer setups (based on 128kbps MP3-s)

V.. Appendix H - raw data of the test determining MP3 decoding times can be found from
A Appendix H.

The decoding times’ scaling is pretty close to linear regression. Tests showed that there is a
constant amount of overhear present which affect the times (as mentioned earlier the
decoding times and the overall function execution times are measured separately). It also
becomes evident that in case of slower computers (and in the future possibly mobile
devices) including lots of audio to the page using MP3 files makes the initial loading time

considerably longer.

6.2.4 Decoding times of OGG-audio
The overall differences of decoding times for OGG-files are the following (average decoding

times):

44

8000

[%2)
€ 7000 y)
(&)
£ 6000 g
E 5000 12
£ W / —#—Comp. 1
o 4000 v
£ 3000 31 W 35384 e=t=Comp. 2
2 2000 2 —4—Comp. 3
2 oo | 108
8 1000 L=
()]

O T T T 1

Imin 2min 3min 5min

Amount of audio data in minutes

Figure 9 - Web Audio API average decoding times across 3 different computer setups (based on 128kbps OGG-s)

Y. Appendix | - raw data of the test determining OGG decoding times can be found from
A Appendix |.

Decoding of OGG-files takes almost 50% less time that decoding of MP3-s. Also because of
some other advantages mentioned later on, this makes the OGG a preferred file type

whenever it is supported by the browser.

6.2.5 Decoding times of AAC-audio
The overall timing differences for AAC-audio in MP4 container are the following (average

decoding times):

8000
7000
6000
5000
4000
3000
2000
1000

0 T T T 1
1min 2min 3min 5min
Amount of audio data in minutes

== Comp. 1

=t==Comp. 2

=== Comp. 3

Decoding times in milliseconds

Figure 10 - Web Audio API average decoding times across 3 different computer setups (based on 128kbps AAC-audio)

V... Appendix J - raw data of the test determining AAC/MP4 decoding times can be found from
A Appendix J.

It is interesting to note that the decoding of AAC-audio (MP4 file) takes the least time out
of the three tested file formats. This makes the AAC-audio to be a valid substitution to MP3

45

files to use with the Web Audio API, since the differences in decoding times are so

significant.

6.2.6 Decoding times and different audio qualities

This part of the testing has been made using only MP3 files at different bitrates. In overall
different bit-rates does seem to influence the decoding times — decoding 192kbit or
256kbps MP3 file takes longer time than when 128kbps files have been used, but the
differences seem to be marginal. The average differences between average decoding times

are summarized in the following table:

Audio data lenght 1 minutes 2 minutes 3 minutes 5 minutes
Average difference in ms 107,2ms 136,8ms 112,2ms 138,4ms
Average difference in % 2,843% 4,31% 1,779% 1,343%

Table 6 - Average differences of average decoding times between 128kbps and 256kbps files

V.. Appendix H - raw data of the tests to determine audio quality iinfluences decoding times can
A Dbe found from Appendix H.

The table above represents the average difference of the average decoding times
differences between all three computer setups. When it comes to page loading times then
1/10™ of a second is rather unnoticeable. Using higher quality audio files as the audio
source doesn’t change the waiting time as far as the decoding process is concerned.
Average decoding time difference between bitrates of 128kbps and 256kbps is about 2,5%
across all audio lengths, which is an equivalent of 123ms. When audio files saved at
192kbps is compared to audio of 128kbps, the difference falls somewhere in between.
Comparing a 128kbps MP3 with 96kbps MP3 the difference between qualities is already
rather small and the tests showed that no specific tendencies can be deducted from the
measurements. To get more precise results the number of data points should be increased,
but in terms of web game performance, decoding times should not be taken into

consideration when one tries to decide whether to use high-quality or low-quality audio.

6.2.7 Decoding times and different number of files
The last step of the test was to determine if the there are differences in the decoding times
when five 1-minute long files are decoded versus one 5-minute long audio file. For this test

MP3-files with different bitrates have been used.

The following table concludes the results of the test.

46

Time & Bitrate~Computer | Computer no. 1 Computer no. 2 Computer no. 3
5x1min / 1x5min 96kbps 14353 9626 6620

5x1min / 1x5min 128kbps 14538 9931 6654

5x1min / 1x5min 192kbps 14568 9993 6690
5x1min / 1x5min 256kbps 14677 10086 6730

Table 7 - Comparison of decoding times (in milliseconds): 5x1minute vs 1x5minute of audio data. Smaller times are
better and marked as green.

Appendix H - raw data of the tests to determine how the number of files used influences
decoding times (as long as the total amount of audio remains the same) can be found from
Appendix H.

The average differences from computer 1 to 3 across all bitrates were 295.75, 46.75 and 36
milliseconds respectively. In case of computer no. 2 the decoding time in average was
longer when one 5-minute long audio file was decoded. The number of audio file requests
affected mostly the computer no. 1 (the slowest one; computer specifications can be found
from Table 1), for other machines the timing differences seemed to be pretty random.
Since the test was conducted using a web server solution at a local computer the seemingly
huge difference of computer no. 1 times compared to other computer setups might be
caused by the hard drive seeking times (and by the overall system slowness). By analyzing
the structure of the JavaScript code responsible for decoding the audio data (see Code 2)
and the audio decoding times from the console window (see Figure 8) it is logical to assume
that the decoding process starts as soon as the audio data has been received by the
browser, utilizing the processing power of the CPU to its fullest. Since the amount of CPU-
usage remains relatively the same throughout the decoding process it can be said that the
number of files decoded do not matter until the total amount of audio data remains the

same.

6.3 Looping sounds

6.3.1 Introduction and test conditions

As mentioned previously looping sounds is a fairly common technique in games. This raises
the question, how well can web deal with sounds which are set to be looped. In both cases
(audio-tag and Web Audio API) looping is part of the default playback methods — in case of
audio-tag one has to simply include a ,loop“ parameter inside the tag (i.e <audio

loop><source src="“myRandomAudio.mp3“></audio>); to make a sound looping with Web

47

Audio API one has to set the audio source to be loopable (i.e source.loop = true). To
approach the question about the performance of the looped audio a test was conducted on
three different computer setups (the same setups also used in the previous tests) with
three different audio file types (MP3, OGG and AAC/MP4). The main area of interest in
measuring the quality of looped audio is to determine the amount of silence present at the
breaking point of the loop. Among previously stated test goals this reveals and helps to
analyze possible shortcomings in the designs of audio formats when it comes to using them

in web.

6.3.2 Ways of measuring

Testing that kind of functionality means that in most cases the conventional developer
tools do not have methods to test looping quality and playback delays, therefore the
timings were measured manually. The process of testing playback delays included multiple
steps: audio playback was initiated, the playback was internally recorded by an audio
editing program (many soundcards enable users to record so called “stereo mix” which
means that the final audio signal can be internally routed back to the computer and
recorded), the recorded audio was later analyzed and the different timings were measured
using audio selection tool inside the editing program. Manual measuring of timings was
also used in cases where no direct audio recording was involved but only specific time

ranges had to be measured.

6.3.3 Looping and MP3-files

The following table concludes how much of a silence is present at the breakpoint:

Computer no. 1 Computer no. 2 Computer no. 3

Audio-tag le =| 256ms

Web Audio API

49ms

Table 8 - The lenght of silence in breakpoints across different computer setups when using MP3-s.

48

. Test pages are available on the DVD. (Web Audio API requires a web server to work); pages are

{ also available in the web and can be accessed through
- http://sisters.ee/kkalmus/masters/audio_master.html

When looping a MP3-audio embedded to the web page with either audio-tag or Web Audio
API, one can clearly hear a moment of silence in the breakpoint, when audio file ends and
starts again. The small amount of silence leads to an undesirable effect since it is easily
noticeable. The gap is more prominent when audio-tag has been used to include audio to

the page (especially on slower computers).

The small amount of silence leads to an undesirable effect since it is easily noticeable
(especially on slower computers). The gap is more prominent when audio-tag has been
used to include audio to the page. There are two main reasons behind the gap when audio-
tag is used with MP3 — firstly, as it becomes evident from the table, it is the processing
power of the computer. To decode MP3-files it takes time and power [7] and the gap was
smaller when a more powerful computer had been used. The second reason lies in the very

nature of MP3, which introduces a delay both during encoding and decoding [50, 51].

decoder encoder ariginal clip padding
delay delay (gapless loop)

Figure 11 - Encoder & decoder delays and padding cause a ""gap" in the loop when the track is played iteratively. Figure
taken from http://www.compuphase.com/mp3/mp3loops.htm

By decoding the audio and creating a buffer array in the beginning, the Web Audio API
solution can overcome the limitation of the playback of MP3 files at the cost of increasing

the initial loading time, but the encoder delay and padding will still be present.

It's not the goal of this paper to get into details of the design of MP3 encoders/decoders,
but some relevant points will be covered. By design the encoder includes a number of
empty samples in the beginning of the MP3 file, which are necessary during decoding
process and removing them may lead to different problems. Decoding process itself also
introduces a delay to the playback (silence, which is independent from the silence encoded

into the file). Some decoders have been programmed to remove the initial silence during

49

playback, but seemingly this is not the case with Google Chrome (see Table 6). The delay at
the end of the file originates from the design of MP3 — MP3s are divided into frames, each
frame consists of 1152 time samples. The MP3 file has to end with a full frame. When there
is not enough audio data to fill the last frame (meaning that the number of samples in the
song are not an exact multiple of 1152), then the last frame of data is padded with zeroes
[50].

How the previous theory applies in reality? When opening a WAV file in a audio editing
program (for example Audacity) and saving it as a MP3 file, on can notice an additional
silence added at the beginning and at the end of the audio (see Table 7 below) in the
freshly created MP3 file. The silence cannot be removed from the file and thus is also
present during the audio playback in the web. When the audio file has set to be looped,
then the end padding and encoder delay will be the main reasons for the gap between the

end and the beginning.

1 second long audio clip’s spectral image

Before saving

After saving

Table 9 - Spectral image before and after saving a piece of audio as MP3. On the “After saving” image, the red lines
represent the positions of the gaps; the gap in the beginning is 27ms, at the end 17ms.

In Table 8 the amount of silence present when used Web Audio API is 49ms while the sum
of the silence shown in the Table 9 is 44ms. This shows that the size of the gap can vary,
which is also possible according to the architecture of the MP3 files: the total amount of
silence in the beginning is fixed, but the silence at the end can vary depending on how
many zeroes will be padded at the end of the last audio frame. The worst case scenario is
that the silence at the end is as long as the silence in the beginning, resulting in a total of

54ms of silence.

50

6.3.4 Looping and OGG-files

OGG-files are completely different and do not have same issues as MP3-files. Saving an

audio as an OGG does not introduce any silence or padding inside the file but instead it is

saved as is. Since there is no encoder induced delays the gap when using audio-tag is

smaller. Some of the improvements can also probably put down to how the decoder works.

In case of Web Audio API the looping takes place seamlessly regardless of the test

computer’s processing capabilities. The following table shows the amount of silence in case

of OGG files across all three test setups:

Computer no. 1 Computer no. 2 Computer no. 3

Audio-tag

Web Audio API

lm =] 171ms bl 65ms

————————————————— i e s - e e i el

No Gap Recorded

No Gap Recorded No Gap Recorded

Ll

No Gap No Gap No Gap

Table 10 - The lenght of silence in breakpoints across different computer setups when using OGG-s.

6.3.5 Looping and MP4-files

The following table shows the amount of silence during looping when AAC audio was used:

Computer no. 1 Computer no. 2 Computer no. 3
Audio-tag = =/ 213ms H 95ms
171ms 65ms
‘Web Audio
API

No Gap No Gap No Gap

Table 11 - The lenght of silence in breakpoints across different computer setups when using AAC-audio (in MP4

container).

Using AAC audio (in MP4 container) resulted in a smaller gap compared to MP3 files. When

looking at the browser compatibility with different audio file formats (Appendix A) then one

51

could see that the browsers which support MP3 also support MP4 format, making MP4 a
good substitute for MP3. MP4 file doesn’t have encoder induced delay in the beginning but
it has the padding at the end. The amount of padding can also vary depending on the

amount of audio data added to the last frame of the audio file.

1 second long audio clip’s spectral image

Before saving

After saving

Table 12 - Spectral image before and after saving a piece of audio as MP4. On the “After saving” image, the red line
represent the positions of the end padding; the gap at the end is 44ms.

When looking at the gap times in the previous tables, the data shows that the audible gap is
also there because of how the browser handles the audio files — a certain amount of the
silence will be introduced when the playback position is changed back to the beginning
while looping. When OGG-file was used, the gap on a fastest computer was 65ms, with
MP4 the gap was 95ms (which includes 23ms of encoded silence), and with MP3 the gap
was 105ms (which includes 55ms of encoded audio). This shows that the performance of
audio decoders and the amount of decoder induced silence is different. From the end point
of view the OGG performs the best (across all 3 computers the looping gap was the
smallest); the MP3 decoder seems to be most efficient when it comes to decoder induced
silence but unfortunately the overall length of the silence is still the longest due to the

silence encoded into the file, which makes MP4 to be a better option.

6.4 Overcoming limitations of looping

6.4.1 Introduction, test conditions and measuring
Looking at the previous data raises a question, whether there are any possible solutions to
overcome the limitations? When using audio-tag the decoder induced delay is always

present and especially prominent on slower computers. Web Audio API decodes the audio

52

and therefore doesn’t suffer from decoder delays, but the silence inside the audio file itself

will come along during the creation of buffer array.

One of the easiest solutions is to use fading whether the audio itself has been faded in and
out on the audio file or fading has been created programmatically. Based on my own
experience this technique has been used extensively even In high quality PC-games — one of
the latest example is Hearthstone (a strategy card game by Blizzard) where audio fades out
at some point and comes back later. One of the possibilities is to set the breakpoint to be in
a position, where a moment of silence seems to be part of the audio and doesn’t break the

perceived consistency of the audio piece.

When none of these previously stated techniques can be used due to the nature of the
audio design, and when audio-tag has been used, then theoretically another possibility is to
loop the audio “manually” by change the playback position at a right time. In a test case
created to investigate the possibility further, the same background audio was used as for
the other looping tests but the amount of silence in the beginning and at the end of the file
was increased up to 1 second (with the MP3 and MP4 files the end padding makes it
difficult to get the timing exactly right); then an event listener was added to the audio
element which changed the playback position to 1 second (where the actual audio data
begins) whenever the playback position reached the end of the playable audio data (1
second from the end of the file). Another fixed amount of silence, which is set to be longer

than the encoder delay, could also be a possibility.

Using this sort of manual looping should in theory eliminate the encoder delay and padding
from the playback. The downside of this approach is that there will be a fixed amount of
delay in the beginning when audio file’s playback starts, but this could be dealt with for
example including a small part of audio to the beginning of the file which will be left out
from the loop later on. Theoretically, one could set the playback start position to the point
where the silence in the beginning of the file ends, but this increases the complexity of the
code —in order for this to work another method has to be included, which checks whether
enough audio data has been buffered for the playback position to be changed and after
that starts playback, otherwise when the command has been given to set the playback
position to somewhere else in the file, that position may not yet exist, since not enough
audio data has been fetched. In other words it is impossible to set the playback position to
1 second when only 500ms worth of audio data has been downloaded.

53

The following snippet of code is responsible for changing the playback time back to
beginning with some data logging methods to give feedback about the timings. The code
outputs two values into browser’s console window — the time point where the script is set

to make the break and when the break has actually been made.

currentAudio.addEventListener ("timeupdate", function() {
var duration = currentAudio.duration;
var change = duration - 1.4;
var position = currentAudio.currentTime;

if (change <= position) {
console.log (ch);
console.log (position);
currentAudio.currentTime = 1;

1)

Code 3 - JavaScript event listener responsible for custom looping functionality with logging.

The test revealed some of the bottlenecks also mentioned earlier in this paper — the
performance of JavaScript and its timing accuracy. The code can be tuned to compensate
possible delays induced by JavaScript. In theory the audio file should have 1 second of
silence at the end of the file (end padding still remains to be a problem), so the script
should change the current playback time to the beginning when one second is remaining
from the end of the file. Checking if exactly one second has left to be played is impossible
(the conditional equation of “if playback time is equal to breaking point time, then make
the break” did not work), therefore currently the event listener checks whether the current
playback position has gone past the potential breaking point. To compensate the possible
reaction delay the breaking point in the code example has been set to 1.4 seconds from the
end of the file. The test was conducted under multiple compensational values from 1.2 to

1.4 seconds.

When using Web Audio API the problem related to the decoder is eliminated since the files
have been decoded and buffer array has been used, but the gaps and silence already
present in the source file remains, which is a problem when MP3- or MP4-files have been
used. Using OGG-file as the source of the audio whenever possible is probably the best
option since the OGG-files does not include any encoder induced silence, but not all
platforms might support OGG. When the same approach has been taken (to include 1

second of silence to the beginning and at the end) then Web Audio API has a specific

54

attributes to determine the start and the end of the loop which can be used for this

purpose.

var Play = function(bufferedData, looping, sourceGain) ({
this.source = context.createBufferSource () ;
this.source.buffer = bufferedData;
this.source.loop = looping;
var duration = this.source.buffer.duration;
this.source.loopStart = 1;
this.source.loopEnd = duration - 1;
this.source.gain.value = sourceGain;
this.source.connect (gainNode) ;
gainNode.gain.value = volumeVal / 100;
gainNode.connect (context.destination) ;
this.source.start (0) ;

}i

Code 4 - Function defining the flow of the signal and other playback parameters. The loop parameters are shown in red.

The implementation of this is fairly easy — before the playback the 1oopstart attribute is
set to 1 and the 10opEnd attribute is set dynamically to be one second from the end based
on the length of the buffer. The previous snippet of the code (Code 4) represents the
function responsible for connecting audio source to the destination and among other also

defines looping parameters.

6.4.2 Test results (audio-tag)

This technique enables one to partly overcome the problem with the silence, but it greatly
increases the complexity of the code and is not really reliable solution for the following
reasons. Since browsers are different and the file support is different, then also the OGG
file has to be presented inside the audio-tag. When OGG file has been used instead of
MP3/MP4, the problem with the encoded silence does not exist, meaning that an extra
amount of silence has to be put into the OGG files manually or an extra subroutine has to
be programmed into the code, which keeps track of the file type currently used and

changes the playback and looping conditions based on this information.

The timings data showed that there was no consistency in the timings when the actual
break was made. Interestingly enough, by comparing the reaction times shown in Table 13,
it can be seen that the fluctuation of timings between computer no. 1 (slowest) and
computer no. 3 (fastest) are about the same. From the computer no 1 to 3 the standard
deviations are 64,1852; 39,6832 and 76,4229 milliseconds respectively, which show that
even on a powerful computer JavaScript is not reliable when it comes to perfectly timed

executions.

55

Computer no. 1 Computer no. 2 Computer no. 3
240,02 141,33 116,68
106,31 220,99 216,99
194,15 159,94 236,21
73,87 207,38 140,33
61,87 188,77 9,01
154,15 171,55 66,06
178,15 149,33 226,99
153,14 188,77 116,11
221,58 83,28 97,89
73,87 141,33 206,38

Table 13 - Reaction times of JavaScript when audio has been set to be looped through manually created subroutine
throughout the test computers. All given values are in milliseconds.

V.. Appendix G - raw data of the tests to determine the performance of the manual audio looping
Q.. across the test systems can be found from Appendix G.

This test shows clearly how unreliable JavaScript can be when used for such purposes.
Basically the code is an infinite loop, which is set to check the current playback time and
execute one conditional block when condition is true (see Code 3) which sole purpose is to
set the playback position back to the beginning of file. The implementation already tries to
cope with the JavaScript induced reaction delay, but since the reaction timings are so
different sometimes a small section at the end of the loop will be cut off, creating
unnaturally sounding breakpoint (which still seems to sound better than a brief moment of

silence).

It is important to note that this type of looping implementation seems to work only when
MP3 audio has been used. The “timeupdate” event will be not fired (for a detailed overview
of the implementation see Code 3) when OGG or MP4 has been used as audio source. The
broken functionality might be a result of a bug in the Google Chrome’s implementation of

audio-tag.

6.4.3 Test results (Web Audio API)
With some minor modifications in the parameters of the start-method and some fine

tuning, the playback worked smoothly. Because the last audio frames of MP3- and MP4-

56

files have some padding, then using such a simplistic code to determine the end of the loop
may not give the best results when one unified function has to handle multiple audio files
(this does not apply to OGG files, since the encoder does not alter the original source data
in sense of encoded silence). When the number of used audio clips is low, one of the
options is to specify the loop regions manually and save them alongside the buffer data.
When one decides to take the approach of manual fine tuning, the technique of adding the
extra silence in the beginning and at the end becomes redundant — when using manually
selected loop selections it is also possible to concatenate the different audio files into single
file and define exactly when specific audio clips start and end (as showed in chapter 8 the
decoding time remains the same and overall loading time might benefit from reduced
request time). This makes it possible to have perfect loops without any delays and

unwanted silence.

Manual looping — An examples has been included to the DVD, where an audio playback has
been manually set to be looped at specificed times (both for audio-tag and Web Audio API).
Example have also made available in the web and are accessible from
http.//www.webgamesaudio.com/masters/

*us(,

57

7. Reducing the usage of system resources

In chapter 3 some of the ways were covered which have been used in games to reduce the
usage of system resources by audio. In this chapter the list will be gone through and
analyzed the suitability of the techniques in web environment in the light of the previous

tests.

One of the most viable options mentioned in chapter 3 is to use mono audio. This reduces
the size of the files 2 times and subsequently reduces the data network usage, also when
Web Audio API has been used, using mono files their decoding time will be reduced to half.
This is a simple way to improve the overall performance significantly when usage of stereo

audio is not crucial.

Concatenation (loading multiple audio parts as one file) is also one of the techniques
mentioned. By using concatenation the web game could theoretically benefit from the
reduced overall load times, but technically it could work out only when Web Audio API has
been used to deliver audio. Audio-tag lack reliable default support for playing only parts of
the file and therefore requires a custom functions to make it work, which may not be the

most efficient way of implementing audio.

One of the most interesting techniques mentioned is the way of saving file twice the
original speed and then playing it back on half of the speed, which should result in a smaller
source audio file. It won’t be looked into how game engines handle this technique, but
browsers do not seem to do very well. There are multiple ways of shortening the length of
an audio file — one of the ways is to basically save the file at twice the playback speed which
also results in a change of pitch, another way is to use time-stretch technique, which leaves
the pitch intact but changes the speed [52]. When changing the playback speed in case of
audio-tag, the browser handles the playback speed by the standards of time-stretch. When
listening to the examples it becomes evident that audio-tag is not capable of incorporating
this technique in purpose of saving bandwith and reducing loading time. There are too

many artifacts present in the audio for this to be an option.

58

Changing playback speed - Examples has been included to the DVD, where an audio
\‘ playback speed has been changed (both for audio-tag and Web Audio API). Examples have also
made available in the web and are accessible from http://www.webgamesaudio.com/masters/

Web Audio API handles changes in playback speed differently and does not apply any time-
streching to the buffer when playback speed is changed — when playback speed is changed
it also affects the pitch (it is similar to the effect achieved when changing the playback
speed on a gramophone or on a turntable). The test showed that when a source audio was
saved at twice the playback speed, and then played back on half of the speed Web Audio
APl did a relatively good job. The viability of this technique in web remains under a
question since there are other methods to get the same audio quality with the same
changes in file size (i.e downsampling) — when audio has been speed up and saved as
128kbps 44100 Hz audio file, the perceived quality is the same as audio saved at normal
speed but at 22050hz. Using different playback speeds for audio effects could be useful but

using the technique for background audio is not worth the hassle.

59

8. Conclusive analysis

In this chapter a wider look to the results will be taken and analyzed; pros and cons of
different usage methods will be brought out in a process. Also it will be looked into, how

different aspects might influence the user experience in real life conditions and cases.

Page and resource loading times have always been something developers have had to
reckon with. From the tests related to download timings can be seen that the number of
requests made to the server has an impact to the download timings. Much as reducing the
number of audio files included to the web game can improve the performance, it cannot be
suggested that one could only benefit from it. The balance between the number of audio
files included and the length of the audio files have to be found based on the project at
hand — as also discussed previously, concatenating audio files together can lead to more
complex codebase since extra routines have to be programmed into the system to handle
the audio playback. When comparing audio-tag and Web Audio API in this matter, then
Web Audio API is clearly more flexible as it offers a better variety of methods for working
with audio — using concatenated audio increases greatly the implementation complexity
with audio-tag, but Web Audio APl have the necessary functionality to make using
concatenated audio a solid option. In some cases this could also result in a more efficient

data network usage.

When the number of audio assets in a game starts to become a problem, then to optimize
the performance it might be a good idea to load the necessary audio assets only when
required (i.e when game is initially loaded, only audio used during menu screen will be
downloaded). This approach is beneficial in both implementation cases (audio-tag and Web
Audio API) because when game has been opened but the player leaves the page without
playing it further, no bandwidth will be wasted on loading unnecessary assets. With Web
Audio API a certain amount of decoding time will be added to the loading times, which
means that loading and decoding huge amount of audio during initial loading of the page
increases waiting time before user could interact with the page. Utilizing the possibilities of
asynchronous data retrieval it would be possible to find a balance between loading times
and number of files loaded at the time. In addition to the audio assets, games also include

number of graphic assets and script files which also have to be loaded and therefore it is

60

especially important to balance the performance — minimizing the number of HTTP request
is in the top of the list of techniques which helps to maximize web page display speed [49].
In the field of optimizing the loading of audio files, audio-tag seems to surpass Web Audio
API because of the optimization techniques built into the browsers — browser may decide
not to download a piece of audio when it is not needed and in case of large audio files the
network optimization happens automatically by default without the necessity of
implementing custom functions to deal with it. With Web Audio API, the optimization

techniques have to be designed and implemented manually by developer.

Browsers have gone through a tremendous development over the past years. With the rise
of HTML5 a set on new possibilities has opened up to the developers and the cross-browser
compatibility has also improved. The same multimedia functionality which once required
plug-ins is now supported by browsers by default. The new possibilities are welcome, but
using them to create multimedia solutions does not come without a hassle. Using Adobe
Flash for creating a multimedia application means that the experience is about the same
across different browsers and developers do not have to worry about the browser support
or any special cases. This is not the case when using native web technologies — the browser
support is different and often dictated by patent issues or corporate policies. Including an
audio file to a page means that multiple audio files have to be made available to offer the
same experience for the users’ of different browsers. Fortunately, when audio-tag has been
used, browsers will choose appropriate file type automatically — from the files listed
between audio-tag a browser will use an audio file it supports, which helps out a lot. Since
the Web Audio API have established more ground than Audio Data API (once developed by
Mozilla) and possibly becomes more widely supported over time means that multiple audio
files have to be provided (similarly when audio-tag has been used). In case of Web Audio
API there is a slight difference — Web Audio APl does not have such an automatic file
selection method as audio-tag has and the file type selection has to be specifically
programmed by the developer. This means that instead of working on the final product
itself, one has to spend time to cover the extra cases and to deal with the browsers’
characteristics, making the implementation probably more time consuming than it would
with Adobe Flash.

Another set of issues come along with the characteristics of different types of audio files.

Since audio encoding technologies are different, audio files behave differently (as seen in

61

the test with looped audio). It is not that much of an issue when simply a song has been
included to a page for visitors to be listened, but when timings and performance are crucial
(as they are for games) then delivering a standardized user experience is not that easy.
Creating specific functions to cope with the problems induced by the audio encodings (for
example silence present in the beginning of MP3-files and padding at the end of MP3/MP4-
files) often create an unnecessary overhead and complexity. In Web Audio API it is
theoretically possible to remove the silence from buffer array, but that requires
manipulating with the arrays directly, which is CPU-heavy process and may not be worth it;
there are better ways to get the wanted result, like specifying playback regions. For audio-

tag the audio is implemented “as is” and cannot be altered directly.

When analyzing the applicability of different audio file types in the light of the test results,
then most suitable file type out of the three seems to be OGG. Working with it includes the
least amount of hassle — the file will be saved as is (encoder doesn’t alter the underlying
audio signal by adding unwanted silence) without any unwanted side effects, the decoding
process when used with the Web Audio API is rather quick (MP4 was decoded slightly
faster) and the bitrate-to-quality ratio is good. Unfortunately not all browsers support it,
meaning that still another file has to be included alongside OGG. MP3 is a widely used
compression format, but based on the results | would suggest to discard MP3-files
completely when adding audio to web games and use AAC/MP4-files instead. With its
encoder induced delay in the beginning and padding at the end MP3 file brings along
additional complications. MP4 files also have end padding which requires some effort to
get around of, but the audio quality is better than MP3’s [48] and the WebAudipAPI’s
decoding process will take about twice as less time than for MP3-s. When reading through
different books and looking at various audio-tag usage examples, one could notice a
pattern emerging — MP3 file has always the first source file included to the audio-tag. By
changing the audio source order and making the OGG file to be the first in the list
guarantees, that when browser support includes OGG files it will be used (browser picks the
first audio source it can deal with [27, 43]). This makes sure that the benefits of the OGG-

files can be utilized of all possible cases.

When coming to the world of sound effects the previous tests also cover some of aspects
related to implementing sound effects. With audio-tag | would suggest that the easiest way

of including sound effects to the game is to have one tag-block for each effect in use since it

62

is simpler than concatenating them and then trying to program extra functionality to deal
with the vast number of playback regions for one audio file. The downside of this is the
increased number of request which will be made to the server. It has been estimated that
each additional object will add extra 40ms of latency to the load time of the page; the
latency is also dependent on the location of web servers and the number of “hops” data
has to take to get from the source to the destination [49]. Analyzing the absolutely
necessary number of included audio effects and its effects on the page performance should
be part of the preliminary game design process when audio-tag has been used. When
implementing sound effects using audio-tag, then effects’ playback latency is something
that is heavily dependent on the processing power of the computer, meaning that
developers have to accept that the audio playback timings and thus user experience can be

varied across different systems.

Web Audio API offers better possibilities to the implementation of sound effects, since it
have methods for determining playback regions, making a concatenation of sound effects
to be a convenient solution (whenever applicable) — one file means small request delay and
better network efficiency. Also the playback timing is more consistent. Tests with audio
looping showed that even slower computers can effectively work with audio buffer assuring

an identical user experience across systems.

It has to be remembered that the tests were conducted only on Google Chrome and the
results may vary across different browser for better or for worse, but the suggestions and

proposed techniques should still remain valid.

63

9. Conclusion

From those two implementations covered in this paper it is clear that audio-tag is clearly
simpler and implementing audio using audio-tag is easy. The list of audio events and
properties seems to be sufficient to satisfy the needs of a less demanding project. As
upsides it is worth mentioning the facts that audio playback can be triggered as soon as
enough of the audio data has been buffered, a suitable audio file will be selected by the
browser automatically (assuming that at least one of the supported file types has been
provided within the audio-tag) and all major browsers support it one way or another. It
should be kept in mind that as the games get sonically more demanding audio-tag may not
be up to the task and it does not contest the possibilities of Adobe Flash, which still seems
to be the main way for delivering multimedia content over the Internet. When more
manipulation possibilities are needed but not necessarily with a precise playback timings,
then with some work one could use audio element as the input source to the Web Audio
API to apply additional processing to the audio (an example of it has been provided on the
following page: http://updates.html5rocks.com/2012/02/HTML5-audio-and-the-Web-
Audio-API-are-BFFs).

Web Audio API is still a rather young compared to some other web technologies and
therefore is prone to changes (hopefully to the better). Public W3 Audio Working Group’s
discussion archive shows a notable number of letters exchanged on various audio related

topics (http://lists.w3.org/Archives/Public/public-audio/) which encourages believing in the

sustainability of Web Audio API and in future improvements. A quick search around the
Internet reveals that there are also a number of Web Audio API-related bugs out there,
which influence the usage of that technology to some extent (for example a list of open
bugs can be found from

https://bugzilla.mozilla.org/buglist.cqi?component=Web%20Audio&product=Core&bug sta

tus=__open_). Also the support is still rather limited and it may take some time before all
major browser vendors decide to make the functionality available to their browsers; for
example the latest Internet Explorer version (IE11, which has not been out very long at the
time of this writing) does not support it, even though the requests to include it to this
version was made by the community some time ago

(http://connect.microsoft.com/IE/feedback/details/799529/web-audio-api-support).

64

Implementing Web Audio APl does require some finesse — trying to get a hold on the
technology can be quite time consuming in the beginning, but it does pack a rather
impressive list of methods to work with from dynamic audio generation to filters/effects to
audio visualization. Some of the cons of Web Audio API are that the mechanism to use a
supported audio file has to be programmed manually and is not done automatically by the
browser which means extra time spent not working with the solution itself. On the other
hand Web Audio API works wonderfully when the audio playback has to be timed rather
precisely. Still, it has to be remembered that the audio playback initiation relies on
JavaScript and if most of the system CPU has been consumed by dealing with game logic
the playback may be delayed because of the performance issues of JavaScript. All things
considered, after the initial waiting time to get the audio data decoded the implementation
seems to do pretty much what it was set out to do and could be a solid substitute for
Adobe Flash. When recorded audio will be used one still has to keep track on the amount of
used audio since decoding audio taxes hardware quite much and some cases can introduce
long waiting times. Decoding necessary audio assets into audio buffer at different times

over the lifetime of a gaming session could be a solution.

To conclude the results in a final compact form, a set of recommendations have been

generated, which can be useful when implementing audio to web based games.

e Analyze the technical requirements for audio — using audio-tag is easier but Web
Audio API offers more possibilities.

e Consider using not too many audio assets, as it can hurt loading times.

e When choosing audio asset’s quality, check the audio’s spectral data to make the
most optimal decision.

e When the number of assets cannot be limited, don’t try to load all audio at once
(especially when using Web Audio API due to the decoding time) — take advantage
of asynchronous loading and load them when necessary or on background.

e Consider using OGG and AAC/MP4 audio instead of MP3 whenever possible.

e Looping background audio with audio-tag works best when the piece of music has
set to be faded in/out or composed in a way which masks the break point.

e JavaScript is not as optimized as ActionScript, therefore the performance and
execution timings can vary even on more powerful devices — take into account that
game might be played on different devices with various processing capabilities.

65

10. Future works

This paper covers the topic of sound effects mostly on the theoretical level and analyses
their implementation possibilities-limitations based on the results of mostly background
audio related tests. The tests revealed some potential problematic aspects in the
performance of sound effects in web — playback delays, increase in file request times when
increasing the number of audio files, processing speeds and performance of JavaScript to
conclude the most prominent limitations. One of the possible future works is to create a
web game which incorporates a decent number of sound effects and conduct a qualitative
study to analyze the perceived performance of audio implementation methods in case of

audio effects in web games.

Since the tests were made only using Google Chrome, differences in performance across
browsers could and should be looked into. Based on my personal experience | would say
that even when certain elements or attributes are supported among all browsers, often
there are still some differences how one browser or another deals with elements or
executes specific snippets of code. With the increasing support of Web Audio API, browser
specific quirks and differences in handling Web Audio API’'s methods could be analyzed in
the future (and a similar analysis could be made for audio-tag, though the latter seems to
work rather uniformly across browsers). Making a game to be played only on one platform
(let say a Google Chrome) and thus tying users to one browser or platform is not beneficial
in a long run; instead one should cover as many browsers and platforms as possible and try
to offer the same experience across them — to do that the differences in handling the audio

across browsers have to be looked into and dealt with accordingly.

The tests covered in this paper included only clean audio implementations (meaning that all
other aspects — codebase and graphic assets — were kept to a minimum) and in order to
find out how audio implementation methods perform under real conditions, a more
complex test environment is necessary which also includes a decent amount of graphic
elements and where system resources have to be shared among audio, visuals and game

logic. This would reveal how audio implementation methods perform under stress.

Using web as an implementation environment also gives the benefit of cross-device

compatibility which brings us to the world of mobile devices. How audio implementations

66

using audio-tag or Web Audio API perform on mobile devices is another topic that could be
looked into in the future. Mobiles are getting more powerful in terms of processing power
but they are still not as powerful as desktop computers or laptops. As seen from the tests,
the processing power of a device can in many cases directly influence either user
experience or game performance at large and mobile devices are no different. Also the
possibility of overheating and the battery consumption are some of the elements which

could theoretically act as additional limitations and could be looked into.

67

References

o > w0

10.

11.

12.

13.

14.

15.

16.
17.

Collins, Caren (2008) Game sound — An Introduction to the history, theory, and
practice of video game music and sound design. The MIT Press

Video Game Console Library, http://www.videogameconsolelibrary.com

Baldwin, Neil (2009-2010) NTRQ: NES Tracker

NES Specifications. http://nocash.emubase.de/everynes.htm

Marks, Aaron (2009) The complete guide to game audio. For composers, musicians,
sound designers, and game developers. Second edition. Focal Press

Garcia, Juan M. (2006) From heartland values to killing prostitutes: An overview of
sound in the video game Grand Theft Auto Liberty City Stories, Audio Mostly 2006,
Pited, Sweden, (October 11—12, 2006).

Stevens, Richard; Raybould, Dave (2011) The game audio tutorial. A practical guide
to sound and music for interactive games. Elsevier Inc.

Perron, Bernard; Wolf, Mark J. P. (2009) The Video Game Theory Reader 2.

Brown, Emily; Cairns, Paul (2008) A Grounded Investigation of Game Immersion
Ermi, Laura; Mayrd, Frans (2005) Fundamental components of the gameplay
experience: Analysing immersion, Changing Views — Worlds in Play, Toronto, (June
16—20, 2005).

Sweetser, Penelope; Wyeth, Peta (2005) GameFlow: A Model for Evaluating Player
Enjoyment in Games

Sanders, Timothy; Cairns, Paul (2010) Time perception, immersion and music in
videogames.

Grimshaw, Mark; Lindley, Craig A.; Nacke, Lennart (2008) Sound and Immersion in
the First-Person Shooter: Mixed Measurement of the Player’s Sonic Experience.
Cheng, Kevin; Cairns, Paul A. (2005), Behaviour, Realism and Immersion in Games.
CHI '05 Extended Abstracts on Human Factors in Computing Systems Pages 1272-
1275

Pivec, Paul; Pivec, Maja (2009) Immersed, but How? That Is the Question

Jargensen, Kristine (2006) On the Functional Aspects of Computer Game Audio
Jennett, Charlene; Cox, Anna L.; Cairns, Paul; Dhoparee, Samira; Epps, Andrew; Tijs,

Tim; Walton, Alison (2008) Measuring and Defining the Experience of Immersion in

68

18.

19.
20.

21.

22.

23.

24,

25.

26.

27.
28.

29.

30.

31.

32.

Games. Volume 66 Issue 9, September, 2008, International Journal of Human-
Computer Studies

Panksepp, Jaak; Bernatzky, Ginther (2001) Emotional sounds and the brain: the
neuro-affective foundations of musical appreciation. Behavioural Processes 60
(2002) 133_/155

Karjalainen, Matti (1999) Immersion and content — a framework for audio research.
Cunningham, Stuart; Grout, Vic; Hebblewhite, Richard (2006) Computer Game
Audio: The Unappreciated Scholar of the Half-Life Generation. Proceedings of the
Audio Mosty Conference a Conference on Sound in Games

Chion, Michel (1994) Audio-Vision: Sound on Screen. Columbia University Press
Ekman, Inger (2005) Meaningful Noise: Understanding Sound Effects in Computer
Games

Kaye, Tomasz (2013) ibb & obb. Sound design post-mortem.
http://www.gamasutra.com/blogs/TomaszKaye/20131028/202776/ibb__obb Soun

d_design_postmortem.php

W3C Working Draft. Web Audio API. http://www.w3.0rg/TR/webaudio/

Flanagan, David (2011) JavaScript: The Definitive Guide (6th Edition). O’Reilly Media
McFarland, David S. (2012) JavaScript & jQuery: The Missing Manual, Second
Edition. O’Reilly Media

Powers, Shelley (2011) HTML5 Media. O'Reilly Media

Levitin, Daniel J.; MacLean, Karon; Mathews, Max; Chu, Lonny (1999) The Perception
of Cross-Modal Simultaneity.

Adobe Community Help, Flash Professional - Using Sounds in Flash.
http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10cblfe
1af6-7ce8a.html

Game{closure} DevKit Docs. Creating Audio Assets.
http://doc.gameclosure.com/quide/audio-assets.html#stereo-and-mono-files

Harris, Andy (2013) HTML5 Game Development for Dummies. John Whiley & Sons,

Inc.
Mozilla developer network. Media formats supported by the HTML audio and video

elements. https://developer.mozilla.org/en-

US/docs/HTML/Supported media formats

69

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47

49.
50.

Fitzgerald, Chriz (2013) Sample Rate Explained.

http://learningcenter.berklee.edu/blog/sample-rate-explained Berklee College of
Music — Learning Center.

Juul, Jesper (2012) A Casual Revolution: Reinventing Video Games and Their
Players. The MIT Press

Facebook Application Center.

https://www.facebook.com/appcenter/category/games/’

Gay, Jonathan. The history of Flash.
http://www.adobe.com/macromedia/events/john_gay/page04.html

Grover, Chris (2012) Flash CS6: The Missing Manual. O’Reilly Media

Braunstein, Roger (2010) ActionScript 3.0 Bible. Wiley Publishing

W3Techs - Web Technology Surveys. Usage of Flash for websites.
http://w3techs.com/technologies/details/cp-flash/all/all

Adobe & HTML. http://html.adobe.com/mission/

W3C Working Draft (29 October 2013). HTML5 5.1 — A vocabulary and associated
APIs for HTML and XHTML. http://www.w3.0rg/TR/html51/embedded-content-

0.html#the-audio-element

W3C Schools. HTML Audio and Video DOM Reference.

http://www.w3schools.com/tags/ref av dom.asp

Mozilla developer network. Using HTML5 audio and video.
https://developer.mozilla.org/en-

US/docs/Web/Guide/HTML/Using HTML5 audio_and video

Smus, Boris (2013) Web Audio API. O’Reilly Media

Mozilla developer network. Introducing the Audio APl extension.
https://developer.mozilla.org/en-US/docs/Introducing the Audio APl Extension

Hacker, Scot (2000) MP3: The definitive guide. O’Reilly Media

. Vorbis Homepage. http://www.vorbis.com/faq/
48.

Brandenburg, Karlheinz (1999) MP3 and AAC explained. AES 17th International
Conference on HighQuality Audio Coding

King, Andrew B. (2008) Website Optimization. O’Reilly Media

Taylor Mark (2000) Lame Technical FAQ. http://lame.sourceforge.net/tech-FAQ.txt

70

51. Lutzky, Manfred; Schuller, Gerald; Gayer, Marc; Kramer, Ulrich; Wabnik, Stefan
(2004) A guideline to audio codec delay. Audio Engineering Society, Convention
Paper 6062

52. Bernsee, Stephan (1999) Time Stretching And Pitch Shifting of Audio Signals — An

Overview. http://www.dspdimension.com/admin/time-pitch-overview/

71

List of figures, tables and code examples

Figure 1 - The triangle of compromise in game audio by Stevens & Raybould.................. 14
Figure 2 - Triangle of compromise for web conditions..............ccooviiieniininncne e 15
Figure 3 - The basiCs OF IAteNCYcccueiiiiiiiee e 17

Figure 4 - Differences in frequency data when different sampling frequencies have been
used. Colors represent the volume level of the sound on different frequencies (cyan is
lowest, light 0range iS NIGNESL)coviiiiieiiee e e 19
Figure 5 - The class structure of Adobe Flash sound systemc.ccccevvveieeve e, 22

Code 1 - The minimum amount of code necessary for adding audio to page. Source:

WWBSCROOIS ...ttt bbbttt ere e 24
Figure 6 - AudioContext with different AudioNodes. Source: W3C [24]cccccevvrvnnnnns 26
Table 1 - Hardware specifications of the computers used for testing...........cccccvevvevvenenne. 34

Figure 7 - Download times of 1 minute long MP3 file in case of different download speeds.
Red arrows appoint to the approximate position, where mobile connections reside on the
speed graph. (based on http://www.techspot.com/guides/272-everything-about-4g/). . 35
Table 2 - Average loading times of 1 minute long MP3-file in case of AUDIO-tag and Web
AUIO AP ...ttt s ettt bbb bbb bbbttt n e ne e 38
Table 3 - Average loading times in milliseconds of 2 (2x1 minute), 3 (3x1 minute) and 5 (5x1
minute) minutes of audio data in case of AUDIO-tag and Web Audio API............c.cc......... 38

Table 4 - Average loading times in milliseconds of 2 and 3 minutes (in a single file) of audio

Table 5 - Comparative table of request times. All times are in milliseconds...................... 41
Code 2 - JavaScript code responsible for decoding audio data and creating array buffer in
Web Audio API with the timer start and end commands (marked in red)...........c..ccocv.ee. 43
[llustration 4 - Google Chrome console window with the custom timings data. 43
Figure 8 — Web Audio API average decoding times across 3 different computer setups
(based 0N 128KDPS MP3-S)ccuiiiiiiieieieie bbb 44
Figure 9 - Web Audio API average decoding times across 3 different computer setups
(Dased 0N 128KDPS OGG-S)veviruiriiriieiieiieieie ettt bbbt 45
Figure 10 - Web Audio API average decoding times across 3 different computer setups

(based 0N 128KDPS AAC-AUTIO) ...cvveiiirieieeiesieesie ettt eee et sseesre e e neenneens 45

Table 6 - Average differences of average decoding times between 128kbps and 256kbps

Table 7 - Comparison of decoding times (in milliseconds): 5x1minute vs 1x5minute of audio
data. Smaller times are better and marked as green.c.ccceveveeiesieeseeie e 47

Table 8 - The lenght of silence in breakpoints across different computer setups when using

Figure 11 - Encoder & decoder delays and padding cause a "gap™ in the loop when the track

is played iteratively. Figure taken from http://www.compuphase.com/mp3/mp3loops.htm

Table 9 - Spectral image before and after saving a piece of audio as MP3. On the “After
saving” image, the red lines represent the positions of the gaps; the gap in the beginning is
27MS, AL TNE BN L7MS. .ttt 50
Table 10 - The lenght of silence in breakpoints across different computer setups when using
(01 C] TSRO U R UPPPRTOPRO 51
Table 11 - The lenght of silence in breakpoints across different computer setups when using
AAC-audio (IN MPZ4 CONTAINET).......iiiiiiieiteeie ettt sttt sre et nns 51
Table 12 - Spectral image before and after saving a piece of audio as MP4. On the “After
saving” image, the red line represent the positions of the end padding; the gap at the end is
AAIMNS. .ot 52

Code 3 - JavaScript event listener responsible for custom looping functionality with logging.

Code 4 - Function defining the flow of the signal and other playback parameters. The loop
parameters are SNOWN IN FEA.viiieiii e 55

Table 13 - Reaction times of JavaScript when audio has been set to be looped through
manually created subroutine throughout the test computers. All given values are in

NHITISECONAS. ..ottt e e e e ettt e e e e e e e e et e e e e e e ee e e e e eeeeeneees 56

73

Appendix A

Browser compatibility with <audio> tag according to [32].

Feature Chrome Firefox Internet Explorer Opera Safari
Basic support 3.0 3.5 9.0 10.50 3.1
<audio>: PCM in WAVE | Yes 35 Not Supported Not 3.1
Supported
<audio>: Vorbis in WebM | Yes 4.0 Not Supported 10.60 3.1 (must
be installed
separately)
<audio>: Vorbis in Ogg Yes 3.5 Not Supported 10.50 3.1 (must
be installed
separately)
<audio>: MP3 Yes Partial* 9.0 Not 3.1
Supported
<audio>: AAC in MP4 Yes Partial* 9.0 Not 3.1
Supported
<audio>: Opus in Ogg 27.0 15.0 Unknown Unknown Unknown

*Firefox supports MP3 and AAC partially. Because of the patent issues the support is not

built directly into Firefox but instead it relies on support from the operating system or

hardware. Therefore Firefox supports these formats on the following platforms: Windows

7+ (Firefox version 21.0), Windows Vista (version 22.0), Android (version 20.0).

74

Appendix B

The global attributes supported by the audio tag according to [27].

e accesskey — makes possible to access media element with specifically named
keyboard key.

e class — element class name.

e contenteditable - if the attribute’s value is true, content can be edited.

e dir —the directionality of the element’s text.

e draggable — determines, if the element can be dragged.

e dropzone - defines the action when an item is dropped on the zone.

¢ hidden - boolean attribute which determine if the element will be rendered.

e |d -aunique identifier for the element.

e lang - specifies the primary language of the content.

e spellcheck — used to enable spell and grammar checking of the element’s contents.

e style —inline CSS styling.

e tabindex — determines the element’s order in tabbing sequence.

e title —tooltip info.

75

Appendix C

The results of the test to determine whether there are any differences in loading times
when audio clip has been implemented using <audio>-tag or Web Audio API. Data is based

from the information gathered using Google Chrome Developer tools’ network timeline

view.

1 minute of audio Sending Waiting Receiving

<audio>-tag 1ms 292ms 1,49s
1ms 289ms 1,49s
1ms 274ms 1,49s
Ims 275ms 1,49s
2ms 288ms 1,49s
Ims 284ms 1,49s
Oms 279ms 1,49s
4ms 279ms 1,49s
2ms 284ms 1,49s
1ms 268ms 1,48s

Web Audio API 1ms 113ms 1,42s
2ms 125ms 1,47s
1ms 110ms 1,49s
1ms 115ms 1,50s
1ms 113ms 1,50s
1ms 114ms 1,50s
Oms 118ms 1,50s
Oms 118ms 1,49
Ims 134ms 1.46s
Ims 122ms 1.48s

76

Appendix D

The following data has been gathered using a specific command
(“window.performance.getEntries () [‘entry number’]”) in Google Chrome
Developer tools’ console window, which return raw timings data. All times in the following
tables are in milliseconds. Values in the “Request start”, “Response start” and “Response
end” columns are referencing to the time points when those specific events took place

during the page load.

The following table represents download timings’ data for 2-minutes of audio (2 x 1 minute

audio files)

2x1 minutes of Request Response Response Total time Request Receiving

audio start start end time time

<audio>-tag 547 938 4423 3876 391 3485
945 1310 4424 3479 365 3114
538 895 3916 3378 357 3021
521 888 3878 3357 367 2990
556 941 3939 3383 385 2998
501 885 3881 3380 384 2996
625 962 3989 3364 337 3027
493 865 3867 3374 372 3002
532 906 4376 3844 374 3470
520 896 3892 3372 376 2996

Web Audio APl | 302 506 3548 3246 204 3042
702 868 3914 3212 166 3046
724 884 3933 3209 160 3049
767 912 3975 3208 145 3063
800 962 4022 3222 162 3060
734 860 3977 3243 126 3117
700 891 3950 3250 191 3059
790 940 4036 3246 150 3096
865 1012 4115 3250 147 3103
714 854 3959 3245 140 3105

77

The following table represents download timings’ data for 3-minutes of audio (3 x 1 minute

audio files)

3x1 minutes of Request Response Response Total Request Receiving

audio start start end time time

<audio>-tag 610 1023 5606 4996 413 4583
980 1661 6318 5338 681 4657
562 1057 5618 5056 495 4561
606 1301 5873 5267 695 4572
717 1162 5696 4979 445 4534
562 1034 5589 5027 472 4555
1125 1767 6418 5293 642 4651
669 1135 6054 5385 466 4919
490 976 5551 5061 486 4575
495 983 5770 5275 488 4787

Web Audio APl | 1110 1243 5935 4825 133 4692
772 914 5817 5045 142 4903
875 1120 5678 4803 245 4558
917 1118 5721 4804 201 4603
1365 1499 6320 4955 134 4821
785 972 5702 4917 187 4730
747 1001 5718 4971 254 4717
780 986 5809 5029 206 4823
748 986 5763 5015 238 4777
734 901 5598 4864 167 4697

78

The following table represents download timings’ data for 5-minutes of audio (5 x 1 minute

audio files)

5x1 minutes of Request Response Response Total Request Receiving

audio start start end time time

<audio>-tag 540 1143 11069 10529 603 9926
601 1262 9219 8618 661 7957
936 1556 9511 8575 620 7955
644 1202 9302 8658 558 8100
1730 2133 9908 8178 403 7775
606 1153 8858 8252 547 7705
556 1162 10653 10097 606 9491
1859 2982 11898 10039 1123 8916
561 890 8823 8262 329 7933
560 1154 8760 8200 594 7606

Web Audio APl | 1973 2224 10449 8476 251 8225
937 1415 9084 8147 478 7669
796 1047 8890 8094 251 7843
893 1169 8995 8102 276 7826
840 1065 8902 8062 225 7837
901 1157 8975 8074 256 7818
854 1055 8889 8035 201 7834
752 1044 8908 8156 292 7864
794 1208 8898 8104 414 7690
879 1156 8933 8054 277 7777

79

Appendix E

Raw data of the tests which measure how the number of files influences the initial

response time. All values are in milliseconds.

10 x 3 sec of audio Request start Response start Request time

<audio>-tag 575 1221 646
666 1274 608
556 880 324
652 1113 461
2136 2761 625
809 1265 456
980 1437 457
841 1433 592
677 1142 465
631 1253 622

Web Audio API 952 1115 163
1264 1608 344
1362 1688 326
1026 1234 208
831 1023 192
888 1166 278
1440 1756 316
1141 1449 308
838 982 144
1617 1869 252

80

10 x 20 sec of audio Request start Response start Request time

<audio>-tag 641 1142 501
2380 3060 680
629 1616 987
686 1330 644
597 1239 642
573 1227 654
655 1088 433
601 958 357
541 1140 599
509 1110 601

Web Audio API 826 1117 291
1321 1813 492
911 1218 307
993 1296 303
883 1059 176
907 1208 301
847 1092 245
918 1221 303
892 1187 295
874 1181 307

81

Appendix F

The following table represents download timings’ data for 3-minutes of audio (1x3 minute

audio file).

3 minutes of Request Response Response Total Request Receiving

audio start start end time time

<audio>-tag* 556 884 15032 14476 328 14148
531 817 17038 16507 286 16221
534 841 17075 16541 307 16234

Web Audio APl | 741 859 5648 4907 118 4789
762 879 5666 4904 117 4787
729 847 5603 4874 118 4756
756 870 5581 4825 114 4711
705 821 5531 4826 116 4710
686 801 5490 4804 115 4689
690 809 5519 4829 119 4710
1028 1144 5921 4893 116 4777
965 1081 5845 4880 116 4764
695 810 5532 4837 115 4722

*Stopped testing with audio-tag after third trial due to the fact that after buffering 2MB of
audio data the download speed dropped significantly, resulting in a total download time up
to 16 seconds. The reason behind this might be related to the way how browser handles
the buffering of bigger audio files (which might include utilizing some sort of network traffic

optimization).

82

The following table represents download timings’ data for 2-minutes of audio (1x2 minute

audio file).

2 minutes of Request Response Response Total Request Receiving

audio start start end time time

<audio>-tag 541 775 3888 3347 234 3113
553 847 3938 3385 294 3091
644 880 3970 3326 236 3090
503 756 3874 3371 253 3118
504 814 3909 3405 310 3095
474 770 3861 3387 296 3091
538 832 3924 3386 294 3092
493 786 3878 3385 293 3092
539 836 3921 3382 297 3085
519 806 3896 3377 287 3090

Web Audio APl | 1080 1201 4312 3232 121 3111
1442 1845 4945 3503 403 3100
1053 1341 4438 3385 288 3097
789 905 4057 3268 116 3152
1268 1384 4489 3221 116 3105
782 905 4027 3245 123 3122
717 831 3994 3277 114 3163
689 803 3903 3214 114 3100
757 878 4048 3291 121 3170
846 960 4154 3308 114 3194

83

Appendix G

The following table shows raw timings the data in Table 13 is based on. The first column
shows the time in seconds, when the custom looping function was set to cut the audio and
change playback position back to the beginning of the file. The rest of the columns show
the values across test systems (from computer no 1 to 3) when the playback position was

really changed.

Ideal break time Break time/ Comp.no1l Break time/Comp.no2 Break time/ Comp. no 3
68,623438 68,763462 68,764766 68,740115
68,623438 68,629753 68,844426 68,840426
68,623438 68,717583 68,783376 68,859646
68,623438 68,597312 68,830816 68,763766
68,623438 68,585312 68,812206 68,632446
68,623438 68,677583 68,794986 68,689496
68,623438 68,701583 68,772766 68,850426
68,623438 68,676583 68,812206 68,739546
68,623438 68,745022 68,706717 68,721327
68,623438 68,597312 68,764766 68,829816

84

a8

€666 T/S'OV09 6CV'vyIv EV1'ZTZC | ¥T.'/8.6 Y¥T.'TC6S 62¥'8Y0F /S8'TVIC 0896 98C'€68G /GB'6G0V VYTL'ESTC
0966 €185 GOTV 0§22 9066 7685 620V ev1e L9Y6 8765 7901 880¢
9966 6079 110V 1222 2096 €065 220y GTTC 02.6 191§ 956€ 88T¢
8966 2909 612V L0TZ 8986 G865 0ST¥ 292¢ 8556 £009 oIy 96T¢
6966 8609 002¥ 9622 9696 6765 TOOY v022 1996 V1. L10V 8TT¢
9566 V.79 866€ 8€¢¢ 8£86 1565 4014 2102 2156 009 (0104 66TC
2166 €665 L2y 211e 0996 G/8S 1.0V 9602 0596 €685 SOTV TLT2
09T0T LT09 SoTY GGee 77766 6885 120V T0TC 2676 0685 Ly0Y 9TTC
€v'89G¥T G82'6./8 T/S'V¢6S /G8'O0TE | LG'8ESPT ¥S8°/v/8 T.G'0G8S 8v6¢ | LG'€SEVT 1G8'96/8 ¥TI.'698S 62¥'920€
80G¥T 9198 7809 €90¢ 2asvT 1698 GelS 962 4044 €88 €85 096¢
G8YYT /688 G785 T20€ LEVYT 1068 8085 v.LTE 9SGy T 9T/8 6115 G962
66S7T 7€88 9185 GTCe T6SPT 14G8 6765 668¢ T8EVT €88 G685 9682
zeeyT 9298 €165 L¥0€ 59474 €88 99/§ 20T€ 14444" 0888 TV6S T00E
6EIVT €968 6885 80¢¢€ v09vT 2198 .65 1562 L90VT 6958 7085 G762
VGV €798 7665 LLTE 2T /1.8 0,65 LLTE 11%2%44" 8988 6165 6.8¢
299%T 67788 TT6S LTOE TL9VT 6988 29.S 89T€ 444" 1188 0065 0€0€
sdayiz6T sdapiz6T sdapizeT sdapizeT sdaygzT sdaygzT sdayigzT sdayigzT sdgx96 sdgx96 sdgx96 sdax96
UIWTXG UIWTXE UIWTXZ UIWTXT UIWTXG UIWTXE UlwTxg UIWTXT UIWTXG UIWTXE UIWTXZ UIWTXT

¢ *ou 191ndwo)

Z ‘ou 1a1ndwo)

T°ou Ja1ndwo)

*saul| a]dL) aY1 UBBMISQ MOJ Y1 U0 UMOUYS SI ULUN|OD Ydea JO anjeA afieiane sy

"(Spuodasi||iw Ul sawn) |dy o1pnNy gaA JO 8sed Ul sawil Bulpodsp E4IA 10 e1ep mey

H X1puaddy

98

62'9800T ¥1.'2066 vT1.'TE66 982'9296 €1T'8666 ¥0T9 TE€TY 98¢'zvee
L9707 G286 8€66 0856 7666 G¥09 44414 18¢¢
G107 €€00T T€86 8€96 99007 ¢0T9 147114 1444
99107 €v86 0v66 TS16 €166 ¥¥09 14444 1 4%44
€900T S700T G/66 8596 89007 1829 84T €6¢¢
0TT0T 1916 9v66 V.6 0286 €€09 1444 1444
€986 €007 ¢166 G¢L6 SS00T 6919 12244 JAX44
0TTOT €EL6 0866 9856 1,007 ¥S09 €90y 4144
LeSPT TL'6LEVT €V'89TYT L98ET LGLLOVT /589588 T¢T19 VETE
L9917 LOEVT T9TYT YV8ET 122514 0T06 0519 9¢ce
00SvT 14144" SETVT 8¢6ET v89v1T ¥/98 80¢9 JRANL
8YavrT 434" TETVT T88ET T28YT 0068 6765 661€
444" Lyl LECYT EVLET L99YT ¥€06 9¢29 986¢
9/9vT 6CEVT LCTVT S68ET S09vT ¥5.8 GE6S 8€¢E
64T GEEYT LLTYT GEGET ov.LyT LE68 9919 LTCE
9Ly V244" 11744 EV6ET Cc99vT 6898 €¢a9 GY0€

sdgy95Z UILGXT

SAgNZ6T UILGXT

sAdg8ZT UIGXT

sdgx96 UIWGXT

sdoM9§Z UITXG

sdoM9Sz UITXE

sdoy95Z uIITXZ

sAdg95Z UITXT

6¢v'/999 1/G98'600v €v¥1'869¢ T/G'€8ET | T.G'¥S99 G66E PT.'6G9C 8CP'8GET 0299 ¥T./96€ 1992 L9€T
€199 S00¥ 20.2 08€T 2599 0001 S92 9eeT 1099 2S6¢ 992 €LET
€199 600% €0.¢ 28¢eT 1199 G66E 0992 ¥9€eT G659 14010174 9192 vLIET
2999 200r 169¢ 88¢€T 0299 166€ 8692 99¢T 659 996¢ 1192 v.IET
L1799 A% 1892 78ET 999 666¢ €192 v8€T 8659 T/6€ 992 29¢€T
7899 6T0¥ 10.2 18€T 61799 £66¢ G692 €8¢eT 099 0.6€ 189¢ TeeT
099 610V 10.2 LIET 91799 786¢€ €892 GzeT €T.9 826¢ 1192 89¢€T
9999 €00 9692 /8€T 899 20017 992 1G€ET GE99 €86¢ 8192 /8€T
sdayz6T sdayz6T sdayizeT sdayizeT sdgygzT sdgygzT sdgygzT sdaygzT sdgx96 sdgx96 sdgx96 sdgx96
UIWITXG UIWTXE UIWITXZ UILTXT UILUTXG UILUTXE ulwTxg UIWTXT UIWTXG UIWTXE ulwTxg UILUTXT

/8

ZHINOO8 ® 998 AIOWBN ' :SpealyL ‘¥ 158109 ‘ZHOOT'S ® dOSES G! 2409 U] :Nd ‘(do1sep) 00 UOI|IAed dH — € "ou JaIndwo)
ZHINEES @ g9Y :KIOWAN 'y 'speaiyL ‘g 1$8100 ‘ZHOES'Z @ INOSE €1 2409 [91uU] :ndD ‘(doadey) g€,/ aaidsy 182y — g “ou Jaandwio)
ZHNEEE ® 992 AIOWBIN ' :SPealyL ‘g :$8100 ‘ZHO8'T @ 00TLL ONQ Z 810 |IGOIA 93] :ndD ‘(doader) 0£9a apnure j|oa — T ou Jaandwio)

T/S'0€L9 0699 0299 eVT'LLY9 982'02.9 982'0v0Y evT'LTLC T/S'€6ET
JAZAY) G¢/9 9659 9419 €699 900v 8T.C 96€T
¥9.9 G899 9099 L8¥9 8019 6v0v 1012 86€T
8T.9 €999 1299 G619 €€L9 €a0y 90.¢ 68€T
¢0.9 8199 ¢L99 5619 87./9 020y 8¢Lc 16€T
€¢l9 0299 0v99 85¥9 1€.9 5901 ¢cle L8ET
Gv.9 1699 ¢v99 L9V9 0049 1494 velLe ¢6€T
GT.9 €T.9 €999 ¢879 0€.9 (9444 GT.c 44"

sdgM95Z UILGXT

sdgxz6T UIWGXT

SAg8ZT UILUGXT

sdgx96 UIWGXT

sdoM95Z UITXSG

sdoM95Z uIITXE

sdgy95z uITXZ

sdg9GZ UILITXT

88

ZHINO08 @ 998 :AIo0WBN ‘v :SpeaIyL ‘v :$8100 ‘ZHOOT'E © dOSEE G! 810 [81U] :ndD ‘(domisap) 00S uoljiAed dH — € ou Jeindwo)
ZHINEES @ 991 :AOWBIA ‘¥ 'SpealyL ‘g $810) ‘ZHOES'Z ® INOSE €1 9400 [91u] :NdD ‘(doadey) 6€2/ aaidsy 189y — g "ou JaIndwo)
ZHINEEE @ 992 :AI0WIIA ‘g 'spealyl ‘g 18100 ‘ZHO8'T ® 00T.LL Ond Z 8100 3|ION 31Ul :NdD ‘(dorde)) 0£9a apnire] ||8@ — T "ou 43Indwo)

2'8eS¢ G'/ETC G'8YYT T'TGL 6'CTSS €'9/€¢ 8'9/¢¢ G'TLTT 9'00¢g. L'62GY £'eeie 1'909T
9€G€E 6ETC €arT 7S/, 1¢S5 90vE 4444 09TT S6¢L 6v9v LEOE GoST
695€ €ETC (24" 1574 ¢TSS 8.E€ 45144 00¢T €0€L 4414 0ST€ L6ST
44513 9v1c 114" 8V, S 0.E€ SPEC LITT 662. 4444 090€ G197
LCSE 91T¢ a4’ (574 Sig Gl 86¢¢ 6.T1 €eeL 99SY 00c€ TS99T
145 61T¢ ovvT 8v. ¢1SS 89€€ §/c¢ 68T1 v.EL 99SY 8ETE c0.T
9vSE 8Y1¢ GarT JAZA L1VS [40)4> 0€¢¢ 01T 8.TL 4414 G66¢ 0v9T
GCSE 1424 GEVT 0§/ 6.vS v6EE 88¢¢ OTTT 68¢. 1144 6TCE 8¢ST
8EGE Gv1c 1444 174 6TYS 8EEE G9¢¢ 69TT v1EL 909¥ Bl G6ST
Cese 4474 Slad’ 94/ T€GS oTve 0S€E¢ ¢ST1 453 14444 e L09T
441> 9v1C L9VT 6V, 7SS 65EE [4444 60T 60€L eovy 790€ T99T
UIWTXG UIWTXE UIWITXg UIWTXT UIWTXG UIWTXE uIwITXg UIWTXT UIWTXS UIWTXE UIWITXZ UIWTXT

'saul| adi 8y}

US3M]8(g MOJ 3] UO UMOYS SI ULNJOI Loea Jo anjeA afeiane ay] *(Spuodssijjitu Ul sawi) |dY oIpny gapn Jo ased ul sawin Buipodsp 990 Jo e1ep mey

| Xipuaddy

68

ZHINO08 @ 998 :AIo0WBN ‘v :SpeaIyL ‘v :$8100 ‘ZHOOT'E © dOSEE G! 810 [81U] :ndD ‘(domisap) 00S uoljiAed dH — € ou Jeindwo)
ZHINEES @ 991 :AOWBIA ‘¥ 'SpealyL ‘g $810) ‘ZHOES'Z ® INOSE €1 9400 [91u] :NdD ‘(doadey) 6€2/ aaidsy 189y — g "ou JaIndwo)
ZHINEEE @ 992 :AI0WIIA ‘g 'spealyl ‘g 18100 ‘ZHO8'T ® 00T.LL Ond Z 8100 3|ION 31Ul :NdD ‘(dorde)) 0£9a apnire] ||8@ — T "ou 43Indwo)

9'LLVE G'60T¢ v'6CrT €eL G'80€S 9'6TCE G'08T¢ 8'LYTT G'€969 G'/GEY 9'v.6¢ €'009T
88Y¢€ 61TC GEVT c0. |144S] ¢8¢E 8.1¢C 1977 €90L veey 850€ GEIT
114> 80T¢ 8YYT oyl GEES 0S¢€ 88T¢ GCT1 1169 89¢EY ¢88¢ 9997
99v¢ LTT¢C TevT (422 S6¢9 414> L8T¢ G811 1189 09y €50€ Gest
061€ 91T¢ 9¢vT V. 9TES C91¢€ 88T¢ 9ETT 870. 0EEY ¢06¢ €T
CLYE 060¢ 6EVT LEL v9€9 60C€ v81¢ 9ETT 9/89 S6EY ¢80¢€ 8€9T
0817€ 80T¢ Gevl €0.L GeiE 961¢€ v91¢ 1ZA1 /869 8TcY 168¢ L09T
6.v€ GETC 8Tr1 LEL ¢9¢S L0CE €61¢ cret LE69 €aty €00€ L6€T
S14%3 €0T¢ TEVT 472 SpeiEl [444> 96T¢ ey 1589 X444 444 142"
CLYE ¢80¢ 1444 472 TVES 6TCE 98T¢ 442 670 451314 0€0€ TE9T
9TGE LTT¢C LEVT Ev. ¥8¢S L9T€ 10¢¢ G80T €90. veey 850€ GEIT
UIWTXG UIWTXE UIWITXg UIWTXT UIWTXG UIWTXE uIwITXg UIWTXT UIWTXS UIWTXE UIWITXZ UIWTXT

‘saul| 9|di ay1 usamiaq

MOJ 3U] U0 UMOUS SI UWIN|0d Yyoea Jo anjeA abelane ayl ‘(Spuodssijjiu ul sawin) |dy oIpny gapA JO 8sed ul sawi Buipodsp vdIN/OVY 10 e1ep mey

[XIpuaddy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

