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Abstract:
Since many wind turbines are installed at remote
locations, the introduction of fault diagnosis and
fault-tolerant control is considered a suitable way
of improving reliability of wind turbines and low-
ering costs of repairs. In this project, a 4.8 MW
fictitious but realistic wind turbine is considered,
for which a dynamical model is derived.
A fault analysis is conducted to identify the fre-
quency of occurrence and the severity of the end-
effects of possible component faults. Methods for
diagnosis and accommodation of the most signif-
icant faults are then applied.
The diagnosis algorithms are based on a common
structure relying on a reconfigurable extended
Kalman filter, which allows diagnosis of multiple
simultaneous faults. Generally, the abrupt faults
are diagnosed using hypothesis testing based
methods, while the incipient faults are diagnosed
using parameter estimation based methods. The
fault diagnoses algorithms can be used for both
conditioning monitoring and active fault-tolerant
control purposes.
Fault-tolerant capabilities are obtained by cor-
recting the faulty signals or by incorporating
fault-tolerance in the control system. Both ac-
tive and passive fault-tolerant control systems
are designed based on LPV methods, due to the
parameter-varying nature of the wind turbine,
and are compared in terms of design complexity
and performance.
Verification of the control systems confirm that
they are capable of controlling the wind turbine
exposed to multiple simultaneous faults; conse-
quently, the reliability of wind turbines can be
improved.
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Preface

This Master’s thesis is written by two students, specializing in Intelligent Autonomous Systems, at
the section for Automation and Control at Aalborg University. The thesis is the documentation of
the work conducted in the period from September 5th 2008 to June 3rd 2009 and is focused on fault
diagnosis and fault-tolerant control of wind turbines. The project group will like to thank Peter
Fogh Odgaard from kk-electronic a/s for his help throughout the project, where he has supervised
the group and provided model parameters.

References in the Thesis

� References to sources are referred to like [Esbensen et al., 2008, p. 42], where the name of the
author, year of publication, and page number are in square brackets.

� Figures and tables are referred to by the number of the object. In a reference like Figure 2.1
the first number refers to the chapter and the second number refers to the consecutive figure
number of the chapter.

� References to other parts of the thesis are done by referring to the number of the chapter or
section where the content is located, as in Section 1.4.

� Equations are referred to much like figures and tables, however, with the number enclosed in
brackets; i.e. Eq. (3.6).

The nomenclature found on Page ii describes the notation and symbols specific to the wind turbine
model.

A DVD is attached on Page 167 containing MATLAB scripts and Simulink models developed for
the wind turbine system. Furthermore, model parameters and tuning parameters are also located
here.

Thomas Esbensen Christoffer Sloth
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Nomenclature

The model parameters and variables are mentioned in the following list:

Symbol Description Unit
a Radius of the tower [m]
at(t) Tower acceleration [m/s2]
A Rotor swept area [m2]
Bdt Torsion damping coefficient of the drive train [Nm/(rad/s)]
Bg Viscous friction of the high-speed shaft [Nm/(rad/s)]
Br Viscous friction of the low-speed shaft [Nm/(rad/s)]
Bt Tower damping coefficient [N/(m/s)]
Cp (λ(t), β(t)) Power coefficient [·]
Ct (λ(t), β(t)) Thrust coefficient [·]
Ft(t) Thrust exerted by the wind on the rotor [N]
Ft,i(t) Thrust exerted by the wind on Blade i [N]
Fth(t) Force acting on the tower at hub height [N]
Fth,i(t) Force transferred to the tower from Blade i at hub height [N]
h Height of the tower [m]
I Turbulence intensity [%]
Jg Moment of inertia of the high-speed shaft [kgm2]
Jr Moment of inertia of the low-speed shaft [kgm2]
k Distance from the tower midline to the blade [m]
Kdt Torsion stiffness of the drive train [Nm/rad]
Kt Tower torsion coefficient [N/m]
Mt Top mass of the tower [kg]
Ng Drive train gear ratio [·]
Pa(t) Power captured by the rotor [W]
Pg(t) Power produced by the generator [W]
Pw(t) Power available from the wind [W]
R Radius of the rotor [m]
r0 Radius at which the blade profile begins [m]
rt Distance from the hub to where the force acts on the blade [m]
Ta,i(t) Aerodynamic torque applied to the rotor by Blade i [Nm]
td Communication delay to the pitch actuator [s]
Tg(t) Generator torque [Nm]
tg,d Communication delay to the converter [s]
Tg,ref(t) Reference for the generator torque [Nm]
Th(t) Torque acting on the high-speed shaft [Nm]
Tl(t) Torque acting on the low-speed shaft [Nm]
vhub(t) Wind speed at hub height [m/s]
vr(t) Rotor effective wind speed [m/s]
vts(t) Wind speed tower shadow component [m/s]
vtu(t) Wind speed turbulence component [m/s]
vw(t) Wind speed including tower shadow, turbulence, and wind shear [m/s]
v̄w(t) Mean wind speed [m/s]
vws(t) Wind shear component [m/s]
xt(t) Displacement of the nacelle from its equilibrium position [m]
α Empirical wind shear exponent [·]
β(t) Pitch angle [◦]
βref(t) Reference to the pitch angle [◦]
ζ Damping ratio of the pitch actuator model [·]
ηg Efficiency of the generator [·]
θg(t) Angle of the high-speed shaft [rad]
θr(t) Angle of the low-speed shaft [rad]
θ∆(t) Torsion angle of the drive train [rad]
λ(t) Tip-speed ratio [·]
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ρ Air density [kg/m3]
σw Standard deviation of the wind speed [m/s]
τg Time constant of the first order system [s]
ψi(t) Azimuth angle of Blade i [rad]
ωr(t) Rotor speed [rad/s]
ωg(t) Generator speed [rad/s]
ωn Natural frequency of the pitch actuator model [rad/s]

Throughout the thesis the following shorthand notation is utilized:

� For denoting the set-point to a controller, this reference value is written using ’ref’ in the
index. For instance, ωg,ref(t) denotes the reference to the generator speed, ωg(t).

� For denoting the innovation of a certain variable, the letter ’e’ is used as index. For instance,
ωg,e(t) denotes the error defined as ωg,ref(t)− ωg(t).

� For denoting the measurement of a given variable, the index is extended by ’mes’. For instance,
ωg,mes(t) denotes the measurement of the generator speed.

� Estimates of variables emerge by writing a hat above the symbol. For instance, ω̂g,mes(t)
denotes the estimated generator speed.

� The symbol v(t) is used to denote measurement noise. For instance, vωg(t) is a zero-mean
Gaussian distributed noise sequence with variance σ2

ωg.

� The notation does not explicitly indicate whether a variable is a small-signal value or large-
signal value. This is stated only in the linearization appendix, but is not used elsewhere in
order to simplify the notation.

� To shorten the notation in symmetric matrices the following notation borrowed from [Bianchi
et al., 2007, p. 161] is utilized, where M and P are symmetric matrices:[

M +N + (∗) ∗
Q P

]
will be read [

M +N +NT QT

Q P

]
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1Introduction

In this chapter the background and motivation for the need of fault diagnosis and fault-tolerant
control of wind turbines are described. A brief overview of fault diagnosis and fault-tolerant control
and the application to wind turbines is then given. This is followed by presenting the scope of the
project and outlining the content of the thesis.

1.1 Background

Evolution of technology has increased power demands to operate the modern electrical equipment.
This has increased the demand for fossil fuels and has made electrical energy more expensive.
Because of such high demands for electric power, it is necessary to focus on renewable energy
sources, as fossil fuel resources are limited. Furthermore, to protect the environment the emissions
of greenhouse gases and undesired particles into the atmosphere have to be reduced.

Among the renewable energy sources available today, wind power is the world’s fastest growing
[Wind Energy News, 2007]. With an annual growth rate in installed wind energy capacity of 30%
on average throughout the past 10 years, wind turbines are definitely up and coming [GWEC, 2009,
p. 15]. For several reasons wind energy is growing fast: it is cheap, inexhaustible, widely distributed,
clean, and climate friendly [Wind Energy News, 2007].

As many wind turbines are installed offshore, a non-planned service can be highly costly, so it
would be beneficial if fault-tolerant control schemes could help the turbines produce some energy
from the time a fault is detected to the next planned service. Furthermore, the implementation of
fault diagnosis schemes entails operational benefits due to its feature of early detection of faults,
which can make the wind turbine operate safer and reduce costs as a result of possible improved
maintenance procedures [Hameed et al., 2009, p. 3]. Therefore, fault diagnosis and fault-tolerant
control of wind turbines may offer several benefits:

� Prevent catastrophic failures and faults deteriorating other parts of the wind turbine by early
fault detection and accommodation.

� Reduce maintenance costs by avoiding replacement of functional parts, by applying condition-
based maintenance instead of time-based maintenance.

� Provide diagnostic details to the maintenance staff by remote diagnosis.

� Increase energy production when a fault has occurred by means of fault-tolerant control.

This section has addressed benefits of exploiting wind power and improving the reliability of
wind turbines using fault-tolerant control. The next section gives a brief introduction to fault
diagnosis and fault-tolerant control and their current application to wind turbines.

1.2 Introduction to Fault Diagnosis and Fault-Tolerant Con-
trol

The purpose of this section is to give an introduction to fault diagnosis and fault-tolerant control,
since these topics are addressed in this thesis. This is accomplished by providing a brief overview
of the terminology and available methods in these fields. Finally, the available fault diagnosis and
fault-tolerant control algorithms for wind turbines are discussed.

Terminology

In this subsection the terms used in relation with fault diagnosis and fault-tolerant control are
explained, to avoid any confusion about the terminology used throughout this thesis. The terms
which are explained are highlighted using bold and italic fonts.
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Introduction

A fault-tolerant control system is a system, which prevents component failures from becom-
ing failures on the system level. The control system is though allowed to have degraded performance
in some cases when exposed to a fault. A fault is a change in the characteristics of a component,
while a failure makes a component completely dysfunctional. Overall, there are two different types
of fault-tolerant control systems; these are called passive fault-tolerant control systems (PFTCS)
and active fault-tolerant control systems (AFTCS) [Zhang and Jiang, 2003].

Passive fault-tolerant control systems are designed to be resilient to a specified set of faults.
This implies that the same controller is utilized both for the fault-free as well as the faulty system.
In the design of passive fault-tolerant control systems, different performance requirements are set
up for the normal system and for the faulty system [Niemann and Stoustrup, 2005b]. Therefore,
these systems are not referred to as robust systems, but as reliable systems.

Active fault-tolerant control systems have, in contrast to passive fault-tolerant control
systems, different controllers for the normal system and for the faulty system. This implies that
the state of the system has to be determined by fault diagnosis algorithms. The information from
the fault diagnosis algorithms is utilized in a supervisor , to reconfigure the control system for
accommodating faults.

Fault diagnosis used in active fault-tolerant control systems consists of multiple parts, since
faults both have to be detected, isolated, and in some cases estimated. Fault detection should
detect that a fault has occurred and can rely on either an active or a passive approach. Passive
fault detection should detect faults by comparing the expected system behavior with the observed
system behavior; hence, it does not affect the system. In contrast to this, active fault detection
uses injection of auxiliary signals into a system to improve the fault detection capabilities or in
some cases make fault detection possible. Fault isolation should point out faulty components in
the system. This is important information when faults should be accommodated, since the control
system cannot rely on a faulty component. Some faults do not turn a component on or off, but
have an intermediate state. This implies that fault estimation has to determine the fault sizes in
order to accommodate these.

There are generally two types of faults: abrupt faults and incipient faults. An abrupt fault
is generally easier to detect than an incipient fault, but it might have severe consequences for the
system, since it happens instantaneously.

Existing Fault Diagnosis and Fault-Tolerant Control Methods

There exists several methods for designing fault diagnosis algorithms and fault-tolerant controllers,
and the basics of these are outlined in this subsection.

In the design of a passive fault-tolerant control system a good performance for the nominal
control system has to be achieved while a graceful degradation is allowed in the case of a fault. In
[Niemann and Stoustrup, 2005b] this is achieved by creating a controller structure relying on two
separate controllers. One controller outputs nothing when the control system possesses nominal
behavior, while the second controller equals the nominal controller. In the case of a fault, the first
controller outputs a non-zero value; hence, changing the behavior of the control system. Other
methods, as e.g. [Liao et al., 2003], rely on a multi-objective control system, which has a set of
minimum requirements to the faulty system and are optimized to improve the performance of the
normal system.

In the design of an active fault-tolerant control system the first step is to design a fault diagnosis
system. This essentially consists of designing a residual generator which is sensitive towards faults
and insensitive towards other exogenous inputs to the system. Methods for this include parity space
approaches where, if possible, a perfect decoupling between disturbances and residual is designed.
Another approach is to design a change detection algorithm, e.g. based on a CUSUM test, which
is able to detect a change in the mean value of a signal. Finally, Kalman filter approaches can be
utilized by making a description of the fault become part of the system model, allowing the fault
to be estimated. These approaches are suitable for diagnosing incipient faults.

When the fault has been diagnosed the active fault-tolerant control system must be reconfigured.
This could for example be to reconfigure the controller to rely on estimates instead of measurements.
The active fault-tolerant control system is reconfigured by use of a supervisor, which chooses an
appropriate controller from a family of possible controllers, designed for each fault state.
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1.3 Project Scope

Fault Diagnosis and Fault-Tolerant Control of Wind Turbines

In this subsection the current state of fault diagnosis and fault-tolerant control of wind turbines is
outlined, by examining the available literature.

Modern wind turbine control systems are equipped with condition monitoring systems and fault
detection systems. These systems detect and isolate faults and determine the current operating
conditions of the wind turbine. The available information can then be utilized for predictive main-
tenance, which basically predicts when maintenance should be performed to avoid failures.

Most condition monitoring systems and fault detection systems in wind turbines are signal-
based and utilize e.g. vibration analysis to detect and isolate faults. This has enabled successful
condition monitoring of bearings in the gearbox and the generator among others. Numerous other
signal-based approaches utilized in wind turbines can be found in [Hameed et al., 2009].

Only a few model-based fault diagnosis approaches exist for wind turbines; among these are fault
diagnosis systems for pitch sensors and pitch actuators [Wei and Verhaegen, 2008] and [Donders,
2002]. These diagnosis systems estimate some parameters in the pitch system, and determine if a
fault has occurred based on these estimates.

It has not been possible to find any fault-tolerant control systems for wind turbines in the liter-
ature review. The common approach is to deploy condition monitoring systems and shut down the
wind turbine in case of a fault. However, in a few cases thoughts about fault accommodation have
been presented, but have not been tested or simulated.

In this section the terminology and available methods used in the fields of fault diagnosis and
fault-tolerant control have been outlined. Additionally, fault diagnosis and fault-tolerant control
applied to wind turbines have been investigated. The investigation has revealed that fault diagnosis
algorithms exist for wind turbines, but mostly using signal-based methods. Additionally, only a
few fault-tolerant control systems for wind turbines have been found. In the next section the scope
of the project is described.

1.3 Project Scope

The overall scope of this project is to apply methods which can improve the reliability of wind
turbines. This is accomplished by considering the model of a fictitious but realistic variable-speed,
variable-pitch 4.8 MW wind turbine, provided by the collaborator kk-electronic a/s.

The project aims at improving the reliability of wind turbines by applying application-specific
methods for model-based fault diagnosis and fault-tolerant control. This focus is chosen, since the
literature survey in the previous section shows that research in these two areas are lacking.

Fault Diagnosis

As explained in the previous section some fault diagnosis algorithms have already been developed
for wind turbines, where the main effort has been on signal-based fault diagnosis. This inspires
for an investigation of the benefits of applying model-based fault diagnosis, which is performed
in this project. It is expected that the introduction of model-based fault diagnosis will improve
performance of the diagnosis system, since information about the control signals and the model is
added to the information utilized in signal-based diagnosis methods.

The fault diagnosis approach should only use the main sensors associated with the control of the
wind turbine excluding vibration and temperature sensors etc. Furthermore, the application-specific
characteristics should be utilized in the fault diagnosis algorithms.

Fault-Tolerant Control

The project should also cover the design of fault-tolerant control systems, which should be resilient
to a subset of the possible faults on the wind turbine. Additionally, a comparison between an active
and a passive fault-tolerant control system should be accomplished for the relevant faults.

The faults that should be handled must be chosen based on how frequently they appear and how
severe their effects are. The extent of this project prevents the designed control system to be tested
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Introduction

on a physical wind turbine; hence, simulations using a non-linear model are used instead. This
limitation also has an effect on the faults which are able to be simulated on the considered model.
Therefore, primarily sensor and actuator faults are considered.

The above presentation summarizes the scope of this project. In the subsequent section, the contents
of the thesis are outlined.

1.4 Thesis Outline

The content of this thesis is divided into a number of chapters which are outlined in this section to
provide an overview of the thesis.

Chapter 2: System Description
The purpose of this chapter is to introduce the wind turbine that is considered in the project,
and to explain how a wind turbine is typically controlled. This forms the basis of the design of
a reference controller described in Appendix C, which controls the considered wind turbine model
unless otherwise stated.

Chapter 3: Wind Turbine Modeling
The purpose of this chapter is to derive a model of the wind turbine by modeling the most signif-
icant dynamics of the system. The model is linearized in Appendix B and a state space model is
set up in the chapter to be used in the linear design methods presented throughout the thesis.

Chapter 4: Fault Analysis
The purpose of this chapter is to identify possible faults that can happen to the wind turbine and
determine their impact on the system behavior based on simulation results available in Appendix A.
A number of these faults are then selected to be diagnosed and accommodated in the project. Fi-
nally, the remedial actions that must be conducted to diagnose and accommodate the faults are
outlined.

Chapter 5: Fault Diagnosis
The purpose of this chapter is to provide the diagnosis algorithm design and verification, which
provide the sufficient information to decide an appropriate accommodation of the diagnosed faults.
The fault diagnosis algorithms are only used by the active fault-tolerant controller, since the passive
approach does not rely on a diagnosis scheme.

Chapter 6: Fault-Tolerant Control by Signal Correction
The purpose of this chapter is to provide the fault accommodation design and verification of the
algorithms, which utilizes signal correction to obtain fault-tolerance capabilities. All the developed
algorithms depend on estimates provided by the fault diagnosis system.

Chapter 7: Fault-Tolerant Control by LPV Methods
The purpose of this chapter is to design controllers which are able to accommodate faults which
either change the dynamics of the system or reduce the available measurement information. Both
active and passive fault-tolerant controllers are designed, to compare different approaches to iden-
tical faults.

Chapter 9: Conclusion
The main conclusions of this thesis as well as the recommendations for further research are given
in this chapter.

This chapter has provided a motivation for considering fault diagnosis and fault-tolerant control
of wind turbines. Additionally, the scope of the project has been set up, and has been put into
the context of the current available methods and their application to wind turbines. Finally, an
overview of the contents of the thesis has been provided. In the next chapter the components of a
wind turbine and the typical control strategy are introduced.
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2System Description

The purpose of this chapter is to describe the components of the wind turbine that is considered
in the project, and to explain how the wind turbine is typically controlled to maximize the perfor-
mance dependent on the wind speed. Based on this description a reference controller is designed
according to the basic principles of wind turbine control. The actual controller design is described
in Appendix C, since the main focus of this thesis is fault-tolerant control, not nominal control of
the wind turbine.

2.1 Wind Turbine Components

This section provides some basic knowledge about a wind turbine and its components. Notice that
the section is inspired by [Esbensen et al., 2008, pp. 12-13] and is only slightly modified.

The wind turbine considered in this project is selected by kk-electronic a/s and is a Danish
concept wind turbine, which tends to be the standard design of modern wind turbines. A Danish
concept turbine is a horizontal-axis wind turbine using a three-bladed rotor design with an active
yaw system keeping the rotor oriented upwind [Krohn, 2002, p. 5].

Hub

Tower

Nacelle

Low-speed
 shaft

High-speed
shaft

Generator

Yaw
mechanism

Anemometer 

Wind vane

Gearbox

Brake

Rotor blade

Figure 2.1: Main components of a horizontal-axis wind turbine.

Figure 2.1 illustrates the main components of a wind turbine and their interconnections. The figure
is strongly inspired by [How Stuff Works, 2006]. The components and their purposes are described
below in alphabetic order [The Encyclopedia of Alternative Energy and Sustainable Living, 2005].
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System Description

� Anemometer is used to measure the wind speed. The wind turbine is started when the wind
speed reaches a lower limit, while operation is cut-out when wind speeds become too high.

� Brakes can be applied mechanically, electrically, or hydraulically and function as parking
brakes.

� Gearbox connects the low-speed shaft to the high-speed shaft, thus increasing the rotational
speed to a level required by the generator to produce electric energy.

� Generator converts rotational energy into electric energy. On a modern wind turbine the
maximum power output is typically from a few and up to five megawatts.

� High-speed shaft drives the generator.

� Hub and rotor blades together make up the rotor of the wind turbine. The hub connects
the rotor blades to the low-speed shaft. Pitching the blades is used to maximize the efficiency
in low winds and reduce efficiency in high winds to protect the wind turbine from structural
damage.

� Low-speed shaft connects the rotor to the gearbox.

� Nacelle is located atop the tower and contains the gearbox, low- and high-speed shafts,
generator, and brakes.

� Tower carries the nacelle and the rotor. Since the wind speed increases with the height, a
taller tower generally enables a wind turbine to generate more electric energy.

� Wind vane is used to measure the direction of the wind. The wind direction is used by the
yaw mechanism to orient the wind turbine perpendicular to the wind.

� Yaw mechanism uses electrical motors to orient the wind turbine rotor perpendicular to
the direction of the wind.

Having introduced the main components of a wind turbine, the next section describes how a
variable-pitch, variable-speed wind turbine is typically controlled.

2.2 General Control Strategy

The purpose of this section is to explain how a variable-speed, variable-pitch wind turbine is con-
trolled along a typical operating trajectory, and also to explain the variables that are involved in
the control. This is relevant since the fault diagnosis and fault-tolerant control systems are subject
to the conditions in the closed-loop system.

When controlling a wind turbine, the overall target is to minimize the operational cost while
maximizing the generated power. This cost depends on the conditions under which the wind turbine
produces the power, and implies that wind turbines operate along a certain trajectory, as the one
shown in Figure 2.2. This trajectory is obtained using a strategy of control shown in Figure 2.3,
which illustrates the control signals and rotor speed for obtaining the desired output power.

From examining the power curve it is obvious that the wind turbine only produces power in a
limited range of wind speeds, which is further divided into two distinct regions, I and II; denoted
the partial load region and the full load region. At wind speeds below the cut-in speed, Vw,cut-in,
the wind turbine does not produce any energy since the operational cost exceeds the value of the
produced power. Similarly, no energy is produced when wind speeds exceed the cut-out wind speed,
Vw,cut-out, where the wind turbine is shut down to protect it from structural overloads. To explain
what happens in the two regions of power production, these are explained separately in the following
numbered list:
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2.2 General Control Strategy

Pg,N

Vw,cut-outVw,NVw,cut-in

I
Cut-in Cut-out

12.3 v  [m/s]w

P  [W]g

3 25

Partial load region Full load region

II

Figure 2.2: Ideal power curve for the wind turbine limiting the output power at high wind speeds to
the rated value of 4.8 MW. The interval of the wind speed is divided into two regions, I and II, in
which different control objectives exist.
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6.6
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10.7
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32.1
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Figure 2.3: Typical control strategy for following the ideal power curve. The plots of the pitch angle
(green) and the generator torque (red) show how the control signals are manipulated to obtain the
desired output power (blue) as function of the wind speed vw.

I. The partial load region is located between the cut-in wind speed, Vw,cut-in, and the rated wind
speed, Vw,N. In this region the wind turbine is controlled to generate as much power as pos-
sible. This is achieved by adjusting the generator torque to obtain an optimum ratio between
the tip speed of the blades and the wind speed. Hereby, the efficiency of the aerodynamics is
maximized.

II. The full load region is located between the rated wind speed, Vw,N, and the cut-out wind speed,
Vw,cut-out. Operation in the full load region involves that the produced power is kept at a
rated value to minimize structural loads and thereby reduce fatigue damages. Additionally,
the rotor speed is fixed to reduce acoustic noise emission from the wind turbine, which depends
on the speed of the rotor.

Due to the existence of two distinct regions of control, the usual approach is to apply two
different sets of controllers and interconnect these using a bumpless transfer mechanism. This is
illustrated in Figure 2.4, which shows a block diagram of a reference controller that is based on
classical methods and is introduced to establish a frame of reference. Notice that the structure of
the reference controller is set up in compliance with kk-electronic a/s.

The strategy of the reference controller is to use two different controllers for the partial load
region and the full load region. When the wind speed is below the rated value, the control system
should maintain the pitch angle at its optimal value and control the generator torque in order
to achieve the optimal tip-speed ratio. This behavior is achieved by setting the two switches in
Figure 2.4 to be in Position I.
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System Description

Power
controller

âopt

ùg,N

Switch

I

II

Generator
torque

controller
?  

Tg,N +

+

?  
+

+ Wind
turbineâ (t)ref 

T (t)g,ref 
ù (t)g

Pg(t)

vw(t) 

Drive train
stress damper

Speed
controller

I

II

Figure 2.4: Structure of the reference controller. A switch reconfigures the control system to the
current operating objectives.

Above the rated wind speed the output power is kept constant by pitching the rotor blades, while
using a power controller that manipulates the generator torque around a constant value to remove
steady-state errors on the output power. This behavior is obtained by setting the two switches in
Figure 2.4 to be in Position II.

In both regions a drive train stress damper is utilized to dampen drive train oscillations actively.
Together, the two sets of controllers are able to solve the control task of tracking the ideal power
curve in Figure 2.2, by applying the control signals shown in Figure 2.3. In order to switch smoothly
between the two sets of controllers a bumpless transfer mechanism is implemented.

The design of the reference controller is presented in Appendix C. The reference controller is
considered as being the nominal control system throughout the thesis, and is applied to the wind
turbine model throughout the analysis.

This chapter has provided the basic knowledge about wind turbines, including a description of
the components. Furthermore, the ideal control of a wind turbine has been introduced. In the next
chapter a wind model and a model of the considered wind turbine are set up.
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3Wind Turbine Modeling

The purpose of this chapter is to set up a mathematical model of the considered wind turbine. The
model should be detailed enough to be used as simulation model. From the non-linear model a
linear model is derived to be used in the linear design methods presented throughout the thesis.
Notice that the chapter is inspired by [Esbensen et al., 2008, pp. 23-38], and that the sections:
Model Structure, Aerodynamic Model, and Drive Train Model are only slightly modified.

In the following section the structure of the wind turbine model is presented in a block diagram.
Afterwards, each sub-model of the wind turbine is presented and combined to obtain a complete
model of the wind turbine. To enable the further design, the model is linearized in Appendix B
and rewritten on state space form.

3.1 Model Structure

The first stage of the modeling procedure is to divide the overall wind turbine system model into
appropriate sub-models suitable of being modeled separately. These sub-models are shown in Fig-
ure 3.1.

Aerodynamics Drive train Generator

Tower

Pitch
system

?  +

-

v (t)w v (t)r

ù (t)r

â(t)

T (t)a
T (t)g

ù (t)g

F (t)t

x (t)t

â (t) ref
Converter

T (t)g

P (t)g

T (t) g,ref

P (t)g

Wind model
v (t)w

Figure 3.1: Relationship between sub-models of the wind turbine system model. The wind speed,
vw(t), is the exogenous input and the generator power, Pg(t), is the system output. The controllable
inputs are the pitch angle reference, βref(t), and the generator torque reference, Tg,ref(t). The rotor
speed is fed to the wind model to create wind shear and tower shadow effects.

The wind speed is the driving force of the system. Due to the swaying of the tower, the wind
speed seen at the rotor is obtained by subtracting the speed of the nacelle from the speed of the
wind.

The aerodynamic properties of the wind turbine are affected by the pitch angles of the blades,
the speed of the rotor, and the wind speed. On this basis, an aerodynamic torque is transferred
from the rotor to the generator through the drive train, and an aerodynamic thrust affects the rotor
and thereby the tower.

The output of the wind turbine is electric power which comes from the converter. To operate
the wind turbine according to the set of operating requirements, the pitch angles of the blades and
the generator torque are adjusted. A pitch system controls the pitch angles of the blades, while a
converter controls the generator torque.

In this section the wind turbine model has been divided into seven sub-models, in order to be
individually modeled and combined afterwards. The purpose of the next section is to model the
wind speed, being the exogenous input to the wind turbine.
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Wind Turbine Modeling

3.2 Wind Model

The purpose of this section is to design a wind model, by determining and modeling the components
that influence the wind speed applied to each blade. The model must generate the input to the
wind turbine model; hence, an effective wind speed on each blade must be calculated. Additionally,
the wind model should provide an output resembling the input to the anemometer, which is a point
wind speed, contrary to the remaining considered wind speeds.

Generally, the wind speed is influenced by several components, which depend on the environment
where the wind turbine is located. An equation giving an overview of the components is shown
below.

vw(t) = v̄w(t) + vws(t) + vts(t) + vtu(t) [m/s] (3.1)

where:
vts(t) is the wind speed tower shadow component [m/s]
vtu(t) is the wind speed turbulence component [m/s]
vw(t) is the wind speed including tower shadow, turbulence, and wind shear [m/s]
v̄w(t) is the mean wind speed [m/s]
vws(t) is the wind shear component [m/s]

This general model is utilized in the designed wind model. The output from the wind model
is wind speeds averaged over an area, instead of point wind speeds. Therefore, these are called
effective wind speeds.

The next subsections describe the components, which form the basis for modeling the wind
speed.

Wind Shear

The ground and other obstacles in the path of the wind cause frictional forces to act on the wind.
The frictional forces imply that the mean wind speed becomes dependent on the height above
ground level. This effect is called wind shear and can be calculated from the equation shown below
[Dolan and Lehn, 2006]. The equation integrates the wind speed components from the beginning
to the end of the blade profile and sums the components for the three blades obtaining the wind
shear effect for the rotor plane. Figure 3.2 illustrates some of the parameters used in the equation.

vws(t) =
2vhub(t)

3qR2

3∑
i=1

∫ R

r0

(
r2α

h
cos (ψi(t)) +

r3α (α− 1)
2h2

cos2 (ψi(t))

+
r4α (α− 1) (α− 2)

6h3
cos3 (ψi(t))

)
dr

vws(t) =
2vhub(t)

3qR2

3∑
i=1

(
R3α

3h
cos (ψi(t)) +

R4α (α− 1)
8h2

cos2 (ψi(t))

+
R5α (α− 1) (α− 2)

30h3
cos3 (ψi(t))

)
−
(
r3
0α

3h
cos (ψi(t)) +

r4
0α (α− 1)

8h2
cos2 (ψi(t)) +

r5
0α (α− 1) (α− 2)

30h3
cos3 (ψi(t))

)
[m/s]

(3.2)

q
∆= 1−

(r0

R

)2

where:
h is the height of the tower [m]
R is the radius of the rotor [m]
r0 is the radius at which the blade profile begins [m]
vhub(t) is the wind speed at hub height [m/s]
α is the empirical wind shear exponent [·]
ψi(t) is the azimuth angle of Blade i [rad]
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3.2 Wind Model
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ø (t)1

ø (t)2
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Figure 3.2: Sketch of a rotor and a wind turbine, showing parameters utilized in the wind model.

The wind shear component for one blade is illustrated in Figure 3.3, where it is clear that the wind
speed is smallest at ψi = π rad, since at this azimuth angle Blade i is closest to the ground.

0 π 2π
−0.05

0

0.05

ψi [rad]

v w
s

[m
/s
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Figure 3.3: Wind shear component of Blade i as a function of the azimuth angle. The wind speed
is smallest when the blade is closest to the ground.

Tower Shadow

When a blade is located in front of the tower, the lift on that blade decreases because the tower
reduces the effective wind speed. This phenomenon is called tower shadow and implies that the
force acting on each blade decreases every time a blade is located in front of the tower.

The magnitude of the tower shadow depends on the diameter of the tower and the distance
between the blade and the tower. The tower shadow component can be calculated from the equation
shown below [Dolan and Lehn, 2006]. As in the previous equation, the tower shadow component is
calculated by integrating the wind speed components from the beginning to the end of the blade
profile and summing the components for the three blades obtaining the tower shadow effect for the
rotor plane. Note that the equation is only valid for ψi ∈

[
π
2 ,

3π
2

]
.

vts(t) =
2mvhub(t)

3qR2

3∑
i=1

∫ R

r0

(
ma2

(
r3 sin2 (ψi(t))− rk2

)(
r2 sin2 (ψi(t)) + k2

)2
)
dr

vts(t) =
2mvhub(t)

3qR2

3∑
i=1

a2 ln
(
R2 sin2 (ψi(t)) + k2

)
2 sin2 (ψi(t))

− a2 ln
(
r2
0 sin2 (ψi(t)) + k2

)
2 sin2 (ψi(t))

+
a2k2

sin2 (ψi(t))
(
R2 sin2 (ψi(t)) + k2

) − a2k2

sin2 (ψi(t))
(
r2
0 sin2 (ψi(t)) + k2

) [m/s] (3.3)

m
∆= 1 +

α(α− 1)R2

8h2

where:
a is the radius of the tower [m]
k is the distance from the tower midline to the blade [m]
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Wind Turbine Modeling

To clarify the effect of the tower shadow component, it is plotted for one blade in Figure 3.4.
Notice that the positive wind speeds are caused by the wind being forced around the tower.

1/2π  π  3/2π
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Figure 3.4: Tower shadow component of Blade i as a function of the azimuth angle.

Turbulence

The variations in the wind speed, which are not included in the mean wind speed, are called
turbulence and are caused by multiple factors. The turbulence is often described by a turbulence
intensity defined as:

I =
σw

v̄w
· 100% [%] (3.4)

where:
I is the turbulence intensity [%]
σw is the standard deviation of the wind speed [m/s]

The expression reveals that the standard deviation of the wind speed is proportional to the mean
wind speed.

The turbulence utilized in the implemented wind model originates from Wind Model SB-1
[Aalborg University and RISØ National Laboratory, 2005]. In this model the turbulence is based
on the Kaimal spectrum, which describes the turbulence of a point wind. Since the wind model
describes the wind speed averaged over the entire rotor plane, a low-pass filter is applied to smooth
the wind speed signal.

Combined Wind Model

The structure of the wind model is sketched in Figure 3.5.
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Figure 3.5: Structure of the wind model. The input to the model is a mean wind speed, from which
the effective wind speeds on the three blades are calculated, by including tower shadow, wind shear,
and turbulence.
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3.3 Aerodynamic Model

The output of the model is three blade effective wind speeds, i.e. wind speeds averaged over the
area of the blades. To model the wind speed at the anemometer, vhub(t), a point wind is fetched
out of the wind model prior to the low-pass filtering. Notice that the anemometer is a low-pass
filter itself.

To show how the wind model operates, a simulation at a constant rotor speed is performed and
the result is shown in Figure 3.6.
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Figure 3.6: Output from the wind model for a mean wind speed of 16 m/s and at a constant rotor
speed. The two lower subplots show a point wind speed at hub height, vhub(t), and the measured
wind speed, vmes(t), which is a low-pass filtered version of vhub(t).

From the figure it is clear that even though both wind shear and tower shadow are significant on
each blade, the wind shear is insignificant on the effective wind speed, vw(t). This is the effective
wind speed experienced by the rotor when the tower does not move. Furthermore, there is an obvious
difference between the effective wind speed, vw(t), and the wind speed measurement, vmes(t), since
the latter is a point wind.

A wind model including wind shear, tower shadow, and turbulence has been set up in this
section. The wind makes the blades rotate of reasons discussed in the next section.

3.3 Aerodynamic Model

In this section basic aerodynamic principles exploited by wind turbines are described, and a model
describing the transfer from wind energy to rotational motion of the rotor is presented. The first
part of the section assumes that the wind passing through the entire rotor plane has the same
speed, but as explained in the previous section this is not the case. Hence, the aerodynamic model
is modified at the end of this section to take into account the different blade effective wind speeds.

The three blades capturing the wind energy are illustrated in Figure 3.7(a), while the profile
of the blades is shown in Figure 3.7(b). It is assumed that a yawing system exists, which always
keeps the rotor plane perpendicular to the direction of the wind. When the blades rotate due to the
rotor effective wind speed, vr(t), each blade experience a wind speed component, vb(t), opposite to
the direction of rotation. Hence, the blade experiences the resulting wind speed, vres(t), as shown
in Figure 3.7(b). The angle of the blade is called the pitch angle, β(t), and is defined as the angle
between the plane of rotation and the chord of the blade profile. Due to the profile of the blade,
a pressure drop is generated on the upper surface of the blade, which results in a lift force, Fl(t),
perpendicular to the resulting wind speed, vres(t). In addition to the lift force, the resulting wind
speed also generates a drag force, Fd(t). The sum of Fl(t) and Fd(t) components in the direction
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Wind Turbine Modeling

of the plane of rotation results in an aerodynamic torque acting on the rotor. In the same way, the
components in the direction of the rotor axis results in an aerodynamic thrust, Ft(t), acting on the
rotor of the wind turbine.

R

Plane of rotation

Rotor axis

Fl(t)

Fd(t)

vres(t)

vb(t)

â(t)ùr(t)

v (t)r

(a) (b)

Chord

Tip speed

vr(t)

Ft(t)

Figure 3.7: Rotor plane perpendicular to the wind field (a) and the aerodynamic forces acting on
the blade profile (b).

The power available from the wind passing through the entire rotor swept area can be expressed
as [Bianchi et al., 2007, p. 19]:

Pw(t) =
1
2
ρAv3

r (t) [W] (3.5)

where:
A is the rotor swept area

[
m2
]

Pw(t) is the power available from the wind [W]
vr(t) is the rotor effective wind speed [m/s]
ρ is the air density, which is assumed to be constant

[
kg/m3

]
From the available power in the wind, the power on the rotor is given based on the power coeffi-
cient, Cp (λ(t), β(t)), which depends on the tip-speed ratio and the pitch angle. The Cp-coefficient
is not expressed as a mathematical function, but has to be looked up in a table. The Cp-surface
is provided by kk-electronic a/s and is shown in the left subplot of Figure 3.8. Notice that the
Cp-description implies that the aerodynamic model is static, which is a simplification. The power
captured by the rotor is:

Pa(t) = Pw(t)Cp (λ(t), β(t)) [W] (3.6)

where:
Cp (λ(t), β(t)) is the power coefficient [·]
Pa(t) is the power captured by the rotor [W]
β(t) is the pitch angle [◦]
λ(t) is the tip-speed ratio [·]

The tip-speed ratio is defined as the ratio between the tip speed of the blades and the rotor effective
wind speed:

λ(t) =
ωr(t)R
vr(t)

[·] (3.7)

where:
ωr(t) is the rotor speed [rad/s]
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3.3 Aerodynamic Model

The aerodynamic torque applied to the rotor is defined in Eq. (3.8) [Johnson et al., 2006, p. 3]. By
combining Eq. (3.5), Eq. (3.6), and Eq. (3.8) the torque applied on the rotor can be expressed as
shown in Eq. (3.9).

Ta(t) =
Pa(t)
ωr(t)

[Nm] (3.8)

Ta(t) =
1

2ωr(t)
ρAv3

r (t)Cp (λ(t), β(t)) [Nm] (3.9)

where:
Ta(t) is the aerodynamic torque applied to the rotor [Nm]

The wind acting on the rotor of the wind turbine also results in a thrust on the rotor. This
thrust is calculated as shown below [Bianchi et al., 2007, p. 19].

Ft(t) =
1
2
ρAv2

r (t)Ct (λ(t), β(t)) [N] (3.10)

where:
Ct (λ(t), β(t)) is the thrust coefficient [·]
Ft(t) is the thrust exerted by the wind on the rotor [N]

The Ct-surface, based on a Ct-table provided by kk-electronic a/s, is shown in the right subplot of
Figure 3.8.
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Figure 3.8: The Cp- and Ct-coefficients as function of the pitch angle and the tip-speed ratio. Notice
that negative values have been set to zero.

To use the aerodynamic model when the wind speed is assumed to be non-identical on the
three blades, the equations have to take into account different blade effective wind speeds. This
is accomplished by averaging the thrust and torque introduced at each of the three blades, as
illustrated below.

Ta(t) =
1
3

3∑
i=1

Ta,i(t) [Nm] (3.11)

Ft(t) =
1
3

3∑
i=1

Ft,i(t) [N] (3.12)

where:
Ft,i(t) is the thrust exerted by the wind on Blade i [N]
Ta,i(t) is the aerodynamic torque applied to the rotor by Blade i [Nm]

The basic aerodynamic principles of a wind turbine have been described, and models for the
aerodynamic torque and the aerodynamic thrust acting on the rotor have been set up. In the next
section a model of the drive train is derived, which converts the aerodynamic torque into a torque
applied to the generator.
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3.4 Drive Train Model

In this section the drive train of the wind turbine is modeled. The aerodynamic torque is transferred
to the generator through the drive train in order to upscale the rotational speed of the rotor, to
a higher speed required by the generator. An equivalent diagram of the drive train is shown
in Figure 3.9. The drive train model includes a low-speed shaft and a high-speed shaft, each
composed of a moment of inertia and a frictional coefficient. The shafts are linked together by a
gearbox modeled as a gear ratio without any loss. To describe the flexibility of the drive train, a
torsion spring is included in the model.

Bdt

T (t)a
è (t)r

T (t)h

Ng

Jr

Jg

Kdt

Br
T (t)l

T (t)gè (t)gBg

Figure 3.9: Drive train model divided into four components.

The inertia of the low-speed shaft also includes the inertia of the rotor, while the friction com-
ponent includes bearing frictions. The dynamics of the low-speed shaft is:

Jrθ̈r(t) = Ta(t)− Tl(t)−Brθ̇r(t) [Nm] (3.13)

where:
Br is the viscous friction of the low-speed shaft [Nm/(rad/s)]
Jr is the moment of inertia of the low-speed shaft

[
kgm2

]
Tl(t) is the torque acting on the low-speed shaft [Nm]
θr(t) is the angle of the low-speed shaft [rad]

The inertia of the high-speed shaft also includes the inertia of the gearbox and the generator
rotor. The friction coefficient covers bearing and gear frictions. The dynamics of the high-speed
shaft is:

Jgθ̈g(t) = Th(t)− Tg(t)−Bgθ̇g(t) [Nm] (3.14)

where:
Bg is the viscous friction of the high-speed shaft [Nm/(rad/s)]
Jg is the moment of inertia of the high-speed shaft

[
kgm2

]
Tg(t) is the generator torque [Nm]
Th(t) is the torque acting on the high-speed shaft [Nm]
θg(t) is the angle of the high-speed shaft [rad]

The remaining part of the gearbox modeling is to apply a gear ratio, as defined below.

Th(t) =
Tl(t)
Ng

[Nm] (3.15)

where:
Ng is the drive train gear ratio [·]

The torsion of the drive train is modeled using a torsion spring and a friction coefficient model,
described according to:

Tl(t) = Kdtθ∆(t) +Bdtθ̇∆(t) [Nm] (3.16)

θ∆(t) = θr(t)−
θg(t)
Ng

[rad] (3.17)
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3.5 Tower Model

where:
Bdt is the torsion damping coefficient of the drive train [Nm/(rad/s)]
Kdt is the torsion stiffness of the drive train [Nm/rad]
θ∆(t) is the torsion angle of the drive train [rad]

With the exception of the torsion angle, θ∆(t), absolute angles of the shafts are not of interest
for modeling the drive train dynamics. Therefore, the replacement ω(t) = θ̇(t) is utilized in the
following rewriting, where a state space model of the drive train is pursued. The states of the model
are ωr(t), ωg(t), and θ∆(t). First, Eq. (3.17) is substituted into Eq. (3.16) to obtain:

Tl(t) = Kdtθ∆(t) +Bdt

(
ωr(t)−

ωg(t)
Ng

)
[Nm] (3.18)

where:
ωg(t) is the generator speed [rad/s]

Substituting Eq. (3.18) into Eq. (3.13) results in Eq. (3.19). A similar approach is used to de-
rive Eq. (3.20); however, in this case Eq. (3.18) first has to be substituted into Eq. (3.15) before
inserting it in Eq. (3.14). Lastly, Eq. (3.17) is differentiated to obtain Eq. (3.21).

Jrω̇r(t) = Ta(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t) +
Bdt

Ng
ωg(t) [Nm] (3.19)

Jgω̇g(t) =
Kdt

Ng
θ∆(t) +

Bdt

Ng
ωr(t)−

(
Bdt

N2
g

+Bg

)
ωg(t)− Tg(t) [Nm] (3.20)

θ̇∆(t) = ωr(t)−
1
Ng

ωg(t) [rad/s] (3.21)

Three first order differential equations have been derived in this section in order to describe the
behavior of the drive train. In the next section, the effect on the tower from the aerodynamic thrust
is considered.

3.5 Tower Model

The rotor effective wind speed causes a thrust to act on the rotor, which makes the tower sway
back and forth. In this project it is assumed that the thrust on the rotor acts in the direction of
the wind speed. This is not completely the situation due to forces from the blades and a counter
torque from the drive train and generator, which make the tower sway sideways as well.

In the modeling of the tower it is assumed that the blades and the tower are stiff, and that the
tower rotates around a point in the bottom, when affected by any forces, as shown in Figure 3.10.
This assumption is introduced to be able to transfer the three tower forces into a resulting force,
which creates an acceleration of the tower. Furthermore, the effect of the blades being located at
different heights can be taken into account; thus, introducing a force which is dependent on the
azimuth angle of the rotor defined in Figure 3.2 on Page 11.

The movement of the tower is modeled using a torsion spring and a friction component connected
to an inertia. This is illustrated on the righthand side of Figure 3.10 and in Eq. (3.22).

Jtθ̈t(t) = Tt(t)−Btθ̇t(t)−Ktθt(t) [Nm] (3.22)

where:
Bt is the friction of the rotating tower system [Nm/(rad/s)]
Jt is the inertia of the tower [kgm2]
Kt is the stiffness of the tower torsion spring [Nm/rad]
Tt(t) is the torque affecting the tower [Nm]
θt(t) is the rotation angle of the tower [rad]

To calculate the torque, Tt(t), from the three tower forces it is necessary to calculate their height
above ground and the points on the blades where the forces act.

It is assumed that the thrust Ft,i(t) exerted on Blade i attacks where the thrust components
towards the hub and towards the blade tip are equal. Since the thrust is dependent on R2 the
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Figure 3.10: Shows the movement of the flexible tower modeled using a rotary system.

following equation can be set up to calculate the point where the thrust attacks:∫ rt

0

r2dr =
∫ R

rt

r2dr

rt = 2-1/3R [m] (3.23)

where:
rt is the distance from the hub to where the thrust acts on the blade [m]

Having determined where the thrust act on the blades, it is possible to derive the torque which
makes the tower move. This is a function of the azimuth angle of each blade and can be realized
as a force acting on the tower at hub height, as shown below.

Fth(t) = Ft,1(t)
(

1 +
rt

h
cos(ψ1(t))

)
︸ ︷︷ ︸

Fth,1(t)

+Ft,2(t)
(

1 +
rt

h
cos(ψ2(t))

)
︸ ︷︷ ︸

Fth,2(t)

+ Ft,3(t)
(

1 +
rt

h
cos(ψ3(t))

)
︸ ︷︷ ︸

Fth,3(t)

[N] (3.24)

where:
Ft,i(t) is the thrust acting on Blade i [N]
Fth(t) is the force acting on the tower at hub height [N]
Fth,i(t) is the force transferred to the tower from Blade i at hub height [N]

As explained in Section 3.10 the acceleration of the nacelle is the only measured variable in the
tower model. Therefore, the movement of the tower is now described by a linear displacement of
the nacelle. An illustration of this model is given in Figure 3.11.

Using a spring-damper terminology, the tower model is rewritten as:

Mtẍt(t) = Fth(t)−Btẋt(t)−Ktxt(t) [N] (3.25)

where:
Bt is the tower damping coefficient [N/(m/s)]
Kt is the tower torsion coefficient [N/m]
Mt is the top mass of the tower [kg]
xt(t) is the displacement of the nacelle from its equilibrium position [m]
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Kt

xt(t)

Mt

Fth(t)

Bt

Figure 3.11: The movement of the flexible tower is modeled using a spring-damper system.

The swaying of the tower affects the effective wind speed seen on the rotor, i.e. when the tower
moves towards the wind the effective wind speed increases. This implies that the rotor effective
wind speed can be described as:

vr(t) = vw(t)− ẋt(t) [m/s] (3.26)

From this section it has been established how the rotor effective wind speed applies an aerody-
namic thrust on the rotor, which make the tower sway. The next section describes the generator
and converter, which enable generation of electric power and make it possible to adjust the load
applied to the drive train by the generator.

3.6 Power System Model

In this section the power system is modeled, which includes presenting models of the generator
and converter. Electric power is generated by the generator, and to enable variable-speed opera-
tion, currents in the generator are controlled using power electronics. Therefore, power electronic
converters interface the wind turbine generator output with the utility grid.

It is assumed that the converter consists of four similar units sketched in Figure 3.12, each
having an internal controller. These units together load the generator with a certain torque, which
depends on the currents drawn from the generator. Since torque and electric power are the only
variables of interest in the simplified model of the energy conversion system, currents and voltages
are not considered at all.

T (t) g,ref

Converter 1

P (t)gConverter 2

Converter Nc

?  
+ +

T (t)g

P (t)g

Converter

+ + +

+
?  

Nc

Figure 3.12: The converter consists of Nc units capable of loading the generator by a certain torque,
specified by a torque reference.

According to kk-electronic a/s the dynamics of each converter can be approximated by a first
order system with a time delay. Since the converter consists of several converters having equal
characteristics, this section describes only one of these. Hereby, a single converter is modeled as:
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Tg(s)
Tg,ref(s)

=
exp (-tg,ds)
τgs+ 1

Ṫg(t) = -
1
τg
Tg(t) +

1
τg
Tg,ref(t− tg,d) [Nm/s] (3.27)

where:
Tg,ref(t) is the reference for the generator torque [Nm]
tg,d is the communication delay to the converter [s]
τg is the time constant of the first order system [s]

In addition to the delayed first order system, the output from the converter is saturated and has a
slew rate, max|Ṫg(t)|. A block diagram of a single converter model is shown in Figure 3.13.

ôg

Tg,ref Tg Tg

ôg

1

-

+- sg,de
t

Slew rate

?  s
1

Figure 3.13: Block diagram of a converter including slew rate, delay, and limited operational range.

The power produced by the generator depends on the rotational speed of the rotor and of the
applied load, as described in the equation below. The following equation explains the mechanical
power since the electronic system is not modeled:

Pg(t) = ηgωg(t)Tg(t) [W] (3.28)

where:
Pg(t) is the power produced by the generator [W]
ηg is the efficiency of the generator [·]
In this section the generator and converter models have been presented. The generator converts

mechanical energy into electric energy, while it is loaded by a torque originating from a converter,
which has been described as a number of delayed first order systems. The dynamic model of the
hydraulic pitch system is described in the next section.

3.7 Pitch System Model

The purpose of this section is to explain how the pitch system is modeled. The pitch system consists
of three identical pitch actuators, each having an internal controller, which is considered to be a
part of each pitch actuator. Hence, this section describes only one pitch actuator.

The pitch actuator adjusts the pitch of a blade by rotating it. The pitch system is a hydraulic
system as roughly sketched in Figure 3.14.

Pump
station

Valve 1

Valve 2

Valve 3

Valve 4

Accumulator Hydraulic
actuators

Figure 3.14: Hydraulic pitch system with three pitch actuators, which can be controlled individually.
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3.8 Neglected Dynamics of the Model

The pitch actuator is modeled as a second order system with a time delay, described as:

β(s)
βref(s)

=
exp (-tds)ω2

n

s2 + 2ζωns+ ω2
n

β̈(t) = -2ζωnβ̇(t)− ω2
nβ(t) + ω2

nβref(t− td) [◦/s2] (3.29)

where:
td is the communication delay to the pitch actuator [s]
β(t) is the pitch angle [◦]
βref(t) is the reference to the pitch angle [◦]
ωn is the natural frequency of the pitch actuator model [rad/s]
ζ is the damping ratio of the pitch actuator model [·]

The equation explains the operation of the pitch actuator when it operates within its limitations.
However, the pitch actuator has both a limited slew rate and limited operational range, as illustrated
in Figure 3.15.

âref â â

-

+
?  -t sde 2ùn

â

s
1

2ùn

2 ùnæ?  
+

+

s
1

Figure 3.15: Block diagram of a pitch actuator including slew rate, delay, and limited operational
range.

In this section the actuator for pitching each blade has been modeled as a delayed second order
system. This finalizes the modeling of the wind turbine. In the next section, simplifications made
in the modeling are discussed.

3.8 Neglected Dynamics of the Model

The purpose of this section is to outline simplifications, which are introduced in the modeling of
the wind turbine. The simplifications are made since only a reduced set of model parameters are
available, and to limit the extent of the modeling effort.

Generally, two simplifications are introduced: model only the dominant modes of the system
while neglecting all others and assume that the parameters of the wind turbine are constant, al-
though they depend on the operating conditions.

In addition to the general assumptions the following significant simplifications are introduced:

� Perfect yaw alignment: The wind is assumed to be perpendicular to the rotor plane at all
times. This simplification eliminates some periodic fluctuations caused by yaw misalignment
of the wind turbine.

� Static aerodynamic model: The aerodynamics is assumed to possess static properties;
thus, neglecting the dynamical properties caused by changes in the wind, rotor speed, and
pitch angles. This assumption is made since only a Cp-table is available for the considered
wind turbine.

� Stiff blades: The blades are assumed to be stiff, but are in fact flexible, especially on large
wind turbines similar to the considered one. This simplification eliminates all bending modes
of the blades and transfers all forces acting on the blades directly to the tower.

The presented simplifications should be taken into account when assessing the results of this
thesis, since they may affect the performance of the designed algorithms when applied to a real
wind turbine.
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To obtain the non-linear simulation model, all sub-models derived in the preceding sections
are combined directly. However, in some parts of the design procedure it is favorable to utilize a
linearized model. Therefore, a combined model is arranged on state space form in the next section,
implying linearization of the non-linear parts of the model.

3.9 Assembled Model

The non-linear simulation model of the wind turbine is assembled directly from the sub-models
derived in the previous sections. The purpose of this section is to present the corresponding linear
model on state space form, which is desired for the utilized design methods. Since not all parts of
the sub-models are linear, the non-linear functions are linearized in Appendix B.

The state space model of the wind turbine is shown in Eq. (3.30). It should be noticed that the
included variables are small signal values, as this is not indicated explicitly in the notation.

The aerodynamic model is affected by the rotor effective wind speed, vr(t), which originates
from swaying of the tower, ẋt(t), affecting the rotor effective wind speed without tower movement,
vw(t). The system has the following inputs: the generator torque references and the pitch angle
references.

Since there are four generator torque references and three pitch angle references, the elements
in the corresponding matrices should be considered as being matrices with dimensions indicated in
the indices.

ẋ(t) =Ax(t) +B1w(t) +B2u(t)

Ṫg(t)
ẋt(t)
ẍt(t)
β̇(t)
β̈(t)
θ̇∆(t)
ω̇g(t)
ω̇r(t)


=



A11 04×1 04×1 04×3 04×3 04×1 04×1 04×1

01×4 0 1 01×3 01×3 0 0 0
01×4 -Kt

Mt
a33 a34 01×3 0 0 a38

03×4 03×1 03×1 03×3 I3×3 03×1 03×1 03×1

03×4 03×1 03×1 A54 A55 03×1 03×1 03×1

01×4 0 0 01×3 01×3 0 - 1
Ng

1
a71 0 0 01×3 01×3

Kdt
JgNg

a77
Bdt
NgJg

01×4 0 a83 a84 01×3 -Kdt
Jr

Bdt
NgJr

a88





Tg(t)
xt(t)
ẋt(t)
β(t)
β̇(t)
θ∆(t)
ωg(t)
ωr(t)



+



04×3

01×3

e31

03×3

03×3

01×3

01×3

e81


vw(t) +



B11 04×3

01×4 01×3

01×4 01×3

03×4 03×3

03×4 B42

01×4 01×3

01×4 01×3

01×4 01×3


[
Tg,ref(t)
βref(t)

]
(3.30)

A11 = - 1
τg
I4×4 A54 = -ω2

nI3×3

A55 = -2ζωnI3×3

a33 = - Bt
Mt
− 1

Mt

∂Ft(t)
∂vr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

a34 = 1
3Mt

∂Ft(t)
∂β

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

11×3

a38 = 1
Mt

∂Ft(t)
∂ωr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

a71 = - 1
Jg

11×4

a77 = -
(
ηdtBdt
JgN2

g
+ Bg

Jg

)
a83 = - 1

Jr

∂Ta(t)
∂vr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

a84 = 1
3Jr

∂Ta(t)
∂β

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

11×3 a88 = -Bdt+Br
Jr

+ 1
Jr

∂Ta(t)
∂ωr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r
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B11 = 1
τg
I4×4 B42 = ω2

nI3×3

e31 = 1
3Mt

∂Ft(t)
∂vr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

11×3 e81 = 1
3Jr

∂Ta(t)
∂vr

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

11×3

where:
A is the system matrix
B1 is the disturbance matrix
B2 is the input matrix
u(t) is the input vector
w(t) is the disturbance vector
x(t) is the state vector

In this section a linearized model of the combined wind turbine system has been presented,
which is based on the linearization made in Appendix B. In order to end the modeling chapter,
the next section describes the available measurements on the considered wind turbine and specifies
the sampling rate and the parameters of the assumed zero-mean Gaussian distributed measurement
noise.

3.10 Sensor Parameters

The purpose of this section is to list the measured variables of the system model and characterize
the measurements by the amount of noise on each of them.

Generally, it is determined not to model the dynamics of the sensors, since they are significantly
faster than the dynamics of the wind turbine. The only exception is the anemometer measuring the
wind speed, which is modeled as a first-order low-pass filter with a time constant of half a second
according to [Hristov et al., 2000].

All measurements are sampled at a rate of 100 Hz. The measurements are emulated by adding
zero-mean Gaussian distributed noise to the deterministic values according to the standard devi-
ation shown in Table 3.1. Notice that although both continuous and discrete design methods are
considered in this thesis, all simulations are performed using discretized or discrete implementations
of the control system including measurement noise for a realistic behavior.

Measured Variable Sensor Type Symbol Standard Deviation

Electric power Soft sensor (estimate) Pg,j -
Generator speed Speed encoder ωg 0.0158 rad/s
Generator torque Soft sensor (estimate) Tg,j 45 Nm
Pitch angle Encoder βi 0.2◦

Rotor speed Speed encoder ωr 0.025 rad/s
Tower acceleration Accelerometer at 0.01 m/s2

Wind speed (point wind) Anemometer vhub 0.5 m/s

Table 3.1: Sensor types and standard deviations of the measured variables of the wind turbine.
Notice that i = 1, 2, 3 and j = 1, 2, 3, 4 correspond to the number of blades and converters.

The different measurements have different characteristics, since some variables are easier to
measure than others. The rotor speed, for instance, is hard to measure, because large forces act on
the low-speed shaft causing it to make transversal movements inside the nacelle.

Regarding the wind speed, it is very favorable to have a good measurement of the wind speed
affecting the rotor, since it is the driving force of the system. However, the measurement of the wind
speed is performed by an anemometer located on the nacelle. This provides only a measurement
of the wind speed in a single point of the rotor plane and is disturbed by the turbulence from the
rotor. Due to the characteristics of the wind speed measurement, it is only used for detecting cut-in
and cut-out incidents. The measured wind speed at hub height appears in Figure 3.6 on Page 13
where it can be compared to the effective wind speed.

The pitch angles of the three blades are measured on the cylinders of the pitch actuators. The
components of the generator torque are provided by independent estimates, based on a soft sensor
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in each converter. The torque is estimated based on current and flux, whereas the electric power
output is determined from current and voltage. Therefore, it is assumed that the measurements of
torque and electric power are correlated, and implies that a bias on either the measured torque or
electric power induces a bias on the other measurement too; this property is used when injecting
faults into the system model.

No standard deviation is stated for the measured electric power in Table 3.1. The reason for
this is that the value is not fixed, since the power is supposed to be evaluated as the product of
current and voltage, where the voltage is assumed constant at 33 kV. Both the voltage and current
are assumed to have an additive measurement noise with amplitude corresponding to one percent
of the signal amplitude at half the nominal values.

In this chapter a mathematical model of the wind turbine has been set up and a linearized model
has been derived to be used in the linear design methods presented throughout the thesis. In the
next chapter a fault analysis is presented to select the faults to be handled in this thesis.
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4Fault Analysis

The purpose of this chapter is to identify possible faults on the wind turbine and determine their
effect on the system behavior. A number of the analyzed faults are then selected for further work
in this project, and redundancies in the system are identified to determine the detectable faults.
Finally, the remedial actions that must be conducted to stop the propagation of the fault are
established.

The method utilized to structure the fault analysis is inspired by [Izadi-Zamanabadi, 1999,
p. 36], and the steps in the analysis and design procedures are outlined in Figure 4.1.

Model Partitioning

Fault Propagation Analysis

Fault AssessmentStructural Analysis

Remedial Action Selection

Diagnosis Design Supervisor Design Accommodation Design

List of
possible
effects

Desired effects
to be handled

Faults to be
diagnosed

Possible detectable faults
and sensor fusion
possibilities

Remedial
actions

Analysis

Design

Fault Specification

System
components

System
description

Fault dynamics

Faults to be
accommodated

Figure 4.1: Overview of the method utilized in the fault analysis. Notice that Diagnosis Design and
Supervisor Design only exists when designing an active fault-tolerant control system.

The figure shows the steps in the procedure and their interconnections, but to give an insight
into the purpose of every step in the analysis, they are explained in the following bullet list:

� Model Partitioning: The wind turbine model is divided into sub-models suitable for analysis
and identification of the possible component faults in each subsystem.

� Fault Propagation Analysis: The fault propagation analysis propagates the component
faults through the system and determines their end-effects at system level.

� Fault Assessment: The fault assessment assesses the faults identified in the fault propa-
gation analysis, by determining their occurrence and their impact on the performance of the
wind turbine control system. The fault assessment furthermore determines the end-effects
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which must be handled in this project. Finally, the component faults are traced back from
the end-effects to the associated component faults.

� Structural Analysis: The structural analysis determines analytical redundancy relations in
the system and determines the detectable faults.

� Fault Specification: The fault specification specifies the dynamics of the faults identified
in the fault assessment.

� Remedial Action Selection: The remedial action selection determines the action that must
be taken to stop the propagation of the faults. This could be switching between redundant
sensors or reconfiguring controllers. Additionally, the requirements to the fault diagnosis and
fault-tolerant control system are determined.

An outline of the method utilized in this chapter has been provided, and the next section handles
the first step in the fault analysis.

4.1 Model Partitioning

The purpose of this section is to divide the system model described in Chapter 3 into appropriate
sub-models, which can be analyzed separately. This division makes it possible to identify all possible
component faults in each sub-model.

The wind turbine model can be divided into sub-models based on separate functionalities: rotor,
drive train, and power system, which are described in Chapter 3. Figure 4.2 shows the components
included in each of the sub-models and their interconnections. Notice that internal controllers are
located in each pitch actuator and converter unit, which has a significant impact on the effects of
the component faults. One direct consequence is that an offset in the output value of an actuator
is compensated for by the internal controller, so that no fault is seen at the output.

The analysis is performed in closed loop, where the wind turbine is controlled according to two
different strategies as explained in Section 2.2. This is elaborated in the reference controller design
described in Appendix C. To distinguish between the different control strategies, the configurations
of the controller in the two regions are marked with different colors.

Controller Controller

j =1,2,3,4

Blade i
Pitch

actuator i

Pitch
sensor i

Pitch
controller i

Rotor

i =1,2,3

Low-speed
shaft

High-speed
shaft

Gearbox

Generator
speed sensor

Drive train

Converter j

Torque
sensor j

Converter
controller j

Power sensor j

Generator

Power system

Figure 4.2: Overview of the three sub-models of the wind turbine. To establish an overview of the
closed-loop system, the configurations of the controller in partial load operation (blue) and full load
operation (red) are included in the figure. The symbols i and j indicate that there are multiple
identical blocks.
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4.2 Fault Propagation Analysis

In this project only a subset of the possible faults in the wind turbine is considered, excluding
mechanical faults that cause destructible damage to the wind turbine. This is chosen, since these
faults cannot be accommodated and is therefore not relevant in terms of fault-tolerant control. The
considered component faults are shown in Figure 4.3-4.5 in the next section.

The wind turbine has been divided into three sub-models, suitable for being analyzed separately.
In the next section the possible component faults are identified and propagated through the system,
to determine their end-effects on system level.

4.2 Fault Propagation Analysis

The purpose of this section is to describe how component faults propagate through the system, by
describing the effects on surrounding components of the system. This is accomplished by making a
Failure Mode and Effect Analysis (FMEA) for the three main components; rotor, drive train, and
power system, identified in the previous section. A FMEA is a commonly accepted technique for
making a fault propagation analysis [Blanke et al., 2006, p. 85].

In the FMEA it is assumed that no fault handling exists in the wind turbine control system even
though this is not true. However, since each wind turbine manufacture has its own fault handling
system it is difficult to assume something general. Furthermore, it is assumed that the nominal
control system is fault-free.

Rotor

The purpose of this subsection is to set up a FMEA for the rotor sub-model and to describe the
faults and their propagation to the effect on the rotor.

The FMEA scheme for the rotor is shown in Figure 4.3. Even though there exist three pitch
actuators, pitch sensors, and blades, only one box is drawn for each of these, since they are identical
and cause the same effects.

According to Figure 4.2 a pitch actuator is internally controlled by a pitch controller connected
to a pitch sensor; hence, forming a closed-loop system. This has some consequences for the effects
of the pitch sensor faults, since a fixed output from this sensor turns the blade to one of its
extreme positions depending on the sensor output compared to the pitch angle reference signal.
The detection of the internal fault resulting in no output from a pitch sensor is assumed to already
exist, since no measurement is sent to the controller in this situation. The control system is utilizing
the last valid measurement from the sensor when this fault occurs.

Drive Train

The purpose of this subsection is to set up a FMEA for the drive train sub-model and to describe
the faults and their propagation to the effects on the drive train.

The drive train consists of a low-speed shaft, a high-speed shaft, and a gearbox. A speed
controller controls the speed of the high-speed shaft in the full load operation of the wind turbine.
The FMEA scheme for the drive train is shown in Figure 4.4.

The high- and low-speed shafts can both have bearing damages. A damaged bearing implies
uneven rotation of the drive train, since it is assumed that it can be modeled as a friction, which is
dependent on the angle of the shaft. According to Section 3.10 the speed sensor is an encoder and
can therefore possess a proportional error, which is denoted ’prop. error’.

Power System

The purpose of this subsection is to set up a FMEA for the power system sub-model and to describe
the faults and their propagation to the effect on the power system.

The power system consists of two types of sensors; converter torque sensors and power sensors.
Besides the sensors, a converter and generator are also part of the power system. Notice however
that no faults in the generator are considered. The FMEA scheme for the power system is shown
in Figure 4.5 on Page 30.

Besides the power controller, which ensures that the wind turbine produces the desired power in
the full load region, the converter also has an internal controller. Even though multiple converters
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Figure 4.3: FMEA scheme illustrating the propagation of fault effects in the rotor sub-model.

and converter torque sensors exist, only one box is drawn for each of these, since they are identical
and cause the same effects.

In this section it has been described how component faults propagate to end-effects in the sub-
models of the wind turbine operating in closed loop. In the next section the faults are assessed by
determining the severity of the end-effects and occurrences of the component faults.
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Figure 4.4: FMEA scheme illustrating the propagation of fault effects in the drive train sub-model.
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Figure 4.5: FMEA scheme illustrating the propagation of fault effects in the power system sub-model.
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4.3 Fault Assessment

The purpose of this section is to evaluate the severity of the end-effects and the occurrence of the
faults identified in Section 4.2, and to determine which of these should be treated in this project.
Furthermore, causal relations are established to trace back the faulty components from the end-
effects.

In this section, definitions of occurrence and severity are provided first. The occurrence rates
are found from statistics about the distribution of failures described in the literature. To find
the severities of the end-effects, simulations with fault injections are conducted to determine the
severity indices. The simulations are carried out on the wind turbine model controlled by the
reference controller described in Appendix C. The simulations and the descriptions of these appear
in Appendix A to avoid disruption of the flow of the thesis. The section is finalized by a conclusion
of the severity and occurrence analysis and a selection of the fault to be handled.

Faults are classified based on their likelihood of occurrence and the severity of their end-effect
on scales from 1 to 10. These can be combined in the Severity Occurrence Index, which is obtained
through multiplication of the severity and occurrence values [Izadi-Zamanabadi, 2004, p. 9]. The
idea is that faults with the highest Severity Occurrence Index should have the highest concern.
However, to draw higher attention to the severe failures of a system, a classification of faults based
on their placement in Figure 4.6 is often used instead. This figure is based on [Quality Associates
International, 2008].

Occurrence
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3) Annoyance zone

Figure 4.6: Graph to identify which faults should be accommodated. Faults with priority 1 (red) and
2 (orange) require actions, but for faults with priority 3 (yellow) actions are not required but only
preferred.

Occurrence

Occurrence is the frequency of the fault and is quantified on a scale from 1 (unlikely) to 10 (in-
evitable). The occurrence scale is defined in Table 4.1 based on [Ireson et al., 1996, p. 6.18]. Notice
that the occurrence scale has a relative meaning.

Statistics about the distribution of failures experienced by wind turbines in Denmark, Germany,
and Sweden can be found in [Ribrant, 2006] and [DOWEC team, 2002]. However, the failure rates in
the literature relate to subsystems rather than individual components, which have to be estimated.

Severity

Severity is the potential harm which effects of faults inflict on the system. The severity scale is
provided in Table 4.2 and originates from [Ireson et al., 1996, p. 6.17]. Notice that severity scales
found in most literature are directed towards the automotive industry, because the employment of
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Probability of failure Likely failure rate Ranking

Very high: Almost inevitable failure.
≥20% of failures 10
15-20% of failures 9

High: Repeated failure.
10-15% of failures 8
5-10% of failures 7

Moderate: Occasional failure.
4-5% of failures 6
3-4% of failures 5
2-3% of failures 4

Low: Rare failure.
1-2% of failures 3
0.1-1% of failures 2

Remote: Unlikely failure. <0.1% of failures 1

Table 4.1: Occurrence evaluation criteria and interpretation.

FMEA originates from the early 1980s where American automotive companies began to incorporate
FMEA into their product development process [Vijayaraghavan, 2003, p. 13]. However, engineers in
a variety of industries have adopted and adapted the tool over the years. Therefore, the descriptions
written in Table 4.2 should be considered with respect to wind turbines.

Effect Severity of effect Ranking

Hazardous without
Very high severity ranking when a potential failure mode

10
warning

affects safe turbine operation and/or involves noncompliance
with government regulation without warning.

Hazardous with
Very high severity ranking when a potential failure mode

9
warning

affects safe turbine operation and/or involves noncompliance
with government regulation with warning.

Very high Turbine/item inoperable with loss of primary function. 8

High
Turbine/item operable but at a reduced level of performance.

7
Customer dissatisfied.

Moderate
Turbine/item operable but comfort/convenience item(s)

6
inoperable. Customer experiences discomfort.

Low
Turbine/item operable but comfort/convenience item(s)

5operable at a reduced level of performance. Customer
experiences some dissatisfaction.

Very low
Fit and finish/squeak and rattle item does not conform.

4
Defect noticed by most customers

Minor
Fit and finish/squeak and rattle item does not conform.

3
Defect noticed by average customer.

Very minor
Fit and finish/squeak and rattle item does not conform.

2
Defect noticed by discriminating customers.

None No discernable effect. 1

Table 4.2: Severity evaluation criteria.

The simulations results obtained to determine the severity indices of the end-effects appear in
Appendix A, as mentioned in the introduction. The next subsection summarizes the results and a
selection of faults to be handled is provided.
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Conclusion of Severity and Occurrence Analysis

To finalize the severity and occurrence analysis, all the end-effects are compared to identify the
faults, which should be considered further throughout this thesis. The comparison is based on the
information provided in Appendix A. This is accomplished by tracing back the faults, which cause
the most severe end-effects. Among these faults the most frequent faults should be handled.

It is seen from the severity indices stated in Appendix A that several faults have severe effects
on the wind turbine, and should therefore be handled. However, in order to narrow down the set of
possible faults to be handled during this project, it is decided to focus on the faults related to the
pitch sensors, pitch actuators, and generator speed sensor. The motivation behind this choice is
that faults happening to the pitch system, which e.g. affect the rotor balance, are generally difficult
to detect based on the typical outputs such as generator speed and output power. However, these
faults result in increased fatigue loads on the wind turbine structure. It has further been seen that
changed dynamics of the pitch system, caused by low pressure or high air content, may result in an
unstable closed-loop system, as described in Table A.3 on Page 135. Concerning the measurement
of the generator speed, wind turbine control systems rely on this in both the control regions as
shown in Figure 2.4 on Page 8. Therefore, it is essential to diagnose and accommodate any troubles
regarding this particular measurement.

The faults to be diagnosed and accommodated in this project are stated in Table 4.3. Since a
random output from a sensor is unlikely to occur, this fault is disregarded for the considered sensors.
Regarding fixed or no outputs from a pitch sensor, these particular faults are disregarded since it
is assumed that the wind turbine cannot be controlled satisfactory if not having this measurement.

Effect Fault O S

Rotor

Unbalanced rotation Pitch sensor (1,2,3) - Biased output 3 6

Changed dynamics
Pitch actuator (1,2,3) - Pump wear 4 5
Pitch actuator (1,2,3) - Hydraulic leakage 3 8
Pitch actuator (1,2,3) - High air content in oil 5 5

Out of control
Pitch actuator (1,2,3) - Valve blockage 3 8
Pitch actuator (1,2,3) - Pump blockage 2 9

Drive train

Speed offset Generator speed sensor - Proportional error 4 4

High speed
Generator speed sensor - Fixed output 2 9
Generator speed sensor - No output 3 9

Low speed
Generator speed sensor - Fixed output 2 8
Generator speed sensor - No output 3 8

Table 4.3: Faults which should be diagnosed and accommodated and their associated severity and
occurrence indices.

In this section the occurrence of the faults and the severity of their end-effects have been determined,
in order to perform a qualified selection of the faults to be diagnosed and accommodated in this
project. It is decided to focus on the faults related to the pitch sensors, pitch actuators, and
generator speed sensor. In the next section a structural analysis of the system is presented to
determine where redundancy relations can be exploited in the fault diagnosis.

4.4 Structural Analysis

The purpose of this section is to perform a structural analysis of the wind turbine system in order
to determine the analytical redundancy relations (ARRs), which can be used to detect and isolate
faults in the system. Furthermore, the possible detectable faults and sensor fusion possibilities are
determined by exploiting the ARRs.
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The structural analysis is set up according to the procedure shown in the bullet list below
[Izadi-Zamanabadi, 1999, p. 17].

� Structural Relations: Determine the structural relations of the wind turbine model and
organize the structural relations in an incidence matrix. An incidence matrix shows structural
relations in the model and separates known from unknown variables.

� Matching: Perform a matching of the unknown variables. A matching shows how the un-
known variables can be estimated from the known variables using the constraints in the model.

� Analytical Redundancy Relations: Determine the analytical redundancy relations and
sensor fusion possibilities.

Structural Relations

In this section the mutual dependence of the variables must be described; hence, the basis for
the structural relations is the functional equations set up in Chapter 3. The difference between
functional equations and structural relations can be demonstrated by rewriting Eq. (3.13) on Page 16
as shown below.

Ta(t)− Tl(t)−Brθ̇r(t)− Jrθ̈r(t) = 0 Nm (functional equation) (4.1)

f
(
Ta(t), Tl(t), θ̇r(t), θ̈r(t)

)
= 0 (structural relation) (4.2)

Hence, the difference between functional equations and structural relations is that functional equa-
tions explains how variables are linked together, while structural relations only show the variables
which are linked together.

To form the structural relations it is necessary to use the system equations set up in Chapter 3.
These are all present in the state space representation of the system shown in Eq. (3.30) on Page 22.
In addition to the system equations the measurement equations, which can be deducted from
Section 3.10, also form some structural relations. Notice that the measurement of the wind speed
is not utilized, of reasons explained in Section 3.10 on Page 23.

Besides the system and measurement equations there are some differential relations between
the variables and their derivatives. These relations, called differential constraints, are special, since
the following holds: a signal x(t) cannot be computed from its derivative ẋ(t), but ẋ(t) can be
computed from x(t). This is called integral causality, and is due to the lack of knowledge about the
initial condition, x(0), as indicated below [Blanke et al., 2006, p. 129].

x(t) =
∫ t

0

ẋ(τ)dτ + x(0) (4.3)

An incidence matrix is a way to represent the structural relations by separating the known variables
K from the unknown variables X . When using the structural relations in an incidence matrix it is
necessary to distinguish between known variables and unknown variables, since the incidence matrix
is used in the matching. The known variables are control signals, measured variables, and known
parameters, while structural relations show the variables which are linked together. The unknown
variables are unmeasured variables and unknown parameters of the system. Combined the known
and unknown variables form the entire set of variables which are denoted Z = K ∪ X .

The structural relations of the wind turbine model all appear in the incidence matrix shown in
Table 4.4, and are divided into three types of constraints, combined denoted C:

� d denotes a differential constraint.

� c denotes a constraint imposed by the system equations.

� m denotes a constraint from the measurement equations.

Furthermore, an ’x’ means that a variable cannot be calculated from the structural relation due to
integral causality. Some of the ’1’s are also underlined in the incidence matrix to show the matching
of the unknown variables, which is explained in the next subsection. The ranking in the rightmost
column relates to the matching, and indicates how many unknown variables there are used in the
matching of every unknown variable.
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Matching

A matching of the unknown variables is required to identify the monitorable part of the system,
i.e. the subsystem in which faults can be detected and isolated. This part of the system must be
observable to be in the over-constraint part of the system (C,Z). This means that there should be
more constraints describing this part of the system than unknown variables [Blanke et al., 2006,
p. 110].

The matching of the unknown variables is performed as shown in Figure 4.7, where the unknown
variables are matched from the known variables using the structural relations. The unknown vari-
ables are matched using as few structural relations as possible to get the matching as close as
possible to the known variables. This involves minimizing the so-called ranking, which indicates
the number of unknown variables utilized in each matching. The structural relations which are not
used to estimate the unknown variables are shown in Figure 4.7 using the red lines. These relations
are ARRs and can be used for fault detection and fault identification purposes.
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m10
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Ranking 3Ranking 2Ranking 1Ranking 0

Figure 4.7: Matching of unknown variables through known variables. The black lines show the
matching from Table 4.4 and the red lines are the redundant relations. The gray dots indicate
known variables, the black dots indicate structural relations, while the circles indicate unknown
variables.

The matching of the unknown variables is also shown in Table 4.4, where an underlined variable
indicates that it is calculated from the particular constraint. This indicates that the unknown
variable in the column can be determined from the known variables and the constraint written
in the associated row. The matching starts at the measurement equations and propagates to the
system constraints and differential constraints.

Analytical Redundancy Relations

The matching shows that the position of the tower, the velocity of the tower, and the wind speed
are not observable. However, note that the rotor effective wind speed is observable. Therefore,
no faults in these variables can be detected directly from the following residuals. This is clear,
since these three variables cannot be matched. The remaining system is observable, and has some
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redundancy relations, since some constraints are not utilized in the matching. The constraints that
are not matched can be utilized to detect and isolate faults. The unmatched constraints are c1-4,
c6-8, d13, and m1, which are summarized in Table 4.5. Notice, the variables which are not part of
any of the ARRs are deleted from this table.

Unknown Variables Known Variables

Ṫg Tg θ̇∆ θ∆ ωg β̈ β̇ β Tg,ref βref Pg,mes

c1-4 1 1 1

c6-8 1 1 1 1

d13 1 x

m1 1 1 1

Table 4.5: Incidence matrix of the wind turbine model showing the analytical redundancy relations.

From the analytical redundancy relations it is possible to create residuals for detecting faults.
Figure 4.8 to Figure 4.12 show the structural relations which can be traced back from the residuals.
The gray dot at the left side of each figure indicates the available information.

m2

m3-6

m10

ùg

Tg

d14 è?

r1

ùg

ùr è?
c9

c10

d13

Figure 4.8: Illustration of the connection between the constraints used in the matching and the
residual r1, which is generated from constraint d13. The red lines between variables indicate the
relations which generate the residual.

m3-6

Tg d1-4
Tg

c1-4 r2

Figure 4.9: Illustration of the connection between the constraints used in the matching and the
residual r2, which is generated from constraint c1-4. The red lines between variables indicate the
relations which generate the residual.

â

c6-8

m7-9

â d7-9 âd10-12

r3

Figure 4.10: Illustration of the connection between the constraints used in the matching and the
residual r3, which is generated from constraint c6-8. The red lines between variables indicate the
relations which generate the residual.

From Figure 4.8 to Figure 4.12 it is possible to determine the residuals which become non-zero
when one of the structural relations used to generate the residuals is violated. A relation between
structural relations and residuals are shown in Table 4.6.

Page 37



Fault Analysis

ùg

m1

m2

r4

Figure 4.11: Illustration of the connection between the constraints used in the matching and the
residual r4, which is generated from constraint m1. The red lines between variables indicate the
relations which generate the residual.

m3-6 Tg

m1 r5

Figure 4.12: Illustration of the connection between the constraints used in the matching and the
residual r5, which is generated from constraint m1. The red lines between variables indicate the
relations which generate the residual.

Structural Relation r1 r2 r3 r4 r5

d1-4 x
d5

d6

d7-9 x
d10-12 x
d13 x
d14 x
d15

c1-4 x
c5
c6-8 x
c9 x
c10 x
c11

m1 x x
m2 x x
m3-6 x x x
m7-9 x
m10 x
m11

Table 4.6: List of non-zero residuals ( x), when a fault is introduced in one of the structural relations
utilized in the matching.

From the table it can be seen that only faults in m1, m2, and m3-6 can be detected and isolated
from the residuals, since these constraints have unique combinations of residuals. This means that
other approaches for fault diagnosis, e.g. based on functional equations, have to be developed in
order to detect the remaining faults in the wind turbine.

Notice that this structural analysis does not reveal all redundancies in the system, as only the
structural relations of the system are utilized. An example of additional redundancy is the rela-
tion between the generator and rotor speed measurements. When averaging these two values they
should be proportional to each other. This cannot be seen from the structural relations, since the
dynamics of the system is not exploited.

In this section the analytical redundancy relations have been determined from the structural rela-
tions of the wind turbine model. These redundancy relations make it possible to detect a number of
faults in the system. However, other approaches are needed to diagnose all faults shown in Table 4.3
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on Page 33. In the next section the faults are categorized into abrupt and incipient faults, and the
dynamics of the incipient faults are specified to enable the diagnosis algorithms to be designed
according to the dynamics of the faults.

4.5 Fault Specification

The purpose of this section is to model the selected faults, which are listed in Table 4.3 on Page 33.
The incipient faults are modeled by their magnitude and the rate at which they can be introduced.
The abrupt faults are modeled by rewriting the system equations and measurement equations,
corresponding to the changes enforced by the faults. The section is divided into three subsections
describing: pitch sensor faults, pitch actuator faults, and generator speed sensor faults. In these
sections parameters specifying the dynamics of the incipient faults are needed. These parameters
are therefore listed in Table 4.7.

Fault Specification

Pitch Sensor

Bias
β̇bias(t) ∈ [-1◦/month, 1◦/month]

βbias(t) ∈ [-7◦, 7◦]

Pitch Actuator

High Air Content
α̇ha(t) ∈ [-1/month, 1/month]

αha(t) ∈ [0, 1]

Pump Wear
α̇pw(t) ∈ [0, 1/(20 years)]

αpw(t) ∈ [0, 1]

Hydraulic Leakage
α̇hl(t) ∈ [0, 1/(100 s)]

αhl(t) ∈ [0, 1]

Generator Speed Sensor

Proportional Error
α̇pe(t) ∈ [-1/month, 1/month]

αpe(t) ∈ [-0.1, 0.1]

Table 4.7: Specification of the ranges and the rate limits of the incipient faults.

Pitch Sensor Faults

An internal fault in a pitch sensor may cause biased output. This fault is modeled in the following
subsection.

Biased Output from Pitch Sensor

A biased pitch sensor measurement affects both the closed-loop pitch system and the pitch angle
measurement. When the bias is introduced, the pitch actuator model shown in Eq. (3.29) on Page 21
is modified as shown in Eq. (4.4a), and likewise the modified measurement equation is shown in
Eq. (4.4b).

β̈(t) = -2ζωnβ̇(t)− ω2
n (β(t) + βbias(t)) + ω2

nβref(t− td)
[◦/s2

]
(4.4a)

βmes(k) = β(k) + βbias(k) + vβ(k) [◦] (4.4b)

A bias can either be a result of inaccurate calibration of the pitch system or be an incipient fault. To
characterize the incipient fault, the rate of βbias(t) together with its range is specified in Table 4.7.

Page 39



Fault Analysis

Pitch Actuator Faults

The faults considered for the pitch actuators are: pump wear, hydraulic leakage, high air content
in the hydraulic oil, valve blockage, and pump blockage. These faults are modeled separately in the
next subsections. Notice that the parameters for the faulty pitch actuator are shown in Table 4.8.

Fault Parameters

No fault ωn = 11.11 rad/s, ζ = 0.6
High Air Content in the Oil ωn,ha = 5.73 rad/s, ζha = 0.45
Pump Wear ωn,pw = 7.27 rad/s, ζpw = 0.75
Hydraulic Leakage ωn,hl = 3.42 rad/s, ζhl = 0.9

Table 4.8: Parameters for the pitch system under different conditions. The normal air content in the
hydraulic oil is 7%, whereas high air content in the oil corresponds to 15%. Pump wear represents
the situation of 75% pressure in the pitch system while the parameters stated for hydraulic leakage
corresponds to a pressure of only 50%.

Pump Wear

Pump wear is an incipient fault which is introduced very slowly and results in low pump pressure.
This fault changes the parameters of the closed-loop pitch system described in Eq. (3.29) on Page 21
as shown below.

β̈(t) = -2ζ̃(t)ω̃n(t)β̇(t)− ω̃2
n(t)β(t) + ω̃2

n(t)βref(t− td) [◦/s2] (4.5)

with

ζ̃(t) = (1− αpw(t))ζ + αpw(t)ζpw [·]
ω̃n(t) = (1− αpw(t))ωn + αpw(t)ωn,pw [rad/s]

where:
αpw(t) is an indicator for the wear on the pump [·]

When αpw(t) = 0 the pump delivers the nominal pressure, but as αpw(t) goes to one the pres-
sure drops. The dynamics of αpw(t) is specified in Table 4.7. Notice that α̇pw(t) ≥ 0 for all t,
since the wear is irreversible without replacing the pump. It is estimated by kk-electronic a/s
that the fault described by αpw = 1, corresponding to a pressure level of 75%, can emerge after
approximately 20 years of operation.

Hydraulic Leakage

Hydraulic leakage is an incipient fault, which is introduced considerably faster than e.g. pump wear.
Hydraulic leakage results in changed parameters for the closed-loop pitch system as shown below.

ζ̃(t) = (1− αhl(t))ζ + αhl(t)ζhl [·] (4.7a)
ω̃n(t) = (1− αhl(t))ωn + αhl(t)ωn,hl [rad/s] (4.7b)

The constraints on the introduction of the fault are shown in Table 4.7. Again α̇hl(t) ≥ 0 for all
t, since a leakage cannot be reversed without repair of the system. Notice that the pressure for
αhl = 1 corresponds to 50% of the nominal pressure.

High Air Content in Oil

High air content in the oil is an incipient fault, which changes the parameters for the closed-loop
pitch system as shown below.

ζ̃(t) = (1− αha(t))ζ + αha(t)ζha [·] (4.8a)
ω̃n(t) = (1− αha(t))ωn + αha(t)ωn,ha [rad/s] (4.8b)
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The constraints on the introduction of the fault are shown in Table 4.7. In contrast to pump wear
and hydraulic leakage the fault can disappear; hence, α̇ha(t) can be both positive and negative. The
extreme values caused by αha = 0 and αha = 1 correspond to air contents of 7% and 15% in the
hydraulic oil.

Valve Blockage

A valve blockage is assumed to happen abruptly and might only affect one blade, as it is equivalent
to a situation where either Valve 1, Valve 2, or Valve 3 in Figure 3.14 on Page 20 is blocked. The
fault modifies the equation describing the pitch system as shown below.

βi(t) = βi(tf) ∀t > tf (4.9)

where:
tf is the time where the fault occurs [s]

Pump Blockage

A pump blockage is assumed to happen abruptly and affects all three blades. It is assumed equiv-
alent to closing Valve 4 in Figure 3.14 on Page 20 and modifies the equation describing the pitch
system as shown in Eq. (4.9) for i = 1, 2, 3.

Generator Speed Sensor Faults

The faults that are considered for the generator speed sensor are: proportional error on the output,
fixed output, and no output. These faults are modeled separately in the next subsections.

Proportional Error on Generator Speed Sensor

A proportional error on the generator speed sensor changes the sensor gain as shown below.

ωg,mes(k) = (1 + αpe(k))︸ ︷︷ ︸
sensor gain

ωg(k) + vωg(k) [rad/s] (4.10)

The fault can either be a result of a faulty configuration of a sensor or be an incipient fault.
To characterize the incipient fault, its rate of change together with its value space is specified in
Table 4.7.

Fixed Output from Generator Speed Sensor

A fixed output from the generator speed sensor is an abrupt fault, which can happen at any time
resulting in the following measurement equation:

ωg,mes(k) = ωg,mes(kf) ∀k > kf (4.11)

No Output from Generator Speed Sensor

No output from a generator speed sensor results in the same changes in the measurement equation
as a fixed output does. In contrast to a fixed output the control system is notified when no output
is received from the sensor.

In this section the considered faults have been specified. The next section describes the reme-
dial actions that must be taken to diagnose and accommodate the considered faults.
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4.6 Remedial Action Selection

The purpose of this section is to determine the actions that must be taken to stop propagation
of component faults to become failures on the system level. Furthermore, the requirements to the
fault diagnosis and accommodation must be determined. A table showing the methods used in the
design of the diagnosis and accommodation algorithms are shown in Table 4.9 on Page 44. Only
the faults which are selected in Table 4.3 on Page 33 are considered in this section.

Pitch Sensor Faults

The pitch sensors can be affected by a biased output. Requirements to the fault diagnosis and
accommodation of this fault are explained in the following subsection.

Biased Output from Pitch Sensor

As shown in Table 4.3 on Page 33 a biased output from a pitch sensor results in unbalanced rotation
of the rotor. This effect, which should be noticeable on the measurement of the tower acceleration,
is utilized to detect that one blade has an offset and to isolate the faulty pitch sensor. The detection
should be able to reveal a pitch offset having a magnitude greater than 0.25◦ to avoid long term
damage on the wind turbine.

To accommodate a biased pitch angle measurement, a bias-corrected measurement has to be
provided to the controller. This correction should enable the controller to keep all blades equally
pitched, despite the biased pitch measurement. The accommodation of the biased pitch measure-
ment is required to keep the difference between the individual pitch angles less than 5◦ at all times.
This requirement is introduced, since kk-electronic a/s has stated that differences above this bound
may cause severe structural damage to the wind turbine.

Pitch Actuator Faults

Five different faults can happen to the pitch actuators. These are: pump wear, hydraulic leakage,
high air content in the hydraulic oil, valve blockage, and pump blockage. Notice that pump wear,
hydraulic leakage, and high air content in the oil are incipient faults, which change the dynamics
of the pitch system and are therefore treated together. Additionally, valve blockage and pump
blockage are treated as one fault, since they introduce similar effects on a pitch actuator.

Changed Dynamics of the Pitch Actuator System

Hydraulic leakage eventually makes the pitch actuators uncontrollable. Therefore, it should be
detected before the pressure has drop to half the nominal pressure. This implies that a hydraulic
leakage should be detected within 100 s to satisfy this requirement for the assumed fastest evolving
hydraulic leakage.

The accommodation of pump wear and high air content in the oil is similar. Both active
and passive fault-tolerant control methods are considered to be relevant for the accommodation of
these faults. To delimit the extend of this project, fault-tolerant controllers are only designed for
accommodation of high air content in the oil. Notice that the fault diagnosis is only utilized by the
active fault-tolerant control approach.

To accommodate hydraulic leakage in the oil of the pitch system, the wind turbine must be shut
down prior to a complete loss of controllability of the pitch system. Though, this accommodation is
not going to be designed to limit the extend of this project, as the accommodation requires further
considerations to shut down the wind turbine as fast as possible while minimizing the mechanical
loads.

Valve Blockage and Pump Blockage

To detect a valve blockage or pump blockage a hypothesis test should be designed, since these are
abrupt faults, in contrast to the other faults in the pitch system. The detection of the faults should
happen as fast as possible to enable a fast accommodation, to avoid damaging the wind turbine.
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4.6 Remedial Action Selection

Notice that the pitch system is not actuated in partial load operation, which makes it necessary to
inject an auxiliary signal into the system to detect any fault in the pitch system.

The fault should only be detected not accommodated, since kk-electronic a/s has an accommo-
dation system for this fault. Their accommodation system consists of a series of valves which are
capable of by-passing hydraulic oil around the stuck valve with a hydraulic line from an accumu-
lator. This makes it possible to pitch the blades out of the wind; hence, shutting down the wind
turbine.

Generator Speed Sensor Faults

The three faults considered for the generator speed sensor are: proportional error, fixed output,
and no output. The only difference between the faults ’fixed output’ and ’no output’ from the
generator speed sensor is that fixed output has to be detected. Therefore, these two faults are
treated together.

Proportional Error on Generator Speed Sensor

To detect a proportional error on the generator speed sensor the redundant sensor information
from the rotor speed sensor can be utilized as explained in Section 4.4. To be certain that the
wind turbine is operated below an acceptable maximum speed, a safety margin of 10% of the rated
generator speed exists. The fault detection is required to detect the fault before the proportional
error equals 50% of the safety margin. This means that a proportional error greater than ±0.05
should be detected.

To accommodate for the proportional error, the size of this has to be estimated, and a corrected
generator speed measurement must be fed to the controller. The proportional error cannot be
estimated by use of the sensor redundancy, since the faulty sensor cannot be isolated by only using
information from the two speed sensors. Note that in theory a relation between generator torque
and output power can also be used to estimate the generator speed, but due to e.g. the time varying
efficiency of the power system, this relation is discarded. Therefore, the proportional error must be
estimated from the 3P frequency, which is infallible and is present on e.g. the generator speed.

Fixed Output and No Output from Generator Speed Sensor

From Table 4.3 on Page 33 it is clear that fixed or no output from the generator speed sensor has
severe consequences for the wind turbine; hence, the detection of fixed output of the generator
speed sensor has to be detected quickly. The detection of the fault must exploit that no noise is
present on the measurement after the fault has occurred.

The accommodation of the faulty generator speed sensor must be to reconfigure the controller
to utilize the redundant sensor information, which is available due to the measurement of the rotor
speed. However, the variance of the measurement noise on the rotor speed sensor is larger than on
the generator speed sensor, i.e. the performance of the controller degrades accordingly, making it
necessary to reconfigure the controller in full load operation.

Both faults described in this subsection will be referred to as fixed output from the generator
speed sensor in the rest of the thesis, since the handling of a fixed output can be used for no output
as well, by excluding the fault detection.

In this section all remedial actions involved with the considered faults have been selected. In
the remaining part of the thesis, all incipient faults are introduced in maximum 30 min., to limit
the simulation time involved in the design and test procedures, which already exceeds multiple
weeks.

In this chapter a fault analysis of the wind turbine control system has been accomplished, by
identifying the faults that can happen to the system and determining their propagations through
the system. To select the faults to be treated in this thesis, their frequency of occurrence and
the severity of their end-effects have been determined. The selected faults and the methods, which
should be applied for diagnosing and accommodating the faults are summarized in Table 4.9. In the
next chapter the fault diagnosis algorithms used in the active fault-tolerant controller are designed.
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5Fault Diagnosis

The purpose of this chapter is to provide an explanation of the designed fault diagnosis algorithms.
These algorithms can be used both for condition monitoring purposes and in an active fault-tolerant
control system to provide the supervisor with sufficient information to reconfigure the controller.

It is decided to create a model-based fault diagnosis system, which relies on measured as well
as estimated variables. Therefore, a reconfigurable estimator must be designed to make it possible
to design the entire fault diagnosis system according to the structure shown in Figure 5.1.

Reconfi-
gurable

estimator

Fault
detection and

isolation

y(k)

u(k)

y(k)

u(k)

f(k)

x(k)

x (k) fFault
estimation

Figure 5.1: Fault diagnosis algorithms reconfiguring the estimator in case of faults. The reconfig-
urable estimator provides estimates of the system states and the exogenous input.

The figure shows an estimator being reconfigured by the fault vector, f(k), provided by the fault
detection and isolation block. The reconfiguration makes it possible for the estimator to provide
a fault-corrected state estimate, x̂(k), and to estimate additional states, xf(k), introduced by the
faults. The fault-corrected state estimates enable the fault diagnosis algorithms in the common
structure to maintain operation even when other faults exist. This makes the fault diagnosis system
able to diagnose multiple simultaneous faults.

The reconfigurable estimator consists of both a reconfigurable wind speed estimator and a re-
configurable extended Kalman filter. Hence, this chapter includes the design of these estimators
and the fault diagnosis algorithms for the faults shown in Table 4.9. The reconfigurable wind speed
estimator provides an input to the reconfigurable extended Kalman filter; hence, it is explained
first.

5.1 Reconfigurable Wind Speed Estimator

It is desirable to have an estimate of the effective wind speed available as input to the reconfigurable
extended Kalman filter, since the wind speed acts as the driving force of the wind turbine.

An anemometer is located on top of the nacelle, but its measurement cannot be used as input
to the state estimator of reasons described in Section 3.10. Therefore, the purpose of this section
is to design a wind speed estimator capable of estimating the effective wind speed from the system
model and the available measurements. Additionally, the wind speed estimator should be able to
reconfigure, if the measurement of the generator speed becomes unavailable or if the outputs of the
pitch sensors are biased. This requirement exists since the estimator should be tolerant towards
the same faults as the control system can experience. These faults are outlined in Table 4.9.

There exist several methods for designing an effective wind speed estimator. In [Thiringer and
Petersson, 2005, pp. 7-8] the wind speed is calculated from an approximation of the relation between
the effective wind speed and the output power in the partial load operation. Similarly, a relation
between the pitch angle and the wind speed is used in the full load operation. A disadvantage of this
method is that it only relies on the pitch angle in full load operation even though the rotor speed

Page 45



Fault Diagnosis

also affects the relation; consequently, the approximation gets inaccurate. Furthermore, scheduling
between the partial load and the full load regions is necessary. In [van der Hooft and van Engelen,
2004] a similar approach is utilized, but instead of an approximation of the relation between the
wind speed and either the output power or the pitch angle, the Cp-table is utilized. This makes the
approximation more accurate, but the method is not suited for the considered wind turbine, since
the measurement of the output power is contaminated by a lot of noise.

The method used to design the wind speed estimator in this project originates from [Østergaard
et al., 2007], and is based on the block diagram shown in Figure 5.2. The principle is to estimate
the aerodynamic torque using an input estimator and then use this estimated torque in a lookup
table, based on the Cp-table, to find the effective wind speed. The method was originally designed
for collective pitching, but due to the possibility of faults in the pitch system, it cannot be assumed
that all pitch angles are identical at all times. Therefore, the method is extended to be capable of
handling three different pitch angles.

y(k)

-

+

?  

L ?  
++ x(k +1) x(k)

y(k)

C-1
z

PI(z)

B2 A

+
u(k)

B1

T (k)a

Lookup
table

ùr (k)

â(k) vr (k)

Estimation of the
aerodynamic torque

Calculation of the 
effective wind speed ùg,e (k)

Figure 5.2: Block diagram of the wind speed estimator consisting of a state estimator with an input
estimator providing the aerodynamic torque estimate. Notice that PI(z) denotes a PI controller.
The wind speed estimator utilizes the estimated aerodynamic torque in a lookup table to find the
effective wind speed.

The wind speed is estimated following this procedure:

1. A Kalman estimator estimates the generator speed based on the drive train model, control
signals, and the estimated aerodynamic torque.

2. The aerodynamic torque is unknown and is therefore estimated by a PI controller, having the
difference between the measurement and the estimated generator speed as input.

3. The estimate of the aerodynamic torque makes it possible to estimate the effective wind speed
from the table describing the aerodynamic properties of the rotor, when the pitch angles are
known.

The division between a state estimator and an input estimator makes it possible to design the
wind speed estimator in two steps, making the design procedure easier.

The section is divided into a number of parts each having their own subsection explained below.

� State Estimator: Design the state estimator based on the drive train model.

� Input Estimator: Design the input estimator, which estimates the aerodynamic torque.

� Calculation of Effective Wind Speed: Set up equations for calculating the wind speed
based on the aerodynamic model.

� Verification of Reconfigurable Wind Speed Estimator: Verify the reconfigurable wind
speed estimator in its two configurations and with different pitch angles.
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Notice that using the aerodynamic torque as input to the model eliminates the partial derivatives
of the aerodynamic torque, which are part of the model shown in Eq. (3.30) on Page 22. Additionally,
the model is reduced to only including the drive train and pitch system models, since estimation of
all states is not necessary to estimate the effective wind speed. Finally, only a reduced measurement
vector is utilized, to feed the entire estimation error to the input estimator. This implies that only
Tg(t), β(t), and ωg(t) are utilized in the normal scenario, while Tg(t), β(t), and ωr(t) are used when
the generator speed measurement is unavailable.

In the next subsection the design of the state estimator is explained.

State Estimator

The state estimator utilized in the effective wind speed estimator must provide estimates of the
rotor speed and pitch angles to the lookup table, from which the effective wind speed is calculated
as shown in Figure 5.2. The state estimator is a full-order Kalman estimator and is explained in
this subsection.

To design the full-order Kalman estimator, the MATLAB function dlqe is utilized. This function
calculates a constant Kalman gain based on the discrete system matrices, additive measurement
noise variances, and additive state noise variances:

x(k + 1) = Φx(k) + Γ1w(k) + Γ2u(k) (5.1a)
y(k) = Hx(k) +D1v(k) +D2u(k) (5.1b)

Q = E
(
wwT

)
R = E

(
vvT

)
where:

Q is the variance matrix of the state noise
R is the variance matrix of the measurement noise

The estimator only utilizes measurements of the generator speed, generator torque, and pitch angles
as input. The variances of the additive measurement noise are known from Table 3.1 on Page 23;
these values determine the elements in the measurement noise matrix, R.

During the tuning of the state noise matrix, Q, the correct aerodynamic torque is utilized as
input, because at this point the input estimator is not designed. This is one of the nice features
of the utilized design procedure. When the measurement of ωg(t) is unavailable the state noise
variances are changed, to improve the performance of the state estimator after reconfiguration.

A full-state Kalman estimator has now been designed. The second step is to design an input
estimator capable of estimating the aerodynamic torque from the estimation error of the generator
speed.

Input Estimator

A PI controller is utilized for estimating the aerodynamic torque, since it has good tracking proper-
ties. The input to the PI controller is the difference between the measured and the estimated gener-
ator speed, as shown in Figure 5.2. The transfer function of the PI controller, PI(z) = Ta(z)/ωg,e(z),
is shown below.

PI(z) = Kpw

(
1 +

Ts

Tiw · (z − 1)

) [
Nm

rad/s

]
(5.2)

where:
Kpw is the proportional gain [Nm/(rad/s)]
Tiw is the reset rate [s]
Ts is the sampling time [s]

The estimate of the aerodynamic torque is used as input to the Kalman estimator and to calculate
the wind speed. The parameters of the PI controller are chosen based on the prior knowledge about
the estimate. This implies that the parameters in this controller also have to be modified when the
measurement of ωg(k) is unavailable, since this increases the noise on the input to the PI controller.
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Calculation of Effective Wind Speed

The final step in the wind speed estimator design procedure is to derive a conversion between the
aerodynamic torque and the effective wind speed. The conversion is designed by rewriting the
equation describing the aerodynamic torque shown below, based on Eq. (3.9) on Page 15. The
conversion shown in this subsection is an extension of that explained in [Østergaard et al., 2007],
as the three pitch angles are allowed to be different.

Ta(t) =
1

2ωr(t)
ρA

1
3

3∑
i=1

v3
r,i(t)Cp (λi(t), βi(t)) [Nm] (5.3)

The above equation enables the three pitch angles and the three blade effective wind speeds to
be different. It is however not directly possible to calculate separate wind speeds for each blade
from one aerodynamic torque, and therefore it is assumed that the effective wind speed, vr(t), is
identical on each blade. Notice that this assumption implies that the tip-speed ratio is the same
for all blades. The simplified equation is shown below.

Ta(t) =
1

2ωr(t)
ρA

1
3
v3

r (t)
3∑
i=1

Cp (λ(t), βi(t)) [Nm] (5.4)

Since Ta(t) is estimated, the above equation has five unknown variables, which are Cp (λ(t), β1(t)),
Cp (λ(t), β2(t)), Cp (λ(t), β3(t)), vr(t), and λ(t). However, the wind speed can be eliminated as
shown below by exploiting the expression of the tip-speed ratio in Eq. (3.7) on Page 14.

Ta(t) =
ω2

r (t)
6

ρπR5Cp (λ(t), β1(t)) + Cp (λ(t), β2(t)) + Cp (λ(t), β3(t))
λ3(t)

6Ta(t)
ρπR5ω2

r (t)
=
Cp (λ(t), β1(t)) + Cp (λ(t), β2(t)) + Cp (λ(t), β3(t))

λ3(t)
[·] (5.5)

The left side of the equality sign is known when the aerodynamic torque is estimated; hence, if
each value of the right side gives a unique tip-speed ratio, the expression can be reformulated as
shown in Eq. (5.6), and the problem can be solved by designing a lookup table. To satisfy this
requirement the function should be either monotonously decreasing or monotonously increasing.
To be able to evaluate the expression and lookup only one value, the pitch angles have to be
inserted and a new table must be generated. For this function to be monotonously decreasing
or monotonously increasing it is required that Cp (λ(t), βi(t)) /λ3(t) possesses this property, since
the sum of monotonously decreasing or increasing functions is also a monotonously decreasing or
increasing function. The function f shown below is determined using the Cp-table provided by
kk-electronic a/s.

λ(t) = f

(
Cp (λ(t), β(t))

λ3(t)
, β(t)

)
[·] (5.6)

To verify if the function f possesses the desired property, it is plotted in Figure 5.3 at different
pitch angles.

From the figure it is clear that the function is monotonously decreasing and hence a lookup
table can be utilized to find the tip-speed ratio. When the tip-speed ratio is known, the following
equation is used to establish an estimate of the wind speed:

vr(t) =
ωr(t)R
λ(t)

[m/s] (5.7)

The wind speed estimator has been designed to operate in the entire operating range of the wind
turbine. In the next subsection the performance of the wind speed estimator is verified.
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Figure 5.3: Mapping used to calculate the tip-speed ratio plotted at various pitch angles.

Verification of Reconfigurable Wind Speed Estimator

The verification of the reconfigurable wind speed estimator should examine the performance of
the estimator in the entire operating range of the wind turbine, in three situations: with the
measurement of ωg(t), with the measurement of ωg(t) using individual pitch angles for the blades,
and without the measurement of ωg(t). During the verification the already designed reference
controller is applied to the wind turbine model, because the wind turbine model must be in the
proximity of the expected operating trajectory.

To verify the performance of the wind speed estimator in the entire operating range of the wind
turbine, a test is performed where the wind speed ranges from 5.7 m/s to 24.6 m/s; the turbulence
intensity is 12%, which is considered to be sufficient. In the test using different pitch angles the
reference for Blade 3 is 1◦ greater than the other references.

The estimated wind speed is compared to the correct wind speed, as shown in Table 5.1. Addi-
tionally, Figure 5.4 shows the wind speed sequences and the estimation errors.
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Figure 5.4: Simulation results showing the model output and the estimation error of the wind speed
estimator in its three situations.

From the figure the estimated wind speed appears to follow the correct effective wind speed and
it is seen that the performance of the effective wind speed estimator degrades when the genera-
tor speed measurement is not available, as expected. This is also apparent from Table 5.1, which
shows that the standard deviation of the estimated wind speed increases about 2.5 times when the
generator speed measurement is unavailable. The wind speed estimator is considered to perform
sufficiently well in the entire region in all three situations.
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Situation Standard Deviation

With ωg,mes(t) 0.131 m/s
With ωg,mes(t) and β1(t) = β2(t) 6= β3(t) 0.131 m/s
Without ωg,mes(t) 0.329 m/s

Table 5.1: Standard deviations of the estimation error of the rotor effective wind speed, vr(t).

A wind speed estimator has been designed, providing an estimate of the effective wind speed suitable
for being fed to the reconfigurable extended Kalman filter. The next section presents the design of
the reconfigurable extended Kalman filter.

5.2 Reconfigurable Extended Kalman Filter

The purpose of this section is to explain the design of the reconfigurable extended Kalman filter
and to verify its performance. Similar to the reconfigurable wind speed estimator described in the
previous section, the extended Kalman filter should be able to reconfigure if the measurement of
the generator speed is lost.

It is chosen to implement the state estimator as an extended Kalman filter instead of a linear
filter, since the wind turbine model has varying parameters in the aerodynamic model, due to the
partial derivatives of Ta(t) and Ft(t), and due to the faults in the system. An extended Kalman filter
makes it possible to approximate the model better, since it is linearized in the current estimated
state at every sample time. This property though comes at a cost, since the estimated states may
diverge from the correct states due to the linearization. Furthermore, the computational time of
an extended Kalman filter is increased compared to a linear Kalman filter. Though, it is assumed
that the advantages of using an extended Kalman filter exceed the disadvantages.

Extended Kalman Filter Algorithm

The extended Kalman filter consists of two steps: a prediction step and an update step. In the pre-
diction step the a priori state, a priori covariance matrix, and a priori system output are calculated
from the state estimate from the previous sample and the input to the previous sample using the
following equations [Grewal and Andrews, 2001, p. 180]:

x̂(k|k-1) = f(x̂(k-1|k-1), u(k-1)) (5.8a)

P (k|k-1) = F (k-1)P (k-1|k-1)FT(k-1) +Q(k-1) (5.8b)
ŷ(k|k-1) = h(x̂(k|k-1)) (5.8c)

where:
f(x̂(k-1|k-1), u(k-1)) is the state transition model
F (k-1) is the Jacobian of f(x̂(k-1|k-1), u(k-1))
h(x̂(k|k-1)) is the observation model
P (k|k-1) is the a priori covariance matrix
Q(k-1) is the covariance of the process noise
x̂(k|k-1) is the estimated a priori state vector
ŷ(k|k-1) is the estimated a priori system output

When the measurements to the current time step have been fetched from the sensors, the a posteriori
estimates can be calculated in the update step using the following equations:

ẽ(k) = y(k)− ŷ(k|k-1) (5.9a)

S(k) = H(k)P (k|k-1)HT(k) +R(k) (5.9b)

K(k) = P (k|k-1)HT(k)S-1(k) (5.9c)
x̂(k|k) = x̂(k|k-1) +K(k)ẽ(k) (5.9d)
P (k|k) = (I −K(k)H(k))P (k|k-1) (5.9e)
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where:
ẽ(k) is the innovation
H(k) is the Jacobian of h(x̂(k|k-1))
K(k) is the Kalman gain
P (k|k) is the a posteriori covariance matrix
R(k) is the covariance of the measurement noise
S(k) is the covariance of the innovation
x̂(k|k) is the estimated a posteriori state vector

Notice that the extended Kalman filter exploits a possibly non-linear model to estimate the states
and system output, while the Jacobians are utilized to propagate the covariances.

Deployment of Reconfigurable Extended Kalman Filter

The linear model utilized to propagate the covariances is shown in Eq. (3.30) on Page 22, while the
non-linear part of the reconfigurable extended Kalman filter directly utilizes the equations shown
in Chapter 3. In addition to the system model, the reconfigurable extended Kalman filter must be
provided with a measurement noise covariance matrix, an initial a posteriori covariance matrix, and
a covariance matrix for the process noise. The measurement noise covariance matrix is set up from
Table 3.1 on Page 23, while the initial a posteriori covariance matrix and the covariance matrix for
the process noise are used to tune the reconfigurable extended Kalman filter.

In order to utilize the effective wind speed in the propagation of the covariances in the reconfig-
urable extended Kalman filter, it is included in the model as a random walk. This is useful in the
aerodynamic model, since this includes parameters which are dependent on the wind speed.

If the generator speed sensor outputs a fixed value, the generator speed measurement is useless
and the estimator should be reconfigured to handle the fault. The loss of the generator speed mea-
surement does not affect the observability of the wind turbine model, since the rotor speed sensor
is available, but this measurement is much noisier than the generator speed measurement. Further-
more, the generator speed measurement forms the basis for the wind speed estimator; hence, the
estimate of the wind speed also degrades as explained in the previous section. When reconfiguring
the estimator, the measurement noise associated with the generator speed measurement is increased
in the measurement noise covariance matrix to a large value resulting in zero gain on the generator
speed measurement. This makes it possible to maintain the same structure of the estimator in both
the fault-free and faulty cases.

In the next subsection the performance of the reconfigurable extended Kalman filter is evaluated.

Verification of Reconfigurable Extended Kalman Filter

In this subsection the reconfigurable extended Kalman filter is verified both with and without using
the generator speed measurement. This is accomplished by conducting long lasting simulations in
the two configurations and by switching between these to verify that the transition is possible.

Verification of the Two Configurations

To verify the performance of the reconfigurable extended Kalman filter, simulations having duration
of 5,000 s are conducted both with and without the measurement of ωg(t) being available, in order
to evaluate the quality of the estimates. The standard deviations of the state estimation errors are
displayed in Table 5.2.

From the table it is noticeable that the estimates degrade when the generator speed measurement
is unavailable. This is both a consequence of losing the measurement in the reconfigurable extended
Kalman filter and having degraded performance of the wind speed estimator as shown in Table 5.1.

Verification of Reconfiguration of the Extended Kalman Filter

To complete the verification of the reconfigurable extended Kalman filter, a switch between its two
configurations is simulated. The result of this simulation is shown in Figure 5.5.

From the figure it is obvious that the estimates get worse when the generator speed measurement
becomes unavailable at t = 50 s; this complies with Table 5.2. Furthermore, the estimates do not
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Variable Standard Deviation

With ωg,mes(t) Without ωg,mes(t)

Tg 11.781 Nm 11.781 Nm

xt 0.002 m 0.005 m

vt 2.041 mm/s 5.577 mm/s

β1,2,3 (0.054◦, 0.054◦, 0.054◦) (0.131◦, 0.130◦, 0.130◦)

β̇1,2,3 (0.404◦/s, 0.401◦/s, 0.404◦/s) (0.984◦/s, 0.980◦/s, 0.977◦/s)

θ∆ 0.014 mrad 0.056 mrad

ωg 0.013 rad/s 0.191 rad/s

ωr 0.598 mrad/s 1.614 mrad/s

vr 0.108 m/s 0.217 m/s

Table 5.2: Standard deviations of the estimated states evaluated from simulations lasting 5,000 s
for a mean wind speed of 16 m/s. The table both displays the case where the generator speed
measurement is available and the reconfigured case where it is not.

jump when the fault is introduced; hence, the reconfigurable extended Kalman filter is considered
to perform satisfactory.

In this section the design of the reconfigurable extended Kalman filter has been outlined and it
has been verified by simulation. In the next section a diagnosis algorithm used to diagnose a single
pitch sensor bias is explained.

5.3 Diagnosis of Single Pitch Sensor Bias

The purpose of this section is to design a diagnosis algorithm, which should be capable of diagnosing
a pitch offset of a single blade. This diagnosis algorithm is used to estimate the magnitude of a
biased output from a pitch sensor, which causes the actual pitch angle to be offset compared to the
reference value applied to the pitch system. Throughout this section it is assumed that only one
pitch sensor fails at a time, but the results are extended in the next section to allow all blades to
have a pitch offset.

The section is divided into three subsections having the purposes described below.

� Preliminary Study of Single Pitch Sensor Bias: Provide the background necessary to
understand the phenomenon which is exploited in the fault diagnosis.

� Fault Diagnosis of Single Pitch Sensor Bias: Describe the diagnosis algorithm used to
detect, isolate, and estimate the bias of the pitch sensor.

� Verification of the Diagnosis Algorithm for a Single Pitch Sensor Bias: Verify the
performance of the diagnosis algorithm in terms of minimum detectable bias and estimation
accuracy.

Preliminary Study of Single Pitch Sensor Bias

In this subsection a series of simulation results are presented where one blade has a pitch offset.
The simulation results show the changes on the tower force, tower acceleration, and aerodynamic
torque. These are illustrated to show that it is possible to detect a pitch offset on a single blade
based on some distinctive changes in these variables. In order to examine the influence of the
different components of the wind model on these variables, a series of plots are provided. Each
simulation has duration of 22 s, where the first 10 s show the operation of the wind turbine in the
fault-free case. After 10 s the pitch references are changed to reflect an offset of 2◦ on Blade 3,
corresponding to a sensor bias of -2◦ for Pitch Sensor 3. During the simulations fixed control signals
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Figure 5.5: Simulation result showing the model output (blue) and the estimated states (red) using
the measurement of ωg(t) before 50 s and without the measurement of ωg(t) after t = 50 s.

are utilized to clarify the distinctive changes on the tower force and aerodynamic torque, i.e. no
controller is applied. Additionally, the turbulence intensity is set to 0% to eliminate the stochastic
behavior of the wind signal.

Four different simulations are conducted for a mean wind speed of 16 m/s. The simulation
results are shown in Figure 5.7 and Figure 5.8, where Fth(t) and Ta(t) are shown both in the
three components resulting from each of the three blades and summed to the resulting force and
aerodynamic torque.
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Simulation 1: No wind shear or tower shadow

From the first simulation shown in the left subplots of Figure 5.7 it should be noticed that each
component of the tower force originates from Eq. (3.24) on Page 18, which is repeated below for
convenience. The relation between θr(t) + ϕi and the location of the blades are illustrated in
Figure 5.6.

Fth(t) = Ft,1(t)
(

1 +
rt

h
cos(ψ1(t))

)
︸ ︷︷ ︸

Fth,1(t)

+Ft,2(t)
(

1 +
rt

h
cos(ψ2(t))

)
︸ ︷︷ ︸

Fth,2(t)

+ Ft,3(t)
(

1 +
rt

h
cos(ψ3(t))

)
︸ ︷︷ ︸

Fth,3(t)

[N] (5.10)

with

ψ1(t) = θr(t) + ϕ1, ψ2(t) = θr(t) + ϕ2, ψ3(t) = θr(t) + ϕ3

where:
Ft,i(t) is the thrust exerted by the wind on Blade i [N]
Fth,i(t) is the tower force from Blade i at hub height [N]

Blade 1

Blade 2Blade 3

ø2
ø3

è (t)r

Figure 5.6: Explanation of θr(t) + ϕi in relation to the position of the blades. Notice that ϕ1 is not
marked, since it is 0 rad.

This equation shows that the resulting force on the tower at hub height, Fth(t), depends on the
azimuth angle of the rotor. Therefore, the location of the blades affects the tower force components.
This is different from the aerodynamic torque, which is independent of the location of the blades.
The sinusoids apparent on the tower force components Fth,1(t), Fth,2(t), and Fth,3(t) are not visible
on the resulting force acting on the tower. This is true, since the wind speed on each blade is
identical; hence, introducing a signal that approximates the relation shown in Eq. (5.11).

0 = cos(θr(t) + ϕ1) + cos(θr(t) + ϕ2) + cos(θr(t) + ϕ3) (5.11)

given

ϕ1
∆= 0 rad, ϕ2

∆=
2π
3

rad, ϕ3
∆=

4π
3

rad

After 10 s, when one blade is pitched different from the two other blades, the amplitude of one of
the cosines in Eq. (5.10) gets smaller than the others resulting in a tower force being a constant
plus a cosine having a phase dependent on the blade that is pitched differently.

Simulation 2: Only wind shear

The second simulation in the right subplots of Figure 5.7 shows that wind shear has only an
insignificantly small influence on the tower force, while the aerodynamic torque from each blade
becomes dependent on the rotor azimuth angle. However, as the three torque components are added
together the resulting influence gets small, since it approximately equals the cosine description
shown in Eq. (5.11).
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Figure 5.7: Simulation results showing the tower force, tower acceleration, and aerodynamic torque,
where the turbulence intensity is set to 0% and fixed control signals are applied. At t = 10 s a pitch
offset of 2◦ is introduced on Blade 3, corresponding to a pitch sensor bias of -2◦.
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Figure 5.8: Simulation results showing the tower force, tower acceleration, and aerodynamic torque,
where the turbulence intensity is set to 0% and fixed control signals are applied. At t = 10 s a pitch
offset of 2◦ is introduced on Blade 3, corresponding to a pitch sensor bias of -2◦
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Simulation 3: Only tower shadow

From the third simulation shown in the left subplots of Figure 5.8, it is observed that tower shadow
has a smaller impact on the tower force than on the aerodynamic torque, since the component
1 + rt/h cos(θr(t) +ϕ) from Eq. (5.10) is multiplied on the force acting on the blade. Therefore, the
tower force is at its minimum when the blade passes the tower. This implies that the cosine on the
aerodynamic torque, introduced by the biased pitch angle, disappears in the tower shadow, while
the cosine is still very clear on the tower force.

Simulation 4: Wind shear and tower shadow

In the fourth simulation shown in the right subplots of Figure 5.8, the wind turbine is simulated
with both wind shear and tower shadow, and as concluded in Simulation 2, wind shear has almost
no effect on the resulting force and torque. Therefore, the results obtained in Simulation 4 is similar
to that in Simulation 3.

From the four simulations it can be concluded that, when a pitch angle has an offset, the re-
sulting tower force can be approximately by a constant plus a cosine function with a mean value
different from the nominal tower force. In contrast, almost no periodic signal is apparent on the
aerodynamic torque, only a change in the mean value. From this conclusion a diagnosis algorithm
is developed to estimate the bias on the pitch angle. Notice that it is necessary to use the tower
model as the swaying of the tower affects the tower acceleration. This is apparent from the plots
of at(t) around t = 20 s, where at(t) has another shape than Ft(t).

The consequences of having different pitch angles of the blades have been determined by simu-
lation. In the next subsections it is explained how a single pitch sensor bias is diagnosed.

Fault Diagnosis of Single Pitch Sensor Bias

The method utilized to estimate a pitch offset takes advantage of the sinusoidal signal, which appears
on the tower force, when a single pitch offset exists, as shown in Eq. (5.10). A block diagram of the
fault diagnosis algorithm is shown in Figure 5.9.

Reconfi-
gurable

estimatior

Fault
detection

Fault
isolation

u(k)

y(k)

Blade 1
Blade 2
Blade 3

F (k)th
F (k)th,e

a (k)t,mes

â (k)bias

Blade #i

Bias
estimation

Figure 5.9: Block diagram of the algorithm utilized to determine the pitch offset of a blade. The
graphs between the boxes depict the shape of the signals in these places.

In the following list the steps in the fault diagnosis algorithm are explained.

1. Reconfigurable estimator: The reconfigurable extended Kalman filter, described in Sec-
tion 5.2, estimates the tower force from the pitch angles and the effective wind speed.
The estimated tower force calculated without information about the fault does not contain the
sinusoidal signal, which the true tower force possesses. Additionally, it has an offset compared
to the true value.

2. Fault detection: The error on the estimated tower force, denoted F̂th,e(k), is estimated
based on the tower model, the estimated tower force, and the measured tower acceleration.
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The estimation error is approximately zero in the fault-free case, while it contains a sinusoidal
signal, originating from the pitch offset, in the fault case.

3. Fault isolation: The blade having an offset is determined from the phase of the sinusoidal
signal on the estimation error, since this is related to the location of the blade.

4. Fault estimation: The reconfigurable extended Kalman filter is expanded with a bias esti-
mator, which estimates the pitch angle of the isolated blade from the amplitude of the cosine
on the estimation error of the tower force.

Detection of Single Pitch Sensor Bias

The purpose of this subsection is to describe how a pitch offset can be detected by exploiting the
asymmetry in the rotor, which appears when this fault occurs. It is decided to detect the fault by
using characteristics of the tower force, from which isolation is also possible.

When one blade has a pitch offset the tower force can be described as the addition of the nominal
tower force, an offset, and a cosine function with a phase shift dependent on the blade having an
offset; this is shown below.

Fth,bias,i(t) = Fth,nom(t) + Fth,offset(t) + Fth,cos(t) cos(θr(t) + ϕi) [N] (5.12)

where:
Fth,bias,i(t) is the force acting on the tower when Blade i is offset [N]
Fth,nom(t) is the force acting on the tower when the blades are equally pitched [N]
Fth,offset(t) is the offset on the force acting on the tower [N]
Fth,cos(t) is the amplitude of the cosine function [N]
ϕi is the phase shift of Blade i [rad]

The relation shown in Eq. (5.12) is exploited to isolate the blade which has a pitch offset. This is
done by exploiting that ϕ will be different for each blade and it is known that only three possible
phase shifts can occur, assuming only one fault is introduced at a time.

The tower force estimated by the extended Kalman filter explained in Section 5.2 does not
contain the cosine function from Eq. (5.12) when a pitch sensor has a biased output, since the pitch
angle is estimated erroneously by the extended Kalman filter. This is exploited in the detection of
the fault explained in this subsection.

The general idea behind the fault detection is to feed the estimated tower force, F̂th(t), into
the tower model, to get an estimate of the tower acceleration, which can then be compared to a
measurement of the tower acceleration. By assuming that the estimation error is caused by a term
Fth,cos(t) cos(θr(t)+ϕ), its amplitude and phase can be estimated. The estimated amplitude should
be approximately zero in the fault-free case and non-zero in case of a fault.

The fault detection is based on an extended Kalman filter due to the non-linear nature of the
equations. By modifying the tower model to include Fth,cos(t) cos(θr(t) + ϕ) the following state
space description can be set up:

ẋ(t) = Ax(t) +Bu(t)

ẋ(t) =


0 1 0 0

-Kt
Mt

- Bt
Mt

1
Mt

0
0 0 0 1
0 0 -ω2

r 0




xt(t)
ẋt(t)

Fth,cos(t) cos(θr(t) + ϕ)
-ωr(t)Fth,cos(t) sin(θr(t) + ϕ)

+


0
1
Mt

0
0

 F̂th(t) (5.13)

To ease the isolation of the biased pitch measurement the term Fth,cos(t) cos(θr(t) + ϕ) is not
introduced directly, but instead Eq. (5.14) is utilized to obtain Eq. (5.15).

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) (5.14)
Fth,cos(t) cos(θr(t) + ϕ) = Fth,cos(t) cos(ϕ) cos(θr(t))− Fth,cos(t) sin(ϕ) sin(θr(t)) [N] (5.15)

From Eq. (5.15) it is clear that Fth,cos(t) cos(θr(t) + ϕ) can be rewritten as a function of cos(θr(t))
and sin(θr(t)), which are only dependent on the rotor azimuth angle, and the terms Fth,cos(t) cos(ϕ)
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and Fth,cos(t) sin(ϕ), which are dependent on the magnitude of the bias and the location of the
biased blade. This trick is solely done to make the isolation easier.

The rearrangement made in Eq. (5.15) replaces the third and fourth state in Eq. (5.13) with
two states equal to Fth,cos(t) cos(ϕ) and Fth,cos(t) sin(ϕ) in the extended Kalman filter. These are
utilized in the fault detection together with two states equal to cos(θr(t)) and -ωr(t) sin(θr(t)), which
are known due to the knowledge of θr(t). This expands the state vector to contain six states:

x(t) =


xt(t)
ẋt(t)

Fth,cos(t) cos(ϕ)
Fth,cos(t) sin(ϕ)

cos(θr(t))
-ωr(t) sin(θr(t))

 (5.16)

The non-linear function f(x, u) used in the extended Kalman filter is shown below.

ẋ(t) = f(x, u)

ẋ(t) =



ẋt(t)
-Kt
Mt
xt(t)− Bt

Mt
ẋt(t) + Fth,cos(t) cos(ϕ) cos(θr(t))

Mt
− Fth,cos(t) sin(ϕ) sin(θr(t))

Mt

0
0

-ωr(t) sin(θr(t))
-ω2

r (t) cos(θr(t))

+



0
1
Mt
F̂th(t)
0
0
0
0


(5.17)

From f(x, u) the Jacobian, which is used to propagate the covariances in the filter, can be calculated
as shown below. Notice the states are renamed to xi to shorten the notation.

∂f

∂x
=



0 1 0 0 0 0
-Kt
Mt

- Bt
Mt

x5(t)
Mt

x6(t)
ωr(t)Mt

x3(t)
Mt

x4(t)
Mtωr(t)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 -ω2

r (t) 0

 (5.18)

The extended Kalman filter used for the fault detection has been set up, and a biased pitch measure-
ment is assumed to happen when Fth,cos(t) cos(ϕ) and Fth,cos(t) sin(ϕ) get above a preset threshold.
When the fault has been detected the fault isolation algorithm explained next isolates the biased
pitch sensor.

Isolation of Single Pitch Sensor Bias

To isolate the blade which has a pitch offset it is necessary to utilize the knowledge of the three
possible phase shifts deduced from Figure 5.6 on Page 54: ϕ ∈ {0, 2π/3, 4π/3} rad. Table 5.3 is set
up to show how the blade having the pitch offset is isolated based on the estimates of Fth,cos(t) cos(ϕ)
and Fth,cos(t) sin(ϕ) as ϕ changes. The table only displays constraints for Fth,cos(t) > 0, but these
are easily derived for Fth,cos(t) < 0 by replacing ’<’ with ’>’ and vice versa.

From Table 5.3, Fth,cos(t) cos(ϕ), and Fth,cos(t) sin(ϕ) it is possible to isolate the blade having
a pitch offset. This information should be sent to the extended Kalman filter, which then should
be reconfigured to estimate the magnitude of the bias on the identified blade. This procedure is
explained the next subsection.

Estimation of Single Pitch Sensor Bias

To estimate the bias of the pitch angle some extra reconfiguration possibilities are added to the
extended Kalman filter in Section 5.2 in order to fulfill this task.
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Condition Fth,cos(t) cos (ϕ) Fth,cos(t) sin (ϕ) Blade

Fth,cos(t) > 0 ∧ ϕ = 0 rad = Fth,cos(t) = 0 1
Fth,cos(t) > 0 ∧ ϕ ∈]0, π/2[ rad > 0 > 0 −
Fth,cos(t) > 0 ∧ ϕ = π/2 rad = 0 = Fth,cos(t) −
Fth,cos(t) > 0 ∧ ϕ ∈]π/2, π[ rad < 0 > 0 2
Fth,cos(t) > 0 ∧ ϕ = π rad = -Fth,cos(t) = 0 −
Fth,cos(t) > 0 ∧ ϕ ∈]π, 3π/2[ rad < 0 < 0 3
Fth,cos(t) > 0 ∧ ϕ = 3π/2 rad = 0 = -Fth,cos(t) −
Fth,cos(t) > 0 ∧ ϕ ∈]3π/2, 2π[ rad > 0 < 0 −

Table 5.3: Value space of x3(t) = Fth,cos(t) cos(ϕ) and x4(t) = Fth,cos(t) sin(ϕ) and the blade
associated with each interval.

A biased pitch measurement affects both the measurement equation and the closed-loop pitch
actuator model, since the internal controller in the pitch actuator utilizes the erroneous measurement
too. Hence, the model of the pitch system shown in Eq. (3.29) on Page 21 should be modified by
adding βbias(t) to its description as shown below.

β̈(t) = -2ζωnβ̇(t)− ω2
n (β(t) + βbias(t)) + ω2

nβref(t− td) [◦/s2] (5.19)

where:
βbias(t) is the bias on the pitch angle measurement [◦]

Furthermore, the measurement equation for the pitch angle should be modified as shown below.

βmes(k) = β(k) + βbias(k) + vβ(k) [◦] (5.20)

To implement the changes in the system description three states are added to the state vector
of the reconfigurable extended Kalman filter, representing the bias of each pitch angle sensor.
The changed system and output equations shown above should be permanently implemented in
f(x̂(k-1|k-1), u(k-1)), and h(x̂(k|k-1)), but not in F (k) and H(k), which are used to propagate
covariances as explained in Section 5.2. These matrices should only be modified when the detection
and isolation algorithm have identified a fault, because this makes it possible to keep the bias
estimates at constant values when either no fault is detected or when the detected fault has already
been estimated.

Notice that a biased pitch angle measurement also affects the wind speed estimator, since the
pitch angle is used in its lookup tables. This makes it necessary to feed the bias estimate back to
the wind speed estimator. This of course requires that the bias estimate is much slower than the
dynamics of wind speed estimator.

This finalizes the design of the design of the diagnosis algorithm for a single pitch sensor bias.
In the next subsection the algorithm is verified.

Verification of Single Pitch Sensor Bias Diagnosis Algorithm

The purpose of this subsection is to verify the performance of the single pitch angle bias detec-
tion and estimation. The verification of the detection is performed by determining the minimum
detectable pitch sensor bias, while the estimation is verified by evaluating the accuracy of the
estimated bias.

Determination of Minimum Detectable Single Pitch Bias

The verification of the fault detection algorithm is performed by conducting a series of simulations
where different pitch sensor biases are applied on Blade 1. The size of the pitch sensor bias is
increased in steps of 0.05◦ between 0◦ and 0.25◦ to determine the smallest detectable bias. To find
the smallest detectable bias, the mean values and standard deviations of ϕ and Fth,cos(t) cos(ϕ)
are determined, since these are used in the detection and isolation. This is done by conducting
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100 simulations with duration 2,000 s for each pitch sensor bias. The results of the simulations are
shown in Figure 5.10, where the outcomes are assumed to be Gaussian distributed.

To detect and isolate a biased pitch sensor output, the following two conditions must be satisfied:

1. Detection: The estimated value of Fth,cos cos(ϕ) must be greater than the value of Fth,cos cos(ϕ)
when no bias exists.

2. Isolation: The estimate of ϕ must deviate less than π
6 rad from its real value.
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Figure 5.10: Distributions of ϕ and Fth,cos(t) cos(ϕ), when applying biases on the pitch sensor
associated with Blade 1 for mean wind speeds of 16 m/s and 20 m/s. The blue lines illustrate the
fault-free cases, while the red lines illustrate the fault situations, where pitch sensor biases between
0◦ and 0.25◦ are applied in steps of 0.05◦. Additionally, the dashed black lines indicate the interval
which ϕ should be in to perform a correct identification.

From the figure it is seen that it is possible to detect and isolate the pitch sensor biases greater
than 0.1◦. This bias can be detected, since the distribution of the phase of biases greater than
0.1◦ is inside the bounds marked with dashed black lines in the upper subplots. Furthermore, the
distributions of Fth,cos(t) cos(ϕ) in the fault-free case and faulty case do not overlap for biases greater
than 0.1◦. This satisfies the requirement of a minimum detectable bias equal to 0.25◦ defined in
Section 4.6. It is possible to improve the accuracy of the detection and isolation by averaging over
a longer time period than the currently used 2,000 s. This would make the distributions of both ϕ
and Fth,cos(t) cos(ϕ) narrower; hence, smaller biases could be detected.

Estimation of Single Pitch Sensor Bias

The verification of the estimation of a single pitch sensor bias is conducted by operating the wind
turbine for mean wind speeds of 16 m/s and 20 m/s and introducing a pitch bias of 1◦ linearly
between t = 200 s and t = 2,000 s on the pitch sensor associated with Blade 3. The simulation
results of the Monte Carlo simulations are shown in Figure 5.11. The detection of the fault has
been introduced manually to decrease the simulation time. This manually performed detection
introduces the jump in the estimated pitch bias at t = 250 s.

The simulations show that the pitch angle estimate converges towards the correct bias in each
case, as the mean values equal 1.04◦ and 1.02◦ for mean wind speeds of 16 m/s and 20 m/s, respec-
tively. Furthermore, the standard deviations equal 0.03◦ for both wind speeds. Therefore, the bias
estimation is assumed to perform satisfactory since the estimated bias is very close to the correct
bias of 1◦.

In this section a method for diagnosing a single pitch sensor bias has been presented. The method
relies on the asymmetry in the rotor plane, which is introduced when a pitch offset is introduced.
The next section extends this method to apply for multiple pitch sensor biases.
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Figure 5.11: Simulation results showing the pitch sensor bias (red), the mean value of the estimated
bias (blue), and the mean values plus and minus two times the standard deviations of the pitch bias
estimates (green) for mean wind speeds of 16 m/s and 20 m/s.

5.4 Diagnosis of Multiple Pitch Sensor Biases

In the previous section a method is presented for estimating a single pitch sensor bias, when the
two remaining pitch sensors are assumed to be unbiased. This method is based on determining the
phase of the sinusoidal signal introduced on the tower force after injection of the bias fault. Since
the method is based on imbalance in the rotor plane, it is possible to extend the method to a case
of multiple simultaneous bias faults on the pitch sensors. This extension is described in this section.

From Eq. (5.10) on Page 54, which is repeated below for convenience, it is clear that only the
differences between the individual forces acting on the blades affect the phase of the resulting cosine
function on Fth(t), not the absolute values Ft,1(t), Ft,2(t), and Ft,3(t).

Fth(t) = Ft,1(t)
(

1 +
rt

h
cos(ψ1(t))

)
+ Ft,2(t)

(
1 +

rt

h
cos(ψ2(t))

)
+ Ft,3(t)

(
1 +

rt

h
cos(ψ3(t))

)
= F̄th(t) + Fth,cos(t) cos(θr(t) + ϕ(t)) [N] (5.21)

where:
F̄th(t) is the mean value of Fth(t) [N]
Fth,cos(t) is magnitude of the resulting cosine function on Fth(t) [N]
ϕ(t) is the phase shift of the resulting cosine function on Fth(t) [rad]

From Eq. (5.21) it is clear that by evaluating Fth,cos(t) cos(θr(t)+ϕ(t)) it is only possible to diagnose
the mutual offsets between the pitch angles of the blades, since a common bias on the sensors does
not create imbalance in the rotor plane. Therefore, another method should be utilized to remove a
common offset. A couple of ideas for removing this are shown below.

� In partial load operation the wind turbine is expected to operate at the maximum of the
Cp-surface, where it is flat. Inserting an auxiliary signal on the pitch reference would make
it possible to estimate whether or not the wind turbine is operated at this expected optimum
point.

� In full load operation the slope of the Cp-surface could be estimated and compared with the
expected slope.

The estimation of the common pitch offset is not implemented, since it is considered to be improper
use of the simplified static aerodynamic description utilized in the model to estimate a slope of a
surface, which only applies in steady-state, as explained in Section 3.8 on Page 21.

The existence of a common pitch offset does not introduce cyclical loads on the rotor, but the
controller cannot be optimized to the correct operating conditions of the wind turbine.

Detection of Multiple Pitch Sensor Biases

To detect that multiple pitch faults exist, it should be detected that Fth,cos(t) in Eq. (5.21) becomes
non-zero. This is identical to the fault detection designed for a single biased pitch sensor in the
previous section, and is therefore not described further.
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Isolation of Multiple Pitch Sensor Biases

The purpose of the fault isolation is to categorize the blades according to their pitch biases, i.e.
determine the blade having the largest, median, and smallest bias. By doing so, it is possible to
determine a strategy for achieving a common offset of the blades.

To isolate the faults it is necessary to estimate the phase shift ϕ(t) of the tower force shown
in Eq. (5.21), since Table 5.3 on Page 59 is not sufficient. This can be obtained by rewriting
Fth,cos(t) cos(θr(t) + ϕ(t)) into a cosine and a sine function, as formulated in Eq. (5.15) on Page 57
and shown in Eq. (5.22).

Fth(t) = F̄th(t) + (Ft,2(t) + Ft,3(t)− 2Ft,1(t))
rt

h
cos(ϕ2)︸ ︷︷ ︸

Fth,cos(t) cos(ϕ(t))

cos(θr(t))

− (Ft,2(t)− Ft,3(t))
rt

h
sin(ϕ2)︸ ︷︷ ︸

Fth,cos(t) sin(ϕ(t))

sin(θr(t))

Fth(t) = F̄th(t) + Fth,cos(t) cos(ϕ(t)) cos(θr(t))− Fth,cos(t) sin(ϕ(t)) sin(θr(t)) [N] (5.22)

From this equation it is possible to calculate the resulting phase shift, ϕ(t), for arbitrary biases.
To provide an easily comprehensible overview of the possible phase shifts, a unit circle is shown in
Figure 5.12 with the possible combinations. The phase shift can be followed around the unit circle,
and is associated with the mutual relationship between the forces at each blade to every phase shift.
Notice that offsets can both be positive and negative resulting in a phase shift of π rad on ϕ.
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Figure 5.12: Illustration of a unit circle with the phase shift, ϕ, along its periphery. Outside the
unit circle, the relation between the forces acting on the blades are associated to the phase shift
experienced on the resulting tower force.

To isolate the fault, i.e. determine the current fault situation, the phase has to be estimated.
This is possible using the estimator shown in Eq. (5.17) on Page 58, which is designed for isolation
of one pitch sensor bias. The available estimates from this estimator are Fth,cos(t) cos(ϕ(t)) and
Fth,cos(t) sin(ϕ(t)). From these two estimates it is possible to calculate ϕ(t), which then can be
utilized in combination with Figure 5.12 to determine the mutual relationship between the biases
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on the pitch sensors. The equation for calculating ϕ(t) from the two estimates is shown in Eq. (5.23).

ϕ(t) =


tan-1

(
Fth,cos(t) sin(ϕ(t))
Fth,cos(t) cos(ϕ(t))

)
for Fth,cos(t) cos(ϕ(t)) > 0

tan-1
(
Fth,cos(t) sin(ϕ(t))
Fth,cos(t) cos(ϕ(t))

)
+ π for Fth,cos(t) cos(ϕ(t)) < 0

sign (Fth,cos(t) sin(ϕ(t))) π2 for Fth,cos(t) cos(ϕ(t)) = 0

(5.23)

Estimation of Multiple Pitch Sensor Biases

To estimate the pitch sensor biases, the fault isolation must provide the reconfigurable extended
Kalman estimator with information about the two pitch sensor biases it has to estimate. When the
biased sensors are isolated the estimation is identical to the procedure explained in Section 5.3. The
difference is that there are two biases, but as ϕ(t) can be estimated, these biases can be calculated
separately. This is not further discussed in this section due to the similarities with the case of a
single pitch sensor fault.

Verification of Multiple Pitch Sensor Biases Diagnosis Algorithm

In this section the fault estimation is verified by evaluating its ability to estimate mutual pitch
sensor biases. This is accomplished by conducting Monte Carlo simulations with two pitch sensor
biases.

To stress that the accommodation is not always able to remove the common pitch offset, since
only the mutual biases can be estimated, the biases injected in the simulations are chosen to have
a non-zero median. For this verification, 100 simulations are conducted with duration 4,000 s for
mean wind speeds of both 16 m/s and 20 m/s. The biases are linearly introduced on two pitch
sensors between t = 200 s and t = 2,000 s. The magnitudes of the introduced biases are 3◦ on
Blade 2 and 2◦ on Blade 3.

To provide an overview of the expected outcome of the simulations, Table 5.4 provides the
expected values of the pitch sensor bias estimates and the expected values of the resulting pitch
angle offsets after accommodation, in the considered simulation example.

Blade Pitch Sensor Bias Pitch Sensor Bias Estimate Pitch Angle Offset

1 0◦ -2◦ -2◦

2 3◦ 1◦ -2◦

3 2◦ 0◦ -2◦

Table 5.4: Expected outcome of the Monte Carlo simulations. In the last column, the expected
pitch angle offsets after accommodation are show. However, the accommodation is first presented
in Section 6.2.

It can be seen from Table 5.4 that the biases should be estimated on the pitch sensors associated
with Blade 1 and Blade 2, since these sensors have the extreme values of the pitch sensor biases.
Consequently, the blades are expected to obtain a common offset equal to minus the median of the
pitch sensor biases, i.e. -2◦ when accommodated.

The results of the simulations are shown in Figure 5.13, where the estimated biases are evaluated
by comparing them to the expected biases. From the figure it is clear that the pitch sensor biases
are estimated as expected and that a collective bias exists, since the method is only able to estimate
mutual biases. The mean values of the estimates equals -2.01◦ and 0.98◦, respectively, while the
standard deviations of the bias estimates equal 0.03◦, which is considered sufficiently accurate.

In this section a method for diagnosing multiple pitch sensor biases has been presented. The
method is an extension to the method for diagnosing a single pitch sensor bias, but is restricted
to estimate only the mutual relationship between the biases on the blades. The accommodation
of multiple bias faults is explained in Section 6.2. In the next section a method is presented for
estimating the dynamics of the pitch system.
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Figure 5.13: Results of Monte Carlo simulations, where the biases are introduced between t = 200 s
and t = 2,000 s. This introduces a bias with respect to the median of the biases, illustrated with the
red line. The blue lines show the mean values of the estimated biases, while the green lines show
the mean values plus and minus two times the standard deviations of the estimated biases.

5.5 Estimation of Pitch System Dynamics

The purpose of this section is to present a method for determining the dynamics of the pitch system.
This is done by estimating the parameters of the pitch system model.

Several parameter estimation methods exist, but it is decided to select a method that allows an
extended Kalman filter to be used, since it enables the parameter estimation to be incorporated in
the structure presented in Figure 5.1 on Page 45. One method for estimating the parameters is to
augment the state vector of the model with the parameters to be estimated. A similar result can
be obtained using a multiple-model framework, as the one described in [Hallouzi, 2008, pp. 23-49],
which is selected due to its flexible structure and its intuitive modeling of faults.

The multiple-model framework requires that local models are generated at certain operating
conditions. The correct model is then found as a convex combination of these models.

In the following bullet list the content of the section is summarized.

� Limit Value Based Method for Multiple-Model Estimation: Describe the parameter
variations in a single pitch actuator model using the limit value based method.

� Estimation Based on all Actuator Models: Enlarge the obtained system to cover the
models of all three pitch actuators.

� Multiple-Model Estimation using an Extended Kalman Filter: Present the algorithm
for the multiple-model estimation using an extended Kalman filter.

� Constraint Implementation: Include constraints in the algorithm to restrict the estimates
to remain within the generated model set.

� Verification of Estimation of Pitch System Dynamics: Verify the performance of the
multiple-model estimation.

It should be noted that the parameter estimation exploits the pitch sensor measurements from
all three pitch actuators to determine the dynamics of the pitch system. The pitch actuators are
expected to have identical parameters, since they share the same oil supply. However, to simplify
the notation in the first part of the explanation, only a single pitch actuator is considered. Later,
the system is extended to cover all three actuators.

The estimator design is initiated by writing up the state space representation of a pitch actuator.
The model is found in Eq. (3.29) on Page 21, and for convenience it is written below in a state
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space form including its varying parameters.

ẋ(t) = A(t)x(t) +B(t)u(t)[
β̇(t)
β̈(t)

]
=
[

0 1
-ω2

n(t) -2ζ(t)ωn(t)

] [
β(t)
β̇(t)

]
+
[

0
ω2

n(t)

]
βref(t− td) (5.24a)

y(t) = Cx(t) + v(t)

βmes(t) =
[
1 0

] [β(t)
β̇(t)

]
+ vβ(t) [◦] (5.24b)

The dynamics of the pitch system is characterized by the parameters ωn and ζ. The parameter
variations are specified in Table 4.8 on Page 40. The changing dynamics results from pump wear,
hydraulic leakage, or high air content in the hydraulic oil.

The next subsection describes how to generate a model set which captures the possible parameter
variations in Eq. (5.24a). This involves choosing a model structure for the estimation problem.

Limit Value Based Method for Multiple-Model Estimation

In [Hallouzi, 2008, pp. 51-78] different approaches are described for generating a model set used
in a multiple-model estimation. The model set should make the infinite set of models, originating
from the continuous parameter space, be approximated by a convex combination of a few models.

A basic method is to divide the parameter space into a grid, and for each grid point assign
a corresponding local model. The different local models can be automatically generated by a
computer, but results in a computationally demanding algorithm. Instead, other approaches exist,
which start by randomly generating models at different operating conditions. The idea of these
methods is then to approximate the large set of sampled models by a few local models. However,
these methods are better suited for systems which are much larger than the considered system. A
third method presented in [Hallouzi, 2008, p. 63] is based directly on the limit values of the varying
model parameters. In this particular case, these limits are available from the fault specification in
Table 4.8 on Page 40. Furthermore, the model set can be intuitively designed and there exists a
direct relation between the model weights and the parameters. Therefore, it is decided to select
this method.

The limit value based method has its starting point in the limit values of the varying entries
of the system matrices. The entry in the i-th row and j-th column of the system matrix can be
expressed as a convex combination of the limit values of the parameter; a−ij and a+

ij :

aij(t) = µaija
−
ij +

(
1− µaij(t)

)
a+
ij

= a+
ij + µaij(t)

(
a−ij − a+

ij

)︸ ︷︷ ︸
a∆
ij

where µaij ∈ [0, 1] (5.25)

where:
a−ij and a+

ij are the minimum and maximum values of the (i,j)-th entry of the system matrix
µaij(t) is the weight on the (i,j)-th entry of the system matrix

Let A+ be defined as the matrix in which all entries equal their maximal values and let A∆
ij be

defined as the matrix in which all entries are 0, except the (i, j)-th element, which must equal a∆
ij :

A+ =
{
A : aij = a+

ij ∀i, j ∈ {1, 2, · · · , n}
}

(5.26)

A∆
ij =

{
A : aij = a∆

ij ∧ aĩj̃ = 0 ∀(̃i, j̃) 6= (i, j)
}

(5.27)

By using a similar notation for the entries in the input matrix, output matrix, and direct transmis-
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sion term, the following general system emerges:

ẋ(t) = Aµ(t)x(t) +Bµ(t)u(t)

ẋ(t) =

A+ +
∑
i,j

A∆
ijµ

a
ij(t)

x(t) +

B+ +
∑
i,j

B∆
ijµ

b
ij(t)

u(t) (5.28a)

y(t) = Cµ(t)x(t) +Dµ(t)u(t)

y(t) =

C+ +
∑
i,j

C∆
ijµ

c
ij(t)

x(t) +

D+ +
∑
i,j

D∆
ijµ

d
ij(t)

u(t) (5.28b)

where:
Aµ(t), Bµ(t), Cµ(t), Dµ(t) are the matrices of an LPV system
µaij(t), µ

b
ij(t), µ

c
ij(t), µ

d
ij(t) are the weights on the entries of A,B,C,D, respectively

According to Eq. (5.24) the pitch actuator model has only parameter-varying entries in the system
and input matrices, resulting in Eq. (5.29).

A+ =
[

0 1
-(ω−n )2 -2ζ−ω−n

]
A∆

21 =
[

0 0
-(ω+

n )2 + (ω−n )2 0

]
A∆

22 =
[
0 0
0 -2ζ+ω+

n + 2ζ−ω−n

]
B+ =

[
0

(ω+
n )2

]
B∆

21 =
[

0
(ω−n )2 − (ω+

n )2

]
(5.29)

From the above description three weights generally exist. However, the number of weights can be
reduced to only two by exploiting that a21 = -b21 in Eq. (5.24a). This reduces the LPV system in
Eq. (5.28) into Eq. (5.30) with µj ∈ [0, 1] for j = 1, 2.

ẋ(t) =
[
A+ +A∆

21µ1(t) +A∆
22µ2(t)

]
x(t) +

[
B+ +B∆

21(1− µ1(t))
]
u(t) (5.30a)

y(t) = Cx(t) (5.30b)

In the next subsection the system description is extended to include all three pitch actuators, to
exploit the information of each actuator when determining the dynamics of the pitch system.

Estimation Based on all Actuator Models

To ease the notation, the system matrices so far contain only a single actuator model. However,
the parameter estimation can benefit from using measurements from the three identical actuators,
as all pitch actuators are assumed to possess identical dynamic behavior. The matrices defined in
the previous subsection are extended to cover all three actuators; by redefining:

x(t) =



β1(t)
β̇1(t)
β2(t)
β̇2(t)
β3(t)
β̇3(t)

 u(t) =

 βref,1(t− td)
βref,2(t− td)
βref,3(t− td)

 y(t) =

 β1,mes(t)
β2,mes(t)
β3,mes(t)



A+ =

A+ 0 0
0 A+ 0
0 0 A+

 A∆
21 =

A∆
21 0 0
0 A∆

21 0
0 0 A∆

21

 A∆
22 =

A∆
22 0 0
0 A∆

22 0
0 0 A∆

22


B+ =

B+ 0 0
0 B+ 0
0 0 B+

 B∆
21 =

B∆
21 0 0
0 B∆

21 0
0 0 B∆

21


Having established a model structure and specified the varying entries of the system matrices, it is
described in the next subsection how the estimation is performed.
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Multiple-Model Estimation using an Extended Kalman Filter

The estimation problem in Eq. (5.30) is non-linear due to products of the states and the model
weights. Different methods exist for solving such a problem, as exemplified in [Hallouzi, 2008,
pp. 23-49]. The method chosen in this project is to utilize an extended Kalman filter, which uses
linearization in the immediate state as an approximation to the non-linear system. This choice
allows the method to be integrated into the reconfigurable extended Kalman filter described in
Section 5.2.

The weights are assumed to evolve as a random walk process depicted by:

µ(k) = µ(k-1) + wµ(k) (5.31)

where:
wµ(k) is a zero-mean Gaussian distributed noise sequence with covariance Qµ(k)

The weights are introduced in the EKF by augmenting the state vector, which results in the fol-
lowing augmented model:

xa(k)︷ ︸︸ ︷[
x(k)
µ(k)

]
=
[
Φµ(k-1|k-1) 0

0 I

] [
x(k-1)
µ(k-1)

]
+
[
Γµ(k-1|k-1)

0

]
u(k-1)

+
[
Q(k-1)1/2 0

0 Qµ(k-1)1/2

]
︸ ︷︷ ︸

Qa(k-1)1/2

wa(k-1) (5.32a)

y(k) =
[
Hµ(k) 0

] [x(k)
µ(k)

]
+R(k)1/2v(k) (5.32b)

where:
(Φµ, Γµ, Hµ) is the discretization of the system (Aµ, Bµ, Cµ) in Eq. (5.28)
xa(k) and Qa(k-1) are the augmented state vector and the augmented covariance matrix
wa(k) and v(k) are zero-mean white noise sequences of appropriate dimensions

To introduce the Jacobian matrices required for the EKF, the system in Eq. (5.32) can be written
as shown below:

xa(k) = f (xa(k-1), u(k-1), wa(k-1)) (5.33a)
y(k) = h (xa(k), u(k), v(k)) (5.33b)

Linearization is then used to calculate Φ̄ and H̄ at the predicted state. These are used to propagate
the covariances in the EKF.

Φ̄(k-1) =
∂f

∂xa xa = x̂a(k-1|k-1)

(5.34)

H̄(k) =
∂h

∂xa xa = x̂a(k|k-1)

(5.35)

The complete EKF algorithm is described in the bullet point list on the next page. Since the system
description is available in continuous time, the matrices for the bullet point ’Matrix formulation’
represent the continuous system matrices sampled at the discrete time sample k-1. These matrices
are later discretized; e.g. Ā(k-1) is a counterpart to Φ̄(k-1).

The main tuning parameter is the covariance matrix, Qa(k), which is selected as a diagonal
matrix. The entries ofQµ(k) determine the compromise between convergence rate of the weights and
fluctuations of the estimates. The next subsection describes how constraints can be implemented
on the estimated weights.
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� Matrix formulation
The following matrices are linearized at t = (k-1)Ts.

Aµ(k-1|k-1) = A+ +A∆
21µ̂1(k-1|k-1) +A∆

22µ̂2(k-1|k-1)

Bµ(k-1|k-1) = B+ +B∆
21 (1− µ̂1(k-1|k-1))

Cµ(k|k-1) = C

Ā(k-1) =

Aµ(k-1|k-1)
[
A∆

21 -B∆
21

] [x̂(k-1|k-1)
u(k-1)

] [
A∆

22 0
] [x̂(k-1|k-1)

u(k-1)

]
0 0 0


C̄(k) =

[
C 0 0

]
� Discretization

The above matrices are discretized using the following general equations:

Φ = I +AΨ
Γ = ΨB
H = C

where

Ψ = ITs +
AT 2

s

2!
+
A2T 3

s

3!
+ · · ·

� Prediction[
x̂(k|k-1)
µ̂(k|k-1)

]
=
[
Φµ(k-1|k-1) 0

0 I

] [
x̂(k-1)
µ̂(k-1)

]
+
[
Γµ(k-1|k-1)

0

]
u(k-1)

P (k|k-1) = Φ̄(k-1)P (k|k-1)Φ̄(k-1)T +Qa(k|k-1)

� Measurement update

K(k) = P (k|k-1)H̄(k)T
(
H̄(k)P (k|k-1)H̄(k)T +R(k)

)-1[
x̂(k|k)
µ̂(k|k)

]
=
[
x̂(k|k-1)
µ̂(k|k-1)

]
+K(k) (y(k)−Hµ(k|k-1)x̂(k|k-1))

P (k|k) =
(
I −K(k)H̄(k)

)
P (k|k-1)

Constraint Implementation

The presented algorithm does not take the constraints on the weights into account. This however
will be necessary to restrict the estimates to remain within the generated model set specified by
µ̂j ∈ [0, 1]. If one of the model weights escapes its interval, an equality constraint is added to the
update step of the algorithm; i.e. either µ̂j = 0 or µ̂j = 1.

The limit value based method permits the estimates of the parameters to be found directly from
the estimated weights. Since only ωn appears in a21 while a22 includes a product of both ζ and ωn,
then ω̂n is determined from µ̂1, while ζ̂ is found using µ̂2 and ω̂n. Therefore, it is possible to narrow
the range of the second weight dependent on the estimate of the first weight, as shown below.

-ω̂2
n ∈

[
-
(
ω̂+

n

)2
, -
(
ω̂−n
)2]

µ1 ∈ [0, 1]

-2ζ̂ω̂n ∈
[
-2ζ+ω̂n, -2ζ−ω̂n

]
µ2 ∈

[
-2ζ+ω̂n − a+

22

a∆
22

,
-2ζ−ω̂n − a+

22

a∆
22

]
In the implementation the intervals are slightly increased to obtain the correct mean values of the
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5.5 Estimation of Pitch System Dynamics

estimates when the weights are at their boundaries. In the next subsection the multiple-model
parameter estimation algorithm is verified.

Verification of Estimation of Pitch System Dynamics

To verify the estimation of the parameters in the pitch system, simulations are performed to evaluate
how the parameters are estimated in the case of high air content in the hydraulic oil, which is slowly
introduced. To view the evolution of the estimated parameters in case of hydraulic leakage, refer
to Figure 5.16 in the next section, which presents a detection test for hydraulic leakage, but builds
on the multiple-model parameter estimation from this section.

The parameter estimation is verified using Monte Carlo simulations, where 100 simulation runs
are conducted for mean wind speeds of 16 m/s and 20 m/s to show any possible influence on the
result caused by the operating conditions.

In Figure 5.14, the two upper subplots in each column show the estimated weights, whereas
the lower subplots show the estimated parameters calculated based on the estimated weights. The
reason why the estimates of ζ are noisier than the remaining estimates, is that this variable is a
function of the two estimated weights, of which the first weight appears in the denominator of the
equation calculating ζ.
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Figure 5.14: Simulation results showing the estimation of the parameters in the pitch system. Be-
tween t = 500 s and t = 2,200 s the parameters in the pitch system are changed so that they
eventually describe the condition of high air content in the oil. The mean values of the parameters
(blue) are plotted with the mean plus and minus two times the standard deviations (green) and the
correct values (red) to show how well the estimates follow the correct parameter values.

From the figure it is concluded that the estimated parameters converge towards the correct
parameters. The rate of convergence increases with increasing pitch activity. This implies that the
estimate converges faster at high wind speeds.

In this section a method based on multiple-model estimation has been applied for estimating the
parameters of the pitch system. The next section describes the design of a detection test taking
advantage of the parameter estimation in this section to detect a hydraulic leakage in the pitch
system.
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5.6 Detection of Hydraulic Leakage

Hydraulic leakage differs from the other possible faults in the pitch system, since it eventually
makes the pitch system uncontrollable, and since it is introduced much faster than the other faults.
Therefore, it is not sufficient to estimate the parameters of the pitch system, since a hydraulic
leakage should be detected such that the wind turbine can be shut down while the pitch system is
still controllable. In this section a detection test is designed to detect a hydraulic leakage based on
the parameter estimation described in the previous section.

A fast drop in the natural frequency of the pitch system model is utilized as an indicator of a
hydraulic leakage. This can be detected by examining the slope of µ̂1(k) defined in Section 5.5.
The upper left subplot in Figure 5.16 displays how a hydraulic leakage influences µ1(t). Therefore,
a method is now presented that detects a change in µ1(t), which can be explained by a hydraulic
leakage. It is decided to utilize a CUSUM test, since it can be used to detect a change in the mean
of the derivative of µ̂1(k). The steps involved in the CUSUM test design are:

� Differentiate the estimate of the model weight µ̂1(k).

� Apply a CUSUM test to look for changes in the mean value of the derivative of µ̂1(k).

A CUSUM algorithm can be used for detecting a change in the mean of a Gaussian distributed
sequence. In this case a one-sided test is applied since it is sufficient to detect a drop in the hydraulic
pressure; i.e. detect a negative slope of µ̂1(k). The equation for calculating the decision variable,
g(k), is [Blanke et al., 2006, p. 244]:

g(k) = max
(

0, g(k-1) +
µb − µa

σ2

(
z(k)− µa + µb

2

))
(5.36)

The parameters: µa, µb, and σ are used to adjust the sensitivity of the decision function to changes
in the input. The CUSUM algorithm then detects a change in the mean value from µa towards µb,
where σ specifies the distribution of ˙̂µ1(k).
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Figure 5.15: Decision variable (blue) and
threshold (red) for the hydraulic leakage
detection.

The example provided in Figure 5.15 shows how the
decision function increases when a hydraulic leakage is
emulated by decreasing the pressure in the oil to 50%
between t = 400 s and t = 500 s. The specification
of this simulation is identical to that in Figure 5.16.
Therefore, the decision logic simply involves comparing
g(k) to a threshold and sending the detection signal
to the supervisor, which much choose an appropriate
control strategy.

The threshold is selected from a compromise be-
tween the mean detection time and the mean time be-
tween false alarms. In order to minimize the probabil-
ity of false detections, and do not let high air content
influence the detection of a hydraulic leakage, the threshold is selected such that no false alarms
are made during the 100 simulation runs conducted to obtain Figure 5.14.

Verification of Hydraulic Leakage Detection

In this subsection simulations are performed to evaluate how hydraulic leakage in the system can
be detected. Monte Carlo simulations of 100 runs are conducted to evaluate the results, and the
test is conducted using mean wind speeds of 16 m/s and 20 m/s to show any possible influence on
the result caused by a different wind speed.

In Figure 5.16 simulation results are shown for the estimation of parameters in the pitch system,
when a hydraulic leakage is injected in the system at t = 400 s during 100 s. The distributions of
the detection times are shown in Figure 5.17 using the CUSUM test.

The results confirm that the estimated parameters converge towards the correct parameters.
The average detection time is about 35 s, which is a compromise that allows no false detections
in the simulations performed in this verification. Note that the distribution is narrower at higher
wind speeds, where the pitch activity is most extensive. From the resulting detection times it is
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Figure 5.16: Simulation results showing the estimation of the parameters in the pitch system. Be-
tween t = 400 s and t = 500 s the parameters in the pitch system are changed so that they eventually
describe the condition of low pressure. The mean values of the parameters (blue) are plotted with
the mean plus and minus two times the standard deviations (green) and the correct values (red) to
show how well the estimates follow the correct parameter values.
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Figure 5.17: Distributions of the detection times for the detection of a hydraulic leakage. The
detection utilizes the estimate of the first weight in Figure 5.16 which is differentiated and used in
a CUSUM test.

concluded that the requirement in Section 4.6 is met.

In this section a method based on a one-sided CUSUM test has been described, which allows a
hydraulic leakage to be detected based on the estimated dynamics of the pitch system explained in
Section 5.5. As opposed to a hydraulic leakage, which develops during some time, a pitch actua-
tor may also become stuck. The detection of this fault is described in the next section using two
different methods for allowing fault detection in both partial load and full load operations.

5.7 Detection of Stuck Pitch Actuator

The purpose of this section is to describe how a stuck pitch actuator is detected. As mentioned
in Section 4.6 a pitch actuator can either be stuck due to a valve blockage or pump blockage, of
which the last affects all actuators. In contrast to the method described in Section 5.5, the methods
considered in this section should, rather than estimating some parameters, be able to test the
hypothesis: an actuator is stuck. The faults are going to be detected based on hypothesis testing
using a multiple-model framework. The idea is to test if a fault-free or a faulty model description
is the most likely description of the current system behavior.
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A hypothesis test is directly performed in the full load region due to the mandatory pitch activity
in this region. Contrarily, an auxiliary signal is applied to the system in the partial load region to
actuate the pitch system, which is necessary to perform the hypothesis test. The main ideas of the
two methods are summarized below; afterwards, the methods are presented and verified separately.

1. Multiple hypotheses testing
The first method uses the innovations and innovation covariances from two Kalman filters to
find the most likely model.

2. Auxiliary signal design for failure detection
The second method uses a test signal of minimum energy combined with a hypothesis test to
find the most likely model.

Detection of Stuck Pitch Actuator using Multiple Hypotheses Testing

To detect a stuck pitch actuator in the full load region a method based on multiple hypotheses
testing is adopted, which is described in [Bak, 2000, pp. 16-18]. The method includes a number of
models, each considered to be a candidate for the true model. A hypothesis is constructed for each
model saying that the system is represented by that particular model. Additionally, the probability
of each hypothesis being true is determined using the measurement data.

The multiple hypotheses testing set-up is shown in Figure 5.18. Notice that the filters are inde-
pendent of each other, and that only their outputs are combined to calculate the model probabilities.

Filter 1:
Nominal model

Filter 2:
Faulty model

Pitch
sensor

Probability
calculation

Model
probabilities

Controller
â (k)ref 

â  mes(k)
ë (k)1

ë (k)2

ì(k)

Figure 5.18: Structure of the multiple hypotheses testing method. The output µ(k) equals the prob-
ability of each model being correct, calculated based on their likelihoods λ1(k) and λ2(k).

The method has two assumptions listed below. The consequences of the first assumption are
discussed in the subsection ’Robustness Associated with Detection of Stuck Pitch Actuator’, while
the consequences of the second assumption are discussed after having presented the algorithm.

1. The system is equivalent to one of the proposed models.

2. The same hypothesis has been true since t = 0 s.

The first assumption implies that there is no alternative hypothesis. To test if a pitch actuator
is stuck, the model set is therefore made up of two models: one model describes the dynamics of
a pitch actuator in the functional case, while the other model describes the scenario of a stuck
actuator. The model of a functional pitch actuator appears in Eq. (5.24) on Page 65, while a stuck
pitch actuator is modeled as:

ẋ(t) = Ax(t) +Bu(t)[
β̇(t)
β̈(t)

]
=
[
0 1
0 -2ζωn

] [
β(t)
β̇(t)

]
+
[
0
0

]
βref(t− td) (5.37a)

y(t) = Cx(t) + v(t)

βmes(t) =
[
1 0

] [β(t)
β̇(t)

]
+ vβ(t) [◦] (5.37b)

It is decided to include a two-state model of the stuck pitch actuator to ease the tuning of the
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algorithm, since this enables the use of similar covariances matrices in the two Kalman filters.
The (2, 2)-th entry of the system matrix in Eq. (5.37a) ensures that any non-zero estimate of β̇(t)
converges to zero.

At the end of this section a list is presented which shows the steps performed in each filter.
This algorithm is based on the predictions and updates performed according to the Kalman filter
equations, which can be found in [Grewal and Andrews, 2001, p. 121]. The idea is to write the
probability of the i-th model being correct at sample k, conditioned on the measurements up to this
time, so that it can be evaluated recursively. The recursive form can be obtained by using Bayes’
rule, as shown in [Bak, 2000, p. 17]. This results in the following procedure, which is conducted for
each filter, at each time step.

1. For filter i in Figure 5.18, perform the prediction and update step according to the Kalman
filter equations.

� Find the innovation covariance maintained by the Kalman filter:

Si(k|k-1) = Hi(k)Pi(k|k-1)Hi(k)T +Ri(k)

� Compute the innovation:

ri(k|k) = y(k)− ŷi(k|k-1)

2. Compute the likelihood of the observation y(k) given that model Mi is valid (m denotes the
number of measurements). The result is fed to the probability calculation box in Figure 5.18,
to form the output of the hypothesis test described in item 3.

λi(k) =
1

(2π)m/2det (Si(k|k-1))
exp

(
-0.5ri(k|k-1)TS-1

i (k|k-1)ri(k)
)

3. Find the probability that model Mi is correct at time step k, conditioned on the measurements
up to that time, denoted Yk. This is defined like µi(k) = p(Mi|Yk) and is:

µi(k) =
λi(k)µi(k-1)∑N
j=1 λj(k)µj(k-1)

According to the second assumption, the method assumes that the same model has been in
action since t = 0 s. This implies that the weight µi(k) converges to zero or one dependent on
which model is most likely. In order to allow the weight to change during operation this assumption
is relaxed by adding a small number to the weight µi(k), which enables it to move away from zero
if the state of the system suddenly changes.

Robustness Associated with Detection of Stuck Pitch Actuator

If the nominal pitch actuator model and the model of a stuck pitch actuator are selected as the
two candidate models, the algorithm will perform well in the scenarios of having either nominal
performance or a stuck actuator. However, the method will not necessarily be robust towards
deviations in the pitch dynamics. In that situation, e.g., high air content in the oil of the pitch
system may result in false detections of a stuck pitch actuator.

The candidate models have to be selected such that it can be determined if an actuator is stuck,
independent of the condition of the pitch system, i.e. for any parameter values in the range stated
in Table 4.8 on Page 40. However, this compromises the assumption that the system is equivalent
to one of the proposed models. Even though none of the hypotheses can formally be accepted, the
test will still provide an answer to which model is most likely. Therefore, it is possible to let a model
having degraded performance represents the functional case; this will still have a higher likelihood
than that of a stuck actuator, even if the nominal model is the true model, although robustness
cannot be guaranteed.

It has been found that the hypothesis test performs satisfactory if the functional case is modeled
as the situation of low pressure and normal air content, with parameters found in Table 4.8 on
Page 40. This however has to be verified, and is successfully done through simulations in the next
subsection.
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Verification of Stuck Pitch Actuator Detection in Full Load Operation

In order to evaluate the performance of the multiple-model hypothesis testing method, and to ensure
that the test is functional even in cases where the system is not equivalent to one of the proposed
models, Monte Carlo simulations are performed by considering 200 simulation runs. These runs are
based on the same model, each with different seeds for the random sequences of the measurement
noise and the wind model. The test is repeated for wind speeds of both 16 m/s and 20 m/s to
reveal possible influences on the results caused by the operating point of the wind turbine. Since
no a priori knowledge is assumed, the probabilities that the models are correct are initialized to
one half for each model.

In Figure 5.19 the mean values of the model probabilities are shown separately for the tests
performed at the two mean wind speeds. During the simulations the dynamics of the pitch system
is altered, and it is verified that no false detections are made in none of the simulations.
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Figure 5.19: Average results for the detection of a stuck pitch actuator for two different mean wind
speeds. The dynamics of the pitch system is altered according to the two lower subplots to verify
that no false detections are made in different scenarios. At t = 400 s the pitch actuator becomes
stuck.

The distributions of the detection times are shown in Figure 5.20, whereof it can be concluded
that a detection time of 1 s is the most likely, but may be as long as 5.6 s in the considered
simulations.
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Figure 5.20: Distributions of detection times. The mean detection time is t = 1.66 s and t = 1.52 s
respectively for the simulations performed for the lower and higher mean wind speeds.

Based on the results it is concluded that the detection test operates satisfactory and that the
detection time is only marginally affected by the average wind speed.
After having concluded that the detection of a stuck pitch actuator works satisfactory in the full
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load region, the next subsection will present a method for conducting a similar test in the partial
load region.

Detection of Stuck Pitch Actuator using Auxiliary Signal Design

In this subsection a test is designed for detecting a stuck pitch actuator in the partial load region.
In this region there is usually no pitch activity; hence, it is not directly possible to diagnose the
pitch system since it requires excitation of the system. Therefore, an auxiliary input signal to the
pitch system can be designed, which enables fault detection, while disturbing the system as little
as possible.

The requirements to the detection algorithm are shown below:

1. Detect the fault even though the controller does not excite the faulty system.
The controller does not actuate the pitch system during the test; hence, a method based on
active fault detection should be utilized for this fault detection.

2. Possess robustness towards changing dynamics of the pitch system.
The detection algorithm should separate a normal pitch system (having 80% to 100% hydraulic
pressure) from a faulty pitch system (having 0% to 60% hydraulic pressure). Notice that it is
not desired to estimate the parameters of the pitch system, but only to detect the fault.

A method that satisfies these two requirements is explained in [Campbell and Nikoukhah, 2004,
pp. 76-90] and will be utilized for the detection.

Before designing the detection test, an overview of the detection procedure is provided in the
block diagram shown in Figure 5.21.

Normal
pitch actuator

Faulty
pitch actuator

y (t)0

y (t)1

y (t)-0 y*(t)

y (t)-1 y*(t)

  *(t)

h(t)(y (t)-y*(t))0

h(t)(y (t)-y*(t))1   h(t)(y (t)-y*(t))dt1

  h(t)(y (t)-y*(t))dt0

y*(t) h(t)

0 Tt1 t2

t1 t2 t1 t2

t1 t2

Figure 5.21: Block diagram of the active fault detection procedure for detecting a stuck pitch actuator.
The signals shown between the blocks belong to both the normal system (blue) and faulty system (red).
Notice that the three first plots only show a small part of the detection period.

The block diagram shown in Figure 5.21 visualizes the propagation of the signals through the
detection test. Starting from the upper left, an optimal auxiliary signal, ν∗(t), is applied to the pitch
system; this can either have normal or faulty behavior. All possible outputs of these models are
contained in the two sets visualized by the blue and red regions. If the worst disturbance is applied to
both systems, then they both equal y∗(t). A signal h(t) is designed such that

∫ T
0
h(t)(y(t)−y∗(t))dt is

greater than zero for all possible outputs from the normal system and less than zero for all outputs
from the faulty system. This integral is illustrated in the last plot in Figure 5.21 and makes it
possible to accept the correct hypothesis.
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The section is divided into a number of subsections described below.

� Problem Formulation for Auxiliary Signal Design: Set up the optimization problem,
from which the auxiliary signal should be found.

� Calculation of Optimal Auxiliary Signal: Solve the optimization problem and calculate
the optimal auxiliary signal.

� Design of Detection Test: Design a hypothesis test for the fault detection.

� Implementation Remarks: Comment on the work that must be done to implement the
detection test.

� Verification of Stuck Pitch Actuator Detection in Partial Load Operation: Verify
that the detection test performs according to the specification.

Problem Formulation for Auxiliary Signal Design

In this subsection the state space formulations of the normal and faulty systems are set up, and the
optimization problem involved with the design of the auxiliary signal is formulated.

Both the normal and faulty systems are uncertain. Therefore, the two parameter-varying models
must be expressed as shown in Eq. (5.38).

ẋi(t) = Aixi(t) +Biν(t) +Miwi(t) (5.38a)
zi(t) = Gixi(t) +Hiν(t) +Kiwi(t) (5.38b)

Eiy(t) = Cixi(t) +Diν(t) +Niwi(t) (5.38c)

where:
i indicates if it is the normal model (i = 0) or the faulty model (i = 1)
wi(t) is the additive uncertainty for Model i
zi(t) is the model uncertainty for Model i
ν(t) is the auxiliary signal

In this uncertain setting wi(t) is assumed to include the process noise, measurement noise, and
uncertainty z(t). It is required that Ni has full row rank, i.e. there should be noise on all mea-
surements. In the considered case Ki is assumed to be zero. Additionally, it is assumed that the
input is zero during the fault detection period, since the wind turbine is operated in the partial
load region.

The idea behind the fault detection method is to design a signal which is only just large enough
to let the normal and faulty models be completely separated within the detection time, given some
bounds on the uncertainty and noise in the systems.

The auxiliary signal should be designed such that the constraint on Si(ν(t), s) in Eq. (5.39) is
only satisfied when Model i is the correct model of the system.

Si(ν(t), s) = xT
i (0)P -1

i0 xi(0) +
∫ s

0

[
wi(t)
zi(t)

]T [
I 0
0 -I

]
︸ ︷︷ ︸

Ji

[
wi(t)
zi(t)

]
dt

Si(ν(t), s) < 1, ∀s ∈ [0, T ] (5.39)

where:
Ji is a signature matrix for System i

Since Ni has full row rank, Eq. (5.38) can always be satisfied by selecting wi(t) appropriately.
From Eq. (5.38) it is clear that if Model i is incorrect then wi(t) is larger than when Model i is
correct. To form a single optimization problem, the normal and faulty models are combined into
one model. This implies that the constraint in Eq. (5.39) is broken when the considered model is
incorrect. Furthermore, Eq. (5.39) allows a greater wi(t) when the system is uncertain, to ensure
that the system is outside its uncertainty space.

If an auxiliary signal is designed such that Eq. (5.38) and Eq. (5.39) cannot be satisfied for both
i = 0 and i = 1, then the auxiliary signal is said to be proper. Notice that this can only happen by
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violating Eq. (5.39), since Ni has full row rank. This implies that it is sufficient to check Eq. (5.39)
subject to Eq. (5.38).

An expression including the maximum operator can be rewritten using the following general
equation. This is utilized in the remaining equations:

max(η1, η2) = max
0≤ε≤1

(εη1 + (1− ε)η2) (5.40)

This relation is used to write the following optimization problem, which can be utilized to find a
proper auxiliary signal:

σ(ν(t), s) = max
ε∈[0,1]

φε(ν(t), s) (5.41)

where

φε(ν(t), s) = inf
w0(t), w1(t), y(t),

x0(t), x1(t)

εS0(ν(t), s) + (1− ε)S1(ν(t), s)

A measure that indicates how hard it is to separate the two models is the separability index:

γ∗ =

(
inf
ν∈V

∫ T

0

||ν(t)||2dt
)- 1

2

(5.42)

where:
V is the set of proper auxiliary signals
γ∗ is the optimal separability index

From the equation it is seen that the separability index is large when a small proper auxiliary
signal exists due to the models being easily separable, and vice versa for a small separability index.

To find the maximum separability index, i.e. the smallest auxiliary signal that separates the
models, the constraint shown in Eq. (5.39) must be reformulated to an optimization problem. This
implies combining the normal and faulty models into one model, to form a single optimization
problem. The first step in this procedure is to eliminate y(t) from the equations, by pre-multiplying
F , calculated below, on the output equation.

F =
[
F0 F1

]
=
[
E0

E1

]⊥
(5.43)

where:
[ ]⊥ is a basis for the null space of [ ]

The second step is to combine the system matrices as shown below.

x(t) =
[
x0(t)
x1(t)

]
, w(t) =


w0(t)
z0(t)
w1(t)
z1(t)

 , A =
[
A0 0
0 A1

]
, B =

[
B0

B1

]
,M =

[
M0 0 0 0
0 M1 0 0

]
,

C =

F0C0 F1C1

G0 0
0 G1

 , D =

F0D0 + F1D1

H0

H1

 , N =

F0N0 F1N1 0 0
0 0 -I 0
0 0 0 -I

 ,
P -1
ε =

[
εP -1

0,0 0
0 (1− ε)P -1

1,0

]
, Jε =

[
εJ0 0
0 (1− ε)J1

]

The combined system description reformulates Eq. (5.39) into the optimization problem:

φε(ν(t), s) = inf
w(t),x(t)

xT(0)P -1
ε x(0) +

∫ s

0

wT(t)Jεw(t)dt (5.44)
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subject to

ẋ(t) = Ax(t) +Bν(t) +Mw(t)
0 = Cx(t) +Dν(t) +Nw(t)

The input signal is said to be optimal if its energy is minimized. As a consequence of this objective,
the optimization problem becomes:

min
ν(t)

∫ T

0

νT(t)ν(t)dt (5.45)

subject to

φε(ν(t), s) ≥ 1

The final optimization problem can then be written as shown below.

J(s, ν(t), w(t), x(t)) = max
ν(t)

inf
w(t),x(t)

xT(0)P -1
ε x(0) +

∫ s

0

(
wT(t)Jεw(t)− νT(t)λIν(t)

)
dt (5.46)

The necessary matrices and an appropriate optimization problem have been set up. The following
subsection is concerned with calculating the optimal auxiliary signal.

Calculation of Optimal Auxiliary Signal

To calculate the optimal auxiliary signal the following optimization problem must be solved:

J(s, ν(t), w(t), x(t)) = max
ν(t)

inf
w(t),x(t)

xT(0)P -1
ε x(0) +

∫ s

0

(
wT(t)Jεw(t)− νT(t)λIν(t)

)
dt (5.47)

subject to

ẋ(t) = Ax(t) +Bν(t) +Mw(t)
0 = Cx(t) +Dν(t) +Nw(t)

According to [Campbell and Nikoukhah, 2004, pp. 46], the optimization problem above has a
solution if the following Riccati equation has a solution on [0, T ].

Ṗ = (A− Sλ,εR-1
λ,εC)P + P (A− Sλ,εR-1

λ,εC)T − PCTR-1
λ,εCP

+Qλ,ε − Sλ,εR-1
λ,εS

T
λ,ε, P (0) = Pε (5.48)

where [
Qλ,ε Sλ,ε
ST
λ,ε Rλ,ε

]
=
[
M B
N D

] [
Jε 0
0 -λI

]-1 [
M B
N D

]T

To find the maximum separability index a grid of values of ε is created ranging from 0 to 1. The
index λ, ε indicates that the particular matrix is calculated at certain λ and ε values. At each of
these points the largest value of λ, for which the Riccati equation has a solution on [0, T ], is found
by iteration. The maximum separability index is called λ∗ and is calculated at ε∗. At this point
the auxiliary signal is expected to have minimum energy.

By using the solution of the Riccati equation at the optimum ε∗, the optimum input is calculated
by determining the solution of the following two-point boundary value system for the state, x(t),
and Lagrange multiplier, ζ(t): [

ẋ(t)
ζ̇(t)

]
=
[
Ω11 Ω12

Ω21 Ω22

] [
x(t)
ζ(t)

]
(5.49)
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where

Ω11 = A− Sλ∗,ε∗R-1
λ∗,ε∗C

Ω12 = Qλ∗,ε∗ − Sλ∗,ε∗R-1
λ∗,ε∗S

T
λ∗,ε∗

Ω21 = CTR-1
λ∗,ε∗C

Ω22 = -ΩT
11

The boundary values of Eq. (5.49) must be:

x(0) = P (0)ζ(0) (5.50a)
ζ(T ) = 0 (5.50b)

From the boundary values it is seen that x(T ) must be non-zero. Therefore, from Eq. (5.51) it is
clear that x(T ) must be in the null space of P -1(T ). This is possible, since P (t) becomes singular
at time T , when solving the Riccati equation.

x(t) = P (t)ζ(t) (5.51)

After solving the two-point boundary value system, the trajectories of x(t) and ζ(t) are used to
calculate the auxiliary signal, as shown in the following equation. To get the optimal proper
auxiliary signal, α must be chosen such that ||ν∗(t)|| = 1/γ∗.

ν∗(t) = α
((
Sλ∗,ε∗R

-1
λ∗,ε∗D −B

)T
ζ(t) +DTR-1

λ∗,ε∗Cx(t)
)
/λ∗ (5.52)

The optimal proper auxiliary signal has now been determined and the only remaining task is to
design the detection test, which determines the accepted hypothesis.

Design of Detection Test

There are multiple ways for determining which of the two hypotheses that is the most probable.
Since the test should run online it is chosen to design a detection test, which only relies on offline
calculated signals in combination with the measured system output. Other simpler tests, relying on
observers, could have been designed, but these would require a higher online computational effort.

The overall idea behind the test is to evaluate the integral shown in Eq. (5.53) over the test
period, and if it is positive, the system is assumed to operate according to the normal model. If it
is negative, the system is assumed to operate according to the faulty model. The resulting signal is
shown in Figure 5.21 on Page 75 for both models.

l =
∫ T

0

hT(t) (y(t)− y∗(t)) dt (5.53)

where

h(t) =
(
F

[
E0

-E1

])T

R-1
λ∗,ε∗

(
Cx+ ST

λ∗,ε∗ζ
)

y∗(t) = αpinv
([
E0

E1

])([
C0 0
0 C1

]
−Ψλ∗,ε∗

[
-ζ

FTR-1
λ∗,ε∗

(
Cx+ ST

λ∗,ε∗ζ
)])

Ψλ∗,ε∗ =
[
Jε∗ 0
0 -λ∗I

]-1 [
M B
N D

]T

,N =
[
N0 0
0 N1

]
,D =

[
D0 0
0 D1

]
where:

pinv( ) is the pseudo inverse operator
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If the worst noise is applied to each of the models, the signal y∗(t) equals the output obtained
by both models. This implies that l = 0 if the worst noise is applied. Generally, y∗(t) has a value
between the two sets of outputs from the systems, as shown in Figure 5.21 on Page 75. The signal
h(t) must ensure that Eq. (5.53) gets the correct sign. This implies that h(t) must possess the
following properties:

� Change sign when y(t)− y∗(t) changes sign.

� Have a large magnitude when the outputs of the two models are far apart.

� Have a small magnitude when the outputs of the two models intersect.

The detection test has been described and only some implementation remarks remains.

Implementation Remarks

Since the method does not assume the noise to be stochastic, but defines an energy bound on the
noise instead, the optimization problem solved to find the auxiliary signal does not fit exactly to the
description of the system. Therefore, it is necessary to determine the probability of accepting the
false hypothesis, calculated based on a stochastic noise sequence, in accordance with the assumptions
about the measurement noise. This test must be evaluated when the auxiliary signal has been
designed to ensure that it can be utilized for the stochastic model.

The overall requirement to the detection is: an erroneous detection can only happen in average
once in the lifetime of the wind turbine. Assuming that the lifetime of the wind turbine is 20 years
and that the test is executed once per hour, the probability of accepting an incorrect hypothesis
can be calculated as shown below. This requirement is evaluated in the next subsection.

Perror =
(

1
24 · 365.25 · 20

)
· 100%

= 0.0006% (5.54)

where:
Perror is the probability of accepting an incorrect hypothesis

The detection time, T , is chosen to 30 s, which is a compromise between obtaining a small amplitude
of the auxiliary signal and getting a small detection time. The detection time is small compared to
the time used to lubricate the pitch system in partial load operation, which has duration of several
minutes.

To solve the optimization problem involved in designing the auxiliary signal, some numerical
issues exist, since the matrix P in Eq. (5.48) ideally becomes singular at time T . Therefore,
Eq. (5.48) is solved from time 0 until T − δ, with δ being a small fraction of number T . Afterwards,
the equivalent Riccati equation for P -1 is solved from T − δ until T . This implies that P -1 is
obtained at time T , which should be utilized to calculate x(T ) in its null space, as previously
explained. However, numerical problems exists in solving the optimization problem since the solver
cannot provide a singular P -1, and breaks down just before reaching this. To determine x(t) and ζ(t)
in the interval between 0 and T , two different methods are exploited to circumvent the numerical
problems. In the interval between T and T − δ Eq. (5.49) is utilized directly, whereas in the
remaining interval Eq. (5.51) is inserted into Eq. (5.49) and the resulting equation is solved.

From the design procedure the auxiliary signal shown in Figure 5.22 is obtained, which should
be applied to the three pitch actuators.
The designed signal and matching detection test is evaluated in the next subsection.

Verification of Stuck Pitch Actuator Detection in Partial Load Operation

To verify that the probability of getting a faulty detection is less than the bound specified in
Eq. (5.54), the probability is evaluated for pitch systems having pressures between 0% and 100%
with a step size of 1%. From the expected value and the variance, the probability of l having the
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Figure 5.22: Optimal proper auxiliary signal for detection of a stuck pitch actuator. Notice that
ν∗(t) is a representation of the optimal auxiliary signal applied to βref(t).

incorrect sign can be calculated:

l =
T/Ts∑
k=1

h(k) (y(k)− y∗(k)) (5.55)

E [l] =
T/Ts∑
k=1

E [h(k) (ydet(k) + vβ(k)− y∗(k))]

=
T/Ts∑
k=1

h(k) (ydet(k)− y∗(k)) (5.56)

Var [l] =
T/Ts∑
k=1

h2(k)Var [vβ(k)] (5.57)

where:
y(k) is the measurement of the pitch angle with measurement noise vβ(k) [◦]
ydet(k) is the de deterministic value of the pitch angle [◦]

Figure 5.23 shows the probabilities of accepting the normal and faulty systems at different pressures
of the hydraulic oil. From this figure it is apparent that the requirement is satisfied.
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Figure 5.23: Probability of accepting either of the two hypotheses as a function of the pressure in
the pitch system. At pressures below 60% the probability of accepting the for the faulty system (red)
is high, while it is high for the normal system (blue) at pressures above 70%.

From the verification it is concluded that the auxiliary signal shown in Figure 5.22 combined with
the designed detection test is capable of separating the two uncertain systems, with a probability
of getting false detections that is smaller than one per 20 years.

5.8 Diagnosis of Proportional Speed Error

Proportional error of the generator speed sensor output arises due to improper configuration or
impurity building up at the disc of the speed encoder, according to kk-electronic a/s. The purpose
of this section is to present an algorithm for diagnosing this fault, for which a model is found in
Eq. (4.10) on Page 41 and is repeated below for convenience.
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ωg,mes(k) = ωg(k) (1 + αpe(k))︸ ︷︷ ︸
sensor gain

+vωg(k) [rad/s] (5.58)

where:
vωg(k) is a zero-mean Gaussian distributed noise sequence with variance σ2

ωg [rad/s]
αpe(k) determines the proportional error [·]
ωg,mes(k) is the generator speed measurement [rad/s]

According to Section 4.4 the fault may be seen as inconsistency in the variables such as gener-
ator speed and rotor speed. However, this can only be used for fault detection, since inconsistency
in two variables does not make it possible to isolate the fault. Instead, it can be exploited that
a blade will pass in front of the tower three times per rotation, regardless of any other faults.
Therefore, the fault is possible to diagnose by exploiting the reduced aerodynamic torque when
a blade passes the tower. By comparing this information with the measured generator speed the
proportional error can be estimated.

In this section fault detection based on a consistency check of the generator speed and rotor
speed is presented, and two methods for estimating the proportional speed error are presented. The
first method is based on feature extraction while the second method is model-based. Both methods
are included in order to investigate the applicability of the different approaches. The main ideas
of these methods are summarized below, afterwards the methods are presented in turns, and the
section is finalized by verifying the two methods.

1. Peak detection using window function
The method uses signal analysis to detect peaks in the measured generator speed, which
originates from a blade passing the tower.

2. Finding 3P frequency using oscillator model
The method uses a model-based approach to determine the difference between the presumed
and actual 3P frequency.

Alternative methods such as Wavelets transform or Karhunen Loéve expansion, which exploit
the shape of the signal in the time domain, could have been chosen. However, this has not been
done due to their higher complexity.

Detection of Proportional Speed Error

To detect proportional error on the generator speed sensor, a consistency check of the generator
speed and rotor speed measurements is performed. It is not possible directly to compare the output
values of the sensors due to noise, but by calculating their mean values, it is possible to detect an
inconsistency, such as a proportional error.

It is favorable to utilize a recursive algorithm to calculate the mean value, since this eliminates
the necessity for saving old measurement data. Additionally, it is only desired to evaluate the mean
value over the most recent samples, since a changing mean value should be detected. To obey these
requirements a recursive algorithm with build in forgetting, i.e. new samples are weighted higher
than old samples, is chosen for the detection test. The chosen equation used to calculate the mean
value is shown in Eq. (5.59). This equation is similar to the recursive approach for calculating the
true mean, except that N is a fixed number in the recursive algorithm instead of an ever increasing
number.

µ̂(k) =
1
N
x(k) +

N − 1
N

µ̂(k-1) (5.59)

where:
N is a constant determining the forgetting factor of the algorithm [·]

The forgetting factor in the algorithm can be written in terms of N as shown below.

µ̂(k) =
k∑
i=0

(
N − 1
N

)k−i
︸ ︷︷ ︸

forgetting factor for sample k

1
N
x(i) (5.60)
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The value that is evaluated in the detection of a proportional error is the difference between the
generator speed and rotor speed measurements as shown in Eq. (5.61). Notice that ωg(k) is assumed
to equal Ngωr(k) in the remaining part of the subsection. This is a reasonable assumption, since
only the mean values of the two signals are evaluated.

∆pe(k) = ωg,mes(k)−Ngωr,mes(k)
= ωg(k)(1 + αpe(k)) + vωg(k)−Ng (ωr(k) + vωr(k))
= ωg(k)αpe(k) + vωg(k)−Ngvωr(k) [rad/s] (5.61)

where:
∆pe(k) is the proportional error residual [rad/s]

To choose an appropriate value of N , some requirements are set up below using the following
scenario: a proportional error, corresponding to a fault equal to 1 rad/s on the generator speed
measurement, is introduced over 30 minutes.

1. A false positive or false negative detection must happen maximum once per 20 years.

2. The detection time must be less than 30 minutes.

Calculations based on the expectation and variance of ∆pe(k) show that the value of N should
be between 513 and 99,791 to satisfy the above requirements. To get the shortest detection time,
N is chosen to 513. The successful detection of a proportional error resulting in a speed offset
of 1 rad/s implies that a proportional error of 5% can be detected satisfying the requirement in
Section 4.6.

The detection of a proportional error, by use of a recursive algorithm, has been described. The
following two subsections describe how the proportional error can be estimated, using two different
methods.

Estimation based on Peak Detection using Window Function

The method described in this subsection is inspired by a basic spike detection method presented in
[Hassanpour et al., 2004].

The starting point of the derived algorithm is the energy operator written in Eq. (5.62), which
is used to amplify the signatures of peaks in the measured generator speed signal, originating from
a blade passing the tower.

κ(k) =
k+Nw−1

2∑
i=k−Nw−1

2

ω2
g,mes(i)−

 k−Nw+1
2∑

j=k− 3Nw−1
2

ωg,mes(j)

 k+ 3Nw−1
2∑

l=k+Nw+1
2

ωg,mes(l)

 [(rad/s)2] (5.62)

where:
Nw is an odd integer denoting the peak width in samples [·]
κ(k) is the energy operator of the time series ωg,mes(k) [(rad/s)2]

The energy operator amplifies peaks in the signal by calculating the difference between the en-
ergy in a given time interval and the energy in the surrounding time intervals. The local drops at
the output of the energy operator that are lower than a predefined threshold are then considered as
an indication of a peak at that location in the time series. Notice that the energy operator function
is non-causal; hence, the detection of the blade pass is delayed in the implementation.

Excerpts of the generator speed, measured generator speed, and the energy operator applied
at the measured generator speed are provided in Figure 5.24. The figure shows that the peak
signatures in the measured generator speed are amplified although they are difficult to see on the
measurement signal. The threshold is implemented such that it depends on a low-pass filtered
version of the measured wind speed, since the clarity in the signatures of the peaks depend on the
wind speed.
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Figure 5.24: Peak detection on measured generator speed in full load operation. The lower subplot
shows the energy operator (blue) and the threshold (red). The dashed vertical lines represent the
instants when a blade passes the tower. Notice that propagation through the system makes the drop
in the generator speed follow later than the drop in the resulting aerodynamic torque, which is the
reason why the dashed lines and detected peaks do not coincide.

The detected blade passings can be used in the following way to estimate the proportional error:
compare the angle obtained by integrating the measured generator speed to the angle obtained by
exploiting that 2

3π rad separates the rotor angles at which two blades pass the tower. The following
algorithm presents how to detect a peak and use it to achieve an estimate of the rotor angle:

0. Initialize i = 1, j = 0, θ̂r(j) = 0 rad.

1. The (j + 1)-th peak is expected to be located in the interval:
θ̃r(kj+1) ∈ θ̂r(kj) + i

[
2
3π − εl 2

3π + εu
]
, where kj is the time at which the j-th peak is

detected while εl and εu are small fractions of 2
3π rad.

2. If κ(k) is below the threshold within the interval θ̃r(kj+1) then:
A blade has passed the tower. The angle at which the minimum value of κ(k) occurs is
denoted θ̂r(kj+1) and is set to θ̂r(kj+1) = θ̂r(kj) + i 2

3π. Set i = 0.

3. Increment i and j. Go to 1.

The procedure described above provides an estimate of θr(k), which is updated each time a
blade’s passage of the tower is detected. In the samples where no peaks are detected, the estimate
is calculated based on an integration of ωg,mes(k):

θ̂r(k + 1) = θ̂r(k) +
ωg,mes(k)

Ng (1 + α̂pe(k))
Ts [rad] (5.63)

By utilizing the estimated rotor angle, θ̂r(k), and the measured generator speed, ωg,mes(k), as input
to an extended Kalman filter, the following system description enables the EKF to estimate the
proportional error, αpe(k). Note that the system equations are presented in continuous time for
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convenience, but that they are discretized when implemented.

ẋ(t) = Ax(t) θ̇r(t)
ω̇g(t)
α̇pe(t)

 =

0 1
Ng

0
0 0 0
0 0 0

 θr(t)
ωg(t)
αpe(t)

 (5.64a)

y(t) = h (x(t))[
θ̂r(t)

ωg,mes(t)

]
=
[

θr(t)
(1 + αpe(t))ωg(t)

]
(5.64b)

The method described in this subsection is based on feature extraction, whereas the method de-
scribed in the next subsection is based on a model of an oscillator.

Estimation based on Finding 3P Frequency using Oscillator Model

The procedure of the method is illustrated in Figure 5.25, where a high-pass filter removes the
slow-varying trends from the measurement of the generator speed allowing the 3P frequency to be
extracted from this signal. The proportional error is then estimated by combining the measurement
of the generator speed with the estimated 3P frequency.

HP
filter

ù (t)g,mes ù (t)g,HP

Estimation
of (t)peá

á (t)pe

Figure 5.25: Block diagram of the estimation of the proportional error, αpe(t), based on the measured
generator speed, ωg,mes(t).

The filter is a discretized version of the filter shown below, where ωc = 1 rad/s.

HHPF(s) =
s+ ωc/1000
s+ ωc

[
rad/s
rad/s

]
(5.65)

where:
HHPF(s) is the high-pass filter extracting the 3P frequency of the measured generator speed [·]

After ωg,mes(t) has been high-pass filtered, the 3P frequency described by cos(3θr(t)) must be
extracted from ωg,HP(t). This is accomplished using an extended Kalman filter which is based on
an oscillator model, having a frequency dependent of ωg,mes(t) and αpe(t), combined with a slow
varying term, c(t). The model of the high-pass filtered generator speed measurement is:

ωg,HP(t) = cos
(

3
θg,mes(t)

Ng(1 + αpe(t))

)
+ c(t) [rad/s] (5.66)

where:
ωg,HP(t) is the high-pass filtered generator speed containing the 3P frequency component [rad/s]

From this equation the state space representation shown in Eq. (5.67) can be set up. Here, the first
two states are used to model the 3P frequency, the third state is the inverse of the sensor gain, and
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the forth state captures the remaining slow variations in the filtered signal.

ẋ(t) = f (x(t))

ẋ(t) =


x2(t)

-
(

3ωg,mes(t)x3(t)
Ng

)2

x1(t)
0
0

 , x(t) =


cos(3θr(t))

-3ωr(t) sin(3θr(t))
1

1+αpe(t)

c(t)

 (5.67a)

ωg,HP(t) = x1(t) + x4(t) [rad/s] (5.67b)

From f (x(t)) the Jacobian, which is used to propagate the covariances in the filter, can be approx-
imated as shown below.

df

dx
=


0 1 x2(t)

x3(t) 0

-
(

3ωg,mes(t)x3(t)
Ng

)2

0 -2
(

3ωg,mes(t)
Ng

)2

x3(t)x1(t) 0
0 0 0 0
0 0 0 0

 (5.68)

In order to tune the estimator, the term c(t) should vary fast enough to remove all but the 3P
frequency, and the cosine function must equal cos(3θr(t)) by changing αpe(t) slowly towards the
correct value.

Since two methods have now been described, the purpose of the next subsection is to verify and
compare the two methods for estimating the proportional speed error.

Verification of Proportional Speed Error Estimation

To verify the estimation of the proportional speed error, both presented methods are evaluated
using an identical test scenario, where a proportional error of -10% of the sensor gain is injected
in a simulation during half an hour. In order to investigate the influence of the varying generator
speed at partial load operation, a test is conducted for a mean wind speed of 9 m/s. In order to
evaluate the performance in the full load region, another test is performed for a mean wind speed
of 16 m/s.

Monte Carlo simulations of 100 runs are performed at each wind speed using both algorithms.
In each situation the correct value of the proportional gain (red) is plotted in combination with the
mean value of the estimate (blue) plus and minus two times the standard deviation of the estimate
(green).

Results for Partial Load Operation

In Figure 5.26 simulation results are provided for the estimation of the proportional error in the
partial load region. It is obvious from the figure that the two methods perform very different at
this wind speed. The first method supplies an estimate which is a lot faster than that of the second
method, since the update of the proportional error in the second method is affected by the lower
rotational speed in the partial load region. Furthermore, the results of the simulation display the
weakness of the first method, which is obvious from the noisy and biased estimate at the end of the
simulation. This indicates that a combination of the two methods would be preferable for exploiting
both their advantages.

The weakness of the first method emerges since the peaks become more difficult to detect when
the wind speed decreases, due to the decreasing signature of the peaks on the generator speed.
The problem exists since it is not certain that the peak detection algorithm will lock onto the
blade passings after having missed some peaks. This makes the method inappropriate for low wind
speeds. However, this is not a problem shared by the second method, where the estimate gradually
converges towards the true value.
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Figure 5.26: Simulation results showing the estimation of the speed error for a mean wind speed
of 9 m/s. Between t = 200 s and t = 2,000 s a proportional error of -10% is introduced. The
correct values of the proportional gain (red) are plotted in combination with the mean values of the
estimates (blue) plus and minus two times the standard deviations of the estimates (green).

Results for Full Load Operation

In Figure 5.27 simulation results are provided for the estimation of the proportional error in the
full load region. It can be concluded that both methods perform satisfactory, although the first
method, which uses the peak detection approach, provides the least noisy estimate. This is caused
by its superior performance when all blade passings of the tower are detected, since the estimated
rotor angle is then almost exact at all times.
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Figure 5.27: Simulation results showing the estimation of the speed error for a mean wind speed
of 16 m/s. Between t = 200 s and t = 2,000 s a proportional error of -10% is introduced. The
correct values of the proportional gain (red) are plotted in combination with the mean values of the
estimates (blue) plus and minus two times the standard deviations of the estimates (green).

In this section redundancy has been exploited to detect a proportional speed error on the generator
speed measurement, and two methods have been presented for estimating the proportional error.
Both methods exploit detection of a blade passing the tower and are based on signal analysis
and a model-based approach, respectively. Due to the higher reliability of the second method, it
is recommended to select this method for implementation, or to exploit the advantages of both
methods by combining these in a more advanced set-up. The accommodation of the proportional
speed error based on the second method is described in Section 6.3.

In addition to the risk of getting a proportional speed error, this thesis also focus on the pos-
sibility of getting fixed or no measurements from the generator speed sensor. An algorithm for
detecting fixed output from the generator speed sensor is described in the next section.

5.9 Detection of Fixed Output from Generator Speed Sensor

In this section it is described how a fixed output from a sensor is detected. Based on the selection of
faults in Table 4.9 on Page 44 this specifically concerns the generator speed sensor, but the method
applies to any sensor that may provide a fixed output.
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To determine from a probabilistic point of view if the output from a sensor is fixed, the current
output from the sensor should be compared to previous samples. The probability that a sensor
outputs the same value in a number of consecutive samples depends on the quantization step size
and the standard deviation of the assumed zero-mean Gaussian distributed measurement noise.

An equation is derived for calculating the mean time between getting a certain number of
identical values in consecutive samples. This equation is used to determine the probability of false
detection in different situations. First of all, a Gaussian probability density function is defined:

f(x) =
1

σ
√

2π
exp

(
-
(x− µ)2

2σ2

)
(5.69)

where:
f(x) is the probability density function of a Gaussian distribution

The probability of receiving the same measurement from the sensor in k consecutive samples can
be calculated from Eq. (5.70). It is assumed that the deterministic values of the measured variable
are identical during the k samples, since this provides the worst-case probability.

P{identical outputs in k consecutive samples}

=
∞∑
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(
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(
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2
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xquant

2
(1 + 2j)

))k
(5.70)

where:
F (∗) is the cumulative distribution function of a Gaussian distribution
xquant is the quantization step size of the variable x quantized with N bits

The mean time between false alarms, stated in years per fault, appear in Table 5.5 as function
of the quantization level and the number of samples used in the detection. The number of sam-
ples used in the detection should be selected such that this many identical, consecutive samples
do seldom occur in the fault-free case, as this will provide a low rate of false alarms. As depicted
by the table, the mean time between getting identical, consecutive samples depends heavily on the
quantification.
hhhhhhhhhhhhhhhhhhhhhhQuantization

No. consecutive samples
2 samples 3 samples 4 samples 5 samples

16 bit 6 · 10-9 93 · 10-9 1.4 · 10-6 20 · 10-6

24 bit 1.5 · 10-6 6 · 10-3 23 · 100 87 · 103

32 bit 381 · 10-6 398 · 100 391 · 106 372 · 1012

Table 5.5: Mean time (in years) between getting a certain number of identical, consecutive outputs
from the generator speed sensor when using different quantization. The following numbers are used
in the calculations: a standard deviation of the zero-mean Gaussian distributed measurement noise
σ = 15.8 · 10-3 rad/s and a domain [0 rad/s, 200 rad/s]. Notice that the sample rate is 100 Hz.

In this project quantization of the measurements have not received much attention, and have
been quantized using 32 bit. Therefore, it can be seen from Table 5.5 that using three samples in
the detection of a fixed output causes a low probability of false detections.

In this chapter the diagnosis algorithms for the considered faults have been designed, using the
methods outlined in Table 4.9 on Page 44. The considered faults include both abrupt faults and
incipient faults; hence, both hypothesis testing and parameter estimation methods have been ex-
ploited. All diagnosis algorithms are designed according to the overall structure shown in Figure 5.1
on Page 45, to be able to provide a fault-corrected state estimate at all times, and to ensure that
multiple simultaneous faults can be diagnosed. Additionally, the diagnosis algorithms have been
verified using Monte Carlo simulations to ensure that they are robust towards changing operating
conditions.

In the next chapter the fault-tolerant control algorithms based on signal correction are presented.
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6Fault-Tolerant Control
by Signal Correction

The purpose of this chapter is to present fault-tolerant control algorithms, which are based on signal
correction. By signal correction it is meant that the control system is not modified; only the inputs
and outputs of the controller are corrected according to the estimated faults. All fault-tolerant
control algorithms explained in this chapter rely on the fault diagnosis design in Chapter 5. The
faults accommodated using signal correction are listed in Table 4.9 on Page 44 and are: single pitch
sensor bias, multiple pitch sensor biases, proportional error of generator speed sensor, and fixed
output from generator speed sensor.

An important property of fault-tolerant control algorithms based on signal correction is that
they can be implemented independent of the structure of the nominal controller, and without
affecting the nominal performance of the controller. For the incipient faults treated in this chapter,
it is assumed that the dynamics of the fault-tolerant control algorithms are much slower than the
dynamics of the system. Therefore, they do not introduce any stability issues when applied.

The structure of the fault-tolerant control system is shown in Figure 6.1. As shown in the figure
the nominal controller is not modified itself, only its inputs and outputs are modified. Notice that
the supervisor is not described explicitly, as it is very simple in the considered case.
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Figure 6.1: Block diagram of the fault-tolerant control system using signal correction based on the
fault diagnosis algorithms. The supervisor decides if estimates or measurements are used as input
to the controller.

In the next section the accommodation of a single biased pitch sensor is described.

6.1 Accommodation of Single Pitch Sensor Bias

The purpose of this section is to explain how a bias on a single pitch sensor is accommodated,
by exploiting the estimated bias angle available from the fault diagnosis algorithm presented in
Section 5.3. Finally, the accommodation is verified by use of Monte Carlo simulations for different
wind speeds. Note that during all tests the fault detection signal to the controller is injected
manually to reduce the simulation time.

Page 89



Fault-Tolerant Control by Signal Correction

Accommodation Design for Single Pitch Sensor Bias

The accommodation of a biased pitch sensor measurement consists of adding the estimated bias
to the pitch reference signal. This signal is fed to the pitch actuator as shown in Figure 6.2.
The accommodation is performed by manipulating the reference signal, since it is not possible to
subtract the bias from the measured pitch angle used in the pitch controller, as the pitch system is
a closed system. This system cannot be altered since it may be delivered by an external supplier.
Notice that the corrected pitch measurement should be fed to all estimators in the control system,
to make these tolerant to this fault.

Pitch
actuator

Pitch
sensor

Pitch
controller

?  
+

+

â (t) bias

-

+
?  â (t) ref ?  

+

+

â (t)bias

â(t) 

Pitch system

â (t) mes

?  

?  
-

+

â (t)bias

?  

Figure 6.2: Block diagram of the pitch system, which consists of the internally controlled pitch
actuator. A bias on the pitch sensor measurement, βbias(t), can be compensated for by adding
an estimate of the bias, β̂bias(t), to the reference signal to the system and subtract it from the
measurement.

When the bias is estimated with adequate precision, the estimation of the bias should be disabled
to enable estimation of another bias in the future. This is not implemented in this project, since
the two parts are independent.

Verification for Single Pitch Sensor Bias

The accommodation of a single pitch sensor bias is verified by first conducting a single simulation
run of a fault scenario both with and without applying the accommodation, to show the effect of
the accommodation. Secondly, Monte Carlo simulations are conducted to show that the bias ac-
commodation is robust towards changing operating conditions and that the accommodation enables
the imbalance in the rotor plane to be minimized.

Single Run Simulation

To show the effect of accommodating the biased pitch sensor measurement, simulations are per-
formed both with and without accommodating the fault. In the simulations a bias of 3◦ is introduced
on the pitch sensor associated with Blade 3 during half an hour. By accommodating the fault, the
difference between the pitch angles should be minimized, since a collective pitch strategy is utilized.
The results of the simulations are shown in Figure 6.3.

From the figure it is obvious that the difference between the pitch angles is minimized by
accommodating the biased pitch sensor measurement. This implies that the imbalance in the rotor
plane is decreased. Thereby, the mechanical stress on the wind turbine is minimized.

Monte Carlo Simulations

The single run test presented above shows the functionality of the accommodation, but to verify
the reliability and performance of the accommodation, 100 simulation runs are conducted at two
different mean wind speeds, where a bias of 1◦ is introduced over half an hour on the pitch sensor
associated with Blade 3. The results are presented in Figure 6.4.

The figure shows that the difference between the pitch angles of the blades is minimized in
each test. The mean values of the differences end at 0.028◦ and -0.002◦ with standard deviations
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Figure 6.3: Simulation of the wind turbine for a mean wind speed of 20 m/s, where a 3◦ bias is
introduced on the pitch sensor associated with Blade 3 between t = 200 s and t = 2,000 s. The
first subplot shows the pitch angles when the fault is not accommodated. The second subplot shows
the pitch angles when the fault is accommodated. The third subplot shows the difference between
the pitch angles, when the fault is not accommodated (green) and when the fault is accommodated
(magenta).
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Figure 6.4: Results of Monte Carlo simulations, where a bias is introduced between t = 200 s and
t = 2,000 s, introducing an expected pitch difference if accommodation was not applied (red). By
applying the accommodation the mean values of the pitch differences (blue) lay near 0◦ throughout
all the simulations. The green lines show the mean values plus and minus two times the standard
deviations of the pitch differences.

of 0.027◦ and 0.028◦, for the test at 16 m/s and 20 m/s. According to Section 4.6 the difference
between the pitch angles of the blades cannot exceed 5◦. This requirement is well satisfied even
though the fault is introduced faster than specified. It is hereby concluded that the accommodation
of a single pitch sensor bias performs satisfactory.

In this section a description of the accommodation of a single pitch sensor bias has been pro-
vided. Simulation results have shown that it is possible to accommodate the bias even though the
imbalance in the rotor plane, from which the bias is estimated, is minimized by the accommodation
itself. In the next section similar results are presented for multiple pitch sensor biases.

6.2 Accommodation of Multiple Pitch Sensor Biases

The purpose of this section is to describe how the accommodation of multiple simultaneous pitch
sensor biases is designed and to verify its performance. Note that during all tests the fault detection
signal to the controller is injected manually to minimize the simulation time.
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Accommodation Design for Multiple Pitch Sensor Biases

The accommodation of multiple pitch sensor biases is identical to the accommodation of a single
pitch sensor bias explained in Section 6.1, except that the accommodation is conducted on two
sensors simultaneously. Additionally, the accommodation is not able to remove a common bias, but
only to control the pitch angles of all three blades to a common value, possibly with a common
offset as explained in Section 5.4.

Verification for Multiple Pitch Sensor Biases

In this subsection the accommodation design is verified by evaluating its ability to control all
pitch angles to a common value, when multiple simultaneous pitch sensor biases exist. This is
accomplished by conducting Monte Carlo simulations with two pitch sensor biases.

To get some statistical knowledge of the accommodation, 100 simulations are conducted with
duration 4,000 s for this verification. The simulations are conducted for mean wind speeds of
both 16 m/s and 20 m/s, where the biases on two pitch sensors are linearly introduced between
t = 200 s and t = 2,000 s. The magnitudes of the introduced biases are 3◦ on the pitch sensor
associated with Blade 2 and 2◦ on the sensor associated with Blade 3. Hereby, it is expected that
the accommodation controls all blades towards having offsets of -2◦ in compliance with Table 5.4 on
Page 63. The offset is adjusted towards minus the median of the three sensors biases to remove the
rotor imbalance, where the negative sign originates from the fact that a positive sensor bias results
in a negative pitch angle offset. To get an overview of the expected output of the simulations,
consult Table 5.4 on Page 63.

The results of the simulations are shown in Figure 6.5, where the differences between the pitch
angles are evaluated and compared to the differences, which would occur if no accommodation was
applied.
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Figure 6.5: Results of Monte Carlo simulations, where the biases are introduced between t = 200 s
and t = 2,000 s, introducing expected pitch differences if accommodation was not applied (red). By
applying the accommodation the mean values of the pitch differences (blue) lay near 0◦ throughout
all the simulations. The green lines show the mean values plus and minus two times the standard
deviations of the pitch differences.

From Figure 6.5 it is obvious that the accommodation eliminates the difference between the
blades, as the differences between the blades end by having mean values equal to 0.003◦ and 0.000◦,
with standard deviations of 0.031◦ and 0.034◦. This implies that all blades have an offset of
approximately -2◦ after the accommodation.

Generally, the fault accommodation eliminates unbalance in the rotor plane as requested, since
all pitch angles become identical. However, some less serious effects still exist due to the common
pitch offset.

The effect of having a common pitch angle offset in partial load operation is that the efficiency
of the wind turbine is decreased; hence, the transition between partial load and full load operation
happens at a higher wind speed. If the common pitch angle offset is negative, some additional issues
are introduced in the transition, since the efficiency of the rotor is increased in a region where it is
expected to decrease.
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In this section a verification of the accommodation of multiple pitch sensor biases has been provided.
Simulation results have shown that it is possible to accommodate the biases, but with a common
pitch offset. In the next section the accommodation of a proportional error on the generator speed
measurement is described.

6.3 Accommodation of Proportional Speed Error

The accommodation of a proportional speed error is based on the diagnosis algorithm described in
Section 5.8, which allows the fault to be detected based on a consistency check and to be estimated
from the 3P frequency afterwards. To estimate the size of the error, two methods have been
presented in Section 5.8 that exploit the blade passing frequency. The accommodation described in
this section utilizes the second of these methods, which is based on an oscillator model since it is
the most reliable. This section provides a description and verification of the fault accommodation.

Accommodation Design for Proportional Speed Error

In order for the fault to be detected a test is performed which checks the consistency between the
rotor speed measurement and the generator speed measurement, as described in Section 5.8. If these
signals are not consistent, the accommodation is activated by a supervisor. The accommodation
manipulates the generator speed measurement by dividing it with the estimated sensor gain. This
implies that the resulting sensor gain ideally equals one.

Verification for Proportional Speed Error

In supplement to the estimation of the proportional speed error, being verified in Section 5.8, the
accommodation of the fault introduces an additional feedback loop in the system, which is verified
in this subsection.

The accommodation is verified by conducting Monte Carlo Simulations for mean wind speeds of
9 m/s and 16 m/s. In each situation 100 simulation runs are performed, where a proportional error
of -10% of the sensor gain is injected during half an hour, starting at t = 200 s. This specification
is identical to that used in the verification of the diagnosis algorithm.

Results for Partial Load Operation

The generator torque controller operating in the partial load region aims at keeping the tip-speed
ratio at a certain value for maximizing the efficiency of the aerodynamics; hence, the tip-speed ratio
is plotted in Figure 6.6. The average detection time is 68 s, so fault accommodation is initiated
just after the fault is introduced. From the figure it is concluded that an unbiased tracking of the
optimum tip-speed ratio is obtained when the fault size is eventually estimated. The situation when
the fault is not accommodated corresponds to an average energy reduction of 0.7%, considering all
100 simulations.
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Figure 6.6: Simulation results showing the accommodation of the proportional speed error for a
mean wind speed of 9 m/s. The red lines represent the obtained tip-speed ratio when the fault is
accommodated, while the blue lines represent the situation without accommodation of the fault. The
optimum tip-speed ratio is marked by the dashed black line. Note that the mean values plus and
minus two times the standard deviations of the tip-speed ratios are plotted using faded colors.
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Results for Full Load Operation

Since the objective of the speed controller operating in the full load region is to maintain a cer-
tain generator speed, this variable is plotted in Figure 6.7. It is obvious from the figure that the
implemented fault-tolerant control system is able to diagnose and accommodate the fault, since
the red line is almost kept at the set-point value marked by the dashed black line. Note that the
energy production is not reduced in the full load operation, but overspeed may cause destructive
damages to the wind turbine. From the figure it is clear that the generator speed does not exceed
the safety margin, equal to 110% of the rated generator speed, when the accommodation is applied.
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Figure 6.7: Simulation results showing the accommodation of the proportional speed error for a
mean wind speed of 16 m/s. The red lines represent the obtained generator speed when the fault is
accommodated, while the blue lines represent the situation having no accommodation of the fault.
The dashed black line represents the reference value to the controller. Note that the mean values plus
and minus two times the standard deviations of the tip-speed ratios are plotted using faded colors.

In this section accommodation of a proportional speed error has been discussed and verified. The
fault is accommodated by correcting the measurement. The verification shows that the fault can
be accommodated properly in both partial and full load operation. In the next section the accom-
modation of a fixed output from the generator speed sensor is addressed.

6.4 Accommodation of Fixed Output from Generator Speed
Sensor

The accommodation of a fixed output from the generator speed sensor is triggered by the detection
described in Section 5.9. The accommodation is implemented in a simple manner, because it
takes advantage of the reconfigurable extended Kalman filter described in Section 5.2. This filter
estimates the generator speed, which can be utilized as input to the controller replacing the fixed
measurement. The method is explained and verified in this section.

It should be noticed that the signal correction approach is only applied to the controller in the
partial load region, since the lost measurement has to be accounted for in the design of the controller
operating in the full load region. Therefore, only a short discussion of the differences between the
two regions is provided in this section, while the actual design of a fault-tolerant controller for the
full load region is explained in Chapter 7.

Accommodation Design for Fixed Output from Generator Speed Sensor

The generator speed measurement is important to the control of the wind turbine, since it is used
as input to the reference controller in both the partial and full load regions. The generator speed
is observable, even when the generator speed measurement disappears as deduced from Section 4.4.
This enables estimation of the generator speed at a degraded quality, due to the much noisier rotor
speed measurement.

When the generator speed sensor outputs a fixed value, the estimated generator speed provided
by the reconfigurable extended Kalman filter can be used as input to the controller instead of the
measured generator speed. In the following bullet list the necessary modifications to the control
system in the two control regions are described:
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� Partial Load Operation: Replace the measurement by an estimate
In partial load operation the controller consists of a gain multiplied on the squared generator
speed measurement; thus, it is sufficient to replace the measurement with the estimate of the
generator speed. A timely estimate is not strictly necessary in the partial load region, since
the dynamics of the control system is slow in this region.

� Full Load Operation: Make a design accounting for the fault
In full load operation it is not desired to operate the nominal speed controller using the
estimated generator speed, since the degraded sensor information would seriously affect the
performance of the controller. Therefore, another controller should be designed, which takes
the absence of the measured generator speed into account in the design; this is discussed
further in Chapter 7.

� Overall

– Disable the drive train stress damper: Common to the operation in the partial
and full load regions is that the estimator is not able to provide an estimate including
the drive train oscillations, since the rotor speed measurement does not possess these.
Therefore, the drive train stress damper has to be deactivated when running the control
system using the generator speed estimate, consequently increasing the drive train stress.

– Introduce bumpless transfer: Bumpless transfer must be introduced to avoid jumps
in the control signals when reconfiguring the controller. This can be implemented similar
to that described in Section C.4. Since the considered fault happens abruptly, it is not
possible to make any smooth scheduling between the controllers.

The verification in the next subsection presents simulation results for the controller operating
in the partial load region, while the results for the full load region is presented in Section 7.7.

Verification for Fixed Output from Generator Speed Sensor

In this subsection the performance of the fault-tolerant controller designed to handle a failed gener-
ator speed measurement is verified. This is done by evaluating the produced energy and the drive
train stress for a single run of the simulation model in the partial load region, for a mean wind
speed of 9 m/s. It is decided to show the simulation results for a single run to highlight the altered
behavior of the controller in a desired manner.

In Figure 6.8 the blue lines illustrate the situation when using the measured generator speed,
while the red lines represent the situation where the estimated generator speed is used. Note that
the output of the generator speed sensor is fixed at t = 100 s, which allows the bumpless transfer
mechanism to be evaluated in the same simulation, by studying the output of the controller in this
transition point.

Since the generator torque controller aims at keeping the tip-speed ratio at a certain value, to
maximize the efficiency of the aerodynamics, the tip-speed ratio is plotted in Figure 6.8 for both
the normal and faulty cases.

The results in Figure 6.8 show that similar tracking of the optimal tip-speed ratio is achieved in
the normal and faulty cases. The performance measures stated in Table 6.1 are based on simulations
each having duration of 5,000 s, whereof Figure 6.8 shows only the first part. Note that the numbers
in the table are normalized to the results obtained by the nominal controller.

Variable With ωg,mes(t) Without ωg,mes(t)∫
θ̇2

∆(t)dt 1.00 4.80∫
Pg(t)dt 1.000 1.000

Table 6.1: Drive train stress and energy production obtained in the partial load region when using the
generator speed measurement and when using an estimate replacing the unavailable measurement.

By comparing the second and third columns in the table it appears that the drive train stress is
significantly increased when using the reconfigured controller. This is an expected consequence of
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Figure 6.8: Simulation results showing the accommodation of a fixed output of the generator speed
sensor for a mean wind speed of 9 m/s. The blue lines illustrate the situation when using the mea-
sured generator speed, while the red lines correspond to the situation where the estimated generator
speed is used, due to the absence of the measurement at t = 100 s. The optimum tip-speed ratio is
marked by the dashed black line.

losing the information about the drive train oscillations, as explained in the accommodation design
section. This results in a shortened lifetime of the drive train and therefore it should be determined
whether continued operation in the faulty case compensates for the higher operational costs.

In this section it has been described how to replace a fixed output of the generator speed sen-
sor by an estimate provided by the reconfigured extended Kalman filter. The cost of losing the
generator speed measurement results in increased drive train stress in both control regions, however
the energy capture in the partial load region is not compromised. The effects seen when operated in
the full load region is evaluated in Chapter 7, where a controller accounting for this fault is designed
and verified.

This ends the design of the signal correction algorithms, which exploit the information provided
by the fault diagnosis algorithms to obtain a fault-tolerant control system. Four different signal
correction algorithms have been designed and successfully verified. All presented algorithms can be
applied independent of the controller structure, since they only correct the measurements and the
reference signals.

In the next chapter, active and passive fault-tolerant control systems are designed for accom-
modating the faults, which either change the dynamics of the system or reduce the available mea-
surement information.
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by LPV Methods

The purpose of this chapter is to design and compare active and passive fault-tolerant control
systems, capable of handling the faults which have to be taken into account in the controller design.
These faults are: changed dynamics of the pitch system and loss of the generator speed measurement
in full load operation. The comparison of the two approaches covers both the performance of the
controllers and the complexity of their design procedures.

Changing dynamics of the pitch system cannot be accommodated by signal correction; hence, it
should be considered in the controller design, to guarantee stability and a satisfactory performance.
Among the possible causes for changed dynamics of the pitch system, it is chosen only to introduce
fault-tolerance towards changing air content in the hydraulic oil. This is chosen since this fault
is considered to be the most likely, as shown in Table 4.3 on Page 33, and since the reference
controller becomes unstable when the hydraulic oil has a high air content, as shown in Table A.3 on
Page 135. The fault-tolerant control systems are though easily extended to include the remaining
faults causing changed dynamics of the pitch system.

When the generator speed measurement is unavailable, the controller should rely on the mea-
surement of the rotor speed, which is contaminated with much more noise than the generator
speed measurement. This makes it necessary to reconfigure the controller to obtain a reasonable
performance of the control system.

To summarize, the purpose of this chapter is to design four fault-tolerant controllers according
to the following list. It is sufficient to design either the active or passive fault-tolerant controllers
for accommodating the faults, but they are both included in this chapter to enable a comparison
of the active and passive approaches.

1. Active fault-tolerant controller relying on the generator speed measurement, which is tolerant
towards changing air content in the oil of the pitch system.

2. Active fault-tolerant controller independent of the generator speed measurement, which is
tolerant towards changing air content in the oil of the pitch system.

3. Passive fault-tolerant controller relying on the generator speed measurement, which is tolerant
towards changing air content in the oil of the pitch system.

4. Passive fault-tolerant controller independent of the generator speed measurement, which is
tolerant towards changing air content in the oil of the pitch system.

In the next section the structure of the two types of control systems are described and the
methods used in the controller designs are selected.

7.1 Introduction to Active and Passive Fault-Tolerant LPV
Control Methods

The purpose of this section is to discuss the differences between active and passive fault-tolerant
control systems and to address how they fit to the considered application. Finally, the methods
which are utilized in the controller designs are selected.

Structures of Active and Passive Fault-Tolerant Control Systems

To conduct a fair comparison of the controllers designed using active and passive fault-tolerant
design approaches, these controllers must build upon identical controller descriptions in the fault-
free case. Hence, any difference in controller performance or design complexity should be caused
by the active or passive fault-tolerant nature, rather than the underlying controller descriptions.

Page 97



Fault-Tolerant Control by LPV Methods

Furthermore, the controllers must comply with the parameter-varying nature of the wind turbine
along its nominal operating trajectory caused by non-linearities in the aerodynamics. To comply
with these requirements it is chosen to design Linear Parameter-Varying (LPV) controllers for both
the active and the passive fault-tolerant approaches. Notice that only operation in the full load
region is considered, since the pitch system is only active in this region.

The two fault-tolerant control systems have different structures as shown in Figure 7.1, since
only the active fault-tolerant controller relies on a fault diagnosis algorithm. This is the main
difference between the two control systems.
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Figure 7.1: Structures of the active and passive fault-tolerant control systems. The passive fault-
tolerant controller (PFTC) only relies on the measured system variables and an estimated wind
speed, while the active fault-tolerant controller (AFTC) also relies on information from the fault
diagnosis system.

The difference between an AFTC and a PFTC is that an active fault-tolerant controller relies
on a fault diagnosis system, which should feed information about the faults to the controller. In
the considered case the fault diagnosis system contains the estimation of the pitch system dynamics
designed in Section 5.5. The knowledge of the fault makes it possible for the AFTC to reconfigure
to the current state of the system, but it also introduces a risk of false positive and false negative
diagnosis, due to e.g. model errors.

The PFTC does not rely on a fault diagnosis algorithm, but is instead designed to be robust
towards the fault. This is accomplished by designing a controller which is optimized for the fault-
free situation, while satisfying some degraded requirements in the fault scenario. The degradation
of requirements is what differs robust controllers from reliable controllers, which has the same
performance guarantee in the entire parameter space. This implies that the PFTC has no risk of
making false detections or reconfigurations, and it has no detection time either. Conversely, it is
not necessarily optimal at any given time, since some conservatism is introduced in its design.

Structures of Fault-Tolerant LPV Control Systems

The two faults which are considered in this chapter are very different, since changing air content
is an incipient fault happening frequently, while the loss of the generator speed measurement is
an abrupt fault, which happens very rarely. Therefore, it is chosen to design two independent
fault-tolerant controllers capable of handling changing air content. The first of the controllers
assumes that the generator speed measurement is available, while the second controller assumes
that it is not. This choice is made to avoid degrading the performance of the nominal controller, by
incorporating the loss of the generator speed measurement directly in the controller structure. The
transition between the controllers is considered not to threaten the stability of the system, since
it is assumed to happen very rarely. Both the active and passive approaches are adopted to this
structure; resulting in a total of four controllers combined in two control systems.

Both the active and passive fault-tolerant controllers are able to utilize the signal correction
algorithms explained in the previous section; hence, multiple simultaneous faults can be handled.
The combined structure of the active and passive fault-tolerant controllers is shown in Figure 7.2.
Notice that the passive fault-tolerant controllers do not use the fault estimate, θ̂f(k).
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Figure 7.2: Block diagram of the LPV-based fault-tolerant control system combined with the signal
correction algorithms. The LPV controller structure consists of two fault-tolerant controller; one
with and one without the generator speed measurement. The vector yc(k) contains the measurements
corrected by the signal correcting algorithms, while θop(k) and θf(k) are scheduling parameters. The
supervisor reconfigures the controller using fsw(k).

Methods for Active and Passive Fault-Tolerant Controller Designs

The methods used in the fault-tolerant controller designs should rely on output feedback, since
only part of the state vector is measured. Additionally, they should take measurement noise into
account. Finally, the design methods should be suited for systems with varying parameters, since
the wind turbine model is a parameter-varying system.

It is chosen to base both the active and the passive fault-tolerant controllers on a common LPV
controller description, to which the fault-tolerance can be added, since LPV control methods are
able to provide stability and performance guarantees despite the parameter variations. Additionally,
LPV controller design methods are well proven in multiple applications including wind turbines
[Bianchi et al., 2007].

To add fault-tolerance to the common LPV controller formulation, two different approaches
are utilized. For the AFTCs the LPV structure can be directly utilized by letting the parameters
estimated by the fault diagnosis algorithm be used for scheduling the controllers. In contrast, a
different structure should be used to obtain fault-tolerance in the PFTCs. For this purpose the
group has extended the LPV design method described in [Bianchi et al., 2007, pp. 159-179] to
apply for systems with parametric uncertainties, which can be solved by applying an approach
based on the projection lemma utilized in [Jabbari, 1997]. This is derived in Appendix D on
Page 161. Alternatively, other methods could have been used such as [Köse and Jabbari, 1997],
which is a similar LPV method, or [Niemann and Stoustrup, 2005a], which preserves the nominal
performance. However, these methods are not used as their controller design procedures are very
different from the procedure utilized for designing the active-fault tolerant controller, which would
make the comparison unfair.

Generally, both design methods rely on solving some optimization problems where a controller
is calculated subject to maximizing the disturbance attenuation. These problems are formulated as
Linear Matrix Inequalities (LMIs) and are set up in YALMIP and solved using SeDuMi. For de-
creasing numerical problems the MATLAB function ssbal is used to reduce the condition numbers
of the matrices, which are inserted into the LMIs.
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Chapter Overview

This chapter covers a variety of topics. First, the two design procedures are described, then the
system equations are adapted to fit the descriptions utilized in the optimization problems. Finally,
the design methods are applied to the considered system to form active and passive fault-tolerant
controllers, after which the control systems are compared.

� Active Fault-Tolerant LPV Controller Design Procedure: Describe the design proce-
dure for obtaining an active fault-tolerant LPV controller.

� Passive Fault-Tolerant LPV Controller Design Procedure: Describe the design pro-
cedure for obtaining a passive fault-tolerant LPV controller.

� Common LPV System Description: Set up an affine LPV description of the system and
include a performance specification in the optimization problem.

� Active Fault-Tolerant Controller Design: Design the active fault-tolerant controllers
and provide the verification of the controllers.

� Passive Fault-Tolerant Controller Design: Design the passive fault-tolerant controllers
and provide the verification of the controllers.

� Comparison of the AFTCS and the PFTCS: Conduct a comparison between the design
methods and the performances of the designed control systems.

The structures of the controllers and the content of this chapter have been outlined. In the next
section the active fault-tolerant LPV controller design procedure is explained.

7.2 Active Fault-Tolerant LPV Controller Design Procedure

The purpose of this section is to describe the LPV controller design procedure for the active fault-
tolerant controller. This design is identical to an ordinary LPV controller design; it is due to the
origin of the scheduling parameters that it is called an active fault-tolerant controller design. This
section is inspired by [Bianchi et al., 2007, pp. 159-179].

Active Fault-Tolerant LPV System Description

The purpose of this subsection is to describe the open-loop LPV system, which forms the background
for the LPV controller design. This is accomplished by specifying a state space model of the system
and characterizing the parameter variations of the system.

A general state space model of an open-loop LPV system is shown below, where all matrices in
this system are parameter-varying.

ẋ(t) = A(θ(t))x(t) +B1(θ(t))w(t) +B2(θ(t))u(t) (7.1a)
z(t) = C1(θ(t))x(t) +D11(θ(t))w(t) +D12(θ(t))u(t) (7.1b)
y(t) = C2(θ(t))x(t) +D21(θ(t))w(t) +D22(θ(t))u(t) (7.1c)

where:
z(t) is the performance output vector
θ(t) is the parameter vector

To ease the design of the LPV controller, some matrices in the general LPV system description
are assumed to be constant. Additionally, the parameter variations in the considered system can
be described in an affine manner according to Section 7.4. This further simplifies the design and
synthesis of the LPV controller. These restrictions fit the controller design method explained in
[Bianchi et al., 2007, p. 174], and give a system description as shown below.A(θ) B1(θ) B2(θ)

C1(θ) D11(θ) D12(θ)
C2(θ) D21(θ) 0

 =

 A0 B1,0 B2,0

C1,0 D11,0 D12,0

C2,0 D21,0 0

+
nθ∑
i=1

θi

 Ai B1,i 0
C1,i D11,i 0

0 0 0

 (7.2)
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where:
nθ is the number of varying parameters

The restriction of parameter independent matrices B2, C2, D12, and D21 can be applied without
any loss of generality, as it is possible to pre-filter the control input u(t) to convert B2 and D12 into
constant matrices, whereas post-filtering can be applied if C2 and D21 are parameter-dependent
[Apkarian et al., 1995]. Furthermore, the assumption D22 = 0 can be relaxed by redefining the
output.

Active Fault-Tolerant LPV Controller Optimization Problem

The purpose of this subsection is to set up the optimization problem from which an LPV controller
can be designed. The optimization problem should fit an LPV system defined using the affine
system description presented in Eq. (7.2).

The design procedure described in this section aims at designing a dynamic output feedback
LPV controller on the following form:

ẋc(t) = Ac(θ(t))xc(t) +Bc(θ(t))y(t) (7.3a)
u(t) = Cc(θ(t))xc(t) +Dc(θ(t))y(t) (7.3b)

where:
Ac(θ(t)), Bc(θ(t)), Cc(θ(t)), Dc(θ(t)) are the LPV controller matrices

The obtained gain-scheduled output-feedback controller should enforce internal stability and a
bound on the L2-norm from the disturbance input, w(t), to a chosen performance output, z(t),
i.e. ||z(t)||2 < γ||w(t)||2 for all non-zero inputs with finite energy assuming zero initial conditions.

The described method requires that the parameter variations are affine. This requirement fits
with the parameter variations which exist in the considered system as explained in Section 7.4.
The affine parameter description simplifies the design procedure compared to the general case,
by decreasing the number of LMIs involved in the calculation of the LPV controller. To give an
understanding of the origin of the LMIs utilized in the controller design, the LMIs for the general
case are set up first. Secondly, the LMIs for an affine parameter description are set up.

General Case

The LMIs that must be solved in the LPV controller design originates from the bounded real lemma,
which can be expressed as an LMI having the closed-loop LPV system matrices as unknown param-
eters. This inequality is not linear in the unknown LPV controller matrices; hence, a congruence
transformation is performed to obtain a description which is linear in the unknown variables. This
LMI description does not include the controller matrices Ac, Bc, Cc, and Dc directly, but some
other matrices shown in Eq. (7.4), which make the controller design a convex optimization prob-
lem. Notice that ’(θ(t))’ is removed from the expressions to shorten the notation. Additionally, the
matrices which should be found in the design problem are written using bold face to make it easier
to distinguish between known and unknown variables.

Â = NAcM
T −XẎ −NṀT +X(A+B2DcC2)Y +XB2CcM

T +NBcC2Y (7.4a)

B̂ = NBc +XB2Dc (7.4b)

Ĉ = CcM
T +DcC2Y (7.4c)

D̂ = Dc (7.4d)

The congruence transformation and the substitution of the matrices above make it possible to write
the following LMIs, which gives a stabilizing controller with performance level γ, where X, Y , Â,
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B̂, Ĉ, and D̂ are unknown and dependent on θ(t):
Ẋ +XA+ B̂C2 + (∗) ∗ ∗ ∗
ÂT +A+B2D̂C2 -Ẏ +AY +B2Ĉ + (∗) ∗ ∗
(XB1 + B̂D21)T (B1 +B2D̂D21)T -γInw ∗
C1 +D12D̂C2 C1Y +D12Ĉ D11 +D12D̂D21 -γInz

 < 0 (7.5)

[
X I
I Y

]
> 0 (7.6)

for all θ ∈ Θ and θ̇ ∈ V.

Notice that the rate of the parameter variation is part of Eq. (7.5) in the terms Ẋ and Ẏ , which
are defined as:

Ẋ =
nθ∑
i=1

θ̇i
∂X(θ)
∂θi

, Ẏ =
nθ∑
i=1

θ̇i
∂Y (θ)
∂θi

(7.7)

In the case where θ(t) is allowed to change arbitrary fast, the Lyapunov matrices X and Y must
be constant; consequently, Ẋ and Ẏ become zero. Additionally, if θ(t) is assumed to be constant,
Ẋ and Ẏ become zero; hence, the Lyapunov matrices at each value of θ(t) are independent.

The presented description involves solving an optimization problem with an infinite number of
LMIs in the general case, since one LMI exists for each pair of θ and θ̇. In the general case the
infinite number of LMIs are commonly circumvented by gridding the parameter space, Θ× V, and
then solving the LMIs in each of the grid points [Bianchi et al., 2007, p. 174]. This method is
though not straightforward, since the density of the grid must be chosen fine enough to ensure
that the closed-loop system satisfies the LMIs in the entire parameter space. However, when the
parameter variations are affine, the number of LMIs can be reduced, since it is only necessary to
test the vertices of the parameter space, if an additional LMI is introduced.

Affine Case

In the case of affine parameter dependencies, Eq. (7.5) can be satisfied for all pairs of θ and θ̇ by
testing the vertices of the parameter space, and introducing an additional LMI.

In the case of an affine LPV plant, the unknown matrices, which are found in the controller
design, must be expressed as shown below.

X(θ) = X0 +
nθ∑
i=1

θiXi Y (θ) = Y0 +
nθ∑
i=1

θiYi Â(θ) = Â0 +
nθ∑
i=1

θiÂi (7.8a)

B̂(θ) = B̂0 +
nθ∑
i=1

θiB̂i Ĉ(θ) = Ĉ0 +
nθ∑
i=1

θiĈi D̂(θ) = D̂0 +
nθ∑
i=1

θiD̂i (7.8b)

According to [Bianchi et al., 2007, p. 175] an extra LMI must be satisfied to ensure that the system
is stable in the entire parameter space. This though introduces some conservatism, but as the
alternative is to introduce gridding, this conservatism is preferred. The LMIs used to design an
LPV controller with performance level γ having an affine parameter description are written below,
where the unknown matrices X, Y , Â, B̂, Ĉ, and D̂ are defined as shown in Eq. (7.8).

Ẋ +XA+ B̂C2 + (∗) ∗ ∗ ∗
ÂT +A+B2D̂C2 -Ẏ +AY +B2Ĉ + (∗) ∗ ∗
(XB1 + B̂D21)T (B1 +B2D̂D21)T -γInw ∗
C1 +D12D̂C2 C1Y +D12Ĉ D11 +D12D̂D21 -γInz

 < 0 (7.9)

[
X I
I Y

]
> 0 (7.10)
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for all θ ∈ θvex, θ̇ ∈ θ̇vex, and 
XiAi + (∗) ∗ ∗ ∗

0 AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0

 ≥ 0 (7.11)

for i = 1 . . . nθ.

Notice that the first two LMIs are identical to the general case except that they should only be
satisfied in the vertices of the parameter space and that the unknown matrices are affine in θ as
specified in Eq. (7.8). Additionally, Eq. (7.11) is only dependent on the terms of the affine matri-
ces on which two matrices that are dependent on θ are multiplied. This implies that Eq. (7.11)
disappears if X and Y are constant.

It can be seen from the structure of Eq. (7.11) that Xi should be in the null space of BT
1,i, and

Yi should be in the null space of C1,i to avoid getting an indefinite matrix. This requirement can
be relaxed by rewriting the matrix inequality Eq. (7.9). If Eq. (7.9) is denoted Φ(θ), it is possible
to write the bounded real lemma for every point in the parameter space, denoted θ∗, using only a
scaling of the matrices in the vertices and the extra LMI, as shown below.

Φ(θ∗) = αΦ(θv1) + (1− α)Φ(θv2) + (α2 − α)(θv1 − θv2)2


XiAi + (∗) ∗ ∗ ∗

0 AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0

 (7.12)

By introducing a variable ε ≥ 0, the optimization problem, which gives a stabilizing controller with
performance level γ, can be reformulated for the considered scalar case as shown below. Here no
restrictions exist to the structure of Xi and Yi. A similar result is derived in Appendix D for the
passive fault-tolerant controller design.

Ẋ +XA+ B̂C2 + (∗) ∗ ∗ ∗
ÂT +A+B2D̂C2 -Ẏ +AY +B2Ĉ + (∗) ∗ ∗
(XB1 + B̂D21)T (B1 +B2D̂D21)T -γInw ∗
C1 +D12D̂C2 C1Y +D12Ĉ D11 +D12D̂D21 -γInz

 < -ε (7.13)

[
X I
I Y

]
> 0 (7.14)

for all θ ∈ θvex, θ̇ ∈ θ̇vex and
XiAi + (∗) ∗ ∗ ∗

0 AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0

 ≥ -4ε
(θv1 − θv2)2

(7.15)

for i = 1 (scalar case).

The optimization problem for designing the active fault-tolerant controller has been set-up. In
the next subsection the controller synthesis is explained.

Active Fault-Tolerant LPV Controller Synthesis

The purpose of this subsection is to explain how the controller is synthesized based on the matrices
found by solving the optimization problems set up in the previous subsection.

To synthesize the controller, the controller matrices must be obtained from the affine matrices
found using the LMIs in the previous subsection. Unfortunately, the LPV controller matrices are
not affine themselves. Therefore, the controller matrices have to be calculated online to every given
value of θ(t) and θ̇(t). The procedure which is utilized to synthesize the LPV controller is shown
in the following list:
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1. Compute Â(θ), B̂(θ), Ĉ(θ), D̂(θ), X(θ), and Y (θ) using the measured value of θ(t).

2. Find M(θ) and N(θ) by solving the factorization problem:

I −X(θ)Y (θ) = N(θ)MT(θ) (7.16)

3. Compute Ac(θ, θ̇), Bc(θ), Cc(θ), and Dc(θ) from the equations:

Ac(θ, θ̇) =N -1(θ)
(
X(θ)Ẏ (θ) +N(θ)ṀT(θ) + Â(θ)− B̂(θ)C2Y (θ)

−X(θ)
(
A(θ)−B2D̂(θ)C2

)
Y (θ)−X(θ)B2Ĉ(θ)

)
M -T(θ) (7.17a)

Bc(θ) =N -1(θ)
(
B̂(θ)−X(θ)B2D̂(θ)

)
(7.17b)

Cc(θ) =
(
Ĉ(θ)− D̂(θ)C2Y (θ)

)
M -T(θ) (7.17c)

Dc(θ) = D̂(θ) (7.17d)

When θ̇(t) is not measured, which is true in the considered case, the synthesis procedure cannot
be utilized directly. To synthesize the controller in this situation some restrictions must be put
on X and Y . According to [Apkarian and Adams, 1998] it is not possible to synthesize the LPV
controller if both X and Y are parameter-dependent while the rate of θ(t) varies. If at least one
of X or Y is constant, or if θ̇(t) = 0, then it is possible to synthesize the LPV controller by
appropriately choosing M and N as shown in Table 7.1.

θ̇ X Y M and N Implementable

θ̇ = 0 X = X(θ) Y = Y (θ) NMT = I −X(θ)Y (θ) Yes

θ̇ ∈ Θ X = X(θ) Y = Y (θ) NMT = I −X(θ)Y (θ) No

θ̇ ∈ Θ X = X(θ) Y = Y0 N = I −X(θ)Y0, M = I Yes

θ̇ ∈ Θ X = X0 Y = Y (θ) N = I, M = I − Y (θ)X0 Yes

θ̇ is unbounded X = X0 Y = Y0 NMT = I −X0Y0 Yes

Table 7.1: Overview of possible selections of X, Y and an appropriate choice of M and N . Notice
that the last column indicates when the LPV controller is implementable without measuring θ̇(t).

If either X or Y is constant, or if θ̇(t) = 0, and the matrices M and N are chosen according
to Table 7.1, then the term X(θ)Ẏ (θ) +N(θ)ṀT(θ) vanishes from Eq. (7.17a), and the expression
for Ac(θ) becomes independent of θ̇(t):

Ac(θ) =N -1(θ)
(
Â(θ)− B̂(θ)C2Y (θ)−X(θ)

(
A(θ)−B2D̂(θ)C2

)
Y (θ)

−X(θ)B2Ĉ(θ)
)
M -T(θ) (7.18)

Choosing either X or Y constant introduces some conservatism. Furthermore, the choice between
selecting X or Y constant is not obvious and has to be decided by trial and error for getting the
least conservative LPV controller for the particular application.

The controller synthesis procedure has been outlined in this subsection. This finalizes the
description of the active fault-tolerant LPV controller design procedure. In the next section a
method for designing a passive fault-tolerant LPV controller is derived in a similar fashion.

7.3 Passive Fault-Tolerant LPV Controller Design Proce-
dure

The developed design procedure for establishing a passive fault-tolerant LPV controller is obtained
by combining the LPV controller design method described in [Bianchi et al., 2007, pp. 159-179] and
the robust output feedback controller design method presented in [Jabbari, 1997], which is based
on a structured uncertainty description. A derivation of the method is provided in Appendix D.
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Passive Fault-Tolerant LPV System Description

To distinguish between the measured and unmeasured parameter variations, the system description
presented in Eq. (7.1) on Page 100 is modified as shown below.

ẋ(t) = A(θ(t),∆(t))x(t) +B1(θ(t),∆(t))w(t) +B2(θ(t),∆(t))u(t) (7.19a)
z(t) = C1(θ(t),∆(t))x(t) +D11(θ(t),∆(t))w(t) +D12(θ(t),∆(t))u(t) (7.19b)
y(t) = C2(θ(t),∆(t))x(t) +D21(θ(t),∆(t))w(t) +D22(θ(t),∆(t))u(t) (7.19c)

where:
θ(t) is the measured parameter vector
∆(t) is the unmeasured parameter vector

This system description is very general, but only a less general model is necessary for the considered
design problem. Therefore, it is reduced by only allowing the system matrix to be dependent on
∆, due to the knowledge of the uncertainties of the considered system. This can be accomplished
without loss of generality. Additionally, an affine description equivalent to Eq. (7.2) on Page 100 is
adopted and shown below.A(θ,∆) B1(θ,∆) B2(θ,∆)

C1(θ,∆) D11(θ,∆) D12(θ,∆)
C2(θ,∆) D21(θ,∆) 0

 =

 A0 B1,0 B2,0

C1,0 D11,0 D12,0

C2,0 D21,0 0

+
nθ∑
i=1

θi

 Ai B1,i 0
C1,i D11,i 0

0 0 0


+

n∆∑
j=1

∆j

A∆j 0 0
0 0 0
0 0 0

 (7.20)

where:
nθ is the number of measured parameters
n∆ is the number of uncertain parameters

The following matrices are defined for convenience, and are used in the remaining part of this
chapter:

Aθ(θ) ∆=
nθ∑
i=1

θiAi, A∆(∆) ∆=
n∆∑
j=1

∆jA∆j (7.21)

From the presented reduced LPV model, the optimization problem involved with designing a passive
fault-tolerant controller is outlined in the next subsection.

Passive Fault-Tolerant LPV Controller Optimization Problem

The active and passive fault-tolerant LPV controller optimization problems have very similar de-
scriptions, but are very different to solve, since the passive fault-tolerant LPV controller optimiza-
tion problem involves solving Bilinear Matrix Inequalities (BMIs) instead of LMIs. Therefore, the
entire design procedure for the passive approach is outlined in this subsection.

The passive fault-tolerant LPV controller description is identical to Eq. (7.3) on Page 101 and
is shown below. Notice that the controller matrices are independent of ∆, since this is uncertain
and cannot be used as scheduling parameter.

ẋc(t) = Ac(θ(t))xc(t) +Bc(θ(t))y(t) (7.22a)
u(t) = Cc(θ(t))xc(t) +Dc(θ(t))y(t) (7.22b)

A controller design problem is set up using a similar approach as for the active fault-tolerant case.
First, the optimization problem for the general case is set up then the optimization problem for the
affine case is deduced from this.
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General Case

The auxiliary matrix, Â, is different for the passive than for the active fault-tolerant controller,
since the dependency of ∆(t) should be removed. All auxiliary matrices are shown below.

Â∆ =NAcM
T −XẎ −NṀT +X

(
A0 +Aθ +B2DcC2

)
Y

+XB2CcM
T +NBcC2Y (7.23a)

B̂∆ =NBc +XB2Dc (7.23b)

Ĉ∆ =CcM
T +DcC2Y (7.23c)

D̂∆ =Dc (7.23d)

When the controller design problem is reformulated into matrix inequalities, the problem cannot be
formulated using only LMIs, but becomes a BMI description, where X, Y , Â∆, B̂∆, Ĉ∆, and D̂∆

are unknown and only dependent on θ(t). By solving the following BMIs, a stabilizing controller
with performance level γ can be obtained:

Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗ ∗
ÂT

∆ + Y A∆TX +A+B2D̂∆C2 -Ẏ +AY +B2Ĉ∆ + (∗) ∗ ∗
(XB1 + B̂∆D21)T (B1 +B2D̂∆D21)T -γInw ∗
C1 +D12D̂∆C2 C1Y +D12Ĉ∆ D11 +D12D̂∆D21 -γInz

 < 0

(7.24)[
X I
I Y

]
> 0

(7.25)

for all θ ∈ Θ, ∆ ∈ D, and θ̇ ∈ V.

The optimization problem is now formulated as a BMI description, making it impossible to be
solved directly, since the description is non-linear in the unknown variables. To circumvent this
problem, the projection lemma is applied on Eq. (7.24) to form the necessary conditions for this
inequality shown below. One of these necessary conditions must be solved before Eq. (7.24) to
provide half the unknown variables; hence making Eq. (7.24) linear in the unknown variables.Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗

(XB1 + B̂∆D21)T -γInw ∗
C1 +D12D̂∆C2 D11 +D12D̂∆D21 -γInz

 < 0 (7.26)

for all θ ∈ Θ, ∆ ∈ D,and θ̇ ∈ V.

or -Ẏ +AY +B2Ĉ∆ + (∗) ∗ ∗
(B1 +B2D̂∆D21)T -γInw ∗
C1Y +D12Ĉ∆ D11 +D12D̂∆D21 -γInz

 < 0 (7.27)

for all θ ∈ Θ, ∆ ∈ D,and θ̇ ∈ V.

By solving one of the necessary conditions shown above, either X, B̂∆, D̂∆ or Y , Ĉ∆, D̂∆ are
found and can be inserted into Eq. (7.24) to search for the remaining variables, since this is now
an LMI in the unknown variables.

To enable the controller to have a better performance in the normal case than in the faulty
case, different values for γ should be chosen for each value of ∆. This implies that a performance
degradation as shown in Figure 7.3 can be obtained.
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α [·]
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Figure 7.3: Evolution of γ between the vertices γ1 and γ2, showing the degradation in the perfor-
mance bound from the fault-free situation (α = 0) to the faulty situation (α = 1).

Affine Case

The parameter variations in the considered model can be described in an affine manner as explained
in Section 7.4. Therefore, the controller design optimization problem is recast to fit this property.

Similar to the active fault-tolerant controller description, the Lyapunov matrices and auxiliary
matrices should be described using an affine description. Notice that neither of the matrices is
dependent on ∆, since the controller cannot be dependent on an uncertain parameter:

X(θ) = X +
nθ∑
i=1

θiXi Y (θ) = Y0 +
nθ∑
i=1

θiYi Â∆(θ) = Â∆0 +
nθ∑
i=1

θiÂ∆i (7.28a)

B̂∆(θ) = B̂∆0 +
nθ∑
i=1

θiB̂∆i Ĉ∆(θ) = Ĉ∆0 +
nθ∑
i=1

θiĈ∆i D̂∆(θ) = D̂∆0 +
nθ∑
i=1

θiD̂∆i (7.28b)

Even though the controller design problem involves solving BMIs, it is possible to add an extra
LMI which makes it sufficient to solve the BMIs in the vertices of the uncertainty space, as shown
below.


Ẋ +XA+ B̂C2 + (∗) ∗ ∗ ∗

ÂT + Y A∆TX +A+B2D̂C2 -Ẏ +AY +B2Ĉ + (∗) ∗ ∗
(XB1 + B̂D21)T (B1 +B2D̂D21)T -γInw ∗
C1 +D12D̂C2 C1Y +D12Ĉ D11 +D12D̂D21 -γInz

 < 0 (7.29)

[
X I
I Y

]
> 0 (7.30)

for all θ ∈ θvex, ∆ ∈ ∆vex, θ̇ ∈ θ̇vex, and


XiAi + (∗) ∗ ∗ ∗
YiA

∆TXi AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0

 ≥ 0 (7.31)

for i = 1 . . . nθ and ∆ ∈ ∆vex.

To eliminate the restrictions on the structure of Yi and Xi, the extra LMI can be reformulated as
shown for the active fault-tolerant controller. Notice that the (2, 1) block of Eq. (7.31) becomes
zero, when either X or Y is held constant. This implies that the constraint equals the resulting
constraint for the active fault-tolerant controller design.
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Due to the BMI description the optimization problem cannot be solved in one step. Therefore,
one of the necessary conditions shown below must be satisfied first.Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗

(XB1 + B̂∆D21)T -γInw ∗
C1 +D12D̂∆C2 D11 +D12D̂∆D21 -γInz

 < 0 (7.32)

for all θ ∈ θvex, ∆ ∈ ∆vex, θ̇ ∈ θ̇vex, andXiAi + (∗) ∗ ∗
BT

1,iXi 0 ∗
0 0 0

 ≥ 0 (7.33)

for i = 1 . . . nθ and ∆ ∈ ∆vex.

or -Ẏ +AY +B2Ĉ∆ + (∗) ∗ ∗
(B1 +B2D̂∆D21)T -γInw ∗
C1Y +D12Ĉ∆ D11 +D12D̂∆D21 -γInz

 < 0 (7.34)

for all θ ∈ θvex, ∆ ∈ ∆vex, θ̇ ∈ θ̇vex, andAiYi + (∗) ∗ ∗
0 0 ∗

C1,iYi 0 0

 ≥ 0 (7.35)

for i = 1 . . . nθ and ∆ ∈ ∆vex.

The design procedure for the passive fault-tolerant controller has been outlined. In the next sub-
section the controller synthesis is explained.

Passive Fault-Tolerant LPV Controller Synthesis

The controller synthesis procedures for the active and passive fault-tolerant controllers are almost
identical. The only difference is the change in the equation describing Ac(θ, θ̇). The synthesis
procedure for the passive fault-tolerant controller is shown below.

1. Compute Â∆(θ), B̂∆(θ), Ĉ∆(θ), D̂∆(θ), X(θ), and Y (θ) using the measured value of θ(t).

2. Find M(θ) and N(θ) by solving the factorization problem:

I −X(θ)Y (θ) = N(θ)MT(θ) (7.36)

3. Compute Ac(θ, θ̇), Bc(θ), Cc(θ), and Dc(θ) from the equations:

Ac(θ, θ̇) =N -1(θ)
(
X(θ)Ẏ (θ) +N(θ)ṀT

∆(θ) + Â∆(θ)− B̂∆(θ)C2Y (θ)

−X(θ)
(
A0 +Aθ −B2D̂∆(θ)C2

)
Y (θ)−X(θ)B2Ĉ∆(θ)

)
M -T(θ) (7.37a)

Bc(θ) =N -1(θ)
(
B̂∆(θ)−X(θ)B2D̂∆(θ)

)
(7.37b)

Cc(θ) =
(
Ĉ∆(θ)− D̂∆(θ)C2Y (θ)

)
M -T(θ) (7.37c)

Dc(θ) = D̂∆(θ) (7.37d)

As shown in Table 7.1 on Page 104 it is not possible to realize the LPV controller where both X
and Y are dependent on θ(t) in the situation where θ̇(t) is not measured. If N and M are chosen
according to Table 7.1 then Ac(θ) can be found as shown below.

Ac(θ) =N -1(θ)
(
Â∆(θ)− B̂∆(θ)C2Y (θ)−X(θ)

(
A0 +Aθ −B2D̂∆(θ)C2

)
Y (θ)

−X(θ)B2Ĉ∆(θ)
)
M -T(θ) (7.38)
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The passive fault-tolerant controller design procedure has been outlined. In the next section the
system equations are adapted to the affine LPV description required by the chosen controller design
method.

7.4 Common LPV System Description

The purpose of this section is to set up an affine LPV description of the system including a perfor-
mance specification. Initially, the parameter-dependent variables are identified and the affine LPV
system model is derived. Secondly, the rate bounds of the scheduling parameters are determined.
Finally, the open-loop system is augmented by input and sensitivity filters to include a performance
specification.

The LPV controllers designed in this chapter replaces the classical speed controller, shown in
Figure 2.4 on Page 8, and should therefore control the generator speed using the pitch system. To
minimize the stress on the drive train, the drive train stress damper explained in Section C.3 is
applied in parallel with the LPV controller. Notice, this is only possible when the generator speed
is measured, as explained in Section 6.4. Additionally, the power controller for the classical design
is applied to cancel steady-state errors on the power output.

Since the two controllers operating in parallel with the LPV controller keep the generator torque
in the proximity of its rated value, the generator torque is assumed constant when designing the
LPV controllers. Furthermore, tower dynamics is considered to be a disturbance included in the
relative wind speed, since no effort is done to attenuate the tower movement. The final simplification
relates to the collective pitching strategy, which permits a single pitch actuator model to replace
the three identical models.

Affine LPV System Description

The two types of varying parameters of the system are explained below.

� Parameter variations along the nominal operating trajectory: The non-linear nature
of the aerodynamics makes the partial derivatives of the aerodynamic torque shown in Eq. (3.9)
on Page 15 be dependent on the operating point; i.e. ∂Ta(t)/∂β, ∂Ta(t)/∂vr, and ∂Ta(t)/∂ωr

change along the nominal operating trajectory.

� Parameter variations caused by changing air content in the hydraulic oil of the
pitch system: Varying air content in the hydraulic oil of the pitch system changes the
dynamics of the pitch system as specified in Section 4.5; i.e. ωn and ζ in the pitch system
equations depend on the air content.

According to Eq. (7.2) on Page 100, B2 is assumed to be constant. However, the model of
the system in Eq. (3.30) on Page 22 has a parameter-varying entry in this matrix, caused by
changing dynamics of the pitch system. In this situation though, it is possible to perform a state
transformation which confines the parameter dependencies to the system matrix. The system
description shown in Eq. (7.39) originates from transforming Eq. (5.24) on Page 65 using: β̇′(t) =

1
ω2

n(t) β̇(t).

ẋ(t) = A(t)x(t) +B(t)u(t)[
β̇(t)
β̈′(t)

]
=
[

0 ω2
n(t)

-1 -2ζ(t)ωn(t)

] [
β(t)
β̇′(t)

]
+
[
0
1

]
βref(t− td) (7.39a)

y(t) = Cx(t) + v(t)

βmes(t) =
[
1 0

] [β(t)
β̇′(t)

]
+ vβ(t) [◦] (7.39b)

By inserting Eq. (7.39a) into the system model in Eq. (3.30) on Page 22, the following system
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emerges, where parameter dependencies caused by the nominal operating condition and fault sce-
nario are included:

ẋ(t) =A(θ(t))x(t) +B1(θ(t))w(t) +B2u(t)
β̇(t)
β̈′(t)
θ̇∆(t)
ω̇g(t)
ω̇r(t)

 =


0 a12(θf(t)) 0 0 0
-1 a22(θf(t)) 0 0 0
0 0 0 - 1

Ng
1

0 0 Kdt
JgNg

-
(
Bdt
JgN2

g
+ Bg

Jg

)
Bdt
NgJg

1
Jr

∂Ta(θop(t))
∂β 0 -Kdt

Jr

Bdt
NgJr

-Bdt+Br
Jr

+ 1
Jr

∂Ta(θop(t))
∂ωr




β(t)
β̇′(t)
θ∆(t)
ωg(t)
ωr(t)



+


0
0
0
0

1
Jr

∂Ta(θop(t))
∂vr

 vr(t) +


0
1
0
0
0

βref(t) (7.40)

where:
θf(t) is the scheduling parameter specifying the air content in the hydraulic oil.
θop(t) is the scheduling parameter specifying the wind speed

The wind speed, vr(t), is the exogenous input to the system and introduces a parameter-dependent
element in B1. To limit the bandwidth of the exogenous input in the design, a filter is applied to
shape the frequency content of the wind speed. This moves the effective wind speed into the state
vector in the affine LPV system and moves the parameter-dependent element from B1 to A. By
applying the described modifications to the system, an affine LPV system can be set up as shown
below.A(θ) B1 B2

C1 0 D12

C2 D21 0

 =

A0 B1 B2

C1 0 D12

C2 D21 0

+ θop︸︷︷︸
vr

A1 0 0
0 0 0
0 0 0

+ θf︸︷︷︸
ω2

n

A2 0 0
0 0 0
0 0 0

 (7.41)

The system in Eq. (7.41) is a linear combination of constant matrices in the two scheduling param-
eters. This description is possible since the partial derivatives of the aerodynamic torque can be
approximated by an affine function, having the wind speed as the independent variable, as illus-
trated in Figure 7.4. Similarly, the varying entries in the pitch actuator model fit well to an affine
approximation in ω2

n, as shown in Figure 7.5.
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Figure 7.4: Parameter variations along the nominal operating trajectory in the full load region. The
partial derivatives of the aerodynamic torque (blue) are approximated in the range from 18 m/s to
25 m/s by affine descriptions (red) using the wind speed as scheduling parameter.

Since the main focus of this project is to include fault-tolerance in the design, it is decided
only to include the upper half part of the full load region, i.e. wind speeds ranging from 18 m/s
to 25 m/s. The scheduling parameter, θop(t) = vr(t), is provided by the wind speed estimator, as
illustrated in Figure 7.2 on Page 99.

Figure 7.5 shows that the parameter-dependent entries in the pitch actuator model can be
described using an affine approximation in θf(t) = ω2

n(t). An estimation of this value is provided
by the fault diagnosis algorithm described in Section 5.5.
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Figure 7.5: Parameter variations caused by changing air content in the hydraulic oil of the pitch
system. The parameter-dependent entries of the pitch system model (blue) are approximated by
affine descriptions (dashed red) using the squared natural frequency of the pitch system as scheduling
parameter.

Rate Bounds

Besides determining the intervals of θop(t) and θf(t), it is necessary to specify the rate bounds of
the scheduling parameters, since performance and stability of the LPV control system should be
guaranteed for all θ̇ ∈ V.

By assessing the output of the wind model, it is considered that 2 m/s2 is a good estimate of
the upper bound on the rate of variation on |θop(t)|. According to Section 4.5, high air content in
the hydraulic oil is introduced over much longer time than the longest time constant of the system.
In the design it is therefore assumed that θ̇f(t) = 0.

System with Performance Specification

To provide the possibility of tuning the LPV controllers, a mixed sensitivity description is adopted.
An augmented system including this description is shown in Figure 7.6, where WS(s) is the sen-
sitivity filter and WM(s) is the control sensitivity filter. In addition to the sensitivity filters, the
input disturbance filter, WD(s), band limits the exogenous input in the design and WN(s) adds
measurement noise to the system outputs.

WS(s) stresses the importance of the low-frequency components of the generator speed error.
Its pole in zero ensures integral action in the controllers which eliminates any steady-state error
on the tracking of the generator speed reference. WM(s) weights the control effort with the aim of
penalizing fast pitch angle variations. The performance measures are stated in Eq. (7.42) while the
weighted performance measures appear from Eq. (7.43). The filters are specified in Eq. (7.44)-(7.46).

z̃(t) =
[
ωg,e(t)
βref(t)

]
(7.42)

z(t) =
[
WS(t) 0

0 WM(t)

]
z̃(t) (7.43)

WS(s) = kS
1
s

(7.44)

WM(s) = kM
s

s/(10ω3P) + 1
(7.45)

WD(s) =
1

s/(1.5ω3P) + 1
(7.46)

where:
kS is used to determine the maximum error on ωg(t)
kM is used to determine the maximum control signal applied by βref(t)
ω3P is the 3P frequency [rad/s]

This finalizes the set-up of the necessary description to form the controllers. In the next section
the design of the active fault-tolerant controller is explained.
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Figure 7.6: Block diagram of the augmented system for the LPV controller synthesis. The sensitivity
filter, WS(s), and input disturbance filter, WD(s), have low-pass filter characteristics, whereas the
control sensitivity filter, WM(s), is a high-pass filter. WN(s) adds noise directly to the system
outputs.

7.5 Active Fault-Tolerant Controller Design

In this section the active fault-tolerant controllers are designed by determining the configuration
of parameter-dependent Lyapunov matrices X and Y that results in the best performance. For
both controllers, the best performance is determined as the configuration which allows minimizing
γ the most, being the guaranteed maximum L2-norm from disturbances to performance measures.
Additionally, the controllers are verified to be able to operate at the vertices of the parameter space
and at the rate bounds. Finally, the switch between the LPV controllers with and without the
measurement of the generator speed is verified.

In Table 7.2 a comparison of different selections of Lyapunov variables is provided for the
considered system. According to Table 7.1 on Page 104 the restriction is that X and Y cannot
be dependent on θop simultaneously. However, dependencies of θf in both Lyapunov matrices are
allowed, since θ̇f = 0. Notice that the performance specifications for the two controllers are different,
since the loss of the generator speed measurement reduces the available measurement information,
as argued in Section 6.4. The performance specifications are made such that the two controllers
have approximately the same pitch actuator usage.

The first column of γ values in Table 7.2 are obtained by solving the controller exploiting the
measured generator speed, indicated by fsw = 0. These values should not be compared to the
γ values in the last column, since the controller designed for fsw = 1 uses another performance
specification. The variable fsw = 1 indicates that the generator speed measurement is unavailable
and therefore lower demands has to be placed on the tracking of the speed error. Therefore, the
sensitivity filter gain, kS, is reduced for the controller which does not rely on the generator speed
measurement.

From the table it can be concluded that for the particular system it is advantageous to use Y (θ)
as the parameter-dependent Lyapunov matrix.

The γ values obtained in Table 7.2 are calculated based on continuous descriptions of the system
and the controller. For implementing the controllers they have to be discretized. To obtain a similar
behavior for a continuous controller and the discretized controller, γ is slightly increased to remove
fast modes.

Verification of AFTCS

To verify that the controllers are able to operate in the entire parameter space and at the rate
bounds, simulations are conducted where the wind turbine model is forced between the extremes of
the parameter space. The first 50 s of the simulations are shown in Figure 7.7, for both normal air
content (blue) and high air content (red) in the hydraulic oil, to enable a comparison of the behavior
in the two situations. Likewise, the consequence of not using the generator speed measurement is
evaluated by comparing the left and right subplots.
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X Y γ (for fsw = 0) γ (for fsw = 1)

X = X0 Y = Y0 0.660 0.627
X = X0 Y = Y (θop, θf) 0.556 0.588
X = X(θf) Y = Y (θf) 0.626 0.619
X = X(θf) Y = Y (θop, θf) 0.556 0.588
X = X(θop, θf) Y = Y0 0.657 0.627
X = X(θop, θf) Y = Y (θf) 0.624 0.618

Table 7.2: Values of γ for different selections of variables in the gain-scheduled control problem. The
first columns of γ values are obtained solving the controller using the generator speed measurement
(fsw = 0), while the values of γ stated in the last column result from solving the controller which does
not rely on the generator speed measurement (fsw = 1). Notice that the γ values in the two columns
should not be compared as the optimization problems are solved subject to different performance
specifications.
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Figure 7.7: Simulation results where the AFTC is forced between the extremes of the operational
range of the wind speed and at its rate limits. The simulations are conducted at both normal air
content (blue) and high air content (red).

Based on the simulations it is concluded that the AFTCs are able to operate in the entire
operating region specified in the design. Considering the changed dynamics of the pitch system, the
differences on β(t) are hardly noticed, although they cause the minor differences apparent on ωg(t).
The conclusion is that the performance on system level is not degraded much even considering the
changed dynamics of the pitch system. When comparing the left and right subplots it is obvious
that the absence of the generator speed measurement has a large impact on the performance.

Verification of Switch between the two Controllers

To verify that it is possible to switch between the two fault-tolerant LPV controllers when the
measurement of the generator speed is lost, a simulation of the considered scenario is tested in this
subsection.

The switch between the two fault-tolerant LPV controllers is implemented similar to the bump-
less transfer used for the reference controller, as explained in Section C.4. This is chosen since no
time is available for a smooth scheduling due to the abrupt fault. The switch, which should happen
with no jumps in the control signal, is verified by conducting a simulation where the measurement of
the generator speed measurement is lost at t = 100 s. The simulation result is shown in Figure 7.8.
It is concluded that the switch works satisfactory since no jumps are present on the control signal.

In this section the active fault-tolerant controllers have been designed and verified. In the next
section a description of the passive fault-tolerant controllers is provided.
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Figure 7.8: Simulation result of a switch between the two active fault-tolerant LPV controllers,
where the generator speed is lost at t = 100 s, which is indicated by the vertical dashed line. The
horizontal dashed line represents the rated generator speed.

7.6 Passive Fault-Tolerant Controller Design

In this section the passive fault-tolerant controllers are designed in a similar fashion as in the
previous section, i.e. by minimizing γ. Additionally, the controllers are verified to be able to
operate at the vertices of the parameter space and at the rate bounds. The transition between the
controllers with and without the generator speed measurement is not tested, since it is identical to
the switch verified in the previous section.

To design the passive fault-tolerant controllers the performance degradations in the faulty cases
must be specified. The obtainable γ values for the normal and faulty cases are not known when
initiating the design, and therefore some steps are performed to know the bounds on the γ values
before designing the passive fault-tolerant controllers. The bounds on the γ values are determined
based on Figure 7.9.

Optimal robust
controller

nominal

ã1

ã2

Pareto optimality 
tradeoff curve

Undesired tradeoffs
for reliable controller

ãrobust

ãrobust

ãnominal

Figure 7.9: Bounds on the γ values for the PFTC; γ1 is associated with the fault-free case and γ2

is associated with the faulty case. The gray area contains all feasible PFTCs, where a PFTC on
the Pareto optimality tradeoff curve is desired. The Pareto optimality tradeoff curve illustrates the
optimum tradeoff between conflicting requirements.

The following requirements to γ1 (normal system) and γ2 (faulty system) are deduced from Fig-
ure 7.9:

� γ1 < γ2: The gray area in the figure is the region where γ1 < γ2, i.e. the region for reliable
controllers defined to have better performance in the fault-free case than in the faulty case.

� γ1 < γrobust < γ2: By designing an optimal robust controller γrobust is found. Hence, the
upper bound on γ1 and lower bound on γ2 can be found, since γ1 < γrobust < γ2 must be
satisfied to lay on the Pareto optimality tradeoff curve.
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� γ1 > γnominal: The lower bound on γ1 can be found by designing an optimal nominal LPV
controller, since the fault-tolerant controller cannot achieve better performance than this.

For the considered problem, the bounds stated below are calculated for the two design problems
and specify γnominal < γ1 < γrobust and γrobust < γ2. Notice that the values for the two controllers
cannot be directly compared, since their performance specifications are different.

� With ωg,mes(t): 0.496 < γ1 < 0.652 and 0.652 < γ2.

� Without ωg,mes(t): 0.566 < γ1 < 0.608 and 0.608 < γ2.

Based on this information, both passive fault-tolerant controllers are designed for γ2 = 1, while γ1

is minimized.
To find the optimal passive fault-tolerant controllers, γ1 is minimized for different selections of

constant Lyapunov matrices and at different initializations of the algorithm. A number of different
approaches for solving the optimization problem have been tried. These are mentioned in the
following list. In the first two items in the list, three different choices are possible.

1. Select the parameter-dependent Lyapunov matrix.

(a) Lyapunov matrix X is dependent on θ.

(b) Lyapunov matrix Y is dependent on θ.

(c) No Lyapunov matrix is dependent on θ.

2. Find half of the unknown variables in Eq. (7.29) on Page 107, since this turns the matrix
inequality into an LMI in the remaining unknown variables.

(a) Find X, B̂∆, D̂∆, by solving the necessary condition for X shown in Eq. (7.32) on
Page 108.

(b) Find Y , Ĉ∆, D̂∆, by solving the necessary condition for Y shown in Eq. (7.34) on
Page 108.

(c) All matrices are known from the initial guess obtained by calculating an AFTC with
γ = 1. This γ value is chosen to ensure feasibility of Eq. (7.29).

3. Solve Eq. (7.29) while minimizing γ1 = γ2 until the desired value for γ2 is reached. This is
done by switching between having X, B̂∆, D̂∆ or Y , Ĉ∆, D̂∆ as unknown variables.

4. Solve Eq. (7.29) while minimizing γ1 and switching between having X, B̂∆, D̂∆ or Y , Ĉ∆,
D̂∆ as unknown variables.

By following this procedure the values in Table 7.3 are obtained for γ1 and γ2. The performance
specifications are made such that the two controllers have approximately the same pitch actuator
usage.

From Table 7.3, γ1 appears to be smallest when Y (θ) is parameter-dependent. Therefore, this
configuration is chosen for both implemented controllers. To implement the controllers they have
to be discretized. Hence, γ1 is slightly increased to obtain similar behaviors for the continuous and
discrete controllers.

Having selected sufficiently large γ values to make the controllers functional in a sampled set-
up, the obtained performance degradation is evaluated when high air content in the hydraulic oil
is introduced. This is shown in Figure 7.10 that displays a subplot valid for each controller. From
the figure it is clear that the performance of the controllers degrade as the air content increases, as
expected.
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X Y Initialization
fsw = 0 fsw = 1
γ1 γ2 γ1 γ2

Y = Y0 X = X(θ) Necessary condition for X 0.635 1 0.597 1
Y = Y (θ) X = X0 Necessary condition for X 0.541 1 0.571 1
Y = Y0 X = X0 Necessary condition for X 0.619 1 0.599 1
Y = Y0 X = X(θ) Necessary condition for Y 0.658 1 0.597 1
Y = Y (θ) X = X0 Necessary condition for Y 0.540 1 0.571 1
Y = Y0 X = X0 Necessary condition for Y 0.619 1 0.599 1
Y = Y0 X = X(θ) Initial guess 0.616 1 0.596 1
Y = Y (θ) X = X0 Initial guess 0.544 1 0.571 1
Y = Y0 X = X0 Initial guess 0.632 1 0.599 1

Table 7.3: Values of γ1 and γ2 for the PFTC for different selections of variables in the gain-scheduled
control problem. γ1 is the upper bound on the disturbance attenuation in the fault-free case, while
γ2 is the upper bound on the disturbance attenuation in the faulty case. Notice that the γ values
for fsw = 0 and fsw = 1 cannot be directly compared, since different performance specifications are
utilized.
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Figure 7.10: The performance level γ as a function of the air content level in the pitch system for the
two passive fault-tolerant controllers. Notice that the values of γ in the two subplots should not be
compared to each other since the optimization problems are solved subject to different performance
specifications. The value of γ depends on the operating point and its rate, so for each controller γ
is shown for θop = 21.5 m/s and for θ̇op = -2 m/s2 (red), θ̇op = 0 m/s2 (blue), and θ̇op = 2 m/s2

(green).

Verification of PFTCS

To verify that the controllers are able to operate in the entire parameter space and at the rate
bounds, simulations are conducted where the wind turbine model is forced between the extremes of
the parameter space. The first 50 s of the simulations are shown in Figure 7.7 on Page 113, for both
normal air content (blue) and high air content (red) in the hydraulic oil, to enable a comparison
of the control with and without a faulty pitch system. Likewise, the consequence of not using the
generator speed measurement is evaluated by comparing the left and right subplots.

From the figure it is concluded that the PFTCs are able to operate in the entire operating
region specified in the design. Additionally, no significant difference is apparent on either β(t) or
ωg(t) in the simulations due to the changing air content. In contrast, a significant performance
degradation happens when ωg,mes(t) is not available. This degradation is though expected due to
the degradation of the available measurement information.

In the next section a comparison between the PFTCs and AFTCs is described.

7.7 Comparison of AFTCS and PFTCS

The purpose of this section is to compare the active and passive fault-tolerant control systems by
means of design complexity and performance when applied to the wind turbine model.
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Figure 7.11: Simulation results where the PFTC is forced between the extremes of the operational
range of the wind speed and at its rate limits. The simulations are conducted at both normal air
content (blue) and high air content (red).

The design procedures of the AFTC and the PFTC are compared according to a number of
comparison criteria shown in Table 7.4. Each comparison criterion is discussed further in the
following text.

Comparison Criterion AFTC PFTC

Design problem Convex optimization Non-convex optimization
Conservatism Lower than for PFTC Higher than for AFTC
Dependent on fault diagnosis Yes No
Implemental complexity Higher than for PFTC Lower than for AFTC

Table 7.4: Comparison of the AFTC and PFTC in terms of controller design.

The procedures for designing active and passive fault-tolerant controllers look very similar,
when comparing Eq. (7.5) on Page 102 and Eq. (7.24) on Page 106, which should be solved for
realizing the controllers. Since the AFTC design is based on a convex optimization, in contrast to
the non-convex optimization for the PFTC, this design problem is much easier to solve. The non-
convex nature of the PFTC optimization problem implies that γ is not ensured to converge towards
the global minimum, which makes the solution sensitive to the initialization of the algorithm, as
indicated by Table 7.3. This makes the active fault-tolerant controller favorable in terms of solving
the optimization problem.

The active fault-tolerant controller is able to schedule along the trajectory of the fault. This
makes it less conservative than the passive fault-tolerant controller, which has to maintain the
same controller in case of a fault. Therefore, it opens the opportunity for the active fault-tolerant
controller to have superior performance compared to the passive fault-tolerant controller.

In return for the conservatism introduced in the passive fault-tolerant controller, in terms of
being independent on knowledge about the fault, the risk of making wrong decisions in the fault
diagnosis is eliminated. Additionally, the time spend on designing the fault diagnosis algorithms
can be saved. In this light, the passive fault-tolerant controller is the favored choice, especially if
the fault is difficult to diagnose.

Having compared the design procedures and the general advantages and disadvantages of the
active and passive fault-tolerant controllers, the final step in the comparison is to compare simulation
results obtained by the controllers and assess their performance.
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Simulation Results

To verify and compare the performance of the fault-tolerant controllers, simulations of duration
5,000 s are conducted both with the normal air content level of 7% and at a level of 15%, at wind
speeds ranging from 18 m/s to 25 m/s. Notice that air content levels in between the extreme
values are already tested in relation with the simulations referred to in Figure 7.7 on Page 113
and Figure 7.11, but the intermediate values are not included in this comparison due to the slow
evolution of the fault.

Results for the Controllers relying on the Generator Speed Measurement

The first 50 s of the simulations of the controllers relying on the generator speed measurement are
shown in Figure 7.12, for both AFTC and PFTC, to enable a comparison of the two controllers.
Additionally, the gray lines display the simulation results of the reference controller, which is not
designed to handle the changing dynamics of the pitch system and therefore performs poorly in this
case. The performance measures obtained for the 5,000 s simulations are stated in Table 7.5.
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Figure 7.12: Simulation results of the AFTC (blue) and the PFTC (red) conducted at both normal
and high air content levels in the hydraulic oil. The behaviors of the fault-tolerant controllers can
be compared to the operation of the reference controller (gray). The considered controllers possess
fault-tolerant capabilities against high air content in the pitch system.

Controller
Air content in oil: 7% Air content in oil: 15%∫ t

0
(ωg,e(τ))2 dτ

∫ t
0
β̇2(τ) dτ

∫ t
0
(ωg,e(τ))2 dτ

∫ t
0
β̇2(τ) dτ

Active 1.00 1.00 1.19 (1.00) 1.10 (1.00)

Passive 1.18 0.94 1.29 (1.08) 1.14 (1.03)

Active (θ̂f incorrect) 1.13 0.98 1.06 (0.89) 1.42 (1.29)

Reference 1.59 1.17 1.79 (1.50) 10.71 (9.67)

Table 7.5: Speed tracking errors and pitch actuator usages obtained for simulations having duration
5,000 s for controllers, which rely on the generator speed, i.e. fsw = 0. The results are normalized
to the performance of the active fault-tolerant controller. The numbers in parentheses denote a local
normalization. Note that the third controller mentioned is the active fault-tolerant controller, where
the fault diagnosis algorithm is forced to make a false positive or false negative decision, to evaluate
the consequence of incorrect fault estimation.

Since the fault-tolerant controllers are designed based on the same structure and specification,
they behave quite similar, which is apparent from Figure 7.12. When comparing the tracking errors
of the generator speed in the last subplots in the figure, or in Table 7.5, it is seen that the active
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fault-tolerant controller has better performance, especially in the fault-free case. The reason being is
that this controller is less conservative, since controller reconfiguration is offered based on the fault
diagnosis signal. In line with this explanation it is further concluded that the passive fault-tolerant
controller has a smaller actuator usage than the active fault-tolerant controller.

In Table 7.5 the performance measures are also stated for the reference controller and for the
active fault-tolerant controller when using an incorrect estimate of the fault. The first result is that
the fault-tolerant controllers are superior compared to the reference controller in both performance
measures, which enhances the great performance of the multi-variable LPV controller compared to
the traditional PI controller. The second result is that when a wrong estimate of the fault is fed to
the active fault-tolerant controller, the performance is generally degraded. This espicially appears
from the large pitch actuator usage in the situation of false negative diagnosis.

Results for the Controllers independent of the Generator Speed Measurement

The first 50 s of the simulations of the controllers, which do not rely on the generator speed
measurement, are shown in Figure 7.13, for both AFTC and PFTC, to enable a comparison of
the two controllers. The performance measures obtained for the 5,000 s simulations are stated in
Table 7.6.
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Figure 7.13: Simulation results of the AFTC (blue) and the PFTC (red) conducted at both normal
and high air content levels in the hydraulic oil. The considered controllers are independent of the
generator speed measurement, and possess fault-tolerant capabilities against a fixed generator speed
measurement and against high air content in the pitch system.

Controller
Air content in oil: 7% Air content in oil: 15%∫ t

0
(ωg,e(τ))2 dτ

∫ t
0
β̇2(τ) dτ

∫ t
0
(ωg,e(τ))2 dτ

∫ t
0
β̇2(τ) dτ

Active 29.8 [1.00] 1.19 [1.00] 31.0 {1.00} 1.28 {1.00}
Passive 29.5 [0.99] 1.17 [0.98] 30.9 {1.00} 1.30 {1.01}

Table 7.6: Speed tracking errors and pitch actuator usages obtained for simulations having duration
5,000 s for controllers, which do not rely on the generator speed, i.e. fsw = 1. The results are
normalized to the performance of the nominal active fault-tolerant controller in Table 7.5. The
numbers in the square parentheses and curly braces denote local normalizations.

Since the fault-tolerant controllers are designed based on the same structure and specification,
they behave quite similar, as depicted by Figure 7.13 and Table 7.6. The considered situation seems
to be dominated by the absence of the generator speed measurement, whereas increased air content
in the pitch system has only a minor influence on the performance of the system.

As desired by the design, and confirmed by comparing Table 7.5 and Table 7.6, the pitch actuator
usage is similar for the controllers using and not using the generator speed measurement. On the
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other hand, the speed tracking error is dramatically increased, due to the poor quality of the rotor
speed measurement compared to the measurement of the generator speed.

In addition to the performance degradation already mentioned, the drive train stress damper is
deactivated when running without the generator speed measurement, consequently increasing drive
train stress as discussed in Section 6.4. The reason for disabling the stress damper is that the rotor
speed measurement does not possess the information about the drive train oscillations. On average,
the drive train stress is increased by approximately 40%, compared to the controllers using the
drive train stress damper. Hence, it should be considered if it is desired to operate the wind turbine
at normal operating conditions, when the generator speed measurement is lost. Furthermore, no
advantage is obtained by using the active fault-tolerant controllers for this particular scenario.

In this chapter active and passive fault-tolerant controllers have been designed for accommodat-
ing changed pitch system dynamics and the loss of the generator speed measurement in full load
operation. The methods utilized for designing both the AFTC and PFTC are based on solving op-
timization problems. The optimization problem for the active fault-tolerant controller is the easiest
to solve, and is therefore preferable. The passive fault-tolerant controller is independent on fault
diagnosis; hence, it has no risk of false diagnosis of faults.

In the considered design the AFTC has a slightly better performance than the PFTC, in the
situation where the generator speed measurement is available. In the situation where the generator
speed measurement is not available both types of controllers show similar performance, probably
because the noise on the available measurements is the limiting factor for the controllers. From
this it is concluded that active fault-tolerant controllers should be utilized if performance is more
important than safety, or if the fault diagnosis algorithms have small probabilities of making false
decisions. In contrast, passive fault-tolerant controllers should be chosen if safety is very important,
or if the fault is not the limiting factor for the controller.

The next chapter addresses an integration test, where the fault diagnosis algorithms, signal
correction algorithms, and the fault-tolerant LPV controllers are combined and tested subject to
multiple simultaneous faults.
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The purpose of this chapter is to combine the fault diagnosis algorithms, signal correction algo-
rithms, and the fault-tolerant LPV controllers in one fault-tolerant control system, and test it
exposed to multiple simultaneous faults. Since similar results are expected when applying both
the active and passive fault-tolerant LPV controllers, only the active fault-tolerant control system
is used in this test. This is chosen as this controller depends on most fault diagnosis algorithms,
which can then be tested at the same time.

The aim of the integration test is to confirm that it is possible to diagnose and accommodate
multiple simultaneous faults. For this to happen, each diagnosis algorithm should be robust towards
the other considered faults in the system to avoid making an erroneously detection or estimation,
which could degrade the performance of the control system. The integration test is conducted
according to Figure 8.1, which is thoroughly explained in the list below.

High air content
7% 15%

0 200 600 1000 2000 2400 2800 3500 4900

Bias on Pitch Sensor 3

Generator speed measurement lost

Hydraulic leakage

Proportional speed error

0° 1°

5000 t [s]

2.

0 -0.04

5.

3.

1.

4.

Figure 8.1: Specification of the sequence of faults in the integration test. The incipient faults are
introduced where solid lines appear, while the values of the faults are held thereafter illustrated using
dashed lines. The loss of the generator speed measurement is an abrupt fault; hence, it is illustrated
using a lightning. Notice that the dashed line for the proportional speed error on the generator speed
measurement disappears when the measurement is lost, since it makes no sense after this event.

1. A bias of 1◦ is introduced on the pitch sensor associated with Blade 3 from t = 200 s to
t = 2,000 s. After the introduction of the fault it is held until the end of the simulation.

2. A proportional error of -0.04 is introduced on the generator speed measurement from t = 600 s
to t = 2,400 s and is held constant thereafter. The fault changes the sensor gain from 1 to
0.96. From the time where the proportional error is introduced two faults exist, which should
be handled by the signal correction algorithms.

3. The air content in the hydraulic oil is increased from 7% to 15% in between t = 1,000 s and
t = 2,800 s. This fault should be handled by the active fault-tolerant LPV controller, which
relies on the fault diagnosis algorithm estimating the dynamics of the pitch system.

4. The generator speed measurement is lost at t = 3,500 s; hence, a switch between the two
active fault-tolerant LPV controllers should be performed. This requires that all the fault
diagnosis algorithms are able to operate without the generator speed measurement.

5. A hydraulic leakage makes the pressure of the hydraulic oil drop to 50% of the normal pressure
during 100 s. After the detection of this fault, the simulation is terminated.
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The simulation is conducted using wind speeds ranging from 18 m/s to 25 m/s. The result of
the simulation is shown in Figure 8.2.
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Figure 8.2: Simulation result of the integration test. In the three upper subplots, the estimated
parameters (blue) and the correct values of the parameters (red) are shown. In the fourth subplot,
the detection signal for hydraulic leakage (blue) and the correct value of the pressure (red) are shown.
The bottom subplot shows the generator speed (blue) and the generator speed reference (red).

The simulation result is commented below, according to the numbering utilized in Figure 8.1.

1. The bias on Blade 3 is detected and isolated at t = 1,189 s. Hereafter, the bias is estimated
and accommodated until the end of the simulation, using the reconfigurable extended Kalman
filter. The bias is correctly estimated even though the generator speed measurement is lost
at t = 3,500 s.

2. A proportional error on the generator speed measurement is detected at t = 731 s. After
the detection, the sensor gain is estimated and accommodated until t = 3,500 s, where the
generator speed measurement is lost. The accommodation of the proportional error implies
that the generator speed is kept at its desired set-point throughout the simulation.

3. The air content in the hydraulic oil is estimated satisfactory throughout the simulation, and
the estimate is fed to the LPV controller adapting it to the fault.

4. When the generator speed measurement is lost, a switch between the two active fault-tolerant
LPV controllers is successfully accomplished. After the switch the generator speed starts
fluctuating more, since the performance of the controller is degraded, in agreement with
Table 7.6 on Page 119.

5. The hydraulic leakage introduced at t = 4,900 s is detected 76 s later. The detection time is
increased compared to the detection times shown in Figure 5.17 on Page 71, since the pitch
system already operates at a degraded performance when the fault is introduced.

As outlined above, the integration test has shown that the designed fault-tolerant control system
is capable of diagnosing and accommodating multiple simultaneous faults. Generally, the perfor-
mance of the control system is not affected visibly by the faults; the only fault that decisively affects
the performance of the system is the loss of the generator speed measurement. This is expected,
since the available measurement information is dramatically reduced, when this fault occurs.
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In this project fault diagnosis and fault-tolerant control algorithms are developed for improving
the reliability of wind turbines. The study is based on a model of a variable-speed, variable-
pitch 4.8 MW wind turbine, which represents a realistic but fictitious wind turbine, to which the
collaborator kk-electronic a/s has provided the parameters. The faults considered in the project are
chosen based on a severity and occurrence analysis, in which the most frequent and severe faults
are identified. The analysis primarily focuses on sensor and actuator faults, which are included in
the model of the wind turbine.

In the diagnosis of the faults, model-based fault diagnosis algorithms are primarily developed,
due to their improved resilience towards making incorrect decisions compared to signal-based ap-
proaches. Additionally, only the already available sensor information is utilized in the diagnosis of
the faults. To obtain a fault-tolerant control system, different approaches are utilized dependent
on the nature of the faults. For faults that affect the dynamics of the system, active and passive
fault-tolerant controllers are designed and compared.

To access the performance of the designed algorithms, Monte Carlo simulations are performed
to evaluate the robustness of the algorithms, where this is considered necessary.

Modeling

To facilitate a model-based approach in the design of the fault diagnosis and fault-tolerant control
algorithms, a non-linear model of a variable-speed, variable-pitch wind turbine is set up. Addition-
ally, the model acts as a simulation model for testing the designed algorithms.

The model is based on a static model of the aerodynamics, a two-mass model of the drive train,
an electromechanical model of the generator, dynamic actuator models, and zero-mean Gaussian
distributed measurement noises. The parameters for the wind turbine model are provided by kk-
electronic a/s, similar applies for the variances of the additive measurement noises. The input to
the model is generated by a wind model, which includes wind shear, tower shadow, and turbulence.

The aerodynamics of the wind turbine is non-linear and is described in form of a lookup table,
where the efficiency of the aerodynamics is determined from the pitch angles of the blades and the
tip-speed ratio. This part of the model is non-linear and introduces parameters that vary dependent
on the operating conditions.

Fault Analysis

A fault analysis is performed in order to determine the faults which should be considered in this
project. First, a number of possible component faults are chosen and their propagations through
the system are determined by describing their effects on the surrounding components of the system.
Subsequently, the severity of the end-effects and the occurrence rates of the faults are estimated to
select the faults of highest priority.

The frequency of the faults are approximated based on statistics reported in the literature,
whereas the severities of their end-effects are determined based on simulations. For conducting
these simulations, a reference controller without fault-tolerant capabilities is designed based on
information about an existing control system. To limit the number of faults to be handled during
this project, it is decided to focus on the faults related to the pitch sensors, pitch actuators, and
generator speed sensor.

The motivation behind selecting faults related to the pitch system, which e.g. cause rotor un-
balance, is that these faults increase fatigue loads on the wind turbine structure. It is further seen
that changed dynamics of the pitch system, caused by low pressure or high air content in the hy-
draulic oil, may result in an unstable closed-loop system. Finally, the main controllers in the entire
operating range of the wind turbine depend solely on the measured generator speed. Hence, it is
essential to diagnose and accommodate any troubles regarding this particular measurement.
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Fault Diagnosis

It is decided to apply the same overall structure to all diagnosis algorithms, to enable diagnosis of
multiple simultaneous faults. The fault diagnosis system consists of fault detection and isolation
algorithms that determine the current state of the system and reconfigure an extended Kalman
filter, which is able to provide a fault-corrected state estimate at all times.

Both abrupt and incipient faults are considered; hence, different methods are utilized in the
fault diagnosis algorithms. Generally, the abrupt faults are detected using hypothesis testing based
methods, while the incipient faults are diagnosed by applying parameter estimation based methods.
A complete list of the methods used for the diagnosis of the selected faults is shown in Table 9.1.

Component Fault Fault Diagnosis Method

Pitch sensor Biased output Diagnosis of unbalance in rotor plane

Pitch actuator

High air content in oil
Multiple-model parameter estimation

Pump wear
Hydraulic leakage CUSUM test
Valve blockage Active fault diagnosis hypothesis testing (PL)
Pump blockage Passive fault diagnosis hypothesis testing (FL)

Generator
Proportional error Peak detection and estimation of 3P frequency

speed sensor
Fixed output Detection of zero measurement noise
No output None (the control system is notified)

Table 9.1: Overview of the selected faults and the used fault diagnosis methods. Notice that different
methods are used for diagnosing valve blockage and pump blockage in the partial load region (PL)
and in the full load region (FL).

Based on the performed verifications, it is concluded that it is possible to design model-based
fault diagnosis algorithms for all the considered faults, even though they are applied on a parameter-
varying system. This confirms that model-based fault diagnosis is relevant with application to wind
turbine control. Note that the designed diagnosis algorithms can be used for condition monitoring
purposes alone or in relation to an active fault-tolerant control system.

Fault-Tolerant Control

In the design of the fault-tolerant control system the faults are divided into two categories: faults
that do not affect the dynamics of the system and faults that affect the dynamics of the system.

The faults that do not affect the dynamics of the system are accommodated by correcting the
measurement and reference signals, based on information provided by the fault diagnosis algorithms.
This enables the fault-tolerant control system to be designed independent of the controller structure
and without affecting the nominal performance of the control system.

Faults that affect the dynamics of the system are accommodated using both active and passive
fault-tolerant control, to enable a comparison of the two methods. The main difference between
these methods is that the active fault-tolerant controller depends on the fault diagnosis algorithms,
while the passive fault-tolerant controller is independent of these algorithms. Both fault-tolerant
controllers are LPV controllers, which are based on a common LPV system description, accounting
for the parameter-varying nature of the wind turbine.

A complete list of the fault-tolerant control methods is shown in Table 9.2. From the table
it is clear that not all faults are accommodated. The effect introduced by pump wear can easily
be handled by applying the method used for accommodating high air content in the hydraulic oil,
where the parameter variations are considered in the design procedure of an active or a passive
fault-tolerant controller. The effects of hydraulic leakage, valve blockage, and pump blockage are
not accommodated, since they compromise the controllability of the wind turbine; hence, the wind
turbine should be shut down.

Verifications of the fault-tolerant controllers show that the signal correcting algorithms allow the
control system to regain nominal performance after fault accommodation. The active and passive
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Component Fault Fault Accommodation Method

Pitch sensor Biased output
Signal correction of measurement
and reference signals

Pitch actuator

High air content in oil Active and passive fault-tolerant LPV control
Pump wear

None
Hydraulic leakage
Valve blockage
Pump blockage

Generator
Proportional error Signal correction of measurement signal

speed sensor
Fixed output Signal correction of measurement signal (PL)
No output Active and passive fault-tolerant LPV control (FL)

Table 9.2: Overview of the selected faults and the used fault-tolerant control methods. Notice that
different methods are used for accommodating a fixed or no output from the generator speed sensor
in the partial load region (PL) and in the full load region (FL).

fault-tolerant LPV controllers show improved performance compared to the reference controller
in both the fault-free and faulty scenarios, considering a fixed generator speed measurement and
increased air content in the hydraulic oil of the pitch system.

It is considered that the active fault-tolerant controller is suited for controlling the wind turbine
in case of high air content in the oil, but that the passive fault-tolerant controller is preferable when
the generator speed measurement is unavailable, since this effect dominates the control problem
resulting in similar performance of both controllers. Generally, the active fault-tolerant controller
approach show slightly better performance, since it is adapted to the condition of the system, by
exploiting information from the fault diagnosis algorithms.

Overall Conclusion

Based on the results obtained in the project, it is concluded that the reliability of wind turbines
can be improved by applying fault diagnosis and fault-tolerant control. This is possible since the
fault-tolerant capabilities allow wind turbines to continue operation in cases of sensor and actuator
faults. Especially for incipient faults, the developed fault-tolerant control system benefits from its
model-based approach, which allows faults to be accommodated based on parameter estimates. This
improves the performance of the wind turbine control system in terms of minimizing mechanical
loads and increasing efficiency.

With respect to handling multiple simultaneous faults, the integration test in Chapter 8 confirms
that the control system is capable of controlling the wind turbine even though it is exposed to
multiple simultaneous faults. This is a consequence of the common structure used for the fault
diagnosis algorithms, which allows the diagnosis algorithms to maintain operation by exploiting a
fault-corrected state estimate.

Limitations and Recommendations for Future Work

In order to make the developed algorithms applicable on real wind turbines, some further work
have to be conducted, to guarantee that the algorithms perform satisfactory. This work should
include an investigation of the robustness of the algorithms towards the unmodeled phenomena.
These are expected to originate primarily from the unmodeled aerodynamics and the simplified
blade model, since a static aerodynamic model is used and since the blades are assumed to be stiff.
These simplifications may affect the designed diagnosis algorithms negatively, since the unmodeled
modes may disturb the fault diagnosis system.

For future work, the recommendation is to exploit model-based approaches for fault diagnosis
purposes. Model-based fault diagnosis enables accommodation of incipient faults, in contrast to
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the present signal-based approaches, since parameter estimation is possible. This may allow wind
turbines to continue operation in situations where they are currently being shut down.

With respect to fault-tolerant control, the choice between active and passive fault-tolerant ap-
proaches is problem-specific. It is recommended to utilize an active fault-tolerant controller, when
this allows significantly improved performance compared to a passive fault-tolerant controller. This
is expected to happen in situations where a fault causes severe changes in the dynamics of the
system and where a reliable diagnosis system exists. Otherwise, it is recommended to apply passive
fault-tolerant controllers, since they have no risk of making wrong decisions.
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[Köse and Jabbari, 1997] I. Emre Köse and Faryar Jabbari. Control of LPV Systems with Partly-
Measured Parameters. In Proceedings of the 36th Conference on Decision and Control, pages
972–977, San Diego, Califomia USA, December 1997.

[Liao et al., 2003] Fang Liao, Jian Liang Wand, and Guang-Hong Yan. Reliable H2 Static Output-
Feedback Tracking Control Against Aircraft Wing/Control Surface Impairment. In Proceedings
of International Conference on Physics and Control 2003, pages 112–117, St. Petersburg, Russia,
August 2003.

Page 128

http://static.howstuffworks.com/gif/wind-power-horizontal.gif


Bibliography

[Niemann and Stoustrup, 2005a] H. Niemann and J. Stoustrup. An Architecture for Fault Tolerant
Controllers. International Journal of Control, 78(14):1091–1110, September 2005.

[Niemann and Stoustrup, 2005b] H. Niemann and J. Stoustrup. Passive fault tolerant control of a
double inverted pendulum - A case study. Control Engineering Practice, 13(8):1047–1059, August
2005.

[Østergaard et al., 2007] K.Z. Østergaard, P. Brath, and J. Stoustrup. Estimation of effective wind
speed. Journal of Physics: Conference Series, 75, August 2007.

[Peeters, 2006] Joris Peeters. Simulation of dynamic drive train loads in a wind turbine. PhD
thesis, Katholieke Universiteit Leuven, 2006.

[Quality Associates International, 2008] Quality Associates International. Process FMEA reference
card, 2008.
http://www.quality-one.com/files/downloads/PFMEArefcard.pdf.

[Ribrant, 2006] Johan Ribrant. Reliability performance and maintenance - A survey of failures in
wind power systems. Master’s thesis, KTH School of Electrical Engineering, 2006.

[The Encyclopedia of Alternative Energy and Sustainable Living, 2005] The Encyclopedia of Al-
ternative Energy and Sustainable Living. Wind Turbine, 2005.
http://www.daviddarling.info/encyclopedia/W/AE_wind_turbine.html.

[Thiringer and Petersson, 2005] Torbjörn Thiringer and Andreas Petersson. Control of a Variable-
Speed Pitch-Regulated Wind Turbine. Technical report, Chalmers University of Technology,
2005.

[van der Hooft and van Engelen, 2004] E.L. van der Hooft and T.G. van Engelen. Estimated Wind
Speed Feed Forward Control for Wind Turbine Operation Optimisation. Technical report, Energy
research Centre of the Netherlands, November 2004.

[Vijayaraghavan, 2003] Giridharan Vilangadu Vijayaraghavan. A Taxonomy of E-commerce Risks
and Failures. Master’s thesis, Florida Institute of Technology, 2003.

[Wei and Verhaegen, 2008] Xiukun Wei and Michel Verhaegen. Fault Detection of Large Scale
Wind Turbine Systems: A Mixed H∞/H− Index Observer Approach. In Proceedings of 16th
Mediterranean Conference on Control and Automation, pages 1675–1680, Ajaccio, France, June
2008.

[Wind Energy News, 2007] Wind Energy News. Wind Energy is the World’s Fastest Growing
Energy Source, 2007.
http://windenergynews.blogspot.com/2007/02/wind-energy-is-worlds-fastest-growing.
html.

[Zhang and Jiang, 2003] Youmin Zhang and Jin Jiang. Bibliographical Review On Reconfigurable
Fault-Tolerant Control Systems. In Proceedings of the 5th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes, pages 265–276, Washington, D.C., USA, June
2003.

Page 129

http://www.quality-one.com/files/downloads/PFMEArefcard.pdf
http://www.daviddarling.info/encyclopedia/W/AE_wind_turbine.html
http://windenergynews.blogspot.com/2007/02/wind-energy-is-worlds-fastest-growing.html
http://windenergynews.blogspot.com/2007/02/wind-energy-is-worlds-fastest-growing.html




ASeverity and Oc-
currence Analysis

In this appendix severity and occurrence indices are provided for the failures, which can happen
to the sub-models introduced in Figure 4.2 on Page 26. The appendix therefore provides the
background for the selected component faults in Section 4.3. The occurrence indices are derived
from the surveys presented in [Ribrant, 2006] and [DOWEC team, 2002], while severity indices are
determined based on the simulation results included in the following sections.

In this appendix each sub-model is analyzed separately. Consistently, plots in two colors are
utilized, where blue lines indicate simulation results of the fault-free scenario and red lines represent
results with injection of faults. To utilize the same time axis at the shown simulations, the faults
are injected appropriately fast, such that unrealistic phenomena do not occur even when incipient
faults are considered. Notice that no fault handling exists in the nominal controller used in the
simulations. Furthermore, only a selected number of simulation results are provided in this appendix
to limit the extent of the analysis.

A.1 Severity and Occurrence Analysis of Rotor Sub-Model

The end-effects for the faults in the rotor sub-model are shown in Table A.1 with associated severity
and occurrence indices. It should be remarked that it is difficult to assign a certain occurrence index
to component faults such as a biased sensor output, dirt on blades, and pump wear, since they are
always present to some extent. Similar concerns exist in connection to assigning severity numbers.
For instance, a small bias on a sensor is very likely but has only a minor influence on the system,
whereas a larger bias on the sensor is less likely but is more severe. The tables in this appendix
however only state a single value for both the occurrence index and the severity index for a given
fault, which should therefore be related to the fault sizes injected in the simulations utilized in this
appendix.

Effect Fault O S

Unbalanced rotation

Pitch sensor (1,2,3) - Biased output 3 6
Pitch sensor (1,2,3) - Fixed output 2 9
Pitch sensor (1,2,3) - Random output 1 8
Pitch sensor (1,2,3) - No output 3 9
Blade (1,2,3) - Damaged blade tip 3 6

Chanced efficiency Blade (1,2,3) - Dirt on blades 10 3

Changed dynamics
Pitch actuator (1,2,3) - Pump wear 4 5
Pitch actuator (1,2,3) - Hydraulic leakage 3 8
Pitch actuator (1,2,3) - High air content in oil 5 5

Out of control
Pitch actuator (1,2,3) - Valve blockage 3 8
Pitch actuator (1,2,3) - Pump blockage 2 9

Table A.1: Assignment of severity (S) and occurrence (O) indices for the rotor sub-model.

According to Table A.1 the severity of one end-effect may depend heavily on the component
fault which causes the failure: a particular end-effect may have multiple degrees of severity. In the
case of an unbalanced rotation of the rotor, the severity depends on the mutual difference between
the blades and their individual aerodynamic properties. In this case a biased output from a pitch
sensor is likely to cause a small pitch offset on a blade, whereas a random output or no output
of the sensor cause an irregular pitching of one particular blade and therefore introduces a much
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larger unbalance in the rotor plane. From the simulations in the following subsections the specific
severity indices are estimated and inserted in the table.

As most of the faults considered in connection with the rotor sub-model are related to the
pitching mechanism, simulation results are only conducted for the full load region, since the pitch
system is only activated in this region. Therefore, simulations used in the next subsections are
conducted using a mean wind speed of 16 m/s.

Unbalanced Rotation

Blade damage and incorrect pitching of a blade cause asymmetry in the forces affecting the rotor;
hence, introducing an unbalanced rotation, which is assumed to increase mechanical loads on the
rotor and tower. Potentially, an unbalanced rotation can bring the system to a hazardous situation
due to the increased loads on the structure.

Biased output from a pitch sensor equal to -2◦ is simulated to obtain the results shown in
Figure A.1, where the bias is injected linearly between t = 30 s and t = 40 s. From the simulation it
is noticed that power production is not affected much, while the tracking of the generator speed is
affected a little due to the altered operation area of the aerodynamics. Furthermore, the asymmetric
stress caused by different forces affecting the blades is assumed to increase structural loads on the
rotor significantly. This is especially apparent from the tower acceleration shown in Figure A.1.
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Figure A.1: Evaluation of a biased pitch angle with linear injection of the fault taking place between
t = 30 s and t = 40 s, whereupon a bias of -2◦ is added to the measurement of the pitch angle of
Blade 3.

Fixed output from a pitch sensor is the basis of the simulation results shown in Figure A.2.
A fixed output propagates to the pitch controller that outputs a wrong signal to the actuator.
Dependent on the values of the reference signal and the fixed output of the sensor, this makes
the pitch angle pitch either towards its maximum or minimum position. The conclusion of the
simulation is that structural loads are dangerously increased, which is obvious from the tower
acceleration plotted in the figure. Eventually, it could cause severe damages to the wind turbine
and the surroundings.

Random output from a pitch sensor results in a pitch angle that moves towards the upper
or lower limits of its operational area, dependent on the reference signal to the controller in relation
to the average value of the measurement. This causes a high-severity end-effect, since the mutual
difference in the pitch angles rapidly increases and introduces unbalance to the rotor.

No output from a pitch sensor causes behavior of the system identical to the case of a fixed
output from the sensor.
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Figure A.2: Evaluation of fixed value from a pitch sensor with fault injection initiated at t = 30 s
on the pitch sensor associated with Blade 3.

Damaged blade tip can happen e.g. due to a lightning stroke, according to [Kithil, 2008]. A
damaged blade changes its aerodynamic properties, since the blade is shortened while the broken
blade tip increases drag and turbulence. A simplification of these effects, utilized in this analysis,
is to decrease the length of the blade in the simulation and maintain the fault-free aerodynamic
properties. Therefore, the results in Figure A.3 are obtained from a simulation where the length of
a blade is instantaneously reduced to 90% of its original length at t = 30 s.

The simulation shows that power production is only negligible affected, but that the asymmetric
load of the rotor is assumed to increase structural loads, since different forces act on the blades and
since the tower acceleration is increased. The conclusion is similar to the case of a biased output
from a pitch sensor, although the effect of a damaged blade tip is less likely.
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Figure A.3: Evaluation of damaged blade tip with fault injection initiated at t = 30 s where the
length of Blade 3 is reduced by 10%.
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Chanced Efficiency

Research has shown that the Cp-surface of a wind turbine changes over time [Johnson et al., 2006].
The consequence is that less power is produced in the partial load region due to decreased efficiency
of the aerodynamics. Moreover, the optimal point of the power coefficient curve may change as well,
resulting in even lower efficiency of the wind turbine. The changes are caused by debris building
up on the blades and depend on the weather and the location of the wind turbine. For this reason
the blades are cleaned occasionally to reduce the effect of the debris.

It seems inappropriate to specify a certain occurrence level of debris building up on the blades
in Table A.1 on Page 131, since debris on the blades are always present to some extent. In return,
the severity is considered minor, as the wind turbine is able to perform its objectives, but at a lower
efficiency. Note however that decreased efficiency of the wind turbine may be considered a serious
problem by the owner of the wind turbine.

Changed Dynamics

The dynamics of the pitch system can change due to wear of its components and may cause de-
creasing pressure in the hydraulic system caused by pump wear or hydraulic leakage. Furthermore,
the air content of the hydraulic oil can increase when actuating the pitch system, which changes its
transient response. Notice that the effects of increased air content and low pressure are evaluated by
studying the effects on the phase and gain margins of the closed-loop system, while the worst-case
scenarios are simulated at last.

Pump wear is an incipient fault, which is assumed to cause the pressure to decrease towards
a level of 75% over a period of approximately 20 years.

Hydraulic leakage results in a decreased hydraulic pressure which, once occurred, worsens as
time passes and eventually disables the possibility of using the pitch actuators.

High air content in oil causes overshoot in the transient response due to the higher elasticity
of the hydraulic oil.

Step responses of the pitch system in certain conditions are illustrated in Figure A.4 with model
parameters provided in Table A.2 supplied by kk-electronic a/s.
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Figure A.4: Step responses of hydraulic pitch model under different conditions.

hhhhhhhhhhhhhhhAir content
Pressure

Normal (100%) Low (50%)

Normal (7%) ωn = 11.11 rad/s, ζ = 0.6 ωn = 3.42 rad/s, ζ = 0.9
High (15%) ωn = 5.73 rad/s, ζ = 0.45 ωn = 2.5 rad/s, ζ = 0.45

Table A.2: Parameters of the pitch system under different conditions.

In Figure A.4 the significance of the changed parameters of the pitch system is evaluated for
the open loop system. When closing the loop, by applying the reference controller described in
Appendix C, stability of the system is no longer guaranteed due to the altered parameter values.
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In order to evaluate stability, the gain and phase margins of the controllers are evaluated in the
extremity of their regions at different conditions of the pitch system. These margins appear in
Table A.3.

Controller
Wind Normal air content High air content Normal air content
Speed Normal pressure Normal pressure Low pressure

12 m/s
Gm = 14.8 dB Gm = 8.50 dB Gm = 10.0 dB

Speed Pm = 76.8◦ Pm = 70.1◦ Pm = 43.5◦

Controller 1
15 m/s

Gm = 6.03 dB Gm = -0.25 dB Gm = 1.29 dB
Pm = 50.0◦ Pm = -2.21◦ Pm = 5.39◦

15 m/s
Gm = 13.3 dB Gm = 6.98 dB Gm = 8.09 dB

Speed Pm = 71.2◦ Pm = 62.36◦ Pm = 33.7◦

Controller 2
25 m/s

Gm = 6.02 dB Gm = -0.25 dB Gm = 1.30 dB
Pm = 50.0◦ Pm = -2.29◦ Pm = 5.48◦

Table A.3: Gain and phase margins of the control system evaluated in the extremity of its regions,
at different conditions of the pitch system.

According to the table the closed-loop system becomes unstable at certain wind speeds due to
high air content in the hydraulic oil combined with the parameter values of the aerodynamic model
at these wind speeds. At low pressure in the pitch system the controlled wind turbine appears to
have very small stability margins, and it can be concluded that even minor model uncertainties
or parameter deviations can bring the system in an unstable state, which results in a very high
severity number.

A simulation of the wind turbine system imposed by high air content in the hydraulic oil is shown
in Figure A.5. The considered air content level is equal to 15% and is expected to happen seldom,
whereas it is expected that the air content often exceeds the nominal value of 7%, marginally.
It is clear from the figure that the system tends to oscillate at t = 125 s which increases tower
accelerations.
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Figure A.5: Evaluation of high air content in hydraulic oil of pitch system with fault injected linearly
between t = 30 s and t = 40 s, whereupon the parameters in entry (1, 2) of Table A.2 are utilized
in the model of the pitch system.

The simulation result for a low pressure in the pitch system is shown in Figure A.6. It is
assumed that the simulated pressure level of 50% can only arise from a leakage in the system and
is therefore assumed to occur seldom. By comparison, it is assumed that a worn pump can only
reduce the pressure level to about 75% during the lifetime of the wind turbine, according to kk-
electronic a/s. The figure shows that the system invokes behaviors similar to those stated above
for high air content, where in this case oscillations of the pitch angle appear around t = 150 s.
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The severe acceleration of the tower indicates that structural loads are increased. Furthermore, the
tracking ability of the generator speed reference is degraded.
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Figure A.6: Evaluation of low pressure of pitch system with fault injection initiated at t = 30 s
where parameters in entry (2, 1) of Table A.2 are utilized in the model of the pitch system.

Out of Control

In the case of a valve blockage the associated pitch actuator will be inoperable, whereas the entire
pitch system will fail due to a pump blockage.

Valve blockage brings a pitch actuator in a locked position with effects shown in Figure A.7.
The fault corresponds to a blockage of Valve 3 in Figure 3.14 on Page 20. As the mutual offset
between the pitch angles increases, so does the mutual difference between the forces on the blades,
which affects the hub and tower. Therefore, the presence of the fault is safety critical and has
a very high severity. For the same reason kk-electronic a/s shut down a wind turbine, using an
independent accumulator, if the mutual pitch angle offset exceeds 5◦.
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Figure A.7: Evaluation of valve blockage with fault injection initiated at t = 30 s where the pitch
angle of Blade 3 is fixed.

Pump blockage prevents the blades from pitching, which is the situation simulated in Fig-
ure A.8. The fault corresponds to a blockage of Valve 4 in Figure 3.14 on Page 20. The simulation
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reveals overspeed and increased power fluctuations in the faulty case. As the wind speed decreases
the rotor is decelerated and the power output goes beneath 4.8 MW due to the limited generator
torque and the inefficient aerodynamics.

The outcome of the fault is critical as the trajectory followed by the wind turbine is not decided
by the controller, but left in the hands of the stochastic wind speed. This leads to a dangerous
situation when the wind speed is comparatively high, while the blades are not pitched sufficiently
to keep the aerodynamic torque at the nominal value.
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Figure A.8: Evaluation of pump blockage with fault injection initiated at t = 30 s where all pitch
actuators become inoperable.

A.2 Severity and Occurrence Analysis of Drive Train Sub-
Model

The end-effects for the component faults in the drive train sub-model are shown in Table A.4 with
determined severity and occurrence indices.

Effect Fault O S

Non-uniform rotation
High-speed shaft - Misalignment 2 4
Low-speed shaft - Misalignment 2 4
Gearbox - Tooth wear 2 5

Decreased efficiency
High-speed shaft - Bearing wear 5 2
Low-speed shaft - Bearing wear 6 2

Speed offset Generator speed sensor - Proportional error 4 4

High speed
Generator speed sensor - Fixed output 2 9
Generator speed sensor - No output 3 9

Low speed
Generator speed sensor - Fixed output 2 8
Generator speed sensor - No output 3 8

Random speed Generator speed sensor - Random output 1 9

Table A.4: Assignment of severity (S) and occurrence (O) indices for the drive train sub-model.

The fault analysis of the drive train sub-model considers both mechanical faults in the drive
shafts and the gearbox, and faults associated with the generator speed sensor that measures the
angular velocity of the high-speed shaft. In this analysis, however, only faults in the generator
speed sensor are simulated, as the modeling of mechanical faults in the gearbox and bearings
require models of higher detail than the one provided in this thesis. Moreover, it should be pointed
out that diagnostic systems already exist, which are able to detect and identify problems from
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vibration sensors located around the gearbox and the bearings. However, these methods are signal-
based rather than model-based. For a descriptions of how to model the dynamic behavior of a
complex drive train in a wind turbine consult [Peeters, 2006]. The severity indices for the faults
that are not simulated are rough guesses, since the model gives no details about it.

The simulations referred to throughout the next subsections are conducted using a mean wind
speed of 10 m/s when analyzing end-effects in the partial load region while a mean wind speed of
16 m/s is utilized in the simulations for the full load region.

Non-Uniform Rotation

Misalignment in the mechanical structure may happen in the assembling process of the transmission
or arise during operation, e.g. may the generator sink over time due to aging of its vibration damper
[Ribrant, 2006, p. 55]. Misalignments could bring the system to run incorrectly and will generate
vibrations that may result in a breakdown of the mechanical system. Gears and bearings seldom
break down abruptly, but are subjects to a wear process [Ribrant, 2006, p. 56].

Decreased Efficiency

Damaged bearings often come as a direct result of improper lubrication and lack of routine main-
tenance and cause increased friction, mechanical oscillations, and decreased efficiency of the drive
train. [Gill, 2008].

Speed Offset

Smudge on the disc surface of the speed encoder may introduce an error proportional to the rota-
tional speed, due to some tracks on the disc being covered by dust and dirt. On the other hand,
high-frequency mechanical vibrations may result in some tracks being counted several times during
a single rotation. This creates an offset in the measured speed from the encoder, which is assumed to
be proportional to the absolute speed, as mechanical vibrations increase with the rotational speed.
However, the latter is typically managed internally in a fault correction scheme in the sensor.

A proportional error of the generator speed sensor has different effects in the partial load and
full load regions, and further depends on whether the error causes a too low or too high reading.
The simulation results related to the partial load region are found in Figure A.9, while simulation
results for the full load region follow in Figure A.10. In both cases fault injection happens at t = 30 s
where the gain of the speed sensor is linearly reduced from 1 to 0.96 during a minute to reflect that
some tracks are not being counted.
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Figure A.9: Evaluation of proportional error of the generator speed sensor in the partial load region
with fault injected linearly between t = 30 s and t = 90 s, whereupon the gain of the speed sensor is
reduced from 1 to 0.96. Note that ∆Eg =

∫ t
0
(Pg,nominal(τ)− Pg,faulty(τ))dτ .
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A.2 Severity and Occurrence Analysis of Drive Train Sub-Model

In the partial load region the fault propagates to the set-point value of the generator torque
controller, causing a deviation from the nominal operating trajectory. This involves no safety risks
but leads to lower efficiency of the wind turbine, which is evaluated in the lower right subplot of
Figure A.9, where the loss in energy production is illustrated.

The considered example of a faulty speed measurement in the full load region results in over-
speed of the generator shaft. This shrinks the safety speed margin and makes the rotational speed
approach the critical speed limit, which results in a shutdown of the wind turbine when reached.
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Figure A.10: Evaluation of proportional error of the generator speed sensor in the full load region
with fault injected linearly between t = 30 s and t = 90 s, whereupon the gain of the speed sensor is
reduced from 1 to 0.96.

High and Low Speed

Too high or too low rotational speed comes as a result of a fixed output or no output from the
generator speed sensor.

Fixed output from the generator speed sensor is evaluated for the partial load region in
Figure A.11 while results for the full load region follow in Figure A.12.

In the partial load region the fixed measurement of the generator speed implies a constant
generator torque, as seen in Figure A.11. If the wind speed increases, once the fault is injected, the
speed of the rotor increases without any influence of control. However, if the wind speed decreases,
the rotor will decelerate and come to a stop if the wind speed becomes low enough. Hence, the
wind turbine is inoperable.

Under full load operation a fixed output propagates to the speed controller and causes improper
pitching of the blades. Dependent on the fixed value from the sensor, in comparison to the constant
set-point value to the generator speed, the pitch angle either converges towards the minimum or
maximum pitch angle, or it stays at a constant value. This situation is critical to the safety of the
wind turbine due to the possibility of overspeed.

No output from the generator speed sensor implies similar effect as mentioned above,
although a notification of the fault is available to the control system, since the sensor does not
provide an output.

Random Speed

If the generator speed sensor outputs a random output, the system is brought into a hazardous
situation since the wind turbine becomes out of control; high loads are introduced by a fluctuating
pitch angle in the full load region or fluctuating generator torque in the partial load region.
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Figure A.11: Evaluation of fixed value from generator speed sensor in the partial load region with
fault injection initiated at t = 30 s where the output of the speed sensor is fixed. Note that
∆Eg =

∫ t
0
(Pg,nominal(τ)− Pg,faulty(τ))dτ .
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Figure A.12: Evaluation of fixed value from generator speed sensor in the full load region with fault
injection initiated at t = 30 s where the output of the speed sensor is fixed at a value equal to the
reference value to the speed controller.

A.3 Severity and Occurrence Analysis of Power System Sub-
Model

The end-effects for the faults in the power system sub-model are shown in Table A.5 with the
respective severity and occurrence indices.

As discussed in Section 3.10 the converter torque and output power are not measured directly,
but are estimated based on measurements of flux, current, and voltage inside each converter. There-
fore, it is assumed that these estimates are coherent, such that a fault in one of the estimates results
in a fault in the other estimate as well. For example, a biased generator torque measurement of
a converter is assumed to imply a biased measurement of the output power for this particular
converter. Notice that there are four converters as discussed in Section 3.6.

Power Offset

In the partial load region, a biased measurement of the converter torque has similar consequences
as an offset in the generator speed evaluated in Figure A.9. The effect is that the wind turbine
does not operate along the nominal operating trajectory; hence, the efficiency of the wind turbine
is decreased.
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A.3 Severity and Occurrence Analysis of Power System Sub-Model

Effect Fault O S

Power offset
Converter torque sensor (1,2,3,4) - Biased output

3 4
Power sensor (1,2,3,4) - Biased output

High power

Converter torque sensor (1,2,3,4) - Fixed output
2 7

Power sensor (1,2,3,4) - Fixed output
Converter torque sensor (1,2,3,4) - No output

3 7
Power sensor (1,2,3,4) - No output

Low power

Converter (1,2,3,4) - Converter failure 2 7
Converter torque sensor (1,2,3,4) - Fixed output

2 7
Power sensor (1,2,3,4) - Fixed output
Converter torque sensor (1,2,3,4) - No output

3 7
Power sensor (1,2,3,4) - No output

Random power
Converter torque sensor (1,2,3,4) - Random output

1 7
Power sensor (1,2,3,4) - Random output

Changed dynamics Converter (1,2,3,4) - Converter failure 2 1

Table A.5: Assignment of severity (S) and occurrence (O) indices for the power system sub-model.

In the full load region, a negative bias on the measured output power induces a biased output
power, which is larger than the rated output power and will put higher loads on the wind turbine
components.

High and Low Power

In contrast to the power offset described above, a too high or too low output power is different, since
it results in a completely different output power, and not just an offset compared to the fault-free
scenario. If the failure is caused by a fixed output or no output from a converter torque sensor and
power sensor, the result will be a fluctuating power. Also, failure of a single converter can limit the
possible output power due to the limited converter torque while operating without one of the four
converters.

Fixed outputs from a converter torque sensor and power sensor is evaluated in Fig-
ure A.13 for the partial load region, while results corresponding to operation in the full load region
are shown in Figure A.14. The conclusion is that the power production is compromised by the os-
cillatory torque from the converter with the faulty sensor. Furthermore, it is assumed that fatigue
loads in the drive train are increased significantly, as the changing generator torque creates larger
torsion in the gearbox.

No outputs from a converter torque sensor and power sensor implies a similar effect
as mentioned above, although a notification of the fault is available to the control system, since no
measurements are outputted.

Failure of a converter makes its output drop to zero. By simulation, the fault is injected
progressively during a five seconds interval starting at t = 30 s obtaining the results shown in
Figure A.15. The conclusion is that in the full load region the rated output of the wind turbine
cannot be reached, even though the three remaining converters deliver their maximum torque.

At the lower wind speeds in the partial load region, where the reduced maximum converter
torque is not an issue, the situation in the faulty case does not differ significantly from the fault-free
case. Only in the case where the three converters reach their slew rate, since they are heavily
loaded, the output is different from the situation where every converter functions satisfactory.

Random Power

Random output from the sensors of a converter lead to a fluctuating generator torque which increases
torsion in the drive train.
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Figure A.13: Evaluation of fixed outputs from the sensors of a converter in the partial load region
with fault injection initiated at t = 30 s where the outputs of the converter torque sensor and power
sensor are fixed for Converter 4.
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Figure A.14: Evaluation of fixed outputs from the sensors of a converter in the full load region with
fault injection initiated at t = 30 s where the outputs of the converter torque sensor and power
sensor are fixed for Converter 4.
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Figure A.15: Evaluation of failed converter with fault injected smoothly between t = 30 s and
t = 35 s, whereupon the output of the failed converter drops to zero.
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A.3 Severity and Occurrence Analysis of Power System Sub-Model

Changed Dynamics

Changed dynamics refers to the fact that when a single converter fails, the dynamics of the converters
as a single unit change. This results in slower dynamics due to a reduced slew rate of the joint
converter system. However, when utilizing the considered parameters of the converters, the problem
seems to be rather theoretical, since the variation in the generator torque comes no way near the
slew rate.
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BLinearization

Linearization of the plant is performed to make the use of linear design methods possible in this
thesis. Even the extended Kalman filters utilized in this project, which exploit the non-linear
model directly, also use linearized models to propagate the covariance matrices. The linearization
procedure is performed using the steps shown below [Andersen and Pedersen, 2007, p. 60].

1. Determine the operating point equation by solving the non-linear equation in a stationary
point.

2. Replace the variables with operating point values plus small signal values, i.e. x(t) = x̄+x∆(t),
and approximate the non-linear expressions with first order Taylor approximations.

3. Subtract the operating point equation from the Taylor approximation. The result is a linear
equation in small signal values.

In order to set up a linear model of the wind turbine system, two equations for the aerodynamics
have to be linearized. Furthermore, the output power equation is linearized in order to be included
in an output equation of the system. Linearizing the expressions is accomplished in the next three
sections. Notice that this appendix is inspired by [Esbensen et al., 2008, pp. 121-123]

B.1 Aerodynamic Torque Applied to the Rotor

The purpose of this section is to linearize the equation of the aerodynamic torque that is applied
to the rotor. For convenience the equation describing the torque acting on the rotor, Eq. (3.9) on
Page 15, is repeated below.

Ta(t) =
1

2ωr(t)
ρAv3

r (t)Cp (λ(t), β(t)) [Nm] (B.1)

1. To set up a linear expression of the torque, firstly, the operating point equation is derived in
a stationary point. A bar indicates the operating point value of the variable:

T̄a =
1

2ω̄r
ρAv̄3

rCp

(
λ̄, β̄

)
[Nm] (B.2)

2. In order to form linearized expressions, a Taylor approximation of each non-linear part of
Eq. (B.1) is derived and each linear part is replaced with an operating point value plus a small
signal value. The equations are set up below.

Ta(t) = T̄a + T∆
a (t)

= T̄a +
∂Ta

∂ωr
ω∆

r (t) +
∂Ta

∂vr
v∆

r (t) +
∂Ta

∂β
β∆(t)

∂Ta(t)
∂ωr

≈ 1
2
ρAv̄3

r

-
1
ω̄2

r

Cp

(
λ̄, β̄

)
+

1
ω̄r

∂Cp (λ(t), β(t))
∂ωr β(t) = β̄

ωr(t) = ω̄r
vr(t) = v̄r


∂Ta(t)
∂vr

≈ 1
2ω̄r
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3v̄2
rCp

(
λ̄, β̄

)
+ v̄3

r

∂Cp (λ(t), β(t))
∂vr β(t) = β̄

ωr(t) = ω̄r
vr(t) = v̄r


∂Ta(t)
∂β

≈ 1
2ω̄r

ρAv̄3
r

∂Cp (λ(t), β(t))
∂β

β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r
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Linearization

By combining the previous equations, a new equation for Ta(t) can be set up as shown in Eq. (B.3).

Ta(t) =
1
2
ρAv̄3

r

-
1
ω̄2

r
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λ̄, β̄

)
+

1
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∂ωr β(t) = β̄

ωr(t) = ω̄r
vr(t) = v̄r

ω∆
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1
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+
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ρAv̄3

rCp
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λ̄, β̄

)
[Nm] (B.3)

3. To obtain a linear system equation the operating point equation, Eq. (B.2), is subtracted
from Eq. (B.3). The result shown in Eq. (B.4) is a first order differential equation, which is used in
the state space model.

T∆
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β(t) = β̄
ωr(t) = ω̄r
vr(t) = v̄r

β∆(t) [Nm] (B.4)

B.2 Thrust Acting on the Rotor

The purpose of this section is to linearize the equation describing the thrust acting on the rotor.
For convenience the equation describing the thrust, Eq. (3.10) on Page 15, is repeated below.

Ft(t) =
1
2
ρAv2

r (t)Ct (λ(t), β(t)) [N] (B.5)

1. To set up a linear expression of the thrust, firstly, the operating point equation is derived in
a stationary point:

F̄t =
1
2
ρAv̄2

rCt

(
λ̄, β̄

)
[N] (B.6)

2. In order to form linearized expressions, a Taylor approximation of each non-linear part of
Eq. (B.5) is derived and each linear part is replaced with an operating point value plus a small
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B.2 Thrust Acting on the Rotor

signal value. The equations are set up below.

Ft(t) = F̄t + F∆
t (t)

= F̄t +
∂Ft
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By combining the previous four equations, a new equation for Ft(t) can be set up as shown in
Eq. (B.7).
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3. To obtain a linear system equation the operating point equation, Eq. (B.6), is subtracted
from Eq. (B.7). The result shown in Eq. (B.8) is a first order differential equation, which is used in
the state space model.
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Linearization

B.3 Output Power

The purpose of this section is to linearize the power produced by the generator. For convenience
the equation describing the output power, Eq. (3.28) on Page 20, is repeated below.

Pg(t) = ηgωg(t)Tg(t) [W] (B.9)

1. To set up a linear expression, firstly, the operating point equation is derived in a stationary
point:

P̄g = ηgω̄gT̄g [W] (B.10)

2. In order to form linearized expressions, a Taylor approximation of each non-linear part of
Eq. (B.9) is derived and each linear part is replaced with an operating point value plus a small
signal value. The equations are set up below.

Pg(t) = P̄g + P∆
g (t)

ηgωg(t)Tg(t) ≈ ηgω̄gT̄g + ηgω̄gT
∆
g (t) + ηgT̄gω

∆
g (t)

By combining the previous two equations, a new equation for Pg(t) can be set up as shown in
Eq. (B.11).

P̄g + P∆
g (t) = ηgω̄gT̄g + ηgω̄gT

∆
g (t) + ηgT̄gω

∆
g (t) [W] (B.11)

3. To obtain a linear system equation the operating point equation, Eq. (B.10), is subtracted
from Eq. (B.11). The result shown in Eq. (B.12) is a first order differential equation, which is used
in the state space model.

P∆
g (t) = ηgω̄gT

∆
g (t) + ηgT̄gω

∆
g (t) [W] (B.12)
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CReference Controller

In this appendix the design of a reference controller for the wind turbine is described. The controller
is supposed to approximate the configuration of an existing control system, and is designed based
on classical principles. Note that the structure of the reference controller is specified in cooperation
with kk-electronic a/s and that this appendix is based on [Esbensen et al., 2008, pp. 45-59].

As stated in Section 2.2 the nominal operating trajectory of the wind turbine is created to satisfy
different demands below and above a certain wind speed. Since the classical control approach deals
only with SISO transfer functions, and because several references exist, the control task is split into
the design of multiple separate controllers.

For an overview of the structure of the classical controller refer to Figure 2.4 on Page 8. The
design of the classical controller is divided into four main design steps, corresponding to the names
of the sections in this appendix. These are listed below to provide an overview.

� Controller Operating in Partial Load Operation: Describe the design and verification of
the generator torque controller. This controller operates in the partial load region and should
maximize the energy production while minimizing mechanical stress and actuator usage.

� Controller Operating in Full Load Operation: Describe the design and verification of
the speed controller and power controller. These controllers operate in the full load region
and should track the rated generator speed and limiting the output power.

� Drive Train Stress Damper: Describe the design and verification of the drive train stress
damper. The purpose of the drive train stress damper is to dampen drive train oscillations.

� Bumpless Transfer: Describe the design and verification of the mechanism which eliminates
bumps on the control signals, when switching between the controllers in the partial load and
full load regions.

Notice that the transfer functions derived throughout this appendix have been discretized to
allow implementation of the controllers and filters.

C.1 Controller Operating in Partial Load Operation

At low wind speeds, i.e. in partial load operation, variable-speed control is implemented to track
the optimum point on the Cp-surface for maximizing power output. The speed of the generator is
controlled by regulating the torque on the generator through the generator torque controller. The
purpose of this section is to go through the design of the generator torque controller. Finally, it is
evaluated by simulation.

In partial load operation it is chosen to operate the wind turbine at β = 0◦ since the maximum
power coefficient is obtained at this pitch angle. This means that the highest efficiency is achieved
for:

λopt =
ωr,opt(t)R
vr(t)

[·] (C.1)

where:
R is the rotor radius [m]
vr(t) is the rotor effective wind speed [m/s]
λopt is the tip-speed ratio maximizing the Cp-value for β = 0◦ [·]
ωr,opt(t) is the optimum rotor speed [rad/s]

In order to obtain the optimal tip-speed ratio a method is used, which suggests applying a cer-
tain generator torque as a function of the generator speed. This is described in [Johnson et al.,
2006, p. 74] and is referred to as the standard control law for operating variable-speed turbines.
The benefit of this approach is that only the measurement of the rotor speed or generator speed is
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Figure C.1: Generator torque controller for operation in the partial load region, i.e. below the rated
wind speed.

required. When utilizing this approach, the controller structure for partial load operation becomes
as illustrated in Figure C.1, which will become apparent from the following text.

The principle of the standard control law is to isolate the wind speed in the definition of the
tip-speed ratio, Eq. (3.7) on Page 14, and insert it into the expression for the aerodynamic torque,
Eq. (3.9) on Page 15. Hence, an equation can be obtained expressing the required generator torque
based on the maximum power coefficient and the optimal tip-speed ratio. The equation is now
going to be derived. First, the wind speed is isolated:

vr(t) =
ωr(t)R
λ(t)

[m/s] (C.2)

Secondly, this expression is inserted into Eq. (3.9) describing the aerodynamic torque:

Ta(t) =
1

2ωr(t)
ρAv3

r (t)Cp (λ(t), β(t))

Ta(t) =
1
2
ρA

R3

λ3(t)
Cp (λ(t), β(t))ω2

r (t) [Nm] (C.3)

Since the wind turbine includes a transmission system, the gear ratio and friction components of
the drive train have to be considered when determining the generator torque corresponding to a
certain aerodynamic torque. This is however not included in [Johnson et al., 2006, p. 74], and in
order to describe the generator torque only as function of the generator speed, the system has to
be assumed in steady-state, where ω̇r(t) = 0 rad/s2, ω̇g(t) = 0 rad/s2, and ωg(t) = Ngωr(t). By
doing so, Eq. (Eq. (3.19)) and Eq. (3.20) on Page 17 can be rewritten into:

0 = Ta(t)−Kdtθ∆(t)−Brωr(t) [Nm]

0 =
Kdt

Ng
θ∆(t)−Bgωg(t)− Tg(t) [Nm] (C.4)

These equations can be combined into:

Ta(t) = NgTg(t) + (
Br

Ng
+NgBg)ωg(t) [Nm] (C.5)

Inserting Eq. (C.5) into Eq. (C.3) in an optimal point for the power coefficient leads to the control
law dictated by Eq. (C.6). Notice that the equation is based on a steady-state consideration so that
actuator dynamics can also be disregarded by setting Tg,ref(t) = Tg(t).

Tg,ref(t) =
1
2
ρA

R3

N3
gλ

3
opt

Cp,max︸ ︷︷ ︸
K1

ω2
g(t)−

(
Br

N2
g

+Bg

)
︸ ︷︷ ︸

K2

ωg(t) [Nm] (C.6)
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C.2 Controller Operating in Full Load Operation

where:
K1 is the gain of the standard control law [Nm/(rad/s)2]
K2 is a gain compensating for frictions in the drive train [Nm/(rad/s)]

Evaluation of Controller Operating at Partial Load

Figure C.2 shows how the generator torque controller performs. It should be noted from the figure
that in the first part of the simulation the output power becomes larger than the theoretically
Pg,max(t), because kinetic energy from the rotor shaft is converted into electrical energy produced
by the generator. Similar, Pg,max(t) is above the produced power towards the end of the time
series, since the inertia of the rotor has to be accelerated before Pg,max(t) can be matched. This
phenomenon is caused by ignoring dynamics in the calculation of the theoretical maximum power
output.
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Figure C.2: Simulation of the generator torque controller operating below rated wind speed. The
lower subplot compares the power produced by the generator to the theoretical maximum power
output of the wind turbine given the instant wind speed.

The obvious disadvantage of the standard control law is that the optimum point of the Cp-
surface must me known precisely. Even if it is assumed that this information is correct, whenever
the turbine is installed, power optimization still degrades over time as a result of a changing power
coefficient. According to kk-electronic a/s, the maximum power coefficient of the wind turbine
blades reduces in amplitude while the relationship between tip-speed ratio, pitch angle, and Cp-
value also changes over time, e.g. due to debris building up on the blades.

In the next section a description of the controller design for the operation at full load is provided.

C.2 Controller Operating in Full Load Operation

For the high wind speeds, i.e. in full load operation, the desired operation of the wind turbine is to
keep the rotor speed and the generated power at constant values, as described in Section 2.2. The
main idea is to use the pitch system to control the efficiency of the aerodynamics while applying the
rated generator torque. However, in order to improve tracking of the power reference and cancel
steady-state errors on the output power, a power controller is also introduced. Therefore, the
purpose of this section is to go through the design of the speed controller and the power controller.

The structure of the controllers operating above the rated wind speed is shown in Figure C.3.
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Figure C.3: Speed controller and power controller for operation in the full load region, i.e. above the
rated wind speed.

The wind speed is considered the disturbance input to the system. However, higher frequency
components such as the resonant frequency of the drive train are also apparent on the measured
generator speed. Therefore, the measured generator speed is band-stop filtered before it is fed to
the controller, to remove the drive train eigenfrequency from the measurement. This solution is
also found in other wind turbine control schemes to mitigate the effects of drive train oscillations.
The applied notch filter appears from Eq. (C.7) [East and Lantz, 2005, p. 3]. Notice that for
implementation the filter is discretized using zero-order hold.

Hn(s) =
s2 + 2dcω0s+ ω2

0

s2 + 2 1
cω0s+ ω2

0

[·] (C.7)

where:
c and d are filter coefficients; c = 0.1 and d = 5 [·]
Hn(s) is the notch filter [·]
ω0 is the notch frequency of the filter, which must be close to the resonant frequency to

be damped [rad/s]

In the following subsection the design of the speed controller is described and evaluated. Afterwards,
in the succeeding subsection, the power controller is presented.

Speed Controller

The speed controller is implemented as a PI controller that is able to track the speed reference and
cancel possible steady-state errors on the generator speed. The speed controller is on the form:

Ds(s) = Kps

(
1 +

1
Tis · s

)
[◦/(rad/s)] (C.8)

where:
Ds(s) is the PI controller to ensure that the generator speed follows the speed reference

[◦/(rad/s)]
Kps is the proportional gain of Ds(s) [◦/(rad/s)]
Tis is the reset rate of Ds(s) [s]

Figure C.4 shows how the partial derivative of Ta(t) with respect to β varies along the nominal
operating trajectory. As a consequence, a gain scheduling scheme is applied to the speed controller,
dividing the full load region into two control regions.

Page 152



C.2 Controller Operating in Full Load Operation

5 10 15 20 25

−1

−0.5

0

vr [m/s]

∂
T
a

∂
β

[M
N

m
/(

◦ )
]

Figure C.4: Partial derivative of Ta(t) with respect to β along the nominal operating trajectory. The
vertical dashed line represents the rated wind speed.

According to Figure C.4 pitching the blades will have a larger influence on the aerodynamic
torque at higher wind speeds. For this reason the gain of the speed controller should be large near
the rated wind speed but smaller at higher wind speeds, which is also shown in [Hammerum, 2006,
p. 30].

The optimal gain of the speed controller associated with a certain wind speed can make the sys-
tem become unstable at higher wind speeds due to the increasing gain of the system. Therefore, the
speed controller is configured with one set of parameters in the region corresponding to stationary
wind speeds in the interval 12-15 m/s, while a smaller gain is utilized for the region covering wind
speeds of 15-25 m/s. Although the system has different gains in these two region, it is possible to
design the controllers so that similar transient responses of the closed-loop system are obtained.

The design procedure of finding appropriate parameters for

ùpole,1 ù = -1/Tiszero

Figure C.5: Excerpts from the
root locus of the transfer function
Hn(s) ·Ds(s) · ωg(s)/βref(s).

the speed controller is initiated by determining the reset rate
based on a root locus of the transfer function Hn(s) · Ds(s) ·
ωg(s)/βref(s), which is the transfer function arising by opening
the loop prior to the speed controller. Figure C.5 sketches an
excerpt from the pole-zero map. The pole in zero originates
from the integral action of the PI controller, ωpole,1 denotes a
pole of ωg(s)/βref(s), and the zero is determined by the reset rate
of the speed controller. The value of ωpole,1 changes according
to the operating point, and to obtain similar responses in the
two cases, the zero in both cases are placed just to the right of
ωpole,1. This is done to let the loci stay on the real axis. For the relevant case, the following has
been utilized:

Tis >
1

ωpole,1

Tis = 1.065
1

ωpole,1
[s] (C.9)

Having determined the reset rates of the speed controllers, the proportional gains are selected in
order to provide phase margins of 50◦. This is verified in Figure C.6.

The parameters for the speed controllers are written in Table C.1.

Speed Controller 1 Speed Controller 2

Kps,1 Tis,1 Kps,2 Tis,2

-6.89◦/(rad/s) 25 s -2.95◦/(rad/s) 6.02 s

Table C.1: Parameters of the speed controllers. Speed Controller 1 are designed to operate at wind
speeds in the region 12− 15 m/s, while Speed Controller 2 are designed to operate at wind speeds in
the region 15− 25 m/s.

In order to evaluate the designed controllers in the extremity of their regions, the minimum and
maximum parameters of the linearized model are applied. Hence, the step responses in Figure C.7
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Figure C.6: Bode plots of Hn(s) ·Ds(s) ·ωg(s)/βref(s). The results in the left subplots are for Speed
Controller 1 at an operating point wind speed of 15 m/s, while the right subplots display results for
Speed Controller 2 at an operating point wind speed of 25 m/s.

appear. Notice that the blue line in the left subplot corresponds to a stationary wind speed of
12.8 m/s, which is utilized since the gain of the system becomes zero for a wind speed equal to
12 m/s, when operating along the nominal operating trajectory. This is obvious from Figure C.4.
According to Figure C.7 each controller gives rise to an overshoot at the higher wind speed of its
operating range, where it is further verified that the two controllers behave equally, as dictated by
the design. Furthermore, it becomes obvious that slow transient responses are provided at lower
wind speeds.
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Figure C.7: Step responses of the speed controllers plotted in the extremes of the operating area.

So far the two speed controllers have been considered separately. However, at this point the
conditions for making transitions between the two controllers are revealed; hereby, finalizing the
gain scheduling approach. As the wind speed is considered unknown, the pitch angle is used as
an indicator of the current wind speed. This approach is justified by the integral action in the
PI controller, as this ensures asymptotic convergence towards the desired operating point for a
given wind speed [Hammerum, 2006, p. 30]. Scheduling between the two speed controllers will then
happen according to the conditions defined in Table C.2, using the method presented in Section C.4.
A hysteresis is introduced through ε to avoid oscillations between the two speed controllers.

Evaluation of Speed Controller

Figure C.8 shows how the speed controller performs when keeping the generator torque constant.
By doing so, the output power is proportional to the generator speed according to Eq. (3.28) on
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C.2 Controller Operating in Full Load Operation

Switch Switching condition

1→ 2 β(t) ≥ β12 + ε

1← 2 β(t) ≤ β12 − ε

Table C.2: Switching conditions, where β12 = 7.98◦ and ε = 0.5◦.

Page 20. This means that the output power depends directly upon the correctness of the model of
the power system and of the performance of the speed controller. To circumvent this dependency, a
power controller is introduced in the next subsection in order to improve the tracking of the power
reference based on a measurement of the power.
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Figure C.8: Simulation of the speed controller operating above the rated wind speed. Speed Controller
1 is active at time 0 s ≤ t < 70 s, while Speed Controller 2 operates the wind turbine the rest of the
time. Note that the red lines are references.

Power Controller

The power controller is implemented in order to cancel possible steady-state errors on the output
power. This suggests using slow integral control for the power controller, as this will eventually
cancel steady-state errors on the output power without interfering with the speed controller. How-
ever, it may be beneficial to make the power controller faster to improve accuracy in the tracking
of the rated power. To follow this approach the power controller is realized as a PI controller on
the form:

Dp(s) = Kpp

(
1 +

1
Tip · s

)
[Nm/W] (C.10)

where:
Dp(s) is the PI controller ensuring that the generated power is close to the rated power [Nm/W]
Kpp is the proportional gain of Dp(s) [Nm/W]
Tip is the reset rate of Dp(s) [s]

Applying the measured output power directly is an issue since the measurement is very noisy,
as depicted by Section 3.10. This means that measurement noise has to be accounted for in the
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design and yields that the proportional gain has to be sufficiently small. The proportional gain
is chosen using a trial and error approach while the reset rate is selected large enough to avoid
overshoot on the step response. The resulting parameters are shown in Table C.3.

Kpp Tip

447 · 10-6 Nm/W 0.031 s

Table C.3: Parameters for the power controller.

Evaluation of Power Controller

By adding the power controller to the controller structure, the reference controller operating in the
full load region behaves as shown in Figure C.9.
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Figure C.9: Simulation of the cooperative power controller and speed controller operating above the
rated wind speed.

When comparing Figure C.9 to Figure C.8 it is obvious that introducing the power controller
results in improved tracking of the power reference. Notice that the differences obtained in the
pitch angle and generator speed are neglectable. This states that the power controller improves
tracking of the power reference without interfering with the speed controller.

The performance measures evaluating drive train stress and power fluctuations of the two con-
figurations are shown in Table C.4. The results reveal that drive train stress is not increased much
by introducing the power controller.

Active controllers
∫∫∫ t

0
θ̇2

∆(τ )dτ
∫∫∫ t

0
(Pg,N − Pg(τ ))2

dτ

Speed Controller 3.57 nrad2/s 25.8 GW2s

Speed Controller and Power Controller 3.60 nrad2/s 2.55 GW2s

Table C.4: Performance in terms of drive train stress and power fluctuations evaluated during the
simulations shown in Figure C.8 and Figure C.9.
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C.3 Drive Train Stress Damper

At this stage both controllers for operating in partial load and full load have been designed. The
next section presents the design of a filter which can be implemented in order to minimize the drive
train stress.

C.3 Drive Train Stress Damper

Active drive train damping solutions are deployed in large horizontal-axis wind turbines to mitigate
fatigue damage due to drive train oscillations. The idea is to add a component to the generator
torque to compensate for the oscillations in the drive train. This signal should have a frequency
equal to the eigenfrequency of the drive train, which can be found by filtering the measurement of
the generator speed. When the output from the filter is added to the generator torque, the phase
of the filter must be zero at the resonant frequency to achieve the desired damping effect.

The drive train damper is implemented to add a compensating torque as shown in Figure C.10.

Wind
turbine

â (t)ref 

T (t)g,ref 

ù (t)g

vw(t) 

?  
+

+

D (s) d

Figure C.10: Illustration of how the drive train stress damper can be implemented. The dashed lines
indicates the control signals coming from the reference controller.

The following filter structure for the drive train damper is proposed and can be applied to
dampen the eigenfrequency of the drive train [Dixit and Suryanarayanan, 2005, p. 1297]:

Dd(s) = Kd
2ζdωnds(1 + τds)
s2 + 2ζdωnds+ ω2

nd

[Nm/(rad/s)] (C.11)

where:
Dd(s) is the band-pass filter [Nm/(rad/s)]
Kd is the gain of the filter [Nm/(rad/s)]
ωnd is the undamped eigenfrequency of the filter [rad/s]
τd is the time constant which can be used for compensate for time lags in the system [s]
ζd is the damping ratio [·]

The time constant τd introduces a zero in the filter, and can be used to compensate for time
lags in the system. Therefore, τd is selected to equal the time delay of the converter system, tg,d.

The spread of the peak in the amplitude of the frequency response is determined by the damping
ratio ζd, and can be chosen small to give a narrow peak if the eigenfrequency is known precisely. A
damping ratio of 0.25 gives a bode plot as shown in Figure C.11.

To determine the gain of the filter, Kd, a root locus is plotted for the transfer function from
Tg,ref(s) to ωg(s) with the filter coupled in a positive feedback loop. The root locus plot is shown
in Figure C.12. It is apparent from the figure that if the filter gain becomes too large the system
becomes unstable due to the non-minimum phase behavior, introduced by the Padé approximation
that resembles the communication delay of the actuator.

Due to the higher loads at higher wind speeds, it is favorable if the filter gain depends on the
point of operation. A simple way of fulfilling this property is to apply different gains in the partial
and full load configurations of the reference controller; these are 500 Nm/(rad/s) at partial load
operation and 2,500 Nm/(rad/s) at full load operation.

By enabling the drive train stress damper in the simulations shown in Figure C.2 on Page 151 and
Figure C.9 the drive train stress, evaluated as

∫ t
0
θ2

∆(τ)dτ , is reduced by 50% and 11%, respectively.
Hereby, the drive train stress damper is successful in both regions. However, it increases power
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Figure C.11: Bode plot of the band-pass filter.
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Figure C.12: Root locus plot of the designed band pass filter and the transfer function from Tg,ref(s)
to ωg(s). The poles are marked with crosses and the zeros are marked with circles. The squares
represent the location of the closed loop poles when applying the gain chosen for the full load con-
figuration.

fluctuation in full load operation by working against the power controller to some extent, although
it is still beneficial to use the drive train stress damper and power controller in terms of drive train
stress and power fluctuations, compared to maintaining the rated generator torque.

The next section addresses the bumpless transfer, which must ensure that no bumps exist on
the control signal in the switch between two different controllers.

C.4 Bumpless Transfer

The purpose of this section is to explain how the bumpless transfer mechanism is designed; i.e. how
and when to activate the switch illustrated in Figure 2.4 on Page 8. The considered transition is
the one that brings the control system from partial load operation to full load operation, and vice
versa.

When the control system switches from partial load to full load operation it is important that
this transition is not apparent on the control signals; being the generator torque and pitch angle.
This is known as bumpless transfer and is important because two controllers may not agree upon
the magnitude of the control signal at the time that the transition happens. If a switch between
two controllers is undertaken without bumpless transfer, a bump in the control signal may trigger
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C.4 Bumpless Transfer

oscillations between the two controllers, making the system unstable.
The transition from partial to full load operation must happen as the wind speed becomes

sufficiently large. For stationary wind speeds this happens at 12.29 m/s, when assuming a single
aerodynamic model and absence of tower shadow and wind shear effects. However, it is not conve-
nient to apply the wind speed as the switching condition, since the large inertia of the rotor causes
the generator speed and output power to follow significantly later than a rise in the wind speed.
Besides, the wind speed is poorly known. Therefore, it is more appropriate to utilize the generator
speed as switching condition.

The switching conditions appear in Table C.5. Notice that ε is a small number that introduces
hysteresis to ensure a minimum time between each transition.

Switch Switching conditions

partial → full ωg(t) ≥ ωg,N

full → partial (β(t) ≤ βopt) & (ωg(t) ≤ ωg,N − ε)

Table C.5: Switching conditions where ωg,N = 162.45 rad/s, βopt = 0◦, and ε = 0.2 rad/s.

Due to the switching condition on β(t), and because the output of the speed controller is
saturated not to move below 0◦, the transition already fulfills bumpless transfer for this control
signal. For the generator torque signal a bumpless transfer is assured by adjusting an integral
state in such a way that the generator torque will not change abruptly. The compensation torque
is calculated using Eq. (C.12), and applies for the transition from Controller 1 to Controller 2; a
similar equation applies for the reverse transition.

Tg,1(k) + Tg,comp(k − 1) = Tg,2(k) + Tg,comp(k)
Tg,comp(k) = Tg,1(k)− Tg,2(k) + Tg,comp(k − 1) [Nm] (C.12)

where:
Tg,1(k) and Tg,2(k) are the torque output from Controller 1 and 2 respectively [Nm]
Tg,comp(k) is the compensation torque which ensures a bumpless transfer [Nm]

The compensation torque is not important when operating above the rated wind speed, because
the power controller has integral action. When operating below rated wind speed the compensation
torque is discharged to zero, as it otherwise would result in the optimal tip-speed ratio not being
followed.
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DDerivation of Reliable LPV
Controller Design Procedure

The purpose of this appendix is to derive the equations necessary to design a reliable LPV controller.
The derivation is inspired by [Bianchi et al., 2007, pp. 159-171].

The Bounded Real Lemma for LPV System with Parameter-Dependent
Lyapunov Matrices

In this subsection the plant, controller, and closed-loop system matrices are set up. From these
matrices the bounded real lemma is set up, assuming parameter-dependent Lyapunov matrices.

The LPV system is defined as shown below, where D22(θ,∆) = 0.

ẋ(t) = A(θ,∆)x(t) +B1(θ,∆)w(t) +B2(θ,∆)u(t) (D.1a)
z(t) = C1(θ,∆)x(t) +D11(θ,∆)w(t) +D12(θ,∆)u(t) (D.1b)
y(t) = C2(θ,∆)x(t) +D21(θ,∆)w(t) +D22(θ,∆)u(t) (D.1c)

The following shorthand notation is defined for convenience:

A(θ,∆) ∆= A0 +Aθ(θ) +A∆(∆) (D.2)

where:
Aθ is the part of A(θ,∆) which is dependent on θ
A∆ is the part of A(θ,∆) which is dependent on ∆

The LPV controller defined below is only dependent on the measured parameter vector, θ, not
the unmeasured parameter vector, ∆, since it should be robust towards these parameter variations.

ẋc(t) = Ac(θ)xc(t) +Bc(θ)y(t) (D.3a)
u(t) = Cc(θ)xc(t) +Dc(θ)y(t) (D.3b)

By combining the system and the controller, the following closed-loop matrices can be set up:

Acl(θ,∆) =
[
A(θ,∆) +B2(θ,∆)Dc(θ)C2(θ,∆) B2(θ,∆)Cc(θ)

Bc(θ)C2(θ,∆) Ac(θ)

]
(D.4a)

Bcl(θ,∆) =
[
B1(θ,∆) +B2(θ,∆)Dc(θ)D21(θ,∆)

Bc(θ)D21(θ,∆)

]
(D.4b)

Ccl(θ,∆) =
[
C1(θ,∆) +D12(θ,∆)Dc(θ)C2(θ,∆) D12(θ,∆)Cc(θ)

]
(D.4c)

Dcl(θ,∆) = D11(θ,∆) +D12(θ,∆)Dc(θ)D21(θ,∆) (D.4d)

In the following the uncertainty is assumed only to exist in A(θ,∆). This implies that Bcl, Ccl,
and Dcl become independent of ∆. Hereby, the closed-loop system can be written as follows, called
Tzw:

ẋ(t) = Acl(θ,∆)x(t) +Bcl(θ)w(t) (D.5a)
z(t) = Ccl(θ)x(t) +Dcl(θ)w(t) (D.5b)
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Derivation of Reliable LPV Controller Design Procedure

The following definition is borrowed from [Bianchi et al., 2007, p. 163]:

Given the compact set Θ and the hypercube V, the continuous function Acl(·) is parametrically-
dependent quadratically (PDQ) stable if there exists a continuously differentiable symmetric function
X (·) such that X (θ) > 0 and

AT
cl(θ)X (θ) + X (θ)Acl + Ẋ < 0 (D.6)

where

Ẋ =
nθ∑
i=1

θ̇i
∂X (θ)
∂θi

(D.7)

for all (θ, θ̇) ∈ Θ× V.

When the function Acl(·) is PDQ stable, it is said that the LPV system in Eq. (D.5) is PDQ
stable.

Using the parameter-dependent Lyapunov matrices, the bounded real lemma can be written on
matrix form as shown below, based on the parameter-dependent Lyapunov matrices and the closed-
loop system matrices. Notice that the Lyapunov matrices are independent of ∆, since this is the
unmeasured parameters.

Given the LPV system (Acl(θ,∆), Bcl(θ), Ccl(θ), Dcl(θ)) with (θ,∆, θ̇) ∈ Θ × D × V. Suppose that
there exists a differentiable symmetric function X (θ) such that X (θ) > 0 andẊ (θ) +AT

cl(θ,∆)X (θ) + X (θ)Acl(θ,∆) X (θ)Bcl(θ) CT
cl(θ)

BT
cl(θ)X (θ) -γI DT

11(θ)
Ccl(θ) D11(θ) -γI

 < 0 (D.8)

for all (θ,∆, θ̇) ∈ Θ×D × V. Then,

1. the function Acl(·) is PDQ stable over Θ×D,

2. there exists a scalar δ with 0 ≤ δ < γ such that ||Tzw||i,2 ≤ δ.

From these inequalities the reliable LPV controller can be designed, when the inequalities in
Eq. (D.8) have been appropriately rearranged.

Transformation of the Bounded Real Lemma

In order to utilize the bounded real lemma for design it has to be transformed, to include the
controller and system matrices directly. These transformations are shown in this subsection.

Two symmetric matrices are defined as:

Π1 =
[
Y I
MT 0

]
Π2 =

[
I X
0 NT

]
(D.9)

A congruence transformation of Eq. (D.8) is performed with diag(Π1, I, I):ΠT
1 Ẋ (θ)Π1 + ΠT

1 A
T
clXΠ1 + ΠT

1 XAclΠ1 ΠT
1 XBcl ΠT

1 C
T
cl

BT
clXΠ1 -γI DT

11

CclΠ1 D11 -γI

 < 0 (D.10)

The Lyapunov function X and its inverse can be partitioned as shown below.

X =
[
X N
NT Υ1

]
X -1 =

[
Y M
MT Υ2

]
(D.11)
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This partitioning is useful, since the following relations can be used when rewriting the equations:

XX -1 = I[
X N
NT Υ1

] [
Y M
MT Υ2

]
= I[

XY +NMT XM +NΥ2

NTY + Υ1M
T NTM + Υ1Υ2

]
= I (D.12)

The following relation is used later in the derivation:

XΠ1 =
[
X N
NT Υ1

] [
Y I
MT 0

]
=
[
XY +NMT X
NTY + Υ1M

T NT

]
=
[
I X
0 NT

]
= Π2 (D.13)

To finalize the congruent transformation, the elements in Eq. (D.10) are rewritten as shown below.

ΠT
1 XAclΠ1 = ΠT

2 AclΠ1

=
[
I 0
X N

] [
A+B2DcC2 B2Cc

BcC2 Ac

] [
Y I
MT 0

]
=
[
I 0
X N

] [
(A+B2DcC2)Y +B2CcM

T A+B2DcC2

BcC2Y +AcM
T BcC2

]
=
[

(A+B2DcC2)Y +B2CcM
T

X(A+B2DcC2)Y +XB2CcM
T +NBcC2Y +NAcM

T

A+B2DcC2

X(A+B2DcC2) +NBcC2

]
(D.14)

ΠT
1 XBcl = ΠT

2 Bcl

=
[
I 0
X N

] [
B1 +B2DcD21

BcD21

]
=
[

B1 +B2DcD21

X(B1 +B2DcD21) +NBcD21

]
(D.15)

CclΠ1 =
[
C1 +D12DcC2 D12Cc

] [ Y I
MT 0

]
=
[
(C1 +D12DcC2)Y +D12CcM

T C1 +D12DcC2

]
(D.16)

ΠT
1 XΠ1 = ΠT

1 Π2

=
[
Y M
I 0

] [
I X
0 NT

]
=
[
Y Y X +MNT

I X

]
=
[
Y I
I X

]
(D.17)
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Derivation of Reliable LPV Controller Design Procedure

Π̇T
1 XΠ1 + ΠT

1 ẊΠ1 + ΠT
1 X Π̇1 =

[
Ẏ 0
0 Ẋ

]
ΠT

1 ẊΠ1 =
[
Ẏ 0
0 Ẋ

]
− (Π̇T

1 XΠ1 + ΠT
1 X Π̇1)

=
[
Ẏ 0
0 Ẋ

]
−
([
Ẏ Ṁ
0 0

] [
I X
0 NT

]
+ ΠT

1 X Π̇1

)
=
[
Ẏ 0
0 Ẋ

]
−
([
Ẏ Ẏ X + ṀNT

0 0

]
+ ΠT

1 X Π̇1

)
=
[
Ẏ 0
0 Ẋ

]
−
[

2Ẏ Ẏ X + ṀNT

XẎ +NṀT 0

]
=
[

-Ẏ -Ẏ X + ṀNT

-XẎ +NṀT Ẋ

]
(D.18)

Substitution of Variables in the Bounded Real Lemma

In order to reduce the number of multiplications of unknown variables in the optimization problem,
auxiliary matrices are defined and substituted into the transformed bounded real lemma.

The auxiliary matrices used for the substitution are shown below.

Â∆ = NAcM
T −XẎ −NṀT +X

(
A0 +Aθ +B2DcC2

)
Y +XB2CcM

T +NBcC2Y (D.19a)

B̂∆ = NBc +XB2Dc (D.19b)

Ĉ∆ = CcM
T +DcC2Y (D.19c)

D̂∆ = Dc (D.19d)

Substituting these matrices into the inequalities of the transformed bounded real lemma, the fol-
lowing appears:


-Ẏ +AY +B2Ĉ∆ + (∗) ÂT

∆ + Y A∆TX +A+B2D̂∆C2 ∗ ∗
∗ Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗

(B1 +B2D̂∆D21)T (XB1 + B̂∆D21)T -γInw ∗
C1Y +D12Ĉ∆ C1 +D12D̂∆C2 D11 +D12D̂∆D21 -γInz

 < 0

(D.20)[
X I
I Y

]
> 0

(D.21)

To make this optimization problem look like the notation found in e.g. [Bianchi et al., 2007], the
following matrix is utilized in an congruent transformation:

Π3 =


0 I 0 0
I 0 0 0
0 0 I 0
0 0 0 I

 (D.22)

Given the open-loop LPV system governed by Eq. (D.1) on Page 161. Suppose that there exists
two parameter-dependent symmetric matrices X, Y and four parameter-dependent matrices Â∆,
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B̂∆, Ĉ∆ and D̂∆ such that for all (θ,∆, θ̇) ∈ Θ×D × V,


Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗ ∗

ÂT
∆ + Y A∆TX +A+B2D̂∆C2 -Ẏ +AY +B2Ĉ∆ + (∗) ∗ ∗

(XB1 + B̂∆D21)T (B1 +B2D̂∆D21)T -γInw ∗
C1 +D12D̂∆C2 C1Y +D12Ĉ∆ D11 +D12D̂∆D21 -γInz

 < 0

(D.23)[
X I
I Y

]
> 0

(D.24)

Then, there exists a controller of the form in Eq. (D.3) such that

1. the closed-loop system in Eq. (D.5) is PDQ stable over Θ×D and,

2. the induced L2-norm of the operator Tzw is bounded by γ > 0 ( i.e. ||Tzw||i,2 < γ).

Necessary Conditions for the Bounded Real Lemma

Finding a feasible point in Eq. (D.23) is not trivial, since it is a BMI. Therefore, two necessary
conditions are set up for two sets of variables, and when inserting one of these sets into Eq. (D.23)
it becomes a convex optimization problem.

The necessary conditions can be obtained by applying the projection lemma, defined in [Bianchi
et al., 2007, p. 156], on Eq. (D.23). Both necessary conditions are shown below:

Ẋ +XA+ B̂∆C2 + (∗) ∗ ∗
(XB1 + B̂∆D21)T -γInw ∗
C1 +D12D̂∆C2 D11 +D12D̂∆D21 -γInz

 < 0 (D.25)

for all θ ∈ θvex, ∆ ∈ ∆vex, θ̇ ∈ θ̇vex, andXiAi + (∗) ∗ ∗
BT

1,iXi 0 ∗
0 0 0

 ≥ 0 (D.26)

for i = 1 . . . nθ and ∆ ∈ ∆vex.

-Ẏ +AY +B2Ĉ∆ + (∗) ∗ ∗
(B1 +B2D̂∆D21)T -γInw ∗
C1Y +D12Ĉ∆ D11 +D12D̂∆D21 -γInz

 < 0 (D.27)

for all θ ∈ θvex, ∆ ∈ ∆vex, θ̇ ∈ θ̇vex, andAiYi + (∗) ∗ ∗
0 0 ∗

C1,iYi 0 0

 ≥ 0 (D.28)

for i = 1 . . . nθ and ∆ ∈ ∆vex.

The necessary conditions can be utilized to find one half of the unknown variables in Eq. (D.23)
such that it becomes an LMI.
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Derivation of Reliable LPV Controller Design Procedure

Affine Case

In the general case explained in the previous subsection, designing an LPV controller involves
solving infinitely many inequalities. The number of inequalities can be reduced by assuming that
the unknown matrices in Eq. (D.23) has an affine dependence of θ and ∆, as in:

X(θ) = X +
nθ∑
i=1

θiXi Y (θ) = Y0 +
nθ∑
i=1

θiYi Â∆(θ) = Â∆0 +
nθ∑
i=1

θiÂ∆i (D.29a)

B̂∆(θ) = B̂∆0 +
nθ∑
i=1

θiB̂∆i Ĉ∆(θ) = Ĉ∆0 +
nθ∑
i=1

θiĈ∆i D̂∆(θ) = D̂∆0 +
nθ∑
i=1

θiD̂∆i (D.29b)

In the following, the inequality shown in Eq. (D.23) is rewritten to be a function of the vertices of
the parameter space. First, the matrix written below is defined to shorten the notation in the next
part.

Φ(θ,∆, θ̇) ∆=


Ẋ(θ) +X(θ)A(θ,∆) + B̂∆(θ)C2 + (∗)

ÂT
∆(θ,∆) + Y (θ)A∆TX(θ) +A(θ,∆) +B2D̂∆(θ)C2

(X(θ)B1(θ) + B̂∆(θ)D21)T

C1(θ) +D12D̂∆(θ)C2

∗ ∗ ∗
-Ẏ (θ) +A(θ,∆)Y (θ) +B2Ĉ∆(θ) + (∗) ∗ ∗

(B1(θ) +B2D̂∆(θ)D21)T -γInw ∗
C1(θ)Y (θ) +D12Ĉ∆(θ) D11 +D12D̂∆(θ)D21 -γInz

 (D.30)

The matrix Φ(θ,∆, θ̇) can be written for any value, θ∗, in the parameter space (θ,∆, θ̇) ∈ Θ×D×V
as a function of the vertices of the parameter space and an additional term. This expression is
shown below, where θ is a scalar (i.e. i = 1).

Φ(θ∗) = αΦ(θv1) + (1− α)Φ(θv2) + (α2 − α)(θv1 − θv2)2


XiAi + (∗) ∗ ∗ ∗
YiA

∆TXi AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0


(D.31)

This implies that if Φ(θv1) < -ε and Φ(θv2) < -ε, then:
XiAi + (∗) ∗ ∗ ∗
YiA

∆TXi AiYi + (∗) ∗ ∗
BT

1,iXi 0 0 ∗
0 C1,iYi 0 0

 ≥ -4ε
(θv1 − θv2)2

(D.32)

ε ≥ 0 (D.33)

In [Bianchi et al., 2007, pp. 159-171] ε is zero, but this restricts the structure of Xi and Yi as these
should be in the null space of BT

1,i and C1,i, respectively.

In this appendix a method for designing a passive fault-tolerant controller has been derived, which
are based on parametric uncertainties. The method is derived for the general case and in the case
of affine parameter dependencies. Additionally, a numerical trick for relaxing the restrictions on
the structure of the parameter-dependent Lyapunov matrices has been presented.
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Contents of Attached DVD

� Bibliography with internet sources as PDFs.

� Thesis in digital form.

� Model parameters.

� Tuning parameters.

� MATLAB files.

� Simulink models.
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