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A B S T R A C T

This project aims to investigate the feasibility of using mixed observation
types in Hidden Markov Models, in an attampt to increase the accuracy
of recognising strategies, and predicting future actions in the domain of th
real-time strategy game StarCraft. The types of observations in the model
will be multinomial and Poisson distributions, and theory for both types of
variables will be presented, as will theory for the combination of the two.
The data for training the model in the StarCraft domain will be analysed to
determine the validity of applyig Poisson distributions to the production of
combat units. Finally, experiments will be made to determine the accuracy
of predictions made by the model, as well as an evaluation of the most likely
path through the state space of the model.

Anders Hesselager-Olesen

iii





C O N T E N T S

1 introduction 1

1.1 Plan recognition 1

1.1.1 StarCraft 2

1.1.2 Problem statement 3

2 related work 5

2.1 Case based plannning 5

2.2 Data mining 5

2.3 Probabilistic models 6

3 theory of hidden markov models 9

3.1 Theory of Hidden Markov Models 9

3.1.1 Determining the Belief State of the Model 10

3.1.2 Learning 11

3.2 Poisson Hidden Markov Models 15

3.2.1 Update rules for Poisson Markov Models 15

3.3 Poisson and multinomial Mixed Hidden Markov Model 15

4 data analysis 17

4.1 Data availability 17

4.1.1 Data quality 17

4.1.2 Data patterns 18

4.1.3 Production 18

4.1.4 Destruction 21

4.2 Data conclusions 22

4.3 Increased timespan 22

4.3.1 Conclusionss on the extended timespan 23

5 implementation 29

5.1 Replay data extraction 29

5.1.1 Data parsing 29

5.2 Mixed variable type Hidden Markov Model 33

5.3 Forward calculation for mixed variable model 33

5.4 Update rules 35

6 experiments 39

6.0.1 Bayesian information criterion 39

6.1 Prediction 40

6.1.1 Standard deviation 41

6.1.2 Average error with full evidence 41

6.1.3 60 second prediction 46

6.1.4 90 second prediction 51

6.1.5 Overall accuracy 53

6.2 State trace 55

7 conclusion 59

7.1 Accuracy of Poisson distributions for unit patterns 59

7.2 Limitations of Markov Models 59

7.3 Data quality 60

v



vi contents

7.4 Future work 60

bibliography 61



L I S T O F F I G U R E S

Figure 1 Rule set for labeling Protoss strategies. The tree is
traversed by selecting the first building produced in
the child nodes. Figure originally created by Weber et
al[23] 6

Figure 2 The general structure of a Hidden Markov Model 9

Figure 3 An example of a diverging connection. Picture origi-
nally shown in [14] 10

Figure 4 The total number of zealots produced in a replay is
the x-axis, and number of replays is y 19

Figure 5 Total number of zealots produced up to the time step.
X is the produced number, Y is the number of re-
plays 20

Figure 6 The total number of gateway structures produced in a
replay is the x-axis, and number of replays is y 21

Figure 7 Frequency of replays where the number of gateway
structures were produced in the time step 22

Figure 8 The total number of Cybernetics Core structures pro-
duced in a replay is the x-axis, and number of replays
is y 23

Figure 9 Frequency of replays where the number of Cybernet-
ics Core structures were produced in the time step 24

Figure 10 The total number of dragoons produced up to the
time step is the x-axis, and number of replays is y 24

Figure 11 Frequency of replays where the number of dragoons
were produced in the time step 25

Figure 12 The total number of observatory structures in exis-
tence in the time step 25

Figure 13 The total number of dark templar units produced up
to the time step 26

Figure 14 The number of dragoons destroyed in the time step 26

Figure 15 The number of zealots produced in the time step 27

Figure 16 The number of dragoons produced in the time step 27

Figure 17 The number of reavers alive in the time step 28

Figure 18 The number of reavers produced in the time step 28

Figure 19 BIC calculations for 15 learned models in each inter-
val step 40

Figure 20 BIC calculations for 15 learned models in each inter-
val step 40

Figure 21 The standard deviation for the observed values, for
the Zealot unit in each time step 41

Figure 22 The standard deviation for the observed values, for
the Dragoon unit in each time step 42

vii



viii List of Figures

Figure 23 The standard deviation for the observed values, for
the Reaver unit in each time step 42

Figure 24 The average error for production of zealots, with full
evidence 43

Figure 25 The average error for production of dragoons, with
full evidence 43

Figure 26 The average error for production of reavers, with full
evidence 43

Figure 27 The average error for destruction of zealots, with full
evidence 44

Figure 28 The average error for destruction of dragoons, with
full evidence 44

Figure 29 The average error for destruction of reavers, with full
evidence 45

Figure 30 The average error for the number of live zealots, with
full evidence 45

Figure 31 The average error for the number of live dragoons,
with full evidence 46

Figure 32 The average error for the number of live reavers, with
full evidence 46

Figure 33 The average error for production of zealots, when pre-
dicting 60 seconds 47

Figure 34 The average error for production of dragoons, when
predicting 60 seconds 47

Figure 35 The average error for production of reavers, when
predicting 60 seconds 48

Figure 36 The average error for destruction of zealots, when
predicting 60 seconds 48

Figure 37 The average error for destruction of dragoons, when
predicting 60 seconds 49

Figure 38 The average error for destruction of reavers, when
predicting 60 seconds 49

Figure 39 The average error for number of live zealots, when
predicting 60 seconds 50

Figure 40 The average error for number of live dragoons, when
predicting 60 seconds 50

Figure 41 The average error for number of live reavers, when
predicting 60 seconds 50

Figure 42 The average error for production of zealots, when pre-
dicting 90 seconds 51

Figure 43 The average error for production of dragoons, when
predicting 90 seconds 52

Figure 44 The average error for production of reavers, when
predicting 90 seconds 52

Figure 45 The average error for destruction of zealots, when
predicting 90 seconds 53

Figure 46 The average error for destruction of dragoons, when
predicting 90 seconds 53



List of Figures ix

Figure 47 The average error for destruction of reavers, when
predicting 90 seconds 54

Figure 48 The average error for the number of live zealots, when
predicting 90 seconds 54

Figure 49 The average error for the number of live dragoons,
when predicting 90 seconds 55

Figure 50 The average error for the number of live reavers, when
predicting 90 seconds 55

Figure 51 Statechart for model with 11 states 57



L I S T O F TA B L E S

x



L I S T I N G S

Listing 1 The logging code for a replay, using BWAPI 30

Listing 2 Example of log contents before parsing 31

Listing 3 Example of feature vector after parsing. This example
has been shortened – the actual vectors have 60 ele-
ments 31

Listing 4 The code that recognizes Protoss actions and indexes
them 32

Listing 5 invocation of the constructor for a mixed observation
Hidden Markov Model (HMM) 33

Listing 6 The induction step of the forward calculation 34

Listing 7 The method for calculating the probability of a state,
given an observation sequence 35

Listing 8 The contribution to the update of the transition matrix
for each timestep > 1 for each replay 36

Listing 9 The contribution to the update of λ values for each
replay 37

xi



A C R O N Y M S

BIC Bayesian information criterion

BWAPI Brood War API

DAG Directed Acyclic Graph

EM Expectation Maximization

FoW Fog of War

HMM Hidden Markov Model

PHMM Poisson Hidden Markov Model

RTS Real-Time Strategy

SC StarCraft

xii



L I S T O F S Y M B O L S

Xt Unobserved variable for the state of a Hidden Markov Model for time step t

X0 The initial stationary distribution for the model

yt Observation for time step t

Y The full set of observation vectors in a replay

t The current time step of the sequence

T The total number of time steps in the sequence

r The current replay in the collection of replays

R The total number of replays in the data set

i The current hidden state of the model

j The state that the hidden state transitions to

k The current iteration number of learning

α The forward message for a given replay

β The backard message for a given replay

γi,j The transition probability from state i to j

π The emission probabilities given a hidden state

xiii





1
I N T R O D U C T I O N

This project will further investigate the general model developed in the
project "Predicting Unit Production in StarCraft using Hidden Markov Models"[7],
where a model was created to recognize and predict plans in the domain of
the strategy game StarCraft (SC). Plan recognition in SC is interesting since
the correct assessment of the opponent’s strategy is paramount to the success
of a player. The recognition of this strategy is not trivial, since a very precise
understanding of the opponent’s timing and actions is needed. This report
will investigate of the assumptions made in the report "Predicting Unit Pro-
duction in StarCraft using Hidden Markov Models", regarding the structure
of the model, specifically whether multinomial distributions are an accurate
representation of all the observations made during a game of SC, or if preci-
sion of predictions can be improved by using an alternative distribution for
some of the observation variables. In the report "Predicting Unit Production
in StarCraft using Hidden Markov Models" models were made with obser-
vations grouped in the intervals 0,> 1 , 0, 1,> 2 and 0, 1− 2,> 2. This was
an extension of the binary observations originally used for strategy labelling
by Dereszynski et al.[11], made in an attempt to refine the predictions and
labelling of strategies, since it was believed that strategies might be defined
not only by the presence of certain units, but also by their number. Since the
previous report, as well as Dereszynski et al. used the game configuration
of a protoss player versus a terran player, this configuration will be used in
this report as well for the sake of consistency.

1.1 plan recognition

Strategy prediction shares many elements with plan recognition, since, in
order to predict a strategy, one must first find a way to determine what de-
scribes the strategy – to recognize it. Thus, when the model has learned the
patterns of different strategies, inference can be made about future actions[19].
Plan recognition suffers from a degree of uncertainty: Some actions may not
be observable, and other actions may happen earlier, or later than in the av-
erage case. This leads to a degree of uncertainty that probabilistic models
can accommodate, unlike deterministic models, such as decision trees.[19]

Plan recognition exists in two types: Direct and keyhole. Direct plan recog-
nition is the situation where the acting agent intentionally tries to make in-
formation available to the observer, as opposed by keyhole plan recognition,
where the agent is trying its best to occlude its intentions to the observer.
Similarly, a distinction is made regarding if the observer has total or incom-
plete information about the actions taken. In the context of the SC domain
the plan recognition is considered to be keyhole, since observed agent has
no interest in making information about its strategy, and may even take de-
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2 introduction

ceptive actions to suggest that a different strategy is being employed. For the
purposes of this project the information level will be total, since model train-
ing is based on replays of SC matches, which allow for a total observation of
all actions.

1.1.1 StarCraft

SC is a Real-Time Strategy (RTS) game that pits a player against one or more
opponents. The objective of the game is to amass an armed force sufficient
to destroy the opponents’ base. SC has three different factions a player can
play as: Protoss, Terran and Zerg, each with their own distinct construction
options and special rules.

SC has had an extremely active multi-player scene for approximately ten
years, with especially 1 versus 1 duels rising to prevalence. In these duels the
execution of a player’s strategy, and recognition of his opponent’s strategy
becomes extremely important since SC follows a rock-paper-scissors style of
battle. Each unit will have an optimal counter-unit that will defeat it in a
pitched battle. For this reason, as well as each unit having an immutable
time it takes to create, it becomes extremely important to not only know
what armed forces an opponent currently posses, but also being able to pre-
dict which units he plans to create in the near future in order to prepare a
counter. Different templates for construction of a force, known as strategies,
have been formalized in the community, and follow a rigid ordering of con-
struction that has been decided as optimal for what the player is trying to
achieve. Learning to recognize an opponent’s strategy, and knowing which
counter-strategy to employ is fundamental to becoming a good SC player.
Predicting strategies is also paramount if one has hopes of becoming a com-
menter for one of the professional televised leagues of StarCraft’s successor,
StarCraft II.

1.1.1.1 Game rules

The objective of an SC game is to destroy all of an opponent’s structures. For
this, armed units are used. These armed units are produced from one’s own
structures. Both production of structures and units costs an investment of
resources and then takes a fixed time, depending on the type that is being
produced, to finish. Resources are gathered by worker units, which are also
responsible for the construction of buildings. A significant part of a strategy
is the navigation of the tech-tree. The tech tree is approximately a directed
acyclic graph, with buildings as nodes. Thus, in order to construct a build-
ing, a player must possess the buildings that are present earlier in the graph.
Unlike a regular directed acyclic graph, the tech-tree only allows progression
through a node, if all the nodes leading to it, have been visited, ie. the build-
ings have been constructed. Certain buildings are both needed for traversing
the tech-tree as well as enabling the production of specific units, where other
buildings serve only the purpose of tech-tree traversal.
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1.1.2 Problem statement

Dereszynski et al. made an expansion of their model themselves [12] where
the model is expanded into a dynamic baeysian network. The expanded
model did increase the accuracy of predictions, but did also increase the
complexity, both computationally and structurally[12]. As part of this project
I will investigate if a useful middle ground can be made with a mixed obser-
vation hidden markov model, that allows for greater granularity, and thus
accuracy, than the model created in "Predicting Unit Production in StarCraft
using Hidden Markov Models" without the complexity of the second model
created by Dereszynski et al.

The model created in the previous project made the assumption that all ob-
servations were multinomial and exhibited the same intervals regardless of
the type of observation. This meant that the model treated all observations
the same way, regardless of the observation type. This project will investi-
gate the effects of modelling some of the observation variables as Poisson
instead of multinomial distributions and investigate if this gives an increase
in accuracy when attempting to make predictions. The variability of observa-
tions is interesting because certain events may happen only once and others
may happen repeatedly during an SC game, or even several times during a
single time step of observation. If all observation variables are grouped the
same way, some may be grouped too strictly while others may be grouped
too loosely. If instead, the observations that have a broad variance were mod-
elled as Poisson distributions, these could be modelled more accurately with-
out adding static to observations that fall within a tighter grouping. This
will mean that a HMM that contains both multinomial and distributional
observation variables will need both the update rules for multinomial distri-
butions, as well as the lambda parameter for the Poisson distribution.

In this project I will investigate an alternative to the model designed in
the project, "Predicting Unit Production in StarCraft using Hidden Markov
Models". This alternative model should be able to incorporate both multino-
mial and Poisson distribution modelled observations, in an effort to increase
the accuracy of the model, based on an expectation that building construc-
tion and unit construction does not follow the same patterns. Experiments
will be performed to investigate the learned models’ accuracy in determin-
ing the number of living units in a time interval, since the number of armed
units the opponent possesses is highly descriptive for the opponent’s current
intended strategy.

The Poisson distribution will be used as an alternative to the multino-
mial, since Poisson distributions are often used to descibe the patterns of
birth and death in real world populations. It is the hope and expectation
that using Poisson distributions for certain of the observations will help to
increase the accuracy, since these are expected to follow a similar pattern.
The reasoning for having some emissions remain multinomial, is that the
construction of buildings is not expected to happen consistently across the
length of a game, or the duration of a strategy. Instead, these are expected to
happen at the start of a strategy, since buildings help traverse the tech-tree,
enabling the production of certain units, which are then expected to be pro-
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duced at a relatively constant rate for the duration of the strategy. Theory
for the combination of the two types of emissions will have to be devised
and implemented.

A Poisson Hidden Markov Model (PHMM) shares most of the features of
a regular HMM, described in Chapter 3. In a PHMM the observation variables
are not multinomial, but Poisson distributions. Instead of an emission prob-
ability matrix, an observation variable in a PHMM has a Poisson parameter
for each state, denoted by λ, describing the average expected value of the
observation variable.

To make a model that accurately shows the current number of units in a
time step, a way to extract this information from SC replays is needed to give
data for learning. Once a way of extracting this has been found, automation
of this process is needed as well. Finally a parser for the extracted data will
need to be constructed to convert the data into something that can be used in
an HMM. A model will then be constructed that allows for both multinomial
and Poisson variables. To determine the accuracy of the model, it will be
necessary to not only predict the number of produced units in a time step,
but also the number of units killed, since the error margin of production may
lead to an erroneous result when predicting the number of live units, even if
the number of destroyed units is correct and vice versa. The tests should be
performed across a substantial number of replays to ensure the test results’
viability in the general case.



2
R E L AT E D W O R K

Plan recognition is a well established research field, and as such has given
rise to various different approaches. Many of these approaches have been
applied to real time strategy games. Some of these approaches descibe the
state of the game, where others have a higher focus on the actions taken by
the playing agent. In this section some of these approaches will be described
and discussed. Since this project builds directly on top of the project "Pre-
dicting Unit Production in StarCraft using Hidden Markov Models" much
of the related work is the same, and as such has been brought more or less
directly into this project.

2.1 case based plannning

Case based plan recognition tries to infer future actions based on cases the
model has previously been exposed to, hence the name. All the previously
learned cases are stored in a case library, and when predicting future actions,
the model refers to the case library and finds the nearest matching case,
and uses this as a basis for inference about future actions.[8][13][16][22] The
current state of the game has been used as a basis for case based plan recog-
nition in severeal articles. To use the state as a case a definition of states and
actions that can bring about state transitions must be made. States are de-
fined by a set of features and thus changing the features that are integrated
into the states changes the set of game states. Similarly, the action definitions
are dependent on the state definitions and the combinations of states and ac-
tions. Defining states and actions for the case library can be problematic: If
states and actions are defined manually, the strategies that can be recognized
are also, indirectly, defined manually. Dynamic learning of the possible ac-
tions for each state type makes for a very complex case library, since the
enviroment of an RTS game is also very complex.

2.2 data mining

The data mining approach has been applied to SC by Ben G. Weber and
Michael Mateas[23] where decision trees are used to predict the actions of
the opponent based on pre-labeled strategies. Each replay category was de-
fined manually using SC domain knowledge, based on the buildings pro-
duced to navigate the tech tree. The resultning strategy tree is shown in
Figure 1

The first leaf node that is reached determines the strategy label assigned
to the player.

The rule set was then used for supervised learning of the strategies, result-
ing in a model that showed foresight of the strategies defined in the labelling
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6 related work

Figure 1: Rule set for labeling Protoss strategies. The tree is traversed by selecting
the first building produced in the child nodes. Figure originally created
by Weber et al[23]

tree. Furtheromre the robustness of the model when exposed to imperfect in-
formation was tested by presenting the model with missing information, and
noisy information, both situations likely to occur in a game of SC.

In the article Weber and Mateas showed that data mining can be used to
predict the label that will be assigned to a player in a replay, as well as show-
ing that regression techniques can take advantage of the correlation between
certain actions, such as the production of the observatory structure, and the
production of the observer unit. The model is limitied by the rule set of the
classifier, and thus the results of the prediction are only significant, if the
classifier is designed to correctly describe significant elements of strategies.

2.3 probabilistic models

Probabilistic models provides a convenient way to describe uncertainty, since
we can describe relations between events with a degree of probability, and
thus compute how likely a given chain of events is. In relation to strategy
prediction and opponent modelling this allows for the computation of the
probability of an opponent taking a specific action. This allows for an abil-
ity to encapsulate that certain plans may be more likely than others into
the model[15]. This is very convenient when modelleing SC since both dif-
ferences in player skill, and the risk of not observing a given feature, due to
the incomplete information available to players, contribute to the uncertainty
of prediction in the SC domain. On top of this, different game worlds may
influence development, allowing for extensive variance across replays.

A useable probabilitstic model for plan recognition is the Bayesian net-
work[9][10][11][12]. The domain can be modelled by variables, and a directed
acyclic graph, which represents the probabilistic dependencies between the
variables. Special kinds of Bayesian networks can be made if certain assump-
tions are made. Dynamic Bayesian networks for example, can be used to model
systems that evolve over time. HMMs are a specialized version of dynamic
Bayesian networks which allow for inference in polynimial time[14][20]. Syn-
naeve et al.[21] expands on the ideas that Weber et al. present[23] and focus
on using these ideas for implementing an agent that can play SC. Synnaeve
et al. expand on the ruleset made by Weber et al. to represent dependen-
cies between opening stragies, ordering of building production, and the time
played. This expanded model also takes into account the limited information
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availability of SC since it includes a specific variable for observed buildings.
Weber et al. define a player’s strategy as the choice of units and buildings
that the player constructs, with the intention of modelling and discovering
strategies in SC. The game is divided into 30 second time steps and in each
time step it is detected if a unit or building is constructed or not, that is as
a boolean variable. In the article a strategy is described as the player’s path
through the state space of the HMM.

In the follow-up article[12], Dereszynski et al. try to make a more sophosti-
cated model by incorporating the number of units that the opponent controls
in each time step. This is achieved by incorporating the number of each unit
type that is killed as well as the number that has been observed. This ex-
panded model is no longer an HMM and the complexity of direct inference is
no longer polynomial. The article circumvents this by using particle filtering
and thus performing approximative inference.





3
T H E O RY O F H I D D E N M A R K O V M O D E L S

3.1 theory of hidden markov models

An HMM is, as the name implies, a Markovian model of an evolving process,
where certain elements are hidden, ie. not directly observable. This means
that the only way to determine the state of the model is indirectly, through
the observable elements of the model, the emissions. If we make an assump-
tion that the process our system models has a chance of producing a given
symbol for each observation type, depending on the state that the model
is in, we can then make assumptions about the current state of the process,
which in turn will allow for making inference about future states.

3.1.0.1 Structure

An HMM can be visualized as a series of hidden state nodes, each with a
number of child nodes, each representing an observation that can be made
in each interval. For each time interval a local model, called a time step is
introduced. The probability set for a time step is disjoint from every other
time step. However, the hidden state in a time step is connected to the hidden
state of the next time step with a directed edge, called a temporal link.

To formally define an HMM the following elements are needed: The num-
ber of hidden states in the model, N, the number of states we can observe, M,
The initial belief state of the model, A, the probability distribution of moving
between states, B as well as the probabilities of observing a specific value, or
symbol, in each state for each observation variable denoted as π. A, B and π
are denoted collectively by λ. Thus an HMM is defined by the tuple (N,M, λ).

An HMM is in exactly one state at a point in time. This state is however
not directly observable, only indrectly through the observations made in the
time step. When moving between time steps the model can change its state.
If the HMM is of the ergodic type, the new state can be the same as in the
previous time step, whereas a model of the forward type does only allow for
transitions to another state in subsequent time steps. For the purposes of
this project, only ergodic models will be considered.

Figure 2: The general structure of a Hidden Markov Model

9



10 theory of hidden markov models

In Figure 2 the state nodes, labelled X can be seen connected by diverging
connections to their child notes, the child nodes being the hidden state in the
next time step X, as well as the observations for time step, labeled Y.

A diverging structure, as shown in Figure 3, means that the children, in the
case of multiple children, in Figure 3 labelled as B,C and D, are individually
independent, given the state of the parent node a. Thus, if we instatiate the
parent node with a specific observation, no instantiation of a child node will
influence the state probablities of the other child nodes. This is known as d-
separation. If the parent node A is uninstantiated, however, information can
flow through the parent and influence the state probability of the parent, as
well as the other child nodes.

Figure 3: An example of a diverging connection. Picture originally shown in [14]

3.1.1 Determining the Belief State of the Model

Calculating the belief state P(Xt|y1:T ) in a time step t is a two-part process.
The first part is to calculate the state probability distribution in the given
time step based on the observations and belief states for previous time steps,
as well as the observations for the time step in question. This process is
called filtering. The second part is to refine the estimation by factoring in later
developments by starting at the latest observation and working backwards
to the relevant time step. This is called smoothing. Since the calculation fo the
first step moves forward in time and the other backwards, they are known
as forward message propagation and backward message propagation, in scientific
literature denoted by α and β respectively.

Calculating the forward message

To calculate the forward message for a given time step, αt, we need to know
the belief state of the model in the previous time step, in order to know the
transition probabilities to the current time step. This can be formally defined
as:

αt = P(Xt|y1:t)

= P(Xt|y1:t−1,yt)

= P(yt|Xt)
∑
Xt−1

P(Xt|Xt−1,y1:t−1)P(Xt−1|y1:t−1)
(1)
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For the initial time step no prior belief state exists, so instead the initial
probability distribution is used. In order to factor in the observed variables we
take the emission probabilities of each variable observed in a given time step,
and multiply the probabilities of the observations. This yields a distribution,
P(Xt−1|t1:t−1) to use for calculating the forward message for the next time
step. This likelihood is normalized into a probability distribution which is
used as the baseline for calculating the forward message for the next time
step. This is then done for time t=1 to T.

A full expansion of Equation 1 can be found in [7].

Calculating the backward message

The claculation of the backward message for a given time step, βt, follows
much the same procedure as the forward message, except that it works back-
wards from the last observed time step to the time step in question. This can
be formally defined as:

P(Yt+1:T |Xt) =

=
∑
Xt+1

P(yt+1:T ,Xt+1|Xt)

=
∑
Xt+1

P(yt+1|Xt+1)P(yt+2:t|Xt+1)P(Xt+1|Xt)

(2)

Since no data exists beyond time step T, we do not have a state belief beyond
T and thus need an initializer to start the recursive backwards calculation.
As we have no data, we must assume that all states are equally likely, so
the initial value is set to 1 for all states. From here we proceed to multiply
the emission probabilities of the observed variables per state in the previous
time step, with the transition probability matrix. For the backward message
it is worth observing that we cannot calculate a value for time step t=1, since
there are no observations for t-1, as there is no previous time step.

Avoiding underflow

Since the calculation of the forward and backwards message involves multi-
plication of several variable of less than zero, a risk of underflowing exists.
To alleviate this, scaling can be used. The scaling factor is the normalization
factor of the α calculation for each time step. The scaling factor for a time
step is denoted ct. The β values for each time step is then divided by the
scaling factor from the α calculation in the same time step. This ensures that
the α and β calculations are weighed equally, even after the scaling.

3.1.2 Learning

An integral part of the use of HMMs is the ability to have a model learn an
approximation of the parameters that govern a domain. Since the parameter
space of an HMM is very large, it is infeasible to directly determine the vari-
ables directly. Instead an iterative refining must be used to update the parts
of the model: The initial state distribution, the state transition model, and
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the model emission probabilities. For the purposes of this report, it is worth
noting that the learning will be performed using several game replays as
sources of information and that the learning equations have been updated
to reflect this.

3.1.2.1 Updating the initial state distribution

To calculate the updated initial state distribution, we calculate the expected
total number of transitions from the initial state x0 divided by the total num-
ber of transitions across all replays and time steps. This can be expressed
mathematically as

P̂(x0) =

∑R
r=1 P(x0|yt0:T )∑R
r=1

∑T
t=1N

(3)

P(x0|Y) can be calculated as follows:

P(x0|Y) = αt0βt0P(x0)P(y0|x0) (4)

P(x0), the initial state probabilities are multiplied by the emission proba-
bility of each observation variable, P(yt0|xt0), based on the observed value
for the variable, as well as the α value for the first observed time step, and
corresponding β value. This is now done for all replays, and the values are
summed over all the replays. Finally we divide by the total number of tran-
sitions in all replays. This yields the updated initial transition probabilities.

3.1.2.2 Updating the state transition model

For the general case we do not know how many transitions are made from
each state, so the denominator will have to be updated to calculate the prob-
ability of being in a state and transitioning to a new state. The full formula
for the calculation is then:

P̂(xt|xt−1) =

∑R
r=1

∑T
t=1 P(xt−1, xt|yt)∑R

r=1

∑T
t=1 P(xt|yt)

(5)

We can calculate this, by using the following calculation to find the nomi-
nator

P(xt−1, xt|yt) = P(yt|xt)P(xt|xt−1)αt−1βt+1

P(xt|yt) can be read in the emission probability distribution for each vari-
able in each time step. For the nominator, we incorporate P(yt|xt), that is,
the sensor model, since this helps define which state we are in, based on the
observations before and after the current time step. Similarly, we incorpo-
rate the transition model, since the previous state influences the probability
of the current state, based on what has been learned in the previous itera-
tions. We multiply with α and β, since these give belief state information for
time t based on the observations of the previous and future observations in
the chain.
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3.1.2.3 Updating the emission probabilities

When calculating the updated emission probabilities we need to update for
each emission variable individually. For each variable the update calculation
is:

P̂(yt|Xt) =

∑R
r=1

∑T
t=1 P(Xt,yt|Y)∑R

r=1

∑T
t=1 P(yt|Y)

(6)

For the calculation of the nominator it is worth noting that P(Xt,yt|Y) can
be rewritten to P(Xt|yt, Y)P(yt|Y) by using the Bayesian fundamental rule
[14]. This is relevant since we can observe that a specific value has probability
1 if the observation is actually observed in the learning sample in time step
t of replay r and else is 0 since it is either observed or not. P(yt|Y) can be
calculated by multiplying αtβt since these give information about the belief
state of the model, for time step t. P(yt|Y) is also the calculation for the
denominator of the equation, so here the same calculation is made.

3.1.2.4 Termination

The learning algorithm can be terminated in one of two ways: After a specific
number of iterations, or when a specific threshold for likelihood increase is
reached. Likelihood is a mathematical definition of how well the trained
model suits the data after an iteration of learning. It is defined as P(Y|λ) ,
meaning the probability of the learned model parameters, λ producing the
observations Y, where Y is the data used for training the model. P(Y|λ) can
be calculated as follows:

P(Y|λ) =
∑
XT

P(y1:T ,XT |λ) =
∑
T

αT

This is the same as the unnormalized calculation for filtering, so to account
for this, the equation is updated to account for the multiplication of the
normalization factor for a given time step, ct. The equation then becomes

P(O|λ) =

T∏
t=1

ct
∑
XT

αT

The result of this equation will always be 1. However, the following holds:
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T∏
t=1

ct
∑
ST

αT = 1

m∑
St

αT =
1∏T
t=1 ct

m

P(o1:t|λ) =
1∏T
t=1 ct

Since the calculation involves multiplication of several values smaller than
1, we again risk underflow. To compensate for this, the log2 value can instead
be applied to both sides of the equation. For logarithmic values, addition is
the equivalent of multiplying[18] for a final result of

log2(P(Y|λ)) = log2
1∏

t=1 Tct
=

T∑
t=1

log2(ct)

This calculation is performed for all R replays, for a final result of

R∑
r=1

T∑
t=1

log2(ct) (7)

Termination can now be decided on the basis of the increase in loglikeli-
hood since the last iteration.



3.2 poisson hidden markov models 15

3.2 poisson hidden markov models

Poisson Distributions

A Poisson distribution is defined as [17]:

P(y, λ) =
e−λλy

y!
(8)

where λ is the expected value of the observation, y is the actual value ob-
served1, and e is Euler’s number. The result of the equation is the probability
of observing y given the expected value, λ.

Poisson distributions that describe expected occurrences over time are
found in real life in, for example, birth and death statistics, or the decay
of nuclear materials, where we have a statistical average we can expect over
a time period.

3.2.1 Update rules for Poisson Markov Models

Since all other elements than the emission variables of a PHMM are the same
as those described in 3.1.0.1, the only new rule that needs be introduced
is an update rule for calculating an update of the λ value of the Poisson
variables. In each iteration, k, each Poisson emission variable will have a
different λ value that will need to be updated for each state, i, that is, λk+1i .
This calculation is given by [17]

λ̂k+1i =

∑R
r=1

∑T
t=1 α

k
t (i)β

k
t (i)yt∑R

r=1

∑T
t=1 α

k
t (i)β

k
t (i)

(9)

Calculation of the forward and backward messages for a PHMM is done
in exactly the same way as for a regular HMM, as described in Section 3.1.1
and Section 3.1.1, except that the emission probabilities are not read from
an emission probability table, but calculated on demand, using Equation 8.
Likewise, the same rules for termination can be used as for a regular HMM,
with the same reasoning as presented in Section 3.1.2.4.

3.3 poisson and multinomial mixed hidden markov model

Some emissions in a model may not be expected to occur repeatedly, while
some others may. In the SC domain, non-repeating emissions would most
likely be construction of base-structures. These will most often be built in
specific numbers, at specific points in the game, and then no further obser-
vations are likely to happen, since these structures only serve two purposes:
To produce combat or resourcing units, or to advance the tech-tree. For an
explanation of the tech-tree concept, refer to 1.1.1.1.

1 not to be mistaken for the λ describing model parameters in HMM architecture, which unfor-
tunately uses the same symbol
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Repeating emissions will be production of units , where units are con-
structed to either replace dead units or reinforce the number. Unit deaths
are assumed to follow a similar pattern of repeating occurrence.

To properly model this, a mixture of regular HMMs and PHMMs is needed.
For this no new rules are necessary, since the update rules for X0 and γ are
the same for both types of models. For the emission updates, we only need
to know the type of emission, and apply the relevant update equation to the
emission



4
D ATA A N A LY S I S

4.1 data availability

SC has a feature of players being able to save replays of multi-player matches.
The replay is saved as a file that can later be played back, much in the same
way as video. These files are small and thus easy to share, leading to the rise
of several websites where collections of replays are available for browsing.
This makes SC a reasonable source of data for Machine Intelligence, but with
certain reservations: SC matches are deterministic, meaning that if the same
set of actions is made at the same time, two matches will play out in the same
way. This means that the replay files, will only have to record the faction of
each player, the orders that were given, and the time stamp of the order. This
accounts for the small size of the replay files, but present data miners with
a problem: The replay does not contain any information about unit deaths,
or destruction of buildings, which in turn means that the current existing
number of a given unit or building type is unknown, unless the replay is
played back, since only the construction orders are present in the replay file.
A workaround for this needs to be found for the full information potential
of a replay to be utilized. The process of extracting data from SC replays
involves finding software to log the events in the replay as they happen, as
well as converting these log-files into features that can be used in an HMM.
This process is described in Chapter 5.

The replay pool has been acquired by crawling the SC competitive commu-
nities GOSU gamers[3] and teamliquid.net[6] and downloading the one versus
one games with the protoss versus terran racial setup, for a final replay pool
of 1800 replays.

4.1.1 Data quality

Despite the relative ease of acquiring SC replays, it is less easy to ensure
the quality of the replays, that is, how representative a given replay is of an
average SC game, since SC allows players to create custom maps – maps with
special rule-sets defined by the user, which may use a distorted version of
the standard rules, or even a different set entirely. Since it is infeasible to
manually investigate every replay, certain criteria have been applied in the
attempt to clean the dataset: Replays that displayed production values of
more than seven of the same unit in a time step were filtered, since it was
deemed unrealistic to reach this level of production within the seven minute
threshold that is analyzed. Similarly, replays where either player did not
produce any worker units were removed as well. This reduced the pool of
learning data from 1800 replays to 1400. In the same vein as the problem of
custom maps, is the skill level of the players involved. A skilled player may

17
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not only be much faster than an amateur, but may also employ strategies
that amateurs may not know, or be able to perform, due to the required skill
level of the strategy. Optimally, replays should be obtained from the games
played in the professional leagues, but this is unfortunately not probable,
since the replays of active players are similar to recordings of other sporting
events: guarded by investors who want to make money, and by players who
don’t want their opponents to study their strategies. This leaves the replays
of inactive players, which, unfortunately quickly get lost to time.

When deciding which features to model as Poisson distributions, and
which to model as multinomial, it is important to analyze the patterns ex-
hibited by the variables in the data.

4.1.2 Data patterns

Intuitively, one could expect that the production and destruction of units
would follow the repeating pattern of Poisson distributions, since the units
are the effect of a specific strategy. Construction of buildings would be more
sporadic, as these would be more indicative of the enabling of a strategy,
by traversing the tech tree, and production of the units that are part of the
strategy, and would therefore only occur in brief spurts. If this intuition
holds true, the production of a unit would be expected to show a tendency of
several units produced in a single time step of 30 seconds, and construction
of buildings should rarely exhibiting values of more than one in a 30 second
interval.

4.1.3 Production

For the best overview of the production, it should be investigated how fre-
quent a given production amount is for the type, as well as the total number
built in the replay. In combination, these will give an overview of not only if
the construction of a given unit or building is a repeating process, but also
how many can be expected to be seen once production starts.

As a sample, production of the zealot and dragoon units have been selected
to be shown, and the gateway and cybernetics core for building construction.
These have been selected since the two units are the earliest accessible com-
bat units in the tech-tree and thus have the longest time frame where they
can be expected to be observed. The gateway is the structure that produces
both units, with the cybernetics core being required for production of dragoons.
The production of the observatory structure is analyzed as well, since this is
one of the possible progressions from the production of the units enabled
by the gateway structure. As an example of a more advanced unit, the dark
templar has been chosen since this unit is also built from the gateway. The
statistics have been made using all the replays used to train the models. The
first time step shown in each model, is the first time step in which the event
is observed.

Figure 4 shows the number of replays where a specific number of zealots
existed in the given time step. From this we can see that zealot production
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Figure 4: The total number of zealots produced in a replay is the x-axis, and number
of replays is y

follows a pattern where only one or two are produced during the first seven
minutes. If we cross reference this information with the graphs in Figure 5

we can make an assumption that these zealots will be produced in the state
that the learned model assumes around the 150 second mark. This one-time
production makes sense in the context of SC since the racial setup of the
data is a Protoss player vs. a Terran player, and the basic combat unit of the
Terran race, a marine, is more cost-effective against zealots than the other
way around. The Protoss player will thus seek to progress to another unit as
soon as possible, while still having a small force of zealots to protect his base
against early raids from the enemy. It does, however, raise questions regard-
ing the validity of modelling zealots as a Poisson distribution, since zealot
production seems to be a one time event. It seems probable that learned
models will thus only have one or two states that produce zealots, and no
more than one.

Looking at Figure 6 we can see that the production number of gateways
is approximately 1.5 on average. If we cross reference this with Figure 7 it
seems to corroborate the assumption that production of gateways happens
once, in time step T2 and a secondary gateway for expanded production ca-
pacity, is then constructed later. This insinuates that gateway production is
a discrete event and thus not suitable for representation as a Poisson distri-
bution. This also makes sense in the context of SC where the first gateway
will be built as fast as possible to allow for production of units to fend off
potential early raids, with resources allocated later to allow for expanded
production, after the player’s position has been reinforced. For these rea-
sons, the multinomial distribution seems more appropriate, since the focus
then is more on when the production happens, than how many are produced.
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Figure 5: Total number of zealots produced up to the time step. X is the produced
number, Y is the number of replays

If we look at Figure 8 and Figure 9 we can see that the cybernetics core
follows a similar pattern to the gateway – that construction is a singular, dis-
crete event. This makes sense, since the cybernetics core serves the following
purposes: Unlocking production of Dragoons, opening for the construction
of the Stargate structure, and upgrading the flying units produced from the
Stargate. Producing more than one cybernetics core would then make little
sense, since the marine unit can attack air units as well as ground units, and
thus there is little point in building a Stargate, and much less in upgrading
the air units it produces, until an efficient counter to the marines has been
produced.

Figure 10 shows the frequency of the total number of produced dragoon
units. The dragoon is the first combat unit unlocked after the zealot in the
tech tree, enabled by the construction of the cybernetics core. The dragoon
is more effective against the marine unit than zealots, as well as being a rea-
sonable response against the next units in the traditional Terran progression:
The fast moving vulture raiding unit or the siege tank. For this reason it is
reasonable to expect a higher production of dragoons that is more consis-
tent across time, which is also what we can see from Figure 11. This could
indicate that a Poisson distribution is good for describing the production
behaviour of dragoons, as this will allow a finer granularity of the expected
number of dragoons produced in a time step, than a multinomial distribu-
tion.

Looking at Figure 12 we can see that there is never built more than one
observatory structure in the first seven minutes of a game. This makes sense,
since the observatory structure only serves to enable production of the ob-
server unit, much in the same way as is the nature of the dragoon / cyber-



4.1 data availability 21

Figure 6: The total number of gateway structures produced in a replay is the x-axis,
and number of replays is y

netics core relationship, and to make upgrades for the observer units. We
can also see that if an observatory has not been built by time step T6 it is
not going to be built. Thus the argument becomes much the same as for the
cybernetics core structure – that the interesting question is how likely the
construction is to happen, and not how many are produced.

If we look at Figure 13 we can see a similar pattern as that for the zealot
unit in Figure 5 – that the production is in fact a one time event. If production
of dark templars has not begun by time step T6 it is not going to happen.
This does make sense in relation to SC since the dark templar is a unit which
is effective in specialized circumstances only. As is the case for the zealot
production, this makes the decision to make all units be represented with
Poisson distributions less ideal.

4.1.4 Destruction

As important for the measurement of the opponent’s army strength, the
pattern of production is, just as important is the pattern of destruction. Intu-
itively, one would expect to see a few repeated losses in the early parts of the
game, as small skirmishes are fought, and, later in the game, shorter periods
of large repeated losses, as the players commit their forces to gain the upper
hand, and send produced reinforcements to the front lines.

Figure 14 shows the number of dragoon units destroyed in the time step.
The figure seems to follow the pattern of small skirmishes – some units are
destroyed from T6 and onwards, and in sligthly increasing numbers. This
means that we can expect the model to show a λ value for destruction, to
be somewhat close to 1 from T6 and onwards. If we combine these two
observations, we would expect the number of live dragoons to be increasing
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Figure 7: Frequency of replays where the number of gateway structures were pro-
duced in the time step

at a rate of approximately half a dragoon per time step after production
begins in time step T6.

4.2 data conclusions

Based on the the analysis of the data, it seems to be a good idea to keep the
construction of buildings as a multinomial distribution, whereas the switch
for units to Poisson distributions is a bit more ambigous. This ambiguity is
enhanced by the relatively short time window that is analyzed. Production
of more advanced units will be in the early upstart phase, if being produced
at all, which makes it difficult to analyze the validity of assuming that they
are continous productions. In addition to this, certain units may only be
cost effective in a certain time frame, that is, until the opponent is able to
adapt his unit production to something that effectively counters this unit,
the dark templar being an example of this. If production of dragoons is
started however, the production seems to follow a repeating pattern from
time step T6 and onwards.

This does not, all in all, make for a convincing case for switching all unit
representations from multinomial to Poisson distributions, but assumptions
are not always backed up by experiments. A better case could perhaps be
made for the switch if the model was made for longer time periods of SC

games, such that production was able to get up to full speed, and the more
advanced unit was given time to be produced.

4.3 increased timespan

To investigate if the investigated time period is the determining factor in the
patterns exhibited by unit production, more time steps have been investi-
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Figure 8: The total number of Cybernetics Core structures produced in a replay is
the x-axis, and number of replays is y

gated. The production of zealot units and dragoon units in a 10 minute time
frame has been investigated.

Figure 15 shows that after the decline in production from timestep T6,
production resumes again in T12 to T14 and remains fairly consistent from
there. This makes sense in an SC context, as the terran player will usually
try to reinforce his position by producing more siege tanks, which zealots
are useful against. If this thesis holds, we should expect that production
of a unit that effectively counters marine production should commence, to
allow the zealot units to fight siege tank units instead of marines. One such
unit would the reaver. If we look at Figure 17 and Figure 18 we can see that
production of reavers not only starts in time step T8, but that the number
of of reavers is almost completely static, indicating that the production in
later time steps is to replace destroyed reavers. Adding to the inference of
this strategy, is the escalation of a continued production of dragoons, as can
be seen in Figure 16, which insinuates that the primary strategy of protoss
players against terran players is to produce a force to protect against early
raids, start producing dragoons to counteract the terran player producing
siege tanks, and finally, starting the production of reavers to make the terran
player’s marines ineffective.

4.3.1 Conclusionss on the extended timespan

This expanded time frame indicates that if the model is intended to describe
the overall game, instead of only the opening strategies, Poisson observa-
tions for unit production seem much more appropriate. For the same reason,
models trained in Chapter 5 will be trained to learn 10 minutes of games,
instead of only 7, as was the case in the previous project[7] as well as the
article the previous project was based on[11].
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Figure 9: Frequency of replays where the number of Cybernetics Core structures
were produced in the time step

Figure 10: The total number of dragoons produced up to the time step is the x-axis,
and number of replays is y
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Figure 11: Frequency of replays where the number of dragoons were produced in
the time step

Figure 12: The total number of observatory structures in existence in the time step
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Figure 13: The total number of dark templar units produced up to the time step

Figure 14: The number of dragoons destroyed in the time step
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Figure 15: The number of zealots produced in the time step

Figure 16: The number of dragoons produced in the time step
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Figure 17: The number of reavers alive in the time step

Figure 18: The number of reavers produced in the time step



5
I M P L E M E N TAT I O N

Several steps need to be taken to get from a collection of SC replays to a
PHMM. First, a way to extract the data from the replays must be found, then
this has to be parsed into something that can be used as input in a PHMM,
and a model that can work with both multinomial and Poisson variables
then has to be constructed. An implementation of a standard HMM written
in C# from the Accord.NET framework[1] was originally intended as a baseline
for creating a mixed type model, but due to errors found in the framework
implementation along the way, the entire code was eventually rewritten from
the bottom up.

5.1 replay data extraction

As was mentioned in Chapter 4, SC replays are somewhat limited in the
data contained directly in them, due to the deterministic nature of SC. Unit
destruction is not present in the replay itself, since this will be implicitly
contained in the game rules, based on the orders given by the players during
the replay. This means that, in order to extract this data, each replay must be
simulated, and the time stamp of the production and destruction events can
then be recorded from the event log. Accessing the event log is not entirely
trivial however. This has to be done through a third party application such
as Brood War API (BWAPI). BWAPI is a code injection API that allows for both
controlling the game and reading the game state through C++ programs[2].

Once BWAPI has been configured into a working configuration, logging the
data is rather simple, as is demonstrated by the code in Listing 1.

The loop in line 1 of Listing 1, the loop runs while a game is in progress.
First, the game client is updated, that is - it updates the frame, all the actions,
the event list and the UI. The event list is now iterated across and switched
for the type of the event, in this case if the event type is UnitCreate for line
11 or UnitDestroy for line 15. If an event falls into either case, the event is
written to the log file through the logWriter stream writer with the type of
unit, the type of event, and the number of frames into the game that the event
occurred. Even though the events are named UnitCreate and UnitDestroy,
these events apply to buildings as well.

5.1.1 Data parsing

The output from the BWAPI replay ripper is a log-file of all the production
and destruction events in each replay. This needs to be parsed into something
that can be used as input into a HMM, so a simple parser was written in C#
to get from Listing2 to Listing3. This parser was given an ordered list of the
feature names. Each replay log was then read line by line, splitting each line

29
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1 while(Broodwar->isInGame())

2 {

3 BWAPI::BWAPIClient.update();

4

5 for(std::list<Event>::const_iterator e = Broodwar->getEvents().

begin(); e != Broodwar->getEvents().end(); ++e)

6 {

7 switch(e->getType())

8 {

9

10 case EventType::UnitCreate:

11 logWriter << e->getUnit()->getType() << " ,
created , " << Broodwar->getFrameCount() <<

std::endl;

12 break;

13

14 case EventType::UnitDestroy:

15 logWriter << e->getUnit()->getType().c_str() <<

" ,destroyed , " << Broodwar->getFrameCount()

<< std::endl;

16 break;

17 }

18 }

19 }

Listing 1: The logging code for a replay, using BWAPI

into a string array based on the commas, such that the each lines was tuple
of [Unitname][Eventtype][Timestamp].

Each tuple in the replay was then added to the relevant feature index in the
feature vector, unless the time stamp indicated a new feature vector should
be created. The feature vectors were decided to be 15 second intervals, since
this was deemed the smallest meaningful time step in the SC domain. The
time stamps were assumed to be 24 frames per second[4], meaning that each
15 second time step is 360 frames. This is the basis for Line 7 in Listing 4.
These feature vectors can then be collapsed if longer time steps are desired,
such as the 30 second time steps used in this project.

Listing 4 show the first part of the code that recognizes Protoss actions
and indexes them in the feature vector according to the name. In this case,
only the section for creation of new units or structures is shown, since the
recognizer for destruction of units functions in much the same way. The
method in Line 14 called GetFeatureNumberFromName does what the name
implies: gives the index in the feature vector of the given observation, based
on the name. Once all lines in the replay have been parsed, the result is saved
as a .txt file.
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1 Terran_SCV,created,21

2 Protoss_Probe,created,21

3 Protoss_Probe,created,416

4 Terran_SCV,created,431

5 Protoss_Probe,created,718

6 Terran_SCV,created,733

7 Protoss_Probe,created,1020

8 Protoss_Pylon,created,1223

9 Terran_SCV,created,1337

10 Protoss_Probe,created,1386

11 Terran_Supply_Depot,created,1469

12 Terran_SCV,created,1639

13 Protoss_Probe,created,1744

14 Terran,minerals,32,1800

Listing 2: Example of log contents before parsing

1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

2 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0]

3 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

4 [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

Listing 3: Example of feature vector after parsing. This example has been shortened
– the actual vectors have 60 elements
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1 if (Regex.IsMatch(elements[0].ToLower(), "protoss_")
2 {

3 string unitType = elements[0].Substring(elements[0].IndexOf("_")
+ 1).ToString();

4

5 if (elements[1].ToLower() == "created")
6 {

7 int timeSlizeNo = Convert.ToInt32(elements[2]) / 360;

8 if (timeSlizeNo > featureVectors.Count - 1)

9 {

10 while (timeSlizeNo > featureVectors.Count - 1)

11 {

12 featureVectors.Add(new List<int>(new int

[featureNames.Count]));

13 }

14 featureVectors[timeSlizeNo][

GetFeatureNumberFromName(unitType.ToLower())

]++;

15 }

16

17 else

18 {

19 featureVectors[timeSlizeNo][

GetFeatureNumberFromName(unitType.ToLower())

]++;

20 }

21 }

Listing 4: The code that recognizes Protoss actions and indexes them
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1 PoissonMarkovModel myModel = new PoissonMarkovModel(3, 10, 32, 28);

Listing 5: invocation of the constructor for a mixed observation HMM

5.2 mixed variable type hidden markov model

As was mentioned in the start of the chapter, the model was implemented in
C#. The model consists of the following elements:

• A quadratic 2D array to represent the transition matrix. Each dimen-
sion size is the number of states. Each column denotes the previous
state of the model, and the row the current state, such that P(xt =

[xt, xt−1

• A list of emission probability matrices for the multinomial distribu-
tions, represented as 2D arrays. Each array is ordered such that rows
are the state number, and columns are the value of the emission in-
dexed directly. Based on the data analysis, the values of the multi-
nomial distributions are 0, 1, 2 since multinomial values are used for
production of buildings.

• An array of initial state probabilities.

• A list of the λ values for each Poisson observation in each state. For
each Poisson variable is an array that contains the lambda value for
the emission, given the state.

When creating an HMM through the constructor, one must define the num-
ber of values that the multinomial variables can assume, the number of
states, the number of multinomial observation and the number of Poisson
observations. A sample of this can be seen in Listing 5 where a model is cre-
ated with 10 states, 32 multinomial observations, that can assume the values
0, 1, 2 and 28 Poisson observation variables.

When a new model is instantiated, all elements of the model are assigned
random values. The 2D arrays for transitions and multinomial emissions are
then normalised by column, and the initial probabilities are normalised as
well. The random instantiation helps ensure that the optimisation surface is
explored, since complex problems have very complex optimisation surfaces
with several local maxima[18].

5.3 forward calculation for mixed variable model

The calculation for the forward message shown in Equation 1 defines that, in
order to calculate the forward message for a time step we must calculate the
probability of being in each state, based on the the transition probabilities
from the previous time step, and the emission probabilities for the current
time step. To do this, not only for multiple observation variables, but for
different types as well, proper circumspection is due. First of all, a way to in-
corporate both multinomial and Poisson variables must be made, and a way
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1 //for timeslize 1 to T

2 for (int t = 1; t < T; t++)

3 {

4 //for each state s_t

5 for (int s_t = 0; s_t < States; s_t++)

6 {

7 //probability ’prob’ of being in state i and observing

sequence y(t)

8 double prob = GetEmissionProbability(s_t, observations[t

]) * calculateProbabilityForPoisson(s_t,

observations[t]);

9

10 double sum = 0.0;

11

12 //for each state j,

13 for (int s_previous_t = 0; s_previous_t < States;

s_previous_t++)

14 {

15 sum += fwd[t - 1, s_previous_t] *
transitionMatrix[s_t, s_previous_t];

16 }

17 fwd[t, s_t] = sum * prob;

18

19 normalization[t] += fwd[t, s_t]; // normalizing

coefficient

20 }

Listing 6: The induction step of the forward calculation

to differentiate between the types of observations. The easiest way to differ-
entiate between types is to simply have all of the same type listed together,
and then the other type. In this implementation, all multinomial variables
are first, and then all the Poisson variables. If we refer to Listing 5 we thus
have multinomial observations for the first 32 features, and Poisson observa-
tions for the next 28, for a total of 60 observation variables in each feature
vector.

When calculating the forward message, the result is stored in a 2D array
with each row being the time step, and the columns being the state. Thus,
when referring to Listing 6 we can see in line 2 that we iterate over each time
step in the observation sequence. In each time step we calculate the proba-
bility of being in state s_t by first calculating the probability of being in state
s_t based on the observed variables in line 7 by multiplying the probability
of the multinomial observations given the state, with the probability of the
Poisson observations, given the state. In line 14 we then calculate the proba-
bility of transitioning to state s_t given the belief state of the previous time
step and this is multiplied for a final probability of state s_t in time step t.

The two methods, GetEmissionProbability and calculateProbabilityForPoisson
in line 8 of Listing 6 calculate the probability of a state, given the obser-
vation sequence. GetEmissionProbability simply looks through the emission
probability tables for the multinomial observations, the number of which
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1 private double calculateProbabilityForPoisson(int state, int[]

observations)

2 {

3 double result = 1;

4 int observationOffset = observations.Length - poissonVariables;

5

6 for (int poissonParameterNo = 0; poissonParameterNo <

poissonVariables; poissonParameterNo++)

7 {

8 result *= calculateProbabilityForPoisson(

poissonParameters[poissonParameterNo][state],

observations[observationOffset + poissonParameterNo

]);

9 }

10

11 return result;

12 }

Listing 7: The method for calculating the probability of a state, given an observation
sequence

were defined in the constructor, and multiplies the emission probabilities
together. The function for calculateProbabilityForPoisson is more interesting
since the probabilities of a Poisson distribution cannot simply be read in an
emission table, and thus has to be calculated instead. In line 8 of Listing 7

it can be seen how first the offset of the feature vector where the Poisson is
found by stepping back from the end of the feature vector by the number of
Poisson variables, and each probability is then calculated using an overload
of the method that calculates a probability when given a lambda value and
an observation value. The overloaded method is simply an implementation
of the Poisson distribution calculation found in Equation 8. This achieves
a compact and easily readable notation for calculating the probability of a
state given the Poisson part of an observation sequence.

5.4 update rules

The update rules for the elements of the HMM are pretty direct interpreta-
tions of the equations given in Chapter 3. As examples, the calculations for
updating the transition matrix, and the λ values for the Poisson variables
will be shown in this section.

In line 1 of Listing 8 a 2D array is declared to hold the values for the nomi-
nator contribution of the given time step of the replay. The nominator is then
calculated in line 8, just as described in Section 3.1.2.2, with the only differ-
ence being the two-step calculation of the emission probabilities, due to the
mixed nature of the observation values. The nominator is then normalised
in line 18. The contribution is then added to the list of contributions across
replays and time steps. In line 27, the belief state for the time step of the
replay is calculated with smoothing. In line 30 this state belief vector is then
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1 double[,] tmp = new double[States, States];

2

3 double scalingFactor = 0;

4 for (int s_t = 0; s_t < States; s_t++)

5 {

6 for (int s_previous_t = 0; s_previous_t < States; s_previous_t

++)

7 {

8 tmp[s_t, s_previous_t] = Transitions[s_t, s_previous_t]

* GetEmissionProbability(s_t, replays[replayID][

timeStep]) * calculateProbabilityForPoisson(s_t,

replays[replayID][timeStep]) * fwd[replayID][

timeStep - 1, s_previous_t] * bwd[replayID][timeStep

, s_t];

9 scalingFactor += tmp[s_t, s_previous_t];

10 }

11 }

12

13 for (int s_t = 0; s_t < States; s_t++)

14 {

15 for (int s_previous_t = 0; s_previous_t < States; s_previous_t

++)

16 {

17 tmp[s_t, s_previous_t] = tmp[s_t, s_previous_t] /

scalingFactor;

18 }

19 }

20 //add matrix to collection of nominators across replays

21 transitionProbNom.Add(tmp);

22

23 //add forwardBackward for relevant timestep to denom sum.

24 double[] forwardBackwardPrevious = new double[States];

25 for (int s_t = 0; s_t < States; s_t++)

26 {

27 forwardBackwardPrevious[s_t] = fwd[replayID][timeStep - 1, s_t]

* bwd[replayID][timeStep - 1, s_t];

28 }

29

30 forwardBackwardPrevious = NormalizeVector(forwardBackwardPrevious);

31

32 transitionProbDenom.Add(forwardBackwardPrevious);

Listing 8: The contribution to the update of the transition matrix for each timestep
> 1 for each replay
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1 for (int timeslize = 0; timeslize < T; timeslize++)

2 {

3 int observationOffset = Emissions.Count;

4 for (int poissonEmission = observationOffset; poissonEmission <

Emissions.Count + poissonVariables; poissonEmission++)

5 {

6 double[] forwardBackward = new double[States];

7 for (int s_t = 0; s_t < States; s_t++)

8 {

9 forwardBackward[s_t] = fwd[replayID][timeslize,

s_t] * bwd[replayID][timeslize, s_t];

10 }

11 forwardBackward = NormalizeVector(forwardBackward);

12 double[] nom = new double[States];

13 double[] denom = new double[States];

14

15 for (int StateNo = 0; StateNo < States; StateNo++)

16 {

17 nom[StateNo] = forwardBackward[StateNo] *
replays[replayID][timeslize][poissonEmission

];

18 denom[StateNo] = forwardBackward[StateNo];

19 }

20 lambdaNom[poissonEmission - observationOffset].Add(nom);

21 lambdaDenom[poissonEmission - observationOffset].Add(

denom);

22 }

23 }

Listing 9: The contribution to the update of λ values for each replay

normalised to account for the scaling factor of the backward message, as
described in Section 3.1.1. Once this has been calculated for all time steps in
all replays, the values of all the contributions for the nominator are summed,
and likewise for the denominator. The nominator is then divided component
wise for the respective columns.

Listing 9 shows the update contribution of a single time step of a replay,
for the λ parameters of the Poisson observations. In line 3 the offset in tte
observation vector is set by referencing the number of multinomial variables.
for each poisson emission the smoothed state probabilies are then calculated
in lines 6 to 11. As per Equation 9 the smoothed state probabilities are used
directly as the denominator for the time step in line 21, whereas the nomi-
nator is the smoothed state probability multiplied by the value observed for
the observation in line 17.

Just as for the transition update, the nominator contributions are then
summed across all replays and timesteps in the end, as is the denominator
values. Finally, a componentwise division for each state yields the updated
λ values for the observation.
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Implementation issues

Using BWAPI is not problem free, due to the code injection nature of the API,
as well as SC being a 16 years old game. This leads to a lot of tinkering
being necessary in order to make BWAPI run on a given machine. This is
unfortunate, since the documentation for the newest release of BWAPI, 4.0.1
beta at the time of this report, is rather sparse.

While the BWAPI documentation claims to have features for automatic start-
ing of SC replays[2], this feature is either broken in version 4.0.1 beta, or not
working as specified in the documentation. The end result is that automation
of replays has to be handled through the SC menu system, using simulated
keyboard input to activate the hotkeys for the menu, which is not considered
a good idea [5]. Simulated keyboard input turned out to not be particularly
smooth either, since the minimum time between keypresses had to be acco-
modated to the tolerance of SC, which is not documented anywhere, since
SC is a proprietal system never intended for the things BWAPI does. This
results in the delay between keypresses being a matter of trial and error
to decide how short it can be cut, and varies from machine to machine as
well, based on the hardware of the machine running the SC client. On top
of this, the BWAPI client was unable to properly clean up the references for
the keypresses across uses, leading to the game and BWAPI client crashing
on the menu screen after each replay, which in turn lead to the implemen-
tation of a watchdog service being neccessary to restart both SC and the
BWAPI client after each iteration. This discussion should serve as a warning
to people intending to use BWAPI: Just like other hacking projects, new and
exciting functionality can be added, but the nature of hacking can also cause
unforseen problems.



6
E X P E R I M E N T S

To investigate the validity of the ideas presented in this project, two types of
experiments are performed: One goal is to investigate whether a mixed vari-
able PHMM can provide accurate predictions of the number of currently liv-
ing units, and the other to make an analysis of the most likely path through
the state space, and see if this path actually makes sense in the context of SC

strategies. In order to do this, first the number of hidden states must be de-
termined. When determining the number of states, two considerations must
be kept in mind: The model’s complexity and the likelihood of the learned
models. The main variable to adjust is the number of hidden states in the
model, since the more hidden states are in the model, the better the model
can take special cases into consideration, thus increasing the model’s likeli-
hood. However, too many states not only leads to a model that is harder for
a human to make sense of, and thus validate, it also increases the risk of over
fitting. If too many states are in the model, the model can assign each state to
a too specific scenario, which leads to the state almost never being achieved,
which means the state only responds to very specific circumstances. If the
model ends up with too many specialised states, it may end up being unable
to recognise general patterns and only specialised ones. For this purpose the
Bayesian information criterion (BIC) score can be used to evaluate the suit-
able number of states.

6.0.1 Bayesian information criterion

The BIC score is an alternative to performing cross validation. The primary
arguments for using BIC instead of cross validation is the relative ease of
calculating a BIC score, compared to cross validation, as well as the fact that
cross validation requires models to be trained only on subsets of the train-
ing data. Since only 1400 replays in total were available for this project, and
a part of these should be reserved for testing, it would be a relatively sig-
nificant amount of training data that would be exempt from each model’s
learning, if cross validation was performed. Unfortunately the BIC score is
an indirect evaluation, as opposed to the actual testing of cross validation,
so reservations regarding the quality of information from the BIC may be
appropriate.

For calculating the BIC score of a Poisson and multinomial mixed HMM,
the following equation is used:

BIC(Y|λ) = Log2(P(Y|λ)) −
I− 1+ S · S− 1+ S · P+ S ·M− 1 · V

2
log2(N)

(10)

39
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where N is the total number of time steps used to train the model, I is the
number of initial states, S is the size of the transition matrix, P is the number
of Poisson variables, M is the number of multinomial variables and V is the
number of values the multinomial observations can assume.

For the initial BIC calculations, fifteen models were trained with number
of states in each interval, all with the same number of Poisson variables and
multinomial variables, as are intended for the final tests. The results can be
seen in Figure 20

Figure 19: BIC calculations for 15 learned models in each interval step

Using this sample as a guidepost, models were trained with a state num-
ber between 10 and 15 and each number of states was used for training 15

models. These were then be used to make a final evaluation of the most
suitable number of states.

Figure 20: BIC calculations for 15 learned models in each interval step

Based on the result shown in Figure 20, the final state number was decided
to be 11.

6.1 prediction

To properly explore the accuracy of the model, different scenarios are tested.
The first experiment will consist of predicting the number of live zealot, dra-
goon and reaver units in the final time step, T19 to investigate how well the
states of the learned model fit the test data. Two other experiments will be
made to predict the state of the game 60 and 90 seconds in the future. Graphs
will be produced to show the average error in production, destruction, as
well as the number of live units. This will be compared to the standard de-
viation for the data set of each unit, in an attempt to determine how much
any inaccuracies are due to the model and how much data variance is the
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cause. For these experiments, the learned model with highest log-likelihood
and 11 states, was used to predict results in 400 replays that were not used
for the training of models.

6.1.1 Standard deviation

The standard deviation is a measure of the average variation of a set of
data. For these experiments, each unit type has had the standard deviation
calculated for construction, destruction, and live units. This is relevant, since
this tells us something about how closely the replays match the average
pattern, which in turn allows for assessment of the expected prediction error.

Figure 21: The standard deviation for the observed values, for the Zealot unit in
each time step

As can be seen in Figure 21, the deviation for all zealot attributes becomes
significant after time step T2. From this point on, we can expect the value of
vary within the indicated interval, in the appropriate time step. Thus, we can
expect the number of produced zealots in T3 to vary within 0.52. Similarly,
Figure 22 and Figure 23 show the standard deviations for the dragoon and
reaver unit. For Figure 22 it is worth noting that the alive and produced lines
follow the exact same path.

6.1.2 Average error with full evidence

To get an overview of the accuracy of the model in accordance to the data,
first experimental configuration is with full evidence until the final time step.
Thus, the only prediction is the final time step, T19. A graph is produced to
represent the average absolute error for each type of prediction.
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Figure 22: The standard deviation for the observed values, for the Dragoon unit in
each time step

Figure 23: The standard deviation for the observed values, for the Reaver unit in
each time step

6.1.2.1 Production

As can be seen in Figure 24, the average error for the production of zealots in
this experiment configuration, the error for production, consistently lies be-
low the standard deviation for production, as seen in Figure 21. This means
that the accuracy of the prediction, on average, is better than the variance of
the data by a factor of approximately a factor of 400 for zealots.

If we look at the similar value for the production of dragoons in Figure 25

we again see a consistently better result from the model, than the variance of
the production value as is the case for the production of reavers in Figure 26.
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Figure 24: The average error for production of zealots, with full evidence

Figure 25: The average error for production of dragoons, with full evidence

Figure 26: The average error for production of reavers, with full evidence
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6.1.2.2 Destruction

In Figure 27 we can see that the average error for destruction of zealots is
much higher that for production. The error is still smaller than the standard
deviation by a large margin, but not as much as for production. The same
thing is the case for destruction of dragoons in Figure 28 and reavers in
Figure 29.

Figure 27: The average error for destruction of zealots, with full evidence

Figure 28: The average error for destruction of dragoons, with full evidence

The increase in error for all three types makes it a reasonable expectation
that we will observe an even larger average error for the number of live
units, since the prediction of the live number in a time step is calculated as
livenumberintheprevioustimestep+(predictednumberofproducedunits−

expectednumberofdeadunits).

6.1.2.3 Live units

Looking at Figure 30, the assumption of an increase in error is indeed con-
firmed. The average error for the number of live zealots is only half the value
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Figure 29: The average error for destruction of reavers, with full evidence

of the standard deviation. This still means that the variance learned by the
model is descriptive of the patterns exhibited by the test set, but much less
that is the case for production alone.

Figure 30: The average error for the number of live zealots, with full evidence

The number of live dragoons unfortunately exhibits a larger average error
than the standard deviation, which means that we cannot fully attribute
the error to data variance. The error is influenced by both the error margin
for the production and destruction of dragoons, but it seems reasonable
to attribute the error more to the destruction calculation, since the average
error in each time step is approximately ten times higher for destruction
than production.

The error for the number of live reavers reavers, shown in Figure 32 fol-
lows the same tendency as shown by the number of live zealots: an increase
in average error, but still with less error than the standard deviation, which
indicated that for these two unit types, the model matches the observed
events better than the variance of the data on average, whereas the pattern
for dragoons is less encouraging.
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Figure 31: The average error for the number of live dragoons, with full evidence

Figure 32: The average error for the number of live reavers, with full evidence

6.1.3 60 second prediction

In this configuration, prediction was applied to the 400 replays, where the
model was tasked with predicting 60 seconds into the future, in each time
step. Graphs of the average error were produced for both production, de-
struction and live numbers of each unit type.

6.1.3.1 Production

The average error for production of zealots, shown in Figure 33 is still signif-
icantly better than the standard deviation when predicting 60 seconds into
the future, by a large factor. The error peaks in time step T5 which seems to
insinuate that, once a certain criteria has been met, that the model recognises,
the production of, or lack of production of zealots becomes very predictable.

Production of dragoons, shown in Figure 34 is very accurate. At the worst
point in time, in T6, the average error in predicted production, is 1 ∗−106,
compared to the standard deviation for produced dragoons in T6 of 0.15.



6.1 prediction 47

Figure 33: The average error for production of zealots, when predicting 60 seconds

This indicates that a production of dragoons can be predicted with a reason-
able precision 60 seconds into the future.

Figure 34: The average error for production of dragoons, when predicting 60 sec-
onds

For reaver production, the largest error happens in time step T6, as can
be seen in Figure 35. This seems to indicate that , as for dragoon produc-
tion, once a certain criteria has been met, reaver production is very strictly
patterned, especially when we look at the standard deviation for the pro-
duction of reavers, which is approximately 0.45 in time step T7 and 0.4 in
T8.

6.1.3.2 Destruction

Like for the full evidence error graph, it can be seen in Figure 36 that the
average error for prediction of destruction is significantly higher, than for
production. But just like the production of zealots, once a certain criteria
has been met, the number of dead zealots in each time step can be predicted
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Figure 35: The average error for production of reavers, when predicting 60 seconds

with much greater accuracy. It is, however not the same event, since the error
for production peaks one time step earlier than the destruction.

Figure 36: The average error for destruction of zealots, when predicting 60 seconds

When predicting destruction of dragoons, a better average error in each
time step is actually achieved for 60 second prediction, shown in Figure 37,
than for full evidence. This seems to indicate that the data set for the test
is significantly different from the training set, in regards to destruction of
dragoons.

For the reaver the average error in Figure 37 exhibits the same curious
pattern of a smaller average error in each time step, when performing pre-
diction across 60 seconds than when having full evidence in each time step.

6.1.3.3 Live units

For the prediction of live zealots, shown in Figure 39, the average error is
generally better than the standard deviation, except for time step T5 where
the error and deviation are very close in value. This seems to indicate that in
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Figure 37: The average error for destruction of dragoons, when predicting 60 sec-
onds

Figure 38: The average error for destruction of reavers, when predicting 60 seconds

time step T4, a distinction is made between states, that increases the accuracy
of predictions.

When predicting for dragoons, the average error, shown in Figure 40 con-
tinues the unexpected behaviour of increased precision, compared to the full
evidence across time steps. Once again the most likely explanation seems to
be that there either must be a significant difference in the test data and the
training data in the case of dragoons, or the model has learned something
that does not correspond to reality.

For the number of live reavers, the average error is generally much lower
lower than the standard deviation, as can be seen in Figure 41. This means
that model predicts within a narrower margin than the natural variance of
the data, in the case of reavers. A spike in average error occurs in T6, which
is also where the standard deviation for the number of live units happens, so
it seems reasonable to assume that these two properties are connected, since
the actual value that is assumed is most uncertain in this time step.
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Figure 39: The average error for number of live zealots, when predicting 60 seconds

Figure 40: The average error for number of live dragoons, when predicting 60 sec-
onds

Figure 41: The average error for number of live reavers, when predicting 60 seconds
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6.1.4 90 second prediction

In this configuration, prediction was applied to the 400 replays, where the
model was tasked with predicting 60 seconds into the future, in each time
step. Graphs of the average error were produced for both production, de-
struction and live numbers of each unit type.

6.1.4.1 Production

Zealot production generally follows the same pattern in Figure 42 as hap-
pened for prediction for 60 seconds, except with a larger average error, which
is to be expected for the longer period covered without evidence.

Figure 42: The average error for production of zealots, when predicting 90 seconds

The average error for prediction of dragoon production, in Figure 43,
when predicting 90 seconds into the future, conforms more to the structure
of Figure 34. The average error in each time step increases in comparison to
the 60 second prediction, which is to be expected, since longer periods have
to rely on only the learned transition probabilities.

The average error for prediction of reaver production in Figure 44 follows
a similar pattern of error as the 60 second prediction, albeit with an aver-
age error that is approximately ten times higher in each time step, but still
significantly lower than the standard deviation.

6.1.4.2 Destruction

Prediction of zealot destruction in a 90 second time frame, shown in Fig-
ure 45 shows an average error that is similar to the error exhibited by the 60
second prediction. However the error peaks at an earlier time step.

Similarly, to the zealot destruction, the average error for dragoon destruc-
tion, shown in Figure 46, follows the same overall pattern as the destruction
for 60 prediction, with a higher average error in each time step.

The error for prediction of reaver destruction, shown in Figure 47 is a
bit of an out-lier in this group with the highest average error spreading to
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Figure 43: The average error for production of dragoons, when predicting 90 sec-
onds

Figure 44: The average error for production of reavers, when predicting 90 seconds

two time steps, unlike the single time step of the other unit types. If we
refer to the 60 second prediction however, this makes more sense as we can
see that the early time steps offer some uncertainty about whether a reaver
is destroyed in the following time steps, most likely until it becomes more
certain if a reaver is built.

6.1.4.3 Live units

When predicting the number of live zealots, the average error in Figure 48,
gets very close to the same as the standard deviation in time step T5. This
means that it is not particularly useful trying to predict in this interval, since
the replays naturally exhibit a variance equal to the error margin, which
means that the model could predict that 1.2 zealots are produced in the time
step, and no zealots could be produced at all.

The prediction of the number of live dragoons, shown in Figure 49 indi-
cates that the model is generally good at predicting the number of live dra-
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Figure 45: The average error for destruction of zealots, when predicting 90 seconds

Figure 46: The average error for destruction of dragoons, when predicting 90 sec-
onds

goons 90 seconds into the future. The standard deviation is approximately
a thousand times higher than the prediction error, which means that the
variance in predictions are much smaller than the natural variance of the
observations.

The prediction of live reavers, shown in Figure 50, indicates that the model
is somewhat capable of predicting the number of live reavers 90 seconds into
the future. The average error is, at worst, 1/10 of the standard variation.

6.1.5 Overall accuracy

Overall the model seems to have a fairly good accuracy of prediction in
regards to construction of units. Prediction of unit destruction, and thus pre-
diction of the number of live units, could be better. The data analysis seems
to indicate that, at least for dragoons, the problem could be that the number
of events simply isn’t very large, and thus don’t confer much information
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Figure 47: The average error for destruction of reavers, when predicting 90 seconds

Figure 48: The average error for the number of live zealots, when predicting 90

seconds

about when this could take place. The generally good accuracy of unit pro-
duction does however confer a good deal of precision to the accuracy of
predicting live units. It is, however, odd that the average error for the full
evidence sequences, particularly dragoons, have such high average errors,
compared to the standard deviation. A possible cause for this could be the
quality of the data, since no guarantees are given from the Team Liquid and
GosuGamers sites about the quality of the replay. Adding to the murkiness
of the data quality is the fact that both sites host replays from the ICC-Cup,
which is a tournament for SC bots, which may vary extensively in playing
ability. The model does however seem to be able to overcome this and learn
to generally differentiate between this.
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Figure 49: The average error for the number of live dragoons, when predicting 90

seconds

Figure 50: The average error for the number of live reavers, when predicting 90

seconds

6.2 state trace

The state chart has been produced using the 11 state model that had the
highest log likelihood of −79025.43 with a transition threshold of 10%, a
threshold for multinomial observations of 10%, and a threshold of 0.5 for λ
values of Poisson variables.

Looking at the state chart in Figure 51 we can see that the learned model
starts with a pattern much like what was expected, based on the discussion
in Chapter 4: An initial production of approximately two probes, and pro-
duction of a gateway in half the cases. It seems likely that the self-referring
transition in State 2 will then be taken and a gateway will then be produced.
This matches the pattern exhibited for production of gateway structures in
the data analysis. From State 2 we can then move to State 7, which produces
the cybernetics core with a high degree of probability. From State 7 we can
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transition to State 1, which produces the approximately one dragoon that
the data analysis indicated. Also in State 1 is the production of the Robotics
facility, which enables the construction of the observatory structure, which
happens 15.28% of the time in State 4. If the transition to State 4 is not
taken, we can follow the self referencing transition in State 1, which allows
for continued production of dragoons and also for the production of further
infrastructure in the form of another gateway. If we transition from State 1

to State 4, dragoon production continues. In state 4 there is a 48% chance of
remaining in State 4, and a 31.6% chance of transitioning to State 5 where
the production of dragoons in increased. This follows the trends that Chap-
ter 4 indicated. However, a pattern indicating that State 8 should exist was
not seen, but the model seems to have learned it correctly if we look at the
standard deviation for production and destruction in Section 6.1, this seems
to be correct. This indicates that the model has learned what was expected
in the data analysis chapter, as well as patterns that were not discussed in
the data analysis, but makes sense when looking back at the results of the
standard deviation.
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Figure 51: Statechart for model with 11 states





7
C O N C L U S I O N

7.1 accuracy of poisson distributions for unit patterns

Based on the combination of the state chart analysis, data analysis and pre-
diction experiments, it seems reasonable to conclude that a Poisson distribu-
tion is a suitable representation of unit production in SC. The average error
for prediction of production was very small compared to the standard de-
viation of the test data, and the state chart allows for a path that, with a
reasonable probability, describes the expected production patterns for units.
However, the concern presented in the data analysis remains regarding units
that are of circumstantial use, such as the dark templar, since, as can be seen
from the production of these being pruned from the state chart, they do
not exhibit very high consistent production. The differentiation of describ-
ing buildings with multinomial variables does seem to make sense however,
since many states in the state chart, for example, have a low, but consistent,
probability of producing gateways. If this had been described as a Poisson
variable, it seems very likely that these low probability productions of gate-
ways would have been reduced to a very low average production value if
represented as Poisson distributions.

The benefit of introduction of Poisson variables also seems to be depen-
dent on the purpose of the model. If the purpose is to describe longer parts
of a game, Poisson variables seem to make sense, but if the model only
describes the opening stages of the game, multinomial variables seem to
be better, since these are better for describing rare, or one-shot production
types, such as was the case of zealot production in the seven minute interval.

7.2 limitations of markov models

Due to the probabilistic nature of Markov Models, errors start to creep in
early in the predictions, even in the time steps where production of a unit
has never begun yet. Though this error is small, the mere presence adds
noise to the predictions. Another limitation is that, in order to learn a general
model of the game state, a large pool of data needs to be available to train the
model. Not only is this data pool not entirely trivial to accumulate in the case
of SC. Another limitation is the training time. Learning a model that covers
10 time steps, and has 11 states took approximately 12 hours per model.
Thus, training 15 models, in order to attempt a reasonable exploration of the
optimisation surface, takes 180 hours of CPU time. While this can of course
be parallelised, it is a limitation that is worth considering.
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7.3 data quality

Also worth noting is the importance of a decent quality level of the data
used to train the model. State 8 of the learned model makes no sense from
a domain knowledge perspective. There is absolutely no reason for a state
where no production or destruction happens, and even less when the state
has a 99.8% chance of transitioning back to itself. None the less, the data has
not only taught the model that this was a necessity, but the experimental
data has confirmed the sense in learning this state, at least seen from a data
perspective.

7.4 future work

Some points remain open for future investigation at the end of this project:

• Investigation of the effect of modelling buildings as Poisson variables.

• Investigating the effect of having a single Poisson variable to describe
the number of living units, instead of two separate variables that de-
scribe production and deaths.

• Investigating the impact of having some units that are expected to be
produced for the duration of the game modelled as Poisson distribu-
tions, and having circumstantially produced units modelled as multi-
nomial variables.

These points could all help the model become more accurate in describing
certain edge cases, as well as possibly increase the overall accuracy, since for
example a single variable to describe the number of living units of a type,
would only have one variable that could contribute to the prediction error
instead of the two that were present in the models of this project.
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