
Learning Action Primitives From 3D Stereo
Vision Measurements

A thesis submitted to the University of Aalborg
for the degree of Master of Engineering in

Computer Vision and Graphics

Ricardo A. Arango S.

Supervisor: Prof. Dr. Ing. Volker Krüger

Aalborg University
Copenhagen Institute of Technology

Department of Media Technology and Engineering Science

January 15, 2010

Abstract

Models defining the motion of objects in images are an important field in Com-
puter Vision. A common drawback of many models it that sets of trajectories
with different motions but sharing some common paths are described individ-
ually, therefore producing redundant and uncorrelated data. These common
paths can be described as action primitives, and models linking action primi-
tives are necessary to correlate them. This thesis defines a framework to track
objects visually using color segmentation and Hidden Markov Models, record
motion trajectories, identify action primitives and build a single model from dif-
ferent trajectories describing them jointly and efficiently. The action primitives
model can be used as a learning model for a robot with a higher level definition of
the actions performed. The framework is written as a C++ programming library
and a complete implementation is provided which fulfills all the requirements
for object detection, tracking, motion recording and model building.

KEYWORDS: Imitation Learning, Action Primitives, Hidden Markov Models,
Motion Trajectories, Stereo Tracking, Color Segmentation, Blob Filtering.

ii

Acknowledgements

I would like to express my thanks to:

• Professor and supervisor Volker Krüger for his continuous support with
the project and making sure I had the right tools and assistance to deliver
it.

• Sanmohan whose work is the foundation for this thesis. Also for his pa-
tience and motivation to work with me on the project. I am sure that with-
out his help I would not have been able to complete it.

• Dennis Herzog I thank for sharing with me his knowledge on Hidden Markov
Models.

• Daniel Grest, for giving me support to the questions related to my project.

• To all the teachers in the Computer Vision and Graphics course for all the
things I have learned during these two years at AAU.

• Finally I want to thank my family for their unmeasurable support all this
time, and specially my girlfriend Natalia for her patient understanding.

iv

Accompanying CD-ROM

The thesis document, programmed library and editor program presented can be
found on a supplementary CD-ROM. The library is programmed in C++ and has
been compiled successfully in Visual Studio 2008. The editor has been run and
tested in Windows Vista and Windows 7.

vi

Contents

Abstract ii

Acknowledgements iv

Accompanying CD-Rom vi

Table of Contents viii

List of Figures 2

1 Introduction 6

1.1 Motivation and Objectives . 6

1.2 Thesis Organisation . 8

2 Related Work 10

2.1 Object Tracking . 10

2.1.1 Representing Objects . 11

2.1.2 Features for Tracking . 11

2.1.3 Object Detection . 11

2.1.4 Tracking Objects . 12

2.2 Modeling Trajectories . 12

2.2.1 Hidden Markov Models . 12

viii

CONTENTS CONTENTS

3 Analysis 14

3.1 Image Acquisition . 14

3.1.1 Background Substraction . 14

3.1.2 Running Gaussian Average . 15

3.2 Color Filtering . 16

3.2.1 Color Spaces . 16

3.2.2 Pixel Classification . 18

3.3 Blob Filtering . 21

3.3.1 Connectivity Algorithm . 21

3.3.2 Mask Filling . 22

3.3.3 Blob Features . 23

3.4 Tracking . 24

3.4.1 Kalman Filter . 25

3.4.2 Object State Update . 26

3.4.3 Tracking Correspondance Test . 27

3.4.4 Motion Detection and Recording . 27

3.5 Stereo Triangulation . 27

3.5.1 Pinhole Camera Model . 28

3.5.2 Intrinsic Camera Parameters . 29

3.5.3 Undistortion . 30

3.5.4 Extrinsic Camera Parameters . 32

3.5.5 Calibration . 34

3.5.6 Epipolar Constraint . 35

3.5.7 Object Correspondances . 36

3.5.8 Triangulation . 37

3.6 Learning Action Primitives . 39

3.6.1 Model Building . 39

3.6.2 Hidden Markov Models . 40

ix

CONTENTS CONTENTS

3.6.3 Preparing Data for Model Building . 41

3.6.4 Localizing observations . 43

3.6.5 Divergence Test . 43

3.6.6 Joining Gaussians . 45

3.6.7 Updating the HMM . 45

3.6.8 Identifying the Motions in the Model’s HMM 47

3.6.9 Finding Action Primitives . 47

3.6.10 Actions Primitives Graph . 48

3.6.11 Trajectory Validation . 49

4 Implementation 51

4.1 Hardware . 52

4.2 Software . 54

4.2.1 GToolkit . 54

4.2.2 Action Primitives Editor . 58

5 Tests 66

5.1 Testing Scenario . 66

5.2 Object Space Test . 68

5.2.1 Purpose of Test . 68

5.2.2 Test Method . 68

5.2.3 Test Results . 70

5.2.4 Conclusion . 74

5.3 World Space Test . 75

5.3.1 Purpose of Test . 75

5.3.2 Test Method . 75

5.3.3 Test Results . 77

5.3.4 Conclusion . 80

5.4 Model Grammar Test . 80

5.4.1 Purpose of Test . 80

5.4.2 Test Method . 80

5.4.3 Test Results . 81

5.4.4 Conclusion . 82

x

CONTENTS CONTENTS

6 Discussion 84

6.1 Contributions . 84

6.1.1 Modeling Actions Primitives . 84

6.1.2 GToolkit . 84

6.1.3 Action Primitives Editor . 85

6.2 Conclusions . 85

Bibliography 86

A Color Conversion 87

A.1 RGB to Normalized RGB Conversion . 87

A.2 RGB to YCbCr Conversion . 88

A.3 RGB to HSV Conversion . 89

A.4 RGB to HSL Conversion . 90

A.5 RGB to Hunter LAB Conversion . 91

B Kalman Filter 92

C Viterbi Algorithm 94

D Longest Common Substring 95

E Transition Matrix for World Space Test 96

xi

List of Figures

3.1 Images from two cameras in a stereo setup. 14

3.2 Outcome resulting from applying the running Gaussian average
background subtraction technique. 15

3.3 Results of applying the four different classification techniques: a)
Thresholds, b) Histograms, c) Gaussian Mixture with three mix-
tures and d) Mahalanobis distance. 20

3.4 Two rules for connectivity of pixels. 21

3.5 Example of Blob mask filled to remove holes. 23

3.6 The pinhole camera model in 2d. 28

3.7 The perspective camera model. 29

3.8 Examples of radial distorsion. 30

3.9 Perspective model with radial distortion. 31

3.10 Original image and result after undistortion. 32

3.11 Transformation between world and camera coordinates. 33

3.12 Two images from the left and right camera showing the calibration
procedure. 34

3.13 Epipolar geometry. 35

3.14 Triangulation of a point using the middle point of the shortest seg-
ment between two skew lines. 38

3.15 Stereo setup and triangulation of an object’s position. 39

2

LIST OF FIGURES LIST OF FIGURES

3.16 State Gaussians obtained from a set of motion trajectories. The
ellipsoids show the contour of the Gaussians. The color differenti-
ates the index in the array of states for each trajectory. 42

3.17 Example of a Left-Right HMM . 42

3.18 Observations localized by offsetting with the first observations of
each trajectory . 44

3.19 Two HMMs (middle, right) created from the Gaussians in the left
image using different divergence thresholds. 45

3.20 The left image shows a HMM trained with the first Gaussian with-
out restriction. The right image shows a HMM trained equally but
restricting the way the first Gaussian is joined. 46

3.21 Model and transition matrix obtained from joining many HMMs
from different trajectories. 46

3.22 Model and action primitives obtained from the model. 48

3.23 Action primitives and action primitives graph obtained from the
model. 49

4.1 Pipeline of the entire Action Primitives Learning system defined
in this thesis. 51

4.2 Screenshot of the stereo camera with the two USB Creative Optia
AF USB cameras used in the thesis. 53

4.3 Screenshot of the camera device configuration dialog available in
the AMCap utility for windows. 54

4.4 Screenshot of the Action Primitives Editor. 59

4.5 Camera tools in the Action Primitives Editor labeled for illustra-
tion purposes. 60

4.6 Different tabs of the trackable objects tools from the editor are
shown in this figure. 61

4.7 The image shows the UI for defining the properties of the recorder. 63

4.8 Tools for building and visualizing the HMM and action primitives
graph. 64

3

LIST OF FIGURES LIST OF FIGURES

5.1 A subject performing the motion of an object over the testing table
during a recording session. 67

5.2 The motions in object space, in three different lengths. Each mo-
tion starts at the center point. 69

5.3 Gaussians (right) obtained for the recordings (left) in object space. 71

5.4 (a) Gaussian states of the HMM for the object space motions sce-
nario. (b) Viterbi paths found for the observations used for train-
ing. Each colored line is a different path. 72

5.5 Transition matrix and graph representation of the trained HMM
in object space. 72

5.6 (a) Actions primitives as seen in the editor. (b) Actions primitives
graph of the resulting model. Each colored node in image (b) is a
primitive action, similar to the points and lines in image (a). . . . 73

5.7 Illustrations (a)- (d) show the street intersection scenario with the
possible transitions of a car from one street to another shown with
arrows. 76

5.8 Gaussians (right) obtained for the recordings (left) in world space. . 78

5.9 (a) Gaussian states of the HMM for the streets scenario. (b) Viterbi
paths found for the observations used in the training of the HMM. 78

5.10 a) Actions primitives as seen in the editor. b) Actions primitives
graph of the street intersection scenario. 79

5.11 Incorrect trajectories passing through the portions of same paths
with some parts being in the wrong direction of the streets. 81

5.12 New trajectories passing thought valid action primitive sequences. 81

4

Chapter 1

Introduction

THE aim of this thesis is to implement a system capable of creating models
of human actions as applied on objects using action primitives as proposed

[?]. With a stereo camera setup the system is be able to track an object in three-
dimensional space as it is moved and record it’s motion trajectory. A group of
motion trajectories are used to build the action primitives model as an directed
graph. A motion trajectory can also be used to identify the action primitives
and the entire action performed if it is defined in the model, or discard it as an
unknown action.

The project has three areas of interest. The first one is focused in detecting
and tracking moving objects and recording their trajectories. The second area
is interested in training a single hidden Markov model (HMM) that represents
a set of many different trajectories. The third and last area looks at infering
the motions as sequences of action primitives, atomic symbols of activity, from
the HMM. Using these symbols and the HMM a directed graph is built that
defines the grammar of activities as a sequence of actions. This graph together
with the action primitives and the HMM compose the complete model which
can identify human actions and provide the sequence of sub actions as action
primitives performed.

1.1 Motivation and Objectives

Teaching a robot how to mimic an action on an object as done by a human is
a complex task. Take for example a person showing a robot the movements
required to serve a cup of tea. Assuming all the items needed are at hand’s
reach, the process can be separated in this steps: 1) Pour tea, 2) Pour milk 3) Add
sugar. As simple as it looks, each one of these steps is composed of many layers

6

1.1. MOTIVATION AND OBJECTIVES CHAPTER 1. INTRODUCTION

of abstraction. At the lowest level are the minute details of the position and
rotation of each body part. Then a set of middle layers of hold the information of
the sub-actions defined by those movements, such as picking the object, moving
it towards the cup and inclining it so the liquid drops in the cup. Finally the top
layers identify the action as a whole with possibly the use of the context in which
the action is performed ie. serving tea over a planar surface. All that information
must be dealt with in order for a robot or computer to fully understand and learn
what a person is doing. Therefore, solving or partially solving some of those
layers greatly aids in the solution of the entire problem.

One of the simplest way to model such actions is using stochastic models of the
low level details of the motion, which by definition, allows for some of the flexi-
bility inherent to the nature of human beings as they move. The most common
example of an stochastic model is Hidden Markov Models (HMM). These models
usually describe the position and orientation of each tracked object and allows
for generation of new motions and identification of the motions. One drawback
of HMM is that there is no in-between knowledge, they jump from the lowest to
the highest level of abstraction of the action.

A more interesting approach is to represent the actions as a series of substeps.
As in the previous example, in terms of the action performed, pouring tea and
adding sugar have similar motions. Therefore, it is a good idea to find the com-
mon sub-actions which are performed, to elaborate a more efficient and higher
level model where every subaction can be treated as a symbol in an alphabet
of motions and the grammar defines the rules for performing an action. These
sub-actions or symbols can be defined as action primitives.

This proposed technique has been treated by Sanmohan [?] and the objective of
this thesis is to extend his work with the implementation of a real-time system
capable of learning and recognizing action primitives. In detail, the objectives
include:

• Detecting and tracking objects in real-time while recording their features
in 3d space.

• Defining an stochastic model of a set of many actions from several samples.

• Identifying the subactions in the model as action primitives.

• Obtaining the grammar of the model for validation and identification of
new trajectories.

An additional objective of this thesis implicit to software development is to cre-
ate modular components that can be reused by other people in future projects.

7

1.2. THESIS ORGANISATION CHAPTER 1. INTRODUCTION

1.2 Thesis Organisation

The structure of the thesis is as follows:

Chapter 2 provides a description of the background to both the tracking and
modeling of motion trajectories.

Chapter 3 outlines the requirements and defines the proposed solution to the
problem. It also describes the work on action primtives upon which this thesis
is based.

Chapter 4 presents the implementation of the proposed solution.

Chapter 5 describes the tests performed on the system and the results obtained.

Chapter 6 draws conclusions and contains a summary of the contributions of
the work.

8

Chapter 2

Related Work

THIS section gives a theoretical background of the topics that relate to this
thesis. It describes some of the techniques used in object tracking and ac-

tion primitives using computer vision.

2.1 Object Tracking

Tracking objects is an important and current field of research and applications
in the area of computer vision. It has many interesting and useful applications
such as motion capture and recognition [?, ?], surveillance [?], human-computer
interaction [?], navigation [?], and augmented reality [?, ?]. With the ever in-
creasing power of computers and video cameras, and the decreasing prices it
has become of more interest and feasible application the use of video cameras to
perform object tracking.

There are two major components in a common visual tracker: 1) Target Repre-
sentation and Localization, concerned with creating an abstract description of
the target and detecting it in a frame generally performed as a bottom-up pro-
cess and 2) Filtering and Data Association which is a top-down process dealing
with the dynamics of the tracked object, learning of scene priors, and evaluation
of different hypotheses [?]. An overall review in object tracking methods can be
found in [?] and in which this section is based on.

In a general sense tracking objects using vision is the process of locating an ob-
ject in each frame during a sequence of video frames. It means that in every new
frame the tracker is identifying in the image plane a previously known object,
and optionally depending on the context obtaining other relevant information
including size, position, velocity, area, shape and orientation. Unfortunately

10

2.1. OBJECT TRACKING CHAPTER 2. RELATED WORK

tracking objects in images is not free from difficulties such as: loss of informa-
tion, occlusion, noise, changing shape of non-rigid objects, changes in illumina-
tion, complex motions of objects and real time computing requirements.

Given these limitations it is possible to apply some restrictions to the tracking
enviroment to solve or avoid some of them. For example, the tracking can be
performed inside a room with controlled artificial ilumination allowing for the
reduction of some of the noise and illumination variances. Another example
would be to have apriori knowledge of the motion of the objects being tracked,
which can be used to assume a constant velocity, ignore acceleration or define the
motion model more accurately. Other parameters such as number, size, shape,
color or basically any other freatures of the objects previosly known can greatly
simplify and/or make more accurate the results and choice of tracking methods.

2.1.1 Representing Objects

In order to reduce the amount of calculations and also for visualizing and easing
the understanding of the properties extracted from the object tracked, it is com-
mon to define it into a simpler, cleaner representation. Some commonly used
representations are: points, geometric shapes, sillouete or contour [?], articu-
lated models [?] and skeletal models [?]. Points Mostly used for objects that
occupy a small part in the images, or that can be abstracted to a point represen-
tation.

2.1.2 Features for Tracking

Extraction of good representative features and properties from the objects is cru-
cial to identify them in a feature space. Whatever the object to be tracked may
be, it must have some visually defining characteristics that allow a separation
of the object from the background and from other objects. Those characteristics
are not fixed but instead depend on the context of the problem. When looking
for features it is also important to optimize the data by eliminating redundancy
and increase the uniqueness of the feature parameter for each specific object.
Feature selection is sometimes dependant on the object representation chosen,
for example, edges are commonly used when the representation is based on con-
tours. Some of the features that are commonly used for tracking are: color [?],
edges [?], optical flow [?] and texture [?].

2.1.3 Object Detection

When tracking objects it is necessary to have an object detection algorithm which
can trigger and/or continue an already started tracking process. A common ap-
proach is to identify a new object to be tracked in one frame, extract the desired

11

2.2. MODELING TRAJECTORIES CHAPTER 2. RELATED WORK

features from it, and use them to follow it in subsequent frames. Other ap-
proaches update the initial features of the object during the tracking process
and/or use temporal information to increase the likelihood of tracking the right
candidate. Some interesting object detection techniques are: point detectors
[?][?][?][?], background subtraction [?][?][?][?][?][?], segmentation [?][?][?] and
supervised learning [?][?][?][?].

2.1.4 Tracking Objects

The objective of tracking is to produce the trajectory of the object as it moves
in between frames. With aid of the detection algorithms it can also provide
the region where the object is located in the image. To obtain the trajectory
the tracker must identify a corresponding observation for an object for a new
frame. Depending on the features and representation chosen the tracking may
incorporate part of those as parameters for the correspondance and tracking.
Some of the common tracking algorithms are: Point tracking such as Kalman
FIlter [?] and Particle Filters [?] and Kernel trackers such as Mean-Shift [?] and
KLT [?].

2.2 Modeling Trajectories

Modeling of human actions is a well studied subject. Of particular interest if
to identify the common segments of motion in a series of samples. An atomic
action, also referred here as action primitive, is a representation of a common
set of observations that sum an entinre human action. It defines the state of
the object tracked in a segment of the action. A robust model which uses atomic
actions to model human actions is Hidden Markov Models.

2.2.1 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic model of a pattern generally
built from many sampled observations. It allows to predict the hidden or inter-
nal state of a system using only the observations, by defining the likelihood of
transitioning from state to the another and of an observation given a particular
state. HMMs are of interest because they have been througly detailed an tested.
In the field of human actions, HMMs have been sucessfully used in [?][?][?].

12

Chapter 3

Analysis

IN this chapter the details of the different theory and algorithms researched
and implemented for this thesis are presented.

3.1 Image Acquisition

The images for the system will be acquired for real time processing using two
color cameras. The cameras will be located in a way that they both share a
common viewing cone, in which the objects to be tracked will move. Two images
showing the view from each camera in the stereo setup used during the tests
project can be seeen in the Figure 3.1.

Figure 3.1: Images from two cameras in a stereo setup.

3.1.1 Background Substraction

The background subtraction module is in charge of defining and acquiring the
parameters of a model for the background, and of classifying a new pixel as

14

3.1. IMAGE ACQUISITION CHAPTER 3. ANALYSIS

either belonging or not belonging to the model. To increase the detection of
objects a background substraction filter using the Running Average Gaussian
was chosen.

3.1.2 Running Gaussian Average

As stated in the object detection section 2.1.3 there are many different approaches
which can been used to perform background subtraction. One of the require-
ments of the system is that it should work in real-time and this limits the com-
putational complexity of the background subtraction method. A good candidate
in terms of performance is the Runnning Gaussian Average algorithm. Even-
though it has a unimodal distribution of the background it is sufficient to repre-
sent it in the testing enviroment used. In a more complex scenario a multi-modal
or more sofisticated background subtraction technique could give better results.

Figure 3.2: Outcome resulting from applying the running Gaussian average
background subtraction technique.

As the name implies the Runnning Gaussian average uses a univariate Gaus-
sian distribution to model the background. Each pixel in the image has a distri-
bution with mean µt and variance σ2 at at time t . The interesting factor is that
the probability density function can be updated incrementally as new frames
arrive, using a weighting value α for the new measurement using

µt+1 = αFt + (1− α)µt (3.1)

and

σ2
t+1 = α(Ft − µt)2 + (1− α)σ2

t (3.2)

15

3.2. COLOR FILTERING CHAPTER 3. ANALYSIS

where Ft is the color of the new pixel at time t. If selectivity is used, the model
is only updated when the new pixel is not in the foreground. To classify a pixel
as being in the foreground or background, a simple gate

|Ft − µt| > kσ2 (3.3)

can be used, where the threshold is defined by the covariance σ2 and a scaling
parameter k.

3.2 Color Filtering

The first step in the tracking process is that given an image each pixel has to be
classified as either belonging or not belonging to the object. Using RGB colors
directly presents the problem that changes in illumination can seriously affect
this classification. To overcome this, color spaces other than RGB can be used
which separate the chromacity information from the luminosity information of
the pixels. The color spaces used in here with these characteristics are Normal-
ized RGB, HSV, HSL, YCbCr and Hunter LAB. Each one of these color spaces
has three components, one of them being the luminosity parameter except for
Normalized RGB in which one of the values is redundant as r+ g+ b = 1. As the
luminosity and redudant parameter are not needed they can be discarded and
the color filtering is obtained using the other two remaining components.

3.2.1 Color Spaces

Here is a description of the color spaces implemented in the project. For all the
color spaces only two channels defining the chromacity are stored. The other
channel which has the illumination, or in the case of Normalized RGB with is
redudant, are discarded. A more in-depth description of colour spaces can be
found in [?].

RGB

This is the common Red, Green, Blue representation of additive color used tra-
ditionally in color display systems. Usually display devices use three individual
light sources for each one of the RGB colors to represent a weighted combination
of the three components. Each color represents an axis in a color cube, where
the corner of the cube at the origin of the color space represents black, and the

16

3.2. COLOR FILTERING CHAPTER 3. ANALYSIS

corner at the opposite corner represents white. All colors are found inside the
volume of this cube.

In computer applications the RGB color space is usually discretized to 8 bits,
so that each channel has a maximum of 256 possible values numbered from
0 to 256. This gives a range of 2563 = 16′777.216 possible values for a color
represented as an (R,G,B) tuple. In our case RGB is the color space in which the
images are provided by the cameras.

It is mentioned here for clarity, but the color description of the objects tracked
only used the color spaces defined sa follows.

Normalized RGB

The first color space considered that separates illumination from chromacity
is the normalized RGB space. In this space the values of a color remain the
same even when the amount of illumination changes. A color in RGB can be
transformed to the Normalized RGB space using the following formulas:

r =
R

R+G+B
(3.4)

g =
G

R+G+B
(3.5)

b =
B

R+G+B
. (3.6)

It can be easily seen that r + g + b = 1, therefore any of the three values can be
discarded as it is redundant i.e. g = 1− r − b.

YCbCr

Next to RGB, YCbCr is one of the most common color spaces used in digital com-
ponent video. It separates the lightness in the Y channel, and stores the color
information in the Cr, Cb channels. The formula to obtain a YCbCr representa-
tion of an 8-bit per channel RGB color is:

Y = 16 +
1

256
∗ (65.738 ∗R+ 129.057 ∗G+ 25.064 ∗B) (3.7)

17

3.2. COLOR FILTERING CHAPTER 3. ANALYSIS

Cb = 128 +
1

256
∗ (−37.945 ∗R− 74.494 ∗G+ 112.439 ∗B) (3.8)

Cr = 128 +
1

256
∗ (112.439 ∗R− 94.154 ∗G− 18.285 ∗B). (3.9)

HSV and HSL

These two color spaces are a two representation of colors in the RGB color model
that also separate the ilumination from the color information. HSV stands for
Hue, Saturation and Value. HSL stands for Hue, Saturation and Lightness.
Both are similar in what they describe and how they are defined. In both cases
it is interesting for this thesis that Lightness and Value represent ilumination.
The conversion from RGB to HSV and HSL can be seen in appendices A.3 and
A.4 respectively.

Hunter LAB

The LAB color space is named after it’s three components: L-luminosity, a-
channel and b-channel. As in the previous color spaces and of interest here
is that the luminosity is defined separate from the color and tone. The are many
different standards for the LAB color space. The one chosen here is Hunter-
LAB, which has a faster color conversion. The conversion from RGB to LAB is
in appendix A.5.

3.2.2 Pixel Classification

To classify a pixel as belonging or not belonging to a certain color description,
different parametric and nonparametric likelihood functions were considered:
Thresholds, Mahalanobis distance, Back projection and Mixture of Gaussians.
All of these methods required as a first step to sample some pixels from the
object in the image after which the classifiers are initialized and ready. After a
pixel is classified it is stored in a grayscale image as either black (not object) or
white (object).

18

3.2. COLOR FILTERING CHAPTER 3. ANALYSIS

Thresholds

Fixed value thresholds that define a volume of colors in which the object’s pixels
are contained. Specifically the following conditions must be true for a given
pixel using the two chosen channels for a given color space to be classified as
belonging:

c0 > c0min and c0 6 c0max (3.10)

c1 > c1min and c1 6 c1max. (3.11)

The advantages of this system is that it is fast and the thresholds can be easily
modified.

Histograms

Using a normalized histogram created by sampling pixels of the object, the pixels
being classified are replaced by the value of the closest normalized bin in the
histogram for each pixel color. This value represents the probability of finding
that color in the histogram of the model, and can be thresholded to obtain the
final classified image using

px(i) = p(x = i) =
ni
n

(3.12)

where i is the intensity of the pixel channel, n is the number of samples and niis
the number of samples found in the i-th bin.

Mahalanobis

Another alternative is to use the Mahalanobis distance between the color and
the previously known distribution, with a mean µ and covarianceΣ. This dis-
tance measurement takes into account the way the colors are distributed in the
samples, for example, if the distribution varies a lot in one channel but not as
much in the other, a small divergence from the mean in the first component is
not as important as divergence in the second one. After defining a theshold with
a maximum distance, a pixel can be determined as belonging or not belonging to
the distribution.

DM (x) =
√

(x− µ)T (Σ)−1 (x− µ) (3.13)

19

3.2. COLOR FILTERING CHAPTER 3. ANALYSIS

Mixture of Gaussians

The fourth method chosen models the color distribution in the object as a Mix-
ture of Gaussians, each gaussian defined by it’s mean µ, covarianceΣ and a
weighting coefficient ci. The likelihood of finding a color in the mixture of gaus-
sians is defined by

f(x) =
N∑
i=1

ciφ(x|µi,Σi) (3.14)

where ci is the coefficient or weight and Φ(x|µi,Σi) is the Gaussian color distri-
bution for the i-th mixture. To obtain the parameters of each mixture using a
set of sample colors, K-Means is used as the first clustering step and later the
Expectation-Maximization algorithm is applied [?].

a) b)

c) d)

Figure 3.3: Results of applying the four different classification techniques: a)
Thresholds, b) Histograms, c) Gaussian Mixture with three mixtures and d) Ma-
halanobis distance.

20

3.3. BLOB FILTERING CHAPTER 3. ANALYSIS

3.3 Blob Filtering

After the background is subtracted and a pixel filtering technique from the ones
mentioned above is applied, the result obtained is a mask where white pixels
represent pixels that potentially belong to an object. This pixels should be
grouped together to form an abstract representation of the object as an ellip-
soidal blob, defined here as blob filtering.

4-connectivity 8-connectivity

Figure 3.4: Two rules for connectivity of pixels.

The first step in the blob filtering algorithm is to group close pixels as objects.
A connected components algorithm with 4-connectivity was used for this, where
the top, left, right and bottom pixels of each pixel are checked for connectivity.
Other possibility is to use 8-connectivity, but the first choice is better at isolat-
ing objects which is the intention. A lot of work has previously been done for
blob labeling [?, ?], but the connectivity algorithm here developed is built from
scratch for the specific purposes of this thesis.

3.3.1 Connectivity Algorithm

The algorithm walks through every pixel in the image, from left to right, top
to bottom, and uses the binary image as the input data, an image to store the
object id to which each pixel belongs and a queue to recursively "fill" each blob
with an id. For every pixel position x,y, the algorithm pushes the coordinate
pair x,y to the queue. It iteratively pops values from the queue and checks the
corresponding value in the at the x,y coordinate in the binary image to compare
if it is black or white, therefore acting as a mask. If it is black it is ignored. If
it is a white pixel it will read the value of the pixel in the same pixel position in
the image with the blob ids, initially all set to unassigned. If it is unassigned,
a new blob is created and the new id assigned to that blob and the pixel in the

21

3.3. BLOB FILTERING CHAPTER 3. ANALYSIS

blob’s ids image. All neighboring pixels are also assigned the same id if they
are different from zero in the input binary image and pushed to the queue if
the id they had before was different from the new one. This operation will "fill"
the region with the id of the object. The process is repeated until the queue is
empty, and the loop advances to the next pixel position. The pseudo-code of the
algorithm is shown in Algorithm 3.1.

Algorithm 3.1 Connected Components algorithm with 4-connectivity
blobId = 1
foreach pixel p in image

queue.push_pixel(p)
while(queue is not empty)

p2 = queue.front()
if(p2 != 0)

if(imgBlobs.pixel(p2.pos) = 0)
imgBlobs.pixel(p2.pos) = blobId
blobId++
foreach neighbor of p2

if(neighbor != 0 && imgBlobs.pixel(neighbor.pos) != blobId)
imgBlobs.pixel(neighbor.pos) = blobId
queue.push(neighbor)
break

else
imgBlobs.pixel(p2.pos) = 0

3.3.2 Mask Filling

One common ocurrence is that some of the pixels inside the contour of the mask
obtained with pixel color classification that defines an object could different from
white, or in other words, be non-object pixels. The problem this brings is that
when the parameters of the object such as the area and position are estimated,
they are affected by these ’holes’ in the object. For example, consider a ball being
tracked in a sequence of images. The inner pixels of the ball could be classified
as non-object pixels because of bad sampling or lighting changes. The edges of
the object nonetheless are correctly identified as object pixels. If the area is esti-
mated, it would give a value very much inferior to the area the objecct acutally
occupies. Consider again the same ball partially illuminated. The center of the
object should be the same, but because of the shape of the mask it is moved to a
different position.

A solution to both of these issues is to find all the pixels that are located inside
the region defined by the borders of the object and set them as white, therefore as
part of the mask. In this project a simple technique was developed that iterates
over the already identified object mask, and fills gaps. The pseudo-code for the
algorithm is in Algorithm 3.2. A second approach uses the already implemented
convex hull algorithm from OpenCV [?] to fill the gaps with similar results.

22

3.3. BLOB FILTERING CHAPTER 3. ANALYSIS

Figure 3.5: Example of Blob mask filled to remove holes.

Algorithm 3.2 Convex hull algorithm used to fill gaps in blob mask
for each row in bounding_box

left = findLeftMostPixel()
right = findRightMostPixel()
for each pixel in row[left:right]

pixel = blobId
for each column in bounding_box

top = findTopMostPixel()
bottom = findBottomMostPixel()
for each pixel in column[bottom:top]

pixel = blobId

3.3.3 Blob Features

Once the blobs have been identified in the image using the connectivity algo-
rithm 3.2, it is possible to obtain information from each one of them that can
be at later stages. Some useful and important features for typical tracking are
the position and the area of the object. The position can be obtained using the
average position of all the pixel that make the object, and the area by summing
all of the pixel. These two values can be calculated using the image moments.

For a continuous function in the 2d space, the moment is defined as

Mpq =
∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy, p, q = 0, 1, 2... (3.15)

Adapting this to the scalar space the moments are calculated with by

Mpq =
∑
x

∑
y

xpyqf(x, y)dxdy, p, q = 0, 1, 2... (3.16)

23

3.4. TRACKING CHAPTER 3. ANALYSIS

Let I(x, y) denote a binary variable mapping the values of an image, where zero
denotes an empty pixel, and one denotes a pixel occupied by a blob. The zero
order moment or area is

Area = M00 =
∑
x

∑
y

I(x, y) (3.17)

where x, y define the region in the image that is used. It is then necesary to know
before hand the bounding box of the object. As the bounding box of the object is
defined by a square region it might contain pixels from other blobs. Therefore it
is necesary to check when the pixels are being counted that they belong to the
blob for which the area is being measured.

The centroid or moment of interia of the blob is obtained also with the moment.
The reason for using the centroid, is that it takes into account the distribution of
the pixels. Therefore outliers will have less effect in the estimation of the center.
The centroid (x, y)is obtained with

x =
M10

M00
=
∑
x

∑
y

xI(x, y) (3.18)

y =
M01

M00
=
∑
x

∑
y

yI(x, y) (3.19)

which requires the the area M00 of the object to be calculated beforehand.

Other parameters that can be used are the timestamp of the blob state since it
has been tracked and the width and height which are implicitely defined in the
bounding box.

3.4 Tracking

For the tracking step the Kalman filter was chosen. The main reason for this
selection was that the Kalman filter has been sucessfully been used in many
tracking problems [?]. Also, the state vector of each object has parameters that
can be easily modeled using the Kalman filter. Finally, the Kalman filter is
flexible enough to allow different types of parameters to be tracked.

24

3.4. TRACKING CHAPTER 3. ANALYSIS

3.4.1 Kalman Filter

Even though a lot of information can be measured from the objects in the images,
there are two problems that come from those measurements. The first one is
noise. Whether it is from the physical camera or from changes in illumination
the images contain noise that affect the values measured from each object. The
second problem is that some parameters such as velocity and acceleration, are
difficult to be accurately measured directly. The Kalman Filter can help reduce
the effect of both.

In the most general sense, the Kalman Filter is a predictor-corrector algorithm.
Given the current state of the system and a transition model it predicts the
state of the system in the next iteration or time-step. Then, after receiving a
new measurement, it corrects the state prediction to get closer to the real state.
A very good introduction to the filter can be found in [?].

The Kalman Filter tries to estimate the current state of a system defined by a
linear stochastic difference equation

xk = Axk−1 +Buk + wk−1 (3.20)

with the measurement vector define as

zk = Hxk + vk (3.21)

where xk is the system or process state and zkis the state measurement.

Equation (3.20) defines the process state xk as the sum of the process state at the
previous time-step xk−1 multiplied by the transition matrix A which describes
how the previous state changes in time, the control input uk times the control
matrix B which models external inputs to the system, and a white noise variable
wk−1 describing the possible random noise of the system state. The measure-
ment zk is defined as the transitionH of the state to produce a new measurement
and white noise vk.

Both the process and measurement noise are assumed to be independent, white
and with Normal probability distributions. In the specific case of blobs in a
sequence of images without knowledge of the force that makes them move, the
optional control input uk can be ignored. The complete set of equations used for
the Kalman Filter prediction and correction can be found in the Appendix B.

25

3.4. TRACKING CHAPTER 3. ANALYSIS

3.4.2 Object State Update

What’s really important to be noticed is the difference made about the object or
system state, and the measurement state. Using a Kalman filter it is possible
to obtain the state of internal variables of a system by using only the external
measurements if the model of the system is well defined. This model, stored in
the matrix A, explicitely defines the transition of each component of the state
vector, using the values of the system at the previous time-step.

In the simplest case, where the parameters in the state vector are direct mea-
surements, such as the size of the object, and are considered to remain more
or less the same, an indentity matrix I is sufficient to represent the transition
matrix. In the case of linear motion ignoring acceleration, the transition matrix
should describe the relation between position and velocity using the standard
constant velocity formula. As that the position is dependent on the time the ob-
ject has been moving in a frame step, the transition has to include this variable
parameter. Given that the velocity is not directly measured, it is not defined in
the measurement vector. The equations for the state vector xk, the state mea-
suement zk, the state transition A and the measurement transition H are shown
below of the first order motion escenario are shown below.

xk =
(
x y vx vy

)T (3.22)

zk =
(
x y

)T (3.23)

A =

1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

 (3.24)

H =
[

1 0 0 0
0 1 0 0

]
(3.25)

where t is the time elapsed since the last system update. Notice how the mea-
surement update matrix H doesn’t use the velocity to update the measurement,
as the two las columns are zero vectors. With these equations it would be possi-
ble to estimate the velocity of the blob as it moves from only it’s position in each
frame and the time between frames, with the correction from noise.

26

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

3.4.3 Tracking Correspondance Test

Besides approximating the measured values to the correct values, the Kalman
filter can also be used to estimate the best possible match from a set of several
measurements. Using the Mahalanobis distance

M = zTk (HP−k H
T +R)−1zk (3.26)

a new measurement is compared to the predicted measurement, where the ma-
trix P−k is the predicted error covariance and R is the measurement noise. The
best match will be the one with the smallest distance. It is also possible to use a
validation gate

M < ρ (3.27)

to filter measurements. This best match is then used to correct the state predic-
tion, and complete the tracking step for one iteration.

3.4.4 Motion Detection and Recording

Once the object is ready to be tracked, it is then necesary to know when a person
started to move it and when it is back to a resting position. A simple yet effective
way to do this is to define triggering parameters that activate and deactive the
recording of motions. When the object is resting, and a parameters of the object’s
state vector fulfills the starting requirements, the systems starts recording the
movements of the object. When it is moving, the system checks for fulfillment of
the stopping triggers. The entire set of observations in the trajectory are stored
as a single motion.

3.5 Stereo Triangulation

There are typically three processes that must be done to obtain a 3d point from
two 2d points in two images. First the physical charateristics of each camera
and the point of them relative to each other are estimated, usually known as the
calibration step. Next, the pixels correspondances of interest between images
are found and finally the actual estimation of the 3d point is done. Each of these
steps will be described below.

27

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

3.5.1 Pinhole Camera Model

The simplest model for a camera is defined by three components: an image or
retinal plane R, the optical center C or focal point which doesn’t belong to R and
the distance f between R and C called the focal length. An illustration of this
model is seen in Figure 3.6.

Figure 3.6: The pinhole camera model in 2d.

A point p′ in the image plane R is the intersection of the optical ray from the
point p in space passing through the optical center. The line perpendicular to R
that goes through the optical centre C is called the optical axis. The point where
it intersects the plane R is called the principal point. There are two coordinate
frames of interest in the pinhole camera model. The first one is the orthonormal
2d plane that is in the image plane. The second one is the camera coordinate
system centered at the optical center with the plane defined by two of it’s axis
being parallel to the image plane. Figure 3.7 shows the pinhole camera model
with the image plane in front of the optical center.

The relationship by similarity triangles of a point p = (X,Y, Z)T in the camera
coordinate frame to and it’s projection p′ = (xc, yc, f) in the image plane is given
by

xc = f
X

Z
, yc = f

Y

Z
. (3.28)

This can be written with homogeneous coordinates as a matrix multiplication
operation

28

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

Figure 3.7: The perspective camera model.

 Zxc
Zyc
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

 = P

X
Y
Z
1

 (3.29)

where P is the projection matrix. If p′ is normalized dividing by the third coor-
dinate the point is said to be in the normalized image plane.

3.5.2 Intrinsic Camera Parameters

Besides the camera projection, other physical and digitalization factors are mod-
eled to more accurately define the transformation of points from the 3d space to
a 2d image plane. These come from the transformation of the 3d point in the
camera coordinate frame, to a projection on the 3d normalized image plane and
finally a 2d mapping to the image in pixel coordinates. Many texts [?, ?, ?, ?]
explain in detail the origins of the intrinsics parameters, here it will be limited

29

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

to the definition of the intrinsic parameters as a matrix

K =

f
sx

s cx
0 f

sy
cy

0 0 1

 (3.30)

where s is the skew factor and cx and cy are the coordinates of the principal
point. The sx and sy values represent the scaling applied to the points in the
image plane so they are transformed to the pixel coordinates. The values are
defined separately as the sensors in the physical cameras might not be square.
The unit of the scale parameters in this form depend on the units used for the
focal length, but are usually meters/pixels or mm/pixels.

In homogenuous coordinates the instrinsic matrix is

M = [K 0] =

f
sx

s cx 0
0 f

sy
cy 0

0 0 1 0

 (3.31)

3.5.3 Undistortion

The pinhole camera model is only an approximation of the real camera projec-
tion. Because of the anormalities inherent to the physical construction of the
camera, and the deformation of the image as a result of the curvature of the lens
the final image is distorted in comparison to the ideal projection model.

Figure 3.8: Examples of radial distorsion.

The two most common distortions treated in computer vision literature are the
radial distorsion and the tangential distortion. They are both stored as two sets
of coefficients which can distort an undistorted image, result of the projection in
the normalized image plane. Using an inverse transformation it is possible to
undistort images which is an almost necesary step for performing an accurate
estimation of the 3d structure of a scene.

The radial distortion can be approximated using the following expression:

30

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

4xr = xc(1 + k1r
2 + k2r

4 + k3r
6 + . . .) (3.32)

4yr = yc(1 + k1r
2 + k2r

4 + k3r
6 + . . .) (3.33)

where r is the distance from the point in the image plane to the optical center,
< k1, k2, k3, . . . > are the coefficients of the polynomial series. This model found
in [?, ?, ?] and others, assumes the radial distorsion is symmetrical, equally
affecting both x and y. Usually the model is sufficient to use only two or three
degrees of the polynomial. A figure with the radial distortion model is shown in
Figure 3.9.

Figure 3.9: Perspective model with radial distortion.

Centers of curvature of the lens surfaces are not strictitly colinear, in other
words, the lens may not be completely aligned to the sensor in the camera, but
has a slight inclination and possibly offset from the center of the image. This
distortion is often modelled as

4xt = p1yc + p2(r2 + 2x2
c) (3.34)

4yt = p2(r2 + 2x2
c) + 2p2xc (3.35)

31

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

where p1 and p2 are the coefficients for the tangential distortion. Both radial and
tangential distortions are added to the projection to obtain the final distorted
point in the normalized image plane

xd = xc +4xr +4xt (3.36)

yd = yc +4yr +4yt (3.37)

that is then afterwards expressed as pixels after scaling and offsetting with the
image center.

The inverse problem of obtaining the normalized image projection p′ from the
distorted pixel coordinate p′d = (xd, yd) is not a simple one because of the high
degree distortion model. Fortunately OpenCV [?] provides the tools for obtaining
this value either by undistorting and entire image, or an array of 2d points.
Figure 3.10 shows the result of undistorting an image after calibration using
OpenCV.

Figure 3.10: Original image and result after undistortion.

3.5.4 Extrinsic Camera Parameters

In the previous definition of the projection matrix in eq 3.29 the 3d point being
projected was located in the coordinate frame of the camera. If a point is in an-
other coordinate frame, i. e. the world coordinate frame, it must be transformed
to the camera’s coordinate frame to be used in the projection matrix. The re-
lationship between the coordinate frame of the camera an another coordinate
frame can be represented by a translation vector T and a rotation matrix R. A
point pw in the reference coordinate frame, is located at the point

pc = R−1(pw − T) = Rτ (pw − T) (3.38)

32

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

where R is the rotation of the camera with respect to the other coordinate frame
and T it’s translation. The rotation matrix has a property that its inverse is its
transpose; hence RTR = RTR = I where I is the identity matrix. Figure 3.11
illustrates the transformation of a point between coordinate frames.

Figure 3.11: Transformation between world and camera coordinates.

The relationship between the camera coordinate frame and another one is de-
fined as the extrinsic parameters, and it is represented as a transformation ma-
trix in homogeneous coordinates

H =
[
RT −RT t
0 1

]
(3.39)

which when multiplied with a point in the external coordinate frame will give
the corresponding point in the camera’s coordinate frame. The projection matrix
taking into account intrinsic and extrinsic parameters becomes:

P = MH =

f
sx

s cx 0
0 f

sy
cy 0

0 0 1 0

[RT −RT t
0 1

]
. (3.40)

33

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

3.5.5 Calibration

The objective of the calibration process is to estimate both the intrinsic and ex-
trinsic parameters of the camera. In the case of a stereo setup it is common to
select one of the cameras as the world coordinate frame, and the other camera
positioned relative to this frame. Other times a third coordinate frame, usually
at the same distance from both cameras is used as the world. Here the former is
the method of choice.

The process of calibrating a camera usually involves minimizing the error be-
tween the projection of some known 3d points using the intrinsic and extrinsic
parameters of two cameras and the actual measured points in the images. Cam-
era calibration has been treated in detail to solve many computer vision prob-
lems and it is out of the scope of this thesis to write the entire theory behind it,
but good introductions to stereo calibration can be read from [?, ?, ?].

The standard calibration algorithm for a stereo setup uses a set of correspond-
ing image points obtained by taking pictures of a chessboard calibration pat-
tern. The pattern has uniform sized blocks of alternating white and black filling,
which result in easy to identify corners. By knowing the geometry of the corners,
it is possible in each snapshot to identify the corners that are in the pattern and
discard erroneous ones. Figure 3.12 shows a sample of the calibration pattern
with the corresponding detected points. Using this corresponding points in the
images and with the mathematical model of intrinsic and extrinsic camera pa-
rameters, the unknowns can be obtained with sufficient number of samples.

Figure 3.12: Two images from the left and right camera showing the calibration
procedure.

Once the parameters have been found it is now possible to put all the points in
the image planes into a common coordinate frame to work with them. This is
needed for the triangulation step in section 3.5.8.

34

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

3.5.6 Epipolar Constraint

In a typical stereo vision setup two cameras are placed next to each other sharing
a common viewing volume. The Figure 3.13 is describing such system.

Figure 3.13: Epipolar geometry.

A point p inside the shared volume is visible in the image planes of both cameras.
This point p forms a 3d plane called the epipolar plane with the two points pl
and pr seen by the cameras in their respective image planes, also with the two
camera focal points Ol and Or. The line that goes from the focal point Ol of the
left camera to the focal point Or of the right camera is called an epipolar line,
and their intersections with their respective image planes, el and er are called
the epipoles. The line p − Ol is seen by the left image as a point pl but in the
right image it is seen as an epipolar line on the epipolar plane, defined by the
projection pr on the right image plane and the epipole er. All points pr lying
on this epipolar line on the right image are possible projections of p. It is a
matter of finding the corresponding pr in the epipolar line for a given pl on the
left image, and using the transformation between both image planes to estimate
the position of p.

The cameras’ local coordinate systems are related to one another by a rotation
R and translation T in the world coordinate system. If R and T are the rotation
and translation of the right camera with respect to the left camera, a 3d point

35

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

pl in the left camera’s image plane is related to the observation of the same 3d
point seen in the right camera plane in the coordinate frame of the left camera
as the point pr, by the equation

pr = R ∗ pl + T. (3.41)

If R is defined as the rotation of the left camera with respect to the right one,
the same 3d point seen in the right camera plane in the coordinate frame of the
left camera as the point pr is

pr = RT (pl − T). (3.42)

Given that both equations have the same purpose but depend on the input pa-
rameters R and T it is important to know what they mean exactly as they are
provided by some calibration system. In OpenCV, the calibration routine returns
a rotation and translation for the second case.

With this equations it is possible to obtain two sets of poins points (Ol, pl) and
(Or, pr) in a single 3d coordinate frame, each pair defining a line that can be
used for triangulation of the 3d point.

3.5.7 Object Correspondances

The most common approach in computer vision is two have a rectification step
to find correspondances using a baseline. This is not the procedure done in this
thesis. As the correspondances are found directly using the tracking module
the interest is to find the position the object in each of the normalized image
planes. This is easily obtainable applying the inverse transformation of the in-
trinsics matrix. For a given point pimg in the 2d image in pixel coordinates, the
corresponding point pc in the normalized image plane is

pc =

 xc
yc
1

 = K−1pimg (3.43)

where xc and yc are the coordinates of the point in the normalized image plane.
Using this previous equation 3.43, the line from the camera focal point to the
image plane can be defined in parametric form as

r(t) = C + t(pc − C). (3.44)

36

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

as can be seen in the Figure 3.14. Notice that the focal point previously repre-
sented by O has been replaced with C so it’s easier to identify it as belonging to
the camera in the next sections.

3.5.8 Triangulation

The triangulation step is in charge of estimating the 3d position of a given ob-
servation visible in two or more cameras. For the interest of this thesis only a
configuration with two cameras is considered.

The points Cl and Cr correspond the the focal points of the left and right cameras
respectively, and pl and pr correspond to the projections of the point p in the left
and right image planes. The two lines ll and lr originating from the focal points
and each passing through the corresponding projection pl and pr respectively,
intersect in space at point p. The the points p1and p2 that lay in the each one of
the lines can be defined as

p1(t) = Cl + t(pl − Cl), t ∈ R (3.45)

p2(t) = Cr + t(pr − Cr), t ∈ R (3.46)

The easiest solution for finding the point p would be to solve the system of two
equations to find the parameters t1and t2 for which p1(t1) and p2(t2) are equal.
Unfortunately with real measurements, given the noise in the images, the cali-
bration errors and the discretization of the projections into pixels, the lines will
most likely not intersect.

It may be shown that two skew (non parallel and non colinear) lines have a
common perpendicular line to both. The length of this line is also the shortest
distance between the two lines. Therefore one solution is to find the shortest
segment between the two lines and choose the midpoint of this segment as the
3d reconstruction of the two observations in the images, as seen in Figure 3.14.

Let the points P1and P2 be the endpoints of the segment joining the two lines, for
some values t1 and t2of the parameter t of each the corresponding line equations
3.45, 3.46. Then using the orthogonal restriction, the dot products

(P1 − P2) · (pl − Cl) = 0 (3.47)

(P1 − P2) · (pr − Cr) = 0 (3.48)

37

3.5. STEREO TRIANGULATION CHAPTER 3. ANALYSIS

Figure 3.14: Triangulation of a point using the middle point of the shortest seg-
ment between two skew lines.

are zero. Expressing this in terms of the line equation we obtain

[(Cl − Cr) + t1(pl − Cl)− t2(pr − Cr)] · (pl − Cl) = 0 (3.49)

[(Cl − Cr) + t1(pl − Cl)− t2(pr − Cr)] · (pr − Cr) = 0 (3.50)

After expanding and simplifying the equations, is possible to obtain t1 and t2 for
a solution in the three-dimentional space.

Replacing t1 and t2 in the line equations 3.45 and 3.46, the points P1 and P2

defining the segment can be obtained. The 3d reconstructed point is estimated
as the midpoint of the segment by averaging:

p′ = P1 + P2

2
. (3.51)

An example showing the triangulation of an object is shown below in Figure
3.15.

38

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Figure 3.15: Stereo setup and triangulation of an object’s position.

3.6 Learning Action Primitives

The final goal is to represent human actions as a set of sequential action prim-
itives performed on an object. Many actions will be efficiently described by a
single model reusing common action primitives between the object motions. In
the traditional hidden Markov model approach, each set of samples from a spe-
cific motion would have a separate model. Here, the idea is to build one single
HMM from all the observations and all the sample motions performed on the
object.

As the main objective of this thesis is to extend the work done in [?] by adding a
real-time stereo tracking and a learning system, most of this section will expand
from the relevant theory and work already contained there.

3.6.1 Model Building

The model building process starts by parametrizing each motion trajectory as
a HMM λi for the i-th trajectory. Each state in the HMM is defined by a mul-
tivariate Gaussian distribution. The aim is to find a HMM λF that represents
all these HMMs from the motion trajectories and in which all the observation
sequences can be expressed as a sequence of states in λF .

39

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

To create this joint model a distance measurement is used to compare the Gaus-
sian in each state of λi for all i. Those which are similar are joined creating a
new Gaussian. The final hidden Markov λF model is built with the Gaussians
that are unique in each obsevations’ HMM and the joint Gaussians. The state
transitions are defined by the motion trajectories in the observations.

After λF has been created the Viterbi algorithm is used to estimate the most
likely state sequences < s1s2s3s4...sk > defining each of the objects’ motion tra-
jectories used for training. These sequences are then expressed as state changes
by removing multiple continuos ocurrences. Using these state changes the ac-
tion primitives are identified as the longest common substring of states in all
the sequences. The actions model is finally represented as an acyclic directed
graph, having the first state in the HMM as the root action, and adding nodes
and edges according to the state sequences, represented as actions. This process
is described in detail in the following subsections.

3.6.2 Hidden Markov Models

Hidden Markov Models (HMM) have been successfully used in speech recog-
nition [?], hand gesture recognition [?] and many other applications [?, ?, ?].
Following is the description of HMM using the same notation as in [?].

A HMM is a statistical model composed of N states, M observation symbols, the
state transition probability distribution A, where

aij = P [qt+1 = Sj |qt = Si], 1 6 i, j 6 N (3.52)

is the probability of transitioning from state Si to Sj in one time-step, the obser-
vation symbol probability distribution B in state j, where

bj(k) = P [vk at t|qt = Sj], 1 6 j 6 N
1 6 k 6 M

(3.53)

is the probability of observing the symbol vk when transitioning to the state Sj
and finally the initial state distribution π, where πi is the probability of starting
in state Si. It is common to denote the HMM in a compact notation as

λ = (A, B, π). (3.54)

Instead of using discrete symbols for the observations, the specific HMM model
used for the motion trajectories will use states defined as continuous variables
and the symbol probability distribution B is replaced by Gaussian distribution

40

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

bj(O) = Φ(O,µj ,Σj), 1 6 j 6 N (3.55)

where O is the observation vector, µj and Σj are the mean and covariance of
the Gaussian probability density function φfor the j-th state. The observation
vector in theory can contain any of the features of an object, such as position, ve-
locity, size, etc, and be defined by any type of PDF. In practice, only the position,
velocity and acceleration are obtained after triangulation and filtering with the
Kalman filter and a Gaussian distribution is the optimal distribution.

3.6.3 Preparing Data for Model Building

Each trajectory Ti in the set of motion trajectories< T1, T2, ..., Tk > is divided into
segments using the arc length of the trajectory. Each segment is defined as as
a multivariate Gaussian distribution using a subset of continuous observations
< Oij , Oi(j+1), ..., Oi(j+n) > from a motion trajectory Ti whose combined arc lenght
is larger than a minimum value. The general arc length equation

L =
∫ √√√√ ∑

featureX

(
dX

dt
)2dt (3.56)

measures the variation of the features in time between observations. The seg-
ments extraction process starts by measuring the arc length of the first consecu-
tive pair of observations < Oj1, Oj2 > and continues adding up the length of the
next consecutive observation pairs until the length is larger than a minimum
arc length or it reaches the end of the trajectory. When the feature space on
the observations is the position in the 3-dimentinal space, the arc length for n
observations can be approximated to

l =
∫ √

(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2dt ∼

N∑
i=1

4x2
i +4y2

i +4z2
i (3.57)

using the Pythagorean Theorem. When the distance l is larger than the min-
imum, the i-th segment is identified as a state sji in the HMM λj for the tra-
jectory Tj and parametrized as a multivariate Gaussian using the mean µ and
covariance Σ equations

µ =
1
N

N∑
i=1

xi (3.58)

41

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Σ =
1

N − 1

N∑
i=1

N∑
j=1

(xi − xj)2 (3.59)

where N is the number of states in the sequence.

If the length of the last segment in the observation is less than a percentage (2/3
was the choice) of the minimum length, it is joined with the previous segment,
otherwise it is considered a new segment.

Figure 3.16: State Gaussians obtained from a set of motion trajectories. The
ellipsoids show the contour of the Gaussians. The color differentiates the index
in the array of states for each trajectory.

Once the observations in the trajectory have been covered by Gaussians, the cre-
ation of the HMM λj for the trajectoy Tj is completed by defining it as a bounded
Left-Right model as in Figure 3.17, with each state being able to transition with
the same probability to itself and the next state in the sequence only, as seen in
eq 3.61.

Figure 3.17: Example of a Left-Right HMM

The initial state probabilities π and the transition probability matrix A for the
bounded Left-Right HMM have the form:

42

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

πi =

{
1, i = 1
0, i 6= 1

, 1 6 i 6 N (3.60)

A =

0.5 0.5 0 0 . . 0
0 0.5 0.5 0 . . 0
0 0 0.5 0.5 . . 0
0 0 0 0.5 . . 0
. 0
0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 1

. (3.61)

3.6.4 Localizing observations

In some escenarios an action is defined by the interaction with an object in the
object’s local coordinate frame. We can imagine that the object starts to move
from the origin in each of the sequences. As the different observations collected
can happen in different places in world space, it is therefore needed to localize
the observations to a single frame of reference, the object space. This is done by
subtracting the first observation Oj1 from all the observations Oji in a trajectory
Tj . This transformation removes the location dependency. Figure 3.18 shows the
states as Gaussians obtained from a set of recordings with offsetting aplied.

In Figure 3.18 it can be noticed that only the position of the Gaussians is offset
by the localization but the rotation of the entire motion remains the same.

In the application developed a separate helper coordinate frame can be used to
transform the world space observations Oij to this this helper coordinate frame.
This allows for the observations to be independent of the camera position, and
instead, relative to a coordinate frame which can be chosen during the system
setup. When the HMM of the motion trajectories is already built this coordinate
frame will allow to use it even if the stereo camera setup is positioned at a
different place and orientation in relation to the training observations, assuming
the calibration of the cameras is doesn’t change the scaling of the data.

3.6.5 Divergence Test

The next step in building the model is to identify the states in the HMMs created
for each trajectory which are common between two or more trajectories. This
requires for a similarity measurement and the definition of a threshold that can
classify two states as similar or different. The measurement function used is the
Kullback-Leibler divergence. In the case of two Gaussians Φik = Φ(x, µik,Σik)

43

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Figure 3.18: Observations localized by offsetting with the first observations of
each trajectory

and Φjl = Φ(x, µjl,Σjl) of two states (sik, sjl) from λi and λj respectively, the
divergence with a close form solution as

DKL(Φik||Φjl) =
1
2

(
log
|Σjl|
|Σik|

+ Tr(Σ−1
jl Σik) + (µjl − µik)TΣ−1

jl (µjl − µik)− n
)

(3.62)

where n is the dimension of the space spanned by the random variable x, µ and
Σ represent the mean and covariance and Tr is the trace of the matrix resulting
from multiplying Σ−1

jl and Σik.

The Kullback-Leibler divergence is an assymetrical metric, meaning that the
order of the arguments gives different resuts. A symmetric measurement can be
obtained with

D′KL(Φik||Φjl) =
DKL(Φik||Φjl) +DKL(Φjl||Φik)

2
. (3.63)

44

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

3.6.6 Joining Gaussians

If the distance D′KL(Φik||Φjl) is less than a threshold θ for two Gaussians in λi
and λj , then these Gaussians are considered as overlapping or in other words
common to both HMMs. As such they will be joined into a single Gaussian built
from both Gaussians in the states where

Σ−1 = ωΣ−1
ik + (1− ω)Σ−1

jl (3.64)

and

µ = ωΣ−1
ik + (1− ω)Σ−1

jl (3.65)

are the inverse of the covariance and the mean of the new Gaussian. The param-
eter ω is a weighting factor defining the contribution from each of the states to
the new Gaussian. As there is no reason to prefer one Gaussian or the other, the
weighting factor is chosen as ω = 0.5 to have equal preference for both Gaussian
distributions.

Figure 3.19: Two HMMs (middle, right) created from the Gaussians in the left
image using different divergence thresholds.

Joining the Gaussians can have the possibly undesired effect that the starting
location of the trajectory may be shifted towards some point far from the origi-
nal position. This can be seen in the right image in Figure 3.19. One solution
proposed for solving this is to join the initial Gaussians only with other initial
Gaussians. The effect of doing this can be seen in Figure 3.20.

3.6.7 Updating the HMM

The final HMM λF starts as an exact copy of the first HMM, λ1, of the trajecto-
ries. As this HMM can have many states and possibly some of them overlapping,

45

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Figure 3.20: The left image shows a HMM trained with the first Gaussian with-
out restriction. The right image shows a HMM trained equally but restricting
the way the first Gaussian is joined. .

a pre-processing step is performed to join the Gaussians in the initial HMM us-
ing the divergence test. The initial transition matrix and state probabilities of
λF are defined as a bounded Left-Right model as described in section 3.6.3.

The algorithm for building the model’s HMM λF iterates through each trajec-
tory’s HMM λj to join and add new states. For a single HMM λi each state’s
sik Gaussian is compared to the states Gaussians sFj in λF by means of the
divergence test defined in Equation 3.63. If the Gaussian of sik is found to be
overlapping with a Gaussian from sFj , the pair is added to a list of states to
be joined. If not, sik is added to a list of non-overlapping states. After all the
states have been compared and classified, the model is updated by joining the
Gaussians and adding the new ones.

Figure 3.21: Model and transition matrix obtained from joining many HMMs
from different trajectories.

In either case the transition matrix also has to be updated. In the case of two
states being joined, when a state sFj from λF is joined with a state sik from a
motion’s HMM λi, the transition matrix of λF must be updated by defining a
transition to the state si(k+1) in λi. Similarly, the state transition to sik from the

46

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

state si(k−1) preceding sik has to be updated to transition to the sFj . After all
the states have been joined, the remaining states are appended to the end of the
HMM. For a correct model to be built, the first state in every observation’s HMM
must always overlap with the first state in λF . A posterior step normalizes all
the transition probabilities.

3.6.8 Identifying the Motions in the Model’s HMM

After the hidden Markov model λF for the set of actions performed on the object
has been trained and possibly having joined some of the states, the construct-
ing observation’s HMMs < λ1,λ2, ..., λn > can be discarded. The next step is to
identify the sequence of steps in the new HMM λF that best represents each tra-
jectory Tj . This can be obtained using the Viterbi algorithm [?] which is defined
in the Appendix C. The algorithm receives a vector with the trajectory observa-
tions < Oj1, Oj2, ..., Ojn > for each motion trajectory λj and finds the path as a
sequence of states < sF1, sFk,, sFy > in λF that outputs the highest likelihood
for an observation.

3.6.9 Finding Action Primitives

The general definition of an action primitive here is of a sequence of states defin-
ing a unique path in the trajectories. Ideally, we want to maximize the amount
of information each action contains by minimizing redundancy while still being
able to represent the trajectories correctly. Once all the trajectories have been
identified in the HMM as state sequences the next step is to eliminate some of
this redundancy by expressing the sequences as states changes, as shown below

s1, s1, . . . s1︸ ︷︷ ︸, s2, s2, . . . s2︸ ︷︷ ︸, . . .︸︷︷︸, sk, sk, . . . sk︸ ︷︷ ︸
⇓

s1, s2, . . . sk

The new sequences defined as state-changes remove the multiple occurrences
of the same state in an observation. The information retained now is the path
taken by the object in the trajectory, without caring about how long it stayed
in which state. If each state in the sequences is considered a letter, and each
sequence a string, the common sub sequences between all the sequences of state-
changes can be defined as finding the longest common sub strings. The Longest
Common Substring problem is a well know problem in strings manipulation.
The algorithm implemented is shown in Appendix D can be found in [?].

Each of the longest common substrings or subsequences found in the state-
change sequences of all the trajectories is an action primitive ai. The set of

47

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Figure 3.22: Model and action primitives obtained from the model.

action primitives A contains the individual subactions performed in the motion
trajectories, when executing an action on an object. This higher level abstraction
of the trajectories requires a higher level model instead of the HMM, to repre-
sent the different actions performed with the different trajectories. A suitable
model for this is a directed graph.

3.6.10 Actions Primitives Graph

A graph [?] is a an abstract representation of a set of objects where some of
the objects are connected by links called edges. Each object is represented by
a vertex or also commonly known as nodes. The mathematical notation for a
graph is G = (V,E) where V is a set of vertices and E is a set of edges which is
a set of pairs of vertices from V .

A directed graph is a type of graph in which the edges between two objects have
a specific direction, starting at one vertex and ending at the connected vertex. It
is represented by an ordered pair D = (V,A) where V is the same set of vertices
as in a graph and A is a set of arcs which is has ordered pairs of vertices from V .

The motion trajectories as action primitives can be represented as a directed
graph. A root vertex will exist and be defined by the common action primitive
obtained from the starting state of sequences. Nevertheless it is also possible to
have more than one starting action primitive. Each node or vertex in the graph
is an action primitive. Two nodes in the graph are connected if they appear
together in some sequence, with the direction defined by the order in which they
appear. Traversing the graph from a starting node to another node defines a
trajectory (not necessarily a correct one).

48

3.6. LEARNING ACTION PRIMITIVES CHAPTER 3. ANALYSIS

Figure 3.23: Action primitives and action primitives graph obtained from the
model.

3.6.11 Trajectory Validation

Given a directed graph of action primitives and it’s corresponding HMM where
each node is assigned to one action, the sequence of steps to validate a trajectory
a new trajectory Tj is the following:

1. Estimate the most likely sequence of states < sF1, sFk,, sFy > in λF that
could produced such observation using the Viterbi algorithm, as described
in section 3.6.8.

2. Find the action primitives sequence in the sequence of states 3.6.9. If a
sequence of states doesn’t have a corresponding action, the observation is
not valid.

3. Parse the action primitives sequence using the action primitives graph. If
the entire sequence is parsed completely, the sequence is valid and so is the
observation. If the parser arrives at a dead end, where two actions identi-
fied in the states sequence are not connected, the observation is invalid.

This sequence of steps are used in the tests in Section 5 to validate the observa-
tions.

49

Chapter 4

Implementation

THIS section discusses the different modules designed and implemented for
the system as well as a depiction of the hardware used.

Figure 4.1: Pipeline of the entire Action Primitives Learning system defined in
this thesis.

Two separate pieces of software were developed for this project. The first one is
a set of classes exposed as a library which are the basis for all the algorithms
and techniques described in the analysis section of this thesis. The name of the
entire package of classes is named GToolkit. It was designed from the ground
up as a series of separate modules which can be stacked one on top of the other
to perform the steps necessary for tracking the objects and record their motion.
The modules are separated as classes by functionality: camera, color filter, blob
filter, Kalman filter, motion recorder, HMM trainer, HMM class, and a serializer.

51

4.1. HARDWARE CHAPTER 4. IMPLEMENTATION

The library makes use of OpenCV for matrix storage and operations, as well
as other utilities. The serializer uses TinyXML to save and load the different
objects as XML human-readable files. Some of the classes and structures define
the data structures used in the library.

The second part is a graphical tool that allows all the functionality of the library
to be exposed with a friendly interface. The editor uses the Qt library [?], which
is a very robust and well established cross-platform application programming
library. Both of this pieces of software will be explained in detail in the following
sections.

4.1 Hardware

To track objects the system can use any type of camera recognized by OpenCV. It
is currently restricted to use only one or two cameras. In should be easy to allow
for more cameras if an algorithm for stereo reconstruction using more than two
cameras is implemented in the GToolkit library.

The setup used for the project can be seen in Figure 4.2. Two cameras are con-
nected to a computer via USB, feeding live images to the editor. The cameras
used in this case were two Creative Optia AF USB Cameras, that can run at
30fps under normal lighting conditions.

52

4.1. HARDWARE CHAPTER 4. IMPLEMENTATION

Figure 4.2: Screenshot of the stereo camera with the two USB Creative Optia
AF USB cameras used in the thesis.

It is possible in Windows XP/Vista to configure the camera to disable all the
automatic exposure and illumination compensation that it has active by default
using a free utility called AMCap. By overriding these settings the cameras can
be tweaked to optimize the performance and enhance the color in the images
used for color tracking. A screenshot of the AMCap utility configuration is shown
in Fig 4.3.

To track the objects, it is best if their color is homogeneous and ideally unique
in the image. Even though the Mahalanobis distance with the Kalman filter can
be used to avoid erroneous candidates during tracking as seen in section 3.4.3,
it is best to limit the environment to have unique colors to improve the tracking
result.

53

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

Figure 4.3: Screenshot of the camera device configuration dialog available in the
AMCap utility for windows.

4.2 Software

4.2.1 GToolkit

Several classes were defined in the library to perform each of the steps required
by the thesis. As stated previously one of the objectives with the design of the
software was to be able to use each class as a separate module, to increase cohe-
sion and reduce coupling. To accomplish this each functional module was defined
as a class. The most relevant classes created are described below.

Camera

The camera class performs several functions. The first and most important is
to define an interface for the library to easily make use of the camera devices

54

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

available in the system. It allows the acquisition of the camera device from
the system and grab frames when requested. The frame grabbed is stored for
later use in the application. Another function of the Camera class is to apply
post processing filters if desired. The filters implemented are Median, Gaus-
sian, Blur(Sobel), Dilation and Erosion. Dilation and erosion are useful for blob
filtering as they remove a lot of noise from the images, at some performance cost.

The Camera class can also apply undistortion to the images as they are grabbed
from the device using the radial and tangential distortion coefficients. This is
implemented using the cvRemap function available in OpenCV. It can also store
the internal and external parameters of the camera. Each instance of a Camera
object defines one physical camera.

Finally an important feature of the Camera class is the transformation of the
original grabbed image in the RGB space to one of the color spaces defined in
section 3.2.1, an essential part of the color tracking step.

BackgroundSubtraction

This class is used to identify moving objects in images, by separating the fore-
ground from the background. It implements the running Gaussian average as
described in section 3.1.2. After passing an image format for initialization, each
pixel holds the mean and variance describing the distribution for each color
channel. When a new image arrives, each channel for each pixel is tested. If
all the channels are classified as background the pixel is considered part of the
background, otherwise it is classified as a foreground pixel. A selectivity flag
filters the background update to be applied only after a pixel has been classified
as background.

TrackableBlob

A TrackableBlob in the library is the implementation of the blob representation
of an object in an image. This class holds all the properties to perform the color
filtering, blob filtering, tracking and recording of trajectories. It also holds in-
stances of each of the modules used for the previous steps. Every object being
tracked has one TrackableBlob object per camera. This allows the object to be
defined differently in each camera as may be required by the possibly different
color, size, and other properties device dependent due to the positioning, envi-
ronment and intrinsic characteristics of each device.

This class also holds the features measured by the blob filter at a given time,
such as 2d position, bounding box, area and size. Other parameters obtained
using the Kalman Filter are 2d velocity and acceleration. This data is stored in
a class member struct of type BlobData.

55

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

TrackableObject

In the GToolkit a TrackableObject is the main class representing an object that
is to be tracked in a video sequence. A TrackableObject inherits all the proper-
ties of a TrackableBlob, and also has an array containing a TrackableBlob for
each camera. On every new frame, each one of the TrackableBlobs in the ar-
ray should be updated. The data in these TrackableBlobs is used to update the
TrackableObject they define. If only one TrackableBlob is used, the values of the
single TrackableBlob area copied directly to the TrackableObject. If more than
one camera is used, all the values in the different TrackableBlobs are combined
to obtain the common values and also estimate the 3d information. For now only
one or two cameras are supported in this estimation.

ColorFilter

This class uses color statistics previously defined to classify pixels in an image
as belonging or not belonging to the distribution. It implements the four classi-
fiers described in section 3.2.2: Color Thresholds, Mahalanobis Distance, Back
Projection and Mixture of Gaussians. The ColorClassifier outputs a single chan-
nel 8-bit black and white image with black (0) meaning the pixel was classified
as not belonging to the object and white (255) that it belongs.

To define the color properties of an object, a vector of pixel samples is stored in
the ColorFilter object. Once the user is satisfied with the number of pixels ob-
tained the method calcSamplesStatistics estimates all the parameters for each
one of the different classifiers. To improve the performance of the filter, it is
possible to set the number of pyramid levels to down-scale the image before the
pixel classification. After it is done the image is up-scaled the same number of
pyramid levels to have the same size as the original input image.

BlobFilter

The BlobFilter is in charge of finding up to a maximum number of blobs of a
minimum size from a gray scale image, usually the image output of the Col-
orClassifier. To find the blobs it implements two different methods. The first
one uses OpenCV contours related functions to find the blobs and obtain their
properties. The second one is the implementation of the algorithm proposed for
this objective in section 3.3.1. In practice it has been seen that the proposed
algorithm is faster than OpenCV’s, most likely because it has been specifically
targeted at the requirements of the project.

After the blobs have been identified a posterior step compares the blob’s proper-
ties to a set of user-defined filters, discarding blobs that do not match the filters.

56

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

Any property of a blob can be used as a filtes, such as position, velocity, width,
height, area, and so on. This values are always in the scale of the original input
image. Similar to the ColorFilter, the BlobFilter also allows to use pyramids
to speed up the process, and this doesn’t affect the scale of the data, with only
incurring in some loss of precision inherent to downscaling.

The last action performed by the filter is to store the blobs in descending order
sorted by an internal id. The id is not consistent between frames and shouldn’t
be used to identify an object between frames. For performance reasons this array
of blobs has a fixed size, doubled at runtime every time the number of blobs
surpasses the size of the array. Because of this, the id of some blobs is set to -1
to identify them as inactive. This id is useful externally to iterate over the array
of resulting blobs until it has a value of -1.

KalmanFilter

Every TrackableBlob has an instance of a KalmanFilter object. The Kalman-
Filter receives an array of potential candidates in the image as of BlobData
(measurements) and the BlobData (current state) of the blob whose data will
be updated. The KalmanFilter will find the most likely match for the blob it is
tracking measuring the mahalanobis distance in the array of measurements, as
described in section 3.4.3. If the match is within a threshold it is used to apply
the Kalman correction for the data of the blob.

Before it can be used the KalmanFilter must be initialized, by defining the mea-
surement and state vectors parameters. The library was written so that the
initialization is as simple as possible, but allowing for direct manipulation of the
KalmanFilter data if necessary. The data from the blob that is not corrected us-
ing the Kalman filter is directly copied from the best match, so there is no data
loss.

MotionRecorder

This is a tool to obtain the motion trajectories of a TrackableObject. The Motion-
Recorder is fed with a TrackableObject’s data on every camera frame. Two set of
parameters define the blob parameters that activate and deactivate recording a
motion. In practice the parameter chosen is velocity; i.e. setting a large velocity
as a starting trigger and a low velocity as a stopping trigger. When idle and
the conditions to start recording are met, the MotionRecorder is set in recording
mode. It stores every BlobData fed to it. When recording and the conditions
to stop are met, the MotionRecorder stops storing data, and awaits for the next
trajectory.

57

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

HMM

A HMM defines a continuous hidden Markov model and the action primitives
graph. It stores all the data necessary to work with the action primitives graph
and HMM. For the HMM is stores the initial state probabilities, the transition
probabilities and the array of states. Each state of the HMM is defined by a
HMMState which holds all the information for a specific state of the HMM, that
is, the mean and covariance of the distribution. It also defines what data is
stored in each state of the HMM with an array of parameters. The observa-
tion probabilities are not stored but calculated using the probability distribution
function for the Gaussian parameters defined in the state. The Forward, Back-
ward, Viterbi, Baum-Welch and custom HMM training for the action primitives
were implemented for this class.

The action primitives graph is defined as described in section 3.6.10 as a set of
nodes and arcs. The HMM class provides amongst other functionality methods
for: 1) Finding the optimal sequence of HMM states for an observation, 2) Using
a sequence of HMM states identify the action primitives and 3) With a sequence
of actions, validate a path in the graph of action primitives.

HMMTrainer

The HMMTrainer uses a set of observations to train a HMM and create the
action primitives graph. After training is done, the HMM defined can evaluate
an observation and return the likelihood. It implements all the steps required
for finding the action primitives and building the actions graph as defined in
Section 3.6.

GtoolkitSerializer

The purpose of this class is to provide the possibility of reusing the objects one
they have been created, avoiding retraining and configuration. It saves each
object type in a separate file, as an XML human-readable text file. The classes
that can be saved and loaded are: Camera, TrackableObject, HMM and record-
ings as an array of BlobMotionData (BlobMotionData is a structure that has the
original BlobData and a normalized copy of the data).

4.2.2 Action Primitives Editor

The second part of the software developed and which became the final tool to
perform all the tests of the thesis is the Action Primitives Editor. This editor is

58

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

a user friendly application meant to provide all the functionality of the GToolkit
library and add the easiness of a state of the art graphical user interface. The
editor was developed using the commercial quality and cross-platform library
Qt. In this section the most important features of the editor will be described.

Figure 4.4: Screenshot of the Action Primitives Editor.

59

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

Camera Tools

Figure 4.5: Camera tools in the Action Primitives Editor labeled for illustration
purposes.

The figure shows the tools for configuring the cameras. The are five group boxes
used to organize the tools by functionality: Image Properties, Image Filters,
Background Subtraction, Intrinsic Parameters and Extrinsic parameters. In-
trinsic and extrinsic camera calibration are in-built in the editor.

60

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

Trackable Object Tools

Figure 4.6: Different tabs of the trackable objects tools from the editor are shown
in this figure.

In Figure 4.6 three tabs (one is excluded) with the tools for defining the proper-
ties of the trackable objects are shown. The tools include widgets for setting the
color properties and the pixel classification technique to be applied on the im-
age, the blob filtering methods and filters, and the Kalman filter configuration.
To define the color properties, a sampling button allows to grab pixels from the
live camera image, and it will calculate all the parameters for the different pixel
classification techniques, as defined in Section 3.2.2, by means of the GToolkit
library. As stated previously the configuration of a trackable object is done per-
camera, allowing the flexibility required by the difference color temperature and
quality of the images.

A last tab not shown in the figure allows to enable and define an auxiliary coordi-
nate frame to localize the observations in real time. This is useful, as described
in Section 3.6.4, to be able to obtain observations in the same frame of reference
regardless of the camera positions. It also allows to obtain observations in a

61

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

more friendly orientation, as in the case of a planar surface being parallel to the
world coordinates.

62

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

Recording Tools

Figure 4.7: The image shows the UI for defining the properties of the recorder.

The recording tab show the filters defining the triggering parameters for record-
ing trajectories. Any parameters of a trackable object can be used to start/stop
the recording. Other options include the minimum and maximum time a record-
ing can last to be considered valid and the time to wait between recordings, to
allow the object being tracked to be placed in a desired position before starting
a new recording. Figure 4.7 show this tool in the editor.

63

4.2. SOFTWARE CHAPTER 4. IMPLEMENTATION

HMM and Actions Tools

Figure 4.8: Tools for building and visualizing the HMM and action primitives
graph.

The last tool briefly described here is the one used to create and train action
primitives models from observations. In Figure 4.8 a screenshot of the tools is
seen. In short, the tools allow to define the properties of the HMM as a com-
bination of blob parameters, segment the trajectories as Gaussians, and train
a HMM from these trajectories. Using the HMM and a set of trajectories the
state-changes as described in Section are identified, which leads to the build-
ing of the action primitives graph. With the aid of the Dot tool of the Graphviz
[?] package, the editor is capable of drawing the HMMs and action primitives
graphs as images.

64

Chapter 5

Tests

This chapter describes the tests used to evaluate the performance of the system
for the action primitives model building. Given the complexity of the system a
component-wise testing is not possible in the given time. Therefore, the object
tracking modules of the system are implicitly tested as they are preconditions to
find the action primitives and define the action primitives graph.

5.1 Testing Scenario

To elaborate the tests a table was placed to perform the motions of an object
whose trajectories were recorded. The object chosen was a homogeneously col-
ored object of high contrast easily identifiable in the scene. Specifically round
colored flat disks were used. A configuration of two USB cameras placed on a
tripod each looking at the table with the object were used to track the position
of the object in the three dimensional space using the functionality provided by
the GToolkit library.

66

5.1. TESTING SCENARIO CHAPTER 5. TESTS

Figure 5.1: A subject performing the motion of an object over the testing table
during a recording session.

All the data from the tests was collected using the Action Primitives Editor.
Various subjects moved an object after receiving instructions and it’s motions
were recorded. In Figure 5.1 an image of a subject performing the motions is
shown.

The steps for setting up the system were the following:

1. Start the two cameras in the editor. Select the color space to use, train
the background model and add any image filters desired. The intrinsic and
extrinsic parameters can be obtained using the dialogs for this in the editor
and a calibration pattern.

2. Create a trackable object to be followed. The color filtering, blob filtering
and tracking filtering parameters have to be defined using the tools in the
editor.

3. Set the recorder properties. There are two modes for recording that can
be set with the options in the recording tools. The first one is using the
filters that define the starting and ending triggers of a recording, usually a
starting and ending velocity zones. The second mode is set by not defining
any filters, which triggers recording immediately and finally forcing the

67

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

creation of a recording pushing the “Force Recording” button. This last
mode is good for rapid prototyping.

4. Create a HMM and action primitives model using the editor. Using a dialog
the state parameters for the HMM can be defined. Using a set of recordings
and by setting the parameters in the trainer, the HMM and action primi-
tives graph are built. It is possible to draw an image of both the HMM and
the action primitives graph by supplying the path to the Graphviz dot.exe
application. In practice the parameters chosen are the positions in the X,
Y and Z coordinates.

5. Test the data. Using some recordings it is possible to test them offline with
the “Actions Evaluation” tab of the editor. It is also possible to evaluate
observations online in the “Evaluation” tab of the editor, if the cameras are
running.

Three tests were defined for the system. The first test is interested in motions
that are defined in object space, as discussed in Section3.6.4. The second test is
concerned with motions defined in world space, that is, the starting point is not
always the same. The third test is focused on the grammar representation of the
observations.

5.2 Object Space Test

5.2.1 Purpose of Test

This test was performed to evaluate the HMM and action primitives graph gen-
erated for a set of observations that are known to be defined in object space. A
practical scenario of such case is moving a chess piece on a chessboard. For this
scenario the starting point is not important, only the trajectory.

5.2.2 Test Method

The motions in the test consisted of movements in the four cardinal directions:
north, south, east, west, as performed over the table, with three different tra-
jectory lengths. The lengths are defined by the squares on the table covering
either one, two or three squares of distance. An auxiliary coordinate frame was
used to locate all the observations during the recording phase on the XZ plane
of the world space. Figure 5.2 shows the different actions performed in different
colors. Each motion trajectory was shifted to the origin of the world, in other
words localized, by subtracting the first observation in the trajectory to all the
other observations in the trajectory.

68

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

Figure 5.2: The motions in object space, in three different lengths. Each motion
starts at the center point.

In this scenario the expected result is to obtain a model with one common start-
ing Gaussian state for all the observations. It is also expected that most of the
Gaussians and action primitives will be common for most of the observations.
The training and testing data consists of three sets of observations, each one
with four repetitions of each motion. That is a total of 48 observations per set,
with a total of 144 observations for the entire test. Three different subjects par-
ticipated in the recording of the motions. One set of motions from one subject
was used for training, and the other two were used to test the model. Table 5.1
shows the number of samples taken.

69

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

Motion Samples #1 Samples #2 Samples #3 Total

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12

4 4 4 12
All 48 48 48 144

Table 5.1: Number of samples taken for each trajectory type.

5.2.3 Test Results

Trajectories As Gaussians

Using the editor the trajectories for the observations were covered with Gaus-
sians as can be seen in Figure 5.3. The parameters used for this step were the
following:

• Number of Noise Samples: 150.

• Noise size: 30.

• Tail threshold: 0.6667.

• Length Threshold: 15.

• Minimum divergence: 4.

• Starting Gaussians were prevented from joining.

70

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

Figure 5.3: Gaussians (right) obtained for the recordings (left) in object space.

A total of 48 trajectories from the training sample set were covered by Gaus-
sians. Each one is kept separate.

HMM Training and Action Primitives Graph Building

With the Gaussians estimated the next steps are to build the joined HMM, find
the action primitives and construct the action primitives graph. For this it is
necessary to use both the raw observations and the Gaussians estimated for
each observation. The parameters used in the editor for building the model
were:

• Minimum divergence: 4

• Likelihood Threshold: 1

71

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

(a) (b)

Figure 5.4: (a) Gaussian states of the HMM for the object space motions scenario.
(b) Viterbi paths found for the observations used for training. Each colored line
is a different path.

Figure 5.4 shows the HMM built using the Gaussians covering the observations.
Using the Viterbi algorithm the most likely paths in the HMM for the training
observations were identified. From the image it is possible at this step to identify
the three distinct lengths of the observations. The HMM has a total of 15 states.
The transition matrix of the trained HMM can be seen in figure 5.5. It can be
seen that the first state can transition to the adjacent four states and to itself as
expected.

Figure 5.5: Transition matrix and graph representation of the trained HMM in
object space.

72

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

(a) (b)

Figure 5.6: (a) Actions primitives as seen in the editor. (b) Actions primitives
graph of the resulting model. Each colored node in image (b) is a primitive
action, similar to the points and lines in image (a).

The graph in Figure 5.6 shows the possible action primitives extracted from the
state-change sequences. Each node in the graph represents in this specific case
a different length trajectory. It is noticeable that after going through the first
action primitive, a trajectory as a sequence of Gaussian states can only follow a
single path ending at one of three possible actions. This ending action defines
the type of observation that was tested. This model is coherent with the three
different lengths used in training.

Model Evaluation

The previous model with the action primitives and grammar as a directed graph
was trained using one of the three sets of trajectories. The two other trajecto-
ries were used to evaluate how well the model performs when classifying them
as correct or incorrect trajectories. In Table 5.2 the results of the evaluation
validating the input trajectories is shown.

73

5.2. OBJECT SPACE TEST CHAPTER 5. TESTS

Motion #Samples #Correct #Incorrect Validation Rate %

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 8 0 100%

8 4 4 50%

8 8 0 100%
Total 96 92 4 95.83%

Table 5.2: Results of evaluating two sets of training data with the trained model
for the object space scenario.

5.2.4 Conclusion

The results shows that the system is capable of building a HMM and action
primitives model that correctly validates and elaborates an abstract representa-
tion of the observation trajectories defined in object space. The validation rate
was satisfactory with an average of 95.83% as shown in Table 5.2.

Only for one type of motion in one of the two sets of observations the validation
was wrong. After retracing the steps in validation it was found that the action
primitive at the end of the graph consisted of many Gaussians. The Gaussian
sequences identified in the trajectories tested were valid but the observation was
not long enough to include all the necessary Gaussians to completely define the
last action primitive. Therefore these last segments couldn’t be identified as an
action and the trajectories were classified as invalid. In the practical scenario
this shows the case when the motion of the object didn’t finish close to the end-
ings of the training data, but it did follow the correct path. It is therefore a
matter of application to choose whether this can be defined as invalid or valid.
In some cases, it can be enough to arrive at the action, in others it may be chosen

74

5.3. WORLD SPACE TEST CHAPTER 5. TESTS

to restrict the validation so the identified sequence has all the Gaussians that
define the last action.

In summary, it can be concluded that the system can efficiently define and vali-
date motion trajectories defined in object space.

5.3 World Space Test

5.3.1 Purpose of Test

The purpose of this test is to evaluate the functionality of the framework for
a set of observations known to define a system with actions in world space. In
practical terms, the validation of motion trajectories in world space is dependent
on the starting place of the observation.

5.3.2 Test Method

This test is a simulation of the intersection of two streets, each one with two
lanes in opposing directions. In the simulation a car starts from one of the
streets and moves forward transitioning to another street which doesn’t violate
the street’s direction, and stopping at the end of such street. The following figure
describes the scene:

75

5.3. WORLD SPACE TEST CHAPTER 5. TESTS

(a) (b)

(c) (d)

Figure 5.7: Illustrations (a)- (d) show the street intersection scenario with the
possible transitions of a car from one street to another shown with arrows.

In this scenario it is expected that the model will contain action primitives for
the streets, re-used by many trajectories. The HMM and action primitives graph
should display the possible connections between streets in the intersection.

Three sets of observations of each trajectory were performed by three subjects
moving a colored disk on the test table. A total of 36 observations per-set were
done by each individual, with a total number of samples of 108. One set of obser-
vations was used for training and the other two were used to test the generated
model.

76

5.3. WORLD SPACE TEST CHAPTER 5. TESTS

Samples #1 Samples #2 Samples #3 Total

3 3 3 9
3 3 3 9
3 3 3 9
3 3 3 9
3 3 3 9
3 3 3 9
3 3 3 9

3 3 3 9

3 3 3 9

3 3 3 9

3 3 3 9

3 3 3 9

All 36 36 36 108

Table 5.3: Number of samples taken for each trajectory type.

5.3.3 Test Results

Trajectories As Gaussians

Using the editor the trajectories for the observations were covered by Gaussians,
as can be seen in Figure 5.8. The parameters used for this step were the follow-
ing:

• Number of Noise Samples: 150

• Noise size: 30

• Tail threshold: 0.6667

• Length Threshold: 15

• Minimum divergence: 4

• Initial Gaussians were not prevented from joining other Gaussians..

77

5.3. WORLD SPACE TEST CHAPTER 5. TESTS

Figure 5.8: Gaussians (right) obtained for the recordings (left) in world space.

HMM Training and Action Primitives Graph Building

Similar to the previous test in Section 5.2, the HMM, action primitives and ac-
tion primitives grammar are obtained with the estimated Gaussians. The pa-
rameters used in the editor for building the model were:

• Minimum divergence: 4

• Likelihood Threshold: 1

(a) (b)

Figure 5.9: (a) Gaussian states of the HMM for the streets scenario. (b) Viterbi
paths found for the observations used in the training of the HMM.

A total of 28 states were identified in the final HMM from the trajectories as
Gaussians. The transition matrix is not shown here because of it’s large size,
but it’s included in Appendix E.

78

5.3. WORLD SPACE TEST CHAPTER 5. TESTS

(a) (b)

Figure 5.10: a) Actions primitives as seen in the editor. b) Actions primitives
graph of the street intersection scenario.

The graph in Figure 5.10 shows the connections between the streets defined as
action primitives. It is to be noted that the graph is optimal as the number of
action primitives is the same as the number of possible choices in every street,
adding only one action primitive for the intersection itself.

Model Evaluation

The previous model with the action primitives and grammar as a directed graph
was trained using only one of the three sets of trajectories. The two other trajec-
tories were used to evaluate how well the model performs when classifying them
as correct or incorrect trajectories. In Table 5.4 the validation of the trajectories
is shown.

79

5.4. MODEL GRAMMAR TEST CHAPTER 5. TESTS

#Samples #Correct #Incorrect Validation Rate%
6 6 0 100%
6 6 0 100%
6 6 0 100%
6 6 0 100%
6 6 0 100%
6 6 0 100%
6 6 0 100%

6 6 0 100%

6 6 0 100%

6 6 0 100%

6 6 0 100%

6 6 0 100%

Total 72 72 0 100%

Table 5.4: Results of evaluating two sets of training data with the trained model
for the world space scenario.

5.3.4 Conclusion

In this test it was shown that the system is capable of correctly defining a model
from a set of observations located in world space. The model was tested with
trajectories different from the ones used in training and achieved a validation
rate of 100%.

5.4 Model Grammar Test

5.4.1 Purpose of Test

To check the consistency of the grammar as defined by one of the previous models
using trajectories different from the ones used in the training data.

5.4.2 Test Method

The test will be divided in two parts. The first one is interested in showing
that trajectories which use the same paths but don’t follow the action primitives

80

5.4. MODEL GRAMMAR TEST CHAPTER 5. TESTS

grammar, will be classified as erroneous. The second part will use new trajecto-
ries which follow the grammar rules but were not defined in the training data,
and test them as valid or not.

Incorrect Trajectories

This scenario uses the same test setup as in Section 5.3, but adding eight new
trajectories using some of the same paths. The incorrect trajectories can be seen
in Figure 5.11.

Figure 5.11: Incorrect trajectories passing through the portions of same paths
with some parts being in the wrong direction of the streets.

New Correct Trajectories

As in the previous test eight new trajectories were defined, this time choosing ac-
tion primitives sequences not defined in the initial training data but that should
follow the grammar of the action primitives model. The new trajectories can be
seen in Figure 5.12.

Figure 5.12: New trajectories passing thought valid action primitive sequences.

The trajectories were tested using the Action Primitives Editor in the same way
as it was described in Section 3.6.11.

5.4.3 Test Results

The results of the validity of the trajectories can be seen in Tables 5.5 and 5.6.

81

5.4. MODEL GRAMMAR TEST CHAPTER 5. TESTS

Incorrect Trajectories Results

Sample# Validity
1 Negative
2 Negative
3 Negative
4 Negative
5 Negative
6 Negative
7 Negative
8 Negative

Table 5.5: Table with the validation given by the model to the trajectories of
incorrect motions.

New Correct Trajectories Results

Sample# Validity
1 Positive
2 Positive
3 Positive
4 Positive
5 Positive
6 Positive
7 Positive
8 Positive

Table 5.6: Table with the validation given by the model of the new motions
trajectories which follow the rules of the grammar.

5.4.4 Conclusion

With these tests it was shown that the system is able to correctly classify as
invalid, trajectories that use the same physical path as the one defined by the
Gaussians in the actions primitives of the model but whose estimated state se-
quences are in different order than the ones composing the action primitives.

On the other hand, trajectories which use the same action primitives and follow
the grammar defined in the model, but which were initially not defined during
training are tested as valid. These last motions test case is an interesting one as
the paths validated can be used to learn or infer new ways to perform certain ac-
tivities. An example could be to find an optimal path in a more complex scenario
for completing an action by adding weights to each action primitive.

82

Chapter 6

Discussion

6.1 Contributions

The following sections describe the main contributions of this work.

6.1.1 Modeling Actions Primitives

Through the work in this thesis the theory and implementation of a model of
action primitives for the representation of motion trajectories was presented.
The framework developed is capable of representing many observations of dif-
ferent trajectories in a single model. The model allows for the identification,
recognition and prediction of action primitives in observations. The recognition
of trajectories is done in two levels, first in a low level using hidden Markov
models, and second, using grammar defined in an action primitives graph. This
provides more efficiency and better performance.

6.1.2 GToolkit

A programming library was developed exceeding the requirements of the objec-
tives of the thesis. It can capture from several devices, apply background sub-
traction, image filtering, kalman filtering, build HMMs and action primitives
models. It also provides a serializer for saving and loading data. The library is
modular and cross-platform, programmed in C++. It is not limited to the action
primitives problem, but can also be used as a tool in computer vision applications
for other purposes.

84

6.2. CONCLUSIONS CHAPTER 6. DISCUSSION

6.1.3 Action Primitives Editor

A stand alone application providing a user friendly interface to do, in one single
place all the steps required in this project. From image capturing and camera
calibration to the creation and evaluation of action primitives models. All the
requirements are presented in one single place. The application is also cross-
platform.

6.2 Conclusions

In this thesis the objectives presented were: to detect and track objects in real-
time while recording their features in 3d space, to define a stochastic model of
a set of many actions from several samples, to identify sub-actions in the model
as action primitives and to obtain the grammar of the model for validation and
identification of new trajectories. The previous sections show that these objec-
tives were accomplished with satisfactory results. A system for modeling a group
of related motion trajectories as a single hidden Markov model and a graph of
action primitives was described and developed. The results show that it is suc-
cessful in defining models and that the models represent the motions described
by the observations in two layers of abstraction. The defined action primitives
learning model, the GToolkit library and the Action Primitives Editor constitute
together a complete system for unsupervised learning of motion trajectories rep-
resented as HMMs and sequences of action primitives.

85

Appendix A

Color Conversion

A.1 RGB to Normalized RGB Conversion

For a color in the RGB space, with values ranging from 0 to 255, the conversion
to the Normalized RGB color space is shown in the following C code:

Algorithm A.1 RGB to Normalize RGB Conversion
// r,g,b are the red, green, and blue channels of the color
// nr, ng, nb are the normalizes rgb colors
float sum = r+g+b;
if(sum = 0)
nr =g =b =0;
else {

nr = r/sum;
ng = g/sum;
nb = 1-nr-ng; // To avoid precision problems

}

87

A.2. RGB TO YCBCR CONVERSION APPENDIX A. COLOR CONVERSION

A.2 RGB to YCbCr Conversion

For a color in the RGB space, with values ranging from 0 to 255, the conversion
to the YCbCr color space is shown in the following C code:

Algorithm A.2 RGB to YCbCr Conversion
// r,g,b are the red, green, and blue channels of the color
Y = 16 + (1/256) * (65.738*r + 129.057*g + 25.064*b);
Cb = 128 + (1/256) * (-37.945*r - 74.494*g + 112.439*b);
Cr =128 + (1/256) * (112.439*r - 94.154*g - 18.285*b);

88

A.3. RGB TO HSV CONVERSION APPENDIX A. COLOR CONVERSION

A.3 RGB to HSV Conversion

For a color in the RGB space, with values ranging from 0 to 1, the conversion to
the Hue, Saturation, Value color space is shown in the following C code:

Algorithm A.3 RGB to HSV Conversion
// r,g,b are the red, green, and blue channels of the color
// h, s, v are the HSV colors
v = minc = r;
if(v < g)

v = g;
if(v < b)

v = b;
if(minc > g)

minc = g;
if(minc > b)

minc = b;
diff = v - minc;
s = diff/(float)(fabs(v) + FLT_EPSILON);
diff = (float)(60./(diff + FLT_EPSILON));
if(v == r)

h = (g - b)*diff;
else

if(v == g)
h = (b - r)*diff + 120.f;

else
h = (r - g)*diff + 240.f;

if(h < 0)
h += 360.f;

89

A.4. RGB TO HSL CONVERSION APPENDIX A. COLOR CONVERSION

A.4 RGB to HSL Conversion

For a color in the RGB space, with values ranging from 0 to 1, the conversion to
the Hue, Saturation, Luminance color space is shown in the following C code:

Algorithm A.4 RGB to HSL Conversion
// r,g,b are the red, green, and blue channels of the color
// h, s, l are the HSV colors
float maxc = minc = r;
if(maxc < g)

maxc = g;
if(maxc < b)

maxc = b;
if(minc > g)

minc = g;
if(minc > b)

minc = b;
float diff = maxc - minc;
l = (maxc + minc)*0.5f;
if(diff > FLT_EPSILON){

s = l < 0.5f ? diff/(maxc + minc) : diff/(2 - maxc - minc);
diff = 60.f/diff;
if(maxc == r)

h = (g - b)*diff;
else

if(maxc == g)
h = (b - r)*diff + 120.f;

else
h = (r - g)*diff + 240.f;

if(h < 0.f)
h += 360.f;

}

90

A.5. RGB TO HUNTER LAB CONVERSIONAPPENDIX A. COLOR CONVERSION

A.5 RGB to Hunter LAB Conversion

For a color in the RGB space, with values ranging from 0 to 255, the conversion
to the Hunter LAB color space is shown in the following C code:

Algorithm A.5 RGB to HSV Conversion
// r,g,b are the red, green, and blue channels of the color
// L, a, b are the Hunter Lab colors
if(r > 0.04045f){

r = pow((r + 0.055f)*0.9478f, 2.4f);
}
else {

r = r / 12.92f;
}
if(g > 0.04045){

g = pow((g + 0.055f)*0.9478f, 2.4f);
}
else{

g = g / 12.92f;
}
if(b > 0.04045f){

b = pow((b + 0.055f)*0.9478f, 2.4f);
}
else{

b = b / 12.92f;
}
//Observer. = 2°, Illuminant = D65
float x = (r * 0.4124f + g * 0.3576f + b * 0.1805f) * 100.0f;
float y = (r * 0.2126f + g * 0.7152f + b * 0.0722f) * 100.0f;
float z = (r * 0.0193f + g * 0.1192f + b * 0.9505f) * 100.0f;
// Hunter Lab
sqrty = sqrt(y);
L = 10.0f * sqrty;
a = 17.5f * (((1.02f*x) - y) / sqrty);
b = 7.0f * ((y - (0.847f*z)) / sqrty);

91

Appendix B

Kalman Filter

The discrete Kalman Filter is a two-step process, prediction and correction. The
notation and formulas here are found in [?]

x̂−k State prediction at time k

P−k Error Covariance prediction at time k

A System Model

H Measurement Model

Zk Measurement

Q System Noise

R Measurement Noise

Kk Kalman Gain at time k

x̂k Corrected State at time k

Pk Corrected Error Covariance at time k

Prediction
x̂−k = Ax̂k−1 +Buk−1 (B.1)

P−k = APk−1A
T +Q (B.2)

92

APPENDIX B. KALMAN FILTER

Update
Kk = P−k H

T (HP−k H
T +R)−1 (B.3)

x̂k = x̂−k +Kk(zk −Hx̂−k) (B.4)

Pk = (I −KkH)P−k (B.5)

93

Appendix C

Viterbi Algorithm

The following is the Viterbi algorithm as defined in [?] used for finding the most
likely state sequence which produced an observation, where

T Number of observations in observation O.

N Number of states in the HMM.

πi Initial probability for state si

bi(Oj) Observation probability for state si and observation Oj .

δ, ψ Temporary arrays

q∗ Array with the best sequence

1. Initialization
δ1(i) = πibi(O1), 1 6 i 6 N (C.1)

ψ1(i) = 0, 1 6 i 6 N (C.2)

2. Recursion
δt(j) = max

16i6N
[δt−1(i)aij] bj(Ot),

2 6 t 6 T
1 6 j 6 N

(C.3)

ψt(j) = arg max
16i6N

[δt−1(i)aij] ,
2 6 t 6 T
1 6 j 6 N

(C.4)

3. Termination
P ∗ = max

16i6N
[δT (i)] (C.5)

q∗T = arg max
16i6N

[δT (i)] (C.6)

4. Path recovery

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1. (C.7)

94

Appendix D

Longest Common Substring

The following is the algorithm used for finding the longest common substring
(LCS) between two strings.

Algorithm D.1 Longest Common Substring solution for two strings
function lcs(str1, str2)

z = 0
n = length(str1)
m = length(str2)
table = array[n,m]
for i in range 0,...,n

for j in range 0,...,m
if i == 0 or j == 0

table[i, j] = 0
else

if str1[i-1] == str2[j-1]
table[i, j] = table[i-1, j-1] + 1

else
table[i, j] = max(table[i-1, j], table[i, j-1])

95

Appendix E

Transition Matrix for World
Space Test

96

APPENDIX E. TRANSITION MATRIX FOR WORLD SPACE TEST

97

	Abstract
	Acknowledgements
	Accompanying CD-Rom
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Thesis Organisation

	2 Related Work
	2.1 Object Tracking
	2.1.1 Representing Objects
	2.1.2 Features for Tracking
	2.1.3 Object Detection
	2.1.4 Tracking Objects

	2.2 Modeling Trajectories
	2.2.1 Hidden Markov Models

	3 Analysis
	3.1 Image Acquisition
	3.1.1 Background Substraction
	3.1.2 Running Gaussian Average

	3.2 Color Filtering
	3.2.1 Color Spaces
	3.2.2 Pixel Classification

	3.3 Blob Filtering
	3.3.1 Connectivity Algorithm
	3.3.2 Mask Filling
	3.3.3 Blob Features

	3.4 Tracking
	3.4.1 Kalman Filter
	3.4.2 Object State Update
	3.4.3 Tracking Correspondance Test
	3.4.4 Motion Detection and Recording

	3.5 Stereo Triangulation
	3.5.1 Pinhole Camera Model
	3.5.2 Intrinsic Camera Parameters
	3.5.3 Undistortion
	3.5.4 Extrinsic Camera Parameters
	3.5.5 Calibration
	3.5.6 Epipolar Constraint
	3.5.7 Object Correspondances
	3.5.8 Triangulation

	3.6 Learning Action Primitives
	3.6.1 Model Building
	3.6.2 Hidden Markov Models
	3.6.3 Preparing Data for Model Building
	3.6.4 Localizing observations
	3.6.5 Divergence Test
	3.6.6 Joining Gaussians
	3.6.7 Updating the HMM
	3.6.8 Identifying the Motions in the Model's HMM
	3.6.9 Finding Action Primitives
	3.6.10 Actions Primitives Graph
	3.6.11 Trajectory Validation

	4 Implementation
	4.1 Hardware
	4.2 Software
	4.2.1 GToolkit
	4.2.2 Action Primitives Editor

	5 Tests
	5.1 Testing Scenario
	5.2 Object Space Test
	5.2.1 Purpose of Test
	5.2.2 Test Method
	5.2.3 Test Results
	5.2.4 Conclusion

	5.3 World Space Test
	5.3.1 Purpose of Test
	5.3.2 Test Method
	5.3.3 Test Results
	5.3.4 Conclusion

	5.4 Model Grammar Test
	5.4.1 Purpose of Test
	5.4.2 Test Method
	5.4.3 Test Results
	5.4.4 Conclusion

	6 Discussion
	6.1 Contributions
	6.1.1 Modeling Actions Primitives
	6.1.2 GToolkit
	6.1.3 Action Primitives Editor

	6.2 Conclusions

	Bibliography
	A Color Conversion
	A.1 RGB to Normalized RGB Conversion
	A.2 RGB to YCbCr Conversion
	A.3 RGB to HSV Conversion
	A.4 RGB to HSL Conversion
	A.5 RGB to Hunter LAB Conversion

	B Kalman Filter
	C Viterbi Algorithm
	D Longest Common Substring
	E Transition Matrix for World Space Test

