
MOBILE DISTRIBUTED

WIRELESS STEREO

Author:

Elisabet Berbel Gonzalez

Supervisors:

Frank Fitzek

Janus Heide

Morten V. Pedersen

Department of Electronic Systems

Section of Antennas, Propagation and

Radio Networking (APNet)

Fredriks Bajers Vej 7

http://www.es.aau.dk/sections/

Title:

Mobile distributed wireless stereo

Project period:

Autumn semester 2009

Project group:

gr 991

Participants:

Elisabet Berbel Gonzalez

Supervisors:

Frank Fitzek

Janus Heide

Morten V. Pedersen

Copies: 5

Date of completion:

January 6th, 2010

Abstract:

Nowadays mobile phones are an es-

sential part of our life. Due to ever

increasing demands from the consumer,

mobile devices incorporates more and

more functionalities.

The main aim of this project is

develop an application able to transmit

audio files in real time using a Internet

Tablet from Nokia (N810) and analyze

all the problems that can come up

as the synchronization between devices.

The content of this report is freely available, but publication (with reference source) may only be pursued

due to agreement with the respective authors.

http://www.es.aau.dk/sections/

Declaration of Authorship

I, ELISABET BERBEL GONZALEZ, declare that this Master thesis titled, ‘Mobile

distributed wireless stereo’ and the work presented in it are my own and has been

generated by me as the result of my own original research. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at Aalborg University.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

Signed: ELISABET BERBEL GONZALEZ

Date:January 6th, 2010

i

Acknowledgements

First and foremost I would like to thank my thesis advisor Janus Heide and Morten V.

Pedersen, for their support and guidance throughout the project, for the meetings dur-

ing the development of the project and for helpful comments with refining the finished

document.

Also, I would like to thank my thesis coordinator Frank Fitzek that has allowed me

to make the project into his research group and has given me a lot of facilities to carry

out the project.

I thank Aalborg University, the Erasmus Program and my university (EPSC-UPC) to

give me the opportunity to do my final Master Thesis in other country as well as the

experience to know other culture and language.

I thank Miguel Angel Botella, Fabian Molina, Javier Pablos and Raúl Riesco for lis-

ten during the long afternoons when the project development was not in the correct

way. Also I want to express my grateful to all people that helped to perform the test.

Finally, I thank my family, Trinidad Gonzalez and David Berbel, and Albert Fuero.

They always supports my dreams and aspirations without they I could not carry out

this experience. I would like to thank their for all they are, and all they have done for

me.

ii

“Many of life’s failures are people who did not realize how close they where to success

when they gave up”

Thomas A. Edison

Contents

Declaration of Authorship i

Acknowledgements ii

List of Figures vi

List of Tables vii

Abbreviations viii

1 INTRODUCTION 1

2 DEVELOPMENT ENVIRONMENT 4

2.1 Nokia N810 . 4

2.2 Maemo . 5

2.3 Linux . 6

3 AUDIO STREAMING 8

3.1 Audio Streaming Definition . 8

3.2 Streaming Architecture . 9

3.2.1 Encoding Audio . 10

3.2.2 Serving . 14

3.2.3 Distribution And Delivery . 16

3.3 Project Specifications . 17

4 IMPLEMENTATION 20

4.1 Audio Streaming Server . 20

4.2 Audio Streaming Client . 26

5 ACOUSTICS PROPERTIES 29

5.1 The Sound . 29

5.1.1 The Source Quality And The Haas Effect 30

5.1.2 Speed Of Sound . 31

6 HAAS EFFECT TEST 33

6.1 Abstract . 33

6.2 Test Description And Specifications . 34

6.3 Test Protocol Definition . 35

iv

6.4 Results . 35

6.5 Discussion And Conclusions . 36

7 REAL SCENARIOS 38

7.1 Network Synchronization . 38

7.2 Acoustics Synchronization . 40

7.3 Scenarios Description . 41

8 CONCLUSIONS 44

9 FUTURE WORK 47

9.1 Basic Control Techniques . 47

9.2 Preventive Control Techniques . 48

9.3 Reactive Control Techniques . 48

9.4 Common Control Techniques . 49

10 GANTT CHART 50

A AUDIO STREAMING SERVER CODE 55

B AUDIO STREAMING CLIENT CODE 60

List of Figures

1.1 Audio Streaming application scheme . 2

2.1 Maemo Structure . 6

3.1 Streaming Architecture . 10

3.2 Project Specifications . 19

4.1 Flow diagram audio streaming server: Part 1 22

4.2 Flow diagram audio streaming server: Part 2 23

4.3 Server pipeline diagram . 25

4.4 Flow diagram audio streaming client: Part 1 26

4.5 Flow diagram audio streaming client: Part 2 27

4.6 Client pipeline diagram . 28

5.1 Haas Curve . 31

6.1 Test Scenario . 34

6.2 Test results . 37

7.1 Scenario 1 . 41

7.2 Scenario 2 . 42

7.3 Scenario 3 . 43

10.1 Gantt Task . 51

10.2 Gantt Diagram . 52

vi

List of Tables

2.1 N810 Specifications . 5

3.1 Summary of MPEG-1 audio . 12

6.1 Outcomes of the test . 35

vii

Abbreviations

UI User Interface

GTK Gimp ToolKit

GNU Gnu is Not Unix

LISP LISt Processing

BASIC Beginner’s All-purpose Symbolic Instruction Code

ARM Advanced RISK Machines

MIPS Microprocessor without Interlocked Pipeline Stages

PC Personal Computer

SPARC Scalable Processor ARChitecture

CD Compact Disc

IP Internet Protocol

FTP File Transfer Protocol

TELNET TELelecommunications NETwork

NFS Network File System

ISO International Organization of Standardization

DCT Discrete Cosine Transform

GSM Global System for Mobile Communications

GPS Global Positioning System

MPEG Moving Pictures Experts Group

MP2 MPEG Audio Layer2

MP3 MPEG Audio Layer3

AAC Advanced Audio Coding

WMA Windows Media Audio

WAV WAVeform Audio Format

AMR Adaptive Multi-Rate

viii

RA Real Audio

HTTP HyperText Tranfer Protocol

RTSP Real Time Streaming Protocol

RTP Real Time Protocol

RTCP Real Time Control Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

DNS Domain Name System

WI-FI WIreless FIdelity

IANA Internet Assigned Numbers Authority

RFC Request For Comments

LDU Logical Data Unit

Chapter 1

INTRODUCTION

Nowadays, in the market is found a wide range of portable devices to fulfill all the cus-

tomers requirements. It can found devices from Smartphones to tablets PC which are

able to provide all the features of a personal computer but with a smaller size.

Among the different devices that are in the market it can found Tablets PC. A Tablet

PC is a device between a Smartphone and a laptop, and it refers to a slate-shape mo-

bile computer equipped with a touchscreen that used the fingers or a stylus to operate

the computer, and provide all the features of a PC. There are two different types of

Tablet PC: the UMPC (Ultra Mobile Personal Computer) and the MID (Mobile Inter-

net Device). The UMPC is addressed to business people since it is better for computing

applications but, on the other hand, it is more expensive than the MID. The MID is

addressed to all people due to it reasonable price and lower size, and uses operative

systems like Ubuntu Mobile, Windows Mobile or Linux. The main functionalities of

MID are multimedia applications.

To enter in this market Nokia has developed a mobile Internet appliance between a

Personal Digital Assistant (PDA) and an UMPC. The Internet Tablet made by Nokia

is mainly focused on Internet and media features.

The main aim of this project is to provide an improvement in the multimedia features

in this type of devices, more specifically, in the audio area. In order to be able to give

the possibility to the customers to distribute audio files to several devices in real time.

1

Chapter 1. Introduction 2

To achieve the aim is used streaming technology that allows to transmit continuous

information, in this case audio files, through a network and reproduce the playback si-

multaneously to the download, without saving the file information in the hard disk. In

this way, the streaming technology, fragments all the information and send the different

LDU through the network to be join in the client. So, in this project it is done a study

of the architecture that must have a streaming application, an analysis of the different

protocols that must to be used to develop the application, the server and the client

necessary to transmit and receive audio in real time and a study of several real scenarios

analyzing the main problems that can come up and how to solve it. In Figure 1.1 it is

shown a scheme of the scenario simulated in this project.

Finally, the report is structured following the next guideline:

Figure 1.1: Audio Streaming application scheme

Firstly, in Chapter 2 is described a briefly description about the device where is added

the application, as well as, it main features and operative system. Next, in Chapter

3, it is studied the structured that must follow an application to transmit file in real

time, analyzing all the Internet protocols available to carry out the functionalities of the

different layers. Finally, it is explained what protocols are the most suitable for the aim

of the project and the decision taken.

In Chapter 4, it is explained the real-time server and client developed. It is described the

different modules that make up the application as well as the different functionalities of

each one. Once it is developed the application, it is necessary to explain some acoustics

problems that can come up. So in Chapter 5 and 6 it is explained the main acoustic

problem that can appear in the project scenario and it is described the test done to

Chapter 1. Introduction 3

confirm the effect over the audio perception of the file, respectively.

Then, in Chapter 7 it is analyzed three different real scenarios and the main prob-

lems that come up. Moreover, it is discussed how to solved the problems studied in the

different scenarios. Finally, in the conclusions, it is discussed the main points as well as

the problems that are appear during the achievement of the project. Finally, in Chapter

9 and 10, it is described the future works that are needed to improve the application

and the timing diagram of the project, respectively.

Chapter 2

DEVELOPMENT

ENVIRONMENT

This chapter presents the specifications of the device used to develop the real scenario

of the application. Moreover is explained briefly a description about the platform that

use these type of devices and the operative system over which the implementation is

executed. Is important to know the different platforms used to chose correctly the

programming language as well as the libraries that will be used.

2.1 Nokia N810

Nokia N810 has been designed to allow the user access to all Internet application like a

PC but with a small and portable device.

The device provides a quality Internet connection as well as an integrated GPS, a QW-

ERTY keyboard and a wide range of protocols that allow the user send e-mails, make

Internet calls (like skype), instant messaging and playback a lot of types of video and

audio files, between others.

In the next table, some of the main technical features of the tablet is shown.

4

Chapter 2. Development Environment 5

N810 Specifications

Processor: TI OMAP 2420, 400Mhz

Memory:
DDR RAM 128MB

Flash 256MB

Connectivity:

WLAN standard: IEEE 802.11 b/g

Bluetooth specification v.2.0

USB high speed for PC connectivity

3.5 mm stereo headphone plug (Nokia AV Connector)

Web Browsing:

Browser based on Mozilla technology with state-of-the-art
web standard support including AJAX

Full desktop Adobe Flash 9 plug-in, including video and
audio streaming

Media:

In-built media player for viewing and listening to down-
loaded, transfered or streamed media content and easy-on-
device management of media library

Direct access to shared media over Universal Plug and Play
(UPnP)

Supported video formats: 3GP, AVI, WMV, MP4, H263,
H.264, MPEG-1, MPEG-4, RV (RealVideo)

Supported audio formats: MP3, WMA, AAC, AMR, AWB,
M4A, MP2, RA (RealAudio), WAV

Supported playlist formats: M3U, PLS, ASX, WAX, WVX,
WPL

E-mail:

Browser access to familiar webmail services

Get an easy start to desktop email with pre-configured email
services

E-mail application for personal e-mail usage with IMAP,
STMP, and POP3 support

Table 2.1: N810 Specifications [1]

2.2 Maemo

Maemo is a platform implemented by Nokia, in collaboration with several open source

projects, developed to run on mobile devices such as smartphones and Internet Tablets.

The platform uses open source code based on a Linux kernel and the Debian distribution

package management.

In Figure 2.1 the key components of a Maemo platform can be seen.

• Linux kernel: the kernel of the platform is based on a Linux system. It provides

support for the hardware system like memory, CPU and I/O devices.

Chapter 2. Development Environment 6

Figure 2.1: Maemo Structure [2]

• System libraries: It is based on the standard GNU C library.

• Debian Package Management: It uses all the main features, such as the file

system hierarchy and the design policies, about package management from Debian

distribution.

• System Services: The D-Bus system is the method used to do the communica-

tions between desktop applications which are running simultaneously, furthermore

it also provides the channel for the communication between the desktop session

and the operating system.

• Maemo launcher: It is the responsible for launching all applications. It is com-

posed of two parts: the Maemo-invoker, which is the responsible to execute the

script to start the service, and the Maemo-launcher, which is a server that initialize

the applications’ data.

• Hildon UI Framework: Is responsible for providing finger interface. It consist

on a set of GTK extensions that provide functionalities for the mobile devices and

also provides the desktop environment.

2.3 Linux

Linux is an operative system from free distribution, developed by Linus Torvalds. The

system is formed by the system kernel plus a large number of programs and libraries.

Linux is distributed under the GNU General Public License, it means that the source

Chapter 2. Development Environment 7

code must be always available and it can be freely distributed, copied and modified.

There are a lot of programming languages available to develop in Linux, the main is

C/C++ but it is also possible to used Java, Objective-C, Pascal, LISP, BASIC, Perl,

between others.

Next, some of the main features of a Linux system is listed:

• Multitasking: Is the ability to execute several programs at the same time.

• Multi user: A lot of users using the same machine in the same time.

• Multi-platform: It can be used in different platform such as 386-, 486-, Pentium,

Pentium Pro, Pentium II, Amiga and Atari it is also version to used in other

platforms like Alpha, ARM, MIPS, Power PC and SPARC.

• Multiprocessor: Supports system with more than one processor.

• Memory protection between process, it means that one of these process can not

fail the system.

• Multiple virtual console.

• CD-ROM files system that read all the CD-ROM standard formats.

• TCP/IP, including ftp, telnet, NFS, etc.

• Several network protocols included in the kernel: TCP, Ipv4, Ipv6.

Chapter 3

AUDIO STREAMING

This chapter explains a briefly description about what is audio streaming and the gen-

eral architecture that should have a system which the main purpose is to transmit

multimedia content, audio or video, in real time. It is described the different protocols

and audio codecs that it can be used to transmit and encode the audio files, respectively.

Finally, the conclusions section explains the protocols and audio codec chosen and why

they are more appropriate for the aim of the project.

3.1 Audio Streaming Definition

Audio streaming is a method of delivering audio directly from the source to the player

in real-time, that means that data is transmitted at the same rate as it is consumed.

This is a continuous process, with no intermediate storage of the media.

There are two types of streaming files, live or on demand. Live streams are also called

true streaming and consist of start the transmission without any request by the clients.

When the client make a request to the server, he has to connect to this transmission and

receive the information that is transmitted at that moment. In this type of streaming

clients can not interact with the multimedia contents, the only action allowed is pause

the content. On the other hand, on demand streaming or progressive streaming, the

client requests the multimedia content that is wanted in each moment and the server

8

Chapter 3. Audio Streaming 9

sends a specifically information for each client. In this case, the client can control and

interact with the multimedia content since the information is found previously stored in

the hard disk of the server.

Downloading vs Streaming

Downloading consist of saving the content in a server and providing users with the

content. The user downloads the file to the local hard disk, and then playback the con-

tent.

The main drawback to downloading the files is the need to copy the entire files in

the computer before play the content, it has an effect on the users’ resources since they

consume time and disk space. This problem is due to that the user has to wait until the

whole file download is complete before playing the file. Furthermore, downloading does

not make efficient use of bandwidth in comparison with streaming technology, since all

the bandwidth’s resources available are used to transfer the data as soon as possible.

Conversely, the bandwidth use for the streaming is more efficient than downloading,

since the speed of the transmission only depends on the bitrate of the client. Further-

more, since the audio file is not stored in the local disk it does not consume disk space

in the user device. On the other hand, streaming needs a buffer to store some data since

during the connection it could be some problems like delay or gaps in the stream.

3.2 Streaming Architecture

There are four components to a streaming architecture [3] :

• Capture and encoding: take the raw audio and video from the microphone and

camera and process them into a compressed computer file.

• Serving: the encoded file is uploaded to a server for delivery out to the network.

A streaming server is more than just a fancy file server, it controls in real-time the

stream delivery.

Chapter 3. Audio Streaming 10

• Distribution and delivery: the distribution channel connects the server to the

player.

• Media player: receives the stream and decompresses back to regular audio and

video, where it can be displayed on the device.

Figure 3.1: Streaming Architecture

3.2.1 Encoding Audio

The audio compression consist of a reduction of the quantity information, specifically in

reduce the size of the audio files. The main aim is to transport the same information,

but reducing the storage size of the audio files and the transmission bandwidth required.

As it is said before, the main aim is to reduce the file size, trying that this reduc-

tion does not affect the quality of the content. However, the compression can affect to

the quality of the file, depending on the desired quality it is possible to chose between

two different audio compression methods:

• Lossless audio compression: this method compresses the information so that the

data before and after being compressed are exactly the same. In this case, a

higher compression only implies a higher processing time. The bit rate is this type

of compression is always variable and the main uses of this technique is in the text

file compression.

• Lossy audio compression: Unlike the lossless method the lossy audio compres-

sion consist of removing data that the human is not able to hear, to reduce the

Chapter 3. Audio Streaming 11

size of the file. With this type of methods when the compression is done, it is

impossible to obtain the original signal. In the lossy audio compression the bit

rate can be constant or variable. It is mainly used in video and audio compression.

One of the main features of lossy audio codecs is the bit rate, it is used for mea-

suring the quality of the file that is coded. When a high bit rate is used it means

that less information has been discarded.

Next, it has been listed and described the different audio codecs that are supported by

the device.

• MPEG-1: MPEG is the acronym of Moving Picture Expert Group and it is a

group of persons who are part of the International Organization for Standardiza-

tion (ISO) to design standards for digital video and audio compression. MPEG-1

is standard responsible of coding the video and audio for the digital storage envi-

ronment down to 1,5 Mbits/s.

The method used to compress the audio is based on the psychoacoustics prin-

ciples, basically in the auditory masking 1 and simultaneous masking 2. This

procedure is based on removing the irrelevant parts, like the redundant sound,

of the audio. This is possible since the parts of the sound that are inaudible for

the human auditory it can be removed without any degradation for the human

perception. The main features of MPEG-1 are:

– The audio sampling rate can be 32, 44.1, or 48 kHz.

– The compressed bit stream can support one or two audio channels.

– The compressed bit stream can have one of several predefined fixed bit rates

ranging from 32 to 224 kbits/s per channel. Depending on the audio sampling

rate, this translates to compression factors ranging from 2.7 to 24. MPEG/au-

dio offers a choice of three independent layers of compression:

∗ Layer I is the simplest and is best suited for bit rates above 128 kbits/s

per channel.

1Auditory masking occurs when the perception of one sound is affected by the presence of another
sound [4]

2Simultaneous masking is when a sound is made inaudible by a “masker”, a noise of unwanted sound
of the same duration as the original sound [5]

Chapter 3. Audio Streaming 12

∗ Layer II has an intermediate complexity and is targeted for bit rates

around 128 kbits/s per channel.

∗ Layer III is the most complex but offers the best audio quality, particu-

larly for bit rates around 64 kbits/s per channel.

The features list above have been obtained from ”A Tutorial on MPEG/Audio

Compression” [6].

Next, it is listed the two audio codecs from MPEG standard that are supported

by the device.

– MP2 (MPEG-1 Audio Layer 2): The compression in MP2 takes place in the

time domain using a low-delay 32 sub-band polyphased filter bank achieving

overlapping ranges to prevent the aliasing.

The higher quality is achieve at bit rates of 256 kbits/s, although at 64 kbit-

s/s is also acceptable. The main applications for this type of compression is

in the audio broadcast, professional recordings and multimedia.

– MP3 (MPEG-1 Audio Layer 3): MPEG-1 layer 3 (MP3) uses a more so-

phisticated hybrid filter bank with a modified DCT following each polyphase

filter [3].

The quality of the audio file depends on the compress ratio; the standard

for an acceptable quality is 128 kbits/s, that is the bit rate used in Inter-

net. The use of this type of codec in Internet is very common due to its

combination of high quality and high compression ratio.

Bit rate range (Kbit/s) Target bit rate (Kbit/s) Typical compression ratio

Layer 1 32-448 192 (mono) 1:4
Layer 2 32-484 128 (mono) 1:6 to 1:8
Layer 3 32-448 64 (mono) 1:10 to 1:12

128 (stereo)

Table 3.1: Summary of MPEG-1 audio [3]

• AAC: Advanced Audio Coding is a audio compression format developed by the

Fraunhofer Institute with AT& T, Nokia, Sony and Dolby. Like the MP3 format,

AAC used lossy audio compression, removing some audio data to achieve a higher

Chapter 3. Audio Streaming 13

level compression without changing the output perception of the audio.

AAC uses variable bit rate, adapting the number of bits depending on the com-

plexity of the audio transmission in a specifics instant. The algorithm used has a

higher performance than the MP3, achieving higher quality in smallest files and

requiring less system resources to code and decode the files. Moreover, AAC allows

polyphonic sounds with a 48 channels and sample frequencies between 8 Hz and

96 kHz.

• WMA (Windows Media Audio): is an lossy audio compression format al-

though recently it has been developed like a lossless audio compression. Is the

version of Windows to compress audio, and it allows to reduce the size of big

files apart from adapt the codec to different connection speeds in case that it is

necessary to reproduce in real time over Internet.

• WAV:Waveform Audio Format is an lossless audio compression that is used to

store audio file in the PC with the operative system windows.

It is able to support almost all the audio codec, but it is used mainly with PCM

(Pulse code Modulation). To obtain a CD quality it is needed record sound at

44100 Hz and with 16 bit, and for each minute of recording consumes 10 Mbytes

of hard disc. Its main limitation is that it is only allows record files of 4 GB that

are approximately 6 hours and a half in CD quality.

It is not used to share music by Internet since it does not reduce a lot the size of

the file.

• AMR (Adaptive Multi-Rate): is an audio compression format developed for

the voice codification. In October 1998 AMR was chosen like the audio method

compression for the 3GPP (3rd Generation Partnership Project) and now is the

most used in GSM.

This format is been developed to compress voice, so it is not able to achieve good

result compressing audio files like music.

Chapter 3. Audio Streaming 14

• Real Audio: Real Audio is an audio format developed by the Real Network com-

pany, which use a variety of audio codecs that provide a high compression rate

and reduce considerably the size of the audio or video file.

The Real Audio format allows to adapt the reception capacity of the client depend-

ing on the connection speed to Internet. If the user can receive audio packages

with a high quality without interruptions, it will send the audio with this speed, in

case of a low speed connection the codec decrease the sample frequency to adapt

the compression to the reception capacity, in this case the audio quality will be

worst.

3.2.2 Serving

As it can be explained before, a streaming server is a server that send files to a device

and this files can be reproduce in real-time, in other words, the client does not have to

wait for download the file completely. Due to this reason, the streaming server must

have several additional functions over a standard web server:

• Real-time flow control.

• Intelligent stream switching.

• Interactive clip navigation.

Taking into account that HTTP does not support any of this new functionality, it must

be developed new protocols for streaming media:

• Real-Time Streaming Protocol (RTSP), is an application-level protocol that

simplifies the distribution of multimedia content in Internet. It was designed to

controls the data delivery in real time properties. RTSP is a connection-less proto-

col, instead of this the server maintain a session assigning an identification session

number, almost in all the cases RTSP uses TCP to control the data and UDP to

transmit the audio and video data, although it is possible to use TCP to transmit

the data. During a RTSP session, a client can open and close several transport

connections between the server if it is needed.

Chapter 3. Audio Streaming 15

Due to RTSP is an application layer protocol, it was designed to be compati-

ble with HTTP providing a similar syntax and operation and being able add some

extension mechanisms from HTTP.

Nevertheless there are some differences between the two protocols [7]:

– RTSP introduces a number of new methods and has a different protocol iden-

tifier.

– An RTSP server needs to maintain state by default in almost all cases, as

opposed to the stateless nature of HTTP.

– Both an RTSP server and client can issue requests.

• Real-Time Protocol (RTP), the main aim of RTP protocol is to provide an

uniform environment over the transport protocols to deliver data, like audio and

video, that have to be transmitted in real time. The main function is to implement

the sequence numbers of the packages to reconstruct the information in the client.

The main three functions of RTP are:

– Identify the type of the transmitted information.

– Add temporal marker and sequence number into the transmitted information.

– Controls the packets in the destination.

• Real-Time Control Protocol (RTCP), is the protocol that is used to control

the RTP flow, it allows to transmit fundamental information about the different

participants and the quality of the service. Its functionality is based on periodic

control package transmission.

RTCP performs four functions[8]:

1. The primary function is to provide feedback on the quality of the data dis-

tribution.

2. RTCP carries a persistent transport-level identifier for an RTP source called

the canonical name or CNAME.

Chapter 3. Audio Streaming 16

3. The first two functions require that all participants send RTCP packets, there-

fore the rate must be controlled in order for RTP to scale up to a large number

of participants. By having each participant send its control packets to all the

others, each can independently observe the number of participants. This

number is used to calculate the rate at which the packets are sent.

4. A fourth, optional function is to convey minimal session control information,

for example participant identification to be displayed in the user interface.

This is most likely to be useful in ”loosely controlled” sessions where partici-

pants enter and leave without membership control or parameter negotiation.

3.2.3 Distribution And Delivery

The main functionality of the transport layer is to provide the communication between

two applications, it means that this layer is the responsible of controlling the data flow

between devices. Depending on the type of network and their requirements it will choose

TCP or UDP. TCP is an oriented-protocol connection and guarantee the delivery of the

packages in the destination. Conversely, UDP is an unreliable no oriented-connection

protocol.

1. TCP protocol

The Transmission Control Protocol (TCP) is a connection-oriented protocol, it

means that two devices connected between them can control the state of the trans-

mission. The use of this type of protocols allows the applications to be able to have

a reliable connection independently of the lower layers. During a TCP connection

the devices must to establish a connection where will take place the bidirectional

connection. Other of the main functions of the TCP protocol is the capability to

controls the speed of the data using its capacity of transmit messages with variable

size.

TCP provides five key services to higher-layer applications[9]:

• Virtual circuits: virtual circuit provides the reliability, flow control, and I/O

management features that distinguish it from UDP.

Chapter 3. Audio Streaming 17

• Application I/O management: TCP provides an I/O buffer for applications

to use, allowing them to send and receive data as contiguous streams.

• Network I/O management: TCP has to provide network I/O management

services to IP, building segments that can travel efficiently over the IP net-

work, and turning individual segments back into a data-stream appropriate

for the applications.

• Flow control: TCP must be able to deal with variations in the send and

receive data rate for the different hosts. Furthermore, it has to do all of this

seamlessly, without any action being required from the applications in use.

• Reliability: TCP provides a reliable transport services by monitoring the data

that it sends.

2. UDP protocol

UDP is defined in RFC 768, which states that UDP is a stateless, unreliable trans-

port protocol that does not guarantee delivery. Thus, UDP is meant to provide a

low-overhead transport for applications to use when they do not need guarantee

delivery[9].

In addition, there are some applications that can not use a TCP connection, since

TCP requires a virtual end-to-end circuit, in some applications like streaming or

the DNS services is more important the fast reception of the data instead of the

verification of data.

3.3 Project Specifications

Finally, and after evaluated the possibilities it has been decided the next specifications

for the project implementation.

The connection between devices will be done through a WI-FI connection. Specifi-

cally it will be used the IEEE 802.11 g standard which works in the 2.4 GHz band and

provides a maximum bit rate of 54 Mbits/s and about a 22 Mbit/s of average throughput.

Chapter 3. Audio Streaming 18

Due to that the connection must be multicast and in real-time it has been decided

to used the UDP transport protocol, since it provides a connection without do a previ-

ous reserve of bandwidth. Also in case of packet loss it does not send the packet other

time, that in case of audio streaming is the best solution since the loss of one packet

it is not perceptible for the human ear. In addition, in a real-time‘s download it is not

allowed to stop the transmission to send a packet that it is lost.

For the application layer, it will be used the Real-Time Streaming Protocol since it

allow us to delivery data in real-time as well as an interactive control of the playback

(play, pause, etc.) over the RTP protocol used to encapsulated the data that must to

be transmitted in a UDP socket.

Moreover, it is important decided what audio compressor will be used to code and

decode the audio file. In point 2.2.1 it has been analyzed all the audio codecs formats

that supports the device. The best audio format for this type of application is the Real

Audio format which has been develop to transmit over Internet in real time, neverthe-

less due to that this format is proprietary and it is a container not a codec it has been

decided to used as codec the Advanced Audio Coding (AAC) that is the codec used in

Real Audio 9 and 10 and is supported in almost all the libraries since it is a MPEG

standard.

Chapter 3. Audio Streaming 19

Figure 3.2: Project Specifications

Chapter 4

IMPLEMENTATION

In this chapter it is explained the implementation of the server and client that it has

been developed to transmitted audio between different devices. The programming lan-

guage chosen to implement it is C, and it is used the Gstreamer library to do all the

procedures that it is necessary to transmit audio in real time.

Moreover, it is included the flow diagram and the pipeline diagram that show, in a

visual way, all the steps carried out to achieve the aim of the project that is to transmit

audio.

4.1 Audio Streaming Server

The main aim of this project is to be able to transmit an audio file in real time. To

do that it has been divided the aim in two parts: the first one consist on adapt the

audio files that have the people in a mobile device, in this case in an Internet Tablet,

to be suitable for transmit it in real time. The second part is based on encapsulated

the data correctly and open all the connections necessary to transmit it over the network.

As it has been explained before, the library used to do the server is Gstreamer, that

provides a great number of high-level components to carry out the implementation in a

simple and intuitive way.

20

Chapter 4. Implementation 21

In the first part it have been created all the elements that is needed to transform the

mp3 data, considering that almost all the audio files that have the people nowadays are

mp3, to aac data, that is the codec chose to carry out the transmission. To do this it is

necessary to create a pipeline, which is the container where it is stored all the elements

and where takes place the execution of them. The elements necessary to transform the

mp3 data to aac data are: file source, mp3 decode, audio convert, aac encoder and

RTP payload. An element is like a black box where there are an input and an output

and between them the data are transformed. Next it is listed the functionality of the

different elements:

• FILE SOURCE: The file source only generate data, it is the element that reads

the audio file and creates a data buffer that it is used in the pipeline.

• MP3 DECODE: The mp3 decode is the responsible for decode the mp3 data.

• AUDIO CONVERTER: This element is the responsible for adapt the data to

encode into aac format.

• AAC ENCODER: The aac encoder, encodes the output data of the audio converter

into aac audio data.

• RTP PAYLOAD: Finally this element is the responsible for encapsulate the data

into a RTP package.The container used to encapsulate the aac file is MP4, that is

the audio container for this type of audio codecs. Specifically, it is used an element

that payload MPEG-4 elementary streams as RTP packets according with the RFC

3640 [10]. This specification defines a payload structure to transport MPEG-4

streams, focused on audio and video streams.

In Figure 4.1, it is shown the flow diagram of the first part of the program where it

can be seen how, as the different elements are created, pass through the error control to

check that it has been created correctly and then are added into the pipeline.

The aim of the second part of the program is to create all the elements needed to trans-

mit the data and link all the elements into the pipeline to make sure that the data flow

through all the elements.

Firstly, it is necessary to create an RTP bin that consist on an element that allows

Chapter 4. Implementation 22

Figure 4.1: Flow diagram audio streaming server: Part 1

to combine different linked elements into only one logical element. This type of element

is needed to link the data encapsulated in the RTP package with the UDP element.

Then it is necessary to create a multicast UDP sink that is the element that allow trans-

mit the RTP package over the network. With the multicast UDP sink is possible to

transmit the data for the same port number to several devices, to do that it is needed to

define pairs of host:port in the connection configure. The UDP protocol uses a numerical

identifier to allow the end-to-end communication between hosts, the numerical identifier

is known as a port number. A port number is a 16-bits unsigned integer, and its values

can range from 0 to 65535. The ports between 1 to 1023 are well-known ports and they

are assigned by the IANA (Internet Assigned Numbers Authority), the ports between

1024 to 49151 are registered ports and they are assigned to a certain use and the ports

between 49152 to 65535 are dynamic and/or private ports that are the ports available

to use by an application.

Once the elements are created and configured, it is needed to link all the elements.

It is important to link all the elements to be able to transport the data through the

different elements in the pipeline. The last step, consist on create the sink pad to send

Chapter 4. Implementation 23

the data over the network and set up the pipeline. It is necessary to set up the pipeline

since one element can not perform any action until the state of the element change.

There are four different state: null, ready, paused and playing [11]:

• GST STATE NULL: this is the default state. This state will deallocate all re-

sources held by the element.

• GST STATE READY: in the ready state, an element assign all the resources that

it needs.

• GST STATE PAUSED: when an element is in the paused state it has opened the

stream but it does not execute.

• GST STATE PLAYING: in this state the stream is opened and it is processing.

In Figure 4.2 it is shown the flow diagram of the second part of the server.

Figure 4.2: Flow diagram audio streaming server: Part 2

Chapter 4. Implementation 24

Next, in Figure 4.3 it is shown the pipeline diagram, where it can see the different

elements that are used to implement it. It is important to chosen the port number

correctly, according the RFC 3550 [12] for UDP protocol the RTP should use an even

destination port number and the corresponding RTCP stream should use the next higher

odd destination port number. As it can see in the figure the port used to transmit the

data is 55555 and the port used to transmit the control package is 55556.

Moreover, there are two elements which are not explained before, the RTCP sink and

source. The RTCP is based on the transmission of control packages to all the users, in-

forming of the data quality distributed by the source. The RTCP sink is the responsible

to send the information about the source to the client and the RTCP source is in charge

of reception of RTCP packages sent by the client. These elements will be useful in the

network synchronization.

C
h
ap

ter
4.

Im
p
lem

en
ta

tio
n

25

Figure 4.3: Server pipeline diagram

Chapter 4. Implementation 26

4.2 Audio Streaming Client

In the part of the client the method used to received the data and playback it is the

same. It is defined a pipeline where it has added all the elements necessary to play the

audio file. In this case, the UDP element is the first to be created, as it is needed an

element able to receive data. It has been created a source UDP element, this type of

element only generate data to used in the pipeline. For the UDP source it is needed to

define the port number and the capabilities, which are the type of data that it is trans-

mitted over the network. Then, it is needed a RTP bin, as in the server this element is

the responsible for link the UDP element and the RTP package. In Figure 4.4 , it can

see the flow diagram of the first part of the client.

Figure 4.4: Flow diagram audio streaming client: Part 1

Once, the client is configured to received the data, it is needed to create the elements

that deal with transform the data into data available to reproduce in an audio player.

To do that, it is needed an element responsible for depayload the data. On the other

hand, and as the data sent are encode in aac it is needed an element that decode the

aac data.

After decode the data it is needed to resample the raw audio in the best sample rate to

enhance quality before play it in the audio player. Finally, it is used the auto audio sink

Chapter 4. Implementation 27

element that detects the best audio sink to use. Thus, is the element the responsible for

search between all the elements that have “sink” and “audio” in the class field of the

element information and chose the best one.

Finally, it is needed to add all the elements into the pipeline, created the sink pad

needed to received the data, link all the elements and activated the pipeline changing

the state from NULL to PLAYING, as it has been explained in the server. Figure 4.5

shown the second part of the flow diagram.

Figure 4.5: Flow diagram audio streaming client: Part 2

In Figure 4.6 it is shown the client pipeline diagram. It can see how the UDP port

number to receive the data is the same as the port number in the server, and also there

are two elements for the RTCP packets one for receive and other to send control data.

The element to depayload the data is also based on RFC 3640.

C
h
ap

ter
4.

Im
p
lem

en
ta

tio
n

28

Figure 4.6: Client pipeline diagram

Chapter 5

ACOUSTICS PROPERTIES

The main aim of this project is to transmit audio in real time, but during the transmission

can appear some problems related with the acoustics properties since in the environment

where the project is developed, there are several users involve who their audio perception

take an important role in the quality of the application. The aim of this chapter is to

investigated about what are the sound properties and the problems that appear when

it is needed play audio in a mobile device, such as the distance between several devices.

5.1 The Sound

The sound is an audible wave which consist an oscillation of pressure that are turned,

by the human ear, into mechanic waves that are perceived by the brain. The sound

propagation involves energy transport without matter transport using mechanic waves

that are propagated through the solid, liquid and gaseous matter.

It can be describe some qualities about the sound:

• Pitch: is determined by the fundamental frequency of the sound waves. It allows

to distinguish between low, high and medium sounds. The human ear is able to

perceive the sounds of which their frequency are between 20 Hz and 20 kHz.

• Intensity: is the quantity of acoustic energy that contain the sound. The inten-

sity is determined by the power which depends of the amplitude and it allows to

29

Chapter 5. Acoustics Properties 30

distinguish if the sound is strong or faint. The auditory threshold is 0 dB and the

pain threshold is 140 dB.

• Duration: is the time that pass between the moment that start the sound until it

stops. It determines the vibration time of an object.

• Timbre: is the quality that assign to the sound the harmonics that go with the

fundamental frequency. This quality allows to distinguish between two sounds.

• Source: it determines where is the origin of the source.

5.1.1 The Source Quality And The Haas Effect

If two sounds are joined only in one, the localization of the sound depends of the location

of the first sound that arrives. This is called ’The Precedence Effect’ or ’The Haas Effect’.

The Haas Effect was described by the German doctor Helmut Haas and explain how the

sound affects to the human perception.

The Haas Effect describe how if the human ear are hearing several independent sounds,

the ear and the brain have the ability to gather all reflections arriving within about 50

ms after the direct sound and combine them to give the impression that all this sound is

from the direction of the original source [13]. This effect is due to that the brain stops

to perceive the direction and interpret the later sounds like a echo or reverberation of

the first sound.

However, in order to the brain understand the origin of the sound in the middle of

the two sounds, during the delay interval between 5 ms and 35 ms the second sound

must have, more or less, an amplitude of 10 dB higher than the first.

To illustrated this effect it is created the ’Haas curve’ that shows the intensity, expressed

in dB, necessary to obtain an equivalent delay (expressed in milliseconds) between two

sounds. In Figure 5.1 it is shown the ’Haas curve’ and how in an interval between 5 ms

and 35 ms it is needed more or less an amplitude of 10 dB higher to understand the two

sounds like one.

Chapter 5. Acoustics Properties 31

Figure 5.1: Haas Curve [14]

5.1.2 Speed Of Sound

To know the equivalent among the delay and the distance between two sounds it is

needed to know some relation between distance and time as the sound propagation

speed. The speed of the sound changes according to the environment since it depends

on the properties through of which the wave is traveling. In solids, the propagation

depends on the stiffness to tensile stress, and the density of the medium. In fluids, the

more important factors are the compressibility of the medium and the density. And in

gases, the main properties that it is needed to take into account when calculated the

speed of sound are the compressibility and the density of the gas, properties such as the

temperature and the molecular composition are very important.

Next, it is shown the relation between distance and time in air, that is the environ-

ment where the sound is propagated in the project:

V =

√

γ × R × T

M
(5.1)

Where the typical values for a standard atmosphere to the sea level are:

γ= Adiabatic constant = 1.4 in the air

R = Gas constant = 8.31 JK−1mole−1

T = Temperature in Kelvins

M = Molecular weight = 2.87 ×10−2Kgmole−1

Chapter 5. Acoustics Properties 32

Therefore, the sound speed in the air according to the temperature in kelvin is:

V = 20.1 ×
√

T (5.2)

Finally, if it is considered an ambient temperature of 20 ◦C it is obtain that the sound,

in the air, is propagated with a speed of 344 m/s.

V = 20.1 ×
√

T = 20.1 ×
√

(273 ◦K + T◦C) = {T = 20 ◦C} =⇒ V = 344m/s (5.3)

Chapter 6

HAAS EFFECT TEST

The following chapter analyzed experimentally the Haas effect studied in Chapter 5.

The aim is to obtain the maximum distance allowed between devices that are playing

audio for the tablets PC used in this project. In the different sections is explained the

test that has been performed, the protocol that is carried out to do the test, the results

obtained and finally it is analyzed and discussed the result according to the theoretical

solutions.

6.1 Abstract

Chapter 5 explains the big role of acoustics properties in the audio streaming. Specif-

ically, there are two main parameters that influences the perception of the sound: the

Haas effect, an the delay introduced by the network.

This test studies the effect in the perception of the playback audio due to the dis-

tance between two different sound sources (Haas Effect). In order to achieve the test

it has been studied the sound perception of a group of persons based on the distance

between sources or more specifically depending on the delay between the sound signals.

33

Chapter 6. Haas Effect Test 34

6.2 Test Description And Specifications

The test consist on two different devices, one of them working like server and client and

the other device working only as client. As it is said before, the main aim of this test

is to analyze the human perception when they are hearing two identical sounds from

different sources, taking into account the delay between the sounds. However, due to

that the synchronization is not developed, it is decided no to do the audio streaming

and playback the audio file with the Mplayer. In this way, it is possible to reproduce

the signals at the same time. Figure 6.1 shows the initial scenario, considering that the

worst case is when one individual have the device in his hand and the other individual

is moving away progressively.

Figure 6.1: Test Scenario

As it is explained in Section 5.1.1, the maximum delay tolerable for the human ear to

consider that a sound is an echo of the close sound is 50 ms, from this value the human

perception is able to distinguish between the origin of the sound and start to hear two

sounds delayed. In Figure 6.1 it is shown the scenario of the test, considering 20 ◦C of

temperature since the test has been done inside of a building. To evaluated the per-

ception it has been defined five different intervals, spaced between them 4 m that are

equivalent to 11.63 ms and evaluating a maximum distance of 20 m or 58.15 ms of delay.

The maximum distance has been decided taking into account that 50 ms correspond to

17.2 m.

Other parameter to take into account in the test is the outcome of the different in-

dividuals. During the test, in each interval, the individual is going to be asked about

their perception of the audio file. In the next table it is described the three different

Chapter 6. Haas Effect Test 35

outcome that is analyzed.

OUTCOME DESCRIPTION

1 Device The individual only hear one sound and their brain interprets the
delayed sound like a echo

2 Devices The individual hear two sounds differentiated

Almost 2 devices The individual hear one main sound but start to hear another
sound coming from second source

Table 6.1: Outcomes of the test

Moreover, it is needed to decide the audio file that must be played and the duration of

it, in this case it is chosen the Sleep Away audio file written by Bob Acri, and it has

been defined a playback duration of 20 s. Also, it has been defined that the volume of

the devices must be always the maximum volume. Finally, it has been decided to carry

out the test in a room due to weather conditions, being conscious that in a room there

are echo and reverberation problems.

6.3 Test Protocol Definition

In this part of the chapter it has been explained the procedure that it has been carried

out during the test. It is important to define step by step all the process to do not forget

anything and to realize the test in the most rigorous way as possible.

1. Define the reference point, this location is considering the initial point and all the

distances must be calculated from this point.

2. Locate the two individuals and start the test with the first interval.

3. Move the second individual towards the second interval and start the test again.

4. Repeat the point 3 again until do the test in the 5 intervals.

6.4 Results

In Figure 6.2 it is shown the result obtained in the test. It has been studied twelve

different individuals.

Chapter 6. Haas Effect Test 36

In the bar diagram can see the results obtained during the test, in the X-axis it is

shown the five intervals evaluated and the Y-axis represents the number of individuals

that respond each outcome, in total there are twelve individuals for each group of three

bars.

The results obtained in the test are:

• For a distance of 4 meters, all the study group perceive only one device.

• In 8 meter the 75 % perceive one device but there are some individuals that start

to perceive some echo.

• In 12 meters almost all the study group perceive a slight echo, but still their

perception of the sound is satisfactory.

• In 16 meters the 75 % perceive two sound with different origin.

• Finally, in 20 meters, all the individuals hear two sounds and perceive an asyn-

chronism between devices.

6.5 Discussion And Conclusions

As it has been discussed during this chapter and in Chapter 5, the Haas effect determines

which are the maximum distance that is possible to cover since from a certain threshold

it is impossible to achieve synchronization between devices due to the limitations of the

human hearing. The main purpose of this test has been obtain the maximum distance

allowed to do audio streaming with Nokia N810 as devices. Thus, if the user is inside

the allowed zone, the synchronization problem is due to for the network and not for

limitations of the human hear.

Once, analyzed the data obtained in the test it can be said that the results are more or

less the expected result. It has to take into account that the this test is a subjective test

and measure the perception of the human that it is different for each one, also it has

to take into account other parameters like hearing ability, the place where it has been

Chapter 6. Haas Effect Test 37

Figure 6.2: Test results

done the test, the devices power, between others.

Finally, it can been said that the maximum distance allowed, in this project, between

devices where it is possible to controls the synchronization is 12 meters, more far of this

distance the synchronization algorithm is useless due to the limitations in the hearing.

Chapter 7

REAL SCENARIOS

In this chapter it is described and analyzed three different real scenarios and the prob-

lems that it can come up. It has discussed about the two main problems that appears in

a real time application and how they affect in the different scenarios. With this chapter

the main idea is to do a briefly overview about the problems that are in real scenarios

when it is needed to transmit multimedia files in real time, not only with the transmis-

sion but with the synchronization.

Firstly, it is done a description about the network synchronization in applications in

real time, how many types of network synchronization there are, and a classification

of the different techniques to solve it. Then, it has been explained the synchronization

problems introduced by some acoustics properties and one possible solution to avoid this

type of problems. Finally, it is described the three different scenarios and the different

problems that can come up.

7.1 Network Synchronization

One of the most important aim when transmit multimedia in real time is the synchro-

nization of the different Logical Data Unit(LDU) that is send over the network. Due to

the temporary dependency between the different LDU it is necessary some techniques

or algorithms to ensure the coordination between devices and the correct order in the

streams when they are reconstructed in the receiver. Taking into account the temporary

38

Chapter 7. Real Scenarios 39

dependency between the different streams is defined three different types of network

synchronization: inter-stream synchronization, intra-stream synchronization and group

synchronization.

The inter-stream synchronization is the simultaneous reproduction between sample of

different streams. This synchronization takes places during the presentation and is

referred to the synchronization between two different streams. The most important ex-

ample of this type of synchronization is the lip-synchronization that is referred to the

simultaneous reproduction of the audio and the lip motion. This type of synchronization

is not important for the aim of the project since the only purpose is transmit audio.

The intra-stream synchronization is the responsible for maintain the correct order be-

tween samples from the same stream. This is more important in audio and video stream-

ing due to the strong temporary restrictions between samples. To solve this type of

synchronization is used two different fields of the RTP protocol, the “sequence number”

and the “timestamp”. The sequence number is used to number the LDU and to order

the audio data into the receiver buffer. The timestamp identifies the sampling instant

for the first byte of the LDU.

Finally the group synchronization appears when there is a multicast connection and

the server send the data to several receivers, in this case it is needed to reproduce the

stream simultaneously in all the devices. Due to the different bitrates a resynchroniza-

tion during the transmission to ensure the correct synchronization between devices is

needed. This point is more important when it is wanted to transmit multimedia data

in real time to more than one device and there are a lot of people working in this type

of simultaneity. This section shows a briefly classification of the main techniques, it can

be found more information about the techniques in [15].

The techniques can be classified into four different categories according to [15]:

1. Basic control techniques: these type of techniques are essential to protect the

temporary restrictions in the architecture.

2. Preventive control techniques: these techniques are used to prevent the asynchrony,

this type of algorithms are used avoid the synchronization problems.

Chapter 7. Real Scenarios 40

3. Reactive control techniques: in case of use this type of techniques it means that

there are some problem. These techniques are used to solved the synchronization

problems.

4. Common control techniques: these techniques can be used in both case. They can

be used to avoid and to solved the synchronization problems.

All of these techniques can be used in the transmitter and in the receiver.

7.2 Acoustics Synchronization

Once solved the problem with the network synchronization there are other problem that

have to be taken into account, the Haas effect. As it is explained in Chapter 5, from a

certain temporary threshold the human brain is incapable to merge two identical sound

of two sources in only one, perceiving the two sound as two sound of different sources.

One possible solution for this problem is to identify the position of the different de-

vices and calculated the time between speakers, thus it is possible to delay the playback

of the user to achieve a difference between sounds no higher than the maximum allowed.

To calculated the location of the different devices some location algorithm can be used.

Nowadays, these type of algorithms are researched due to the great number of applica-

tions that need to know the position of mobile devices in indoor scenarios. The location

algorithms used different sensors like infrared, Bluetooth or Wi-Fi, between others, to

calculate by means of several techniques the position of a mobile device. There are three

main techniques [16]:

• Proximity based: in this technique the position of the mobile device is the position

of the nearest beacon in the environment. In these types of techniques the accuracy

depends on the number of beacons that there are in the environment, more beacons

implies more accuracy.

• Time based: the time based techniques used the signal propagation between the

mobile device and the beacon to calculated the distance and then calculated the

position of the device. To have good accuracy it is needed expensive installations.

Chapter 7. Real Scenarios 41

• Signal strength based: this approach is based on used the received signal strength

index (rssi) that applying several algorithms it is able to determine the location of

the user.

7.3 Scenarios Description

Next it has been explained the three different scenarios, which are the main elements

and which are the main problems that it must to be solved.

• Scenario 1

The first scenario is composed by one server, several speaker and one user. In

this case it has been considered that the users are so close that they can be consid-

ered as only one user, it has been defined as “so close” a difference between users

not more than 1.72 m that is equivalent to 5 ms of delay in the sound between

users. This delay is the maximum that it is accepted in order that a group of

people do not differ in the perception of the sound.

Next, in Figure 7.1 is shown a diagram of the second scenario described.

Figure 7.1: Scenario 1

In this type of scenarios are found both problems, the network synchronization

Chapter 7. Real Scenarios 42

and the problems with the acoustics properties. As it is explained before, there

are three different problems related with network synchronization, inter-stream,

intra-stream and group synchronization, in this case there are intra and group

synchronization problems. The intra-stream synchronization is not a problem us-

ing the RTP protocol since it provides some fields in the header to solved it, the

group synchronization is more complicated and it is required some technique, like

the techniques explained in Section 7.1, to solve it.

In the case of the acoustics properties, it can be use the location algorithms to cal-

culated where are all the speakers respect the user, and decrease the time between

speakers to achieve that all the sounds will arrive with a difference between them

lower than the threshold allowed, that in the project case are 35 ms.

• Scenario 2

The second scenario that is analyzed is composed by one user with one speaker

working as a server and as client and several users, with their respective speaker,

playing the audio. Nowadays, this scenario is impossible since the operative sys-

tem of Nokia N810 is not able to code the data. Nevertheless, it is possible to

simulated it with a PC or with the new version of Maemo. This type of scenario

is a variant of the scenario 1 considering the worst case that is when all the user

has also a speaker.

Figure 7.2 shown a scheme of the scenario number three.

Figure 7.2: Scenario 2

Chapter 7. Real Scenarios 43

As a variant of the scenario 1 this scenario has the same problem with the net-

work synchronization. On the other hand, in this type of scenarios where there

are involve several users it is impossible to solved the Haas effect since the fact to

improve the perception of one user it implies worse perception for other user. The

only solution is to keep a distance between users no higher than the maximum

allowed.

• Scenario 3

Finally, the third scenario consist on one server to transmit the audio, several

users with their respective speaker playing the audio and also a main speaker

playing the audio file. This kind of scenario can take place in a concert, between

others, where the idea is to provide the possibility to play the music that are play-

ing in the loudspeaker in your own device. Figure 7.3 shown the scenario described

previously.

Figure 7.3: Scenario 3

As it is said, currently, the server must be a pc or other device able to encode the

data since the operative system used by the tablet (Maemo Diablo) does not pro-

vide the libraries necessary to do that. Nevertheless, the new version of Maemo

(Maemo Fremantle) provides all the libraries necessary to run the server in the

device.

The main problems that it have to be solved in this scenario are the same that in

the other two scenarios, the network synchronization and the Haas effect. In this

case, as in the scenario 2 it is impossible to solve the Haas effect problems since

there are several users in the scenario.

Chapter 8

CONCLUSIONS

Transmit audio files between several devices (Nokia N810) in real time has been the

main aim of the project during the last three months. The idea has been improve the

features of the Internet Tablet made by Nokia to give more facilities to customers.

Firstly, it was done a study about some features of the device such as the operative

system, the audio codecs supported and the language needed to develop an application.

In this way, it was defined the environment in which the project was going to be devel-

oped.

Once it is known the initial specifications, the next step was study the structure and the

properties that must follow an application that used streaming technology. It was stud-

ied all the parts necessary to carry out the transmission in real time, describing all the

audio encoders supported by the devices as well as the different Internet protocols that

take part in the process. Finally, after evaluated all the possibilities it was decided use

WI-FI connection in the physical layer, UDP as a transport protocol and RTP protocol

to adapt the package to a real-time transmission.

The most important and complex part of the project was develop a server able to

encode audio, encapsulate the data with all headers necessary and transmit the package

over the network. To carry out the server it was decided use the GStreamer library,

which provides us all the elements necessary to develop the server. Moreover, it was

needed implement a client able to receive the packages and process it to the playback.

44

Chapter 8. Conclusions 45

To develop the client it also was used some elements from the GStreamer library.

During the development appeared some difficulties when encode the audio data. First, it

was decided implement an algorithm able to encode mp3 files to aac. The main problem

was the algorithm complexity, so it was decided to used a library that included this

functionalities due to encode data was not the aim of this project. The library used was

Gstreamer, which is supported by the Nokia N810 development platform.

However, after develop the server and the client and during the installation of each

one in the devices, it was detect that the currently version of Maemo do not support all

the library functionalities. Specifically, the version of Maemo in the device is not able

to encode any type of audio data. Due to this reason it was decided to used a PC as a

server to simulated the project scenario.

When the server and the client was developed and the transmission could take place, it

was analyzed the main problems that could come up. There were two main problems:

the delay introduced by the network and an acoustics problems due to the human heard

properties.

The acoustic problem is known as the Hass effect and it was studied by Helmut Haas. To

test this type of acoustic effect it was performed a test to measure the maximum delay

between several devices that the ear human can accept without perceive any distortion

in playback. With this test it was obtained the maximum distance between devices that

the human can accept, further from that distance is impossible that a human hears the

playback from several devices synchronized.

Moreover it was studied the different problems that can appear with the synchronization

of packages sent in real time to several devices. To study these problems it was ana-

lyzed three different real scenarios and what kind of network synchronization problems

appear in each one. Finally, as future works it is propose some techniques to solved the

synchronization problems that appear in the transmission.

Finally,nowadays it was developed a server and a client application able to transmit

Chapter 8. Conclusions 46

audio files in real time and playback the data, respectively, using the Nokia N810 as a

client and a PC or other device with the next version of Maemo as a server.

Chapter 9

FUTURE WORK

The main aim of this chapter is to explain the next step once the transmission of au-

dio information in real time is carried out successfully. This chapter is focused in the

synchronization problem studied in Chapter 7, that comes up when it is transmitted

information in real time to several devices.

Next, it is explained some techniques that have been studied [15] to solved this type

of synchronization problems in similar scenarios and can being implemented in the sce-

nario simulated in this project. As it is explained in Section 7.1, the techniques used to

solved the synchronization problems introduced by the network can be classified in four

different categories: Basic control techniques, Preventive control techniques, Reactive

control techniques and Common control techniques.

9.1 Basic Control Techniques

This type of techniques can be found in the transmitter and in the receiver, depending

on where the techniques are developed it is needed to implement one thing or other, and

the main aim is to maintain the temporary structure. If it is wanted to implement basic

control techniques in the source the more common method is to introduce synchroniza-

tion information, like timestamps or sequence numbers, in the different LDU that have

to be sent. In the case of this project, this type of information are included in the RTP

protocol that has two fields in the header for this purpose.

47

Chapter 9. Future Work 48

On the other hand, it can be created buffers in the receiver to control the synchro-

nization problems. The buffers store the LDU received until its playback, according

with some synchronization information. In this way, it can achieve to reduce the jitter

effect in the network.

9.2 Preventive Control Techniques

This type of techniques are used to prevent problems with the synchronization. In this

case, there are several methods to implement in the transmitter, the more common is to

calculated the initial moment when the LDU must be reproduce and send this informa-

tion to the several receivers before send the data. With this technique is achieved that

all the receivers start the playback at the same time.

In the receiver, the method more used is to remove or insert some LDU in the buffer

to adapt the time of the playback in all the receivers. In some codecs, like MPEG, it is

possible to rule out some LDU less important according to the buffer occupation. Other

technique commonly used to prevent problems with synchronization is to estimate the

delay introduced by the network, if it is possible, and change the hold time in the buffer

according with this time.

9.3 Reactive Control Techniques

In case that the synchronization appears the source can resynchronize the different data

flows adjusting the transmission time. If the source is able to know the synchronization

problem between data flows it can change the transmission period of the LDU. This type

of techniques are more useful when it is needed to synchronize audio and video, in this

project the aim is only to transmit audio so this type of techniques are not profitable

for the purpose of the project.

In the receiver the technique most used to recover the synchronization consist on dis-

card or repeat some LDU. For instance, in the case that a receiver detects that the

Chapter 9. Future Work 49

playback time of a LDU has past there are two solutions: execute the LDU and dis-

card the consecutive LDU received, or discard the LDU directly. On the other hand,

in case of underflow in the buffer, the receiver can reproduce the LDU repeatedly until

receive the next. The main problem of these techniques is the quality, using these type

of techniques, the quality of the playback can be affected. To solved the synchronization

problems without affect the quality of the playback the receiver can reduce or extend the

playback duration of each LDU until recover the synchronization. Reduce the playback

duration implies a faster reproduction and extend the playback consist on decrease the

speed of the playback.

9.4 Common Control Techniques

Finally, there are several techniques that can be used in both cases, to prevent or to solve

problems with the synchronization. One of the method used in both cases consist on

realize “hops” or “pauses” in the transmission, according with the feedback information

sent by the receivers the source can send empty LDU (“hops”) to adapt the transmission

rate and the receiver rate. Moreover, there is a technique known as a Media Scaling

that consist on adapt the transmission depending on the network conditions.

In the receiver the most used consist on adjust the playback rate changing the clock

frequency of the device according to the synchronization received

Chapter 10

GANTT CHART

In this chapter is shown the Gantt Diagram of the project where it can see the different

tasks carried out during the project development as well as a bar chart with the different

steps followed.

In Figure 10.1 is described the main tasks of the project and start and end date of

each task.

Next, Figure 10.2 shows the Gantt chart of the project, which illustrates the project

schedule followed during the last three months. The Gantt chart is a type of bar chart

that illustrate the different steps of the project in a visual way in a temporal axis.

50

Bibliography 51

Figure 10.1: Gantt Task

B
ibliogra

p
h
y

52

Figure 10.2: Gantt Diagram

Bibliography

[1] Nokia Community. Nokia europe - nokia n810 - support, 2009. URL

http://europe.nokia.com/get-support-and-software/product-support/

nokia-n810/specifications.

[2] Maemo Community. Intro: Software platform, 2009. URL http://maemo.org/

intro/platform/.

[3] David Austerberry. The Technology of Video and Audio Streaming, pages 13–38,

99–125, 201–225. 1st edition edition, 2002.

[4] Stanley A. Gelfand. Hearing: An Introduction to Psychological and Physiological

Acoustics. 4th edition edition, 2004.

[5] Brian C.J. Moore. An Introduction to the Psychology of Hearing. 5th edition edition,

2004.

[6] Davis Pan. A tutorial on mpeg/audio compression. Technical report, Motorola Inc.,

1996. URL http://www.digital-audio.net/res/docs/pdf/mpegaud.pdf.

[7] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol (rtsp).

Technical report, Network Working Group, 1998. URL http://www.ietf.org/

rfc/rfc2326.txt.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport protocol

for real-time applications. Technical report, Network Working Group, 2003. URL

http://www.ietf.org/rfc/rfc2326.txt.

[9] Eric A. Hall. Internet core Protocols: The definitive guide. 1st edition edition, 2000.

53

http://europe.nokia.com/get-support-and-software/product-support/nokia-n810/specifications
http://europe.nokia.com/get-support-and-software/product-support/nokia-n810/specifications
http://maemo.org/intro/platform/
http://maemo.org/intro/platform/
http://www.digital-audio.net/res/docs/pdf/mpegaud.pdf
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc2326.txt

Bibliography 54

[10] J. van der Meer, D. Mackie, V. Swaminathan, and D. Signer. Rtp payload format

for transport of mpeg-4 elementary streams. Technical report, Network Working

Group, 2003. URL http://www.ietf.org/rfc/rfc3640.txt.

[11] Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje, and Stefan Kost.

Gstreamer application development manual (0.10.24.3). URL http://gstreamer.

freedesktop.org/data/doc/gstreamer/head/manual/html/index.html.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport protocol

for real-time applications. Technical report, Network Working Group, 2003. URL

http://www.ietf.org/rfc/rfc2326.txt.

[13] F. Alton Everest. The master handbook of acoustics, chapter Chapter 3. The ear

and the perception of sound, pages 33–66. 3rd edition edition, 1994.

[14] Bruel & Kjar. Environmental faq - bruel & kjar, 2009. URL http://www.bksv.

com/Support/FAQ/FAQ56.aspx.

[15] F. Boronat and J.C. Guerri. Análisis y comparación de algoritmos de sincronización

entre flujos y de grupo de flujos multimedia. Technical report, IEEE, 2005.

URL http://ewh.ieee.org/reg/9/etrans/ieee/issues/vol3/vol3issue5Dec.

2005/3TLA5_04Boronat.pdf.

[16] Antonio Sapuppo, John Aasted Sørensen, and Birger Andersen. Experimental en-

vironment for verifications of wi-fi indoor location algorithms. Technical report,

Wirelesscenter-CTIF-Copenhagen.

http://www.ietf.org/rfc/rfc3640.txt
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html
http://www.ietf.org/rfc/rfc2326.txt
http://www.bksv.com/Support/FAQ/FAQ56.aspx
http://www.bksv.com/Support/FAQ/FAQ56.aspx
http://ewh.ieee.org/reg/9/etrans/ieee/issues/vol3/vol3issue5Dec.2005/3TLA5_04Boronat.pdf
http://ewh.ieee.org/reg/9/etrans/ieee/issues/vol3/vol3issue5Dec.2005/3TLA5_04Boronat.pdf

Appendix A

AUDIO STREAMING SERVER

CODE

1 #include <stdio .h>

2 #include <gst/gst.h>

3 #include <glib.h>

4 #include <string .h>

5 #include <math.h>

6 #include <netinet /in.h>

7

8 #define DEST_HOST "10.0.0.28 "

9 //#define UDP_PORT "54783"

10

11 #define host1 "127.0.0.1 "

12 #define port1 "54002 "

13

14

15 /* print the stats of a source */

16 static void

17 print_source_stats (GObject * source)

18 {

19 GstStructure *stats ;

20 gchar *str ;

21

22 /* get the source stats */

23 g_object_get (source , "stats", &stats , NULL);

24

25 /* simply dump the stats structure */

26 str = gst_structure_to_string (stats);

27 g_print ("source stats: %s\n", str);

28

29 gst_structure_free (stats);

55

Appendix A. Audio Streaming Server Code 56

30 g_free (str);

31 }

32

33 /* this function is called every second and dumps the RTP manager stats */

34 static gboolean

35 print_stats (GstElement * rtpbin)

36 {

37 GObject *session ;

38 GValueArray *arr ;

39 GValue *val;

40 guint i;

41

42 g_print ("***********************************\ n");

43

44 /* get session 0 */

45 g_signal_emit_by_name (rtpbin , "get -internal -session ", 0, &session);

46

47 /* print all the sources in the session , this includes the internal source */

48 g_object_get (session , "sources ", &arr , NULL);

49

50 for (i = 0; i < arr ->n_values ; i++) {

51 GObject *source ;

52

53 val = g_value_array_get_nth (arr , i);

54 source = g_value_get_object (val);

55

56 print_source_stats (source);

57 }

58 g_value_array_free (arr);

59

60 g_object_unref (session);

61

62 return TRUE;

63 }

64

65

66 int main (int argc , char *argv [])

67 {

68 GMainLoop *loop;

69

70 GstElement *pipeline , *source , *decoder , *audio_convert , *encoder , *rtppayload ;

71 GstElement *rtpbin , *multiudpsink , *rtcpsink , *rtcpsrc ;

72 gboolean link;

73 GstPadLinkReturn link1 , link2;

74 GstPad *srcpad , *rtpsinkpad , *udpsinkpad , *sinkpad ;

75

76 /* Initialisation */

77 gst_init (&argc , &argv);

Appendix A. Audio Streaming Server Code 57

78

79 loop = g_main_loop_new (NULL , FALSE);

80

81 /* Check input arguments */

82 if (argc != 2) {

83 g_printerr ("Usage : %s <Audio filename >\n", argv [0]);

84 return -1;

85 }

86

87 /* Create gstreamer elements */

88 pipeline = gst_pipeline_new ("audio -server ");

89 source = gst_element_factory_make ("filesrc ", "file -source ");

90 g_assert (source);

91 g_object_set (G_OBJECT (source), "location ", argv[1], NULL);

92

93 /*Add the source element into the pipeline*/

94 gst_bin_add_many (GST_BIN (pipeline), source , NULL);

95

96 /*the audio encoding and payloading*/

97 decoder = gst_element_factory_make ("mad ", "mp3 -decoder ");

98 g_assert (decoder);

99 audio_convert = gst_element_factory_make ("audioconvert", "audioconverter");

100 g_assert (audio_convert);

101 encoder = gst_element_factory_make ("faac", "mp2 -encoder ");

102 g_assert (encoder);

103 rtppayload = gst_element_factory_make ("rtpmp4gpay ", "rtppayload ");

104 g_assert (rtppayload);

105

106 if (! decoder || !audio_convert || !encoder || !rtppayload) {

107 g_printerr ("One element could not be created . Exiting .\n");

108 return -1;

109 }

110

111 /*Add the audio element into the pipeline*/

112 gst_bin_add_many (GST_BIN (pipeline), decoder , audio_convert , encoder ,

113 rtppayload , NULL);

114

115

116 /*the rtpbin element*/

117 rtpbin = gst_element_factory_make ("gstrtpbin ", "rtpbin ");

118 g_assert (rtpbin);

119

120 /*Add the rtpbin element into the pipeline*/

121 gst_bin_add (GST_BIN (pipeline), rtpbin);

122

123 /*the UDP sink used to transmit the RTP packet */

124 multiudpsink = gst_element_factory_make ("multiudpsink", " multiudpsink");

125 g_assert (multiudpsink);

Appendix A. Audio Streaming Server Code 58

126 g_object_set (multiudpsink , "clients ",

127 "192.168.135.215:55555 ,192.168.134.205:55555 ", NULL);

128

129

130 rtcpsink = gst_element_factory_make ("udpsink ", "rtcpsink ");

131 g_assert (rtcpsink);

132 g_object_set (rtcpsink , "port", 55556 , "host", DEST_HOST , NULL);

133

134 rtcpsrc = gst_element_factory_make ("udpsrc ", "rtcpsrc ");

135 g_assert (rtcpsrc);

136 g_object_set (rtcpsrc , "port", 55558 , NULL);

137

138 /*Add the UDP and RTCP element into the pipeline*/

139 gst_bin_add_many (GST_BIN (pipeline), multiudpsink , rtcpsink , rtcpsrc , NULL);

140

141 /*Link all the elements*/

142 link = gst_element_link_many (source , decoder , audio_convert , encoder ,

143 rtppayload , NULL);

144 g_assert (link);

145

146 link1 = gst_element_link_pads (rtppayload ,"src ", rtpbin , "send_rtp_sink_0");

147 g_assert (link1);

148 link2 = gst_element_link_pads (rtpbin ," send_rtp_src_0", multiudpsink , "sink");

149 g_assert (link2);

150 udpsinkpad = gst_element_get_pad (multiudpsink , "sink");

151 if(udpsinkpad == NULL){

152 g_printerr ("There are an error in the udp socket \n");

153 return -1;

154 }

155 g_assert (udpsinkpad);

156

157

158 /* get an RTCP srcpad for sending RTCP to the receiver */

159 srcpad = gst_element_get_request_pad (rtpbin , " send_rtcp_src_0");

160 sinkpad = gst_element_get_static_pad (rtcpsink , "sink");

161 link1 = gst_pad_link (srcpad , sinkpad);

162 g_assert (link1 == GST_PAD_LINK_OK);

163 gst_object_unref (sinkpad);

164

165 /* we also want to receive RTCP , request an RTCP sinkpad for session 0 and

166 * link it to the srcpad of the udpsrc for RTCP */

167 srcpad = gst_element_get_static_pad (rtcpsrc , "src ");

168 sinkpad = gst_element_get_request_pad (rtpbin , "recv_rtcp_sink_0");

169 link2 = gst_pad_link (srcpad , sinkpad);

170 g_assert (link2 == GST_PAD_LINK_OK);

171 gst_object_unref (srcpad);

172

173

Appendix A. Audio Streaming Server Code 59

174 /* Set the pipeline to "playing" state */

175 g_print ("Now playing : %s\n", argv [1]);

176 gst_element_set_state (pipeline , GST_STATE_PLAYING);

177

178 /* print stats every second */

179 g_timeout_add (5000 , (GSourceFunc) print_stats , rtpbin);

180

181 /* Iterate */

182 g_print ("Running ...\n");

183 g_main_loop_run (loop);

184

185 /* Out of the main loop , clean up nicely */

186 g_print ("Returned , stopping playback \n");

187 gst_element_set_state (pipeline , GST_STATE_NULL);

188

189 g_print ("Deleting pipeline \n");

190 gst_object_unref (GST_OBJECT (pipeline));

191

192 return 0;

193 }

Appendix B

AUDIO STREAMING CLIENT

CODE

1 #include <string .h>

2 #include <math.h>

3

4 #include <gst/gst.h>

5

6 /* the caps of the sender RTP stream .*/

7 #define AUDIO_CAPS "application /x-rtp , media =(string)audio , clock -rate=(int)44100 , "

8 "encoding -name =(string)MPEG4 -GENERIC ,encoding -params =(string)2, streamtype =(string)5,"

9 "profile -level -id=(string)1, mode=(string)AAC -hbr , config =(string)0a10 ,"

10 "sizelength =(string)13, indexlength =(string)3, indexdeltalength=(string)3"

11

12 /* the destination machine to send RTCP to.*/

13 #define DEST_HOST "127.0.0.1 "

14

15 /* will be called when rtpbin has validated a payload that we can depayload */

16 static void pad_added_cb (GstElement * rtpbin , GstPad * new_pad , GstElement * depay)

17 {

18 GstPad *sinkpad ;

19 GstPadLinkReturn lres;

20

21 g_print ("new payload on pad : %s\n", GST_PAD_NAME (new_pad));

22

23 sinkpad = gst_element_get_static_pad (depay , "sink");

24 g_assert (sinkpad);

25

26 lres = gst_pad_link (new_pad , sinkpad);

27 if (lres == GST_PAD_LINK_WRONG_HIERARCHY){

28 g_printerr ("ERROR : pads have no common grandparent \n");

29 }

60

Appendix B. Audio Streaming Client Code 61

30 else if (lres == GST_PAD_LINK_WAS_LINKED){

31 g_printerr ("ERROR : pad was already linked \n");

32 }

33 else if (lres == GST_PAD_LINK_WRONG_DIRECTION){

34 g_printerr ("ERROR : pads have wrong direction \n");

35 }

36 else if (lres == GST_PAD_LINK_NOFORMAT){

37 g_printerr ("ERROR : pads do not have common format \n");

38 }

39 else if (lres == GST_PAD_LINK_NOSCHED){

40 g_printerr ("ERROR : pads cannot cooperate in scheduling \n");

41 }

42 else if (lres == GST_PAD_LINK_REFUSED){

43 g_printerr ("ERROR : refused for some reason \n");

44 }

45

46 g_assert (lres == GST_PAD_LINK_OK);

47 gst_object_unref (sinkpad);

48 }

49

50 /* The difference between src and sink is that src=receive_data and

51 sink= send_data over the network*/

52

53 int main (int argc , char *argv [])

54 {

55 GstElement *rtpbin , *udpsrc , *rtcpsrc , *rtcpsink ;

56 GstElement *audiodepay , *audiodec , *audiores , *audioconv , *audiosink ;

57 GstElement *pipeline ;

58 GMainLoop *loop;

59 GstCaps *caps;

60 gboolean res , link1 , link2;

61 GstPadLinkReturn link;

62 GstPad *udpsrcpad , *sinkpad , *srcpad ;

63

64 /* init first */

65 gst_init (&argc , &argv);

66

67 /* the pipeline to hold everything */

68 pipeline = gst_pipeline_new (NULL);

69 g_assert (pipeline);

70

71 /* the udp src and source we will use for RTP*/

72 udpsrc = gst_element_factory_make ("udpsrc ", "rtpsrc ");

73 g_assert (udpsrc);

74 g_object_set (udpsrc , "port", 55555 , NULL);

75

76 /* we need to set caps on the udpsrc for the RTP data */

77 caps = gst_caps_from_string (AUDIO_CAPS);

Appendix B. Audio Streaming Client Code 62

78 g_object_set (udpsrc , "caps", caps , NULL);

79 gst_caps_unref (caps);

80

81 rtcpsrc = gst_element_factory_make ("udpsrc ", "rtcpsrc ");

82 g_assert (rtcpsrc);

83 g_object_set (rtcpsrc , "port", 55556 , NULL);

84

85 rtcpsink = gst_element_factory_make ("udpsink ", "rtcpsink ");

86 g_assert (rtcpsink);

87 g_object_set (rtcpsink , "port", 55558 , "host", DEST_HOST , NULL);

88

89 /* the rtpbin element */

90 rtpbin = gst_element_factory_make ("gstrtpbin ", "rtpbin ");

91 g_assert (rtpbin);

92

93 gst_bin_add_many (GST_BIN (pipeline), rtpbin , udpsrc , rtcpsrc , rtcpsink , NULL);

94

95 /* the depayloading and decoding */

96 audiodepay = gst_element_factory_make ("rtpmp4gdepay", "audiodepay ");

97 g_assert (audiodepay);

98 audiodec = gst_element_factory_make ("faad", "audiodec ");

99 g_assert (audiodec);

100

101 /* the audio playback and format conversion */

102 audioconv = gst_element_factory_make ("audioconvert", "audioconv ");

103 g_assert (audioconv);

104 audiores = gst_element_factory_make (" audioresample", "audiores ");

105 g_assert (audiores);

106 audiosink = gst_element_factory_make ("autoaudiosink", "audiosink ");

107 g_assert (audiosink);

108

109 /* add depayloading and playback to the pipeline and link */

110 gst_bin_add_many (GST_BIN (pipeline), audiodepay , audiodec , audioconv , audiores ,

111 audiosink , NULL);

112

113 /* now link all to the rtpbin , start by getting an RTP sinkpad for session 0 */

114 udpsrcpad = gst_element_get_pad (udpsrc , "src ");

115 if(udpsrcpad ==NULL){

116 g_printerr ("There are an error in the udp socket \n");

117 return -1;

118 }

119 g_assert (udpsrcpad);

120 link1 = gst_element_link_pads (udpsrc ,"src ", rtpbin , "recv_rtp_sink_0");

121 g_assert (link1);

122

123 /* get an RTCP sinkpad in session 0 */

124 srcpad = gst_element_get_static_pad (rtcpsrc , "src ");

125 sinkpad = gst_element_get_request_pad (rtpbin , "recv_rtcp_sink_0");

Appendix B. Audio Streaming Client Code 63

126 link = gst_pad_link (srcpad , sinkpad);

127 g_assert (link == GST_PAD_LINK_OK);

128 gst_object_unref (srcpad);

129 gst_object_unref (sinkpad);

130

131 /* get an RTCP srcpad for sending RTCP back to the sender */

132 srcpad = gst_element_get_request_pad (rtpbin , " send_rtcp_src_0");

133 sinkpad = gst_element_get_static_pad (rtcpsink , "sink");

134 link = gst_pad_link (srcpad , sinkpad);

135 g_assert (link == GST_PAD_LINK_OK);

136 gst_object_unref (sinkpad);

137

138 /* the RTP pad that we have to connect to the depayloader will be

139 *created dynamically so we connect to the pad -added signal ,

140 * pass the depayloader as user_data so that we can link to it. */

141 g_signal_connect (rtpbin , "pad -added ", G_CALLBACK (pad_added_cb), audiodepay);

142

143 res = gst_element_link_many (audiodepay , audiodec , audioconv , audiores ,

144 audiosink , NULL);

145 g_assert (res == TRUE);

146

147 /* set the pipeline to playing */

148 g_print ("starting receiver pipeline \n");

149 gst_element_set_state (pipeline , GST_STATE_PLAYING);

150

151 /* we need to run a GLib main loop to get the messages */

152 loop = g_main_loop_new (NULL , FALSE);

153 g_main_loop_run (loop);

154

155 g_print ("stopping receiver pipeline \n");

156 gst_element_set_state (pipeline , GST_STATE_NULL);

157

158 gst_object_unref (pipeline);

159

160 return 0;

161 }

	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 INTRODUCTION
	2 DEVELOPMENT ENVIRONMENT
	2.1 Nokia N810
	2.2 Maemo
	2.3 Linux

	3 AUDIO STREAMING
	3.1 Audio Streaming Definition
	3.2 Streaming Architecture
	3.2.1 Encoding Audio
	3.2.2 Serving
	3.2.3 Distribution And Delivery

	3.3 Project Specifications

	4 IMPLEMENTATION
	4.1 Audio Streaming Server
	4.2 Audio Streaming Client

	5 ACOUSTICS PROPERTIES
	5.1 The Sound
	5.1.1 The Source Quality And The Haas Effect
	5.1.2 Speed Of Sound

	6 HAAS EFFECT TEST
	6.1 Abstract
	6.2 Test Description And Specifications
	6.3 Test Protocol Definition
	6.4 Results
	6.5 Discussion And Conclusions

	7 REAL SCENARIOS
	7.1 Network Synchronization
	7.2 Acoustics Synchronization
	7.3 Scenarios Description

	8 CONCLUSIONS
	9 FUTURE WORK
	9.1 Basic Control Techniques
	9.2 Preventive Control Techniques
	9.3 Reactive Control Techniques
	9.4 Common Control Techniques

	10 GANTT CHART
	A AUDIO STREAMING SERVER CODE
	B AUDIO STREAMING CLIENT CODE

