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Abstract
Numerous Fuzzy Time Series (FTS) models have been proposed in scientific literature 

during the past decades or so. Among the most accurate FTS models found in literature are the 

high order models. However, three fundamental issues need to be resolved with regards to the 

high order models. First, current prediction methods have not been able to provide satisfactory 

accuracy rates for defuzzified outputs (forecasts). Second, data becomes underutilized as the 

order increases. Third, forecast accuracy is sensitive to selected interval partitions. 

To cope with these issues, a new high order FTS model is proposed in this thesis. The 

proposed  model  utilizes  aggregation  and  particle  swarm optimization  (PSO)  to  reduce  the 

mismatch  between  forecasts  and  actuals.  Comparative  experiments  confirm  the  proposed 

model's  ability  to  provide  higher  accuracy  rates  than  the  current  results  reported  in  the 

literature. Moreover, the utilization of aggregation and PSO, to individually tune forecast rules, 

ensures  consistency  between  defuzzified  outputs  and  actual  outputs,  regardless  of  selected 

interval  partitions.  As  a  consequence  of  employing  these  techniques,  data  utilization  is 

improved by: (1) minimizing the loss of forecast rules; (2) minimizing the number of pattern 

combinations to be matched with future time series data. 

Finally, a fuzzification algorithm, based on the trapezoid fuzzification approach, has been 

developed  as  a  byproduct.  The  proposed  algorithm  objectively  partitions  the  universe  of 

discourse into intervals without requiring any user defined parameters.

Jens Rúni Poulsen
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1 Introduction
This research is carried out as part of the CIS 4 semester at AAUE and is concerned with the 

development of a new forecasting model based on high order fuzzy time series (FTS). Numerous 

FTS models have been proposed during the past decades or so [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. The high order FTS models [15,17,32,31,

30]  are  the  most  accurate  models  found in  literature  vis-à-vis  related  modalities.  Despite  this, 

current  publications  have  not  been  able  to  provide  satisfactory  results  for  defuzzified  outputs 

(forecasts). Another problem particularly associated to high order models is the underutilization of 

data that occurs as a result of increasing the model's order. Lastly, current prediction models are 

sensitive to selected interval partitions.  To cope with the shortcomings mentioned here, this project 

sets out to develop a forecast model based on FTS which: (1) provides higher forecasting accuracy 

rates than its high order counterparts; (2) improves data utilization; and (3) remains unaffected by 

selected interval partitions. A secondary objective is to design a fuzzification algorithm based on the 

trapezoid fuzzification approach[4] which automatically generates interval partitions based on some 

objective measure.

The thesis is organized as follows. Section 2 deals with relevant theoretical aspects such as 

fuzzy sets,  fuzzy numbers, defuzzification, fuzzy relations, fuzzy aggregation operators,  particle 

swarm optimization (PSO) and basic concepts of FTS. Section 4 provides an overview of related 

work.  The  proposed  FTS model  is  presented  and  comparatively evaluated  in  section  5  and 6, 

respectively. Finally, concluding remarks are provided in section 7.
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2 Theoretical Foundation
This section reviews various theoretical concepts relevant in the context of this study. The main 

topics  covered  here  are  fuzzy  sets,  fuzzy  numbers,  defuzzification,  fuzzy  relations,  fuzzy 

aggregation operators, PSO and basic FTS concepts. 

2.1 Conventional Sets vs Fuzzy Sets
Conventional set theory rests on the notion of a crisp boundary between which elements are 

members and non-members of a particular set. Thus if someone asks the question of whether an 

element is in a set, the answer is always yes or no for all elements. For example, if we consider the 

set of tall people, all persons are either tall or not. There is nothing in between of being tall and not 

being tall. Basically, conventional sets can be described in two ways; explicitly in a list or implicitly 

with a predicate. An example of the former could be the finite set A={0,1, 2, 3}. An example of the 

latter could be the set of all integers larger than 10 which is an infinite set. Either way, we can 

always answer yes or no to which elements are in a set or not.

The drawback of conventional sets is that many concepts encountered in the real world cannot 

always be described exclusively by their membership and non-membership in sets. As an example, 

let us again consider the set of tall people. If we ask a group of people when exactly a person is tall 

and when exactly he/she is not, we are likely to get a set of deviating answers. This is because there 

is no crisp boundary between being tall and not being tall (at least not one that is intuitively clear). 

Stated otherwise, the property of being tall is inherently undecidable. Generally all persons taller 

than 200 cm satisfy the property of being tall and everyone shorter than 150 cm do not. But what 

about the membership status of those with a height that lies in between these two extremes? Well 

some of these people may still be considered tall and some not, the point is however that the further 

we move down the scale from 200 cm to 150 cm, the answer will not remain as clear-cut for all 

cases. At some point we will reach a state of ambiguity, that is a state where we cannot explicitly 

say either yes or no.

Fuzzy set theory [34,35,36] expands the notion of purely crisp sets by assigning membership 

degrees to set elements so the transition from membership to non-membership is gradual rather than 

abrupt. Normally, the membership degree of a set element is a real number between 0 and 1. The 

closer the membership degree is to 1, the more an element belongs to a given set. A membership 

degree of 0 means that an element is clearly not a member of a particular set. Elements with a 

membership degree between 0 and 1 are more or less members of a particular set. An example is the 
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property of being tall, where a person may be more or less tall. In conventional set theory, more or 

less membership is not allowed. 

2.2 The Universe of Discourse
All elements in a set are taken from a universe of discourse or universe set that contains all the 

elements that can be taken into consideration when the set is formed. In reality there is no such 

thing as a set or a fuzzy set because all sets are subsets of some universe set, even though the term 

'set' is predominantly used. In the fuzzy case, each element in the universe set is a member of the 

fuzzy set  to  some degree,  even zero.  The set  of elements  that  have a  non-zero membership is 

referred to as the support. We will use the notation U for the universe set. 

2.3 Fuzzy Subsets
A fuzzy subset A in U is characterized by a membership function (characteristic function) that 

maps each element in A with a real number in the unit interval. Formally, this can be expressed as

μ A:U →[0,1] where the value μ Ax  is called the degree of membership of the element  x in the 

fuzzy set A. The membership function declares which elements of U are members of A and which 

are not. The principle of fuzzifying crisp sets in this manner is called the extension principle. 

A classical example of a fuzzy set is the subset of person's heights considered tall, see figure 1. We 

refer to this set as Tall. The figure shows that if a person's height is  less than or equal to 150 cm 

(point  a),  the degree of membership in the fuzzy set  Tall  is  equal to zero.  This means that all 

persons whose height is less than or equal to 150 cm are completely excluded from this set. If a 

person's  height  is  larger  than or  equal  to  200 cm (point  b),  the  property of  being tall  is  fully 

satisfied. Hence the membership degree in Tall is equal to 1. When the height is larger than 150 cm 
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and less than 200 cm, the property of being tall is more or less satisfied. For example, a person who 

is 185 cm (point u) is tall to a degree of 0.8. Mathematically the above membership function (aka 

characteristic function) can be defined as

Tallx ={0, xa
x−a
b−a

, a≤x≤b

1, b x .

 (1)

In the case where a fuzzy set A is a conventional (crisp) set, the corresponding membership function 

can be reduced to

Ax={1, x∈A
0, x∉A .

 (2)

The above function has  only two outputs,  0  or  1.  Whenever μ A x =1, x  is  a  member  of  A,  if 

μ Ax =0 , x is declared a non-member of A. Other examples of membership functions commonly 

used in literature are depicted in figure 2.

It needs to be noted that fuzzy membership functions are not necessarily symmetric in nature even 

though this is not indicated in the figure. Depending on the application, the shape of a membership 

function  may or  may not  be  symmetrical.  There  is  not  yet  any universal  rule  or  criterion  for 

selecting a membership function for a particular type of fuzzy subset. Rather the choice depends on 

several factors, for example, the users scientific experience and knowledge or actual needs for the 

application in question. Whatever membership function is chosen for the problem at hand, will 
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more or less be based on the users subjective measures. However, just as in probability theory and 

statics, for example, one may assume that a particular function describes some property, like "it is 

assumed that the membership function in figure 1 describes the property of being tall". 

2.3.1 Alpha Cut
An important property of fuzzy sets is the alpha cut (α-cut). Given a fuzzy set A defined on the 

universal set U and any number in the unit interval, ∈[0,1] , the (weak) α-cut, A

, and the strong 

α-cut, A , are the crisp sets which satisfy

 
A={x∈A∣Ax≥}

A={x∈A∣Ax}.
(3)

Less formally the  α-cut of a fuzzy set  A is the crisp set A that contains all the elements of the 

universal set  U whose membership grades in  A are grater than or equal to a given  α (or strictly 

grater than α, if we refer to the strong variant A ). Recall that the support of a fuzzy set A within the 

universal set U is the crisp set that contains all the elements of U that have non-zero membership 

grades in A. Hence the support of A is exactly the same as the strong α-cut of A for α=0.

A fuzzy subset A in ℝ is convex iff the sets defined by

A={x∈A∣A x≥}  (4)

are convex for all α-level sets in the interval [0,1]. Another more direct definition of convexity is the 

following: For all pairs x1 , x2∈A and any ∈[0,1] , A is convex iff

A[x11−x2] ≥ min[Ax1,  Ax2],  (5)

where min denotes the minimum operator. 
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2.4 Representations of Fuzzy Sets
Basically a fuzzy set can be viewed as a collection of ordered pairs

A={x1 ,x1 , x2 ,x2 , ,xn ,x n}, (6)

where element x is a member of A and μ x  denotes its degree of membership in A. A single pair 

x , μx  is called a fuzzy singleton. Hence a complete fuzzy set can be viewed as the union of its 

constituent singletons. If a fuzzy set is finite and discrete an often used notation is

A=u1/ x1u2 / x2un/ xn . (7)

It is important to note that neither the slash or the plus sign represent any kind of algebraic 

operation. The slash links the elements of the support with their grades of membership in A, 

whereas the plus sign indicates that the listed pairs of elements and membership grades collectively 

form the definition of the set A. 

2.5 Operations on Fuzzy Sets
In classical set theory there are three basic operations that can be performed on crisp sets: the 

complement, intersection and union. These operators also exists in fuzzy set theory in addition to a 

range of other operators. The standard fuzzy set operators complement, intersection and union are 

defined by the equations

Ax =1−Ax 

A∩Bx =min [A x ,B x ]

A∪Bx =max [Ax  ,B x] .

 (8)

where  A and  B are fuzzy subsets of the universal interval  U. The two operators, min and max,  

respectively denote the minimum and maximum operators. As can be seen from the respective 

equation, the min and the max operations of two fuzzy sets  μA  and  μB  is an element-by-element 
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comparison between corresponding elements in the respective sets. In the complement case, each 

membership value of μA is substracted from 1.

As mentioned, there are also a range of other operators in addition to the standard fuzzy set 

operators.  These  operators  can  be  categorized  as  follows:  t-norms,  averaging  operators  and  t-

conorms. An in-debt discussion about these operators can be found in section 2.11.

2.6 Fuzzy Numbers
In this section we will briefly review some frequently used classes of fuzzy numbers.

Definition 1: Fuzzy Number

A fuzzy number A is described as any fuzzy subset of the real line ℝ with membership function A

which possesses the following properties[37]:

(a) A is a continuous mapping from ℝ to the closed interval [0,], 01;

(b) μ Ax =0 , for all x∈[−∞ , a ] ;

(c) A is strictly increasing on [a ,b] ;

(d) Ax= , for all x∈[b , c ], where  is a constant and 0w≤1 ;
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(e) A is strictly decreasing on [c ,d ] ;

(f) A x=0, for all x∈[d ,∞];

where a ,b , c and d are real numbers. Unless elsewhere specified, it is assumed that A is convex and 

bounded; i.e. −∞a ,d∞ . If =1  in (d),  A is a normal fuzzy number, and if 0w1 in (d), A is 

a non-normal fuzzy number. For convenience, the fuzzy number in definition 1 can be denoted by

A=a ,b,c ,d ;. The  image  (opposite)  of  A can  be  given  by−A=−d ,−c ,−b ,−a ;w .  

Property (a) can also be written as A :ℝ[0,1]  The membership function of A can be expressed 

as 

A x={A
L x  , a≤x≤b
 , b≤ x≤c
A

Rx  , c≤x≤d
0, otherwise ,

 (9)

where A
L :[ a , b][0,] and A

R :[c ,d ][0,].

Definition 2: Triangular Fuzzy Number

A triangular fuzzy number A is a fuzzy number with a piecewise linear membership function A

defined by

A={
x−a1

a2−a1
, a1≤ x≤a2,

a3−x
a3−a2

, a2≤ x≤a3,

0, otherwise ,

(10)

which can be denoted as a triplet a1, a2, a3 .

Definition 3: Trapezoidal Fuzzy Number

A trapezoidal fuzzy number A is a fuzzy number with a membership function A denoted by

A={
x−a1

a2−a1
, a1≤ x≤a2

1, a2≤x≤a3

a4−x
a4−a3

, a3≤ x≤a4

0, otherwise ,

 (11)
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which can be denoted as a quartet a1, a2, a3, a4.

2.7 Ranking
Ranking[38,39] is the task of comparing fuzzy subsets (i.e. numbers) and arranging them in a 

certain order. Especially in decision making situations, appropriate methods are needed to compare 

and evaluate different alternatives, i.e. which fuzzy number precedes the other in a given situation. 

When dealing with strictly numerical values, this process is quite simple, since the order can be 

naturally determined. Fuzzy numbers, on the other hand, cannot be ordered in the same manner 

because the same natural order does not exist in fuzzy numbers. That is, we cannot explicitly say 

that a fuzzy number A is larger than another fuzzy number B as in the numerical case. Whether A is 

larger, smaller or equal to B is a matter interpretation. A simple method for ordering fuzzy subsets 

consists in the definition of a ranking function F, mapping each fuzzy set to the real numbers ℝ ,

where a natural order exists. Suppose S={A1 ,A2 , ,An} is a set of n convex fuzzy numbers, and 

the ranking function  F is a mapping from  S to the real numbers ℝ , i.e. F : Sℝ . Then for any 

distinct pair of fuzzy numbers Ai ,Aj∈S , the ranking function can be defined as

if F Ai  F Aj ; then AiAj

if F Ai = F Aj ; then Ai=Aj

if F Ai  F Aj ; then AiAj .

(12)

This implies, for example, that if F Ai F Aj, the fuzzy number Ai is numerically greater than 

the fuzzy number Aj . The higher Ai is, the larger F Aj is. A useful technique for ranking normal 

fuzzy numbers that are convex, such as triangular- and trapezoid fuzzy numbers, is the centroid, 

defined by

F A=
∫ xAx dx

∫ Ax dx
,  (13)

where F A represents the centroid of the fuzzy set A .

2.8 Linguistic Variables
Fuzzy numbers are frequently used to represent quantitative variables, normally referred to as 

linguistic variables [35,36]. Linguistic variables take words or sentences as values, as opposed to an 

algebraic variable which takes numbers as values. All values are taken from a term set that contains 

the set of acceptable values/concepts. Each value/concept in the term set is represented by a fuzzy 

number which is defined over some universe interval, also called a  base variable.  In short  this 

relationship can be expressed as follows: linguistic variable → fuzzy variable → base variable. For 
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example, let v be a linguistic variable denoting a person's height. The values of v, which are fuzzy 

variables, could be defined by the term set T = {very short, short, medium tall, tall, very tall} and 

the associated base variable could span the interval from 100 to 220 cm. 

An example of a linguistic variable is shown in figure 6. Its name is Height and it expresses the 

height of a person in a given context by five linguistic terms - very short, short, medium tall, tall 

and very tall. Each of the basic linguistic terms is assigned one of five trapezoidal fuzzy numbers 

which define the range of the base variable. 

2.9 Defuzzification
Two central concepts in fuzzy set theory are fuzzification and its counterpart defuzzification. 

Fuzzification is the process of converting crisp values into fuzzy values by identifying possible 

uncertainties  or  variations  in  the  crisp  values.  This  conversion  is  represented  by  membership 

functions.  There  are  various  ways this  fuzzification  process  can  be  carried  out,  like  intuition, 

genetic algorithms [34] or neural networks [34]. Defuzzification is the process of converting fuzzy 

values into crisp ones. In the following we will describe some defuzzification methods found in 

literature [34,40].

2.9.1 Max-membership principle
In  this  method,  the  defuzzified  value,  Z,  equals  the  x-value  with  the  highest  membership 

degree. It is given by the expression

Ax*Ax  for all x∈A ,  (14)

where x* is the value with the highest degree of membership in the fuzzy set A. If we consider the 

following set A=0.3/100.45 /120.6/150.9/17. Then max A=17 .  

10
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2.9.2 Centroid method
This is the most widely used method. It is also referred to as the center of gravity or center of 

area method. It can be defined by equation 13 when A is continuous. For the discrete case in which

A is defined on a finite universal set {x1, x2 , , x n}, the equation is

Z=
∑
i=1

n

Ax i xi

∑
i=1

n

Ax i
.  (15)

Using the example from before, we get

Z=0.3⋅100.45⋅120.6⋅150.9⋅17
0.30.450.60.9

=14.53

2.9.3 Weighted average method
This  method  is  only  applicable  for  symmetrical  membership  functions.  It  bears  some 

resemblance to the centroid method, except it only includes the maximum membership value of 

membership functions. The expression is given as

Z=∑maxAx  x

∑max A x
,  (16)

where max μ Ax  is  the maximum membership degree of membership function A and x  is  the 

corresponding  value.  Assume  we  have  two  functions, A and B , where max μ A=0.8 and 

max μB=0.75. The  corresponding  points  on  the  x-axis  are  a and  b, respectively.  Then  the 

defuzzified value Z can be obtained as

Z=a⋅0.8b⋅0.75
0.80.75

2.9.4 Mean-max membership
This  method  is  similar  to  the  max-membership  principle,  except  the  maximum  does  not 

necessarily have to be unique. Hence the maximum membership degree may include more than a 

single point, it may include a range of points. The expression is given as

Z=ab
2

, (17)

where a and b are the end points of the maximum membership range.
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2.10 Fuzzy Relations
A relation signifies a relationship between set elements of two or more sets. Crisp relations can 

be defined by a characteristic function which assigns a value from the binary pair {0,1} to each 

subset  of  the  universe  set,  where  0  implies  no  association  and  1  implies  an  association.  The 

Cartesian product of two sets A and B, denoted A×B , is the set of all possible combinations of the 

elements in  A and B. All relations are subsets of the Cartesian product which therefore represents 

the universe set. A fuzzy relation [34,40] is a fuzzy set defined on the Cartesian product of crisp 

sets. Each element within the relation may then be associated to a degree between 0 and 1, in the 

same manner as set membership is represented in fuzzy sets. The grade indicates the strength of the 

relation present between the elements.

To express this more formally, we consider a fuzzy relation between two crisp sets  X and  Y. 

Then a  fuzzy relation R is  a  mapping from X Y from the  Cartesian space, X×Y , to  the unit 

interval. The strength of the mapping is expressed by the membership function, R x , y , of the 

relation for all ordered pairs x , y ∈X×Y .  This function can be expressed as

R x , y  = A×B x , y   = min Ax  ,B  y.  (18)

This means that each fuzzy set can be regarded as a vector of membership values where each value 

is associated with a particular element in each set. If we consider two fuzzy sets A, containing four 

elements, and B, containing five elements. Then A is expressed as column vector of size 3×1 and B 

a column vector of size 1×2. The corresponding relation will be a 3×2 matrix. That is, a matrix 

with four rows and five columns (note: the resulting matrix has the same number of rows as A and 

the same number of columns as  B). Lets illustrate this by an example where  A is defined on the 

universe set X  = {x1 , x2 , x3}, and  B  is defined on the universe set Y={y1 , y2}. We then have the 

two following vectors

A  = 0.4 / x10.7/ x20.1/ x3  and B  = 0.5 / y10.8/ y 2 .

The resulting matrix is then obtained by taking the minimum of each pair of x , y ∈A×B . For 

example, the entries x1 , y2 and x2 , y1 of the matrix are derived by taking the minimum of the 

pairs 0.4,0.8 and 0.7,0.5 . Hence the relational matrix of A and B looks as

y1  y2  

A×B  = R  = 
x1

x2

x3
[0.4 0.4
0.5 0.7
0.1 0.1].
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2.10.1 Fuzzy Relational Compositions
Relations can be combined in various ways by using the union or the intersection operator. A 

generic way to compose fuzzy relations is to pick the minimum value in a series connection and the 

maximum value in a parallel connection. Because a relation is itself a set, the basic set operations 

such as  union, intersection, and complement can be applied without modifications. The standard 

composition R of two fuzzy relations P and Q, normally written as R  = P °Q , is formally defined 

by

R x , z =[P °Q ]x , z =max
y∈Y

min [P x , y  ,Q  y , z ],  (19)

for all x∈X and all z∈Z . Less formally this means that the ij-entry of the matrix R is derived by 

combining the ith row of P with the jth column of Q. Using matrix notation, the same expression 

can  can be written as

[rij ]  = [ pik ]°[qkj ]  = max min  pik , qkj

An illustrative example of a max-min composition of two fuzzy sets is shown below

P °Q  = [0.7 0.6
0.8 0.3]°[0.8 0.5 0.4

0.1 0.6 0.7] = [0.7 0.6 0.6
0.8 0.5 0.4].

For example,

r 1,2 = max [min  p11 , q12 , min  p12 , q22]
= max [min 0.7, 0.5 ,min 0.6, 0.6]
= 0.6 , 

r 2,2 = max [min  p21 , q12 , min  p22 , q22]
= max [min 0.8, 0.5 ,  min 0.3, 0.6]
= 0.5.

Another related operation is the min-max operations which is derived in an analogous manner to the 

max-min operation.

A second example of a relational composition is the max-product which is defined by

R x , z =[P °Q ]x , z ={max
y⊂Y
[P x , y ∗Q  y , z ]}  (20)

for all x∈X and z∈Z . Here the min-operator has been replaced by the multiplication operator but 

the entries are combined between matrices in the same manner. By reusing the previous example, 

we get

P °Q  = [0.7 0.6
0.8 0.3]°[0.8 0.5 0.4

0.1 0.6 0.7] = [0.56 0.36 0.42
0.64 0.4 0.32].

For example,
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r 11 = max [ p11∗q11 ,  p12∗q21]
= max [0.7∗0.8 ,0.6∗0.1]
= 0.56 , 

r 23  = max[  p21∗q13 , p22∗q23]
 = max[ 0.8∗0.4 ,0.3∗0.7]
 = max[ 0.32 ,0.21]
 = 0.32.

A third example of a compositional operation is the max-average composition, defined by

R x , z =[P °Q ]x , z ={1
2

max
y⊂Y
[P x , y Q y , z ]}  (21)

for all x∈X and z∈Z . Compared to the previous expression, it can be seen that the multiplicative 

operator has been replaced by an additive operation such that we now obtain the maximum of the 

averages between corresponding pairs. Again by using the same example, we get

P °Q  = [0.7 0.6
0.8 0.3]°[0.8 0.5 0.4

0.1 0.6 0.7] = [0.75 0.6 0.65
0.8 0.65 0.6 ].

For example,

r 11 = 1/2 max [p11q11 ,  p12q21]
= 1/2 max [0.70.8 ,0.60.1]
= 1/2 max [1.5 ,0.7]
= max [0.75 ,0.35]
= 0.75 , 

r 23  = 1/ 2max [ p21q13  , p22p23 ]
 = 1/ 2max [ 0.80.4 ,0.30.7]
 = 1/ 2max [ 1.2 ,1.0]
 = max [ 0.6 ,0.5]
 = 0.6.

2.11 Aggregation
The purpose of aggregation is to aggregate pieces of data in a desirable way in order to reach a 

conclusion or final decision. Typically this data is represented by numerical values which make 

some  kind  of  sense  in  regard  to  the  application.  Hence  the  aggregation  problem is  generally 

regarded as  the  problem of  reducing  a  series  of  numerical  values  into  a  single  representative. 

Formally an aggregation operator can be defined as function h which assigns a real number y to any 

n-tuple x1, x2 ...... , xn of real numbers [41]: 

y=hx1, x2 ...... , xn. (22)

In literature, aggregation operations are generally defined over the unit interval, meaning that it 

is assumed that both the input and output is restricted to the unit interval. An aggregation operation 
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of dimension n≥ 1 can therefore be formally described as mapping over the unit interval

h : [0,1]n[0,1] . (23)

The case n=1 is represented by the negation operator defined by ⌐ hx =1−hx . For n ≥ 2 , two 

classes of operators are of particular interest in fuzzy theory; triangular norms and the averaging 

operators. 

Even though the input/output of aggregation operations often times is restricted to the unit 

interval, this is not a mandatory characteristic of aggregation operators. Hence the definition above 

can  be  extended  to  arbitrary  intervals  as  well.  In  this  context  however,  we  assume  that  the 

inputs/outputs of the aggregation operators discussed in this thesis are from the unit interval, unless 

otherwise stated. 

Logically, certain conditions are expected to be imposed on the function  h in order for it to 

qualify as an aggregation operator, although there are different views on which basic properties 

should be fulfilled, since aggregation operators frequently are designed for certain applications. The 

most important thing in this case is not whether a given aggregation operator satisfies all of the 

basic  properties  associated with aggregation operators,  but  whether  the aggregation operator  in 

question produces a meaningful outcome from an applicative context, which in turn necessitates the 

presence  of  certain  constraints.  Some of  the  fundamental  properties  frequently  associated  with 

aggregations operators are enlisted below [41]:

1) h x =x (identity when unary);

2) h 0, ,0=0 and h 1, ,1=1 (boundary conditions);

3) h x1 , , xn≤ h y1 , , yn (monotonic increasing)

if x i ≤ y i for all i∈ℕ ;

4) h is continuous with respect to each of its arguments;

5) h x1 , , xn=hx p i , , x p n for all permutations p (symmetry);

6) h x , x , , x = x (idempotency);

7) h x1 , x2 , x3=hh x1 , x2 , x3=h x1 , h x2 , x3 (associativity);

8) h[n]x1 , , e , , xn=h[n−1]x1 , , xn (neutral element);

9) h[n]x1 ,... , a , ... , xn=a (absorbent element);

10)  min  x1 ,...... , xn≤ h x1 , ...... , xn≤ max x1 , ...... , xn (compensation).
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Property 1 only applies to unary operators, i.e. operators taking one argument only. According to 

this property, the aggregated result equals  x if  h is unary. Property 2 defines the worst/best case 

behaviour  of  aggregation  operators.  If  the  argument  xi is  either  completely  false  (xi =  0)  or 

completely true (xi = 1) for all i∈ℕ , then the aggregated result should reflect the same behaviour. 

The properties  of boundary conditions can easily be extended to input/outputs  outside the unit 

interval. Sometimes the boundary conditions are extended as follows [42]:

2.1) ∀x ∈ [0,1] h (x,0) = h (1,0) ⋅ x

2.2) ∀x ∈ [0,1] h (x,1) = (1 − h (1,0)) ⋅ x + h (1,0).

These extensions add more constrains to the basic requirements of aggregation operators since they 

exclude every aggregation operator which is not an averaging operator. Property 2.1 presumes the 

value of h(x,0) to be the weighed arithmetic mean of x and 0, and property 2.2 presumes the value 

of h(x,1) to be the weighted arithmetic mean of x and 1. Actually the requirements of property 2 are 

special cases of 2.1 and 2.2 when x = 0 and x = 1, respectively. Property 3 states that the aggregated 

result as minimum does not decrease if the argument increases.  Property 4 (continuity) ensures that 

a changes in arguments will not result in discontinuous change in the aggregate value. Especially 

the properties of 2-4 are considered fundamental to aggregation operators in general [34]. Property 

5 (symmetry) is related to the order of arguments in the sense that the order should not have any 

influence on the aggregated result. This is particularly relevant when all arguments are assumed to 

be equally important. Another related property associated to  n-ary operators with  n2 arguments is 

bisymmetry [41]. This property simply states that it does not matter whether the aggregation is done 

vertically or horizontally, if h is an n-ary operator. We can write this as

h h x11 , x12 , , x1n , h x21 , x22 , , x2n , , hxn1 , x n2 , , xnn  = 

h h x11 , x21 , , xn1 , h x12 , x22 , , xn2 , , h x1n , x2n , , xnn.
(24)

This implies that you can either aggregate the column vectors first and then the outputs thereof or 

the row vectors first and then the outputs thereof. It should be noted that symmetry and associativity 

implies bisymmetry, but neither symmetry or associativity is implied by bisymmetry. Property 6 

(idempotency)  states  that  if  x is  aggregated  n times,  the final  outcome will  be  x as  well.  This 

condition may be warranted in cases where x is a fuzzy set, because aggregating equal sets logically 

implies  the  same  set.  Property  7(associativity)  reflects  the  notion  that  aggregation  is  done  in 

packages but the order of packages has no influence on the aggregated result. Property 8 (neutral 

element) assumes the existence of a neutral element  e which has no influence on the result when 

applied. Property 9 (absorbent element) assumes the existence of an absorbent element a which acts 
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as an annihilator. Property 10 (compensation) relies on the assumption that the aggregated result is 

somewhere between the lowest argument (min) and the highest argument (max). This condition is 

only valid for averaging operators. 

2.11.1 Averaging Operators
A type of operator widely studied in literature are averaging operators. Averaging operators of 

dimension n≥ 2 can  be  described  by  the  mapping h: [0,1]n →[0,1] which  meets  the  following 

axiomatic  requirements  [43,44]:  (1)  h is  symmetric;  (2)  h is  monotonic  increasing;  (3)  h is 

continuous; (4) h is idempotent. It has to be noted that the assumption of symmetry may not always 

be warranted in every application context.  In that  case,  the assumption of symmetry has to be 

dropped. A good example of an operator where this property is not meet is the weighted average 

mean. Some commonly used averaging operators are listed in table 1.

Operator Equation

The arithmetic mean 1
n∑i=1

n

xi

Weighted arithmetic mean ∑
i=1

n

wi⋅x i

where w i∈[0,1 ]and∑
i=1

n

wi=1

Geometric mean ∏i=1

n

xi
1
n

Harmonic mean n

∑
i=1

n 1
x i

Quadratic mean  1
n∑i=1

n

xi
2

Median Sort the arguments in ascending 
order. If the number of arguments 
n is odd, then the middle value is 
selected. If n is even, then take the 
mean of the middle pair.

Min and max min  x1 , , xn
max  x1 , , xn

Table 1. Examples of commonly used averaging operators.

A common characteristic of aggregation operators is that they cover the entire interval between 

min and max. That is, any aggregation operator, h(x1,..., xn), satisfies the following inequalities (aka 

compensation property) [34] :

 ∀x1 ,xn∈[0,1]n: min x1 , , xn  hx1 , , xnmax x1 , , xn. (25)
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To show this, let xmin = min and xmax = max. Since every averaging operator satisfies the properties of 

monotonicity and idempotency, it also satisfies the inequalities:

xmin=hx min , , xmin ≤ h x1 , , x n ≤ h xmax , , xmax = xmax . (26)

This means that all averaging operators are bounded by the standard fuzzy union and the standard 

fuzzy intersection operations.  Conversely,  it  follows that  all  operators bounded by the standard 

fuzzy union and standard fuzzy intersection are idempotent since 

x=hx , , x≤ hx , , x≤ hx , , x= x
∀ x∈[0,1] . (27)

2.11.1.1 Generalized Means
Many of  the  common  means  belong  to  the  family  of  the  quasi-arithmetic  means  [41,44], 

defined as

h x1 , , x n= f −11n∑i=1

n

xi,  (28)

where f is a continuous strictly monotonic function, and  f- 1 is its inverse. It can be noted that the 

geometric mean and the harmonic mean are particular cases of (28) with f(x) = log x and  f(x) = 1/x, 

respectively. A particularly noticeable case of quasi-arithmetic means can be obtained by applying 

the function: f : x x . We can then obtain a quasi-arithmetic mean of the form:

hx1 , , x n=[ 1
n∑i=1

n

xi
]

1

.  (29)

This class of means is often referred to as power means or generalized means because a common 

group of well-known means can be generalized by changing the α parameter:

● For  α = 1 we obtain the arithmetic mean.

● For  α = 2 we obtain the square mean (aka euclidean mean)

● For  α = -1 we obtain the harmonic mean.

● When α converges towards -∞, hα converges towards minimum.

● When α converges towards ∞, hα converges towards maximum.

● When α converges towards 0, hα converges towards the geometric mean.

The class of power means can be extended with weights as well such that we get weighted 
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power means, defined by the equation:

hw1 , x1 , ,wn , xn=[ 1n∑i=1

n

wi⋅xi
]

1


where w i∈[0,1]∀ i and∑
i=1

n

wi=1.
(30)

 Other well-known means can be generalized as well using weighted power means by changing 

the  α parameter:

● For  α = 1, hα equals the weighted arithmetic mean.

● For  α = 2, hα equals the weighted square mean.

● For  α = -1, hα equals the weighted harmonic mean.

● When α converges towards -∞, hα converges towards minimum.

● When α converges towards ∞, hα converges towards maximum.

● When α converges towards 0, hα converges towards the weighted geometric mean.

2.11.1.2 Ordered Weighted Averaging Operators (OWA)
One of the most widely studied operator in fuzzy theory is the OWA operator [43,44]. This 

operator is mainly used for aggregating scores associated with the satisfaction of multiple criteria. 

An OWA operator of dimension n ≥ 2 can be described as the function:

OWAx1, x2, , xn=∑
j =1

n

w j⋅x p  j  

where w i∈[0,1]and∑
i =1

n

w i = 1
(31)

and p is a permutation that orders the arguments in a non-increasing order: x p1≥ x p2≥ ... ≥ x p n .

Some special cases of OWA, when choosing particular weights, are displayed in table 2.
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OWA weights

Maximum {w1=1
wi=0 if i≠1

Minimum {wn= 1
wi=0 if i≠n

Arithmetic mean w i =
1
n

∀i

Median {wn1
2

=1 if n  is odd

wn
2
=1

2
 and wn

2 1
= 1

2
if n  is even

wi=0 else.

Table 2. Special cases of OWA [41].

An important aspect with respect to OWA is the derivation of appropriate weights which should 

represent the problem at hand as closely as possible. Two measures of importance in this regard are 

orness and dispersion, defined by:

orness w= 1
n−1

⋅∑
i =1

n

n−i ⋅w i

 
(32)

and

dispersion w=−∑
i = 1

n

w i⋅ln w i∈[0, ln n]  (33)

The  dual  measure  of  orness  is  referred  to  as  andness,  and  is  defined  by 1−ornessw . The 

dispersion measure reflects the degree of utilization of the information in the argument vector. The 

more evenly distributed the weights are, the higher dispersion. A normalized dispersion measure to 

the unit interval can obtained by dividing by ln(n) such that the equation becomes:

ndispersion w=− 1
lnn ∑i =1

n

wi⋅ln wi∈[0,1]  
(34)

Orness and andness can be interpreted as the degree to which an OWA operator represents pure OR 

(i.e. max) or pure AND (i.e. min), respectively.  The degree of orness of the arithmetic mean is 0.5, 

as  can  be  seen  from  the  following  example.  Consider  the  vector  of  OWA  weights

w=0.2,0.2,0.2,0.2,0.2. The orness can then be calculated as:

orness  w = 1
4
0.80.60.40.2

=1
2

.

So if orness equals 0.5, we obtain neutrality with the arithmetic mean. If orness is strictly less than 
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0.5, we move towards min, and thereby also the pure AND. If orness is strictly larger 0.5, we move 

towards max, and thereby the pure OR. 

Clearly, it is possible to obtain the same degree of orness for different weight vectors. By using 

the dispersion measure, we are able to further distinguish between the OWA weights. To illustrate 

this,  consider  the  two  OWA  vectors w1=0,0 ,1,0 ,0 and w2=0.2,0.2 ,0.2,0.2 ,0.2. These  two 

vectors  respectively  correspond  to  the  median  and  the  arithmetic  mean.  The  orness  and  the 

dispersion for these vectors are calculated as:

orness  w1 = 1
5−1

5−1⋅05−2⋅05−3⋅15−4⋅05−5⋅0

=0.5

ndispersion w1 =−
0⋅ln 00⋅ln 01⋅ln 10⋅ln 00⋅ln 0

ln 5
=0

orness  w2 =0.5as already shown 

ndispersion  w2 =−
0.2⋅ln 0.20.2⋅ln 0.20.2⋅ln 0.20.2⋅ln 0.20.2⋅ln 0.2

ln 5
=1

As can be seen from this example, different results for the normalized dispersion can be obtained, 

despite the same degree of orness for the two vectors.

2.11.2 Triangular Norms (T-Norms and T-Conorms)
Another class of operators which have been extensively studied in literature, are the so-called 

triangular norms [41,45] which can be divided into two basic operations, namely the t-norm and its 

dual  the  t-conorm. In  fuzzy set  theory,  the  t-norm defines the union and the  t-conorm defines 

intersection of fuzzy sets. This makes it possible to use these to characterize the logical connectives 

of AND and OR, respectively.  

A t-norm is a function T :[0,1]2[0,1] which satisfies the following axioms:

● T x , y = T  y , x  (T1) commutativity

● T  x , y T u , v , if x u∧ y v (T2) monotonicity (increasing)

● T  x ,T  y , z = T T  x , y , z  (T3) associativity

● T  x ,1= x (T4) 1 as neutral element

The result of applying the t-norm operator will never be larger than the minimum of arguments. 

Formally this can be written as:
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∀ t-norms T :T  x , y min x , y . (35)

We can prove this as follows:

1. From T2 and T4 we get T  x , y T  x ,1= x .

2. From T1, T2 and T4 we get T  x , y T 1, y = y .

That is T x , y  x and T  x , y  y , hence T  x , y min x , y .

A t-conorm is a function S :[0,1]2[0,1] which satisfies the following axioms:

● S x , y = S  y , x (S1) commutativity

● S x , y  S u , v , if x u∧ y v (S2) monotonicity (increasing)

● S x ,S  y , z= S S  x , y , z  (S3) associativity

● S x ,0= x (S4) 0 as neutral element

From an  axiomatic  point  of  view,  t-norms and t-conorms only differ  with  the  respect  to  their 

boundary conditions or neutral element which is 1 and 0, respectively. The result of applying the t-

conorm operator is never less than the maximum of arguments. The formal notation is:

∀ t-conorms S : S x , y ≥max x , y. (36)

The proof is trivial and analogous to the one shown previously. 

Norm  operations  are  always  defined  as  binary  operations,  but  due  to  their  associative 

properties, they can be generalized for n arguments. For example, the multi-argument forms for the 

min and max operators are:

 T i=1
n x imin=min i=1

n x i and S i=1
n x imax=maxi=1

n xi, respectively. (37)

For the algebraic product and the algebraic sum, the multi-argument forms are:

T i=1
n x iap=∏i=1

n
x i and S i=1

n x ias= 1−∏i=1

n
1− x i, respectively. (38)

Generally multi-argument forms are trivial with the algebraic sum as an exception. Therefore, the 

derivation of the multi-argument form of the algebraic sum is shown as a  proof of induction in 

Appendix I. 

2.11.2.1 Duality of T-Norms and T-Conorms
Any t-norm is associated with a dual t-conorm and vice versa [41,45]. A t-norm and a t-conorm 

are said to be dual if the law of De Morgan is satisfied:
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T x , y =S  x , y , (39)

where x denotes the standard negation, defined by x=1− x . Some common t-norms and their dual 

t-conorms are listed in table 3.

t-norm t-conorm

min and max min(x, y) max(x, y)

algebraic product and sum x · y x + y - x · y

Lukasiewicz t-norm and t-conorm max(x + y - 1,0) min(x + y ,1)

drastic product and sum {0 if  x , y ∈[0,1 [2 ,
min  x , y otherwise. {1 if  x , y∈]0,1 ]2

max  x , y otherwise.

Table 3. Common t-norms and their dual t-conorms.

The minimum or min is the largest t-norm. It is also the only idempotent t-norm and thus the only t-

norm which is an averaging operator as well. Its dual t-conorm, i.e. the max operator, is the smallest 

t-conorm. It is the only idempotent t-conorm and thus the only t-conorm which is an averaging 

operator  as  well.  Hence  the  min  and  max  respectively  define  the  lower  and  upper  bounds  of 

averaging operators.  The drastic product is  interesting from the point of view that it  yields the 

smallest t-norm and the largest t-conorm. 

2.11.3 Averaging Operators and Triangular Norms in Context

Figure 7. The relationship between triangular norms and averaging operators [44] .
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Figure 7 summarizes the relationship between the different classes of operators discussed in the 

previous sections. It can be seen from the figure that the boundary between averaging operators and 

triangular  norms is  defined  by the  min  and  max  operators.  Recall  that  the  result  of  a  t-norm 

operation is always  ≤ min, and for t-conorm operations, the result is always  ≥ max. In particular, 

these  operators  are  important  when  distinguishing  between  triangular  norms  and  averaging 

operators because the min and max are the only idempotent triangular norms and thereby the only 

triangular  norms  that  are  averaging  operators  as  well. Moreover  these  operators  are  the  only 

associative averaging operators.

Averaging  operators  satisfy  the  compensation  property  which  implies  that  an  averaging 

operator always yield a result between min and max. Weighted averaging operators, like OWA, can 

be regarded as parametrized ways of moving between min and max. Moving towards min (or 0) 

corresponds to moving towards pure AND. As we move closer towards AND, the more restrictive 

the operator becomes, since pure AND requires all arguments to be satisfied. This is equivalent to 

the universal quantifier which states that all arguments must be fulfilled. At the opposite end of the 

extreme,  we  have  max,  corresponding  to  the  pure  OR.  This  is  equivalent  to  the  existential 

quantifier, which states, that there exists at least one argument which is fulfilled. So, the further we 

move towards max (or 1), the less restrictive the operator becomes. Between these two extremes 

different levels of strictness can be specified. For example, a query may be satisfied if "most off" 

the arguments are fulfilled or "at least a few".

From  an  axiomatic  point  of  view,  triangular  norms  and  averaging  operators  have  the 

symmetry, monotonicity and continuity axioms in common. The axioms regarding associativity and 

the existence of a neutral element only applies to triangular norms. In fact, triangular norms cover 

all aggregating operations which are associative [34]. Idempotency, on the other hand, only applies 

to triangular norms.

2.12 Particle Swarm Optimization (PSO)
PSO [46,47] is an optimization technique applicable to continuous non-linear functions. It was 

first introduced by Kennedy and Eberhart in [46]. The algorithm simulates the social behaviours 

shown by various kinds of organisms such as bird flocking or fish schooling. Imagine a group of 

birds randomly foraging in an area. The group shares the common goal of locating a single piece 

food. While foraging, individual birds may learn from the discoveries and past experiences of other 

birds  through  social  interaction.  Each  bird  synchronizes  its  movements  with  group  while 

simultaneously avoiding collisions with other birds. As the search continues, the birds move closer 
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toward the place where the food is by following the bird which is closest to the food.

In PSO, bird flocks are represented as particle swarms searching for the best solution in a 

virtual  search space.  A fitness value is  associated to each particle  which is  evaluated against  a 

fitness  function  to  be  optimized,  and  the  movement  of  each  particle  is  directed  by a  velocity 

parameter.  During  each  iteration,  particles  move  about  randomly  within  a  limited  area,  but 

individual particle movement is directed toward the particle which is closest to the optimal solution. 

Each particle remembers its personal best position (the best position found by the particle itself) as 

well  as  the  global  best  position  (the  best  solution  found  by  any  particle  in  the  group).  The 

parameters are updated each time another best position is found. This way, the solution evolves as 

each particle moves about.

Compared to other related approaches such as genetic algorithms and neural networks, PSO it 

is quite simple and easy to implement. It is initialized with a set of randomly generated particles 

which in fact are candidate solutions. An iterative search process is then set in motion to improve 

the set  of current solutions.  During each iteration, new solutions are proposed by each particle 

which are individually evaluated against: (1) the particles own personal best solution found in any 

proceeding iteration and (2) the global best solution currently found by any particle in the swarm. 

We refer to each candidate solution as a position. If a particle finds a position better than its current 

personal best position, its personal best position is updated. Moreover, if the new personal best 

position is better than the current global best position, the global best position is updated. After the 

evaluation process is completed, each particle updates its velocity and position with the equations:

v i=vic1r 1 x i− x jc2 r2 g−x j  (40)

x j=x jv i ,  (41)

where

● vi  is  the  velocity  of  particle  pi  and  is  limited  to[-Vmax,  Vmax]  where  Vmax is  user-defined 

constant.

● ω is an inertial weight coefficient.

● x< i is the current personal best position.

● xj is the present position.

● ĝ is the global best position.

● c1 and c2 are user defined constants that say how much the particle is directed towards good 

positions.  They  affect  how  much  the  particle's  local  best  and  global  best  influence  its 
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movement. Generally c1 and c2 are set to 2. 

● r1 and r2 are randomly generated numbers between 0 and 1.

Note  that  the velocity controls  the motion of  each particle.  The speed of  convergence,  can be 

adjusted by the inertial weight coefficient and the constants  c1,  c2. Whenever computed velocity 

exceeds its user-defined boundaries, the computed results will be replaced by either -Vmin or  Vmax. 

The running procedure of basic PSO algorithm is summarized in pseudo code below.

The basic PSO algorithm
for all particles{

initialize velocities and positions
}//end for

while stopping criteria is unsatisfied{
for each particle{

1. compute velocities by equation (40)
2. increment positions by equation (41)

if present fitness value is better than current local best value
3. update local best positions

if present fitness value is better than current global best value
4. update global best positions

}//end for
}//end while

2.13 Fuzzy Time Series and its Concepts
In the following section we will briefly review some of the fundamental concepts of FTS as 

they originally were conceived in pioneering publications by Song/Chissom [1,2,48] and Chen [3,

31]. 

Definition 1: Fuzzy Time Series

Let Y t t=... ,0,1,2,. .., a subset of real numbers, be the universe of discourse on which fuzzy sets 

f it i=1,2 , ... are defined. If F t  is a collection of f it i=1,2,..., then F t  is called a fuzzy 

time series on Y tt=... ,0,1,2,. ...

Definition 2: Fuzzy Relation

If  there  exists  a  fuzzy  relationship Rt−1, t  , such  that F t =F t−1×Rt−1, t, where ×

represents an operator, then F t  is said to be caused by F t−1. The relationship between F t 

and F t−1  is denoted by

 F t−1F t . (42)
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Examples of operators from literature are the max-min composition  (see section  2.10.1) [1],  the 

min-max composition [2] and the arithmetic operator [3]. If F t−1=Ai  and F t =A j , the logical 

relationship between F t  and F t−1  is denoted by AiA j , where Ai is called the left hand side 

and A j the right hand side of the fuzzy relation. The variable t denotes the time. For example, if t = 

1973, the fuzzy relationship between F t  and F t−1  is given by F 1972F 1973 . Note the 

right hand side of the fuzzy relation represents the future fuzzy set (forecast). Its crisp counterpart is 

denoted as Y t.

Definition 3: N-Order Fuzzy Relations

Let F t  be a fuzzy time series. If F t  is caused by F t−1 , F t−2 ,, F t−n, then this fuzzy 

relationship is represented by

F t−n ,,F t−2, F t−1F t , (43)

and is called an n-order fuzzy time series. The n-order concept was first introduced by Chen in [31]. 

N-order based FTS models are referred to as high order models.

Definition 4: Time-Invariant Fuzzy Time Series

Suppose F t  is caused by F t−1  only and is denoted by F t−1F t , then there is a fuzzy 

relationship between F t  and F t−1  which is expressed as the equation: 

F t =F t−1 ×R t−1, t .  (44)

The relation R is referred to as a first order model of F t . If Rt−1, t  is independent of time t ,

that is, for different times t 1 and t 2 , Rt 1 , t 1−1=Rt 2 ,t 2−1, then F t  is called a time-invariant 

fuzzy time series. Otherwise it is called a time-variant fuzzy time series.

Definition 5: Fuzzy Relationship Group (FLRG)

Relationships  with  the  same  fuzzy  set  on  the  left  hand  side  can  be  further  grouped  into  a 

relationship group. Relationship groups are also referred to as fuzzy logical relationship groups or 

FLRG 's in short. Suppose there are relationships such that 

Ai A j1,

Ai A j2,

⋯
Ai A jn,

then they can be grouped into a relationship group as follows:

Ai A j1 , A j2 , , A jn . (45)
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The same fuzzy set cannot appear more than once on the right hand side or the relationship group. 

The term relationship group was first introduced by Chen in [3].  

2.14 Conclusion
Various  theoretical  concepts  have  been  reviewed  in  this  section  such  as  fuzzy sets,  fuzzy 

numbers, defuzzification, fuzzy relations, fuzzy aggregation, PSO and FTS. The main purpose of 

this discussion has been to provide self-contained study of the underlying theoretical concepts of the 

forecasting model presented in later sections. 
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3 Related Work
This section provides an overview of current research. FTS has been subjected to extensive 

research since first introduced almost 2 decades ago. However, the intention here is not to provide 

an exhaustive study of every work published. Rather the intention is to provide a general overview 

of FTS as an independent research field. First we will briefly review Song and Chissom's work [1,2,

48] which is the earliest work published on FTS. Next, a more detailed study is provided of Chen's 

work  published in  [3,31],  as  the  work  presented  in  the  respective  papers  are  among the  most 

important  milestones in  this  particular  field of  research.  Finally,  a brief  review of more recent 

developments is provided. 

3.1 Song and Chissom's Work
FTS was originally proposed by Song and Chissom[1,2,48] in a series of papers to forecast 

student enrollments at the University of Alabama. The motivation for introducing a new forecasting 

framework, based on fuzzy set theory, was the need to model time series problems when historical 

data are defined as linguistic values. The first model published was the so-called time-invariant 

model which comprises the followings steps: (1) define the universe of discourse; (2) partition the 

universe  of  discourse  into  equally  lengthy  intervals;  (3)  define  fuzzy  sets  of  the  universe  of 

discourse;  (4)  fuzzification  of  historical  data;  (5)  establish  fuzzy  relations;  (6)  forecast  by

Ai=Ai−1°R , where  ͦ  is   the max-min operator (see section 2.10.1); and (7) defuzzify forecasted 

results.

In step (5), the fuzzy relation R is defined by

Ri=As
T×Aq , for all k relations A s Aq, R= ∪

i=1

k
R i , (46)

where × is the min operator, T is the transpose operator, and ∪ is the union operator.

Subsequently Song and Chissom proposed the time-variant model, which basically comprises 

the same steps as its time-invariant counterpart. The most notable difference is the notion of  fuzzy 

relationship in step 5, denoted as Rw t ,t−1, and defined by

Ri= f T t−i × f t−i1 for all k fuzzy relations A s Aq, Rw t ,t−1= ∪
i=2

w
R i , (47)

where w is the window base,  T is the transpose operator, × is the Cartesian product, and ∪ is the 

union.
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3.2 Chen's Work
A significant drawback of the FTS models developed by Song and Chissom is that they are 

associated with unnecessary high computational overheads due to complex matrix operations in step 

5 and 6. In order to reduce the computation overhead of the time-variant and time-invariant models, 

Chen [3] proposed a simplified model including only simple arithmetic operations. The step-by-step 

procedure proposed by Chen is listed as:

1. Partition the universe of discourse into equally lengthy intervals.

2. Define fuzzy sets on the universe of discourse.

3. Fuzzify historical data.

4. Identify fuzzy relationships (FLR's).

5. Establish fuzzy relationship groups (FLRG's).

6. Defuzzify the forecasted output.

In the following it will be demonstrated how the model is used to forecast student enrollments 

at the University of Alabama. Actual enrollment data for the period 1971 - 1992 are shown in table 

4.

Year Student enrollments Year Student enrollments
1971 13055 1982 15433
1972 13563 1983 15497
1973 13867 1984 15145
1974 14696 1985 15163
1975 15460 1986 15984
1976 15311 1987 16859
1977 15603 1988 18150
1978 15861 1989 18970
1979 16807 1990 19328
1980 16919 1991 19337
1981 16388 1992 18876

        Table 4. Historical student enrollments 1971 - 1992, at Alabama University. 

Step 1: Define the universe of discourse and partition it into equally lengthy intervals

The  universe  of  discourse  U is  defined  as [Dmin−D1, Dmax−D2] where  Dmin  and  Dmax  are  the 

minimum and maximum historical enrollment, respectively. From table 4, we get Dmin=13055 and

Dmax=19337. The variables D1 and D2 are just two positive numbers, properly chosen by the user. If 

we let D1  = 55 and D2  = 663, we get U=[13000,20000] .  Chen used seven intervals which is the 

same number used in most  cases  observed in literature.  Dividing  U into  seven evenly lengthy 
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intervals u1, u2, u3, u4, u5, u6  and u7, we get u1  = [13000, 14000], u2  = [14000, 15000], u3  = [15000, 

16000], u4 = [16000, 17000], u5 = [17000, 18000], u6 = [18000, 19000] and u7 = [19000, 20000].

Step 2: Define fuzzy sets on the universe of discourse

Assume A1 , A2 , , Ak to be  fuzzy  sets  which  are  linguistic  values  of  the  linguistic  variable 

'enrollments'. Then the fuzzy sets A1 , A2 , , Ak are defined on the universe of discourse as

A1=a11/u1a12/u2a1m /um ,

A2=a21/u1a22/u2a2m /um ,

⋮

Ak=ak1 /u1ak2/u2akm /um ,

where a ij∈[0,1] , 1 ik , and 1 jm . The variable  aij represents the membership degree of the 

crisp interval uj in the fuzzy set Ai. Prior to defining fuzzy sets on the U, linguistic values should be 

assigned to each fuzzy set. Chen uses the linguistic values A1 = (not many), A2 = (not too many), A3 = 

(many), A4 = (many many), A5 = (very many), A6 = (too many) and A7 = (too many many). Fuzzy sets 

can be defined on the universe of discourse as follows:

A1=1/u10.5 /u20/u30 /u40/u50 /u60/u7

A2=0.5/u11/u20.5/u30 /u40/u50 /u60/u7

A3=0/u10.5/u21/u30.5/u40/u50/u60/u7

A4=0/u10 /u20.5/u31/u40.5 /u50 /u60/u7

A5=0/u10/u20 /u30.5/u41/u50.5/u60 /u7

A6=0/u10/u20/u30/ u40.5/u51/u60.5/u7

A7=0/u10/u20/u30/ u40/u50.5/u61/u7.

Step 3: Fuzzify historical data

In this context, fuzzification is the process of identifying associations between the historical values 

in the dataset and the fuzzy sets defined in the previous step. Each historical value is fuzzified 

according to its highest degree of membership. If the highest degree of belongingness of a certain 

historical time variable, say F t−1 ,  occurs at  fuzzy set  Ak,  then F t−1 is fuzzified as  Ak.  To 

exemplify this, let us fuzzify year 1971. According to table  4, the enrollment in 1971 was 13055 

which lies within the boundaries of interval u1. Since the highest membership degree of u1 occurs at 

A1, the historical time variable F 1971 is fuzzified as A1. Actual enrollment of 1974 is 14696 which 

lies within the boundaries of interval u2. Hence F 1974 is fuzzified as A2. A complete overview of 

fuzzified enrollments is shown in the table 5.
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Year Actual enrollment Interval Fuzzified enrollment

1971 13055 [13000, 14000] A1

1972 13563 [13000, 14000] A1

1973 13867 [13000, 14000] A1

1974 14696 [14000, 15000] A2

1975 15460 [15000, 16000] A3

1976 15311 [15000, 16000] A3

1977 15603 [15000, 16000] A3

1978 15861 [15000, 16000] A3

1979 16807 [16000, 17000] A4

1980 16919 [16000, 17000] A4

1981 16388 [16000, 17000] A4

1982 15433 [15000, 16000] A3

1983 15497 [15000, 16000] A3

1984 15145 [15000, 16000] A3

1985 15163 [15000, 16000] A3

1986 15984 [15000, 16000] A3

1987 16859 [16000, 17000] A4

1988 18150 [18000, 19000] A6

1989 18970 [18000, 19000] A6

1990 19328 [19000, 20000] A7

1991 19337 [19000, 20000] A7

1992 18876 [18000, 19000] A6

Table 5. Fuzzified historical enrollments.

Step 4: Identify fuzzy relationships 

Relationships are identified from the fuzzified historical data. If the time series variable F t−1 is 

fuzzified as  Ak and F t  as  Am,  then  Ak is related to  Am. We denote this relationship as A k Am ,

where Ak is the current state of enrollment and  Am is the next state of enrollment. From table 5, we 

can see that year 1971 and 1972 both are fuzzified as A1, which provides the following relationship:

A1A1. The complete set of relationships identified from table 5 are presented in the table 6.

A1 → A1 A1 → A2 A2 → A3 A3 → A3

A3 → A4 A4 → A4 A4 → A3 A4 → A6

A6 → A6 A6 → A7 A7 → A7 A7 → A6

Table 6. Fuzzy set relationships.

Note that even though the same relationships may appear more than once, these are ignored since 

there can only be one relationship of the same kind.
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Step 5: Establish fuzzy relationship groups (FLRG's)

If the same fuzzy set is related to more than one set, the right hand sides are merged. We refer to 

this process as the establishment of FLRG's. For example, we see from table 6 that A1 is related to 

itself  and  to  A2. This  provides  the following  FLRG: A1A1, A2 . A complete  overview  of  the 

relationship groups obtained from table 6 is shown table 7.

Group 1: A1 → A1 A1 → A2

 Group 2:  A2 → A3  

 Group 3:  A3 → A3  A3 → A4

 Group 4:  A4 → A4  A4 → A3 A4 → A6

 Group 5:  A6 → A6  A6 → A7

 Group 6:  A7 → A7  A7 → A6

Table 7. FLRG's.

Step 6: Defuzzify the forecasted output

Assume the  fuzzified  enrollment  of F t−1 is  Aj,  then  forecasted  output  of F t  is  determined 

according to the following principles:

1. If there exists a one-to-one relationship in the relationship group of Aj, say A j Ak , and the 

highest degree of belongingness of  Ak occurs at interval  uk, then the forecasted output of 

F t  equals the midpoint of uk.

2. If Aj is empty, i.e. A j∅ , and the interval where Aj has the highest degree of belongingness 

is uj, then the forecasted output equals the midpoint of uj. 

3. If  there  exists  a  one-to-many  relationship  in  the  relationship  group  of  Aj,  say 

A j A1 , A2 ,, An, and the highest degrees of belongingness occurs at  set u1 , u2 ,, un ,

then the forecasted output is  computed as the average of the midpoints m1 , m2,,mn of

u1 , u2,,un .  This equation can be expressed as: 

m1m2mn

n
.

For example, year 1972 is forecasted using the fuzzified enrollments of 1971. According to 

table 5, the fuzzified enrollments of year 1971 is A1. From table 7 it can be seen that A1 is related to 

A1 and A2. The highest degrees of belongingness of A1 and A2  are the sets of u1 and u2, where u1 = 

[13000, 14000] and u2  = [14000, 15000]. The midpoints of the intervals,  u1 and u2, are 13500 and 

14500,  respectively.  Using  rule  3,  the  forecasted  enrollment  of  1972  is  computed  as 

(13500+14500)/2 = 14000. Year 1980 is forecasted using the fuzzified enrollments of 1979 as basis. 
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Because the fuzzified enrollment of 1979 is A4, we have the following FLRG: A4 A3 , A4 , A6. The 

highest degrees of belongingness for the fuzzy sets A3, A4 and A6 are at intervals u3 = [15000, 16000], 

u4 = [16000, 17000] and u6  = [18000, 19000], respectively, and the midpoints of  u3,  u4 and u6 are 

15500,  16500  and  18500,  respectively.  Therefore  the  forecasted  output  is  calculated  as 

(15500+16500+18500)/3 = 16833. Since there are no empty relationship groups, rule 2 is never 

applied in this example. 

Year Actual 
enrollment

Forecasted 
enrollment

FLRG's Interval midpoints

1971 13055 A1 → A1, A2 13500; 14500

1972 13563 14000 A1 → A1, A2 13500; 14500

1973 13867 14000 A1 → A1, A2 13500; 14500

1974 14696 14000 A2 → A3 15500

1975 15460 15500 A3 → A3, A4 15500; 16500

1976 15311 16000 A3 → A3, A4 15500; 16500

1977 15603 16000 A3 → A3, A4 15500; 16500

1978 15861 16000 A3 → A3, A4 15500; 16500

1979 16807 16000 A4 → A3, A4, A6 15500; 16500; 18500

1980 16919 16833 A4 → A3, A4, A6 15500; 16500; 18500

1981 16388 16833 A4 → A3, A4, A6 15500; 16500; 18500

1982 15433 16833 A3 → A3, A4 15500; 16500

1983 15497 16000 A3 → A3, A4 15500; 16500

1984 15145 16000 A3 → A3, A4 15500; 16500

1985 15163 16000 A3 → A3, A4 15500; 16500

1986 15984 16000 A3 → A3, A4 15500; 16500

1987 16859 16000 A4 → A3, A4, A6 15500; 16500; 18500

1988 18150 16833 A6 → A6, A7 18500; 19500

1989 18970 19000 A6 → A6, A7 18500; 19500

1990 19328 19000 A7 → A6, A7 18500; 19500

1991 19337 19000 A7 → A6, A7 18500; 19500

1992 18876 19000

Table 8. Forecasted enrollments for the period 1972 - 1992. 

The model explored in so far is referred to as a first order FTS model. Chen later introduced its 

high order counterpart which incorporates  n-order relationships in [31]. In the high order variant, 

relationships of order  n ≥ 2 can be expressed as Ai ,1 , Ai , 2,, Ai ,nAi ,n1 . For example, a second 

order  relationship  is  denoted  by Ai ,1 , Ai , 2 Ai ,3 . A  third  order  relationship  is  denoted  by

Ai ,1 , Ai , 2 , Ai ,3 Ai , 4 . All second order relationships identified from table 5 are listed in table 9.
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 A1, A1 → A1 A3, A3 → A4 A3, A4 → A6

A1, A1 → A2 A3, A4 → A4 A4, A6 → A6

A1, A2 → A3 A4, A4 → A4 A6, A6 → A7

A2, A3 → A3 A4, A4 → A3 A6, A7 → A7

A3, A3 → A3 A4, A3 → A3 A7, A7 → A6

Table 9. Second order relationships.

The grouping of relationships is somewhat different compared to the first order variant. In high 

order models, relations with identical left hand sides are not merged into a single entity in the same 

manner as in the first order case. To illustrate this, consider the following relationship from table 9, 

for t = 1973: 

F 1971 , F 1972F 1973=A1 , A1A1 .

An ambiguity occurs in this case because another relation is found with an identical left hand side, 

namely A1 , A1A2. To deal with this ambiguity, the current relationship is extended to a third order 

relation as follows:

F 1970, F 1971, F 1972F 1973=# , A1 , A1A1 .

The # symbol indicates null set since F 1970 does not exist. If no other third order relation exists 

with identical left  hand sides, F 1973 can be defuzzified by the same principles as in the first 

order case, otherwise another n + 1 order extension has to be made. 

Table 10 shows the performance of different n-order models in form of MSE (see equation 54).

Order MSE

1 407507

2 89093

3 86694

4 89376

5 94539

6 98215

7 104056

8 102179

9 102789

Table 10. Forecast accuracy for different orders.

In some cases, higher forecasting accuracies can be accomplished with higher model orders, as is 

the case with the enrollment data. But increasing the order from n to  n + 1, does not necessarily 

result in higher accuracy rates for all cases. 
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3.3 Other Developments
Generally,  the  focus  of  current  FTS  research  has  been  on  the  establishment  of  fuzzy 

relationships and interval partitions. Early studies, in particular, were entirely devoted to the former 

issue such as Song/Chissom [1,2,48], Chen [3], Hwang et al [16],  Sullivan/Woodall [20]. Other 

more recent studies dealing with the relationship aspect can also be found, like Tsaur/Woodall [14] 

and Sing [5]. 

More  recently,  interval  partitions  have  received a  considerable  amount  attention in  current 

studies. A major reason for this paradigm shift is the need for formalized approaches to interval 

partitioning. In early studies, intervals were assumed to be subjectively defined by the user, in the 

same manner as shown in the example provided of Chen's model [3], in section 3.2. Huarng [19], 

was probably the first researcher to focus on the interval partition aspect. In [19], Huarng proposed 

the  distribution-  and  average-based  length  approaches  to  determine  the  lengths  of  intervals. 

Furthermore, the study conducted by Huarng in [19], was the first to investigate the influence of 

interval  lengths  on  forecast  results.  Other  examples  of  formalized  approaches  to  interval 

partitioning can be found in [4,10,29]. 

A common factor shared by the models published in [4,10,19,29], is that interval lengths are 

determined independently of forecast accuracy. In contrast, Chen/Chung [15] apply a somewhat 

different strategy where they exploit genetic algorithm (GA) to tune interval lengths in order to 

improve forecast accuracy. A similar study is published by Kuo et al in [30], where particle swarm 

optimization (PSO) is exploited in an analogous manner. The studies published in [15] and [30] are 

highlighted  in  this  project  because  they  have  presented  the  best  results  currently  published  in 

literature. Both of these models will be used as targets for comparison with the respect to the high 

order model presented in later sections. 

Other studies can also be found which both deal with the fuzzy relationship aspect and the 

interval partition aspect, such as the ones presented in [8,18,33]. The current study belongs to this 

latter  category of projects,  as it  sets  out  to develop new and hopefully better  ways of creating 

interval partitions and relational computations. 

3.4 Conclusion
 Especially  two issues  seem to  be  the  primary focus  of  current  research.  The  first  is  the 

selection  of  interval  partitions  (i.e.  the  length  and  number  of  intervals).  The  second  is  the 

formulation of fuzzy relationships. Both of these factors highly influence forecast accuracy and thus 

are considered central to FTS. It has been found that current research efforts are united by one 
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common goal: to enhance consistency between forecast rules and the data they derive from. This 

implies that performance of different FTS models by tradition is evaluated under known conditions. 

In plain words, it means that forecast rules are validated using the same old data they originate 

from, rather than validating them on future datasets (see computations of forecasts in section 3.2). 

To make this project comparable with those of others, we will follow the same principle in the 

evaluation phase in section 5. 

High  order  models  are  highlighted  in  this  context,  because  they are  among most  accurate 

models found in literature, and thus are selected as targets for comparison.  The findings of this 

related work study has lead to the identification of the following key problems with regards to high 

order models: (1) there is a lack of consistency between forecast rules and the data they represent; 

(2) forecast accuracy is sensitive to selected interval partitions;  (3) data becomes underutilized as 

the model's order increases. In (3), the underutilization of data manifests itself in two ways. First the 

number forecast rules (fuzzy relationships) reduces as the order increases. Second, the combination 

of patterns (fuzzy sets) to be matched with future patterns increases with order increments. This, in 

turn, reduces the probability of finding equivalent pattern combinations in future time series data. 

Solving the problems (1)-(3) is the primary objective of this project.

A secondary objective is to further improve the trapezoid fuzzification algorithm proposed by 

Cheng et al in [4]. This objective is motivated by the need for an algorithm capable of generating 

trapezoidal fuzzy numbers (or intervals) automatically, based on the characteristics in data. 
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4 Introducing a Modified Fuzzy Time Series Model
In the following sections a modified FTS model is presented.  First we will discuss the data 

fuzzification part. A novel fuzzification algorithm based on the trapezoid fuzzification approach [4] 

is be presented and evaluated. Next a novel approach to defuzzify forecasted output is presented 

based on PSO and aggregation. Finally, in section 5, the proposed FTS model will be evaluated by 

comparing it to other related developments.

4.1 Algorithm Overview
     Before elaborating on the details of the forecasting model presented in here, we will initially 

provide an overview of the algorithmic process. The overall structure of the algorithm discussed in 

the following sections is depicted in figure 8. 

The  proposed  model  proposed  is  divided  into  two  main  components,  fuzzification  and 

defuzzification.  Both of  these  main components  are  decoupled which implies  that  they can be 

integrated  independently with  other  alternatives.  For  example,  the  fuzzification  module  can be 

integrated  with  Chen's  first  order  model  [3]  or  Chen's  high  order  model  [31].  This  will  be 

demonstrated in section 4.3. The defuzzification module can be integrated with other fuzzification 

algorithms, such as the ones published in [10,15,18,19]. 
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The fuzzification module can be further decomposed into a six-step process where the first 

four steps are data preprocessing functions.  The fuzzification task itself  comprises the last  two 

steps. When data has been fuzzified, it is further processed by the defuzzification module. During 

the defuzzification phase, data is grouped into patterns which are converted into corresponding if-

statements. The if-rules are trained individually to match the data they represent. When training is 

completed, data is defuzzified by matching the if-then rules with equivalent patterns in the dataset. 

4.2 Fuzzifying Historical Data
The fuzzification algorithm (FA) proposed here generates a series of trapezoidal fuzzy sets 

from a given dataset and establishes associations between the values in the dataset and the fuzzy 

sets generated. It is inspired by the trapezoid fuzzification approach proposed by Cheng et al in [4]. 

They introduced an approach where the crisp intervals, generally defined by the user at the initial 

step of FTS, are replaced with trapezoidal fuzzy sets with overlapping boundaries. This overlap 

implies that a value may belong to more than one set. If a value belongs to more than one set, it is 

associated to the set where its degree of membership is highest. The FA introduced here follows the 

same  principles  but  differs  from  the  approach  described  by  Cheng  et  al  [4]  by  performing 

automatically the calculation of the fuzzy intervals/sets. The fuzzification approach published in [4], 

requires the user to specify the number of sets. This is an undesirable requirement in situations 

where multiple forecasting problems need to be solved. For example, a  grocery store may need 

forecast information related to thousands of products. The proposed algorithm aims to solve this 

problem by determining the number of sets on basis of the variations in data. 

Another aspect this algorithm attempts to capture, is the notion of a non-static universe set. 

Whenever values are encountered which fall outside the boundaries of the current universe set, the 

universe set has to augment accordingly. This aspect, in particular, has not received much attention 

in  current  publications.  The  most  likely  reason  for  this  is  that  current  modalities  rely  on  the 

assumption of predetermined outcomes (see section 3.4), and therefore, no revisions of the universe 

set are required. In real life situations though, future outcomes are rarely known. The basic idea of 

the algorithm described in the following paragraphs, is to repeat the fuzzification procedure when 

the dataset is updated. The proposed procedure can be described as a six-step process:  

Step 1: Sort the values in the current dataset in ascending order.

Step 2: Compute the average distance between any two consecutive values in the 

sorted dataset and the corresponding standard deviation.  

Step 3: Eliminate outliers from the sorted dataset. 
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Step 4: Compute the revised average distance between any two remaining consecutive 

values in the sorted dataset.

Step 5: Define the universe of discourse.

Step 6: Fuzzify the dataset using the trapezoid fuzzification approach [4]. 

First  the  values  in  the  historical  dataset  are  sorted  in  ascending  order.  Then  the  average 

distance  between  any  two  consecutive  values  in  the  sorted  dataset  is  computed  and  the 

corresponding standard deviation. The average distance is given by the equation:

AD x ixn=
1

n−1∑i=1

n−1

∣x p  i−x p i1∣,  (48)

where p is permutation that orders the values ascendantly: x p i x p i1 . The standard deviation is 

computed as

AD= 1
n∑i=1

n

x i−AD2  (49)

Both the average distance and standard deviation are used in step 3 to define outliers in the 

sorted dataset. Outliers are values which are either abnormally high or abnormally low. These are 

eliminated from the sorted dataset, because the intention here is to obtain an average distance value 

free of distortions.  An outlier,  in this context, is defined as a value less than or larger than one 

standard  deviation from average.  After  the  elimination process  is  completed,  a  revised  average 

distance value is computed for the remaining values in the sorted dataset, as in step 2. The revised 

average distance, obtained in step 4, is used in step 5 and 6 to partition the universe of discourse 

into a series of trapezoidal fuzzy sets. Basically, the intention is to create a series of trapezoidal 

approximations which capture the generic nature of data as closely as possible, in the sense that we 

neither want the spread of individual functions to be to narrow or to wide. 

In step 5, the universe of discourse is determined. Its lower and upper bound is determined by 

locating the largest  and lowest  values in  the dataset  and augment  these by:  (1)  subtracting the 

revised average distance from the lowest value and (2) adding the revised average distance to the 

highest value. More formally,  if  Dmax and  Dmin are the highest and lowest values in the dataset, 

respectively, and ADR is the revised average distance, the universe of discourse U can be defined as 

U = [Dmin - ADR, Dmax + ADR]. 

When the  U has been determined, fuzzy subsets can be defined on  U. Since the subsets are 

represented by trapezoidal functions, the membership degree, for a given function μA and a given 

value x, is obtained by equation 11.
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A={
x−a1

a2−a1
, a1≤x≤a2

1, a2≤x≤a3

a4−x
a4−a3

, a3≤x≤a4

0, otherwise .

Prior to the fuzzification of data, we need to know the number of subsets to be defined on U. 

The number of sets, n, is computed by

n= R−S
2S

,  (50)

where  R  denotes  the range of the universe set  and  S denotes the segment  length.  Equation  50 

originates from the fact that we know the following about S:

S= R
2n1

.  (51)

The range, R, is computed by

R=UB−LB ,  (52)

where UB and LB respectively denote the upper bound (Dmax + ADR) and lower bound (Dmin - ADR) 

of U. The segment length, S, equals the average revised distance ADR which in turn constitutes the 

length of left spread (ls), core (c) and right spread (rs) of the membership function (see figure 9). 

That is, ls = ADR, c = ADR and rs = ADR. 

In short, the task here is to decide how many fuzzy sets to generate when the length of each 

segment, S, and the range, R, are known. When the number of sets has been computed, the sets can 

be defined on U and data can be fuzzified which completes the final step of the algorithm.

In the following example, we will fuzzify the first four years of student enrollment in Alabama 

University. The respective values to be fuzzified are 13055, 13563, 13867 and 14696 (see table 5). 
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Because the sequence is already in ascending order, the sorting part is omitted. The average distance 

and the standard deviation are respectively computed as

AD=∣13055−13563∣∣13563−13867∣∣13867−14696∣
3 =

508304829
3 =547

and

AD= 508−5472304−5472829−5472

3
=216.1≈216.

Next, possible outliers are eliminated. Recall that outliers include the values less than or larger than 

one standard deviation from AD. This means only the values satisfying the condition:

 547−216 x547216 ,

are taken into consideration when computing the revised average distance. In this case, only one of 

the three values satisfy the above condition, namely 508. Thus the revised average distance,  ADR, 

and the segment length, S, equals 508. At this point, step 1 - 4 are completed. Prior to defining the 

universe  set  U,  we need to  determine the  lower  bound (LB)  and the upper  bound (UP)  of  U. 

Following equation 52, LB and UP are computed as

LB = 13055 - 508 = 12547 

UB = 14696 + 508 = 15204.

Hence U = [12547, 15204]. The range, R, is computed as difference between UB and LB. Hence we 

get 15204 - 12547 = 2657. Finally the number of sets, n, is computed as

n=2657−508
2⋅508

=2.12≈2 .

Knowing  the  universe  of  discourse  and  the  parameters  of  N,  R and  S,  the  fuzzy  sets  are 

generated as shown in figure 10 and table 11.

Fuzzy set Trapezoidal fuzzy number (a, b, c, d) Crisp interval

A1 (12547,13055,13602,14149)  u1 = [13055,13602]

A2 (13602,14149,14696,15204) u2 = [14149,14696]

Table 11. Fuzzifying the first four years of enrollment.
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Note the difference between the points a, b, c and d, in the fuzzy number A1 and A2, in table 11 

and figure  10, is not exactly 508. This is because the implemented algorithm adapts the segment 

length, such that the lowest value in the dataset always appears as the left bound in the first crisp 

interval, and the highest value in the dataset always appears as the right bound in the last crisp 

interval. From table 11and figure 10 it can be seen that the lowest of the four values (i.e. 13055), 

appears as the lower bound of the first crisp interval, u1, and the highest value (i.e. 14696), appears 

as  the upper  bound in the second crisp interval,  u2.  Normally these  values  cannot  be matched 

precisely without  adjusting the segment  length,  due to rounding errors  occurring as a  result  of 

equation 48 and 50. 

Nonetheless,  we  are  now able  to  fuzzify  the  first  four  historical  enrollments  according  to 

membership functions A1 and A2, defined by:

A1={
0, x12547

x−12547
13055−12547

, 12547≤x≤13055

1, 13055≤ x≤13602
14149−x

14149−13602
, 13602≤x≤14149

0, x14149.

and

A2={
0, x13602

x−13602
14149−13602

, 13602≤ x≤14149

1, 14149≤x≤14696
15204− x

15204−14696
, 14696≤x≤15204

0, x15204 .

43

Figure 10. Generated membership functions.



Note the intervals overlap so more than one interval may be met. For example, the enrollment for 

year 1973 is 13867. This value meets both membership functions. The membership degree in A1 is 

0.5155 ≈ 0.52, and in A2, it is 0.4845 ≈ 0.48. Hence the enrollment for 1973 is fuzzified as A1. A 

special case occurs when the membership degree is 0.5, as this implies a that value has the same 

membership status in two different sets. In such cases, the respective value is associated to both A1 

and A2.

Year Enrollment Fuzzy set Membership degree

1971 13055 A1 1

1972 13563 A1 1

1973 13867 A1 0.52

1974 14696 A2 1

Table 12. Fuzzified enrollments 1971 - 1974.

By processing the entire enrollment dataset from table  4, the resultant trapezoidal sets are as 

shown in table 13. A complete overview of the fuzzified enrollments is shown in table 14. 
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Fuzzy set Fuzzy number

A1 (12861,13055,13245,13436)

A2 (13245,13436,13626,13816)

A3 (13626,13816,14007,14197)

A4 (14007,14197,14388,14578)

A5 (14388,14578,14768,14959)

A6 (14768,14959,15149,15339)

A7 (15149,15339,15530,15720)

A8 (15530,15720,15910,16101)

A9 (15910,16101,16291,16482)

A10 (16291,16482,16672,16862)

A11 (16672,16862,17053,17243)

A12 (17053,17243,17433,17624)

A13 (17433,17624,17814,18004)

A14 (17814,18004,18195,18385)

A15 (18195,18385,18576,18766)

A16 (18576,18766,18956,19147)

A17 (18956,19147,19337,19531)

Table 13. Generated fuzzy sets by processing the enrollment data from 1971 - 1992.

Year Enrollment Fuzzy Set

1971 13055 A1

1972 13563 A2

1973 13867 A3

1974 14696 A5

1975 15460 A7

1976 15311 A7

1977 15603 A7

1978 15861 A8

1979 16807 A11

1980 16919 A11

1981 16388 A10

1982 15433 A7

1983 15497 A7

1984 15145 A6

1985 15163 A6

1986 15984 A8

1987 16859 A11

1988 18150 A14

1989 18970 A16

1990 19328 A17

1991 19337 A17

1992 18876 A16

Table 14. Fuzzifying annual enrollments.

45



Generally it is assumed that the fuzzy sets, A1 , A2,, An, individually represent some linguistic 

value.  With  17  intervals,  however,  linguistic  values  may not  make  much  sense.  In  the  model 

proposed here, this issue is ignored because linguistic values generally do not serve any purpose in 

FTS what so ever - although they may be useful in certain applicative contexts.

4.3 Evaluating the Proposed Fuzzification Algorithm
In the following section, we're going to evaluate the proposed FA by applying it directly to 

Chen's model [3,31] for different orders. The first experiment is apply the algorithm to Chen's first 

order model [3] and compare performance with the one in [4], where the authors also apply their 

algorithm directly to Chen's model. Next, performance will be evaluated for different model orders 

by comparing results to the ones reported by Chen in [31]. 

To evaluate performance across models,  the mean squared error (MSE) and mean absolute 

percentage error (MAPE) are used as performance measures. The respective measures are defined 

by the equations

 MAPE=1
n∑t=1

n ∣ forecast t−actual t∣
actual t

×100 (53)

and

 MSE=1
n∑i=1

n

 forecast i−actual i
2 . (54)

From fuzzified data in table 14, we get the following first order relationships:

 A1 → A2  A8 → A11  A6 → A8

 A2 → A3  A11 → A11  A11 → A14

 A3→ A5  A11 → A10  A14 → A16

 A5 → A7  A10 → A7  A16 → A17

 A7 → A7  A7 → A6  A17 → A17

 A7 → A8  A6 → A6  A17 → A16

Table 15. First order relationships.

Moreover, from the data in table 15, we get the following first order FLRG's:

Group 1:  A1 → A2 Group 7: A11 → A10,  A11, A14

Group 2:  A2 → A3 Group 8: A10 → A7

Group 3:  A3→ A5 Group 9: A6 → A6, A8

Group 4:  A5 → A7 Group 10: A14 → A16

Group 5:  A7 → A6, A7, A8 Group 11: A16 → A17

Group 6:  A8 → A11 Group 12: A17 → A16, A17

Table 16. First order FLRG's.
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To  defuzzify  forecasted  output,  we  can  use  the  centroid,  given  by  equation  13.  For  a 

symmetrical fuzzy number Ai = (a, b, c, d), this computation can be reduced to finding the midpoint 

of the crisp interval of ui, given by [b, c]. Based on the FLRG's shown in table 16, forecast results 

are derived as shown in table 17. 

Year Enrollment Chen
[3]

Cheng et al
[4]

Proposed FA

1971 13055 - - -

1972 13563 14000 13531 14230

1973 13867 14000 13912 14230

1974 14696 14000 14673 14230

1975 15460 15500 15435 15541

1976 15311 16000 15435 15541

1977 15603 16000 15435 15541

1978 15861 16000 15435 16196

1979 16807 16000 16958 16196

1980 16919 16833 17211 16196

1981 16388 16833 17211 17507

1982 15433 16833 15435 16196

1983 15497 16000 15435 15541

1984 15145 16000 15435 15541

1985 15163 16000 15435 15541

1986 15984 16000 15435 15541

1987 16859 16000 16958 16196

1988 18150 16833 17211 17507

1989 18970 19000 18861 18872

1990 19328 19000 19242 18872

1991 19337 19000 19052 18872

1992 18876 19000 19052 18872

- - -

MSE 407507 261162 119096

MAPE 3.11% 2.66% 1.42%

Table 17. Comparing forecast results when order = 1.

Forecasted results are calculated according to the same principles shown earlier in section 3.2, 

in step 6. Referring to table 17, we see that forecast error is reduced when applying the proposed FA 

to Chen's first order model, since the FA case has the lowest MSE and MAPE vis-à-vis the other 

models referred to in the table. 

In the second experiment, the FA has been applied directly to Chen's high order model [31] for 
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different orders. Experimental results, in form of MSE and MAPE, are presented in table 18. 

Order MSE
Chen [31]

MSE 
proposed

FA

MAPE
Chen [31]

MAPE
proposed

FA

2 89093 10787 1.62% 0.56%

3 86694 10543 1.56% 0.54%

4 89376 11099 1.57% 0.56%

5 94536 11715 1.65% 0.58%

6 98215 11486 1.68% 0.57%

7 104056 10371 1.74% 0.53%

8 102179 10960 1.70% 0.55%

9 102789 10049 1.68% 0.52%

Table 18. Comparing results for higher orders.

Again, we see better results are obtained when using the proposed FA vis-à-vis the interval 

partition used by Chen in [31]. We will briefly illustrate how some calculations are derived for the 

second order case. The second and third order FLRG's, obtained from table 14, are shown in table 

19 and 20, respectively.

Group 1: A1, A2 → A3 Group 6: A7, A8 → A11 Group 12: A6, A6 → A8

Group 2: A2, A3 → A5 Group 7: A8, A11 → A11 Group 13: A6, A8 → A11

Group 3: A3, A5 → A7 A8, A11 → A14 Group 14: A11, A14 → A16

Group 4: A5, A7 → A7 Group 8: A11, A11 → A10 Group 15: A14, A16 → A17

Group 5: A7, A7 → A7 Group 9: A11, A10 → A7 Group 16: A16, A17 → A17

A7, A7 → A8 Group 10: A10, A7 → A7 Group 17: A17, A17 → A16

A7, A7 → A6 Group 11: A7, A6 → A6

Table 19. Second order FLRG's.

Group 1: #, A1, A2  → A3 Group 6: A7, A7, A7 → A8 Group 11: A11, A10, A7 → A7 Group 16: A6, A8, A11 → A14

Group 2: A1, A2,  A3 → A5 Group 7: A7, A7, A8 → A11 Group 12: A10, A7, A7 → A6 Group 17: A8, A11, A14 → A16

Group 3: A2,  A3, A5 → A7 Group 8: A7, A8, A11 → A11 Group 13: A7, A7, A6 → A6 Group 18: A11, A14, A16 → A17

Group 4: A3, A5, A7 → A7 Group 9: A8, A11, A11 → A10 Group 14: A7, A6, A6 → A8 Group 19: A14, A16, A17 → A17

Group 5: A5, A7, A7 → A7 Group 10: A11, A11, A10 → A7 Group 15: A6, A6, A8 → A11 Group 20: A16, A17, A17 → #

Table 20. Third order FLRG's.

Generally  the  forecasting  part  is  trivial,  except  for  a  few  special  cases.  For  example,  when 

forecasting  year  1977,  an  ambiguity  occurs.  To  see  this,  consider  the  following  second  order 

relationship from table 14, for t = 1977:

 F t−2, F t−1 F t =F 1975, F 1976F 1977=A7, A7 A7.
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The above relationship matches group 5 in table 19. But two other identical left hand sides exist for 

group 5. Therefore, we need to find the corresponding third order relation. Again, for t = 1977, we 

get the following third order FLRG from table 14:

F t−3, F t−2, F t−1 F t =F 1974, F 1975, F 1976F 1977=A5 , A7 , A7 A7 .

At  this  point,  no  ambiguities  are  found  in  table  20 for  the  corresponding  FLRG.  Hence  the 

forecasted result, Y 1977, is computed as the midpoint of the crisp interval, u7,  in the fuzzy set A7 

= (15149,15339,15530,15720). The computation yields

Y 1977=1533915530
2

≈15435.

In the current example, we have demonstrated how forecast accuracy is influenced by different 

interval partitions. From my own standpoint, this is an additional drawback of current FTS models. 

The reason for this is rooted in the assumption that intervals should reflect the same characteristics 

as the data they represent, as this is more useful from a data analytical perspective. So, although 

comparative results presented in the current section favour the proposed FA in terms of forecast 

accuracy, this has not been the primary goal. Rather the goal has been to develop a method which 

objectively determines interval partitions without requiring any user intervention. 

4.4 Defuzzifying Output
In the previous sections, the fuzzification part has been discussed. In the following section we 

will present a novel approach to defuzzify forecasted output. The defuzzification method presented 

here comprises the following steps:

Step 1: Establish fuzzy set groups (FSG's).

Step 2: Convert the FSG's into corresponding if statements.

Step 3: Train the if-then rules.

Step 4: Derive forecasts.

Before  we  go  into  details  with  the  individual  steps,  it  is  important  to  understand  how 

defuzzified output is computed. First recall from the definition provided in section 2.13, that an n-

order fuzzy relationship is denoted as F t−n ,,F t−2, F t−1F t , where  F represents a 

fuzzified forecast value at time t. In traditional FTS, it is assumed that the left hand side of the fuzzy 

relation is fuzzified in the same manner as the right hand side. For example, if F, on the left hand 

side, represents a trapezoidal set, then F, on the right hand, side represents a trapezoidal set as well. 
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In the modified version introduced here, this notion has been revised such that F t  is given by the 

following defuzzification operator, Y t , defined by

 Y t=∑
i=1

n

a t−i⋅w i

where w i∈[0,1]
(55)

and at-i denotes the actual value at time t - i. Otherwise stated, the defuzzified output is the weighted 

sum of the actual values from time t−n to t−1, where  n depends on the time series span. For 

example, if n = 2, we have

Y t=a t−1⋅w 1a t−2⋅w 2. (56)

One question needing to be addressed is how the defuzzification operator deployed here should 

be interpreted from a fuzzy logical point of view. The thought here is simply to consider the weights 

as a fuzzy relationship between past values (inputs) and the future value (output). Each wi represents 

the strength of the causal relationship between a given input and some unknown output. The closer 

wi is to 1, the stronger the relationship and vice versa.

It has to be stressed that the defuzzification operator introduced here is not an aggregation 

operator from a traditional point of view, since it does not satisfy all of the basic conditions of 

aggregation (see  Appendix II). The proposed operator has been specifically adapted to solve the 

problem at hand because none of the other operators discussed earlier have been found useful in this 

context. Averaging operators, for example, never produce outputs less than the minimum value of 

arguments or larger than the maximum value of arguments. In the current situation, this requirement 

is undesirable due to the fact that future demand patterns often fluctuate beyond the boundaries of 

previous min and max values. To illustrate this, we need to take a closer look at the enrollment data 

in table  17. For  t = 1973 and n = 2, we get,  a1972  = 13563 and a1971  = 13055. Assuming Y(t) is an 

averaging operator, output is restricted to the interval [13055,13563]. However actual output for t = 

1973 is 13867 which is out of reach by any averaging operator. Consider another case for t = 1981 

and n = 2. We then get a1980 = 16919 and a1979 = 16807. If Y(t) is the min operator, we get min(a1980, 

a1979) = 16807, and, if Y(t) is the max operator, we get max(a1980, a1979) = 16919. But actual output for 

t = 1981 is 16388 which also is unreachable by any averaging operator. As a consequence, a basic 

requirement for the defuzzification operator proposed here, is that it covers a broader interval than 

min and max. A reasonable assumption with regards to the bounds of arguments, at -  i, is that they 

are within the limits of the defined universe set.
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4.4.1 Establishment Fuzzy Set Groups (FSG's)
In  conventional  FTS,  fuzzy  relationships  are  identified  immediately  after  data  have  been 

fuzzified. However, in the model presented here, the right hand side of the fuzzy relation is not 

known  until  the  weights  have  been  determined.  So,  instead  of  identifying  relationships  and 

establishing FLRG's, we establish fuzzy set groups (FSG's). The purpose of the FSG establishment 

is to partition historical data into unique sets of sub patterns which subsequently are converted into 

corresponding if statements. During the first pass of the algorithm, consecutive sets are grouped 

pairwise. Table 21 show the fuzzified data in table 14 grouped in this manner. Every FSG appears in 

chronological order.

Label FSG Label FSG

1 {A1, A2} 12 {A7, A7}

2 {A2, A3} 13 {A7, A6}

3 {A3, A5} 14 {A6, A6}

4 {A5, A7} 15 {A6, A8}

5 {A7, A7} 16 {A8, A11}

6 {A7, A7} 17 {A11, A14}

7 {A7, A8} 18 {A14, A16}

8 {A8, A11} 19 {A16, A17}

9 {A11, A11} 20 {A17, A17}

10 {A11, A10} 21 {A17, A16}

11 {A10, A7}

Table 21. Establishment of FSG's.

To exemplify the principles of grouping, consider year 1971, 1972 and 1973 which respectively 

are fuzzified as  A1,  A2 and  A3 (see table  14). The pairwise grouping of sets is carried out in the 

following order:

{ F t−2 , F t−1}={ Ai , t−2 , Ai , t−1}.

The above group,  with  two elements,  is  referred  to as  a  second order  FSG.  By following this 

principle, the following two second order FSG's are derived: 

{ F 1971, F 1972}={ A1 , A2} and { F 1972, F 1973}={ A2 , A3}.

In table 21, these groups are labelled as 1 and 2, respectively. 

Ultimately,  the goal  of  grouping sets  in this  manner  is  to  obtain a  series of FSG's  free of 

ambiguities.  An  ambiguity  occurs,  in  this  context,  if  two  or  more  FSG's  contain  the  same 

combination of elements/sets - i.e. they are not unique. From table  21, it can be seen that not all 

FSG's are unique. Note that the FSG's labelled as 5, 6 and 12 are identical, as is the case with 8 and 

16. In order to obtain a series of disambiguated FSG's, we extend the ambiguous FSG's to third 
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order FSG's, by including the previous set in the corresponding time series. For a second order FSG, 

the combination ,{ F t−2 ,F t−1}, is extended to include F t−3, so the respective FSG now 

equals the following third order FSG: { F t−3, F t−2, F t−1}. Table 22 shows the extensions 

of the ambiguous FSG's identified in table 21.

Label {F(t - 2), F(t - 1)} F(t - 3) Extended FSG
{F(t - 3),F(t - 2), F(t - 1)}

5 {A7, A7} A5 {A5, A7, A7}

6 {A7, A7} A7 {A7, A7, A7}

8 {A8, A11} A7 {A7, A8, A11}

12 {A7, A7} A10 {A10, A7, A7}

16 {A8, A11} A6 {A6, A8, A11}

Table 22. Extending ambiguous FSG's.

The extension process is continued until a unique combination of elements is obtained for each 

FSG. From table 22, we see that only a single extension is required to obtain a unique combination 

of elements in this particular case. An updated overview of the FSG's in table 21 is shown in table 

23. 

Label FSG Label FSG

1 {A1, A2} 12 {A10, A7, A7}

2 {A2, A3} 13 {A7, A6}

3 {A3, A5} 14 {A6, A6}

4 {A5, A7} 15 {A6, A8}

5 {A5, A7, A7} 16 {A6, A8, A11}

6 {A7, A7, A7} 17 {A11, A14}

7 {A7, A8} 18 {A14, A16}

8 {A7, A8, A11} 19 {A16, A17}

9 {A11, A11} 20 {A17, A17}

10 {A11, A10} 21 {A17, A16}

11 {A10, A7}

Table 23. Disambiguated FSG's. 

4.4.2 Converting FSG's into if statements
Defuzzified  output, Y t,  is obtained by matching historical patterns with a corresponding if-

then rule. The if statements are generated on basis of the content of the FSG's. This task is fairly 

simple as the sequence of elements of each FSG is the same as they appear in time. That is, for any 

FSG of size n, the elements appear in the same sequence as in the corresponding time series:

F t−n , F t−n1,, F t−1.

Each FSG can be therefore easily be transformed into if-then rules of the form:
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if F t−1=Ai , t−1∧F t−2=Ai , t−2∧∧F t−n1=Ai , t−n1∧F t−n=Ai ,t−n ;

then w1, t−1=?∧w 2,t−2=?∧∧wn−1, t−n1=?∧wn , t−n=?

For  practical  reasons,  the  sequence  of  conditions  in  the  if-statement  appear  in  reversed  order 

compared to their equivalent FSG's. For example, an FSG of the form:

{ Ai ,t−2, Ai ,t−1},

is converted into an equivalent if-rule of the form:

if F t−1=Ai , t−1∧F t−2=Ai , t−2.

When a rule is matched, the resultant weights are returned and the forecasted value, Y t, is 

computed according equation 55. To illustrate this, suppose we need to find a matching if-then rule 

when  forecasting  the  enrollment  for  year  1973.  From  table  14,  we  get F 1971=A1 and

F 1972=A2 for t = 1973. Now, assume the following if-then rule already exists in the current rule 

base:

if F t−1=A1∧F t−2=A1;
then w1, t−1=0.6488∧w2,t−2=0.3882 .

The above rule is then matched as:

if F 1973−1=A1∧F 1973−2=A1 ;
then w1,1972=0.6488∧w2,1971=0.3882.

Using equation 55, the forecasted enrollment for year 1973 is computed as

Y 1973=13563⋅0.648813055⋅0.3882=13867.62≈13868 .

By processing all of the data in table 23, a series of incomplete if statements are generated as 

shown in table 24. In order to determine the weights, we utilize PSO (see section 2.12) to train the 

rules individually to match the data they represent.
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Rule Matching part

1 if F t−1 =A2∧F t−2 =A1

2 if F−1 =A3∧F t−2=A2

3 if F t−1 =A5∧F t−2 =A3

4 if F t−1 =A7∧F t−2 =A5

5 if F t−1 =A7∧F t−2 =A7∧F t−3=A5

6 if F t−1 =A7∧F t−2 =A7∧F t−3 =A7

7 if F t−1 =A8∧F t−2 =A7

8 if F t−1 =A11∧F t−2=A8∧F t−3 =A7

9 if F t−1 =A11∧F t−2 =A11

10 if F t−1 =A10∧F t−2 =A11

11 if F t−1 =A7∧F t−2 =A10

12 if F t−1 =A7∧F t−2 =A7∧F t−3=A10

13 if F t−1 =A6∧F t−2 =A7

14 if F t−1 =A6∧F t−2 =A6

15 if F t−1 =A8∧F t−2=A6

16 if F t−1 =A11∧F t−2=A8∧F t−3 =A6

17 if F t−1 =A14∧F t−2 =A11

18 if F t−1 =A16∧F t−2 =A14

19 if F t−1 =A17∧F t−2=A16

20 if F t−1 =A17∧F t−2=A17

21 if F t−1 =A16∧F t−2 =A17

Table 24. Generated if rules in chronological order.

4.4.3 Training the if-then rules with PSO
In the following we are going to provide an example of how PSO is utilized to tune the weights 

in the defuzzification operator in equation 55. The user defined parameters are set as follows1:

● The inertial coefficient, ω, equals 1.4.

● The self confidence and social confidence coefficient, c1 and c2, respectively, both equals 2. 

● The minimum and maximum velocity is limited to [-0.01,0.01].

● The minimum and maximum position is limited to [0,1].

● The number of particles equals five.

The fitness function employed here is the squared error (SE), defined by

1 The parameters are selected based experimental results.
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 SE= forecastt−actual t
2 (57)

Basically the idea is to evaluate the aggregated result, Y t , against the actual outcome at time 

t, and adjust the weights in the defuzzification operator such that the squared error is minimized. By 

minimizing SE for  each  t,  MSE is  minimized as  well.  In  the following example,  the  stopping 

criteria is defined by setting the minimum SE to 3 and the maximum number of iterations to 5002. 

During the first step of the algorithm, the weights (positions) are initialized. Note we assume 

the existence of a stronger relationship between actual output and the more recent observations in 

the time series data. So, if F t−1 is fuzzified as  Ai and F t−2 as  Aj, a stronger relationship is 

assumed  to  exist  between  Ai and Y t  than  between  Aj and Y t . Therefore,  relatively  higher 

weights are assigned to the most recent observations when positions are initialized. Applying this 

approach,  wt-i will  usually remain larger than  wt-i+1 at  the point of termination. Table  25 and  26 

respectively show the initial positions and velocities of all particles for a matching rule R.

Particle Position 1 (w1) Position 2 (w2) SE

1 0.75 0.5 8,024,473

2 0.75 0.5 8,024,473

3 0.75 0.5 8,024,473

4 0.75 0.5 8,024,473

5 0.75 0.5 8,024,473

Table 25. Initial positions of all particles.

In the example above, rule 1 in table 24 is trained. As can be seen from table 25, the personal best 

positions are the same for all particles during initialization. Hence the personal best positions equals 

the global best position for all particles.

Particle v1 v2

1 0.0049 0.0011

2 0.0032 0.0065

3 0.0034 0.0081

4 0.0023 0.0009

5 0.0007 0.0048

Table 26. Randomized initial velocities of all particles.

When all particles and velocities have been initialized, the velocities are updated before positions 

are incremented. Velocities are updated according to equation 40. The computations yield:

2 Stopping criteria is determined on basis of experimental results.
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v1,1=1.4⋅0.00492⋅r10.75−0.752⋅r2 0.75−0.75 =0.0069
v1,2=1.4⋅0.00112⋅r10.5−0.52⋅r20.5−0.5 =0.0015
v 2,1=1.4⋅0.00322⋅r10.75−0.752⋅r 20.75−0.75 =0.0045
v 2,2=1.4⋅0.00652⋅r10.5−0.52⋅r 20.5−0.5 =0.0091
v3,1=1.4⋅0.00342⋅r10.75−0.752⋅r 20.75−0.75 =0.0048
v3,2=1.4⋅0.00812⋅r10.5−0.52⋅r2 0.5−0.5 =0.0113
v 4,1=1.4⋅0.00232⋅r10.75−0.752⋅r 20.75−0.75 =0.0032
v 4,2=1.4⋅0.00092⋅r 10.5−0.52⋅r 20.5−0.5 =0.0013
v5,1=1.4⋅0.00072⋅r10.75−0.752⋅r2 0.75−0.75 =0.0001
v5,2=1.4⋅0.00482⋅r10.5−0.52⋅r20.5−0.5 =0.0067.

Positions  are  incremented  according  to  equation  41.  Incremented  positions  after  the  first 

iteration are shown in table 27. 

Particle w1 w2 SE

1 0.7549 0.5011 8,488,885

2 0.7532 0.5065 8,767,574

3 0.7534 0.5081 8,907,895

4 0.7523 0.5009 8,269,618

5 0.7507 0.5048 8,438,491

Table 27. The positions of all particles after the first iteration.

After the first iteration, none of the computed SE values in table 27 are less than 8,024,473. Thus no 

personal  best  positions  nor  global  best  positions  are  reached at  this  point.  At  some point,  the 

stopping criteria is met and the algorithm terminates.  The personal best positions of all particles 

after termination are listed in table 28.

Particle w1 w2 SE

1 0.6738 0.3699 10159

2 0.6854 0.3502 1

3 0.6686 0.3662 325

4 0.6724 0.3482 40597

5 0.6879 0.3383 14522

Table 28. The personal best positions of all particles after termination.

According to table 28, particle 2 has the global best position. Hence the weights associated to rule R 

equals 0.6854 and 0.3502. The pseudo code for the training algorithm is shown on page 57.
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PSO algorithm for training of the if-then rules

Precondition: a set of untrained if-then rules
Postcondition: a set of trained if-then rules

for all rules Rid {
1. if a matching pattern id = {Aid,t - 1 ˄…˄ Aid,t - n -1 ˄ Aid,t - n} is found for rule Rid {

1.1. retrieve actual value, at-i, from dataset, from index i = 0 to n.
1.2. initialize global best fitness value as SEglobal_best = +∞

for each particle, pi, from index i = 1 to z {
1.3. initialize position, wij, from index j = 1 to n.
1.4. initialize velocity, vij, from index j = 1 to n.
1.5. compute defuzzified output, Y t i , by

Y t i=∑
j=1

n

at− j⋅wij .

1.6. compute squared error, SEi, by
SE i=Y ti−actual t

2 .
1.7. initialize local best fitness value, SElocal_best, as 

SElocal_best = SEi

1.8. initialize local best position, local_bestij, as
local_bestij = wij from j = 1 to n

1.9. if SEi < SEglobal_best {
1.9.1. update global best fitness value, SEglobal_best, value as

SEglobal_best  = SEi 
1.9.2. update global best position, global_bestj, as 

global_bestj = wij from j = 1 to n
}//if

}//for
while stopping criteria is unsatisfied{

for each particle, pi, from index i = 1 to z {
1.10. update velocity, vij, from j = 1 to n by

vij = ω.∙vij + c1∙r1(local_bestij - wij) + c2∙r2(global_bestj - wij)
1.11. if  Vmin  > vij

1.11.1. set vij = Vmin

1.12.  if Vmax < vij

1.12.1. set vij = Vmax

1.13. update position from index i = 1 to n by
wij = wij +  vij

1.14. goto step 1.5.
1.15. goto step 1.6.
1.16. if SEi < SElocal_best {

1.16.1. update local best fitness value by 
SElocal_best = SEi

1.16.2. update local best position by 
local_bestij = wij from i = 1 to n

}//if
1.17. if SEi < SEglobal_best  {

1.17.1. update global best fitness value by
SEglobal_best  = SEi

1.17.2. update global best position by
global_bestij = wij from i = 1 to n

}//if
}//for

}//while
2. update then-part of rule Rid as

w id , t−1=global _ best1∧∧w id , t−n−1=global _ best n−1∧wid ,n=global _best n
}//for
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After the weights have been optimized via PSO, the 'blanks' in the then part can be filled. The 

partially completed if-rules from table 24 are shown in fully completed form in table 29. The fixed 

parameters supplied to the training algorithm are equivalent to the those listed on page 54.

Label Matching part Weights 

1 if F t−1 =A2∧F t−2 =A1 then w1 = 0.6488 and w2 = 0.3882

2 if F−1 =A3∧F t−2=A2 then w1 = 0.6586 and w2 = 0.4102 
3 if F t−1 =A5∧F t−2 =A3 then w1 = 0.667 and w2 = 0.408

4 if F t−1 =A7∧F t−2 =A5 then w1 = 0.6395 and w2 = 0.369 
5 if F t−1 =A7∧F t−2 =A7∧F t−3=A5 then w1 = 0.4411, w2 = 0.3158 and w3 = 0.2699

6 if F t−1 =A7∧F t−2 =A7∧F t−3 =A7 then w1 = 0.4638, w2 = 0.4645 and w3 = 0.0978

7 if F t−1 =A8∧F t−2 =A7 then w1 = 0.6695 and w2 = 0.3967 
8 if F t−1 =A11∧F t−2=A8∧F t−3=A7 then w1 = 0.4379, w2 = 0.3892 and w3 = 0.2171

9 if F t−1 =A11∧F t−2 =A11 then w1 = 0.1604 and w2 = 0.8137

10 if F t−1 =A10∧F t−2 =A11 then w1 = 0.5497 and w2 =0.3798

11 if F t−1 =A7∧F t−2 =A10 then w1 = 0.5997 and w2 =0.3809 
12 if F t−1 =A7∧F t−2 =A7∧F t−3=A10 then w1 = 0.4151, w2 = 0.3966 and w3 = 0.1582

13 if F t−1 =A6∧F t−2 =A7 then w1 = 0.6194 and w2 = 0.3731

14 if F t−1 =A6∧F t−2 =A6 then w1 = 0.7524 and w2 = 0.302

15 if F t−1 =A8∧F t−2=A6 then w1 = 0.3869 and w2 = 0.704 

16 if F t−1 =A11∧F t−2=A8∧F t−3=A6 then w1 = 0.4668, w2 = 0.3847 and w3 = 0.2725

17 if F t−1 =A14∧F t−2 =A11 then w1 = 0.654 and w2 = 0.4212

18 if F t−1 =A16∧F t−2 =A14 then w1 = 0.635 and w2 = 0.4012

19 if F t−1 =A17∧F t−2=A16 then w1 = 0.6202 and w2 = 0.3874

20 if F t−1 =A17∧F t−2=A17 then w1 = 0.5932 and w2 = 0.3831

21 if F t−1 =A16∧F t−2 =A17 then w1 = ? and w2 = ?

Table 29. Generated if-then rules in chronological order.

4.5 Conclusion
This section has presented a modified high order FTS model. Introductory, a novel FA was 

proposed based on the trapezoid fuzzification approach [4]. The proposed algorithm can be applied 

to any FTS model incorporating interval partitions. The algorithm is regarded as an improvement of 

similar work [4] in the sense that fuzzification is carried out automatically. Experimental results 

indicate that forecast accuracy can improved using the proposed FA although this was not the goal 

per se. Actually the main intention has been to develop an approach where interval partitions are 

determined objectively without the need of user intervention. Based on current test results,  it  is 

believed this goal has been achieved.
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The emphasis of the work presented here has been to improve consistency between forecast 

rules and the data they derive from. In order to achieve this, a defuzzification operator is proposed 

ad hoc. In traditional models, output is defuzzified via interval (or fuzzy set) operations, whereas in 

the proposed model, defuzzified output is a weighted sum of actual values. By utilizing PSO and 

aggregation, forecast rules can be individually tuned to match the data they represent, regardless of 

the chosen interval partitions. Overall experimental results are presented in the next section.
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5 Experimental Results
In  section  4,  the  concepts  of  a  new  FTS  model  were  discussed  but  we  have  not  yet 

demonstrated overall model performance in terms of forecast accuracy. The purpose of this section 

is to evaluate the performance of the proposed model vis-à-vis other related prediction models. 

Performance is  compared by the  same principle  as  previously shown in  the  thesis,  namely by 

evaluating the performance of forecast rules, using the same dataset they derive from. 

5.1 Comparing different FTS models
Year Actual 

Enrollment
Chen

(order = 3)
[31]

Li / Cheng
[8]

Sing
(order = 3)

[32]

Chen/Hsu
[17]

Chen/Chung
(order = 9)

[15]

KUO et al
(order = 9)

[30]

Proposed 
model

1971 13055 - - - - - - -
1972 13563 - 13500 - 13750 - - -
1973 13867 - 13500 - 13875 - - 13868
1974 14696 14500 14500 14750 14750 - - 14696
1975 15460 15500 15500 15750 15375 - - 15460
1976 15311 15500 15500 15500 15313 - - 15309
1977 15603 15500 15500 15500 15625 - - 15602
1978 15861 15500 15500 15500 15813 - - 15861
1979 16807 16500 16500 16500 16834 16846 - 16806
1980 16919 16500 16500 16500 16834 16846 16890 16919
1981 16388 16500 16500 16500 16416 16420 16395 16390
1982 15433 15500 15500 15500 15375 15462 15434 15434
1983 15497 15500 15500 15500 15375 15462 15505 15497
1984 15145 15500 15500 15250 15125 15153 15153 15143
1985 15163 15500 15500 15500 15125 15153 15153 15163
1986 15984 15500 15500 15500 15938 15977 15971 15982
1987 16859 16500 16500 16500 16834 16846 16890 16859
1988 18150 18500 18500 18500 18250 18133 18124 18150
1989 18970 18500 18500 18500 18875 18910 18971 18971
1990 19328 19500 19500 19500 19250 19334 19337 19328
1991 19337 19500 19500 19500 19250 19334 19337 19336
1992 18876 18500 18500 18750 18875 18910 18882 18875

- - - - - - -
MSE 86694 85040 76509 5611 1101 234 1

MAPE 1.53 1.53 1.41 0.36 0.15 0.014 0.006

Table 30. Comparing different fuzzy time series models.

Different FTS models are compared in terms of MSE and MAPE in table 30. All of the FTS 

models referenced in the table, are among those with the highest forecasting accuracy found in 

literature. The MSE and MAPE of the proposed model is 1 and 0.006, respectively. Both measures 
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are lower than for any of the referenced models in the table. Based on these results,  it  can be 

concluded that the proposed model outperforms any existing FTS model in the training phase. 

Introductory, in section 1, it was argued that the number forecast rules decreases as the order 

increases in high order models.  This is evident from table  30,  when considering the forecasted 

enrollments by the two models by Chen/Chung [15] and Kuo et al [30], as it can be noted that the 

first  7 - 8 years of enrollment are not forecasted. Moreover,  by increasing the order,  additional 

combinations of patterns (fuzzy sets) have to be matched which reduces the probability of finding 

equivalent pattern combinations in future data.

5.2 Conclusion
Comparative  experiments  conducted  so  far  show that  the  proposed  model  outperforms its 

counterparts.  However  there  is  not  sufficient  evidence  to  conclude  whether  this  is  a  good 

forecasting method in general, since this requires more extensive research. Because this method of 

forecasting is inherently rule based, its practical usefulness highly depends on its abilities to derive 

matching forecast rules, and consistency of those, under unknown conditions. This, however, has 

not been the focus area of the current project nor any other related research found in literature. So, 

as for now, this aspect of FTS remains virtually unexplored.
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6 Final Conclusion
This  project  contributes  to  current  research in two ways.  First,  a  novel  approach has been 

developed which combines aggregation and PSO. By combining these techniques, forecast rules can 

be individually tuned to match the data they represent, regardless of selected interval partitions. It 

has been found that the individual tuning of rules reduces the need to increase the model's order to 

improve forecast accuracy, as opposed to the models recently published by the authors in [15] and 

[30].  As a consequence, better data utilization is achieved in form of: (1) an increased number of 

forecast  rules;  (2)  fewer  pattern  combinations to  be  matched with future time series  data.  The 

second contribution to current research, is a fuzzification algorithm, developed as a byproduct. The 

algorithm, which is a further improvement of the work published in [4], uses an objective measure 

to automatically generate interval partitions. Experimental results indicate that forecast accuracy 

may be improved, using the proposed fuzzification approach. All in all, comparative experiments 

confirm the proposed model's superiority over its counterparts under known conditions. However 

true performance under unknown conditions has yet to be confirmed. 
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8 Appendix I
In this section we will show how the multi-argument form of the algebraic sum, in equation 38, is 

derived as a proof of induction.

Step 1.

First we must show that statement S i=1
n x ias= 1−∏i=1

n
1− x i is true for the base case, n=2 . For 

n=2 we get:

S i=1
2 x ias= x1 x2−x1⋅x2=1−1−x11−x2  = 1−∏i=1

n
1− xi .

That is, the statement holds for n = 2.

Step 2.

Assume that the same statement holds for n = k. We must then show that the statement is true for n 

= k + 1. Now let y=S i=1
k  xias=1−∏i=1

n
1−x i. Then we get S i=1

k1x i= yxk1− y⋅xk1 , or:

S i=1
k1x i = 1−∏i=1

k
1−x ixk1−1−∏i=1

k
1− xi⋅x k1

=1−∏i=1

k
1−x ixk1− xk1−xk1⋅∏i=1

k
1−x i

=1−∏i=1

k
1− x i xk1− xk1 xk1⋅∏i=1

k
1− x i

=1−∏i=1

k
1− x i xk1⋅∏i=1

k
1− x i

=1−∏i=1

k
1− x i⋅1−x k1

=1−∏i=1

k1
1−x i.

Since S i=1
n x ias= 1−∏i=1

n
1− x i applies for n = k + 1, it remains true for every positive integer n 

by the induction principle which concludes the proof.
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9 Appendix II
In  this  section  we will  examine  whether  the  defuzzification  operator  in  equation  55 is  an 

aggregation operator in classical fuzzy logic sense. Recall  from section  2.11 that an aggregation 

operator is a real function h, mapped over the unit interval:

h : [0,1]n[0,1]

which as minimum satisfies the following conditions:

1. h 0, ,0=0 and h 1, ,1=1 (boundary conditions);

2. h x1 , , xn≤ h y1 , , yn, if x i ≤ y i for all i∈ℕ ; (monotonic increasing)

3. h is continuous with respect to each of its arguments;

To  see  whether  condition  1  holds,  we  assume the  operator  in  55 only  accepts  arguments 

between 0 and 1. From equation  55 we know that the weights,  wi, are subjected to the condition

0w i1. This  implies  that  the  largest  possible  output  is  obtained  when  wi =  1  for  all i∈ℕ .

Therefore we select  wi = 1 for all arguments  ai. Now we can easily see that the lower boundary 

condition  is  satisfied  since a1⋅1a2⋅1an⋅1=0 , if  ai =  0  for  all i∈ℕ . Regarding  the  upper 

boundary condition, it can easily be seen that it holds for the unary case (i.e. n = 1), since a1⋅1=1 , if 

a1 = 1. However for n ≥ 2, it does not hold since the statement a1⋅1a2⋅1an⋅1=1 is not true, 

if ai = 1 for all i∈ℕ .  Hence the operator in equation 55 is not an aggregation operator with regards 

to condition 1. Monotonicity and continuity are trivially satisfied.
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