
Privacy aware P2P Friend Locator

Ove Andersen
xcalibur@cs.aau.dk

Aalborg University
Department of Computer Science

Selma Lagerløfs Vej 300, DK-9220 Aalborg Ø
Denmark

Abstract

A friend locator is a location-based service that is used
to detect proximity of when two users are within a user de-
fined distance of each other. When such a service is to be de-
veloped for mobile users, two main topics needs to be taken
into account. First of all, privacy is a very essential ele-
ment. The users must not risk revealing personal informa-
tion about their locations and whereabouts. Second, com-
munication costs is still a very essential topic, when consid-
ering mobile devices connected to the Internet.

To meet these two general requirements, this paper
presents a peer-to-peer location-based service, that is op-
timized both for privacy and for minimizing communication
costs. Three main techniques are employed to reach this
goal, namely cloaked regions, dynamic shifted circles and
secure multi-party computations. This has ended up with a
solution, where a user only communicates with the friends it
wishes to detect proximity with, and all a user knows about
a friend is, how for away the friend is, with some degree of
imprecision. The user does not know in which direction the
friend is located, thus it is hard to guess where the friend
is located. To reduce communication costs, buffer zones for
each user is generated, that allow the user to move freely
around within this zone without having to perform any lo-
cation updates. The solution is flexible, due to proximity
distance and precision can be adjusted for each pair of
friends. The design has been implemented in a prototype,
and tests have been performed to show that it is communi-
cational wise effective.

1 Introduction

Positioning technology today is a widely used term and
is used in many different contexts and applications. When

talking about positioning capabilities, people often think
of the GPS system, but in fact, many other technologies
are used, like Bluetooth or Wi-Fi. In common for these
technologies are, that the receivers are getting continuously
smaller and cheaper, thus they are implemented in even
more and smaller devices. Today a chip, which is fully ca-
pable of receiving and translating signals from GPS satel-
lites, does not need to measure mere than 3.6x2.4x0.6 mm.
in size and use as little as 15 mW when in use1. At this size,
it is no wonder why such technologies are being featured in
a broad range of mobile products like PDA’s, cell phones,
smart phones, and so on.

Communicating with the world, while on the move, is
a trend that has been going on for some time. It has been
popular to use mail and surf the Internet while being away
from a permanent location, but due to high speed mobile
communication, like 3G and the enhancements of this, an
entire new marked has been opened. Devices, such as Ap-
ples IPhone and devices using Google’s software platform,
Android, are intended to be connected to the Internet all the
time, and other platforms are following in the same direc-
tion. Features, such as streaming video and music, using
widgets for fetching weather forecasts, stock rates, or lat-
est news are examples of such services, that usually makes
use of an Internet connection and has become very popular
among users of mobile devices.

When we are in possession of both a positioning tech-
nology and we have the possibility of communicating with
the world, everything needed for a Location-Based Service
(LBS) is present. A LBS is a service that, using a user’s lo-
cation, can provide convenient information to the user while
on the move. A user on the move, or a mobile user, might
want to know where the nearest shopping mall is, how far
away the next gas station is, or if any other users are within
a certain distance. For a user, a LBS is a simple service, that

1Specifications of the NXP Semiconductor GNS7560 GPS chip



can provide exactly such information wherever they are and
whenever they need it.

Many different LBS’ exists for dealing with various
types of problems, but not much work has been done when
considering proximity detection between friends. Some
projects do though exist, for example Google Latitude [3]
which gives the ability of telling other where you currently
are located and [24], which can tell if two friends are within
some proximity distance. Both projects makes use of a
server, to which the users send some information about their
location.

On the more technical side, a LBS’ can be categorized
into two different main types of architectures; Peer-to-peer
and centralized. If a service is centralized, then a central-
ized server is used as some kind of gathering point for the
users, At some times, at least, they will communicate with
a server that is used to provide and/or keep track of some
information. This server could for example keep track of
all the users using a service and could tell whether they are
close to any other users they might know. The advantage
of this type of service is, the data could be stored a central
place, heavy calculations could be put onto the server, and
it might also help reducing the communication costs of a
LBS. A great disadvantage of the centralized method is, it
can be hard to guarantee the trustworthiness of the server.
If the server gets corrupted by an adversary, everything it
receives could be disclosed. This might be the location of
the users, account information, or who are friends of a user.
Thus, when working with centralized LBS’ a lot of work
has to be put into guaranteeing the privacy of the users sen-
sitive information, they might share with the service.

The other type of architecture, without a centralized
server, is called a peer-to-peer solution, P2P. P2P denotes,
that all communication takes place in between the users of
the LBS only. No external servers are involved, thus the
problems of guaranteeing the trustworthiness of the central-
ized model is not present here. All data is kept on the users
themselves, and each user decides which other users they
trust their sensitive data to. One disadvantage of this archi-
tecture is, that distributing data between several users can
be more expensive communicational wise. Also, there is
no centralized data storage, thus this method is only usable
for some LBS’. E.g. it would probably not be the preferred
architecture for a LBS that generate statistics over multiple
users patterns, or when the next bus leaves from the sta-
tion. For such kinds of services a centralized data storage is
probably preferred.

When considering the application of getting to know
when a user is within proximity, both architectures are us-
able. The P2P way has the advantage, that each user de-
cides which other users it trusts and will share information
about its location with. When two users trust each other, the
are said to be friends, and when two friends wants to know

whether they are within proximity, they do not need to in-
volve anybody else about this friendship. But even though
the users are friends and they trust each other, they do not
necessarily want to disclose everything about their location
to each other. Maybe a users device could get compromised
or stolen, and the friends should not be in risk, just because
they were friend of an unlucky user. Thus privacy also needs
to be taken into account in a P2P LBS.

Many solutions for preserving privacy in LBS’ exists,
but most concerns are related to centralized LBS’. Either
they concerns querying public data (such as a gas station,
which does not risk anything by revealing its location) or
they concern hiding the users location from the centralized
server itself. To solve this problem, using a P2P architec-
ture, an algorithm is presented, that preserves the privacy
of all the users, while two friends still gets to know when
they are within proximity. The strength of this algorithm
is, that even though one user gets malicious, it cannot get
to know where its friends are located, and it would have no
impact on the performance or quality of the service. Be-
cause the solution is meant to be deployed on mobile de-
vices, communication costs must be considered as signifi-
cant. If communication costs was not an issue, the friends
could calculate the distance between them all the time, and
they would know exactly when they were within proxim-
ity. Thus a method for reducing the number of messages is
needed for the system to be practically usable.

The motivation for this paper is to find a way of making a
P2P solution for a friend locator service, that addresses the
problems of both preserving privacy and reducing commu-
nication costs. By preserving privacy is meant, that as little
information as possible about a user should be revealed to
the other users. The information, that a user want to hide in
this context is its exact location.

In Related Work, section 2, three different topics are dis-
cussed, and what other work has been done in these areas.
First of all, location privacy in LBS’ are introduced, where
especially cloaking techniques are touched. Second, prox-
imity detection is discussed, where several techniques are
introduced and is described why they are not directly appli-
cable for this work. At last the topic of secure multi-part
computations is introduced, which could help improve pri-
vacy of this service, by hiding in which direction the friends
are located.

In this paper, a P2P solution is presented, that informs
two friends when they are within proximity. All communi-
cation goes on directly between the users, and no external
servers are used at all. For the users to preserve privacy,
they use a location within a cloaked region instead for their
exact location, along with methods for hiding their actual
location. The only data known to a friend of a user is,
how far away they are from each other, without revealing
in which direction. To optimize communication costs, users

2



will be moving within buffer zones, where they do not need
to do any location updates. In order to prove that the service
works and is efficient, experiments will be performed on a
model of the system.

Section 2 will cover what work has been done, related
to this project, and Section 3 will define the problem defi-
nition and introduce some notations for later use. Section
4 describes the ideas and theory for how the problems will
be solved, and Section 5 will show how the system is to be
practically designed. Section 6 will cover what experiments
have been performed on the implemented model and ex-
plain the results, while at last Section 7 will conclude what
has been achieved with this paper.

2 Related Work

For this work, three sets of studies are relevant; location
privacy, proximity detection, and secure multi-party compu-
tation. The studies of location privacy is the study of how
privacy can be obtained in a system, where some sensitive
information must be shared. Proximity detection is used
to reduce the communication costs of the system and de-
termine whether two users are within proximity or not, and
secure multi-party computation is the study which is used to
perform calculations on private data between several users.

Location Privacy When revealing information about a
persons location to other services or people, location pri-
vacy is a very essential subject. According to [12, 18, 23],
GPS devices have been used for stalking people in many
cases. This ranges from surveiling elderly people to stalk-
ing ex-girlfriends, and even the Police are known to use
GPS devices for stalking people. The seriousness of GPS
stalking can be seen by the usage of GPS in police actions
in the USA now is being questioned in court [11].

Many spatial cloaking algorithms have been proposed,
such as [5, 6, 8, 10, 15, 16, 19, 26]. The general idea of
a cloaking algorithm is, to hide a user’s location from other
users of a service, or from the service itself. The approaches
differs in the way they do this. One way is to obfuscates a
user’s location among other users, say the cloaking region
for a user contains k other users. This approach is called
k − anonymity and is widely used in many approaches,
but the disadvantage of this method is, that for a user to
know how large the cloaking region must be, it needs to
know where at least k other users are located. Therefore
this is often done in a secure third-party server, called an
anonymizer, which is not available in a entirely P2P solu-
tion. Therefore the simplest way a user can hide it’s exact
location is, to generate a cloaking region of a desired size,
and use a random location within this region as its location.
Thus the other users does not know where the user is exactly
located, only to some degree of uncertainty.

Proximity detection Proximity detection is the ability of
tracking users movements relevant to each other and reduc-
ing communication costs by reducing the number of loca-
tion updates a user needs to do. This is done by making
some rules for when a user must submit its location and
when it is not needed. Say, if the users is moving within a
very small area, this might not be interesting for some ap-
plications, and therefore the user does not need to perform
a location update, thus the communication cost has been re-
duces.

Many studies have been performed on proximity and
separation detection among mobile users in 2D space,
[1, 13, 20, 21]. When considering mobile users, proxim-
ity detection is especially relevant due to that mobile clients
are often reduced by low bandwidth and high communica-
tion price.

Figure 1. The strips strategy

The strips strategy, proposed in [1, 13], is an algorithm
that generates a strip between two users to reduce commu-
nication costs. This is practically done, shown in Figure
1, by calculating the Euclidean distance, denoted —a-b—,
between between the two users, a and b. In the middle be-
tween the two users, ε(a, b), a strip is made S(a, b) with a
center axis I(a, b) and the width R. As long as none of the
users enters or crosses the strip, S(a, b), no location updates
will be performed between these two users. The width R of
the strip is a buffer zone, which is needed to ensure that the
users cannot stand next to each other, being in proximity, on
each side of the strip without knowing.

Another approach is the dynamic centered circles strat-
egy, proposed in [13, 20], which generates a circle around
each user, and as long as the user is moving within this cir-
cle, no updates are being performed. As shown in 2, user
A, B, and C have reported their location to a centralized
server. The actual locations of the users are marked by x
and the center of their circles marked by a ring and each
user generates a new circle only, when they get outside their
own. In this figure, userA has crossed its circle and has just
generated a new circle. This is done with respect to the cir-
cles that the other users are currently using, and they will
not know anything about the user now generates a new cir-
cle. The circle is optimized to be the largest possible, but
it has to be p away from the other users circles, to ensure

3



Figure 2. The dynamic centered circles strategy

that proximity will be detected, if the users gets closer than
p. Therefore, it is user B’s circle, that limits the size of A’s
new circle.

Figure 3. The dynamic shifted circles strategy

An extension of the dynamic centered circles strategy
is the dynamic shifted circles strategy, [13], which shifts
away the center of the circle from the users location. This is
done to optimize the size of the circle, as shown in Fig-
ure 3, where A’s center of its newly generated circle is
shifted away from A’s actual location. The centered cir-
cle is showed by a dashed line, and this must entirely be
covered by the shifted circle. Now the circle is optimized to
be only p away from both B and C, and the area the circle
covers is improved.

The dynamic centered circles and dynamic shifted cir-
cles strategy are both intended to work with a centralized
server. This is due to, that each user only has one circle, and
to generate a users circle, some information of all the other
users are needed. If this is to be done on the users side, then

the user must know all the other users circles. This strips
algorithm is on the other hand calculated between each pair
of users, and this can be done fairly easy on the client. The
downside of this method is, that if this is implemented in
a P2P system, each users must know in which direction all
the other users are along with how far away they are. So ac-
tually each user must know the precise location of the other
users according to its own location. This is not optimal if
location privacy is a concern in the system.

Secure Multi-party Computation Secure Multi-party
Computation (SMC) is a study initially started in 1982 by
Andrew C. Yao, when he introduced the millionaire prob-
lem in [27]. In general terms, the millionaire problem de-
scribes, how two millionaires, Alice and Bob, can find out
who is richer without revealing their wealth to each other.
So SMC is in this case used to calculate and reveal which is
richest and ensure that neither Alice nor Bob gets to know
anything about the others wealth.

In general SMC can be said to be the computational re-
placement of a trusted third party. Alice and Bob could have
told a trusted person their wealth and the person could then
have done the computations and revealed the result. SMC
has since 1982 been extended by many, [2, 7, 9, 14, 25, 28],
to be usable for a lot of different areas.

In the area of geometry, SMC has also found its place.
When talking about privacy in LBS, several studies have
been performed which makes use of SMC when working
with objects in 2D spaces. [25] has proposed a solution
that can detect collisions between two moving circles. This
could be a usable solution in a system where two friends
wants to know when they are within proximity. The prob-
lems is that this solution is not optimized for communica-
tion and therefore it might not be the optimal solution for a
mobile service.

Other studies, such as [2, 14], considers the relations be-
tween different shapes in a geometric 2D space, such as the
relation between a private point and a circle area, the rela-
tion between a private point and an ellipse area, the relation
between private sets of points, and most interesting, the dis-
tance between two private points. The distance between two
private points, proposed by [14], is interesting, because, if
two users only knows the distance between them, they do
not know in which direction each other is located.

This is depicted in figure 4, where user u only knows,
that user v is ε(u, v) away, but not in which direction. This
is depicted, by four example locations of v, but actually, v
could be anywhere on the arc of the circle. This will help
improving privacy, because it helps hiding the other users
locations.

4



Figure 4. What u knows about v’s location when
direction is hidden.

3 Problem Definition

For this work, a large number of mobile users are as-
sumed present. These users must all be equipped with
some positioning technology and have have the ability of
exchanging data in between each other. The solution is
completely P2P and does not require or make use of any
kind of third party server.

For all the users, each pair of users can either be mutual
friends or not friends at all, i.e. if some user u is friend
with user v then user v is also friend with user u, but user
u cannot be friend with user v if v is not a friend of user u.
When two users are friends, it overall means that both users
wants to be informed when another is within some proxim-
ity distance. More specific it also means that they trust each
other and they are willing to reveal some sensitive informa-
tion about their location to each other, thus they must have
some trust to each other.

Figure 5. An overview of a sample system, with
users a through f and their friendships.

Figure 5 shows an example system with the users a-f

and how they are related in friendships. Each line indicates
that there is a friendship between a pair of users, and the ar-
rows indicates that the friendship is mutual. It is displayed,
that user a is mutual friend with the users b, e, and f , but
that does not mean that the friends of a user has to be friends
with each other too. It is also possible, that a users might
be using the system, but none of its friends are available,
shown by user c.

For each pair of friends, say user a and b, both users
must have agreed on a mutual distance for when they wants
to be informed of proximity. The mutual proximity distance
is denoted as prox(a, b) and the actual Euclidean distance
between the two users is denoted as dist(a, b). To introduce
some freedom in the service, β is used as a buffer variable.
This will help the service to reduce the number of proximity
messages that might emerge, if two users are stepping in
and out of proximity. Therefore, the following rules are
applicable to user a:

1. If dist(a, b) ≤ prox(a, b), user a will be notified it is
within proximity of user b, and vise versa.

2. If prox(a, b) ≤ dist(a, b) < prox(a, b) + β, user a
might be notified it is within proximity of user b, and
vise versa.

3. If prox(a, b) + β ≤ dist(a, b), user a will be notified
it is not within proximity of user b, and vise versa.

To make the system as flexible as possible, the β variable
is not constant, but can be different between each pair of
friends. This means, if a pair of friends requires absolute
precision, they can eliminate β and they will know exactly
when they are within proximity. Then the following rules
are applicable for user a:

1. If dist(a, b) ≤ prox(a, b), user a will be notified it is
within proximity of user b, and vise versa.

2. If dist(a, b) > prox(a, b), user a will be notified it is
not within proximity of user b, and vise versa.

For the service to be practically usable and desired by
users, some requirements must be set. First of all, the ser-
vice must include some privacy features, that can help guar-
anteeing the privacy of the users. Second, the users does
not want to reveal anything to other users of they system
they do not know. This is fairly easy to obtain, due to the
P2P architecture, which makes it possible for the user it-
self to decide which users it wants to communicate with.
When concerning the friends of a user, the user might not
want to disclose everything about its location either, thus
some techniques for preserving some location privacy must
be adapted or developed. When talking about a mobile ser-
vice, some optimizations might be necessary. Both compu-
tational capabilities and communicational wise the devices

5



might be limited. Thus the service must be effective and
not overcome the capabilities of the device, but since users
might have different requirements to precision, the preci-
sion must be variable between each pair of friends, along
with the desired proximity distance..

Using these properties, it is possible to develop a sys-
tem, that is both effective, optimized for mobile terminals,
preserves user’s location privacy, and is flexible, due to the
possibility of changing resolution of precision and desired
proximity distance.

4 The friend locator idea

Motivated by having a friend finder solution for mobile
users, without the security issues of having a third-party
host, a P2P solution is developed. First of all the general
idea is introduced and some characteristics of the system is
described. Then a method for hiding a user’s location within
a cloaked region is described, a method for improving the
privacy of a user is discussed and at last, proximity detec-
tion along with communication optimization is presented.
Table 1 covers some general notations used in this section,
and the following properties applies to the system and the
solution:

System: The systems exists of mobile users only. No ex-
ternal hosts or services are available.

Friends: The system exists of many users. If two users
want to detect proximity between them, they must be
mutual friends, like u and v.

Communication: All pair of mutual friends will commu-
nicate directly between each other. If two users are not
friends, they will not communicate at all.

Proximity: A pair of friends will want to know when they
are within some defined mutual proximity distance of
each other.

Privacy: Due to privacy issues, none of the friends want
to reveal their actual location, only how far away from
each other they are to some degree of precision.

Flexibility: The uncertainty distance for when two friends
might be within proximity can be changed. This will
balance precision of the service against communica-
tion costs.

Throughout the entire section, two friends (users with
mutual friendship) are used as example, namely user u and
v. All users are moving around on a 2D map of the world
covered by a homogeneous X,Y co-ordinate system.

Notation Meaning
u A user in the system. When using u as a

location, u’s exact location is used.
C(u) User u’s private cloaking region. This re-

gion is used to pick a random location for
a user to use instead of a user’s actual loca-
tion.

Cr(u) The private radius of user u’s cloaking re-
gion, C(u). The center must be in the
user’s actual location, u.

up User u’s submitted location, which must be
within the cloaking region, C(u).

B(u) User u’s private buffer zone. This zone is
an area, where the user can move within
without having to submit any updates.

Br(u) The private radius of user u’s buffer zone,
B(u). The center must be in a user’s sub-
mission point, up

ε(a, b) The Euclidean distance between two loca-
tions. A location can either be a user’s
exact location, u, or a users submitted
cloaked location, up.

θ(u, v) The distance for when the two friends u
and v wants to be informed of proximity.

α The precision of proximity detection.

Table 1. Table of Notations

4.1 Hiding location using cloaking regions

When two friends want to find out, whether they are
within proximity or not, they will need to find out how far
away from each other they are. This could easily be done,
as depicted in Figure 6, by one of the two friends, say v,
submits its exact location to u. Then u would be able to
calculate the exact distance between the two users, and they
would know if they are within proximity. However, if they
want to gain some privacy, this method is not very fit to
use. Nothing is hidden from the friends and all friends of v
would at any time be aware of its location.

Figure 6. The simplest solution

Figure 7 shows how v could use an imprecise location
point, when u wants to calculate the distance to v. In-
stead of v submitting its exact location, it could submit any
point within a private cloaking region. The cloaking region,

6



Figure 7. User v uses vp as location instead of v

C(v), is a private region with a radius Cr(v), which is only
known to v. This cloaking region is used to choose a ran-
dom imprecise location, instead of using v’s exact location,
to be submitted to u. This random location is described as
vp and could be located anywhere within C(v) with radius
Cr(v) and the center in v’s exact location. The advantage of
this secret cloaking region is, that u now does not know v’s
exact location, but only vp. And since u does not know any-
thing about v’s C(v), u cannot for sure know where vp is
located compared to v, thus v’s locations has been cloaked.

Figure 8. What u knows from what v reveals

An example of what u knows of user v’s location is de-
picted in Figure 8. Both users have generated a cloaked
region, i.e. Cr(u), Since v has submitted vp to u, it can
only know how far away, with some uncertainty v is. The
figure shows what variables u knows. Variables unknown to
u is surrounded by ?, like ?Cr(v)?, and areas unknown to
u are surrounded by a dashed line. Since ?Cr(v)? is private
to v, u cannot know how large C(v) is nor where the center
is located, therefore v could be anywhere. This is depicted
by three example ?v?, as examples of where v could be.
Since u has used its exact location to calculate the distance,
ε(u, vp), it knows approximately how far away v is, but it
can never know the precise distance, due to vp, which is the
downside of this method. The price for some privacy is the
risk of inaccurate results, when users get close to proximity.
This do of cause depend on the size of the cloaked region,
Cr(v) - the larger cloaked region, the worse the guarantees
gets.

4.2 Hidden direction using secure multi-party
computations

Even though a cloaked regions hides a users exact lo-
cation within an area, friends of the user still have a good
idea about where the user is located. The only parameter
required for the system to be usable is, that the friends must
know something about how far away they are from each
other. Therefore, if it is possible to hide everything except
for what is required for the service to run, privacy would be
optimized for the job.

Figure 9. What u knows about v’s location when
direction is hidden.

Secure multi-party computations (SMC) is a way of do-
ing computations on multiple sets of sensitive data and get-
ting a result without revealing anything about the sensitive
data to the different parties. In [14], a method for calcu-
lating the distance between two private locations have been
developed. That means, say u and v, can find out how far
away from each other they are, without revealing anything
about their actual locations. This is shown in Figure 9. Here
user u and v’s exact locations are used, and the figure shows
what user u knows of user v’s location, namely the distance
between u and v, ε(u, v). Therefore u only knows that v is
located somewhere on the arc of the circle, but not in which
direction. This is depicted by four possible locations, ?v?,
for v.

The algorithm proposed in [14] calculates the distance
between two private points and it is functional and effective
in terms of messages, therefore this will be used as a basis
for hiding the users direction from friends. But due to the
SMC, it is a bit more communication wise expensive, so
when u has calculated the distance to v, u could send this to
v instead of letting v do the same calculations.

If this SMC approach is being applied, then each user
will not know in which direction the friends are, but it will
know exactly how far away they are. This might be a prob-
lem, because if a user compares this arc, where a friend is
located on, to a map, there might be very few possible lo-
cations where the friend actually could be located. This is

7



Figure 10. Example of where a friend could be lo-
cated, compared to a user.

shown in Figure 10, where a user knows that a friend is on
the arc of the circle somewhere. Most of the arc is located in
the water, thus there is a great possibility that the friend is in
this small band that is located on land, and it might be easy
to guess the friends exact location. To help this problem,
the cloaking region comes in handy. This will help hiding
the friends actual location and introduce some uncertainty.

Figure 11. What u knows about v’s location when
using cloaking region along with hidden direction.

To ensure privacy of the two friends, neither u nor v
uses their exact location for the SMC calculation, but in-
stead up and vp, as shown in Figure 11. These locations are
picked randomly within their respectively cloaking regions,
i.e. Cr(u). Now the distance between the two submission
points is known to the two friends, and it is calculated to be
ε(up, vp), and u only knows, that vp is somewhere on the arc

of the depicted full line circle. Five example locations of vp

is shown, with examples of how the entire cloaking region
of v, Cr(v) could be. All unknown variables to u is again
surrounded by ? and unknown areas surrounded by dashed
lines. Thus, the only thing u know of v’s location is, that
v must be within the gray area, which is size 2∗?Cr(v)? -
and because ?Cr(v)? is unknown to u, the width of the gray
area is also unknown to u.

4.3 Proximity detection and bandwidth reduction

When two users are moving in the system, some tech-
niques needs to be deployed to detect whether they are
within proximity or not. To ensure this, we need to detect
both proximity and separation of each pair of friends. Prox-
imity detection is used to detect when two users get within
some user defined proximity distance, θ(u, v), and separa-
tion detection is needed to detect when the two users get
further away from each other than θ(u, v). Another subject
that needs to be taken into account is bandwidth optimiza-
tions. When two friends, u and v, are moving around on a
2D map, the distance between them, ε(u, v), will be con-
stantly changing. It could be tempting to continuously cal-
culate the distance between the two users and check if they
get within proximity. But this approach would be very ex-
pensive, both computation and communication wise. Each
time one of the users would update it’s location, the ε(u, v)
from before would be obsolete, and they would need to cal-
culate a new ε(u, v) to ensure proximity or separation.

Figure 12. Both users finds a private submission
point and calculates the distance between these.

For these problems, a modified version of the Dynamic
Shifted Circles (DSC) strategy will be used. DSC is first of
all used to create a buffer zone for a user. Normally DSC
shifts away the center of the circle from the users exact lo-
cation to optimize the size of the circle. But here, we shift
away the center of the circle to hide the user’s exact loca-
tion from the other users. If use use user u as example, it
would first have a cloaking region, C(u), and somewhere
random within this cloaking region it will pick a location as

8



a submission points, up, to be used instead of u’s exact loca-
tion. u’s buffer zone would be B(u), and the center of this,
would be the shifted location, up, and u would be able to
move freely around within this buffer zone without having
to worry about doing any proximity calculations. As long as
u is within this zone, it will not get within proximity. This
will greatly reduce the communication costs, while it can
also be used to detect proximity.

Rule no. Rule and meaning, using u as example
#1 Cr(u) < θ(u, v)

The radius of the cloaking region must be
lower than the desired proximity distance,
and u’s location must be the center of the
circle. If the size of the radius violates Rule
#4, it must be decreased.

#2 C(u) ⊂ B(u)
The cloaking region must be covered en-
tirely by the buffer zone, thus u’s actual lo-
cation will also be covered by the buffer
zone.

Table 2. General rules for proximity detection.

First of all, u finds a location for submission, up, within
it’s cloaking region C(u), and the same does v. This is
shown in Figure 12 which shows an overview of the sys-
tem with the two users. The submission locations are found
by generating a cloaking region, which, due to the Rule
#1 of Table 2, must have a radius lower than the proxim-
ity distance, and the center of the cloaking regions must
be the users actual location. Each user chooses a random
location within this circle and they calculate the distance
between the two submission locations, ε(up, vp), using the
SMC method, hence they have no idea in which direction
the other user is located.

Three different modes are possible for a pair of friends
to be in, and they are described separately. These modes
defines, if the friends are within no chance of proximity,
Section 4.3.1, might be within proximity, Section 4.3.2, or
certainly are within proximity, Section 4.3.3.

4.3.1 No chance of proximity

When there is no chance for the two friends to be within
proximity, the rules of Table 3 are used. Using Figure 13,
we can show, the smallest distance between the two friends
submission points, up and vp, which is possible before there
is a chance of proximity. Rule #1 states, that the maximum
size of the radius of the cloaking regions must be lower than
the distance of proximity, thus, if both Cr(u) and Cr(v) is
greater than θ(u, v), and the users are not within proximity,
then ε(up, vp) > θ(u, v)+2∗θ(u, v), or shorter ε(up, vp) ≥
3 ∗ θ(u, v).

Rule no. Rule and meaning, using u as example
#3 ε(up, vp) > 3 ∗ θ(u, v)

The distance between up and vp must al-
ways be greater than three times the de-
sired proximity, to guarantee no chance of
proximity.

#4 Br(u) > ε(up, vp)/2− θ(u, v)/2
The radius of the buffer zone is half the
distance between up and vp minus half the
proximity distance. When both users use
this rule, they cannot get within proximity
without overstepping the buffer zone. The
center of the circle must be in the submit-
ted location point, up.

Table 3. Rules for when users are not within chance
of proximity.

Figure 13. The smallest distance between two sub-
mission points without chance of proximity.

Figure 14. The size of the buffer zone.

9



If there is no chance of proximity, each user, here u,
will generate a buffer zone, B(u). Here u can move freely
around within, without risking getting within proximity,
thus there is no reason for doing any location updates ei-
ther. Figure 14 shows the buffer zones as dotted circles,
while the dashed circles are the cloaking regions. The
size of the buffer zone is given by Rule #4, which states
Br(u) > (ε(up, vp)/2 − θ(u, v)/2). This means, that the
buffer zone shall cover the largest possible area, without
risking the users might get within proximity. This is done
with concern to Rule #2. Since we know from Rule #1, the
radius of the cloaking region must be lower than the prox-
imity distance and the center must be in the user’s exact
location, we now know, that up can be up to θ(u, v) closer
to vp and v than u, thus the submission points can always
be the closest point between two users. Rule #2 then tells
us, that the cloaking region must be covered entirely by the
buffer zone. Therefore, if we ensure there is θ(u, v) dis-
tance between B(u) and B(v), we can then guarantee, that
there is no risk of the two users getting within proximity
when they are moving within their respective buffer zones.
If the buffer zones cannot be created without violating Rule
#21, the user needs to reduce its cloaking region and start
over, by recalculating ε(up, vp).

4.3.2 Maybe proximity

If Rule #3 cannot be satisfied, then there is a chance that the
users are within proximity, and they switch to this mode.
Figure 13 shows the smallest distance between two users
without there is any chance of being within proximity, while
Figure 15 shows, the greatest distance between u and v pos-
sible, if Rule #3 is not satisfied. If this is the case we know,
ε(up, vp) ≤ 3∗θ(u, v). u can be up to Cr(u) away from up,
and the same applies to v. Using the rules in Table 4, we can
now decide when users are within proximity or not. If Rule
#3 is not satisfied, but Rule #5 is, the the distance between u
and v must be 5∗θ(u, v) > ε(u, v) > θ(u, v)+θ(u, v)/α∗2.
In this case, the users are close to each other, but not within
proximity, and using random locations within their cloaked
regions as submissions locations would introduce too great
imprecision, thus Rule #8. Rule #6 says, that if there is no
chance that, using precise submission points, the users will
be within maybe proximity, there is no need to be in this
mode. Therefore they will have to go back to the no prox-
imity mode and use the rules from Table 3 instead.

Instead of using up and vp for submission, both now use
their exact location, u and v. This guarantees exact preci-
sion and reduces the risk of false positive/negative proxim-
ity detections. In this mode, a new method is used when
users are testing for proximity. Figure 16 shows how this is
done practically. First, the two users calculates the distance
between them as always, using SMC. Then they divide the

Rule no. Rule and meaning, using u as example
#5 epsilon(u, v) > θ(u, v) + θ(u, v)/α ∗ 2

For the users to be within chance of prox-
imity, but not within proximity, they must
be greater than the proximity distance, plus
some precision.

#6 ε(u, v) ≤ 5 ∗ θ(u, v)
For the users to stay within the chance of
proximity mode, the distance between the
two friends must be less than five times the
desired proximity distance. If this is not the
case, the rules from Table 4 will be used.

#7 Br(u) > ε(u, v) − (θ(u, v) + θ(u, v)/α ∗
2)/2
The radius of the buffer zone, when within
chance of proximity, is half the distance
between u and v minus half the proxim-
ity distance. When both users use this rule,
they cannot get within proximity without
overstepping the buffer zone. The center
of the circle must be in the users actual lo-
cation, u.

#8 up = u
When within chance of proximity, no
cloaking region is used. This for ensuring
precision of the distance when this is small.

Table 4. Special rules for when within chance of
proximity.

Figure 15. The greatest distance between two sub-
mission points while violating Rule #3.

Figure 16. The method of detecting proximity be-
tween two users.

10



space between them into zones using α as precision. α de-
cides how many zones the proximity distance, θ(u, v), is to
be divided into.

Figure 17. An example of user u moving within
proximity of user v.

If the distance between the two users is greater than
θ(u, v) + θ(u, v)/α ∗ 2, they are not within proximity, and
both users calculates the radius of their buffer zones using
Rule #7 instead of Rule #4. θ(u, v) + θ(u, v)/α ∗ 2 is the
smallest distance between two users possible before the two
users are within proximity, and then they are within the two
closest zones before proximity, as shown in Figure 16.

If the distance is smaller than θ(u, v) + θ(u, v)/α ∗ 2,
they are very close to each other, and proximity will be
notified both users. An example of this is showed in Fig-
ure 17, where two users has gotten within close distance
of each other. v is standing still, for simplicity, and u
is moving towards v. Precision is set to α = 4, which
means that, the size of each zone is θ(u, v)/4. For the
users to be within proximity, the distance then has to be
ε(u, v) ≤ θ(u, v) + θ(u, v) ∗ 4 ∗ 2(θ(u, v) ∗ 1.5). If e.g.
α was set to α = 1000, the distance would have to be
ε(u, v) ≤ θ(u, v)+θ(u, v)/1000∗2(θ(u, v)∗1.002), hence
better precision. The first step shows, the two users are be-
tween 2 and 2.5 times θ(u, v) away from each other. User
u then moves towards v, crosses three zones and when it
oversteps its buffer zone, they will recalculate the distance
between them. Then the users are between 1.5 and 2 times
θ(u, v) away from each other, and a new set of zones is cal-
culated. Both users also calculate a new buffer zone, and
this time user u crosses two zones before overstepping its
buffer zone. When recalculating again, both users find out
they are within within 1.5 ∗ θ(u, v), thus they are within
proximity.

The reason for, why the algorithm does not continue nar-

rowing down to exact proximity, but uses α instead, is be-
cause the buffer zone would only get smaller for each time
u oversteps it. u cannot cross over any zones anymore, and
next time u oversteps, the buffer zone would be half the size
of what it is now, thus the number of recalculations would
increase heavily until proximity will occur. Therefore it is
possible to increase α if improved proximity is desired, but
this at the costs of more calculations, because the buffer
zone can get smaller.

4.3.3 Proximity

#9 epsilon(u, v) ≤ θ(u, v) + θ(u, v)/α ∗ 2
For the users to be within proximity they
must violate Rule #3 and greater than the
proximity distance, plus some precision.

#10 Br(u) = (θ(u, v) + θ(u, v)/α ∗ 2 −
ε(u, v))/2
The radius of the buffer zone, when users
are within proximity, is optimized for as
large an area as possible, without any of the
users can move outside of proximity with-
out overstepping their buffer zones.

Table 5. Special rules for when within proximity.

When two users are within proximity, they must obey
Rule #9 from Table 5 and they use a third method of calcu-
lating their buffer zones. This is shown in Figure 18, where
u and v are depicted with their buffer zones, dotted cir-
cles, and proximity zones, dashed circles. Their proximity
zones are constantly changing, while the users are moving,
thus we need to generate some buffer zones, that will detect
when there is a risk they get outside each other proximity
zones. The maximum distance between them must never
be more than θ(u, v) + θ(u, v)/α ∗ 2, and each user must
take into account, that both users could be moving away
from each other, thus Br(u) = (θ(u, v) + θ(u, v)/α ∗ 2 −
ε(u, v))/2, also given by Rule #10. Then we have taken into
account that the users are located ε(u, v) away from each
other, and by dividing with 2, they are able to move into
opposite directions, and if they get outside proximity, we
would know it due to one or both users would leave their
buffer zones. If the users get outside proximity, they will
use the methods of maybe within proximity for calculating
buffer zones.

5 System design

In this section, the friend finder approach will be de-
signed with all the techniques from Section 4. The sys-
tem will be a P2P system, hence only a client is needed,
and all communication will go on directly in between these.

11



Figure 18. The users buffer zones, when within
proximity.

Each user will be able to have an undefined number of
friends, which it can detect proximity between. The prox-
imity distance between each pair of friends can be differ-
ent, but the proximity distance between two mutual friends
must be agreed, so the distance is equal both way, thus
θ(u, v) = θ(v, u). The precision of proximity, described as
α is, just like the proximity distance, agreed between each
pair of friends. Thus, the precision requirements can be dif-
ferent between different pair of friends.

5.1 The client design

The client software will be defined by using handler al-
gorithms, which will be raised on different events. An event
could be when a remote request from a friend is received,
when a user joins the system, when proximity is possible,
etc. The basic handlers of the system are:

Startup When a client joins the system, the following han-
dler is raised. This connects to the other friends, which
are within the system, and initializes proximity track-
ing between them.

LocationChanged When the location of a client is
changed, this handler is raised. This will compute if
any boundaries are crossed or any other actions should
be taken.

MessageReceived(msg, args) A handler executed, when
a message is received from another client. This handler
decides what should be done from the type of message
defined by msg with arguments args, is received. The
types of valid messages are presented in Table 6.

Each user contains some general information, such as
a list of friends, which the user wishes to be informed of,

Message
Type

Args Description

MSMC ... Calculates the distance be-
tween two users submitted lo-
cations. This is done using
SMC, and requires a user iden-
tification along with a used
proximity. This is seen as
a black box and requires sev-
eral messages both ways, there-
fore the arguments are not pre-
sented.

Mdist u, dist,
prx

A user sends to a friend its own
id, the distance between them,
and information of how close to
each other they are or if they are
within proximity.

Table 6. Types of messages and their arguments

Symbol Meaning
loc The users current location.
FS A list of all the friends of a user.
.x/.y The coordinates of a location, i.e. loc.x is

the x-coordinate of loc.

Table 7. Table describing what data a user gener-
ally always holds.

when it is within proximity with. These data is presented in
Table 7. The user needs to keep some information on each
friend, along with some information concerning proximity
calculation between that friend, such as a desired proxim-
ity distance and precision, last distance, and so on. All the
information, each user contains about a relationship with a
friend is described in Table 8.

Calculating the distance between two private points, us-
ing SMC, has been done before in [14]. Their Protocol 1
does exactly this. The algorithm is effective and efficient.
If we have two users, u and v, and u wants to calculate
the distance to v, u will have to send, in total, 4 messages
to v, and v will have to send 3 messages back, plus two
times of 1-out-of-n oblivious transfers. 1-out-of-n oblivi-
ous transfers have been reduced to two rounds by [17] and
[22]. Therefore, the total number of messages used, when
getting the distance between two users, using SMC would
be 4 + 3 + 4 = 11.

Algorithm 2 describes how SMC is used in this work,
and starts out by selecting whether to use the exact location
or a cloaked location and then initiates the SMC algorithm
by sending the initial call to the friend. Algorithm 3 is the
event handler for when a friend initiates a distance calcu-

12



Symbol Meaning
prox The desired proximity distance.
prec The desired precision level.
distold The distance between a user and a friend at

last location update.
locold The exact location of the user at last loca-

tion update.
loctmp A temporary location variable for remem-

bering what location was used at last dis-
tance calculation.

locp old The submission point used at last location
update.

Cr old The radius of the cloaking region used at
last location update.

Br old The radius of the buffer zone used at last
location update.

proximity Whether two friends are within proximity,
or close to each other. 0 is no chance of
proximity. 1 is within chance of proximity,
but not within proximity, and 2 is within
proximity.

Table 8. Table describing what a user knows of a
friend.

Data: Fs ⊆ C, ∀F ∈ Fs u ∈ F.Fs - U ’s list of
friends. A friendship must be mutual.

CLR : F 7→ N - a function, that returns a usable
radius for the cloaking region. Concerns Rule #2 in
Table 2.
CL : F 7→ P - a function, that returns a random
location within the cloaking region, depending on the
settings of the friend given as input.
BR : F 7→ N - a function, that returns a radius of a
possible buffer zone, depending of the settings of a
friend. Concerns Rule #4, #7, and #10 of Table 3, 4,
and 5 respectively.
SMC : F × U 7→ N - a function, that, using SMC,
calculates the distance between two friends and
returns this. Described in Algorithm 2 and 3.
DIST : P × P 7→ N - a function, that returns the
Euclidean distance between two points.

Algorithm 1: A users local data

lation with a user. The user saves its actual location into a
temporary variables and finds out which coordinates to use
from whether proximity is possible or not, line 2-7. The
rest of the SMC can be seen as a black box, and at the end,
the user, who initialized the calculations holds the distance
between the two users.

SMC(F )1

if F.proximity = 0 then2

x← F.locp old.x;3

y ← F.locp old.y;4

else5

x← F.locold.x;6

y ← F.locold.y;7

return the distance calculated by the SMC algorithm,8

issued by sending MSMC(U,F.proximity, ...) to F ,
where U is the identification of the user itself and
using x and y as location.;
Algorithm 2: The secure multi-party computation al-
gorithm.

MessageReceived(MSMC , F, prx, ...)1

F.loctmp ← loc;2

if prx = 0 then3

x← F.locp old.x;4

y ← F.locp old.y;5

else6

x← F.locold.x;7

y ← F.locold.y;8

Calculates the distance using SMC and the coordinates9

x and y.;
Algorithm 3: The event handler for when receiving a
request for calculating the distance using SMC.

Algorithm 4 describes what happens when a user is
joining the service. Line 2-3 makes the algorithm iterate
through all the friends of a user, which are online. Since
this is a startup event, we reset proximity at line 4. Line 5-
16 is a loop, which at line 6-8 fetches a new cloaking region
and saves the information about this, along with the cur-
rent location, for this specific friend. Line 9 uses the SMC
function, to calculate the distance between the two users.
We know from Section 4.3, that if the distance between two
submitted locations is smaller than, or even to, 3 times the
desired proximity distance, there is a chance that the users
might be within proximity. This is checked for at line 10,
and if this is the case, the precise distance between the two
users is calculated at line 12. If the users are within prox-
imity, it will be caught by line 13. At last a buffer zone is
generated at line 15, which is dependent on whether a user is
within proximity, chance of proximity or not within chance
of proximity. Thus, this is the last line in the loop.

All the lines, 5-16, will be repeated, as long as there
is no chance that the user can be within proximity and if

13



Startup()1

foreach F ∈ Fs do2

if F is online then3

F.proximity ← 0;4

repeat5

F.locold ← loc;6

F.Cr old ← CLR(F );7

F.locp old ← CL(F );8

F.distold ← SMC(F );9

if F.distold ≤ F.prox ∗ 3 then10

F.proximity = 1;11

F.distold ← SMC(F );12

if F.distold ≤13

F.prox+ F.prox/F.prec ∗ 2 then
F.proximity ← 2;14

F.Br old ← BR(F );15

until F.Br old ≥16

DIST (F.locp old, F.locold) + F.Cr old OR
F.proximity > 0;
send to F Mdist(U,F.distold, F.proximity);17

Algorithm 4: The event handler for starting up.

the cloaking region is not fully contained within the buffer
zone. When this is not the case, the new calculated distance
is sent to the friend, line 17, which then is aware of the new
distance between the two friends.

MessageReceived(Mdist, F, dist, prx)1

if F is online then2

F.distold ← dist;3

F.proximity ← prx;4

F.Br old ← BR(F );5

if F.proximity = 0 AND6

F.Br old < DIST (F.locp old,
F.locold) + F.Cr old then

while F.Br old < DIST (F.locp old,7

F.locold) + F.Cr old do
F.Cr old ← CLR(F );8

F.locp old ← CL(F );9

F.distold ← SMC(F );10

F.Br old ← BR(F );11

send to F Mdist(U,F.distold, F.proximity);12

Algorithm 5: The event handler for when receiving a
new distance from a friend.

Algorithm 5 is used when a message is received from
a friend, that tells the distance between the two users have
changed. Three arguments are given, besides the descrip-
tion of the message. First is the identification of the friend,
second is the new distance between them, and third is at
what proximity level the distance is calculated. First, at line
2, it is checked whether the user is still online. If this is
the case, the new distance is saved along with the proximity
level, and a new buffer zone is created. Line 6 is check-
ing if there is no chance of proximity and if the cloaking
region is completely contained within the buffer zone, and
line 7 loops as long as the cloaking region is not entirely
contained by the buffer zone. If this is the case, line 8-11
are generating a new cloaking and buffer zone, and after
looping, the new distance will be sent to the friend at line
12.

When a location for a user is changed, described in Al-
gorithm 6, for each friend online where the user has moved
outside its buffer zone, line 2-3, some calculations must be
done. First of all, the new location is saved, line 4, and if
the two friends were not within chance of proximity, line
7-13 is repeated until either a valid buffer zone is generated
or if there is a chance of proximity. If there is a chance of
proximity, or the users before were in chance of, or within,
proximity, line 15, the actual distance is calculated at line
16. If there, for sure, are no chance, that the users could
get within chance of proximity, using any submission point,
line 17, then the users were in chance of proximity at an
earlier proximity calculation. Thus we tell, that proxim-
ity is not a possibility, and a new cloaking and buffer zone
is calculated repeatedly, until the cloaking region is con-
tained within the buffer zone, line 19-24. I instead the user
is within chance of proximity or within proximity, a buffer
zone for this is calculated at line 25-30, and at last the in-
formation about the new distance is sent at line 31.

6 Experimental Results

In order to show that this idea is practically usable, and
performs well, the design from Section 5 has been im-
plemented in a Java application, that can simulate a num-
ber of parallel clients. Due to the implementation is multi
threaded, race conditions might occur. Therefore the results
might vary a little bit if the same test is being run several
times. Therefore, each test has been run 10 times, and the
average have been calculated. All that is needed for the
clients to run is a predefined set of users, their friendship
relations and settings and a set of locations with timestamps
for each user. The location data used for the experiments
is generated using [4] and the included map of Oldenburg
city in Germany. This location generator creates a datafile,
that contains a number of users and their location history,
combined with timestamps, while they have been simulated

14



LocationChanged()1

foreach F ∈ Fs do2

if F is online AND ((F.proximity = 0 AND3

DIST (F.locp old, loc) > F.Br old) OR
(F.proximity > 0 AND
DIST (F.locold, loc) > F.Br old)) then

F.locold ← loc;4

if F.proximity = 0 then5

repeat6

F.Cr old ← CLR(F );7

F.locp old ← CL(F );8

F.distold ← SMC(F );9

if F.distold ≤ F.prox ∗ 3 then10

F.proximity ← 1;11

else12

F.Br old ← BR(F );13

until F.Br old ≥14

DIST (F.locp old, F.locold) + F.Cr old

OR F.proximity > 0;

if F.proximity > 0 then15

F.distold ← SMC(F );16

if F.distold > F.prox ∗ 5 then17

F.proximity ← 0;18

repeat19

F.Cr old ← CLR(F );20

F.locp old ← CL(F );21

F.distold ← SMC(F );22

F.Br old ← BR(F );23

until F.Br old ≥24

DIST (F.locp old, F.locold) +
F.Cr old;

else if25

F.distold > F.prox∗ (1+2/F.prec) then
F.proximity ← 1;26

F.Br old ← BR(F );27

else28

F.proximity ← 2;29

F.Br old ← BR(F );30

send to F Mdist(U,F.distold, F.proximity);31

Algorithm 6: The event handler for starting up.

to be moving around within Oldenburg. The coordinates
of Oldenburg are fictional and cannot be mapped directly
back to the real world, but the x-coordinates ranges from
0 to about 22.000 while the y-coordinates ranges from 0 to

about 32.000.
Since the part concerning SMC is seen as a black box

to the system, this is not implemented, but the number of
times SMC is done is calculated, and this can be multiplied
with the number of messages a SMC implementation actual
takes. This was calculated in Section 5 to be 11 messages
each time SMC has to be performed. When counting mes-
sages, the number of messages is how many messages have
been sent in between all the users. Thus, if user u sends
a message to user v, this is counted as one message, even
though both u has to send it, and v has to receive it.

Each experiment will be introduced by describing what
the purpose of the experiment is and what settings have been
used. Then the results will be presented and at last discussed
why the results looks like they do and if the outcome was as
expected.

6.1 Impact of Precision

The precision variable, α, that defines how many zones
the proximity distance will be divided into when users
might be within proximity, is an interesting parameter. This
balances the trade off between the number of messages sent
and the required level of precision. This is only used while
users might be within proximity, and have no impact on the
performance, while users are far away from each other.

The setting of this experiment is 5 users, that all are mu-
tual friends. That means that 10 mutual friendships exist,
and each user has 1000 locations to submit over a timespan
of 1000 time units. Proximity distance between two users is
set to 500, and the only parameter chanced is the precision
variable.

Precision (α) Messages Proximities
1 5281 19
2 5491 15
3 5534 15
4 5541 15
6 5546 15
8 5576 15
16 5595 15

Table 9. Number of messages and proximities with
different precision requirements.

The output data from the experiment is shown in Table
9 and the relation between messages and number of prox-
imities can be seen from these results. is depicted in Figure
19. This shows, that there is a very clear relation between
the number of messages sent and the number of proximi-
ties. The high number of proximities, when using low pre-
cision, is because there is a high risk of false positives, due

15



to imprecision. When there is a large risk of false posi-
tives, the number of messages will also be reduced because
they do not have to keep calculating ever smaller buffer
zones, to get the exact point of when proximity will oc-
cur. From the graph it is also clear, that when proximities
get to a steady level, the number of messages used will only
increase slightly, even though precision is continuously in-
creased.

Figure 19. Graph of how precision impacts on the
relation between messages and proximities, cal-
culated from Table 9

In this case, when the α is raised to more that 2, the
number of proximities are the same. This might seems a bit
weird, because the precision variable might have been ex-
pected to be larger before exact precision was found. This
is related to the data generated. The generator generates a
location for each time stamp, and the distance a user could
have moved between two timestamps might be too large for
greater precision to have impact. If, on the other hand, the
system was used in a context, where the location was up-
dated constantly, the precision would keep improving the
results, due to the precision of the locations.

6.2 Impact of proximity distance

The number of messages sent between two friends is a
way to measure the communication costs of the service. As
seen from the experiment of the impact of precision, the
desired precision have some impact on the number of mes-
sages. But also the desired proximity distance between two
friends will have some impact. This is due to, the methods
used when users are not within proximity, perhaps within

proximity or certainly within proximity are different, and
this experiment will show whether it is an advantage to have
a large or small proximity distance.

The setting of this experiment is again 5 users, that all
are mutual friends, thus 10 mutual friendships exists. Also
each user have 1000 locations over 1000 time units and the
precision used at this experiment is 8. The only parameter
changed is the proximity distance of each friend pair.

Proximity
distance

Messages Proximities

25 4268 1
50 4637 4
75 4765 5
100 4935 6
150 5098 11
200 5291 13
250 5615 14
300 5898 14
350 6197 14
400 6367 14
450 6766 15
500 7008 15

Table 10. Number of messages and proximities
with different proximity distances.

As seen by the results, presented in Table 10, it is clear,
that the desired proximity distance have a great impact on
the number of messages sent between each pair of friends.
This is depicted in Figure 20, where it is visible, that the
larger proximity distance desired between two friends, the
greater the number of messages will be. Also the number of
proximities grows, due to the larger area. This is obvious,
because when a larger proximity distance is chosen, there is
a greater chance that two friends will be within proximity.

The results is as expected. When two friends are far
away from each other, they are using large buffer zones,
and only seldom needs to update their location. When two
friends gets closer to the proximity distance, or even within
proximity, their buffer zones are getting much smaller, thus
they are doing more updates.

6.3 Other solutions

To prove that this solution actually is an improvement
over direct P2P, and that the cost of using the techniques
deployed by this solutions are acceptable, some tests will be
done to show this. The experiments includes five different
types of solutions

Full solution: The full solution presented in this paper, us-
ing SMC and cloaking regions.

16



Figure 20. Graph of calculated from the results of
Table 10

No SMC: The solution presented in this paper, but with
SMC disabled.

No cloak: The solution presented in this paper, but with
cloaked regions disabled.

No cloak and SMC: The solution presented in this paper,
but with both cloaked regions and SMC disabled.

Pure P2P: A simulated pure P2P solution, where users will
have to do updates each time they change their loca-
tions.

Again, the settings of this experiment is 5 users, all mutual
friends, and each user have 1000 locations over 1000 time
units. The precision used at this experiment is 8 and the
proximity distance is changing, to show how the different
solutions will behave with different proximity distances.

Figure 21 shows the number of messages that each so-
lutions must send to do the task. It is clear, that the pure
P2P solution is very ineffective. This is because it does not
make use of any communication optimization techniques,
thus it needs to do updates each time a user changes its lo-
cation. The solution presented in this paper sends as little
as 1/7 of the messages parsed by the pure P2P solution.
The most effective is the solution without cloaking regions
and without SMC, but what is interesting is, that cloaking
regions does not have that much impact on the number of
messages. SMC does, on the other hand, require a lot of ex-
tra messages, and becomes the primary cost of this solution.
About 3/4 of the messages sent is at the cost of SMC. But
when considering the significant improvement in privacy,
by using SMC, this is acceptable.

Figure 21. Graph comparing different types of so-
lutions at different proximity distances

17



These results are as expected, and shows that the tech-
niques deployed by this solution to gain privacy comes at a
price, but still improves the cost a lot, compared to a pure
P2P solution.

7 Conclusion

In this paper, a P2P solution for detecting proximity and
separation between mobile clients have been developed by
using some different techniques. Three general strategies
are used to develop this solution. Location privacy is used
to hide a user’s exact location within a cloaking region.
Proximity detection is used to reduce the number of loca-
tion updates and is archived by using a custom variant of
the dynamic shifted circles strategy. At last, SMC is em-
ployed to improve security by only letting a user know how
far away a friend is, not in which direction. These three
techniques combined, results in a secure LBS that is opti-
mized for communication. The solution is also flexible in
the way, that precision and proximity distance parameters
can be changed between each pair of friends, such that they
individually can adjust for best desired settings.

A model of the solution has been implemented and tests
have been performed to prove the efficiency. The experi-
ments show the impact of the precision parameter does not
have a great impact on the number of messages compared
to the size of the proximity distance. Also it is proved, that
SMC comes at a price, but still the solution is far better than
using a pure P2P solution, and when considering the gain in
privacy SMC introduces, it is worth the price.

8 Resume

This paper concerns the issues of privacy and commu-
nication costs of a mobile location-based service, that can
notify friends when they are within a defined distance of
each other. Not much work has been done in the field of
friend locating, and the studies that have been made often
includes a centralized server as a base for the service. One
problems with the centralized server model is, that privacy
can be hard to guarantee. Another model is the peer-to-peer
model. This does not include any server, but all communi-
cation goes on between the clients only. The disadvantage
of this model is often, that it is often communicational wise
very expensive. The motivation for this paper is, if it is pos-
sible to make a peer-to-peer model, that is optimized for
both privacy and communication.

An idea is presented, which combines three different ar-
eas to a solution, that satisfies the goal of preserving privacy
and reducing communication costs.

First of all, to hide the users exact locations, cloaked re-
gions is introduced. Each user generates a cloaked region

around its location and it picks a random location within
this cloaked region. Now this random location will be used
instead of the users actual location, this to hide the users
exact location from the others.

Second, a technique called secure multi-party computa-
tions (SMC) is used. SMC, is, in short terms, some cal-
culations on private date being performed between two or
more users, while the users does not want to reveal anything
about their private data. A classic example is the millionaire
problem, where two millionaires want to know who is richer
without revealing anything about their actual wealth. SMC
is the alternative to a trusted middle man, that the users
could tell their information to, and let him do the math. In
this work, SMC is used to calculate the distance between
two friends, without revealing where the other friend is lo-
cated or even in which direction he is. The only thing the
friends gets to know from the SMC calculations is the dis-
tance between them. For calculating the distance, each user
uses a random location within their cloaked regions, men-
tioned above. This to improve privacy, so a friend of a user
does not know exactly how far away the friend is, only to
some degree of uncertainty.

Third, a custom variant of the dynamic shifted circles are
used to generate buffer zones for the users. A buffer zone
is a zone where a user can move freely around within, with-
out having to worry about getting within proximity of other
users. When moving around within this zone, the user does
not do any location updates, and thus communication is re-
duced. A dynamic shifted circle, is normally a circle that is
generated around a user, but the center of the circle is shifted
away from the user to optimize the radius. For this work, the
center of the circle is not shifted away for optimizing the
radius, but because of the SMC mentioned above. This be-
cause SMC is used to calculate the distance to a friend, and
SMC has been using a random location within the cloaked
region, thus, the center of the dynamic shifted circle must
be the random point used to calculate the distance instead
of the users exact location.

To make the service flexible, two parameters are variable
between each pair of friends, namely the desired proxim-
ity distance and a precision level. The proximity distance
decides how close the two friends must be, before prox-
imity is detected. The precision level is introduced to bal-
ance communication versus how precise the users must be
to the proximity distance before proximity is detected. This
is because, when users are close to proximity, but not within
proximity, more updates will be performed, and this is more
communicational wise expensive, and this variable could
reduce the number of updates, at the cost of a more impre-
cise service.

At last, a model of the solution is implemented and test
is being performed, to prove that the solution practically us-
able and to test how it performs. The result shows, that the

18



number of messages rises when better precision is wanted,
but not by much. Also it shows, that the larger proxim-
ity distance is used, the more communicational expensive
the service gets. This again, because it is more expensive
in terms of messages, when users are close to proximity,
and using larger proximity distances, they more often gets
within chance of proximity. At last the solution is compared
with pure peer-to-peer and to itself with cloaked regions and
SMC disabled. It becomes clear, that the number of mes-
sages have been reduced to as low as 1/7 of the pure peer-
to-peer solution, using these chosen settings. Also it shows,
that the cost of SMC is about 3/4 of the entire service.

It has been proven, that a peer-to-peer solution for a
friend locator location-based service is possible, and that
both preserving privacy and reducing communication costs
is possibly at the same time. Though privacy comes at a
price, but this is worth the price, when considering that the
location of a user is well hidden from the friends using the
service.

References

[1] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and
K. Wampler, “Buddy tracking - efficient proximity de-
tection among mobile friends,” Pervasive Mob. Com-
put., vol. 3, no. 5, pp. 489–511, 2007.

[2] M. J. Atallah and W. Du, “Secure multi-party compu-
tational geometry,” in WADS ’01: Proceedings of the
7th International Workshop on Algorithms and Data
Structures. London, UK: Springer-Verlag, 2001, pp.
165–179.

[3] T. O. G. Blog, “See where your friends are
with google latitude,” February 2009. [Online].
Available: http://googleblog.blogspot.com/2009/02/
see-where-your-friends-are-with-google.html

[4] T. Brinkhoff, “A framework for generating network-
based moving objects,” Geoinformatica, vol. 6, no. 2,
pp. 153–180, 2002.

[5] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar,
“Preserving user location privacy in mobile data man-
agement infrastructures,” 6th Workshop on Privacy
Enhancing Technologies pp. 393-412, vol. 4258/2006,
p. 10, 2006.

[6] C.-Y. Chow and M. F. Mokbel, “Enabling private
continuous queries for revealed user locations,” Lec-
ture Notes in Computer Science pp. 258–275, vol.
4605/2007, p. 18, August 2007.

[7] R. Fagin, M. Naor, and P. Winkler, “Comparing infor-
mation without leaking it,” Commun. ACM, vol. 39,
no. 5, pp. 77–85, 1996.

[8] B. Gedik and L. Liu, “Location privacy in mobile
systems: A personalized anonymization model,” Pro-
ceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICSCS’05), vol. 4,
p. 10, 2005.

[9] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game,” in STOC ’87: Proceedings of
the nineteenth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 1987, pp.
218–229.

[10] M. Gruteser and D. Grunwald, “Anonymous usage of
location-based services through spatial and temporal
cloaking,” in MobiSys ’03: Proceedings of the 1st
international conference on Mobile systems, applica-
tions and services. New York, NY, USA: ACM, 2003,
pp. 31–42.

[11] InformationWeek, “Court asked to disallow warrant-
less gps tracking,” March 2009. [Online]. Available:
http://www.informationweek.com/news/government/
federal/showArticle.jhtml?articleID=215800542

[12] KCTV5.com, “Stalkers using gps devices to track
victims,” 2009. [Online]. Available: http://www.
kctv5.com/news/17026521/detail.html

[13] A. Küpper and G. Treu, “Efficient proximity and sep-
aration detection among mobile targets for support-
ing location-based community services,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 10, no. 3, pp. 1–12,
2006.

[14] S.-D. Li and Y.-Q. Dai, “Secure two-party computa-
tional geometry,” J. Comput. Sci. Technol., vol. 20,
no. 2, pp. 258–263, 2005.

[15] M. F. Mokbel and C.-Y. Chow, “Challenges in preserv-
ing location privacy in peer-to-peer environments,” in
WAIMW ’06: Proceedings of the Seventh Interna-
tional Conference on Web-Age Information Manage-
ment Workshops. Washington, DC, USA: IEEE Com-
puter Society, 2006, p. 1.

[16] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new
casper: query processing for location services without
compromising privacy,” in VLDB ’06: Proceedings of
the 32nd international conference on Very large data
bases. VLDB Endowment, 2006, pp. 763–774.

[17] M. Naor and B. Pinkas, “Efficient oblivious trans-
fer protocols,” in SODA ’01: Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete al-
gorithms. Philadelphia, PA, USA: Society for Indus-
trial and Applied Mathematics, 2001, pp. 448–457.

19



[18] A. Press, “Stalkers use gps to track victims,” February
2002. [Online]. Available: http://www.wired.com/
gadgets/wireless/news/2003/02/57576

[19] P. Samarati, “Protecting respondents’ identities in mi-
crodata release,” IEEE Trans. on Knowl. and Data
Eng., vol. 13, no. 6, pp. 1010–1027, 2001.

[20] G. Treu, T. Wilder, and A. Küpper, “Efficient
proximity detection for location based services,” in
PROCEEDINGS OF THE 2nd WORKSHOP ON
POSITIONING, NAVIGATION AND COMMUNICA-
TION (WPNC05) & 1st ULTRA-WIDEBAND EX-
PERT TALK (UET’05), Hannover, Germany, Mar.
2005, pp. 165–173.

[21] ——, “Efficient proximity detection among mobile
targets with dead reckoning,” in MobiWac ’06: Pro-
ceedings of the 4th ACM international workshop on
Mobility management and wireless access. New
York, NY, USA: ACM, 2006, pp. 75–83.

[22] W.-G. Tzeng, “Efficient 1-out-of-n oblivious transfer
schemes with universally usable parameters,” IEEE
Trans. Comput., vol. 53, no. 2, pp. 232–240, 2004.

[23] J. Voelcker, “Stalked by satellite,” July 2006. [Online].
Available: http://www.spectrum.ieee.org/jul06/4103

[24] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu, and
O. Andersen, “A location privacy aware friend loca-
tor,” in SSTD, 2009.

[25] X. Wei-jiang, J. Wei-wei, H. Liu-sheng, and Y. Yi-
fei, “Privacy-preserving collision detection of two cir-
cles,” in InfoScale ’07: Proceedings of the 2nd in-
ternational conference on Scalable information sys-
tems. ICST, Brussels, Belgium, Belgium: ICST (In-
stitute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2007, pp. 1–7.

[26] T. Xu and Y. Cai, “Location anonymity in continu-
ous location-based services,” in GIS ’07: Proceedings
of the 15th annual ACM international symposium on
Advances in geographic information systems. New
York, NY, USA: ACM, 2007, pp. 1–8.

[27] A. C. Yao, “Protocols for secure computations,” in
SFCS ’82: Proceedings of the 23rd Annual Sympo-
sium on Foundations of Computer Science. Wash-
ington, DC, USA: IEEE Computer Society, 1982, pp.
160–164.

[28] A. C.-C. Yao, “How to generate and exchange se-
crets,” in SFCS ’86: Proceedings of the 27th An-
nual Symposium on Foundations of Computer Sci-
ence. Washington, DC, USA: IEEE Computer So-
ciety, 1986, pp. 162–167.

20


