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Preface

This master thesis extends and builds upon the work and experiences made
in the pre-master thesis report – A Data Warehouse Solution for Analysis on
Indoor Tracking Data [11]. The thesis is written by Jonas T. Hansen and Stig
Jørgensen under supervision of Hua Lu at the Database and Programming
Technologies research unit located at Aalborg University. The data basis
for this thesis is provided by BLIP Systems A/S [22], which is a software
developing house located in North Jutland. BLIP Systems A/S is a company
that specializes in Bluetooth solutions for Bluetooth- marketing and tracking
software systems. BLIP Systems A/S will henceforth be referenced to merely
as BLIP.

Whereas the pre-master thesis focused upon building a traditional historical
Data Warehouse in order to answer a series of Business Intelligence questions,
this master thesis will focus on designing and implementing a Real-Time Data
Warehouse. Emphasis will be put on the process of capturing, transforming,
and feeding data to the real-time data warehouse. The solution is inspired
by the pre-master thesis [11]. Section 3 provides the basics for implementing
the RTDW, whereas Section 4 covers the actual implementation of the sys-
tem, which improves the algorithms introduced in our pre-master thesis and
adapts them to a real-time environment, and Section 5 presents the results
we have obtained by testing the different parts of the system.

Lastly, the report includes a Summary in Appendix C which covers the report
in greater detail than the abstract.
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1 Introduction

Traditional historical data warehouses are typically loaded at fixed intervals,
typically once every day, week, or month depending on the business needs
of knowledge workers and the amount of data present in the operational
systems. Data is usually loaded into the Data Warehouse (DW) at night or
more specifically when the usage load is at a minimum to avoid consuming
the much needed computational power of the Online Analytical Processing
(OLAP) system. Loading the potentially enormous amount of data at off-
hours allows the system to process the data so it is ready for analysis when
needed.

Commonly, traditional data warehouses provide a means for Business Intelli-
gence (BI) analysts, or knowledge workers, to capture the data from the past,
analyze it in every detail, and use the knowledge gained to try to predict the
future and plan accordingly - we define this process as strategic decision
making [2]. What about knowledge of the present - could this knowledge
not be equally, or even more, important? This is where the Real-Time Data
Warehouses (RTDW) comes into play. RTDWs differ from traditional DWs
in that they are continuously informed of any changes in the operational sys-
tems and therefor represent the environment in its current state. Being able
to perform complex analysis of a domain in its current state can be useful in
many ways, and means that immediate tactical actions can be taken when
necessary - we define this as tactical decision making [2]. Needless to say,
not all domains can benefit of RTDWs in the same degree as others might.
An example of where RTDWs can be put to good use are:

Within the financial section, institutions lose millions of dollars each year
due to credit card fraud. It is possible to detect fraud by analyzing credit
card transactions for certain types of credit card use patterns. If these pat-
terns can be identified, the bank can ban the credit card, preventing it from
being exploited numerous times and thereby reduce losses dramatically. This
analysis has to be done in real-time as stolen cards are typically abused sev-
eral times within a short period of time or until the card has been banned.
Waiting for historical data to be entered into the data warehouse before an
attempt to detect fraud can be made, would give the criminals plenty of time
to conduct their business before the fraud would even be discovered [13].

It is important to realize that real-time data should not replace, but com-
plement, historical data. The real-time data can be used to predict and/or
influence sales of a business in the near future or discover traffic jams in the
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1 Introduction

present, which allows knowledge workers to react efficiently to changes or
remedy unfavorable situations in the domain - e.g. an online shopping site
can recommend certain products for a user, based either on the users his-
torical purchases and ratings of products or on the products browsed in the
current session. This illustrates the difference between strategic and tactical
decision making.

We will use the BLIP case from the pre-master thesis, mentioned in the
preface, and concentrate on building a real-time data warehouse that will
enable us to answer questions which we were unable to answer with a tradi-
tional data warehouse. We will strive to emphasize the changes that comes
with this shift in paradigms and primarily focus on the process of capturing,
transforming, and feeding data in real-time to the RTDW.

1.1 Goals

This master thesis will deal with creating a case-specific real-time data ware-
house using BLIPs data and business case. This leads to a number of goals
we will strive to fulfill and BI questions to answer through the master the-
sis. When designing the RTDW, CTF, and user interfaces, the needs of
these goals will have to be taken into consideration in order to improve the
data quality, analysis responsiveness, and thereby the quality of the reports
generated.

The goals are:

1. Creating a fast, flexible, and durable real-time data warehouse.
A lot of strain is put on the OLAP system because data is continu-
ously being fed to the real-time data warehouse, and query results are
expected to be up-to-date at all times. This means that the RTDW
must be designed in such a way that dimensions and facts are stored
and aggregated at the right time and in the most optimal way to yield
the best query response time possible. This provides the base for a solid
real-time data warehouse and thereby effective and efficient analysis.

2. CTF data throughput.
To ensure that the data throughput of the CTF is optimal, faulty data
must be discarded as early as possible. This reduces the overall amount
of data to be processed. The CTF should be able to process records
fast enough to ensure that the data flow is real-time. Speed, however,
should not be gained at the expense of data quality.
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1.2 Pitfalls

3. CTF data output quality.
This is an issue we encountered during the pre-master thesis. Because
of BLIPs data gathering method, many records can be classified as
noise - what we call bouncing records, but due to the fact of the CTF
being real-time, there is no way to pre-empt the records and clean them
before they have been inserted into the RTDW. Therefor, to increase
overall data quality, we want to allow the CTF to make changes to
certain records in the warehouse. Changing records that have already
been inserted into the RTDW does not compromise the business re-
quirements.

The BI questions are:

1. Are there any congested areas in the airport?
Knowing exactly which areas or zones that are congested, and how con-
gested they are, can be used to deploy personnel and heighten security
to try to remedy the situation in the affected areas.

2. Are there any congestions forming?
Closely related to the previous BI question, this knowledge gives the
airport a preemptive advantage in dealing with congestion.

3. Are there any passengers that are in risk of not reaching their gate in
time?
Passengers not shoving up at the gate in time is a common reason for
flight delays. By knowing a passengers location, departure gate, and
departure time, an application can be used to predict whether or not
a passenger can reach his gate in time, giving the staff or a system the
opportunity to take action accordingly.

To achieve the goals and answer the questions posed, we need to propose a set
of algorithms and design a data warehouse that is based on an architecture
that performs optimally within the scope of real-time. To do this, we decide
to learn from other peoples mistakes and list the most common pitfalls of
RTDW construction.

1.2 Pitfalls

Based on Stephen Brobsts Ten Mistakes to Avoid When Constructing a Real-
Time Data Warehouse [2], we will list the most common mistakes made, when
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1 Introduction

designing and implementing real-time data warehouses. A short description
of each pitfall will be made. Throughout the report we will weigh our deci-
sions up against the pitfalls listed here in order to present valid arguments
for our choices.

1. Focusing on real-time rather than ”right-time:”
The first common mistake is spending an enormous amount of re-
sources on implementing real-time feeds when ”right-time” could suf-
fice. The idea of right-time covers that data freshness service level
agreements are driven by business needs rather than the real-time hype.
A right-time implementation, conforming to the Service Level Agree-
ments (SLAs) [24], can provide a more cost- and time-effective solution
for the business.

2. Confusion between bookkeeping, decision making, and action
taking:
The inability to distinguish between the operational bookkeeping sys-
tems, the decision making systems and action taking systems. The
operational systems are often transactional oriented with a high write
to read ratio, whereas the decision environment has a high read to
write ratio. Action taking is the cooperation between the operational
systems and the decision making systems, where decisions are acted
out by entering or changing data in the transactional systems.

3. Using legacy ETL infrastructure:
Legacy ETL tools are batch oriented non-intrusive tools. In the RTDW,
the needs are different, the source systems must be a part of the process.
They need to inform or send data to the real-time ETL tool as the
data is being entered in the Online Transactional Processing (OLTP)
systems, thereby changing the paradigm from file oriented to stream
oriented processing of data.

4. Too much summary data:
Because of the high frequency of data acquisition in a real-time data
warehouse, summary tables might very well need to be rebuilt with ev-
ery change to the RTDW. To avoid this, it is advised to use materialized
views which provide automatic maintenance of summary data.

5. Lack of high availability:
The advantage of a RTDW is to be able to make tactical decisions
based upon real-time data. Alas, too much focus is often put on the
data acquisition in order to obtain real-time data. Ensuring that the
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1.2 Pitfalls

processed data is available for the knowledge workers is equally impor-
tant, or the ability to make relevant and timely tactical decisions is
lost.

6. Failure to initiate business process changes:
Failure to change business processes within a company to ensure that
real-time information is delivered and available where needed, renders
the RTDW valueless.

7. Separate ODS deployment per channel:
The urge to implement separate data marts or Operational Data Store
(ODS) repositories in the organization to support decision making on
different levels, separates the strategic and tactical decision making.
This separation introduces redundant data, moving, transforming, and
loading data multiple times, as well as more systems to maintain and
should be avoided.

8. Underestimating the importance of historical data:
Feeding a RTDW with data, keeping it up-to-date, and periodically
dumping the data into a historical data warehouse, thereby separating
the present from the past, relates to the previous mistake and results
in less-than-optimal tactical decision making.

9. Failure to integrate the data:
To avoid this mistake, focus must be put on more than just real-time
data acquisition and access. An essential part of a RTDW is data inte-
gration. This means that all core organization data must be integrated
into the data warehouse to provide any real value to the company.

10. Assume all knowledge workers want real-time data:
Sometimes stable data is desirable over frequently changing near real-
time data. E.g. a knowledge worker could be performing a strategic
analysis for a business. If the data were to change just a single time
during the analysis, the entire analysis could be ruined. Different SLAs
for various data freshness requirements should be defined for the differ-
ent knowledge workers. To provide data with different degrees of data
freshness without having to replicate data, timestamps on rows in the
warehouse can be used with views in order to filter out data newer than
what is defined by the SLA.
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2 Preliminaries

2 Preliminaries

To gain a better understanding of how we can implement a real time data
warehouse solution, we will re-investigate the BLIP case study, which was
also addressed in the pre-master thesis. However, this time we will examine
how BLIP handles live data, i.e. non-historic data. Additionally, this section
will discuss existing related work and how we can utilize the results presented
in the development of our RTDW system.

2.1 BLIP Case Study

This section will cover how BLIP collects tracking data and how the physical
layout affects the data. Additionally, a brief description of the data manip-
ulation performed by BLIP before it is stored in a MySQL database will be
given, which requires that a couple of issues be addressed. The BLIP dataset
consists of 73,986,502 tracking records within 55 active access points over
360,639 unique devices.

2.1.1 Physical Bluetooth Access Point Layout

The BLIP access point configuration does not provide full coverage of the
area, which means our solution will have to handle objects that not are
tracked for a period of time.

The airport consists of multiple floors, hence the access points are placed
on multiple floors. A result hereof, is that an object can be tracked by
two access points that are actually positioned at two different floors. This
provides tracking records that are not desirable as they show movement that
are not physically possible.

2.1.2 BLIP ETL

The data readings made by the BLIP tracking application can be seen as
a stream of tuples of the form (BluetoothIdentifier, AccessPointIdentifier,
Time), where BluetoothIdentifier is the unique MAC address of a Bluetooth
device, AccessPointIdentifier is the unique MAC address of the access point
that performed the reading and Time is the time when the reading took
place. Each reading is generated by the access points scanning for Bluetooth
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2.1 BLIP Case Study

devices at a fixed time interval - in BLIPs case once per second. The data
gathering tool made by BLIP does not support that a bluetooth device is
within the proximity of two or more access points at a single point in time.
This can result in readings switching very rapidly from one access point to
another. This feature deviates from how related work address positioning of
objects in an in-door environment.

Table 1 shows how a sample set of data generated by a number of access
points could look like. T7 is considered the current time.

Access Point 1 Access Point 2 Access Point 3
< BT1, AP1, T1 > < BT2, AP2, T1 >
< BT1, AP1, T2 > < BT2, AP2, T2 >
< BT1, AP1, T3 > < BT2, AP2, T3 >

< BT2, AP3, T4 >
< BT1, AP1, T5 > < BT2, AP2, T5 >
< BT1, AP1, T6 > < BT2, AP3, T6 >
< BT1, AP1, T7 > < BT2, AP2, T7 >

Table 1: Raw Bluetooth data.

In order to reduce the amount of raw data, data cleansing should be per-
formed. The output format after BLIP performs their data cleansing is
a tuple of the form: (BluetoothIdentifier, AccessPointIdentifier, EnterTime,
LeaveTime), where EnterTime is the time when the Bluetooth device enters
the proximity of an access point and LeaveTime is the time when the Blue-
tooth device leaves the proximity of an access point. This allows them to
merge consecutive records for the same Bluetooth device registered within
the proximity of the same access point. Table 2 shows the same data as
Table 1 after performing cleansing.

< BT1, AP1, T1, T3 >
< BT2, AP2, T1, T3 >
< BT2, AP3, T4, T4 >
< BT1, AP1, T5, T? >
< BT2, AP2, T5, T5 >
< BT2, AP3, T6, T? >

Table 2: Cleansed Bluetooth data.

The amount of tuples has been decreased from 13 to 6 by cleansing the
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2 Preliminaries

data. As T7 is considered the current time it is possible to differ between
two sets of tuples, namely historical data and live data. The records that
have both an EnterTime and a LeaveTime are considered historical data,
whereas the records that have an EnterTime but does not have a LeaveTime
are considered live data as it reflects the current state of the tracked objects.
Table 2 shows the live data by having records that has a T? as LeaveTime
meaning that the device is still being tracked.

Table 2 shows some of the problems with the dataset, namely when a phone
loses connectivity, as seen with BT1, to an access point for a short duration
of time and when a device bounces between two access points, as seen with
BT2. How this will be addressed will be discussed in Section 4.3.5.

Figure 1: BLIP source schema.

After the data cleansing, BLIP stores the data in a MySQL database. The
table configuration of the database is based on the data schema seen in Fig-
ure 1. The following is quoted from our pre-master thesis [11] and describes
BLIPs data schema.

The data schema consists of a main table, Tracking, and two
supporting tables, namely LbsZone and BluetoothAddress. The
Tracking table contains EnterTime, ExitTime, PeakTime, and
MaxRSSI as well as two foreign keys to the supporting tables.
BluetoothAddress includes more data than the name indicates,
as it also contains miscellaneous data retrieved by the access
points. BLIP has prepared to include additional personal meta-
data through the Registered and UserName attributes. However,
BLIP is not using these values in the data set. The name of a
zone is stored in the Zone attribute in the LbsZone table. The
attribute Parent Id is used to describe a parent-child relationship
between zones, which is used to define zones as a tree-structure
with arbitrary height.

8



2.2 Related Work

2.1.3 Bounce Problem

This section introduces the before mentioned bounce problem and presents
an example of when it can occur. The following is quoted from our pre-master
thesis [11] and describes the bouncing problem.

The data gathering application used for the BLIP data set
is not designed to handle devices that are tracked in more than
one location at a time. This means that when a device is located
in an area that is covered by more than one access point, the
data gathering application creates bounce records. An example
of this is shown in Figure 2 where the grey areas are overlapping
areas. If a device is traversing through AP1, AP2, AP3, and AP4
as indicated by the red line, there is a large possibility that the
system will generate bounce records when the device is located
in the grey areas.

A P  1

A P  2

A P  3

A P  4

Figure 2: Bounce problem scenario [11].

2.2 Related Work

Creating a theoretical, optimal physical Bluetooth access point layout is, in
theory, a rather simple task. If the area covered by a Bluetooth access point is
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3 Concepts and Considerations

considered as a circle, then Kershner [15] presents a model for the minimum
required number of access points to provide full coverage within the area.
Creating an access point setup based on Kershner’s concept is, however,
not valid for a number of reasons. Firstly, the sites consist of a number of
obstacles that reduce the range and stability of the readers. Second, BLIP
does not desire to provide coverage of a given site as they wish to focus on
certain points of interest, such as check-ins, and does not wish to provide
coverage of other areas, such as remote hallways.

A number of articles [1] [12] [6] cover the subject of making an optimal
coverage within a closed indoor area through a number of either Bluetooth
access points or RFID readers. As a common denominator, these articles
assume that the entire area is covered through readers/access points and
addresses positioning/moving within this area. Our solution has taken into
consideration whether or not a tracked object has disappeared for certain
periods of time. The objects can either disappear due to bad coverage within
an access point, if it moves in an area that is not covered by the access point
layout created by BLIP or simple if the device is switched off. The system
we propose is able to address this problem, within reasonable time.

[14] presents the idea of building a graph on top of a RFID configuration
which determines whether or not it is possible for a tracked object to move
from a certain access point to another. This graph logic could be implemented
in the CTF and discard invalid moves between areas covered by various access
points to reduce the workload.

3 Concepts and Considerations

This section will introduce various concepts and considerations that will be
utilized and taken into consideration throughout the remainder of this re-
port. Firstly, it will introduce a definition of what a RTDW is and how it
differs from a traditional DW. Secondly, it will discuss the impact of the
degree of normalization on the system. Three different storage models are
introduced and the benefits and drawbacks of these in regards to real-time
data warehousing are discussed. Lastly, it examines the difference between
how data is exported, altered and imported when using either a DW or a
RTDW.
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3.1 Real-Time Data Warehouse

3.1 Real-Time Data Warehouse

As the term suggests, a real-time data warehouse is a system which reflects
all changes in its source, or sources, in real-time or near real-time. As simple
as it sounds, this is still an area of active research in the field.

Working with real time compared to historical data presents a wide range
of challenges for the people designing and implementing the system, but
also for the people using the end systems. Since the data available in a
traditional data warehouse is not always up to date, a DW is typically used
for analysis and long term improvements to overall business strategies and
tactics. No changes to data through user actions are expected, or designed.
The only input comes from the ETL feed as stipulated in the service level
agreements. As a result, traditional DWs can be considered read-only and
therefore somewhat static in nature.

A RTDW is different, as changes are reflected to the systems in (near)real-
time. The operational systems are designed to accept inputs or changes
to data regularly, hence have a good chance of being regularly updated.
Knowledge workers can, within the scope of right-time, analyze and take
action if something needs to be addressed. These actions can either be in the
form of changing data values in the RTDW or being a psychical action such
as redirecting traffic to avoid congestion. Performing actions does not have to
be triggered by a knowledge worker. Various software implementations can
take action if certain events happen. Alternatively, a Bayesian network can be
trained to register and detect events by itself and take action accordingly [10].
This gives an entirely different approach toward data warehousing as the
warehouse itself becomes dynamic. This can help businesses to optimize
tactical business decisions and still be able to perform strategic decisions as
usual.

3.2 Normalization Versus Denormalization

This section will analyze the advantages and disadvantages of using normal-
ization on a data warehouse in regard of disk space required and query speed,
and will work as a guideline for when we create the dimension(s) and fact
table(s) later in this thesis. This section is based on [23] [5].

Database normalization can essentially be defined as the practice of opti-
mizing table structures. Optimization is accomplished by analyzing the data
that will be stored within the database, in particular concentrating upon how
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3 Concepts and Considerations

this data is interrelated. A wide range of techniques exist for normalizing a
database, which are more or less strict in regard to what kind of data are
allowed in different tables. All of them try to minimize the amount of redun-
dant data stored throughout the database. Ideally, every piece of information
is stored only once in the database, and all places where this information is
required, it is loaded through a number of look ups throughout the tables.
The most common normalization is third normal form. A normalized rela-
tional database, imposes a high read to write ratio over physical storage of
data even if it is well tuned for high performance.

A normalized design often stores related, but different, information in sep-
arate logical tables. If these relations are stored physically as separate disk
files, completing a database query that draws information from several tables
can be slow. There are, in general, two different strategies for dealing with
this. The preferred method is to keep the logical design normalized, but
allow the DBMS to store additional redundant information on disk to opti-
mize query response. In this case it is the DBMS software’s responsibility to
ensure that any redundant copies are kept consistent. This method is often
implemented in SQL as indexed views (Microsoft SQL Server) or material-
ized views (Oracle). A view represents information in a format convenient for
querying, and the index ensures that queries against the view are optimized
automatically by the DBMS.

Denormalization is the opposite of normalization, as the name suggests. Of-
ten, queries to a RTDW require fast retrieval of the data stored. Sometimes,
to accomplish the query response time needed, the decision is made to de-
normalize the schema. Denormalization is the process of putting one piece
of information in numerous places, in order to optimize the performance of a
database by adding redundant data or by grouping data. This speeds up data
retrieval at the expense of data maintenance. It is the database designer’s
responsibility to ensure that the denormalized database does not become in-
consistent. This can be done by creating constraints in the database through
triggers and stored procedures, that specify how redundant data is kept syn-
chronized.

3.3 Storage Models

There are three commonly used storage models available for storing the cubes
of a data warehouse, making them available for online analytical processing.
They each have different features that renders one better than the other,
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3.3 Storage Models

depending on the business model and needs of the data warehouse. Based
on [7] [19] [16] [9], the three storage models are:

1. Relational Online Analytical Processing:
ROLAP cubes have their data stored in a Relational Database Man-
agement System (RDBMS) along with the dimensions and hierarchies.
This minimizes the amount of used storage space. ROLAP uses Just-In-
Time (JIT) aggregate calculation - i.e. that aggregations are calculated
on the fly when they are needed. Given the nature of the RDBMS, in-
serts can be performed very quickly, while calculating the aggregations
can be a real time consumer. The reason for the poor query perfor-
mance of the ROLAP cube is mainly the costly table joins and row by
row calculation of aggregates. To remedy this, two key ideas should be
kept in mind while designing the DW. First, denormalization - having
fewer tables reduces the number of expensive joins. Second, redundancy
- using views to store aggregates of the most common OLAP queries
massively increases the response time. The greatest advantage of the
ROLAP cube is the flexibility to answer queries to any level of detail
desired.

2. Multi-Dimensional Online Analytical Processing:
MOLAP cubes consumes much more storage space than ROLAP cubes
due to the fact that MOLAP cubes consist of the fact data as well as
a number of pre-calculated aggregations. The level of detail of the
aggregations that are pre-calculated can be customized in order to ac-
commodate the most frequent queries. This allows for the fastest query
response time of all the OLAP cubes. The more detailed aggregations
and the more dimensions that are defined, the more storage space the
cube consumes. MOLAP cubes allow for offline analysis since the di-
mensions, facts and aggregations are stored in the cube. Unlike the
ROLAP cube, MOLAP cubes do not offer the flexibility of answering
queries of any level of detail. MOLAP cubes are limited to the level
of detail defined by the dimensions and hierarchies in the cube. This,
along with the high storage consumption, poses the greatest disadvan-
tage of the MOLAP cube.

3. Hybrid Online Analytical Processing:
HOLAP cubes store data using a combination of the two previous stor-
age models. Aggregations are stored in a persistent cube, while detail
level data are stored in the RDBMS. This minimizes the storage space,
as well as optimizing query performance. HOLAP comes with the ad-
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vantages of fast query performance, low storage space consumption,
and flexible level of detail.

3.4 The Data Path

The need for data being processed at a quicker pace in a RTDW than a
normal DW enforces changes to the way data from the OLTPs are being
processed. The traditional bulk loading at fixed nightly or weekly intervals
does not support the need for real-time or near real-time data. Instead, an
approach where data is continuously being fed to a software system serves the
same purpose of an ETL. The following sections will describe the differences
between a traditional ETL and a CTF system that is used in a RTDW. The
primary focus will be on how the CTF works, whereas the pre-master thesis
presented a more thorough description of the ETL.

Figure 3: The RTDW and DW data path.

The similarities and differences in the data path of respectively a RTDW and
a DW are shown in Figure 3. The figure will be used in the following sections
to describe the data path in more detail. The figure shows how, in general,
ETL and CTF both follow a similar principle in regards to processing data
- namely:

• Importing data from outside source(s) - the OLTP systems.

• Performing calculations/alterations to the data set imported to fit op-
erational needs.

• Exporting it into the end target(s), e.g. a database, text file or data
warehouse.
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3.4.1 Data Import

The first part of an ETL process, Extract, involves extracting the data from
the source systems by bulk loading. The amount of data extracted varies
from project to project, however, as it is done rather infrequent, the amount
of data is typically large, as presented by the thicker lines in the Figure 3.
Alternatively, the first part of the CTF: Change Data Capture (CDC) con-
tinuously feeds data, as represented by the dotted lines, from their data
sources.

Change data capture is a set of software design patterns used to determine
(and track) the data that has changed so that action can be taken using the
changed data. Also, CDC is an approach to data integration that is based on
the identification, capture and delivery of the changes made to operational
data sources. There are several techniques to do this. In essence, CTF tools
either push or pull data on an event driven or polling basis.

Push integration is initiated at the source for each subscribed target. This
means that as changes occur, they are captured and pushed across to each
target. Pull integration is initiated at the target by each subscribed target.
In other words, the target system extracts the captured changes and pulls
them down to the local database. Push integration is more efficient as it can
better manage system resources. As the number of targets increases, pull
integration becomes resource draining on the source system.

Event driven integration is a technique that involves events at the source ini-
tiating capture and transmission of changes, typically implemented through
the observer design pattern. Polling involves a monitoring process that polls
the status to initiate capture and application of database changes. Event
driven integration conserves system resources as integration only occurs af-
ter preset events whereas polling requires continuous resource utilization by
a monitoring utility.

3.4.2 Altering Data

The Altering Data stage applies a series of rules or functions to the extracted
data from the source, before loading the data into the end target. Some data
sources will require very little or even no manipulation of data, where others
require heavy data manipulation. This stage is referred to as the Transform
stage in both CTF and ETL. The following itemization presents some of the
simpler rules that can be applied to a data set in this stage of the data flow:
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• Encoding free-form values e.g., mapping ”1” to ”Male” and ”M” to
”Mr.”

• Deriving new calculated values - e.g., creating a sales amount from
quantity and unit price.

• Pivoting or un-pivoting - e.g. converting multiple rows into multiple
columns or vice versa.

However, more complex rules can also be applied to the imported data. An
obvious example of this is the bounce problem, where a large number of data
manipulations are required. More complex data manipulations are typically
used in DW, where the processing time is not that important. Often, these
can take historical data into consideration as well, which means that the
processing time for each data record, can be long for a traditional DW.
For a RTDW, the approach for this stage is different. The computation
is considered important according to the right-time concept. As a result
hereof, estimations are often made and a lightweight implementation of the
transformer is implemented. The challenge with a RTDW is to propose an
algorithm with as high an accuracy as possible, within the scope of right-time.

3.4.3 Data Export

The data export phase loads the entire dataset, produced by the transformer,
into the end target, which is typically a database. Depending on the require-
ments of the organization, this process varies widely. Flow, in CTF, refers
to replenishing the feed of transformed data in real-time from one or more
operational systems to one or more subscriber systems. Whether a data
warehouse or several data marts, the flow process is a smooth, continuous
stream of information, as opposed to the batch loading of data performed by
the Load stage in ETL tools.

In the case of both RTDWs and DWs, data is inserted into the database
designated for the warehouse. The OLAP systems then refresh the dimen-
sions, facts and aggregations as needed to present an up-to-date cube for
browsing. Figure 3 shows how the concept of HOLAP can be viewed as the
Just-In-Time Merge (JIM) between the static historical data and snapshots
of the real-time up-to-date data. As described in Section 3.3, the OLAP
cubes have to be reprocessed at various intervals according to the business
case and storage model used. With a traditional DW, it is normally done
after the execution of the ETL. With a RTDW, the data flow is constant,
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which means that the aggregations, facts and dimensions must be reprocessed
whenever changes occur - or at specific time intervals as stipulated by the
SLA.

4 System Realization

While Section 3 provides the basics and the knowledge required to build
a RTDW, this section covers the actual design and implementation of the
RTDW. Four main areas will be covered, where three of them are related
to creating the RTDW: Describing the overall system architecture, designing
and implementing the data warehouse, and designing and implementing the
CTF. The last area will cover how we simulate a real-time data feed to the
system.

4.1 System Architecture

The previous sections have given us knowledge and understanding of the
different concepts and guide lines for designing and implementing real-time
data warehouses. Now, we will put that knowledge to use by designing a
real-time data warehouse that suits the business needs of the BLIP case. For
brevity, we only depict and refer to data collected by BLIP that we will need
in our RTDW.

While different business needs put forth different requirements for the fre-
quency of data freshness, we consider it important to continuously maintain
the RTDW with the most up-to-date data as possible, but still with a high
level of data quality, i.e. data is passed to the RTDW by the flow module as
soon as bounce detection and elimination has been performed. We consider
the time it takes the data to be captured, transformed and fed to the ware-
house to be in right-time, i.e. data is not real-time, it has been withheld long
enough to perform data cleansing to ensure quality, but is still fresh enough
to be regarded as the current state of the environment. However, due to the
nature of the bouncing records in the BLIP dataset we cannot ensure that
the most recently inserted data is valid. A threshold, called Bouncethreshold,
is used to define the minimum period of time a device must be tracked within
a location for it not to be considered a bouncing device. This means that
the data has to be older than the Bouncethreshold for us to ensure that the
data is valid.
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Figure 4: System architecture.

The architecture of the system we propose is seen in Figure 4. As mentioned
in Section 2.1.2, BLIP collects the Bluetooth address, access point informa-
tion, and time registered for BT devices within a BLIP zone and enters it in
a database. At this point in BLIPs OLTP system, our CTF will intercept
the data for processing. The idea is to make the CTF scalable such that
it can perform in both real- and right-time. A scalable CTF ensures that
no re-engineering is needed if business needs are to change from right-time
to real-time or vice versa. An in-memory maintenance of the Bluetooth de-
vices will be used to perform on-the-fly bounce detection and elimination
and transform the data. This will be elaborated in Section 4.3.5. The next
step is feeding the data to the real-time data warehouse. The RTDW will
be described in detail in Section 4.2. With data being fed to the real-time
data warehouse, our application can query the RTDW for information that
is needed, e.g. what is the congestion level in the security area right now?

In order to demonstrate the full potential of the RTDW, we simulate that
we have access to a data mart containing the departure gate and time for
all passengers. We will use this information to build an application that
monitors the passengers and try to predict whether a passenger can make
it to the departure gate before the given time of departure or not. The
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application can be implemented with various degree of detail. It can range
from having a simple implementation with fixed travel times between all
access points to a more complex implementation that takes into account
the current congestion level in the airport as well as historic travel times
between the passengers location and destination to determine an estimated
travel time for the passenger. This will enable us to answer Question 3
mentioned in Section 1.1.

4.1.1 Risk Mitigation

Risk mitigation is a technique to identify and assess problem areas, and
future events, that may risk the success of a data warehouse project. This
technique also helps to define preventive measures to reduce the probability
of these factors from occurring. We highlight three of the problem areas that
are well known to cause problems when creating a RTDW [3] [17].

• User Heterogeneity.
Because RTDWs are designed to address concrete business problems or
opportunities, the requirements for the data warehouse are put forth by
the users of the system. As a wide range of people use the systems, their
needs often cover a wide range of posed questions that need answers.
Data warehouse systems have to cope with a wide heterogeneous range
of users. The data warehouse requirements has to address the needs of
these users. While this is a problem for larger RTDWs, this does not
pose a significant risk for the BLIP case, as there are a very limited
range of users to the system and these users all utilize the system to
extract the same type of information.

• Growth and Scalability.
A user-driven data warehouse system typically grows fast, both in terms
of users and data volume. Even though the amount of passengers
tracked in the airport was shown to be fairly stable in the pre-master
thesis, it is still desirable to implement a module-based, scalable solu-
tion. This includes both the database systems and the CTF system
that performs the transformations. Some solutions even use estima-
tions, rather than accurate calculations, to reduce workload through-
out the system, which could be a useful possibility in the BLIP case.
Furthermore, implementing solutions that support execution of differ-
ent modules of the program in parallel should be done if possible. The
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greatest risk, in regards to scalability, is the running time of the trans-
former. If the number of passengers being tracked were to increase, the
transformer could turn out to be a potential bottleneck. How we will
try to reduce the running time will be discussed in Section 4.3.3.

• System Evolution.
Data warehouses are high-maintenance systems. A lot of different is-
sues can affect the data warehouse such as changes to the products,
new customer meta data, changes in production systems and simi-
lar. Therefore, the data warehouse system has to evolve with the BI
changes. While system evolution poses great challenges to large orga-
nization wide RTDWs, the RTDW built for the BLIP case is limited.
Should BLIP decide to include more airport logic into the warehouse,
a complete redesign of the warehouse would be required.

4.2 Real-Time Data Warehouse Design

This section covers the design of the dimensions, hierarchies, and fact tables
of the real-time data warehouse. First, it proposes two different designs,
whose degrees of flexibility as well as space consumption are quite different.
Based on a discussion, presenting the benefits and drawbacks of the two
approaches, a design is finally chosen. This section will not cover the creation
of keys for the various fact tables and dimensions, as we utilize the same
principles for creating keys, surrogate keys and similar as described in the
pre-master thesis.

As some of the dimensions are shared between the two solutions, these will
be introduced before going into detail with the solutions themselves.

4.2.1 BluetoothDevice Dimension

The BluetoothDevice dimension, as shown in Figure 5, is used to model the
Bluetooth devices tracked by the system. The dimension merely consists of
the BluetoothAddress which is used to describe a specific device.

The additional data which are stored in the BLIP OLTP does not bring any
value to the RTDW at this point and is therefore discarded. However, having
implemented a dimension for Bluetooth devices enables easy expansion if
the BI questions were to include additional information about the specific
Bluetooth units or geographic and demographic user data.
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Figure 5: The BluetoothDevice dimension.

4.2.2 Time Dimensions

The two dimensions seen in Figure 6 are used in combination to model time.
We have chosen to split time up in date and time, as we did in the pre-master
thesis, to reduce the amount of records. If date and time were modeled in
one table there would be over 86,400 records for each day. In a year that
would give over 31 million records in the dimension which could result in a
slow query performance. Furthermore, queries are often made on either a
date or time basis.

Figure 6: The TimeOfDay and Date dimensions.

The Date dimension consists of three attributes needed to describe a date
hierarchy: Year, Month, and Day. To make it possible to implement a more
detailed gradation the dimension includes the following attributes: Semester,
Quarter, DayOfYear, and DayOfWeek.

The time dimension called TimeOfDay consists of the three attributes needed
to specify a time hierarchy, from hour level, to a specific second: Hour,
Minute, and Second.

4.2.3 Junk Dimension

This dimension contains the information required for the data warehouse
to operate, but does not quite fit into the other dimensions. Creating a
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Junk dimension to hold this data is a common practice [20] and should be
considered equally as important as the other dimensions - even though the
name suggests otherwise.

Figure 7: The Junk dimension.

The Junk dimension in Figure 7, is created to answer Question 3: Are there
any passengers that are in risk of not reaching their gate in time?. The di-
mension consists of PositionClassification, MovingCorrectDirection and Time-
ToGate. The PositionClassification can contain three different states: Safe,
PossibleRisk and Late. The MovingCorrectDirection is relevant for the
passengers classified as PossibleRisk and it indicates whether the current
movement of the tracked device is moving towards or away from the target
destination. TimeToGate gives a rough estimate of the travel time between
the current location of the device and the departure destination.

4.2.4 Specific RTDW Design Proposal

The first design we present is a very case specific solution, that can answer
the BI questions proposed in Section 1, but does not provide support for
answering much more than these. Figure 8 shows how the RTDW warehouse
is designed.

It contains two fact tables: One for storing the tracking data and another
for storing information about congestion levels. The measures that are to be
stored in the Congestion Fact table is calculated by the CTF. While keeping
track of the different objects, a counter is made for each access point. Each
time a device enters or exits the proximity of an access point, its counter is ei-
ther incremented or decremented. This provides a small overhead for running
the CTF, however extracting information can be done by performing lookups
rather than counts. Additionally, the fact table is denormalized such that it
stores the access point name directly in the fact table, Location, rather than
looking it up in a dimension. As we do not have BI questions related to dif-
ferent areas within the airport, but only questions about the actual locations
covered by the access points, we have chosen not to include an access point hi-
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Figure 8: Specific RTDW design proposal.

erarchy. Combined, this means that performing analysis on this fact table can
be performed very fast, which will ensure fast congestion analysis. However,
it requires additional data to be stored in the data warehouse. The amount of
records used for congestion are Numberofaccesspoints∗Numberofupdates.
Given an update frequency of one minute, with 25 access points, the result
is 36.000 records pr day.

The same mindset has been used when designing the Tracking Fact table.
The main goal when designing it was to reduce the amount of records within
the tracking. The cost of reducing records is that, to some degree, certain
data information details are lost. The format of the tracking data is stored
in a string of the form {(TSpent1 , APID1), ..., (TSpenti , APIDi

)} in TrackingInfo
and is used to model movement within the airport as seen in this example:

{(T63, AP1), (T74, AP2), (T13, AP3), (T?, AP4)}

By using this data format, the presented example can be stored in one record
rather than having a record for each registered tracking record. T? indicates
that the record is open, i.e. the device is still being tracked.

The fact table also includes a LastSeenLocation fact, which can be derived
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from the tracking data. However, this requires the string to be loaded by
the CTF and parsed before determining the position where the device was
last seen. Saving the LastSeenLocation, as an additional fact requires little
overhead as the CTF already contains the information required. However, by
adding this measure it becomes easy to determine, whether or not a passenger
is at risk of being late for his departure by using the Junk dimension without
having to parse the tracking information.

Additional measures can be added if the BI questions proposed require fur-
ther information, such as Number of access points traversed in this visit?.
This is called Amount in the figure. However, they can only be related to
the visit within the airport itself - not on each part of the traversal of the
path. However, using this fact table layout presents some limitations as a lot
of information is just stored implicitly. e.g. Idle- and Dwell time has to be
calculated if one would require these. The introduction of this limitation is
intended as it provides just enough support to BI questions posed.

4.2.5 Generic RTDW Design Proposal

The second design presented is a more generic approach and the result is a
data warehouse design that is more similar to the design we proposed in the
pre-master thesis. The layout can be seen in Figure 9 and it consists of one
fact table and a number of dimension tables. This design is more normalized
compared to the previous approach as the access points are extracted to their
own dimension.

We have chosen to take inspiration from our pre-master thesis to create the
Location dimension, however we have chosen to remove the Site level from
the hierarchy, as we find the other levels sufficient to map the airport with a
high enough degree of detail.

In order to refer to different points of interest in the airport, a hierarchy of
three levels is introduced. The lowest level in the hierarchy is denoted as
a Location, which describes the region covered by an access point. This is
retrieved from the Zone table in the BLIP data set. A number of Locations
form what we denote as a Zone. An Area consists of an amount of Zones.
The Location dimension is used to model the location in which a tracking
record was made.

The Tracking Fact table contains more detailed information about the traver-
sal of each device, as information such as idle- and dwell time can be looked
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Figure 9: Generic RTDW design proposal.

up directly. Even though these are not considered important with the goals
presented in Section 1, it is still a good idea to provide functionality that
can answer questions that are not asked yet as described in the pitfalls in
Section 1.2. Even though the second RTDW Design proposal contains one
less fact table it is still possible to answer questions about congestions as live
records can be examined to count congestion levels.

The main difference between the two layouts are the different fact tables.
The specific design is concerned with entire visits in the airport, i.e. from
the first device observation to the last, where the generic design is focused
on movement between access points, i.e. it stores each movement in a sep-
arate record. Since the specific design focuses on visits within the airport,
some workarounds are introduced in form of another measure, namely Last-
SeenLocation and the congestion fact table. This enables faster queries for
congestion numbers as they can be looked up rather than calculated. Both
designs provide same functionality in regard of determining whether a pas-
senger is running late or not.

The respective CTF tools needed for the two systems contain small differ-
ences. The two systems handle movement from a tracked device differently.
The generic system has to close a record and open a new one each time a
device moves from one zone to another. The specific system, however, only
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performs one update on movement. It updates the TrackingInfo through
concatenation and updates LastSeenLocation. Furthermore, the specific sys-
tem has to close the tracking record when a device leaves an area by entering
the LeaveTime.

As the generic design contains a higher degree of normalization, more joins
are required to extract data from the tracking table. This results in a
database that is faster to maintain, but is slower to query. The specific
design is slightly denormalized as access point information is directly inte-
grated into the Tracking Fact table. The amount of data stored in the two
designs are different. The specific design reduces the amount of data within
the Tracking Fact table, however it increases the amount of data stored for
the congestion table.

The generic data warehouse design is chosen to be the implemented ware-
house, as it provides support for more complex queries. While the support
for more complex queries comes at the expense of slower data warehouse,
we consider flexibility and expandability more important than the ability to
make very specific queries fast based on Section 1.2 and 4.1.1.

4.3 Real-Time CTF

This section covers the design and implementation of the Capture, Trans-
form, and Flow tool. It ranges from extracting the data from the OLTP
to inserting data into the end target, namely the MSSQL database. It will
cover the various drawbacks, benefits, limitations, and possibilities for the
implementation chosen for each step of the process. Figure 10 shows a high
level overview of the design for the CTF.

4.3.1 Creating a Stateful CTF

In order to optimize the data flow of the CTF, we have decided to have
a singleton class, called CTFState, store the current state of the tool - i.e.
devices and their last known and current position and time registered, as
well as tracking records ready to transform and ready to insert into the
RTDW. This allows the capture, transformer, and flow parts to, individually,
perform optimally according to the current state. All objects in CTFState

are synchronized to prevent simultaneous data access. The design contains
two synchronized queues which are both stored in CTFState - one between
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Figure 10: High level design of the CTF.
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the CDC and the transformer, the other between the transformer and the
flow module.

The design is quite scalable and can easily be transformed to allow for multi-
ple threads per part. This could be accomplished by designating a queue per
transformer thread and per flow thread. The thread boundaries in our case
are the Bluetooth devices. Each CDC thread should perform a modulo x op-
eration on the Bluetooth address ID - BTID mod NumThreads - and push the
tracking record extracted on to the corresponding transformer queue. This
way, load would be evenly distributed and each transformer thread would be
responsible for a range of specific Bluetooth devices. In the case that there
are more flow threads, a queue per thread, each handling a different range of
Bluetooth devices, must be assigned in order to avoid mixing up inserts.

Our solution implements the design with a single main thread, capture
thread, transform thread, and flow thread. The following goes into detail
with how the CDC, transform, and flow parts work.

4.3.2 Change Data Capture

To capture the changes made in the BLIP OLTP, we first analyze how BLIP
makes changes to the data source. BLIP has a main table which is populated
each time either a tracking record is being created or closed, i.e. the only
changes that needs to be captured comes from inserts and updates, but not
deletes. The BLIP OLTP, which data source is based on a MySQL database,
needs to incorporate logic to handle these changes. MySQL is limited in
regards to the functionality of handling events and executing triggers. It is
not possible to execute arbitrary code based on triggers or events. As a result,
a more primitive approach is implemented. An insert trigger is created on
the main table, which can be seen in the Listing 1.

Code example 1: After insert trigger.

1 BEGIN
2 INSERT INTO Live VALUES (NEW. btAddress , NEW.

accessPo int , NEW. enterTime , NEW. leaveTime ) ;
3 END

The trigger seen in Figure 10, between BLIPs OLTP system and our system,
replicates the inserted line into the Live table from BLIPs Tracking table.
However, it does not pass information we do not consider relevant such as
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MAX RSSI Strength. As a result, the schema for the table is simple as seen
in Figure 11.

Figure 11: Schema of the live table.

The purpose of this new table is to have a have a table where the CTF
can extract its data from. After extracting a line, and if its successfully
pushed to the Transformer queue, that line can be removed from the live

table. Having this extra table comes with an overhead in form of three
extra SQL statements to process the data: One insert called by the trigger,
one select when extracting the data to the CTF and one delete when the
data is successfully pushed to the transformer. However, having this extra
table ensures that the CTF can run even with a system failure. The CTF
becomes state aware and knows where to resume from after a crash as long as
records are processed based on ascending enter time. However, the nature of
this OLTP reduces the possibility of implementing a real-time data capture.
Instead, we can implement a near real-time data capture. Even if the CDC
polls the database several times per second for changes, the capture will still
be poll based and not event based.

A similar trigger needs to be created for handling updates, i.e. closing
records. Having this update trigger enables the system to close live records
and handle them accordingly.

To have actual real-time data, we would have to change the OLTP to use
a different data source. One option is to use MSSQL. MSSQL enables a
trigger to execute a stored procedure. A stored procedure can execute any
code through the SQL Common Language Runtime(SQLCLR). Code can be
written that on each insert to the MSSQL database automatically pushes in-
formation to the transformer. Another option is to use an oracle database to
enable real-time data handling. Newer oracle databases bases their CDC
architecture on the publisher/subscriber model, perhaps more commonly
known as the observer design pattern. The publisher captures the change
data and makes it available to the subscribers, this should also be the case
with the announced MS SQL Server 2008 R2 - codename Kilimanjaro 1. The

1 http://www.microsoft.com/sqlserver/2008/en/us/r2.aspx
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subscribers utilize the change data obtained from the publisher to perform
the needed transformations before being pushed to a target site.

When extracting the data, simple cleaning is performed. The records stored
in the OLTP has shown to contain corrupted data. An example hereof can
be tracking records that do not contain an enter time or a record where the
enter time is later than the exit time. This data cleansing is performed just
before the data is pushed to the queue, which the transformer pulls from.
The data cleansing could have been performed in the transformer as well,
but in order to ease the workload of the transformer, it has been chosen to
implement the cleansing in the CDC instead.

4.3.3 Transformer

The task of the transformer is to check all records, which are in the correct
format as verified by the data cleansing module in the CDC, for valid moves
and bouncing records. As Figure 10 shows, the transformer is in charge of
checking the validity of the moves within the airport, perform bounce detec-
tion and elimination. To ensure scalability of the system, the transformer
will be coded in a way that supports multi-threaded execution as mentioned
previously.

Code example 2: Transformer algorithm.

1 WHILE t rue
2 IF TrackingQueue i s not empty AND FeedQueue i s not

f u l l
3 dequeue t rack ing record TR
4 IF TR. BluetoothAddress e x i s t s in the s t a t e
5 IF TR. AccessPoint != CurrentState . AccessPoint
6 IF ValidMove( CurrentState . AccessPoint , TR.

AccessPoint )
7 IF BounceDetection (TR)
8 BounceElimination (TR) − which d e l e t e s

bouncing record from database and
c r e a t e s c o r r e c t record

9 enqueue the TR in FeedQueue − which
updates the new record or i n s e r t s a
new record

10 update the s t a t e o f t racked dev i c e s with
the bounce e l im inated TR

11 ELSE
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12 enqueue the TR in FeedQueue − which
i n s e r t s a new record

13 update the s t a t e o f t racked dev i c e s with
the new TR

14 ELSE
15 combine the CurrentState with the new s t a t e

− l eavet ime i s updated , move i s
d i s ca rded

16 enqueue combined TR in FeedQueue − which
updates the cur r ent record

17 update the s t a t e o f t racked dev i c e s with
the combined TR

18 ELSE
19 combine the CurrentState with the new s t a t e −

l eavet ime i s updated
20 enqueue combined TR in FeedQueue − which

updates the cur r ent record
21 update the s t a t e o f t racked dev i c e s with the

combined TR
22 ELSE
23 enqueue the TR in FeedQueue − which i n s e r t s a

new record
24 update the s t a t e o f t racked dev i c e s with the

cur r ent TR
25 ELSE
26 Sleep f o r a whi l e

The pseudocode for the Transformer is shown in Listing 2. After a track-
ing record is dequeued from the extracted tracking records queue, it checks
whether or not the device in question has been tracked before. If not, it
is directly enqueued into the feeding queue and state updates to reflect the
new device as well as where and when it was last seen - as indicated in Lines
23-24. Next, we check if the access point from the new tracking record is
different from the current state in Line 5. If it is not, we combine the current
states enter time, with the new tracking records leave time and update the
information in the state and the database, Lines 19-21. The same applies for
an invalid move in Lines 15-17. Line 7 checks whether a record can be classi-
fied as a bouncing record or not, while Lines 12-13 inserts the tracking record
if it is valid. Lines 8-10 performs bounce elimination on the tracking record
and changes the state and the information in the database accordingly.
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4.3.4 Valid Moves

One of the key components of the CTF is the sub-routine that validates
whether or not the movement of a tracked object is valid. The motivation
behind this routine is to, as early as possible, determine if data can be con-
sidered as invalid and thereby be discarded.

To determine whether a move is valid or not, we need a data structure to
model the area. For this, we have chosen to use a graph. We consider the
entire area as a graph where each vertex represents an area covered by an
access point, and each edge represents a path between two areas. As this
routine is to be executed each time a change is registered, it is important
that the running time of the algorithm is as low as possible and that the
data structure used is fast to access.

A number of data structures live up to this requirement such as hash tables
and adjacency matrices. Hash tables [8] can be used in various ways giv-
ing different lookup and initialization times depending on the configuration.
Perfect hashing allows for constant time lookups. This is in contrast to most
chaining methods, where the time for lookup is low on average, but may
be high for some sets of keys. The adjacency matrix [4] also provides con-
stant time lookups, however it comes with a large memory overhead. Both
of these data structures provide support for modeling directed-cyclic graph.
This means we can implement the restriction of the movement of people en-
forced by the site, e.g. security, where it is not possible to go back once you
have passed.

Putting forth the requirement of having a low look up time, comes with a
trade off in form of higher initialization and insertion costs with both hash
tables and adjacency matrices. However, due to the static nature of the
access point configuration within the site, the data describing the layout is
static after initialization, and does therefor not need maintenance.

For this project, it has been chosen to use an adjacency matrix, as the data
structure modeling the valid moves in the site. The adjacency matrix will be
built upon a directed cyclic graph library for C# called QuickGraph2. The
size of the adjacency matrix would be 55 ∗ 55, as BLIP utilized 55 active
access points for recording the data provided. As we store an Int32 within
each cell, the matrix would require 12kb of memory. A single Bit could also
be used to indicate whether or not a pair of vertices are connected.

2 http://quickgraph.codeplex.com
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4.3 Real-Time CTF

Figure 12: Example of a directed graph.

Figure 12 shows an example of how the valid moves between three access
points could be and Table 3 shows the resulting adjacency matrix for the
graph that can be built from the setup.

A B C
A 1 1 0
B 0 1 1
C 0 1 1

Table 3: Adjency matrix for Figure 12.

The model is read as values above 0 is a valid mode, i.e. one can move from
A to B, however one cannot move from B to A. The matrix also shows that
it is possible for a device to move from access point A to A, which means
that a device can loose connectivity to the access point and reappear later
within the same access point without problems.

Listing 3 proposes an algorithm for determining whether or not a move is
valid.

Code example 3: ValidMove algorithm

1 Procedure ValidMove( fromAccessPoint , toAccessPoint )
2 IF AdjencyMatrix [ fromAccessPoint , toAccessPoint ] > 0
3 RETURN t rue
4 ELSE
5 RETURN f a l s e

Even though the algorithm is simple in nature, it provides the CTF with a
powerful tool to reduce the amount of computations needed to maintain the
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RTDW. The logic for performing real-time bounce detection is only executed
if a move is considered valid by the proposed model.

4.3.5 Real-Time Bounce Detection and Elimination

This section covers how we address the problem presented in Section 2.1.3 in
a real-time manner. While bounce detection and bounce elimination are two
separate problems, the design and implementation of these two problems are
closely connected and this section will therefor cover both.

As when designing the other sub-routines, we have focused on keeping the
running time as low as possible. The routine has to cover two different
cases: (i) when a device is bouncing between two access points, (ii) when a
device disappears and reappears within the same access point and (iii) when
a device makes a clean move between access points. To keep the real-time
bounce detection simple, we implement a solution that does not require any
look ups in any external data source to detect bouncing. Rather, it should
use the last live record as the reference point when determining if a move
should be considered as case (i), (ii) or (iii). Case (ii) and (iii) are handled
by the transformer described in Listing 2.

First, some sort of threshold have to be set for how long a device have to be
tracked within an access points range for it not to be considered as bouncing,
i.e. the device in question is tracked long enough to be considered a legit
move. The pre-master thesis included empirical testing on a subset of the
BLIP data set which showed that a Bouncethreshold of seven seconds was
optimal and will therefor be used as threshold in the examples given in this
section. The bouncing problem can be addressed in several ways, of which
we will discuss two solutions:

The first solution embraces the real-time concept and will insert data to the
RTDW as early as possible. Inserting data early, before bounce detection and
elimination can be performed, comes with the expense of possibly having
invalid data in the data warehouse. Figure 13 shows an example of the
presented bouncing problem.

The first record, TR1 spans from T1 to T15, which means that the time period
of the record is longer than the bounce threshold period and should therefore
be correctly inserted. However, the next record moving from AP1 to AP2,
TR2, has been verified to be a valid move by the ValidMove algorithm, and
spans from T15 to T20 which means that it is an invalid record, since the time
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4.3 Real-Time CTF

Figure 13: Example of bouncing records.

period is below the threshold. The CTF is not aware of this at time T15

when it inserts the record, which means it inserts a record that is actually
bouncing. At time T20, the CTF gets a new entry, TR3, from the BLIP
OLTP which is tracked in AP1. The CTF can then correctly identify TR2

as a bouncing record and remove it from the data warehouse, and combine
TR1 and TR2 into a single record spanning from T1 to T34.

Another option is to delay the insertions to the database until it has been
verified that the record is not considered a bouncing record. This, however,
presents the possibility to let devices disappear from the site for a short
duration of time. If we use this approach on the data sample presented in
Figure 13, the end result is the same. Namely, a data record from T1 to T34.
The data is different in the database during the execution, however. As TR1

has a longer duration than the bounce threshold, a record is inserted into the
database at T8 with the enterTime set to 1. At T15, TR1 is closed, but TR2

is not opened until it has been confirmed that it is not a bouncing record.
Since the duration of TR2 is shorter than the bounce threshold, the client is
not registered within AP2. When the passenger re-enters AP1, he wont be
registered until it has been verified that he is not bouncing. As a result, the
device is not tracked from T15 to T27, i.e. 12 seconds where the device is not
tracked.

Of these two options, we consider the first solution to be better. Even though
this approach results in possible invalid data for short durations, we still
consider this better than having tracked devices disappearing for shorter
durations. The example in Figure 13 shows that the device is tracked at a
wrong location for five seconds, whereas the other solution makes the device
disappear for 12 seconds. To support this solution, we not only insert records
with the flow module, but also delete and update records. This means that
everything passed to the flow needs to flagged to indicate whether a record
is going to be inserted, updated or deleted.
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Code example 4: Real-time bounce detection.

1 Procedure BounceDetection ( NewTrackingRecord TR)
2 IF LastState . AccessPoint == TR. AccessPoint
3 IF ( CurrentState . leaveTime − CurrentState . enterTime

) < BOUNCETHRESHOLD
4 RETURN t rue
5 ELSE
6 RETURN f a l s e
7 ELSE
8 RETURN f a l s e

Code example 5: Real-time bounce elimination.

1 Procedure BounceElemination ( NewTrackingRecord TR)
2
3 CurrentState . dbFlag = FLAGDELETENEWESTRECORD
4 FeedQueue . enqueue ( CurrentState ) − which d e l e t e s

cur r ent t r a ck ing record from database
5
6 LastState . LeaveTime = TR. LeaveTime
7
8 LastState . dbFlag = FLAGUPDATENEWESTRECORD
9 FeedQueue . enqueue ( LastState )

Listings 4 and 5 show the logic for the bounce detection and elimination.
The algorithms contain three states of the tracked device: The last seen
tracking record LastState, the tracking record that is used in the system as
the current record CurrentState, and the new incoming tracking record TR.
The algorithms covers two different cases, where one has a special condition:

4.3.6 Flow

The Flow module is responsible for all communication with the MSSQL
database. It handles all inserts, updates and deletes to the database de-
pending on the status of the tracking records which is dequeued from the
queue. The implementation of this module is straight forward as it, merely,
sends SQL queries to database server and executes them.
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In this section we present experimental results to test two parts of the CTF,
namely, to determine if the CTF produces the correct output, given a cer-
tain input, and to determine the optimal setting for the bounce threshold
introduced in Section 4.3.5. We also test how, using different storage models
effects the response time to the system by implementing two different cubes.
Lastly, we will perform analysis of the BI related questions introduced in
Section 1.1 through MDX queries and custom applications. The entire sys-
tem test has been performed on a modern desktop computer, with a dual
core 2.66GHz CPU and 4 GB memory, running Windows Server 2008 64bit
Edition.

The data warehouse design presented in Section 4.2 has been implemented
in Microsoft SQL Server 2008, the cube design has been implemented in
Microsoft Analysis Services 2008 using the storage model which showed to
be preferable for the BLIP case, and we have used custom applications to
create the graphical output.

5.1 Real-Time CTF Test

Two tests of the CTF has been performed. One is created in order to validate
that on a certain input, the correct output is generated. This test is made
to validate that the proposed algorithms work as intended. Another test is
made to examine the impact of the ValidMove and BounceDetection and
BounceElimination algorithms with respect to records removed off a subset
of the total dataset.

5.1.1 Capture, Transform, and Flow Correctness

To ensure the correctness of the CTF, we have extracted a small portion of
the dataset which we will analyze by hand to verify that the implementation
follows the rules presented in the algorithms. We have chosen a data sample
from October 16th 2008, in the time period from 13:48:39 to 14:16:18. The
tracked data is situated in the security area of the airport, as seen in Ap-
pendix A, and all movement is between access point 16 and 18, ID 11 and 17
respectively in the following. The figure in Appendix A is taken from [21].
The sample set consists of 22 records and can be seen in its entirety in Ap-
pendix B. The data quality of the rows are varying as some of them are only
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seconds long where others has a longer duration.

We will go through the three steps of the transformer, step-by-step, to check
if the data matches the expected data to cover the different cases of the
bounce detection. For testing the CTF, we pass the sample data through the
valid move and the bounce detection/elimination algorithms. The format of
the records are (TimeEnter, TimeLeave, BluetoothID, AccessPointID).

TR1 : (13:48:39, 13:48:51, 4404, 11)

As this is the first record TR1 loaded into the system the Bluetooth device
has not been tracked before and are therefor stored into the RTDW without
modifications. The CTFState singleton is updated to hold the tracking record
as both the CurrentState and LastState.

TR2 : (13:48:51, 13:48:54, 4404, 17)

The movement from access point IDs 11 to 17 is considered valid according to
the adjacency matrix build upon the graph covering the area and is inserted
into the database. The CurrentState is updated to contain information of
TR2, while the LastState still contains TR1.

TR3 : (13:48:54, 13:49:05, 4404, 11)

TR3 is recorded within the proximity of access point 11. As the duration
of TR2 is below the bounce threshold, set to seven seconds, action has to
be taken. TR2 will be removed from the RTDW and TR1 will have to be
modified. Rather than inserting a new record for TR3, we combine TR1 and
TR3 to span from the TimeEnter of TR1 to TimeLeave of TR3. When the
time 13:49:05 is reached, the RTDW will contain one record spanning from
13:48:39 to 13:49:05 in the access point with ID 11.

TR3 : (13:48:39, 13:49:05, 4404, 11)

The same techniques are applied on the remaining records in the sample data
set from Appendix B. The result, shown in Table 4, is that the 22 records,
after performing move validity checks and bounce detection and elimination,
are reduced to 8 records. Running the implementation of our CTF and
checking the results yields the same results presented here. This means that
the correctness of the CTF has been verified according to the design of our
algorithms.
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enterTime leaveTime btAddress accessPoint
13:48:39 14:05:17 4404 11
14:05:35 14:06:20 4404 17
14:06:20 14:06:34 4404 11
14:06:37 14:07:59 4404 17
14:08:01 14:08:14 4404 11
14:08:20 14:14:41 4404 17
14:15:19 14:16:18 4404 11

Table 4: Sample data after bounce detection and elimination.

5.1.2 Valid Move, Bounce Detection And Elimination Test

In this experiment we load a subset of the dataset into the data warehouse
using different Bouncethreshold values, (0 - 10 seconds). We have chosen to
work with a subset of 25,000 records from the BLIP dataset, due to the real-
time nature of our CTF. The 25,000 extracted records ranges from 13:48:32
to 16:12:54 on October 16th 2008, which is a span of 144 minutes and tracks
1,641 unique devices within 23 access points. The results are shown in Fig-
ure 14.

Figure 14: Effect of the Bouncethreshold attribute on the number of records.
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The results show that the amount of records decrease rapidly in the beginning
and flattens out at approximately a 7 second threshold. This is consistent
with the result from the pre-master thesis, indicating that a bounce threshold
of 7 seconds is optimal.

If the Bouncethreshold is set too high, records that are not actual bounce
records, but merely people crossing in an access points peripheral, will be
marked as bounce records. If it is set too low, too few of the bounce records
are eliminated. We set the Bouncethreshold to 7 seconds, which reduces the
amount of records from 25,000 to a total of 9,082 tracking records, which is
equal to a reduction of the tracking records by 63.67%. In comparison, the
old bounce detection presented in the pre-master removed 2,642,095 out of
21,161,406, which equals to a reduction of 12.49%.

Running the same test on different subsets of the dataset with various starting
point in time and various duration shows that the reduction in records spans
from 50% to 72% with a Bouncethreshold set to 7 seconds. This degree of data
quality ensurance supports the statement of Goal 3, regarding increasing the
data quality output.

5.2 Storage Model Test

To test the response time of the real time data warehouse and the impact the
choice of the storage model have on the system, we have implemented the
cube with two different storage models in the Microsoft SQL Server Analysis
Services 2008 [18], namely ROLAP and HOLAP.

The first is a pure ROLAP cube, where all detail data, dimensions, and
aggregations are stored in a relational format. The server is configured to
listen for changes in data, and all queries done to the cube are therefore
performed on the current state of the data, this is defined by setting the
proactive caching setting to real-time ROLAP.

The other cube is implemented using the real-time HOLAP proactive caching
setting and the HOLAP storage model, i.e. detail data is stored in a relational
format, while the aggregations are stored in a multidimensional format. As
with the ROLAP cube, the HOLAP cube listens for changes in the data
source, however the changes are only reflected to the aggregations when the
cube has been rebuilt. Using the real-time HOLAP introduces faster query
times when querying aggregated data, but at the expense of introducing
additional workload through frequent cube reconstructions.
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To test the response time of the two cube designs, the Multi Dimensional
Expression (MDX) queries which can be seen in Listings 6 and 7, have been
created which both displays the count of tracking records of Bluetooth devices
at a given location. Listing 6 is set to a Zone detail level in the Location
hierarchy, whereas Listing 7 is set to the Location level. An MDX query is
to Analysis Services, what a SQL query is to SQL Server. MDX is a query
language used to manipulate and retrieve data from a cube.

Code example 6: Tracking count of devices distributed by zones.

1 SELECT NONEMPTY( [ Dim Locat ion ] . [ Locat ion Hierarchy ] . [
Zone Name ] ) ON COLUMNS,

2 [ Dim Bluetooth Device ] . [ Bluetooth Hierarchy ] . [
Bluetooth Address ] ON ROWS

3 FROM [ Cube ]
4 WHERE [ Measures ] . [ Fact Tracking Count ]

Code example 7: Tracking count of devices distributed by locations.

1 SELECT NONEMPTY( [ Dim Locat ion ] . [ Locat ion Hierarchy ] . [
Locat ion Name ] ) ON COLUMNS,

2 [ Dim Bluetooth Device ] . [ Bluetooth Hierarchy ] . [
Bluetooth Address ] ON ROWS

3 FROM [ Cube ]
4 WHERE [ Measures ] . [ Fact Tracking Count ]

Because the HOLAP cube stores aggregations in the multidimensional for-
mat, we expect this storage model to be faster than the ROLAP model that
has to look up each tracking record and group it by their zone identifier to re-
turn results on a zone level. Table 5 displays the average running time of the
two MDX queries performed on the ROLAP and HOLAP cube, respectively.
We can see that the aggregations stored in the multidimensional format in
the HOLAP cube reduces the query response time of queries using the Zone
level from 44.45 seconds to 33.15 seconds. Queries using the Location level
performs similar on both the ROLAP and the HOLAP cube. This is because
neither cube stores aggregates on the lowest level of detail. Custom aggre-
gation settings can be set to also include the most detailed level, at the cost
of more storage space.

Even though the HOLAP cube provides slightly better response times, we
still estimate that the pure ROLAP implementation is preferable. Regardless
of the state of the cube, you are guaranteed an answer where the response
time is the processing time without any additional latency from re-processing
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StorageModel
HierarchyLevel

ROLAP HOLAP

Zone 44.45 sec 33.15 sec
Location 65 sec 64.45 sec

Table 5: Average query response time.

the cube. Both systems are viable for using real-time data warehouses, how-
ever, depending on the BI questions and requirements put forth in the SLA
,one might be preferable over the other.

5.3 Real-Time Data Simulation

As we do not have access to the actual data stream from the BLIP OLTP,
we have created a system that simulates a continuous stream of real-time
data based on the historical dataset provided by BLIP. In order to simulate
this stream, we have a program that inserts tracking data into a temporary
table from which the CTF captures the data. The structure of this program
can be seen in Listing 8. Once the data is inserted into the temporary table,
the trigger from Section 4.3.2 is executed and the data is passed on to the
LiveTable, which the capture module streams data from.

Code example 8: Real-time tracking simulator.

1 Procedure ExtractRecords ( )
2 WHILE t rue
3 IF SimulatorQueue i s not f u l l
4 Extract v a l i d t r a ck ing r e co rd s
5 Enqueue r e co rd s in to the SimulatorQueue
6 ELSE
7 Sleep f o r a whi l e
8
9 Procedure InsertRecords ( )

10 Set CurrentTime to f i r s t r e co rd s EnterTime
11 WHILE t rue
12 IF SimulatorQueue i s not empty
13 Dequeue t rack ing record TR
14 IF TR. EnterTime == CurrentTime
15 I n s e r t record to temporary tab l e in DB − which

s imu la t e s the stream of t ra ck ing r e co rd s from
BLIPs OLTP
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16 ELSE
17 Set CurrentTime to TR. EnterTime
18 Sleep the time d i f f e r e n c e between CurrentTime and

EnterTime
19 ELSE
20 Sleep f o r a whi l e

Using the procedures in Listing 8 we are able to simulate a continuous stream
of data to the CTF in real-time. Additionally, we are able to increase the
flow rate speed, in order to run the simulation in e.g. 2x speed, or basically
as fast as the system is able to process the records.

5.4 Real-Time Data Warehouse Test

To demonstrate the power of the RTDW, we have implemented some sample
applications. Analysis of the cube can be done through the use of software
like TARGIT BI Suite and Business Intelligence Studio, however this sec-
tion focuses on creating domain specific solutions, that queries the RTDW
through the ADOMD.NET3 data source - which is used to access and query
multidimensional data warehouses. The first application we propose is a
software solution that monitors where each tracked device is and reports if
congestions exist within the site. The other is an application to check for
passengers that are running late.

5.4.1 Congestion Level Application

One of the uses of the congestion level application is to present how the
congestion level is within different areas of the airport. This application will
answer BI Questions 1 and 2. In order to answer these questions, a C#
application has been built that polls the RTDW cube and extracts the data
needed. This is done by using the MDX query shown in Listing 9.

3 http://msdn.microsoft.com/en-us/library/ms123483.aspx
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Code example 9: MDX query for congestion levels.

1 SELECT [ Dim Locat ion ] . [ Locat ion Hierarchy ] . [ Zone Name ] .
MEMBERS ON ROWS,

2 FILTER (
3 DESCENDANTS (
4 { [ Enter Time ] . [ Time Hierarchy ] . [ Minute ] . & [@Hour

]&[@FromMinute ] :
5 [ Enter Time ] . [ Time Hierarchy ] . [ Minute ] . & [@Hour]&[

@ToMinute ] } ,
6 [ Enter Time ] . [ Time Hierarchy ] . [ Minute ] ) ,
7 [ Measures ] . [ Bluetooth Device D i s t i n c t Count ] ) ON

COLUMNS
8 FROM [ Cube ]
9 WHERE ( [ Enter Date ] . [ Date Hierarchy ] . [ Day ] . & [@Year]&[

@Month]&[@Day] )

Line 1 specifies that all members of the Location hierarchy at the Zone detail
level are represented as rows. Lines 2-7 specifies that the dynamic timespan
is represented as columns, and that the measure is the distinct count of
Bluetooth devices. Line 9 limits the query to a specific date.

The main element of the application is an image showing the airport. Based
on the query results, graphical elements are drawn on top of the image. These
elements vary in size and color, depending on the number of people within
the proximity of each access point ranging from smaller green circles, i.e. few
devices are tracked within an access point, to larger red circles, i.e. many
devices are tracked within an access point. In addition to the graphical
elements in the application, different logic can be implemented depending
on the business questions presented by BLIP. An example of this could be
sending notifications to people of interest, when certain events occur. An
event, in example, could be if the amount of people within an access point
or a set of access points exceeds or drops below a certain threshold.

Figure 15 shows an implementation of the application for monitoring conges-
tions using a sampled data set. The application consists of three main parts:
The before mentioned image which shows the airport and the currently mon-
itored units within the site, a listing containing the same information as the
image and a list box that prints all events that has occured. For overview
purposes, we have chosen to draw congestion levels on the map, only when
the number of devices registered exceeds 10.
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Figure 15: Sample implementation of congestion monitoring application.
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Figure 15 shows monitored objects within two access points and a single
captured event, namely a Possible Congestion event. With the current im-
plementation, the information is merely printed in the list box, however in
a real world application, relevant people could be contacted through e-mail,
SMS or similar.

Question 2, Are there any congestions forming? is closely connected to Ques-
tion 1, Are there any congested areas in the airport?. Both operate on the
measure Bluetooth Device Distinct Count. The main difference is that where
one focuses on the most recent data the other takes historical data into con-
sideration as well. To predict whether or not congestions are forming, one
have to examine the congestion levels for each zone and how the recent growth
tendency has been within the actual zone.

Figure 16: Sample report of congestion levels.

Figure 16 shows the result of a MDX query posed through Microsoft SQL
Server Management Studio, which shows the congestion levels for the last
15 minutes from a certain point of time. This result set can be used by
the airport personnel to manually examine the congestion tendencies within
the airport for the selected duration, or by an application to automatically
predict future congestion levels.

6 Conclusion

The main focus of this report is to provide effective real-time analysis of real-
time tracking data collected by BLIP at Copenhagen Airport. To accomplish
this, a real-time data warehouse has been designed and implemented to ad-
dress the goals and questions presented in Section 1.1.

To provide a basis for the project, we re-introduce the BLIP case. We take
into account how BLIP models real-time data, through the use of open
records and examine related work, that addresses the problem of tracking
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objects within an indoor environment, and how our contributions differ from
what other articles present. Section 3 introduces various concepts and con-
siderations that are utilized and taken into consideration in the process of
designing and implementing the RTDW.

We introduce two different real-time data warehouse designs, a specific and a
generic design, and choose to implement the RTDW, using the generic design,
in Microsoft SQL Server 2008. We define the facts, dimensions and hierar-
chies required for performing an analysis of the data in the data warehouse.
Additionally, we define the right-time scope for the RTDW. We consider the
time it takes the data to be captured, transformed and fed to the warehouse
to be in right-time, i.e. data is not real-time, it has been withheld long
enough to perform data cleansing to ensure quality, but is still fresh enough
to be regarded as the current state of the environment. The design is flexi-
ble by nature and is easy to maintain. This fulfills Goal 1, Creating a fast,
flexible, and durable real-time data warehouse.

The CTF application developed in Section 4.3 captures the changed data,
then transforms the data to suit the design of the data warehouse and lastly
loads the data into the warehouse through the flow module. The CTF uti-
lizes the proposed algorithms in Section 4.3.4 and 4.3.5 to perform data
cleansing and reduce the amount of data inserted into the RTDW. With a
Bouncethreshold set to 7 seconds, the amount of tracking records is reduced
from 25,000 to 9,082, which is equal to a reduction of tracking records by
63.67%. In comparison, the bounce detection and elimination algorithm pre-
sented in the pre-master thesis removed 2,642,095 out of 21,161,406 using
the same threshold, which equals a reduction of 12.49%. If we were to apply
our real-time bounce detection and elimination algorithm to the complete
data set, consisting of 73,986,502 records, we would end up with remov-
ing approximately 47,107,205 records, reducing the data set to a total of
26,879,297 records. In comparison, approximately 9,240,914 bounce records
would be removed, reducing the total data set to 64,745,588 records, using
the algorithm from the pre-master thesis. Due to the nature of the data,
data collection process, and physical access point layout, it is safe to say
that the quality of the data contained within the data warehouse have been
drastically increased. This fulfills Goal 2, CTF data throughput, and Goal 3,
CTF data output quality.

The choice of data storage model has proven to be noticeable in the query
response time. To choose the optimal storage model, a vast analysis of the
types of queries to be performed, the number of users and applications ac-
cessing the data warehouse and the frequency of queries has to be conducted.
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Such an analysis is beyond the scope of this thesis, however, given the rate
of data flow, total number of tracking records, and types of queries we have
performed, the optimal storage model would be ROLAP. This is due to the
length of time a device is being tracked in general, as well as the number of
tracking records created per device per day. We believe that the constant
updates, combined with the constant need to reprocess the MOLAP aggre-
gation cube, in a HOLAP storage model, would exceed the extra calculation
time of querying a ROLAP cube.

We have shown how the implemented solution can be used to answer Ques-
tion 1, Are there any congested areas in the airport?, and Question 2, Are
there any congestions forming?, by executing MDX queries and using the
results to visualize the state of the environment. To optimize the execution
time of the queries, the data warehouse can be customized to support the
aggregations needed to calculate the results of specific queries faster.

6.1 Contribution List

In order to clarify the contributions we have made in this report, we create
a contribution list. The list contains a brief description of why we examine
the subject and how the subject has been implemented.

• Valid Move Algorithm.
As we wish to reduce the workload of the CTF and heighten the data
quality, we want to reduce the amount of data, that has to be processed
as early as possible. We present an algorithm for determining whether
a move within the airport is considered valid or not. To determine
if a move is valid or not, we created a graph over the airport, where
each vertex represents an area covered by an access point, and each
edge represents a path between two areas. We discuss different data
structures to model the graph and choose an adjacency matrix, as it
has a low worst time running speed even though it has a small memory
overhead.

• BounceDetection Algorithm.
The BLIP OLTP creates a number of bounce records each time a
tracked device is seen within two access points. In order to cleanse
the data provided by BLIP, and thereby increase the quality of the
data we insert into the RTDW, we propose an algorithm which de-
tects when a device is bouncing between access points. The real-time
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bounce detection does not communicate with the DW to look up pre-
vious records, but only uses the state stored in the CTFState. The al-
gorithm presented is more streamlined to the BLIP business case than
the algorithm proposed in the pre-master thesis, and therefor provides
data of a higher quality.

• BounceElemination Algorithm.
Since the records processed by the transformer are stored into the
RTDW as soon as possible, the data in the RTDW might be invalid
due to bouncing records. It is not possible for us to ensure the cor-
rectness of the data in the RTDW until the data is at least older than
Bouncethreshold. The BounceElemination algorithm is responsible for
cleaning up data in the RTDW that has proven to be invalid due to
bouncing records. This periodically faulty data can only occur in the
newest entries in the RTDW, and does not conflict with the require-
ments of the business case and can therefor be justified. From a his-
torical point of view, the data will always be static and correct.

7 Future Work

This section discusses ideas for future development. With the current stage of
development, we have a RTDW that can track movement within the airport
and answer BI questions of both a historical and real-time nature.

We will discuss two possible ways to continue the development of this project.
Continuing the development can focus on two different areas, namely: Ex-
panding functionality or improving the current RTDW.

1. Expanding functionality.

As the sample application have shown, it is possible to give the users of
the airport a better experience as the airport personnel can detect and
take actions when the congestion levels within the airport is rising. This
is made possible by having up-to-date information about the devices
within the airport. A wide array of applications are made possible by
having real-time information about how the people spend their time
within the airport. By examining the patterns of each device in real-
time it becomes possible to push relevant information to the Bluetooth
device in question. If a device has been tracked for longer durations
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7 Future Work

within two stores, that sell similar products, the airport can push data
to the device containing information about similar products at a third
store. A token can also be pushed to devices that are moving toward
a certain store, which can be turned in for a discount or a free product
at said store.

Should our real-time data warehouse be integrated with the various
other data sources hosted by Copenhagen Airports, it is even possible
to push more specific information to the various devices based on addi-
tional meta-data about the devices. If a device is owned by a passenger
flying to Italy, but the check-in is not until two hours later, then the
device can get a notification stating that an Italian restaurant within
the airport might be interesting.

This enables the airport to give passengers with a Bluetooth device, a
more personal and unique experience within the airport. It also enables
the shops in the airport to do very specific advertising to just the people
that are within their key demographics.

2. Improving the RTDW.

Another way to go is to take the current RTDW solution and make fur-
ther optimizations to it. Tests have shown that the bottlenecks within
the CTF have shown to be when extracting data and inserting data as
the live table and the queue to the flow module slowly increase in size.
As a result, structural changes can be made to the hardware setup of
the system to reduce the latency between the directly connected sub-
systems.

Another way to reduce the work load of the flow system, is to reduce
the amount of records it has to insert. One way to reduce the amount
of data is to reconsider how movement is tracked within the airport. As
it is with the current system, each passenger is being tracked individ-
ually. Often, people walk together in groups, this observation can be
incorporated into the system. Only minor changes would be required
to the data warehouse design. Each tracking record would have to con-
tain a weight indicating the size of the group and the Bluetooth device
measure would have to be able to contain a list of Bluetooth device IDs
rather than a single ID.

The transformer would have to include algorithms for being able to
dynamically, and in real-time, be able to generate groupings of people
and to ungroup people. Creating these groupings can be based on
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meta data: Departure time, flight number, departure gate and similar.
Grouping can also be done by examining the movement of the various
devices, or a combination that take both meta data and movement into
account.

While this solution transforms a number of devices into a single group
object, and thereby decreases the workload of the flow module, it also
increases the workload of the transformer. It also presents the possi-
bility to easily pose queries that only deal with groups of people rather
than individuals or vice versa.
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Figure 17: BLIP access point placements. The red dots represent access
points, and the green text/circles represent zone divisions [21].
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B Sample Dataset

Data Sample Before Bounce Detection And Elimination
enterTime leaveTime btAddress accessPoint

2008-10-16 13:48:39 2008-10-16 13:48:51 4404 11
2008-10-16 13:48:51 2008-10-16 13:48:54 4404 17
2008-10-16 13:48:54 2008-10-16 13:49:05 4404 11
2008-10-16 13:49:07 2008-10-16 13:49:07 4404 17
2008-10-16 13:49:08 2008-10-16 13:49:31 4404 11
2008-10-16 14:04:41 2008-10-16 14:05:17 4404 11
2008-10-16 14:05:35 2008-10-16 14:06:20 4404 17
2008-10-16 14:06:20 2008-10-16 14:06:34 4404 11
2008-10-16 14:06:37 2008-10-16 14:07:16 4404 17
2008-10-16 14:07:21 2008-10-16 14:07:21 4404 11
2008-10-16 14:07:24 2008-10-16 14:07:49 4404 17
2008-10-16 14:07:59 2008-10-16 14:07:59 4404 17
2008-10-16 14:07:59 2008-10-16 14:07:59 4404 11
2008-10-16 14:08:01 2008-10-16 14:08:14 4404 11
2008-10-16 14:08:20 2008-10-16 14:09:18 4404 17
2008-10-16 14:09:19 2008-10-16 14:09:19 4404 11
2008-10-16 14:11:38 2008-10-16 14:12:10 4404 17
2008-10-16 14:12:29 2008-10-16 14:12:29 4404 11
2008-10-16 14:12:50 2008-10-16 14:13:08 4404 17
2008-10-16 14:13:09 2008-10-16 14:13:09 4404 11
2008-10-16 14:13:09 2008-10-16 14:14:41 4404 17
2008-10-16 14:15:19 2008-10-16 14:16:18 4404 11

C Summary

This project concerns the design and implementation of a real-time data
warehouse for analysis on tracking data collected at Copenhagen Airports
A/S. The project is done in cooperation with BLIP Systems A/S, who
has a Bluetooth based tracking system installed in Copenhagen Airports
A/S. The BLIP dataset consists of 73,986,502 tracking records within 55
active access points over 360,639 unique devices. The data readings made
by the BLIP tracking application can be seen as a stream of tuples of the
form (BluetoothIdentifier, AccessPointIdentifier, Time). In order to reduce
the amount of raw data, data cleansing is performed by BLIP. The out-
put format after BLIP performs their data cleansing is a tuple of the form:
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C Summary

(BluetoothIdentifier, AccessPointIdentifier, EnterTime, LeaveTime).

The data gathering application used for the BLIP data set is not designed
to handle devices that are tracked in more than one location at a time. This
means that when a device is located in an area that is covered by more than
one access point, the data gathering application creates bounce records.

A real-time data warehouse is a system which reflects all changes in its source,
or sources, in real-time or near real-time. Since the data available in a tra-
ditional data warehouse is not always up to date, a DW is typically used
for analysis and long term improvements to overall business strategies and
tactics. A RTDW is different, as changes are reflected to the systems in
(near)real-time. The operational systems are designed to accept inputs or
changes to data regularly, hence have a good chance of being regularly up-
dated. Knowledge workers can, within the scope of right-time, analyze and
take action if something needs to be addressed.

The need for data being processed at a quicker pace in a RTDW, than a
traditional DW, enforces changes to the way data from the OLTPs are being
processed. The traditional bulk loading at fixed nightly or weekly intervals
does not support the need for real-time or near real-time data. Instead, an
approach where data is continuously being fed to a software system serves
the same purpose of an ETL.

The first sections have given us knowledge and understanding of the dif-
ferent concepts and guide lines for designing and implementing real-time
data warehouses. We put that knowledge to use by designing a real-time
data warehouse that suits the business needs of the BLIP case. Two data
warehouse designs are presented, a specific and a generic, and the generic
data warehouse design is chosen to be the implemented warehouse, as it pro-
vides support for more complex queries. While the support for more complex
queries comes at the expense of a slower data warehouse, we consider flexibil-
ity and expandability more important than the ability to make very specific
queries fast.

We implement a CTF to extract data from the OLTP, transform it and lastly,
save the transformed data in a MSSQL Server. To capture the changes made
in the BLIP OLTP, an insert trigger is created on the main table which
stores the new records into another table. The CDC module deletes records
from this table once they have been pushed into the CDC queue. The task
of the transformer is to check all records, which are in the correct format
as verified by the data cleansing module in the CDC, for valid moves and
bouncing records. The transformer is in charge of checking the validity of
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the moves within the airport, and perform bounce detection and elimination.
To ensure scalability of the system, the transformer is coded in a way that
supports multi-threaded execution.

With a Bouncethreshold set to 7 seconds, the amount of tracking records is
reduced from 25,000 to 9,082, which is equal to a reduction of tracking records
by 63.67%. In comparison, the bounce detection and elimination algorithm
presented in the pre-master thesis removed 2,642,095 out of 21,161,406 using
the same threshold, which equals a reduction of 12.49%.

To test the response time of the real-time data warehouse and the impact
the choice of the storage model have on the system, we have implemented
the cube with two different storage models in the Microsoft SQL Server
Analysis Services 2008. The first is a pure ROLAP cube, where all detail
data, dimensions, and aggregations are stored in a relational format, where
the second is implemented using the real-time HOLAP proactive caching
setting and the HOLAP storage model, i.e. detail data is stored in a relational
format, while the aggregations are stored in a multidimensional format. Even
though the HOLAP cube provides slightly better response times, we still
estimate that the pure ROLAP implementation is preferable.

We have shown how the implemented solution can be used to answer the
question, Are there any congested areas in the airport?, and the question 2,
Are there any congestions forming?, by executing MDX queries and using the
results to visualize the state of the environment. To optimize the execution
time of the queries, the data warehouse can be customized to support the
aggregations needed to calculate the results of specific queries faster.
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