
A Domain Specific Meta Language to Abstract

Concurrency Concerns in Multicore Computers

Jakob Ehmsen
Esbjerg Institute of Technology - Aalborg Universitet,

CIS4 Spring 2009, Distributed Systems,
je1536@student.aaue.dk,

Supervisor Daniel Ortiz-Arroyo

6. July 2009

Summary

The performance of traditional computers which contain a single processor is
stagnating. The current trend of several chip makers is now to release chip mul-
tiprocessors (CMPs). Manycore chips, including 1000 core chips, are realistic to
emerge in the relatively near future. This trend and foresight implicate manda-
tory use of parallel computing within software development - i.e. if sustaining
the performance improvements achieved so far is the objective. Currently, only
few software developers adopt parallel computing in practice. Hence, a transi-
tion from sequential programming to parallel programing is necessary for many
software developers. Implicitly parallel programming models have been advo-
cated as a solution for that transition.

An implicitly parallel graph meta language (GML) was designed, constructed,
and evaluated. GML is compiled into a higher level language and is therefore
a meta language. The target language is Erlang. The target code consists of
an application of an intermediate graph library (IGL). IGL and GML was con-
structed in relation to a graph application algorithm. The parallelization of
GML code can be summarized as follows. First, identify concurrency inherent
in the GML code. Second, using the identified concurrency, extract a data flow
graph consisting of threads, forks, joins, and/or parallel loops. Third, generate
the target code according to the constructed data flow graph. The theoretical
improvements of an implementation of the graph application algorithm in GML
were significant compared to a sequential implementation.

For the purpose of testing GML, a benchmark was designed and constructed.
The benchmark consisted of three implementations of the graph application al-
gorithm: a sequential implementation, an explicitly parallel implementation
(EPI) in Erlang using IGL, and finally multiple implicitly parallel implemen-
tations (IPIs) using GML. In addition, the implementations were run on three
different platforms: a duo core platform (DCP), a quad core platform (QCP),
and an SMT platform (SMTP). The main success criteria of the benchmark
was maintenance of historical performance improvements. The benchmark also
concerned speedup, efficiency, and algorithmic- and architectural scalability.

For SMTP, the IPIs were unsuccessful. Algorithmic scalability and mainte-
nance of historical performance improvements were not achieved. In addition,
the theoretical improvements were not precise.

On the other hand, the implementations for the CMP-based platforms (DCP
and QCP) showed success. The speedups and efficiencies of the IPIs were more
or less equivalent to those of EPI. Theoretical improvements were somewhat
precise. Algorithmic- and architectural scalability were achieved. Finally, and
most importantly, the IPIs achieved maintenance of historical performance im-
provements, especially for QCP.

1

Contents

1 Introduction 4

2 Main Issues within Parallel Processing 7
2.1 Parallelism VS Concurrency . 7
2.2 Granularity of Parallelism . 8
2.3 Identification of Concurrency . 8
2.4 Computer Architecture . 11
2.5 OS Support . 13
2.6 Parallel Programming . 13
2.7 Parallelizing Compilers . 14
2.8 Performance . 14
2.9 Scalability . 15

3 Parallel Processing Programming Models 16
3.1 Shared Memory . 16
3.2 Message Passing . 17
3.3 Relation to Computer Architecture 19

4 Compiler Theory 20
4.1 Scanner . 20
4.2 Parser . 21
4.3 Semantic Analyzer . 22
4.4 Source Code Optimizer . 24
4.5 Code Generator and Target Code Optimizer 24
4.6 Compiler Construction Tools . 24

5 Related Work 26

6 The Erlang Programming Language 28

7 Graphs 31
7.1 Fundamentals . 31
7.2 Algorithms . 31
7.3 Application . 32

8 Graph Library and Meta Language 33
8.1 A More Explicit Algorithm 1 . 33
8.2 Graph APIs . 34
8.3 Meta Language . 35

2

8.3.1 Grammar . 35
8.3.2 Parallelization . 36
8.3.3 Target Code Generation 40
8.3.4 Theoretical Improvements for Parallelization 42
8.3.5 Correctness . 43
8.3.6 Limitations . 44

9 Benchmark 45

10 Evaluation 48
10.1 DCP . 48

10.1.1 Gc . 49
10.1.2 Gs . 50
10.1.3 Comparison . 51

10.2 QCP . 51
10.2.1 Gc . 52
10.2.2 Gs . 53
10.2.3 Comparison . 54

10.3 SMTP . 55
10.3.1 Gc . 55
10.3.2 Gs . 56
10.3.3 Comparison . 57

10.4 Overall Comparison . 57

11 Conclusion and Future Work 59

12 Acknowledgements 61

A Extraction of Implicit Information in Algorithm 1 62

B Mapping Algorithm 2 to IGL APIs 64

C Benchmark Implementation Outcomes 65
C.1 SI . 65
C.2 EPI . 66
C.3 IPI outcomes . 69

3

Chapter 1

Introduction

In 1965, Gordon Moore saw a trend in computer hardware: since 1959 the
number of transistors placed on chips had increased roughly by a factor of two
per year [74]. This observation was later coined as “Moore’s Law” by Carver
Mead [102, 33]. Gordon Moore expected that this rate would over the short
term continue and perhaps even increase whereas this increase of rate over the
longer term was more uncertain [74]. Gordon Moore has later stated, in 2003,
that: “...no physical quantity can continue to change exponentially forever.” -
“Your job is delaying forever.” [75].

Today, Moore’ law still holds water [33]. Unfortunately, the performance
of traditional computers which contain a single processor is stagnating due to
various problems, such as heating and power consumption issues [64]. Thus, the
use of the additional transistors must change. The conventional wisdom is now
to double the number of cores on chips for each silicon generation [13] (multi-
core architectures and parallel computer architectures in general are presented
and discussed in Section 2.4). Consistent with this wisdom, the current trend
of several chip makers, e.g. Intel R©, IBM R©, AMD, and SunTM, is to release
multicore architectures [7].

In the future, many-core architectures, say 16, 32, and above cores, are likely
to become ubiquitous. Currently, there are many discussions concerning the fu-
ture multicore processors from Intel R©and AMD, such as 6- [78, 79], 8- [80], 12-
[78], 16- [79], 32- [76], 64- [77], and 80-core processors [81]. Actually, Intel R©has
demonstrated a 64-core architecture [94]. Based on Moore’s Law, then 1000
core chips will emerge within a decade [4]. Furthermore, there exists evidence
that when 30nm technology becomes available it is possible to achieve these
1000 core chips [13]. Since Intel R©has already demonstrated a 32nm chip and
they plan to begin production of 32nm microprocessors in 2009 [55, 56], 1000
core chips seems to be just around the corner.

Clearly, the current and possible future development within hardware impli-
cates a need for parallel computing within software1. Parallel computing consists
of applying multiple processors (or a parallel computer) to solve a single com-
putational problem [10, 61, 72, 52, 50]. The term parallel processing shares this
definition in much literature, e.g. in [36], [2], [108], [10], and [60]. Therefore,

1If not already applied.

4

parallel computing and parallel processing are used interchangeably from now.
A parallel computer is simply a computer system with multiple processors which
support parallel programming [89] (see Section 2.4 for more details). Parallel
programming consists of splitting a single computational problem into parts and
subsequently distributing execution of these parts on separate processors [107].

For the existing sequential software and future software, parallel computing
is essential in order to sustain the yearly performance improvements achieved so
far. So, adaptions within software are most likely needed2. The simplest adap-
tion to parallel computing for a software developer, would be to embed parallel
processing on the hardware level, i.e. running multiple instructions simultane-
ously. This would yield a solution where software developers could continue
developing software with their current repertoire. Alas, there is only little ex-
ploitable parallelism on the instruction level and the shift must be handled on
the thread level [64]. The “free performance lunch”3 is over for us programmers
[98]. James Reinders a senior engineer and the director of business development
and marketing for Intel R©’s Software Development Products even predicts that
“Within a decade, a programmer who does not think “parallel” first will not be
a programmer.” [90].

Though the importance of parallel programming is clear, “only graduate
students and other strange people write parallel software.” and “...professional
software engineers almost never write parallel software.” [71]. Thus, a software
paradigm shift within mainstream software development seems to be necessary
- moving from sequential programming to parallel programming.

Before parallel programming can be performed by a developer, parallel pro-
gramming must be learned. Much theoretical material about this subject is
available4. On the practical aspect, a programming language must be used at
some level. A programming language has some level of abstraction (machine, as-
sembly, high-level, and so on). Introducing a developer to parallel programming
with a level of abstraction too low might result in the developer focusing on non-
concurrency oriented constructs, such as registers, jumps, and interrupts at the
assembly level. Raising the level of abstraction to a language containing prim-
itives for concurrency, such as Erlang (detailed in Chapter 6), would probably
be more effective from a learning perspective. With respect to performance of
applications, results have shown indications that the level of abstraction should
be even higher [35]. Implicitly parallel programming languages might provide
an appropriate abstraction level. With such a language, a software developer
would probably focus more on the business logic than the parallelization of an
application.

In addition to the above, implicitly parallel programming models has been
advocated for programming against manycore processors in [54]. Similar to the
indications of the results in [35], they argue that explicitly parallel programming
is likely to be counterproductive for most programmers over the longer term.
Some of the issues presented related to explicit parallelization are: determining

2Again, if not already applied.
3The free performance lunch can be summarized humorously by quoting Joel Spolsky [97]:

“As a programmer, thanks to plummeting memory prices, and CPU speeds doubling every
year, you had a choice. You could spend six months rewriting your inner loops in Assembler,
or take six months off to play drums in a rock and roll band, and in either case, your program
would run faster. Assembler programmers dont have groupies.”.

4For instance, the material in Chapter 2 and the literature referenced in that chapter.

5

granularity of parallel execution, setting up data structures which allow correct
parallel execution, porting issues, i.e. repeating the experimentation process for
successive processors, and difficulties regarding composition of explicitly parallel
code. They argue that implicitly parallel programming models in conjunction
with appropriate compile tools and hardware will be a better solution.

Due to the above, a language is designed, constructed, and evaluated. De-
signing and constructing a full-fledged general purpose implicitly parallel pro-
gramming language is unrealistic because limited time is available. A domain
specific language from which future generalizations might be drawn is selected
as a replacement. For applicability of the language, the domain of graphs is
selected (an application is exemplified in Section 7.3). This is a rather large
domain and only a limited support of this domain is part of the language to
be constructed. Based on the author’s experience of machine- and assembly
language, compiling into these languages is too large a task. A different ap-
proach is selected: the source language is compiled into a higher level language
resulting the source language into being a meta language. Further, the target
language selected supports explicit expression of concurrency and is one which
the author is familiar with. More specifically, Erlang is selected as the target
language. Compiling an implicitly parallel language to Erlang is probably a
complicated affair. In addition, the author has limited experience within com-
pilation. It is therefore decided that the source code written in the implicitly
parallel graph meta language (GML) is compiled into an application of an inter-
mediate graph library (IGL) written in Erlang. In addition, for relevance and
simplicity, multicore architecture retrieves the main focus.

To evaluate GML, a software developer new to parallel programming is re-
quired. Though the author has gained some experience within parallel pro-
gramming, this experience can still be considered to be limited. The author is
therefore selected for the evaluation. In addition, GML should be compared to
an explicitly parallel programming language. For this, Erlang is selected.

To realize the design, construction, and evaluation of GML, a number of
specializations are made later due to dependencies on prerequisites. For the
evaluation, a number of specific evaluation measures and a graph application
are selected. The graph application will serve as a mean to derive the subset of
the graph domain, the IGL APIs, and the primitives of GML.

Following the approach mentioned above, the report is structured as fol-
lows. The reader is first introduced to main issues within parallel processing in
Chapter 2. After this, the dominant parallel processing programming models
are presented in Chapter 3 followed by a summary of compilation theory in
Chapter 4. Next, in Chapter 5, some of the work related to this project is sum-
marized. After this, the Erlang programming language is presented in Chapter
6. Following this, the fundamentals behind graph theory, graph algorithms, and
a graph application are covered in Chapter 7. Then, IGL and GML are intro-
duced in Chapter 8. In Chapter 9, the benchmark for the evaluation is covered
followed by Chapter 10 containing the evaluation of the GML applications and
the native Erlang graph applications. Finally, Chapter 11 concludes this work
including possible future directions.

6

Chapter 2

Main Issues within Parallel
Processing

Parallel processing is a domain containing several issues. This chapter starts
by clarifying the terms parallelism and concurrency. Next, granularity of paral-
lelism is defined and discussed shortly. Following this, the issues within parallel
processing important for this project are covered, which are identification of
concurrency, computer architecture, OS support, parallel programming, paral-
lelizing compilers, performance, and scalability.

2.1 Parallelism VS Concurrency

Having a common understanding of the terms parallelism and concurrency is
necessary for a coherent discussion of parallel processing. In this section, a
clarification of these terms is made.

According to [100], there is no agreement on the definition of concurrency
and how concurrency relates to parallelism. They present the following three
different conventions commonly used:

• In the first convention, it is possible to have concurrency in a programming
language without parallel computers whereas parallel execution can occur
without concurrency in a programming language. Put in another way,
concurrency is potential parallelism.

• In the second convention, concurrent is used to describe simultaneously
executing processes which may interact with eachother and parallel to
describe simultaneously executing processes which are independent of ea-
chother.

• In the final convention, parallel and concurrent are synonyms.

Throughout this report, the first convention is adopted.

7

2.2 Granularity of Parallelism

The granularity of parallelism is an expression of the number of computations
performed in parallel between synchronizations [32]. The more coarse grained
the parallelism is the greater this number of computations is. The more fine
grained the parallelism is the less this number of computations is.

Whether to choose fine-grain or coarse-grain parallelism is probably context-
dependent. Intuitively, the greater the number of processors is the more fine-
grained the parallelism should be. Some results have indicated that loop-
iteration level parallelism performs better for a limited number of processors
[24].

2.3 Identification of Concurrency

In order to realize any parallel software, the identification of concurrency in com-
putational problems is essential. In general, concurrency can be found were no
dependencies among computational tasks exist. Concurrency can also be found
by breaking dependencies among tasks. Therefore, identifying both dependent
and independent tasks are essential skills within parallel programming. The
ideal parallel computations to obtain are called embarrassingly parallel com-
putations [107]. Such computations consist of sequences of tasks where these
sequences are independent of each other.

One way to identify dependencies and independencies among tasks is by
constructing a data dependence graph (DDG) [89]. A DDG is a directed graph
(see Section 7.1 for more details concerning graphs) where each vertex represents
a task which needs to be finished. An edge from vertex x to vertex y in such
a graph means that task x must finish before task y - or put differently, task y
is dependent on task x. If no path exists between x and y, then x and y are
independent tasks. Hence, these tasks may be executed in parallel.

Additionally, in a DDG, one can refer to three fundamental kinds of task
patterns. The first pattern is purely sequential dependence [89], which corre-
sponds to representing sequential computations. This pattern is illustrated in
Figure 2.1. Embarrassingly parallel computations can be perceived as compu-
tations consisting of sequences of purely sequential dependent tasks. This is
depicted In Figure 2.2.

Figure 2.1: Illustration of a purely sequential dependency. task2 is dependent
on task1 and task3 is dependent on task2.

8

Figure 2.2: Instance of an embarrassingly parallel problem. The sequences
(task1, task2, task3, task4, task5) and (task6, task7, task8, task9, task10) are
independent of eachother.

The next pattern is data parallelism [89], which occurs in situations where
multiple independent tasks perform identical operations to distinct elements of
a data set. Data parallelism is illustrated in Figure 2.3. This kind of dependency
pattern often appears in sequential code in the form of loops. An example of
such code is provided in Listing 2.1.

Figure 2.3: Illustration of data parallelism. The two identical task2 operations
are dependent on task1 but are independent of eachother and may therefore be
executed in parallel. task3 is dependent on both of the task2 operations.

Listing 2.1: Code example of data parallelism. Each storage location in the
array a is assigned to 0. In a sequential manner, this kind of operation is
performed n times. In a parallel manner, all these operations can potentially
be performed in parallel on an n-processor machine.

f o r i := 0 to n
a [i] := 0

The final pattern is functional parallelism [89] (also referred to as task-level
concurrency, for instance in [91]). This is concerned with situations where mul-
tiple independent tasks perform distinct operations on distinct data elements.

9

This kind of pattern is illustrated in Figure 2.4. A code example is also provided
in Listing 2.2.

Figure 2.4: Illustration of functional parallelism. The two tasks task2-1 and
task2-2 perform distinct operations and are dependent on task1 while they are
independent of eachother and can be performed in parallel. task3 is dependent
on both task2-1 and task2-2.

Listing 2.2: Code example of functional parallelism. The two statements each
perform a distinct operation. In the first statement, the variable x is assigned
to the addition of a and b. In the second statement, the variable y is assigned
to the production of a and b. These two statements are independent and can
be performed in parallel.

x := a + b
y := a ∗ b

Furthermore, there are different kinds of dependence relations between tasks.
These can be divided into control dependencies and data dependencies [32].

Control dependencies correspond to computations which are executed as
a consequence of the control flow [32]. An example of such a dependency is
presented in Listing 2.3.

Listing 2.3: Code example of control dependency. The value of y depends the
branch target x > 0. The value of x is unknown and therefore the value of the
branch target is also unknown.

y := 0
i f x > 0

y := 7

Data dependencies can be grouped into the three categories: flow dependence
(or true dependence), antidependence, and output dependence [85]. These are
summarized below:

• Flow dependence is concerned with values flowing from one statement to
another statement. Consider the statements S1 and S2 below:
S1 : A = X + Y
S2 : B = A+ Z
Here, S2 is dependent on the assignment of A in S1 - or put in another
way, the value of A flows from S1 to S2. Hence, S1 must be executed
before S2.

10

• Antidependence is concerned with statements where values used in one
statement are overridden in proceeding statements. Consider the state-
ments S1 and S2 below:
S1 : A = X + Y
S2 : X = B + Z
In the above example, the value of X is used in S1 and overridden in the
proceeding statement S2. Again, S1 must be executed before S2.

• Output dependence is concerned with statements assigning to variables
followed by statements assigning to the same variables which can result
in variables containing incorrect values. Now, consider the statements S1,
S2, and S3 below:
S1 : A = X + Y
S2 : C = A+ Z
S3 : A = B + Z
Executing S3 before S1 may result in an incorrect value of A and therefore
S3 is dependent on S1.

To break dependencies among tasks, some sort of transformation needs to
be performed. Consider the output example above. In this example, variable
renaming [32] can be applied to break the dependency. The variable A in State-
ment S1 and S2 can be renamed to A′ resulting in the following statements:
S1 : A′ = X + Y
S2 : C = A′ + Z
S3 : A = B + Z
Clearly, S3 is no longer dependent on S1. Thus, the dependency has been bro-
ken. This would probably not yield a significant improvement in performance
since only one computational step has been removed. However, imagine the
three statements embedded into a loop consisting of n iterations. In this case,
the improvement is potentially n less computational steps.

Inferring that a variable caries a constant value, can also be used to break
a dependency. Consider Listing 2.4. Inferring the value of x to be constant,
would break that dependency since the value of the target of the branch is then
known ahead. The constant value could for instance be 0 resulting in the code
in Listing 2.4. Ergo, the branch will never be taken and the code can be reduced
to the single computational step: y := 0.

Listing 2.4: Code example of breaking control dependency. The value of y
depends on the branch target, a constant expression, 0 > 0. The branch will
therefore never be taken.

y := 0
i f 0 > 0

y := 7

2.4 Computer Architecture

With concurrency identified, parallelism can be achieved by means of a parallel
computer. In this section, computer architectures of parallel computers and
superscalar processors are presented.

11

A traditional computer consists of one processor (processor and processing
units are used interchangeably from now), whereas a parallel computer con-
sists of multiple processors. There are two main parallel computer categories:
multicomputers and multiprocessors [107].

For a multicomputer, multiple interconnected computers are operating to-
gether on a single problem [107]. The processors located on each computer
interact by passing messages to each other [89].

A multiprocessor is an architecture where multiple processors are used within
a single computer [107]. A special kind of multiprocessor are symmetrical multi-
processors (SMPs) (also known as centralized multiprocessors [89], shared mem-
ory multiprocessors, and uniform memory access (UMA) systems [32]). For such
systems, access to a single global memory is shared among the processors [89].
As mentioned earlier, the current trend of several chip makers is to release mul-
ticore architectures (also known as chip multiprocessors (CMPs)) [7]. Multicore
architectures consist of multiple processors being placed on a single chip [7]. In
Figure 2.5, an example of such an architecture is shown.

Figure 2.5: CMP example - a simplified version of the Intel R©CoreTMDuo pro-
cessor architecture based on illustrations in [57]. In this architecture, each core
has a level 1 cache and both cores share a level 2 cache. Further, the components
are interconnected via a bus interface.

Another way to achieve parallelism, is by applying superscalar processors.
Superscalar processors are able to execute two or more instructions per clock
cycle [32]. One kind of such processors are processors adopting simultaneous
multithreading (abbrevated SM [101] and SMT [34]). This approach consists
of allowing multiple independent threads to send instructions to multiple func-
tional units of a superscalar processor within a single clock cycle [101].

12

One must be aware that the architectures are not mutually exclusive but
can be combined. A concrete example of such is the Intel R©CoreTMi7 processor
[53] where CMP and SMT is combined. Specifically, the processor consists of
four cores with each core having two threads.

2.5 OS Support

The next step is communicating with the parallel computer which can be achieved
though an OS. The two basic parallel processing methods supported by an OS
are multiprocessing and multithreading.

Multiprocessing concerns creating processes where each process is assigned a
process identifier (PID). Each of these processes may execute different programs.
While processes usually are independent they may communicate with each other
using interprocess communication or shared memory areas supported by the OS
[32].

Multithreading concerns creating threads, where a thread differentiates from
a process in that it is added to an existing process instead of starting a new
process. A process is actually started with a single thread of execution and
throughout its duration it can add or remove threads. Further, all threads in a
process share memory space [32].

2.6 Parallel Programming

With OS support, parallel programming can be performed. To do parallel pro-
gramming, one must make use of a parallel programming language. Such a
parallel programming language is an instance of a programming model where
this programming model must support a programmer in balancing productivity
and implementation efficiency [13]. According to [13], opacity and visibility are
the keys to achieve such a balance:

• Opacity makes the underlying computer architecture transparent for the
programmer. Therefore, the programmer need not learn computer archi-
tecture dependent details and the programmer productivity increases.

• Visibility makes the details of the underlying computer architecture visible
to the programmer. This means the programmer is able to analyze perfor-
mance constraints of an application based on the design of the computer
architecture.

The main issue here is achieving performance while raising the abstraction
level.

Another important issue of a parallel programming model is the concurrency
model. According to Joe Armstrong, the concurrency model of many program-
ming languages is the same as the concurrency model of the underlying OS.
This means that a concurrent program written in such a programming language
executing on one OS may have different semantics compared to running the
same program on a different OS [11]. Based on this, he argues that “...concur-
rency should be a property of the programming language and not a property
of the...” OS. Further, he believes that “...the only difference in behavior in

13

moving a concurrent program from one machine to another is that the program
will run faster on a faster machine etc; otherwise there should be no differences
in behavior which depend upon the operating system.”.

2.7 Parallelizing Compilers

Obtaining parallelization manually is a demanding task. Instead, this procedure
can be automatic1 by using parallelizing compilers. Parallelizing compilers are
compilers which transform an existing program to run efficiently on a parallel
architecture [16].

For a compiler to automatically identify parallelism, the compiler should be
able to do some form of dependence testing [85]. This way, the compiler can
automatically extract threads2, possibly preceded by transformations to break
dependencies.

2.8 Performance

Executing a solution to the same problem using a parallel computer instead of a
traditional computer should result in a performance improvement3. Otherwise,
the extra computing capabilities are wasted. This improvement is measured by
the speedup factor [107] as shown in Equation 2.1, where ts = single processor
execution time with the best sequential algorithm and tp = parallel computer
execution time with p processors and n data items:

S(p, n) =
ts
tp

(2.1)

Usually, the maximum speedup possible is linear speedup, which means
S(p, n) = p. Linear speedup can be achieved when a computation is divid-
able into processes with the same duration where each process is assigned to a
separate processor without requiring extra overhead [107]. In some instances,
superlinear speedup may be achieved, which means S(p, n) > p. However,
this is usually due to applying a suboptimal sequential solution, a computer
architecture feature which prefers parallel formation, or extra memory in the
multiprocessor system compared to the single processor system [107].

For a theoretical analysis, the speedup factor can be measured based on
computational steps [107] as shown in Equation 2.2, where ss = number of
computational steps using a single processor and sp = number of parallel com-
putational steps:

S(p, n) =
ss

sp
(2.2)

Another equation applicable for theoretical analysis has been deprived from
a paper of Amdahl where this paper consists of arguing the validity of the single
processor [6]. This equation has been coined “Amdahl’s law” and is shown in
Equation 2.3, where rp = the parallel portion of a program, 1 − rp = the
sequential portion of a program, and p = number of processors.

1At least to some extent.
2- or whichever constructs are used to realize parallelism.
3At least when assuming homogeneous processors for both computers.

14

Speedup =
1

1− rp + rp

p

(2.3)

It illustrates well the fact that the less the parallel portion of a program is
the less the speedup will be when increasing the number of processors.

However, Amdahl’s law consists of a function too steep according to Gustafson
whom has skeptically reevaluated Amdahl’s law [47]. Some results which Gustafson
achieved indicated that this function is incorrect. For instance, achieving speedup
factors between 1021 and 1016 on a 1024-processor computer system for appli-
cations where the sequential part was 0.4% to 0.8%. For comparison, applying
Amdahl’s law, the speedup factors should be between 201 and 101. Instead of
a steep function, Gustafson gives the alternative speedup function with a more
moderate slope shown in Equation 2.4, where p = number of processors and s =
the sequential portion of a program.

Speedup = p+ (1− p) ∗ s (2.4)

Interestingly, when applying Gustafson’s speedup function for the parame-
ters presented above (sequential parts and number of processors), the speedups
computed are 1020 where s = 0.4% and 1016 where s = 0.8% and therefore
consistent with the real speedup factors.

Efficiency is another measure of performance. This concerns with how much
processors are used during a computation [107] and is shown in Equation 2.5
based on [107] and [51].

E(p, n) =
S(p, n)
p

=
ts/p

tp
(2.5)

An alternative definition of efficiency is given in [51] with respect to a theo-
retical parallel machine instead of a real sequential machine. This definition is
shown in 2.6, where t′p is the time required for a theoretical parallel p-processor
machine.

E(p, n)′ =
t′p
tp

(2.6)

2.9 Scalability

Scalability can refer to both architecture (or hardware) scalability or algorithmic
scalability [107].

A system which is architecturally scalable is a system with a hardware design
where increasing the size of the system increases performance.

An algorithmically scalable system applies a parallel algorithm where in-
creasing the number of data items results in a low and bounded increase in
computational steps.

15

Chapter 3

Parallel Processing
Programming Models

For programming parallel computers, there are two dominant programming
paradigms: the shared memory model and the message passing model [19, 23].

3.1 Shared Memory

In the shared memory model, there is a global address space which each pro-
cessor has direct access to [19]. This means, a processor can directly load or
store any shared address [29]. Through these shared addresses, or variables, the
parallel executing program segments can communicate [19].

The vendors of shared-memory systems have created their own proprietary
extensions to languages such as C and Fortran for the development of parallel
software causing an absence of portability. This absence of portability have
resulted in many developers adopting a portable message passing model (pre-
sented in the next section) instead [29].

As a computation model for the shared memory model, the parallel random
access machine1 (PRAM) is available. The PRAM is the simplest generic model
of parallel computers [5] and widely used [15, 27, 28]. A PRAM consists of p
processors, each containing a private local memory, and a shared global random
access memory (illustrated in Figure 3.1). It is assumed the processors work
synchronously and any processor can access any memory cell in unit time [3,
14, 28, 30, 39, 43, 95, 40, 62].

There are several variants of PRAMs which are usually distinguished be-
tween using the rules for reading and writing as shown below:

• Exclusive read (ER): concurrent reading of a shared memory cell is for-
bidden.

• Concurrent read (CR): concurrent reading of a shared memory cell is al-
lowed.

1For a more detailed introduction to PRAM than provided here, the reader is referred to
[40].

16

Figure 3.1: Illustration of PRAM (inspired by illustrations in [15] and [95]).

• Exclusive write (EW): concurrent writing to a shared memory cell is for-
bidden.

• Concurrent write (CW): concurrent writing to a shared memory cell is
allowed.

[62] has shown that these variants do not vary much in computation speed.
Still, a CREW is strictly more powerful than a EREW PRAM, whereas a EREW
PRAM is strictly less powerful than a CRCW PRAM.

For a CRCW PRAM read- and write-conflicts can occur [62] and a rule for
resolving concurrent writing needs to be applied [99]. Several possibilities exist
to resolve such conflicts. Some of these are summarized below:

• The minimum model: each processor is assigned a priority; if multiple
processors attempts to write to the same shared memory cell, then the
processor with the highest priority succeeds [39].

• The arbitrary model: if multiple processors write to the same shared mem-
ory cell, an arbitrary processor will succeed [39].

• The common model: if multiple processors are writing a common value,
then these processors are allowed to write to the same shared memory cell
[39].

An alternative solution is to apply more restrictive variant of PRAM, i.e. a
EREW PRAM or a CREW PRAM [62].

PRAMs are considered as the most powerful parallel computation models
in the theory of parallel computation. Because the interprocessor communica-
tion need not be specified, such models are relatively comfortable to program.
However, PRAMs are not realistic from a technological perspective since large
shared memory machines can only be constructed at the cost of an access to
shared memory which is very slow [30].

3.2 Message Passing

Before diving into the details of message passing, the π-calculus is shortly sum-
marized to draw parallels.

17

The π-calculus is a process calculus [103] consisting of two fundamental
concepts, which are processes (sometimes called agents [88]) and channels (also
called names or ports [88]). Processes compute in parallel and exchange data by
communicating through channels [87]. In fact, processes are constructed from
channels and in its purest form all data is realized by channels [21].

Derived from an analysis of [17], [1], [49], [20], [92], and [25], usually a set of
names for the channels and a set of variables are assumed from which processes
are composed according to a given syntax. An example of a simplified syntax is
given below based on [87] where the set of channel names range over c, d... and
the set of variables range over x, y...:

• P ::= c[x1...xn].P ; Send x1...xn along c, then become P . This communi-
cation is synchronous, i.e. execution is prevented for P until the commu-
nication on c has finished [103].

• P ::= d(y1...yn).P ; Receive y1...yn along d, then become P .

• P ::= P |Q; Execute P in parallel with Q.

• P ::= (vc : T)P ; Create a new channel which carries type T , call it c in
P .

• P ::= 0; Do nothing.

The syntax shown above relates to the polyadic π-calculus which is a gen-
eralization of the monadic π-calculus. The basic difference between these two
is that in the polyadic form input and output is polyadic, i.e. in the form of
tuples, whereas in the monadic form there is just a single input or single output
usually denoted by ab where b is sent along a and a(x) where x is received along
a [92].

An example of a process composition is c[x1, x2].P1|d(y1, y2).P2 which cor-
responds to a process consisting of two processes which run in parallel. The left
hand process sends x1, x2 along c and then becomes P1 while the right hand
process receives y1, y2 along d and then becomes P2.

The literature of π-calculus contains many variations of syntax used for in-
put and output [103]. For instance, four different syntax are used in respectively
[87], [103], [83], and [22]. Furthermore, many versions of the π-calculus exist
[1], including typed versions, e.g. in [20], asynchronous versions, e.g. in [83] and
[49], and as mentioned above monadic and polyadic versions.

In the message passing model, data is divided and distributed to other pro-
cesses as messages. The processes receiving a message, unpack the message,
perform some work, and then sends back the result or pass along the results to
other processes [32]. This form of communication is very similar to the commu-
nication between processes within the π-calculus.

The underlying hardware is assumed to be a collection of processors where
each processor has its own local memory to which it has direct access. Through
an interconnection network, message passing between processors is supported.
Thereby, one processor gain indirect access to another processor’s local memory
[89]. This is illustrated in Figure 3.2. Due to the interconnection network, an
implicit channel exists between each pair of processors [89].

18

Figure 3.2: Illustration of assumed underlying hardware of message passing
(from [89]).

Often, the message passing model is referred to as the assembly language of
parallel computers [66]. As a programmer, one gets the ultimate responsibility.
If the resulting performance of an implementation is unsatisfactory, then oneself
is to blame. The compiler is not aware of the parallel aspects of the program
[32]. The π-calculus is rather low-level and can therefore also be seen as a kind
of assembly language.

The basic routines of message-passing are send and receive, where send is
placed in the source process creating the message and receive is placed in the
destination process collecting the messages which are sent [107]. Again, the
π-calculus is similar. The send could be viewed as an output process and the
receive could be viewed as an input process.

3.3 Relation to Computer Architecture

The reader should be aware that the assumed underlying hardware of a parallel
processing programming model does not need to be that specific hardware in
reality. A mapping between the assumed underlying hardware and the hard-
ware in reality can be performed. For instance, the message passing model can
be mapped into SMP. This is for instance the case for SMP Erlang which is
presented in Chapter 6.

19

Chapter 4

Compiler Theory

This chapter covers the relevant elements for the construction and discussion
of GML. The purpose is not to provide an elaborate introduction to compiler
theory. For an elaborate introduction, much existing literature is available, for
instance [68] and [105].

The structure of this chapter follows the phases of the translation process
of a compiler illustrated in Figure 4.1. The chapter ends with a summary of
different compiler construction tools.

4.1 Scanner

The scanner performs lexical analysis by reading the source code represented as a
stream of characters. Lexical analysis involves collecting sequences of characters
for the recognition of tokens. Tokens are similar to words of a natural language.
Along with the recognition of tokens, other tasks may be performed by a scanner,
such as entering identifiers into a symbol table and entering literals into a literal
table. A symbol table stores information related to identifiers, such as functions
and variables. A literal table stores constants and strings which are used in a
program [68].

Based on a simple example in C shown in Listing 4.1, the job of a scanner
is exemplified in Listing 4.2.

Listing 4.1: Example of source code in C. Inspired by [63].

a = 10 ∗ 15 .5 f

Listing 4.2: Example of scanning. Notice, spaces are ignored in Listing 4.1. The
recognized tokens should be understood as follows: character sequence : token
type.

a : i d e n t i f i e r
= : ass ignment
10 : number
∗ : mul t ip ly operator
15 .5 f : number

20

Figure 4.1: Illustration of the phases of the translation process of a compiler
(taken from [68] with small adjustments), i.e. scanning, parsing, semantic
analysing, source code optimization, code generation, and target code optimiza-
tion. In addition, it is shown that these phases use literal tables and symbol
tables.

4.2 Parser

The tokens a scanner produce are passed on to a parser. From these tokens,
the parser performs a syntax analysis. The syntax analysis consists of deter-
mining the structure of a program. More specifically, the structural elements
and their relationships are determined. The results of this phase are commonly
represented using a parse tree of a syntax tree [68].

To exemplify this, consider the source code presented in Listing 4.1. From
a top-down perception, the source code consists of a single structural element,
called an expression. This expression is a specialized expression called an as-
signment expression. The assignment expression consists of a left hand side
expression and a right hand side expression with “=” as the separator. The left
hand side expression “a” is a specialized expression called an identifier. The
right hand side expression is a specialized expression called a multiplication

21

expression. The multiplication expression consists of a left hand side expres-
sion and a right hand side expression with “*” as the separator. The left hand
side expression “10” is an integer value token. The right hand side expression
“15.5f” is a float value token. The above structural composition is represented
as a parse tree in Figure 4.2.

Figure 4.2: An example of a parse tree.

Though parse trees are useful for syntax visualization, they are inefficient due
to the representation approach. Instead, syntax trees (also known as abstract
syntax trees1) can be used. Syntax trees are basically compressed parse trees
[68]. For an example of a syntax tree, see Figure 4.3. Juxtaposing Figure 4.2 and
Figure 4.3 illustrates the compression: many of the nodes are no longer part of
the structure, including some token nodes. The nodes removed are considered
unnecessary. For instance, the token node “*” in 4.2 is redundant since it is
known that the expression is a multiplication expression.

4.3 Semantic Analyzer

The syntax tree (or parse tree) is passed on to the semantic analyzer. The
semantic analyzer analyzes the semantics (or meaning) of a program producing
additional pieces of information called attributes. These attributes are often
used to annotate the tree or are entered into a symbol table [68].

1The meaning of abstract here is that syntax trees introduce further abstraction than parse
trees [68].

22

Figure 4.3: An example of a syntax tree.

Some of the semantics are part of a program’s runtime behavior. Other
semantics are determined before program execution. The latter is called static
semantics. Static semantics are used when the syntax of a program is insuf-
ficient to express language features. Typical examples of static semantics are
declarations and type checking [68].

Consider the source code in 4.2 again. Before the semantic analysis of that
expression is performance, other analysis is performed, such that deriving that
“a” is a variable of type float. Using these attributes, the tree is annotated
resulting in the syntax tree presented in Figure 4.4.

Figure 4.4: An example of an annotated syntax tree.

23

4.4 Source Code Optimizer

After the semantic analysis, source-level optimization techniques2 can be ap-
plied. The result of a source code optimizer is intermediate code (also known
as intermediate representation or simply IR). The kind of optimizations and
placement in the compilation process of optimizations vary among compilers
[68].

In relation to Figure 4.4, the following optimization can be performed. The
multiplication expression can be statically reduced from “10 * 15.5f” to the
constant float ‘155.0f‘ (referred to as constant folding [68]). This can be per-
formed directly on the tree. Specifically, the right hand side expression of the
assignment expression is collapsed to the constant float, as illustrated in Figure
4.5.

Figure 4.5: An example of an optimized annotated syntax tree.

4.5 Code Generator and Target Code Optimizer

Using the intermediate code (IR), a code generator generates the target code.
From this phase, the specific target machine becomes a more significant factor.
For instance, the instruction set sets limitations and decisions about represen-
tation of integers and floating-point data types most be done [68].

Following code generation is target code optimization. During this phase,
the target code generated by the code generator is potentially improved. For
instance, different addressing modes can be chosen for optimization and slower
instructions can be replaced by faster instructions [68].

4.6 Compiler Construction Tools

To assist the construction of compiler, a great number of tools are available. A
summary of a few interesting tools is presented in this section.

Lex [67] in conjunction with Yacc [59] can be used to generate a compiler.
Lex can generate programs for the lexical analysis whereas Yacc can generate
programs for the syntax analysis. The generated source files are C programs.

2According to [68], this name is incorrect since these techniques rarely result in truly
optimal target code but instead only efficiency improvements. They propose the name code
improvement techniques as a replacement.

24

Similar to Lex and Yacc, Flex [86] and Bison [31] can be used to, respectively,
generate C programs for the lexical analysis and C programs for the syntax
analysis.

There are also tools which generate compiler programs in languages other
than C. Among these is JavaCC [58]. As the name implies, the generated
programs are Java [44] programs.

Another tool for generating Java Programs is ANTLR [8]. A GUI-based
development environment is available for constructing ANTLR grammars called
ANTLRWorks [9]. According to [9], ANTLRWorks speeds up development.

25

Chapter 5

Related Work

There is much work related to this project. In this chapter, some of that related
work is summarized.

In [41], a comparison of implicit- and explicit parallel programming is made.
For implicitly parallel programming, SISAL was used, and for explicitly parallel
programming SR was used. The performance of these language was compared
to implementations in C. They make the three conclusions presented below.

Due to the fact that the optimizing SISAL compiler (osc) is mature and
well-developed, they do not expect improvements of osc. Though osc may not
represent the limit of implicit parallelism, it indicates that this area is not
approaching new improvements using similar approaches.

The biggest drawback of SR is performance. However, they expect improve-
ments for SR. This is because some of the features implemented in osc has not
yet been implemented in SR.

SISAL is good for only limited problem domains, mostly loop-parallel appli-
cations. For other applications, such as interactive applications, SISAL is less
useful.

Intel R©is currently researching on their data parallel environment called Ct
[26]. Ct is a data parallel environment built on C++. Hence, it has predictable
syntax. However, the semantics and performance provided are different. The
data parallel capabilities of Ct, are realized by means of standard C++ tem-
plates. Higher level abstractions are used in order to support developers in
building applications which scale across CMPs with hundreds of cores. Ct will
become beta late 2009.

Experimental results [42] comparing Ct to sequential C have shown im-
pressing results. Even superlinear speedups has been achieved. However, the
experiment consisted mostly of relatively isolated tests, such as vector addition
and square root calculation. Therefore, the representativeness of the results in
larger program contexts might be limited.

The C++ parallel graph library Parallel BGL [46] applies generic program-
ming for graph computations. By using generic programming, both flexibility
and efficiency are achieved. Parallel BGL is adaptable to different communica-
tion models and data structures without compromising efficiency. Algorithms

26

and data structures for both distributed- and parallel graph computations are
provided by Parallel BGL.

Experimental results of Parallel BGL performing on different graph models
show in general good efficiencies and scalabilities. In the future, the authors are
interested in looking into abstractions for supporting high-performance paral-
lelism on shared-memory machines in relation to parallel BGL [46].

In [69], inter-relationships between graph problems, software, and parallel
hardware are presented in the current state of the art. They argue that some
properties of graph problems makes is difficult to solve these problems with the
current computational problem-solving approaches. These properties of graph
problems are: data-driven computations, unstructured problems, poor locality,
and high data access to computation ratio.

They present hardware and software related challenges to address in order
to map parallel graph algorithms to hardware. These challenges are: task gran-
ularity, memory contention, load balancing, simultaneous queries, and software
development [69].

They conclude, among others, that massive multithreading seems an in-
teresting approach for parallelizing graph computations due to a potential for
excellent scalability and performance. In general, they are optimistic about the
future despite the challenges regarding graphs and machines [69].

A portable implicitly parallel programming language for taking advantage
of task-level concurrency called Jade is presented in [91]. A Jade program is ini-
tially written following an imperative serial paradigm. After this, Jade provides
constructs for declaring how data access is performed in different parts of the
program. With this data access information, concurrency is automatically ex-
tracted and the program is mapped towards the target machine. The semantics
are kept intact during the parallel execution of the program.

There are implementations of Jade for the platforms: SMP, homogeneous
message passing machines, and heterogeneous multicomputers [91].

They find that software development was simplified by keeping the serial
semantics intact. They further find that a significant advantage is provided
by using the data access information for parallelization instead of traditional
control-based solutions. Finally, they achieved good performances for many
applications on different hardware platforms with only little programming over-
head. However, for some programs the results were less satisfactory. With
improvements in the Jade implementation, some of these applications worked
well. Other applications were better expressed in other languages [91].

27

Chapter 6

The Erlang Programming
Language

The Erlang programming language is designed for concurrency oriented pro-
gramming based on message passing.

The motivation behind the language model is based on the observation that
the real world is concurrent [11]. Further on the intuitive perspective that, if a
language designed for writing concurrent applications is used, then development
will become much easier when developing such applications [12].

An interesting aspect of Erlang is the naming. One would intuitively think
that it stands for “Ericsson Language”. Actually, Erlang is named for A. K.
Erlang a Danish mathematician [104].

Erlang is typeless and pattern matching is used for binding variables and
selecting functions [106]. Further, Erlang has single assignment variables. This
means a variable can only be assigned once and reassignment of a variable results
in an error [12].

In Erlang, the concurrency belongs to the programming language instead of
the operating system. Parallel programming is achieved by modeling the world
as sets of parallel processes which can only interact by exchanging messages
and thereby no memory is shared [12]. To be more specific, there are primitives
for spawning processes, sending messages to processes, and receiving messages
[104].

An Erlang program may consist of thousands to millions of lightweight pro-
cesses which can run both on a single processor or on a parallel computer [12].
A process is lightweight if it is created and destroyed using only very little
computational effort [11].

A process is created, or spawned, using the spawn primitive. This is shown
in Listing 6.1, where a new concurrent process is created which evaluates Fun.
The spawn primitive returns a PID which can be used to send messages to the
process [12].

Listing 6.1: Process creation syntax in Erlang

Pid = spawn(Fun)

Any data value can be used as a message and compression techniques are

28

used to minimize bandwidth requirements for transmitting values [104]. A data
value may be either a constant, compound term, or a variable, where a constant
is either an atom, float, PID, or integer [106]. Thus, sending arbitrary complex
data values is both trivial and efficient [104].

The message passing in Erlang works as follows. Messages are not sent
directly to processes. Instead, each process has an associated mailbox to which
messages are sent [12]. Messages are in this mailbox queued in arriving order
[111]. For this procedure, a primitive is available which is syntactically shown in
Listing 6.2, where the primitive ! is called the send operator and this operator
returns the message itself [12].

Listing 6.2: Message send syntax in Erlang

Pid ! Message

In Listing 6.2, the message Message is sent to the process with identifier
PID. Sending a message is non-blocking at the sender [12].

To receive a message, or rather examine the content in the mailbox, another
primitive is available. This primitive is syntactically shown in Listing 6.3.

Listing 6.3: Message receive syntax in Erlang

receive
Pattern1 [when Guard1] −>

Express ions1 ;
Pattern2 [when Guard1] −>

Express ions2 ;
. . .

end

When a message is arrived at a process, the message is first matched against
Pattern1, possibly with Guard1. If a match occurs, then Expressions1 are eval-
uated, otherwise the message is matched against Pattern2 and so forth. If no
patterns are matched, then this message is saved in order to be processed later
and the process will wait for the next message to be received [12].

With regards to the runtime environment of Erlang, there exists a version
which takes advantage of SMP architectures. This version is called Symmetric
Multiprocessing Erlang (SMP Erlang). SMP Erlang can be set to run with
different numbers of schedulers. In some cases, having more schedulers than
physical processors, increase throughput and makes a system behave better.
These effects are however not fully understood and are currently undergoing
research [12]. The strategy for SMP Erlang is to make SMP execution trans-
parent for the programmer. There are some known bottlenecks. For instance,
a single common run-queue is used which is predicted to become an issue as
the number of processing units increase. This issue can be solved by applying
separate run-queues per scheduler [70].

The scheduling can further be manipulated by changing priorities of pro-
cesses. A process can be given one of the following three available priorities:
normal, low, high, or max [82].

Before ending this section, lets compare the programming model of Erlang
with the π-calculus (introduced in Section 3.2). The programming model is
based on message passing which itself shares many properties with the π-calculus

29

as mentioned in Section 3.2. Hence, Erlang resembles the π-calculus in some
ways, such as the communication approach of sending and receiving messages
where one could perceive a specific pattern as a specific channel. However, the
π-calculus is a mathematical definition of a calculus whereas Erlang is a concrete
programming language.

30

Chapter 7

Graphs

Before starting the construction of the IGL, introductory material about graphs
is needed.

First, the fundamentals of graphs is presented. Then, a number of general
graph algorithms are presented followed by the graph application selected for
this project.

7.1 Fundamentals

A graph G = (V,E) where V is a set of vertices and E is a set of edges for which
is true that E ⊆ V × V . An edge between the vertices u and v is denoted by
(u, v) [110].

A graph is either directed or undirected. In an undirected graph, for each
u, v ∈ V then (u, v) ∈ E ⇒ (v, u) ∈ E [110].

Each edge has a source and a terminus. For (u, v), the source is u and the
terminus is v - except for edges in an undirected graph where both u and v are
source and terminus [110].

The order of a graph is N = |V | and the size of a graph is M = |E| [48],
where |S| corresponds to the cardinality of the set S.

Two vertices u, v ∈ V are adjacent if (u, v) ∈ E. The edge (u, v) is incident
to its vertices u and v [48].

A graph may contain multiple paths. A path from u to v of a graph G
corresponds to a sequence of n edges e1, ..., en of G where e1 = (x0, x1), e2 =
(x1, x2), ...,eN = (xn−1, xn), x0 = u, and xn = v [93]. The source and target in
a path from u to v is respectively u and v.

7.2 Algorithms

Many graph algorithms have been developed. In this section, a few of these
algorithms are presented.

Two commonly applied algorithms are breadth-first search and depth-first
search algorithms. A breadth-first search algorithm fans out graphs by exploring
each adjacent vertex before traversing further into the graphs [65]. On the
contrary, a depth-first search traverses through a graph by recursively exploring
the adjacent vertex u to a vertex v. This is performed until there are no adjacent

31

vertices to v and backtracking is performed to visit the remaining adjacent
vertices v [93].

A common problem within graph theory is finding the shortest path in a
graph. One known algorithm which aims to solve this problem is Dijkstra’s
algorithm. In short, this algorithm always chooses the closest vertex in a
given graph. The time complexity of the sequential version is generally O(|V |2)
[109]. A parallel version, for which the PRAM EREW model is assumed, runs
O(|V | log |P |), where P is the number of processors [109].

7.3 Application

With a graph application, the APIs for IGL can be derived and GML can be
designed. There are several applications of graphs. This section does not contain
an exhaustive analysis of multiple applications since this would be a time wise
expensive task. Instead, a single simple application recommended by the main
supervisor of the author is presented.

The application is taken from [84] where Algorithm 1 is suggested as a simple
solution to graph related issues 1.

Algorithm 1 Graph application algorithm.
1: Calculate intial total entropy Hco0(G) and Hce0(G)
2: for all nodes ∈ graph G do
3: Remove node vi, creating a modified graph G′

4: Recalculate Hcoi(G
′) and Hcei(G

′), store these results
5: Restore original graph G
6: end for
7: To solve the KPP-Pos problem, select those nodes that produce the largest

change in graph entropy Hco0 −Hcoi
≥ δ1

8: To solve the KPP-Neg problem, select those nodes that produce the largest
change in graph entropy Hce0 −Hcei ≥ δ2

1For further details, the reader is referred to [84].

32

Chapter 8

Graph Library and Meta
Language

In this chapter, Algorithm 1 is made more explicit for the extraction of the APIs
for IGL. The IGL APIs and the more explicit algorithm are then used as the
foundation for GML.

8.1 A More Explicit Algorithm 1

Some of the steps in Algorithm 1 contains implicit information. A more explicit
algorithm is required to extract the APIs for IGL1. The more explicit algorithm
is presented in Algorithm 2 for which the definition of a graph G is assumed.

Algorithm 2 Graph application algorithm (Explicit). The algorithm is on
purpose very explicit for an algorithm to better support the mapping between
IGL and GML. The operation STORE X AS Y means store the value of the
expression X in the storage location Y . I and J can carry any positive integer
value.

1: Store table with fields 〈v,Hco, Hce〉 as Hall

2: Store δ1 as I
3: Store δ2 as J
4: for all nodes vi ∈ graph G do
5: Store a copy of G as G′

6: Remove node vi from G′

7: Add row 〈vi, Hcoi
(G′), Hcei

(G′)〉 to Hall

8: end for
9: Select v of the first δ1 tuples of Hall sorted ascending by Hco

10: Select v of the first δ2 tuples of Hall sorted ascending by Hce

1For the interested reader, the extraction can be seen in Appendix A.

33

8.2 Graph APIs

In this section, the IGL APIs are inferred from Algorithm 2. The mapping2

between Algorithm 2 and the IGL APIs are summarized in table 8.1.

Table 8.1: Mapping from Algorithm 2 to IGL APIs.
Lines IGL API
Implicated in 1, 4, 5, 6, and 7 graph complete(N)
Implicated in 1, 4, 5, 6, and 7 graph sparse(N)
1 table new()
4 graph nodes(G)
5 graph copy(G)
6 graph nodes remove(G, V)
7 table rows add(T, R)
7 table row new(Cs)
7 graph connectivity(G)
7 graph centrality(G)
9 and 10 table select(T,Fs)
9 and 10 table first(T,X)
9 and 10 table sort(T,S)

The Erlang digraph module [37] is used for graph representation and sequen-
tially supported operations. For the construction of complete graphs and sparse
graphs, the approaches presented in Listing 8.1 and 8.2 are applied, respectively.

Listing 8.1: Construction of sparse graphs where N = the number of vertices in
the graph G to construct.

G = new undi rec ted graph
f o r each i in 1 to N

add ver tex i to G
f o r each n in v e r t i c e s of G

add edge between i and n in G

Listing 8.2: Construction of complete graphs where N = the number of vertices
and S = the number of edges each vertex should be connected to in the graph
G to construct.

added v e r t i c e s = empty l i s t
G = new undi rec ted graph
f o r each i in 1 to N

add ver tex i to G
v e r t s to connect to =

at most S v e r t i c e s in added v e r t i c e s r eve r s ed
f o r each n in v e r t s to connect to

add edge between i and n in G
add i to added v e r t i c e s

2In Appendix B, a more elaborate mapping is presented.

34

8.3 Meta Language

For the construction of GML, ANTLRWorks is used. This is because this tool
should speed up development and there is limited time available for this project.
In the current hardware situation, many hardware platforms consist of a lim-
ited number of processors. Therefore, according to the discussion in 2.2, loop-
iteration level parallelism is perceived as important for GML. In general, the
objective is to automatically extract the same number of threads as the number
of processors available.

8.3.1 Grammar

Clearly, GML should contain primitives corresponding to the APIs presented in
Section 8.2. This mapping is presented in Table 8.2.

Table 8.2: Mapping from IGL APIs to GML primitives and their grammar.
IGL API GML Primitive Grammar
graph complete(N) #{N}
graph sparse(N) #{N ’,’ N/5}
table new() ’[’ F (’,’ F)* ’]’
graph nodes(G) ’NODES’ ’OF’ G
graph copy(G) ’COPY’ ’OF’ G
graph nodes remove(G, V) ’REMOVE’ V ’IN’ ’NODES’ ’OF’ G
table rows add(T, R) ’ADD’ R ’TO’ T
table row new(Cs) ’<’ C (’,’ C)* ’>’
graph connectivity(G) ’CONNECTIVITY’ ’OF’ G
graph centrality(G) ’CENTRALITY’ ’OF’ G
table select(T,Fs) ’SELECT’ F (’,’ F)* ’OF’ T
table first(T,X) ’FIRST’ X ’OF’ T
table sort(T,S) ’SORT’ T ’BY’ S

In addition, a primitive to store variables (’STORE’ X ’AS’ ID) and enumer-
ation of nodes in a graph (’FOR’ ’ALL’ V ’IN’ ’NODES’ ’OF’ G ... ’END’) is
required. A simplified grammar of GML is presented in Listing 8.3. This gram-
mar both represents the lexical- and syntax analysis of the compilation process.
Using this grammar, Algorithm 2 is realized by the GML source in Listing 8.4.

35

Listing 8.3: A simplified grammar of GML.

program : := statements
statements : := statement ∗
statement : := storeStmt | f o rAl lStmt | removeStmt |

addStmt | s e l e c tS tmt
storeStmt : := ’STORE’ value ’AS ’ I d e n t i f e r
forAl lStmt : := ’FOR’ ’ALL ’ I d e n t i f e r ’ IN ’ va lue

statements ’END’
removeStmt : := ’REMOVE’ value ’ IN ’ va lue
addStmt : := ’ADD’ value ’TO’ value
s e l e c tS tmt : := ’SELECT ’ I d e n t i f i e r (’ , ’ I d e n t i f i e r)∗

’OF ’ value
value : := I d e n f i f i e r | I n t e g e r | graph |nodes | copy |

row | entropy | f i r s t | s o r t
graph : := ’#’ ’{ ’ va lue (’ , ’ va lue)? ’} ’
nodes : := ’NODES’ ’OF ’ va lue
copy : := ’COPY’ ’OF ’ value
row : := ’< ’ va lue (’ , ’ va lue)∗ ’> ’
entropy : := (’CONNECTIVITY ’ | ’CENTRALITY ’) ’OF ’

value
f i r s t : := ’FIRST ’ value ’OF ’ va lue
s o r t : := ’SORT’ value ’BY’ value
I d e n t i f e r : := (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’)

(’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ \ ’ ’)∗
I n t e g e r : := ’ 0 ’ | ((’ 1 ’ . . ’ 9 ’) (’ 0 ’ . . ’ 9 ’)∗)

Listing 8.4: General IPI of Algorithm 2 in GML. ? is either “#{N}” or
“#{N,N/5}”. I and J are each replaced by a positive integer value in an
application.

STORE ? AS G
STORE [Node , Conn , Cent] AS ents
STORE I AS thre sh conns
STORE J AS t h r e s h c e n t s

FOR ALL v IN NODES OF G
STORE COPY OF G AS G’
REMOVE v IN NODES OF G’
ADD <V, CONNECTIVITY OF G’ , CENTRALITY OF G’> TO ents

END

SELECT Node OF FIRST thre sh conns OF SORT ents BY Conn
SELECT Node OF FIRST t h r e s h c e n t s OF SORT ents BY Cent

8.3.2 Parallelization

The parallelization of a GML application relates to the source code optimization
phase of a compiler. The first step of parallelization of GML source involves

36

identification of concurrency. For this, a DDG is used to represent the depen-
dencies among the different GML primitives part of a GML source. Partly, the
grammar of GML is used to extract the dependencies. Partly, the semantics.
For an example where the grammar is used, consider the GML source below:

STORE COPY OF G AS G’

In this case, the grammar itself for the STORE statement can be used to extract
the DDG shown in Figure 8.1.

Figure 8.1: Illustration of grammar-based DDG-extraction. Notice, “read vari-
able G” is implicit in the GML source.

For an example where both grammar and semantics are used, consider the
GML source below:

STORE [Int] AS ents
ADD <5>TO ents

In this case, the grammar itself for the STORE and ADD statement is insuf-
ficient. The implicit “read variable ents” of the ADD statement is dependent
on the STORE statement, since the STORE statement writes to the variable
“ents”. This is illustrated in Figure 8.2.

During the extraction of the DDG, the entry points of an application are
found. An entry point is a node which has no ingoing edges, that is, that
program element has no dependencies.

The DDG and entry points are used to construct a data flow graph consisting
potentially of four types of elements: threads, forks, joins, and parallel loops.

Threads correspond to serial code and are extracted following the pseudo
code presented in Listing 8.5. Threads consist of a chain of statements where a
purely sequential dependency exists. Specifically, the first program node of the
chain has either zero (is an entry point) or multiple (marks a join) incoming
edges. The last program node of the chain has either zero (is an exit point)
or multiple (marks a fork) outgoing edges. If a node is not the first node of a
chain, then it has one ingoing edge. If a node is not the last node of a chain,
then is has one outgoing edge.

37

Figure 8.2: Illustration of both grammar- and semantics-based DDG-extraction.

Listing 8.5: Pseudo code for extracting threads.

f unc t i on e x t r a c t threads (nodes)
threads = empty l i s t
for a l l n in nodes

thread nodes = empty l i s t
e x t r a c t thread nodes (n , thread nodes)
thread = bu i ld thread from thread nodes
append thread to threads

return threads

func t i on e x t r a c t thread nodes (n , thread nodes)
i f n has one outgoing edge then

add n to thread nodes
e = outgoing edge o f n
e x t r a c t thread nodes (terminus o f e , thread nodes)

A fork is identified by a program node having multiple outgoing edges and
one ingoing edge. A fork (potentially) marks the end of a thread and marks the
start of multiple threads. The approach followed for the extraction of forks is
presented by the pseudo code in Listing 8.6. Notice that the addition of fork
extraction requires extension to the function extract thread nodes.

38

Listing 8.6: Pseudo code for extracting forks.

f unc t i on e x t r a c t thread nodes (n , thread nodes)
.
.
.
i f n has mu l t ip l e outgoing edges
and one (or zero) ingo ing edges then

e x t r a c t f o rk (n)

func t i on e x t r a c t f o rk (n)
thread s t a r t s = empty l i s t
for a l l outgoing edges e o f n

add terminus o f n to thread s t a r t s
threads = e x t r a c t threads (thread s t a r t s)
f o rk = bu i ld f o rk from threads and n

A join is identified by a program node which has multiple ingoing edges and
one outgoing edge. A join marks the end of multiple threads and (potentially)
the start of one thread. For extraction of joins, the approach illustrated using
pseudo code in Listing 8.7, is followed. The addition of join extraction requires
extension to the function extract thread nodes again.

A parallel loop is identified by program node which is annotated as a par-
allel loop. This approach is illustrated in Listing 8.8 using pseudo code. It is
assumed that no loop carried dependencies exists among iterations of a GML
loop.

39

Listing 8.7: Pseudo code for extracting joins. “inv” is short for “inverse”.

f unc t i on e x t r a c t thread nodes (n , thread nodes)
.
.
.
i f n has mu l t ip l e ingo ing edges
and one (or zero) outgoing edges then

e x t r a c t j o i n (n)

func t i on e x t r a c t j o i n (n)
thread ends = empty l i s t
for a l l i ngo ing edges e o f n

add source o f n to thread ends
threads to j o i n = e x t r a c t threads i n v e r s e (thread ends)
f o rk = bu i ld f o rk from threads and n

func t i on e x t r a c t threads i n v e r s e (nodes)
threads = empty l i s t
for a l l n in nodes

thread nodes = empty l i s t
e x t r a c t thread nodes i n v e r s e (n , thread nodes)
thread = bu i ld thread from thread nodes i n v e r s e
append thread to threads

return threads

func t i on e x t r a c t thread nodes inv (n , thread nodes)
i f n has one ingo ing edge and one outgoing edge then

add n to thread nodes
e = ingo ing edge o f n
e x t r a c t thread nodes inv (source o f e , thread nodes)

Listing 8.8: Pseudo code for extracting parallel loops.

f unc t i on e x t r a c t thread nodes (n , thread nodes)
.
.
.
i f n i s annotated as a p a r a l l e l loop then

p a r a l l e l loop = bu i ld p a r a l l e l loop from n
return p a r a l l e l loop

8.3.3 Target Code Generation

The language of the target code is Erlang. The target code is generated accord-
ing to the constructed data flow graph during source code optimization.

Each thread corresponds to spawning a new process consisting of the code the
thread constitutes. So, the multiple threads of a fork corresponds to spawning

40

multiple processes.
A join is translated into an process waiting for N messages from its N

threads. When a join has received N messages, then if the join has a dependent
thread that thread is spawned otherwise the join marks an exit point.

A parallel loop is essentially translated into a fork and a join. The fork
spawns the threads which represent the iterations of the loop. Each thread is
assigned to one or more of the iterations of the loop. The join then simply waits
for the threads representing the iterations of the loop to send a message to it.

Since the parallelized GML program consists of one or more entry points
and one or more exit points, an implicit fork for entry points and an implicit
join for exit points are generated.

The compiler process described above results in a parallelized version of
Algorithm 2. This parallelized version is illustrated in Figure 8.3 using GML
primitives.

Figure 8.3: Illustration of a generalized and simplified approach of IPI (and
EPI). I and J are each replaced by a positive integer value in an application.

41

8.3.4 Theoretical Improvements for Parallelization

Before realizing any implementations, lets consider the theoretical improvements
of the parallelized version of Algorithm 2 - without theoretical improvements
implementations do not make much sense. Assume the time complexities in
Table 8.3 and that a STORE operation has the time complexity O(1).

Table 8.3: Assumed time complexities for Algorithm 2 where n = number of
nodes and r = number of rows. The assumption for graph centrality(G) is
made based on the fact that ETS is used for graph representation in the Erlang
digraph module. Notice, for other graph representations this assumption might
be contradictive. For instance, if an adjacency matrix [45] was used then n2 is
more correct.

IGL API O
graph complete(N) n2

graph sparse(N) n2

graph nodes(G) 1
graph copy(G) n
graph nodes remove(G, V) 1
table rows add(T, R) 1
table row new(Cs) 1
graph connectivity(G) n
graph centrality(G) n3

table select(T,Fs) r
table first(T,X) r
table sort(T,S) r

The time complexity for each iteration of the for all loop isO(n+1+n+n3+1)
or in short O(n3). For the whole loop, it is O(n4). For line 1, it is n2. For lines
2 through 4 it is for each O(1). For lines 9 and 10 it is for each O(r3). Thus,
the time complexity of a serial version of Algorithm 2 is O(n4).

For the parallel version of Algorithm 2, there is some coordination involved.
Assume that for the coordination of forking threads and joining threads the
time complexity is kt where k = some constant and t = the number of threads.
In addition, since it is the nodes of a graph which are distributed and reduced
in relation to forks and joins, respectively, coordination is extended to kt ∗ n.
Then, the time complexity of the parallel version is O(n4

p + kt ∗ n) where p =
number of processing units. Bare in mind, that t is not necessarily equal to p.
It is the maximum t which is considered for the time complexity. The maximum
t = p in the case of Figure 8.3.

Due to the above, theoretically, the parallel version has significant potential
for improvements in practice compared to the serial version. However, linear
speedup is not theoretically achievable due to mainly four factors. First, the
task parallelism existing in the beginning of Figure 8.3 is limited to two par-
allel threads. Second, kt ∗ n reduces the speedup potential. Third, the task
parallelism following the parallel loop is limited to two parallel threads. Thus,
the optimal number of processing units seems to be 2. However, t is rather
insignificant compared to n4

p . Based on this, theoretically, there should be dif-
ferent efficiencies between using two processing units compared to using four
processing units, but this difference is most likely insignificant.

42

When considering the additional factors, the coordination must be extended
further. For simplicity, the coordination is extended to kt ∗n2. Hence, the final
time complexity is O(n4

p + kt ∗ n2). Figure 8.4 shows the theoretical efficiencies
for using two processing units (TTE) and four processing units (FTE) where
k = 1. The figure shows a proportional correlation between the number of
vertices and the efficiency. An advantage of using two processing units instead
of four processing units is also shown. It further shows that at some point
linear speedup is almost achieved. However, linear speedup is most likely not
realistic based on the discussion above. The results of executing the benchmark
presented in the next chapter shall show whether linear speedup is achieved at
some point or not.

Figure 8.4: Illustration of theoretical efficiencies according to the time complex-
ity where k = 1.

8.3.5 Correctness

For verifying the correctness of the parallel implementations for the benchmark
(presented in the next chapter), the outcomes for the parallel implementations
are compared to the outcomes for the sequential implementations (presented in
the next chapter). An outcome consists of a sequence of δ1 (or δ2) triples, with
each triple having the form (v, co, ce), where v = the vertex, co = the connectiv-
ity entropy, and ce = the centrality entropy. The sequence of the triples and the
cos and ces for each triple of the outcomes are compared between the sequential
implementation and each parallel implementation. If no differences between the
sequence or the cos and ces of the sequential- and a parallel implementations
exists, then the parallel implementation is perceived as correct.

All outcomes are presented in Appendix C. These outcomes show that no
differences exist between the sequential implementation and each parallel im-
plementation. Ergo, the parallel implementations are perceived as correct.

43

8.3.6 Limitations

GML is designed to satisfy the needs for parallelizing a GML implementation
of Algorithm 2. Thus, the parallelization approach is most likely not appli-
cable for different graph applications than the one considered in this project.
For instance, some assumptions are made, such as assuming no loop-carried
dependencies exist in a GML loop. Further, GML only has primitives for an
implementation of Algorithm 2.

44

Chapter 9

Benchmark

The benchmark is centered around implementations of Algorithm 2. As men-
tioned before, for this algorithm the definition of a graph G is assumed. For the
implementations, G is realized by either a complete graph Gc or a sparse graph
Gs.

The graph orders (5, 10, 15, 20, 25, 30, 35, 40, 45, 50) are chosen to test algo-
rithmic scalability for both Gc and Gs. These orders are denoted as O, oi

denotes the ith order of O, and o denotes an order in O.1 For each graph order,
the speedup and efficiency is derived. The algorithmic scalability is evaluated
as follows. Let si denote speedup for oi. If speedup difference si+1 − si ≥ 0
then the implementation is considered algorithmically scalable when increasing
the order from oi to oi+1. Otherwise, not scalable2.

For this benchmark, each vertex v of Gs is connected to o/5 vertices distinct
from v. So, in total the benchmark consists of 20 distinct test cases.

The following implementations are constructed: a single sequential imple-
mentation (SI) using IGL, a single explicitly parallelized implementation (EPI)
using IGL, and multiple implicitly parallelized implementations (IPIs) using
GML. There are multiple IPIs since these are compiled from different GML
sources each containing different definitions of G (illustrated in Listing 9.1).
The general IPI is the same as shown in Listing 8.4.

Listing 9.1: Different definitions of G in GML

Ex . 1 : STORE #{10} AS G
Ex . 2 : STORE #{25} AS G
Ex . 3 : STORE #{40 ,8} AS G

To test architectural scalability and improve representativeness, the bench-
mark is executed on multiple different platforms. These platforms are listed
below:

Duo Core Platform (DCP):

• Intel R©CoreTMDuo Mobile Processor T9300 (duo core processor).

1These orders where chosen due to interesting trends based on preliminary tests - especially
for the lower numbers.

2Perceive 0 here as approximately 0, not exactly 0.

45

• Ubuntu 9.04, 64-bit.

• Erlang OTP R12B-5.

• 3.0 GB RAM.

• 2.5 GHz pr. processor.

Quad Core Platform (QCP):

• Intel R©CoreTMQuad Processor Q6600 (quad core processor).

• Windows VistaTMUltimate, SP 1, 32-bit.

• Erlang OTP R13B.

• 3.0 GB RAM.

• 2.4 GHz pr. processor.

SMT Platform (SMTP):

• Intel R©Pentium 4 SMT Processor (single SMT processor, two threads).

• Windows XP professional.

• Erlang OTP R12B.

• 2.0 GB RAM.

• 3.4 GHz pr. processor.

Intuitively, the optimal number of parallel threads are two, four, and two for
respectively DCP, QCP, and SMTP based on the number of processing units
available. Due to this, the IPIs are during compilation optimized according to
these numbers of threads.

Each test case is timed using the timer:tc Erlang API [38]. The time reso-
lution of timer:tc is microsecond, i.e. 10−6 seconds3 [73]. For improving rep-
resentativeness and to reduce risks for bias, each test case is executed 20 times
and reduced to a single number. According to [96], the arithmetic mean (AM)
(shown in Equation 9.1) “can be used as an accurate measure of performance ex-
pressed as time.”. Due to this, AM is applied for the reduction of the measured
execution times.

xa =
1
N

N∑
i=1

xi, N = cardinality. (9.1)

For general perspectives, the derived speedups and efficiencies are reduced.
Speedups and efficiencies are reduced by applying the harmonic mean (shown
in Equation 9.2) because this is likely a more appropriate approach in order to
limit the significance of potential exceptions.

xh =
N

N∑
i=1

1
xi

, N = cardinality and xi > 0. (9.2)

3- or simply a millionth of a second.

46

The criteria for success is simple4: at least, maintain performance improve-
ments achieved so far. Lets define an approach to evaluate this.

According to [18], historically, the number of transistors on chips have dou-
ble for each 18. month whereas the performance has doubled for each third
year. They make the assumption that if the additional transistors are used for
additional cores on chips then the doubling of cores should result in a speedup
of about 1.4 for maintenance of the performance improvements so far. This
corresponds to an efficiency of 0.75 and 0.49 for two and four processing units,
respectively. These efficiencies shall mark the thresholds for maintenance of
historical performance improvements for the respective number of processing
units for this benchmark. These thresholds are used to evaluate the architec-
tural scalability of the implementations, i.e. if the thresholds are exceeded for
both two and four processing units then the implementations are considered
architecturally scalable.

In the next chapter, IPI is compared to SI, EPI, respective thresholds for
maintenance of historical performance improvements, and the theoretical effi-
ciency presented in Section 8.3.4.

4That is, simple to perceive - not necessarily simple to achieve.

47

Chapter 10

Evaluation

The results, analysis, and evaluation of each benchmark execution is presented
following the sequence of platforms: DCP, QCP, and SMTP. Each section is
divided into Gc- and Gs-based benchmarks. The Gc- and Gs-based benchmarks
are compared for each platform. DCP and SMTP are compared to TTE and
QCP is compared to FTE. The chapter ends with an overall comparison.

During the chapter the proceeding short hand notation is applied:

• Arithmetic mean execution time = µ.

• Arithmetic mean execution time in seconds = T .

• Number of vertices = N .

• Speedup = S.

• Harmonic mean speedup = S.

• Efficiency = E.

• Harmonic mean efficiency = E.

• The threshold for maintenance of historical performance improvements
= δ.

• Harmonic mean difference between theoretical efficiency and achieved ef-
ficiency = δE , where xi = abs(oit

− oia
), oit

= theoretical efficiency for oi,
and oia

= achieved efficiency for oi. This is an expression of how precise
the theoretical efficiency is; the closer to zero, the more precise.

10.1 DCP

Below, the results, analysis, and evaluation of executing the benchmark on DCP
is presented. The section ends with a comparison between the evaluation of the
Gc- and Gs-implementations.

48

10.1.1 Gc

In Figure 10.1, the µs derived for SI, IPI, and EPI are illustrated. The results
show in general a performance advantage for EPI and IPI against SI. The µs
for EPI and IPI are similar1.

Figure 10.1: Illustration of µs derived for SI, EPI, and IPI on DCP in relation
to Gc.

The derived Ss for EPI and IPI are shown in Figure 10.2. These Ss are
similar. A significant proportional correlation between N and S can be seen
from N = 5 to N = 20. Hereafter, this relation, more or less, stagnates or at
least becomes marginal. S is 1.60 and 1.58 for respectively EPI and IPI showing
a marginal advantage for EPI. EPI and IPI are both algorithmically scalable,
especially from N = 5 to N = 20.

Figure 10.2: Illustration of Ss derived for EPI and IPI on DCP in relation to
Gc.

Figure 10.3 shows the derived Es for EPI and IPI. E for EPI is 0.80 and
for IPI 0.79. This exceeds δ. Therefore, for IPI, maintenance of performance is
achieved for DCP in relation to Gc. Comparing the Es for IPI to TTE, then
similar trends are shown. A proportional correlation till N = 20 is present.
Hereafter, this correlation is much less significant or stagnates. Linear speedup

1Illustrated by the clear overlap between EPI and IPI in Figure 10.1 making EPI difficult
to see in many contexts.

49

is not achieved at any point for IPI. δE is 0.13 which means there is a moderate
difference between theoretical efficiency and achieved efficiency.

Figure 10.3: Illustration of Es derived for EPI and IPI on DCP in relation to
Gc.

10.1.2 Gs

The µs derived for SI, IPI, and EPI are, in Figure 10.4, illustrated. A general
performance advantage for EPI and IPI against SI is shown. Further, the µs for
EPI and IPI are similar.

Figure 10.4: Illustration of µs derived for SI, EPI, and IPI on DCP in relation
to Gs.

In Figure 10.5, the derived Ss for EPI and IPI are shown. Figure 10.5 shows
that Ss for EPI and IPI are similar. From N = 5 to N = 20, a significant
proportional correlation between N and S is shown. This relation stagnates or
becomes marginal for N > 20. For EPI and IPI, S is 1.64 and 1.57, respectively.
This shows a small advantage for EPI. Both EPI and IPI are algorithmically
scalable, especially from N = 5 to N = 20. A small deviation from this trend
can be seen for IPI where N = 40.

The derived Es for EPI and IPI are shown in Figure 10.6. For EPI E is 0.82
and for IPI E is 0.78. δ is exceeded and IPI achieves maintenance of performance
for DCP in relation to Gs. The Es for IPI are similar to the Es for TTE. Till

50

Figure 10.5: Illustration of Ss derived for EPI and IPI on DCP in relation to
Gs.

N = 20, a proportional correlation can be seen which, hereafter, more or less
stagnates. Linear speedup is not achieved for IPI. δE is 0.14. Hence, there is a
moderate difference between theoretical efficiency and achieved efficiency.

Figure 10.6: Illustration of Es derived for EPI and IPI on DCP in relation to
Gs.

10.1.3 Comparison

EPI and IPI achieves similar performance for both theGc- andGs-implementations.
From an application performance viewpoint, there is only marginal performance
advantage of explicit parallelization.

IPI is algorithmically scalable. IPI achieves maintenance of performance for
DCP. There is a moderate difference between theoretical efficiency and achieved
efficiency for IPI.

10.2 QCP

The results, analysis, and evaluation of executing the benchmark on QCP is pre-
sented. A comparison between the evaluation of theGc- andGs-implementations
ends the section.

51

10.2.1 Gc

The µs derived for SI, IPI, and EPI are illustrated in Figure 10.7. In general,
a significant performance advantage is shown for EPI and IPI against SI. The
µs for EPI and IPI are similar with a small advantage of IPI against EPI. Still,
the µs for EPI and IPI are similar.

Figure 10.7: Illustration of µs derived for SI, EPI, and IPI on QCP in relation
to Gc.

Figure 10.8 shows the Ss for EPI and IPI. For N = 10, there is a peculiar
slope downwards and then upwards. The reason for this is not known. Due
to this, lets abstract from this peculiarity through the remaining part of this
section. There is an almost consistent marginal proportional correlation between
N and S till N = 40. Hereafter, the correlation transitions to marginal invert
proportional. S for EPI is 2.61 and for IPI S is 2.66. This shows a small
advantage for IPI. Till N = 40, EPI and IPI are algorithmically scalable.

Figure 10.8: Illustration of Ss derived for EPI and IPI on QCP in relation to
Gc.

Figure 10.9 illustrates the derived Es for EPI and IPI. For EPI E is 0.65 and
for IPI E is 0.66. δ is exceeded significantly. Hence, IPI achieves maintenance
of performance for QCP in relation to Gc. There are some similarities between
the Es for IPI and the Es for TTE. The initial proportional correlation for IPI
is less significant than for TTE. Also, there is a marginal inverse proportional

52

correlation from N = 40 for IPI but not for TTE. For IPI, linear speedup is
not achieved. δE is 0.17. Therefore, the difference between theoretical efficiency
and achieved efficiency is considered as moderate.

Figure 10.9: Illustration of Es derived for EPI and IPI on QCP in relation to
Gc.

10.2.2 Gs

In Figure 10.10, the µs derived for SI, IPI, and EPI are presented. A significant
performance advantage is in general shown for EPI and IPI against SI. The µs
for EPI and IPI are similar. However, there is a small advantage of IPI against
EPI. Despite this, µs for EPI and IPI are similar.

Figure 10.10: Illustration of µs derived for SI, EPI, and IPI on QCP in relation
to Gs.

In Figure 10.5, the derived Ss for EPI and IPI are shown. For IPI and
N = 10, there is a peculiar slope upwards and then downwards. The cause is
unknown for this behavior. When not considering N = 10 for IPI, a significant
proportional correlation from N = 5 to N = 20 is shown. This is followed by
almost stagnation, specifically S varies at most by 0.27. For EPI, S is 2.45 and
for IPI S is 2.69. Thus, a small advantage for IPI is shown. EPI and IPI are
both algorithmically scalable, especially from N = 5 to N = 20.

53

Figure 10.11: Illustration of Ss derived for EPI and IPI on QCP in relation to
Gs.

The Es derived for EPI and IPI are shown in Figure 10.12. Es are 0.61 and
0.67 for EPI and IPI, respectively. This surpasses δ significantly and therefore
IPI achieves maintenance of performance improvements for QCP in relation to
Gs. The Es for IPI and the Es for TTE are similar. For both IPI and TTE,
a significant proportional correlation exists from N = 5 to N = 20 followed by
stagnation, more or less. Linear speedup is not achieved for IPI. δE is 0.09. The
difference between theoretical efficiency and achieved efficiency is considered
moderate.

Figure 10.12: Illustration of Es derived for EPI and IPI on QCP in relation to
Gs.

10.2.3 Comparison

Similar performance is achieved for EPI and IPI for both the Gc- and Gs-
implementations. From an application performance viewpoint, there is a small
performance advantage of implicit parallelization.

IPI is algorithmically scalable. IPI achieves maintenance of performance
improvements for QCP. In fact, δ is surpassed significantly. There is a moderate
difference between theoretical efficiency and achieved efficiency for IPI.

54

10.3 SMTP

The results, analysis, and evaluation of executing the benchmark on SMTP is
here presented. In the end of section, a comparison between the evaluation of
the Gc- and Gs-implementations is made.

10.3.1 Gc

In Figure 10.13, the µs derived for SI, IPI, and EPI are shown. The figure
shows only marginal improvements of EPI and IPI over SI. µs for EPI and IPI
are similar.

Figure 10.13: Illustration of µs derived for SI, EPI, and IPI on SMTP in relation
to Gc.

A likely deviation is found where N = 5 for Ss derived for EPI and IPI. This
is because µ for N = 5 for SI is 2352.9 microseconds compared to 1 microsecond
for both EPI and IPI. This results in S = 2352.9 which is clearly incorrect
considering that only two processing units are used. Further, the illustration of
Ss (Figure 10.14) is at best confusing. Therefore, the Ss where N = 5 are not
considered in this section. The derived Ss, excluding where N = 5, are shown
in Figure 10.15. Figure 10.15 shows that EPI achieves better Ss than IPI for
all cases except where N = 50. However, the difference is within [0.02, 0.09]
which can be seen as marginal. Otherwise, the trends for the Ss of EPI and
IPI are similar, i.e. when EPI has an upwards slope so does IPI and vice versa,
except from N = 25 to N = 30. Both EPI and IPI can not be considered
algorithmically scalable.

The Es derived for EPI and IPI are shown in Figure 10.16, excluding E
where N = 5. For EPI, E is 0.54 and for IPI, E is 0.52. δ is not exceeded.
This means, IPI does not achieve maintenance of performance improvements
for SMTP in relation to Gc. There are no significant trends shared between the
Es for IPI and the Es for TTE. δE is 0.47. Due to this, the difference between
theoretical efficiency and achieved efficiency is considered significant.

55

Figure 10.14: Illustration of Ss derived for EPI and IPI on SMTP in relation to
Gc including N = 5.

Figure 10.15: Illustration of Ss derived for EPI and IPI on SMTP in relation to
Gc excluding N = 5.

10.3.2 Gs

The µs derived for SI, EPI, and IPI are shown in Figure 10.17. A marginal
performance advantage is shown for EPI and IPI over SI.

In Figure 10.18, the derived Ss for EPI and IPI are illustrated. When com-
paring IPI to EPI, somewhat significant variances are shown for IPI fromN = 10
to N = 25 where absolute leaps between distinct Ns are within [0.6, 0.7]. Oth-
erwise, from an abstract point of view, EPI and IPI show similar trends. Both
start with an upwards slope and change at circa N = 35 to a downwards slope.
In most cases, specifically N = 15, N = 25, and from N = 35 to N = 50, IPI
show better Ss than EPI. In addition, the Ss are only arguments against EPI
and IPI being algorithmically scalable.

In Figure 10.19, the Es derived for EPI and IPI are presented. E is 0.52 for
both EPI and IPI which does no exceed δ. Therefore, IPI is not considered an
adequate solution for maintenance of performance improvements for SMTP in
relation to Gs. From an abstract viewpoint, there are some similarities between
the Es for IPI and the Es for TTE. There is a proportional correlation till
N = 25 for IPI. δE is 0.45. Based on this, the difference between theoretical
efficiency and achieved efficiency is considered significant.

56

Figure 10.16: Illustration of Es derived for EPI and IPI on SMTP in relation
to Gc excluding N = 5.

Figure 10.17: Illustration of µs derived for SI, EPI, and IPI on SMTP in relation
to Gs.

10.3.3 Comparison

For both the Gc- and Gs-implementations, similar performance is achieved for
EPI and IPI from an abstract point of view. There is no performance advantage
of implicit parallelization for Gc, only an marginal disadvantage. There is a
marginal performance advantage of implicit parallelization for Gs . However,
all in all, almost equivalent performance achievements.

IPI is not algorithmically scalable. IPI does not achieve maintenance of
performance improvements for SMTP. There is a significant difference between
theoretical efficiency and achieved efficiency for IPI.

10.4 Overall Comparison

For DCP, QCP, and SMTP and for both the Gc- and Gs-implementations,
similar performance is achieved for EPI and IPI.

For DCP, there is a small performance advantage of explicit parallelization.
For QCP, there a small performance advantage of implicit parallelization. For
SMTP, there is contextually marginal performance improvements. Considering

57

Figure 10.18: Illustration of Ss derived for EPI and IPI on SMTP in relation to
Gs.

Figure 10.19: Illustration of Es derived for EPI and IPI on SMTP in relation
to Gs.

all cases, explicit- and implicit parallelization achieves, more or less, equivalent
performance.

Algorithmic scalability is not achieved for IPI in relation to SMTP. For IPI
in relation to both DCP and QCP, algorithmic scalability is achieved.

For DCP and IPI, E is 0.79 for Gc and 0.78 for Gs. For QCP and IPI,
E is 0.66 for Gc and 0.67 for Gs. Thus, architectural scalability is achieved
when considering DCP and IPI. For both DCP and QCD, IPI achieves main-
tenance of performance improvements showing an achievement of success for
these platforms and this benchmark.

For DCP and QCP, there is a moderate difference between theoretical effi-
ciency and achieved efficiency for IPI. For SMTP, there is a significant difference
between theoretical efficiency and achieved efficiency for IPI.

For SMTP, the results are not successful. IPI does not achieve maintenance
of performance improvements. However, the current trend of chip makers is
CMPs. The maintenance of performance improvements is achieved for the plat-
forms consisting of CMPs. When considering this fact, the results achieved can
be perceived as successful.

58

Chapter 11

Conclusion and Future
Work

The issue of the development within processor architecture has been presented.
It has been argued that implicit parallelization is a potential solution. A specific
solution was constructed. The solution consists of an implicitly parallel meta
language called GML. GML is compiled into Erlang source with an application of
an intermediate graph library called IGL. IGL and GML was constructed in re-
lation to a graph application algorithm. This algorithm was made more explicit
for the extraction of information relevant for IGL and GML. The parallelization
of GML code can be summarized as follows. First, identify concurrency inherent
in the GML code. Second, using the identified concurrency, extract a data flow
graph consisting of threads, forks, joins, and/or parallel loops. Third, generate
the target code according to the constructed data flow graph. The theoretical
improvements of an implementation of the graph application algorithm in GML
were significant compared to a sequential implementation.

A benchmark was designed and constructed for the purpose of testing GML.
The benchmark consisted of three implementations of the graph application
algorithm: a sequential, an explicitly parallel implementation in Erlang (EPI)
using IGL, and finally multiple implicitly parallel implementations (IPIs) using
GML. Further, the implementations were run on three different platforms: a
duo core platform (DCP), a quad core platform (QCP), and an SMT platform
(SMTP). The main success criteria of the benchmark was at least maintenance of
performance improvements. The benchmark also concerned speedup, efficiency,
and algorithmic- and architectural scalability.

The implementations for the SMTP were unsuccessful. Algorithmic scalabil-
ity and maintenance of historical performance improvements were not achieved.
Further, the theoretical improvements were not precise.

However, the implementations for the CMP-based platforms (DCP and QCP)
showed success. The speedups and efficiencies of the IPIs were more or less
equivalent to those of EPI. The theoretical improvements were somewhat pre-
cise. Algorithmic scalability and architectural scalability were achieved. Finally,
and most importantly, the IPIs achieved maintenance of historical performance
improvements, especially for QCP.

59

The major limitation of this project is that the parallelization process is
designed based on working for a single graph application. Adding another or
more applications for the benchmark would improve the representativeness of
the benchmark results and the applicability of the parallelization approach. Per-
haps, applications within different application domains could be included. This
approach could on the longer term yield a more general purpose language with
results supporting (or not supporting) its applicability for the tested applica-
tions.

With an execution platform consisting of many processing units, say 32 or
more, the execution of the benchmark could show whether the indication of
architectural scalability holds any truth. Further, such an execution platform
could show whether maintenance of performance for the implicitly parallelized
implementations of the benchmark of this project is consistent or simply limited
to two and four processing units.

For comparison to the coarse-grained approach followed in this project, a
more fine-grained solution could be interesting to see which parallelism granu-
larity is more appropriate.

60

Chapter 12

Acknowledgements

Throughout the process of this project, main supervisor Daniel Ortiz-Arroyo
has provided consistently good feedback. This feedback has only affected the
quality of the process’ product in a positive manner. Daniel also put an SMT
based machine at disposal for benchmark execution.

Co-supervisor Andrea Valente contributed with good help during the initial
part of this semester - especially for the decision regarding the thesis of this
project.

Finally, employer Jacob Thorvald Larsen put a quad core machine at disposal
for benchmark execution.

61

Appendix A

Extraction of Implicit
Information in Algorithm 1

Below, the implicit information in Algorithm 1 is extracted to find any addi-
tional important information for IGL and GML. This results in a more elaborate
algorithm. Since GML is a domain specific language, a relatively declarative al-
gorithm is the aim. The lines not presented below are considered sufficiently
explicit.

The first, seventh, and eighth line are shown successively below:
Calculate initial total entropy Hco0(G) and Hce0(G)
To solve the KPP-Pos problem, select those nodes that produce the largest
change in graph entropy Hco0 −Hcoi

≥ δ1
To solve the KPP-Neg problem, select those nodes that produce the largest
change in graph entropy Hce0 −Hcei ≥ δ2
These lines show an application of variables. For instance, Hco0(G) in the first
line is used as a variable in the eighth line. In addition, two calculations are
performed in the statement: Hco0(G) and Hce0(G). The resulting statements
based on the first line are:
Line 1 : Calculate and store total connectivity entropy of G as Hco0

Line 2 : Calculate and store total centrality entropy of G as Hce0

where the right hand side of as is the alias for the variable.
The second line states:

for all nodes ∈ graph G do
Within the for all loop, vi is used implying a declaration of the variable which
refer to the current nodes in the current iteration. The resulting statement is:
Line 3 : for all nodes vi ∈ graph G do

The third line states:
Remove node vi, creating a modified graph G′

The statement is embedded into a for all loop. To avoid creating a loop carried
dependency here, G must not be manipulated between iterations of the loop.
Therefore, a replicate of G is created, stored, and manipulated as G′. This
eliminates the need for the fifth line. The resulting statements are:
Line 4 : Store a copy of G as G′

Line 5 : Remove node vi from G′

62

The fourth, seventh, and eighth line are shown successively below:
Recalculate Hcoi

(G′) and Hcei
(G′), store these results

To solve the KPP-Pos problem, select those nodes that produce the largest
change in graph entropy Hco0 −Hcoi ≥ δ1
To solve the KPP-Neg problem, select those nodes that produce the largest
change in graph entropy Hce0 −Hcei

≥ δ2
G most likely contains multiple vertices. Hence, most likely multiple calcula-
tions of Hcoi(G

′) and Hcei(G
′) are made and stored in the fourth line. This

implies the use of a variable referring to a collection. Additionally, the sev-
enth and eighth line show an association between each vi, Hcoi

, and Hcei
and

implies that it is this association which is stored in the fourth line. To model
the collections of associations, tables of fields and rows are used. The resulting
statements based on the fourth line are:
before for all:
Line 6 : Store table with fields 〈v,Hco, Hce〉 as Hall

within for all:
Line 7 : Add row 〈vi, Hcoi

(G′), Hcei
(G′)〉 to Hall

The seventh and eighth line state:
To solve the KPP-Pos problem, select those nodes that produce the largest
change in graph entropy Hco0 −Hcoi

≥ δ1
To solve the KPP-Neg problem, select those nodes that produce the largest
change in graph entropy Hce0 −Hcei

≥ δ2
The above lines each contains multiple embedded steps. Abstractly, equivalent
sequences of steps are embedded. Solving the first solves the second, abstractly.
Lets present the steps outside in. First, only vi of Hall are selected. Second, at
most δi tuples are selected. Third, the tuples of Hall are sorted by the nodes
that produce the largest change in the specific graph entropy. The nodes which
produce the greatest change are the nodes where the graph entropy after re-
moval is the smallest. Thus, the nodes should be sorted ascending by Hcoi .
This eliminates the need for Hco0 and Hce0 due to removal of the application of
these variables. Therefore, Line 1 and 2 are excluded in the explicit algorithm.
Furthermore, δ1 and δ2 needs to be stored somewhere. This results in the fol-
lowing statements:
Line 8 : Store δ1 as 3 Line 9 : Store δ2 as 3 Line 10 : Select v of the first δ1 rows
of Hall sorted ascending by Hco

Line 11 : Select v of the first δ2 rows of Hall sorted ascending by Hce

All of the above transformation yields Algorithm 2.

63

Appendix B

Mapping Algorithm 2 to
IGL APIs

Each GML STORE operation is seen as a responsibility of GML. Lets examine
each step of the algorithm.

Some of the statements in Algorithm 2 use G, specifically the lines 1, 4, 5,
6, and 7. This implies an API for construction graphs. There is a need for both
construction of complete graphs (graph complete(N)) and sparse graphs(graph sparse(N)).

The first lines states:
Store table with fields 〈v,Hco, Hce〉 as Hall

Here, the construction of tables are implied (table new()).
The fourth line states:

for all nodes vi ∈ graph G
This implies a need for an API to retrieve the nodes of a graph (graph nodes(G)).

The fifth line states:
Store a copy of G as G′

The above implies the need for an API to copy graphs (graph copy(G)).
The fixth line states:

Remove node vi from G′

This line implies the need for an API to remove nodes in a graph (graph nodes remove(G,
V)).

The seventh line states:
Add row 〈vi, Hcoi

(G′), Hcei
(G′)〉 to Hall

This implies, outside in, the need for an API to add rows to a table (ta-
ble rows add(T, R)), an API to construct rows (table row new(Cs)), and APIs
for calculatingHcoi

(G′) (graph connectivity(G)) andHcei
(G′) (graph centrality(G)).

The ninth and tenth line state, respectively:
Select v of the first δ1 tuples of Hall sorted ascending by Hco

Select v of the first δ2 tuples of Hall sorted ascending by Hce

These lines imply, outside in, the need for an API to select specific fields of the
rows of a table (table select(T,Fs)), and API to retrieve the first n rows of a
table (table first(T,X)), and an API to sort the rows of a table (table sort(T,S)).

64

Appendix C

Benchmark Implementation
Outcomes

The outcomes for SI, the EPIs, and the IPIs are shown in this Appendix.

C.1 SI

The outcomes for SI and Gc are presented in Table C.1 and C.2. The outcomes
for SI and Gs are presented in Table C.3 and C.4.

Table C.1: SI connectivity entropy outcomes for Gc where δ1 = 3.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (9, 4.68, 4.34), (6, 4.68, 4.34), (7, 4.68, 4.34)
15 (9, 7.19, 5.61), (6, 7.19, 5.61), (7, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (23, 14.71, 7.72), (17, 14.71, 7.72), (9, 14.71, 7.72)
35 (23, 17.21, 8.17), (17, 17.21, 8.17), (9, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

65

Table C.2: SI centrality entropy outcomes for Gc where δ2 = 3.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (9, 4.68, 4.34), (6, 4.68, 4.34), (7, 4.68, 4.34)
15 (9, 7.19, 5.61), (6, 7.19, 5.61), (7, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (23, 14.71, 7.72), (17, 14.71, 7.72), (9, 14.71, 7.72)
35 (23, 17.21, 8.17), (17, 17.21, 8.17), (9, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

Table C.3: SI connectivity entropy outcomes for Gs where δ1 = 3.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (3, 1.50, 2.00)

10 (8, 3.68, 4.50), (3, 3.68, 4.42), (7, 3.74, 4.33)
15 (4, 5.92, 6.55), (12, 5.92, 6.60), (11, 5.96, 6.50)
20 (16, 8.14, 7.99), (5, 8.14, 8.02), (15, 8.17, 8.00)
25 (20, 10.36, 9.07), (6, 10.36, 9.08), (7, 10.38, 9.05)
30 (7, 12.57, 9.93), (24, 12.57, 9.88), (23, 12.59, 9.92)
35 (8, 14.78, 10.66), (28, 14.78, 10.65), (9, 14.80, 10.62)
40 (9, 16.99, 11.30), (32, 16.99, 11.30), (31, 17.01, 11.29)
45 (36, 19.20, 11.87), (10, 19.20, 11.87), (11, 19.21, 11.87)
50 (40, 21.41, 12.31), (11, 21.41, 12.31), (39, 21.42, 12.32)

Table C.4: SI centrality entropy outcomes for Gs where δ2 = 3.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (5, 1.75, 1.44)

10 (6, 3.77, 4.23), (5, 3.77, 4.23), (7, 3.74, 4.33)
15 (1, 6.19, 6.45), (7, 6.00, 6.47), (2, 6.08, 6.49)
20 (1, 8.40, 7.90), (20, 8.40, 7.91), (18, 8.26, 7.95)
25 (1, 10.61, 8.94), (25, 10.61, 8.94), (2, 10.55, 8.99)
30 (1, 12.82, 9.79), (30, 12.82, 9.80), (28, 12.72, 9.83)
35 (1, 15.02, 10.55), (2, 14.98, 10.55), (3, 14.94, 10.56)
40 (1, 17.23, 11.20), (40, 17.23, 11.21), (2, 17.19, 11.21)
45 (1, 19.44, 11.78), (45, 19.44, 11.79), (2, 19.40, 11.79)
50 (1, 21.64, 12.22), (50, 21.64, 12.23), (2, 21.61, 12.24)

C.2 EPI

The outcomes for EPI and Gc where p = 2 are presented in Tables C.5 and C.6.
The outcomes for EPI and Gs are presented in Table C.7 and C.8.

66

Table C.5: EPI connectivity entropy outcomes for Gc where δ1 = 3 and p = 2.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (2, 4.68, 4.34)
15 (8, 7.19, 5.61), (3, 7.19, 5.61), (2, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (12, 12.21, 7.17), (8, 12.21, 7.17), (20, 12.21, 7.17)
30 (22, 14.71, 7.72), (29, 14.71, 7.72), (19, 14.71, 7.72)
35 (29, 17.21, 8.17), (19, 17.21, 8.17), (26, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (29, 22.21, 8.92), (44, 22.21, 8.92), (19, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

Table C.6: EPI centrality entropy outcomes for Gc where δ2 = 3 and p = 2.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (2, 4.68, 4.34)
15 (8, 7.19, 5.61), (3, 7.19, 5.61), (2, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (12, 12.21, 7.17), (8, 12.21, 7.17), (20, 12.21, 7.17)
30 (22, 14.71, 7.72), (29, 14.71, 7.72), (19, 14.71, 7.72)
35 (29, 17.21, 8.17), (19, 17.21, 8.17), (26, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (29, 22.21, 8.92), (44, 22.21, 8.92), (19, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

Table C.7: EPI connectivity entropy outcomes for Gs where δ1 = 3 and p = 2.
N Outcome
5 (2, 1.25, 0.78), (4, 1.25, 0.78), (3, 1.50, 2.00)

10 (8, 3.68, 4.48), (3, 3.68, 4.42), (7, 3.74, 4.33)
15 (4, 5.92, 6.55), (12, 5.92, 6.60), (11, 5.96, 6.50)
20 (16, 8.14, 7.99), (5, 8.14, 8.02), (15, 8.17, 8.00)
25 (20, 10.36, 9.07), (6, 10.36, 9.08), (19, 10.38, 9.07)
30 (7, 12.57, 9.93), (24, 12.57, 9.88), (23, 12.59, 9.92)
35 (28, 14.78, 10.65), (8, 14.78, 10.66), (27, 14.80, 10.63)
40 (9, 16.99, 11.30), (32, 16.99, 11.30), (31, 17.01, 11.29)
45 (36, 19.20, 11.87), (10, 19.20, 11.87), (11, 19.21, 11.87)
50 (11, 21.41, 12.31), (40, 21.41, 12.31), (39, 21.42, 12.33)

67

Table C.8: EPI centrality entropy outcomes for Gs where δ1 = 3 and p = 2.
N Outcome
5 (2, 1.25, 0.78), (4, 1.25, 0.78), (1, 1.75, 1.44)

10 (6, 3.78, 4.23), (5, 3.77, 4.23), (7, 3.74, 4.33)
15 (1, 6.19, 6.45), (7, 6.00, 6.47), (2, 6.08, 6.49)
20 (1, 8.40, 7.90), (20, 8.40, 7.91), (18, 8.26, 7.95)
25 (1, 10.61, 8.94), (25, 10.61, 8.94), (2, 10.55, 8.99)
30 (1, 12.82, 9.79), (30, 12.82, 9.80), (28, 12.72, 9.83)
35 (1, 15.02, 10.55), (2, 14.98, 10.55), (3, 14.94, 10.56)
40 (1, 17.23, 11.20), (40, 17.23, 11.21), (2, 17.19, 11.21)
45 (1, 19.44, 11.78), (45, 19.44, 11.79), (2, 19.40, 11.79)
50 (1, 21.64, 12.22), (50, 21.64, 12.23), (2, 21.61, 12.24)

The outcomes for EPI and Gc where p = 4 are presented in Table C.9 and
C.10. The outcomes for EPI and Gs are presented in Tables C.11 and C.12.

Table C.9: EPI connectivity entropy outcomes for Gc where δ1 = 3 and p = 4.
N Outcome
5 (3, 2.12, 2.00), (5, 2.12, 2.00), (4, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (9, 4.68, 4.34)
15 (9, 7.19, 5.61), (6, 7.19, 5.61), (7, 7.19, 5.61)
20 (20, 9.70, 6.50), (19, 9.70, 6.50), (3, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (11, 14.71, 7.72), (15, 14.71, 7.72), (30, 14.71, 7.72)
35 (15, 17.21, 8.17), (30, 17.21, 8.17), (35, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (11, 24.71, 9.23), (15, 24.71, 9.23), (30, 24.71, 9.23)

Table C.10: EPI centrality entropy outcomes for Gc where δ1 = 3 and p = 4.
N Outcome
5 (3, 2.12, 2.00), (5, 2.12, 2.00), (4, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (9, 4.68, 4.34)
15 (9, 7.20, 5.61), (6, 7.20, 5.61), (7, 7.20, 5.61)
20 (20, 9.70, 6.50), (19, 9.70, 6.50), (3, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (11, 14.71, 7.72), (15, 14.71, 7.72), (30, 14.71, 7.72)
35 (15, 17.21, 8.17), (30, 17.21, 8.17), (35, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (11, 24.71, 9.23), (15, 24.71, 9.23), (30, 24.71, 9.23)

68

Table C.11: EPI connectivity entropy outcomes for Gs where δ1 = 3 and p = 4.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (3, 1.50, 2.00)

10 (8, 3.68, 4.48), (3, 3.68, 4.42), (7, 3.74, 4.33)
15 (4, 5.92, 6.55), (12, 5.92, 6.60), (11, 5.96, 6.50)
20 (16, 8.14, 7.99), (5, 8.14, 8.02), (15, 8.17, 8.00)
25 (20, 10.36, 9.07), (6, 10.36, 9.08), (7, 10.38, 9.05)
30 (7, 12.57, 9.93), (24, 12.57, 9.88), (8, 12.59, 9.96)
35 (28, 14.78, 10.65), (8, 14.78, 10.66), (27, 14.80, 10.63)
40 (9, 16.99, 11.30), (32, 16.99, 11.30), (10, 17.01, 11.29)
45 (10, 19.20, 11.87), (36, 19.20, 11.87), (35, 19.21, 11.86)
50 (11, 21.41, 12.31), (40, 21.41, 12.31), (12, 21.42, 12.33)

Table C.12: EPI centrality entropy outcomes for Gs where δ1 = 3 and p = 4.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (5, 1.75, 1.44)

10 (5, 3.77, 4.23), (6, 3.77, 4.23), (7, 3.74, 4.33)
15 (1, 6.19, 6.45), (7, 6.00, 6.47), (2, 6.08, 6.49)
20 (1, 8.40, 7.90), (20, 8.40, 7.91), (18, 8.26, 7.95)
25 (1, 10.61, 8.94), (25, 10.61, 8.94), (2, 10.55, 8.99)
30 (1, 12.82, 9.79), (30, 12.82, 9.80), (28, 12.72, 9.83)
35 (1, 15.02, 10.55), (2, 14.98, 10.55), (3, 14.94, 10.56)
40 (1, 17.23, 11.20), (40, 17.23, 11.21), (2, 17.19, 11.21)
45 (1, 19.44, 11.78), (45, 19.44, 11.79), (2, 19.40, 11.79)
50 (1, 21.64, 12.22), (50, 21.64, 12.23), (2, 21.61, 12.24)

C.3 IPI outcomes

The outcomes for IPI and Gc where p = 2 are presented in Table C.13 and C.14.
The outcomes for IPI and Gs are presented in Table C.15 and C.16.

Table C.13: IPI connectivity entropy outcomes for Gc where δ1 = 3 and p = 2.
N Outcome
5 (3, 2.12, 2.00), (2, 2.12, 2.00), (1, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (2, 4.68, 4.34)
15 (9, 7.19, 5.61), (6, 7.19, 5.61), (7, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (12, 12.21, 7.17), (8, 12.21, 7.17), (20, 12.21, 7.17)
30 (22, 14.71, 7.72), (29, 14.71, 7.72), (19, 14.71, 7.72)
35 (29, 17.21, 8.17), (19, 17.21, 8.17), (26, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (29, 22.21, 8.92), (44, 22.21, 8.92), (19, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

69

Table C.14: IPI centrality entropy outcomes for Gc where δ1 = 3 and p = 2.
N Outcome
5 (3, 2.12, 2.00), (2, 2.12, 2.00), (1, 2.12, 2.00)

10 (8, 4.68, 4.34), (3, 4.68, 4.34), (2, 4.68, 4.34)
15 (9, 7.19, 5.61), (6, 7.19, 5.61), (7, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (12, 12.21, 7.17), (8, 12.21, 7.17), (20, 12.21, 7.17)
30 (22, 14.71, 7.72), (29, 14.71, 7.72), (19, 14.71, 7.72)
35 (29, 17.21, 8.17), (19, 17.21, 8.17), (26, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (29, 22.21, 8.92), (44, 22.21, 8.92), (19, 22.21, 8.92)
50 (23, 24.71, 9.23), (39, 24.71, 9.23), (17, 24.71, 9.23)

Table C.15: IPI connectivity entropy outcomes for Gs where δ1 = 3 and p = 2.
N Outcome
5 (2, 1.25, 0.78), (4, 1.25, 0.78), (3, 1.50, 2.00)

10 (8, 3.68, 4.50), (3, 3.68, 4.42), (7, 3.74, 4.33)
15 (4, 5.92, 6.55), (12, 5.92, 6.60), (11, 5.96, 6.50)
20 (16, 8.14, 7.99), (5, 8.14, 8.02), (15, 8.17, 8.00)
25 (20, 10.36, 9.07), (6, 10.36, 9.08), (19, 10.38, 9.05)
30 (7, 12.57, 9.93), (24, 12.57, 9.88), (23, 12.59, 9.92)
35 (28, 14.78, 10.66), (8, 14.78, 10.65), (27, 14.80, 10.62)
40 (9, 16.99, 11.30), (32, 16.99, 11.30), (31, 17.01, 11.29)
45 (36, 19.20, 11.87), (10, 19.20, 11.87), (11, 19.21, 11.87)
50 (11, 21.41, 12.31), (40, 21.41, 12.31), (39, 21.42, 12.32)

Table C.16: IPI centrality entropy outcomes for Gs where δ1 = 3 and p = 2.
N Outcome
5 (2, 1.25, 0.78), (4, 1.25, 0.78), (1, 1.75, 1.44)

10 (6, 3.77, 4.23), (5, 3.77, 4.23), (7, 3.74, 4.33)
15 (1, 6.19, 6.45), (7, 6.00, 6.47), (2, 6.08, 6.49)
20 (1, 8.40, 7.90), (20, 8.40, 7.91), (18, 8.26, 7.95)
25 (1, 10.61, 8.94), (25, 10.61, 8.94), (2, 10.55, 8.99)
30 (1, 12.82, 9.79), (30, 12.82, 9.80), (28, 12.72, 9.83)
35 (1, 15.02, 10.55), (2, 14.98, 10.55), (3, 14.94, 10.56)
40 (1, 17.23, 11.20), (40, 17.23, 11.21), (2, 17.19, 11.21)
45 (1, 19.44, 11.78), (45, 19.44, 11.79), (2, 19.40, 11.79)
50 (1, 21.64, 12.22), (50, 21.64, 12.23), (2, 21.61, 12.24)

The outcomes for IPI and Gc where p = 4 are presented in Table C.17 and
C.18. The outcomes for IPI and Gs are presented in Table C.19 and C.20.

70

Table C.17: EPI connectivity entropy outcomes for Gc where δ1 = 3 and p = 4.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (2, 4.68, 4.34), (10, 4.68, 4.34), (1, 4.68, 4.34)
15 (14, 7.19, 5.61), (4, 7.19, 5.61), (12, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (11, 14.71, 7.72), (15, 14.71, 7.72), (30, 14.71, 7.72)
35 (15, 17.21, 8.17), (30, 17.21, 8.17), (35, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (11, 24.71, 9.23), (15, 24.71, 9.23), (30, 24.71, 9.23)

Table C.18: EPI centrality entropy outcomes for Gc where δ1 = 3 and p = 4.
N Outcome
5 (5, 2.12, 2.00), (4, 2.12, 2.00), (3, 2.12, 2.00)

10 (2, 4.68, 4.34), (10, 4.68, 4.34), (1, 4.68, 4.34)
15 (14, 7.19, 5.61), (4, 7.19, 5.61), (12, 7.19, 5.61)
20 (17, 9.70, 6.50), (9, 9.70, 6.50), (6, 9.70, 6.50)
25 (23, 12.21, 7.17), (17, 12.21, 7.17), (9, 12.21, 7.17)
30 (11, 14.71, 7.72), (15, 14.71, 7.72), (30, 14.71, 7.72)
35 (15, 17.21, 8.17), (30, 17.21, 8.17), (35, 17.21, 8.17)
40 (23, 19.71, 8.57), (39, 19.71, 8.57), (17, 19.71, 8.57)
45 (23, 22.21, 8.92), (39, 22.21, 8.92), (17, 22.21, 8.92)
50 (11, 24.71, 9.23), (15, 24.71, 9.23), (30, 24.71, 9.23)

Table C.19: EPI connectivity entropy outcomes for Gs where δ1 = 3 and p = 4.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (3, 1.50, 2.00)

10 (8, 3.68, 4.50), (3, 3.68, 4.42), (7, 3.74, 4.33)
15 (4, 5.92, 6.55), (12, 5.92, 6.60), (11, 5.96, 6.50)
20 (16, 8.14, 7.99), (5, 8.14, 8.02), (15, 8.17, 8.00)
25 (20, 10.36, 9.07), (6, 10.36, 9.08), (7, 10.38, 9.05)
30 (7, 12.57, 9.93), (24, 12.57, 9.88), (8, 12.59, 9.92)
35 (8, 14.78, 10.66), (28, 14.78, 10.65), (27, 14.80, 10.62)
40 (9, 16.99, 11.30), (32, 16.99, 11.30), (10, 17.01, 11.29)
45 (10, 19.20, 11.87), (36, 19.20, 11.87), (35, 19.21, 11.87)
50 (11, 21.41, 12.31), (40, 21.41, 12.31), (12, 21.42, 12.32)

71

Table C.20: EPI centrality entropy outcomes for Gs where δ1 = 3 and p = 4.
N Outcome
5 (4, 1.25, 0.78), (2, 1.25, 0.78), (5, 1.75, 1.44)

10 (5, 3.77, 4.23), (6, 3.77, 4.23), (7, 3.74, 4.33)
15 (1, 6.19, 6.45), (7, 6.00, 6.47), (2, 6.08, 6.49)
20 (1, 8.40, 7.90), (20, 8.40, 7.91), (18, 8.26, 7.95)
25 (1, 10.61, 8.94), (25, 10.61, 8.94), (2, 10.55, 8.99)
30 (1, 12.82, 9.79), (30, 12.82, 9.80), (28, 12.72, 9.83)
35 (1, 15.02, 10.55), (2, 14.98, 10.55), (3, 14.94, 10.56)
40 (1, 17.23, 11.20), (40, 17.23, 11.21), (2, 17.19, 11.21)
45 (1, 19.44, 11.78), (45, 19.44, 11.79), (2, 19.40, 11.79)
50 (1, 21.64, 12.22), (50, 21.64, 12.23), (2, 21.61, 12.24)

72

Bibliography

[1] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols: the spi calculus. In CCS ’97: Proceedings of the 4th ACM conference
on Computer and communications security, pages 36–47, New York, NY,
USA, 1997. ACM.

[2] Adeel Abbas and Affan Ahmad. Object oriented parallel programming.
volume 1, pages 89–93, College of E & ME, NUST Pakistan, 2002. IEEE.

[3] Ferri Abolhassan, Reinhard Drefenstedt, Jörg Keller, Wolfgang J. Paul,
and Dieter Scheerer. On the physical design of prams. 1993.

[4] Anant Agarwal and Markus Levy. The kill rule for multicore. In DAC ’07:
Proceedings of the 44th annual conference on Design automation, pages
750–753, New York, NY, USA, 2007. ACM.

[5] Bowen Alpern, Larry Carter, and Jeanne Ferrante. Modeling parallel
computers as memory hierarchies. In Programming Models for Massively
Parallel Computers, pages 116–123. IEEE Computer Society Press, 1993.

[6] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. pages 79–81, 2000.

[7] James H. Anderson, John M. Calandrino, and UmaMaheswari C. Devi.
Real-time scheduling on multicore platforms. In RTAS ’06: Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 179–190, Washington, DC, USA, 2006. IEEE Computer
Society.

[8] ANTLR v3. WWW page, 2009. http://www.antlr.org/.

[9] ANTLRWorks: The ANTLR GUI Development Environment. WWW
page, 2009. http://www.antlr.org/works/index.html.

[10] Jorge L. Ortega Arjona and Graham Roberts. Architectural patterns for
parallel programming. April 1998.

[11] Joe Armstrong. Concurrency oriented programming in erlang. 2003.

[12] Joe Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

73

[13] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A Yelick.
Multi-core programming approach in the real-time virtual instrumenta-
tion. Instrumentation and Measurement Technology Conference Proceed-
ings, December 2006.

[14] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transac-
tions on Computers, 38:1526–1538, 1989.

[15] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM,
39(3):85–97, 1996.

[16] W. Blume and R. Eigenmann. Performance analysis of parallelizing com-
pilers on the perfect benchmarks programs. IEEE Trans. Parallel Distrib.
Syst., 3(6):643–656, 1992.

[17] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Control flow analysis for the pi-calculus. In CONCUR ’98: Proceed-
ings of the 9th International Conference on Concurrency Theory, pages
84–98, London, UK, 1998. Springer-Verlag.

[18] Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and
David August. Revisiting the sequential programming model for multi-
core. In MICRO ’07: Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 69–84, Washington, DC,
USA, 2007. IEEE Computer Society.

[19] U. Bruening, Wolfgang K. Giloi, and Wolfgang Schroeder-Preikschat. La-
tency hiding in message-passing architectures. In Proceedings of the 8th
International Symposium on Parallel Processing, pages 704–709, Wash-
ington, DC, USA, 1994. IEEE Computer Society.

[20] Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic pi-calculus in
bigraphs. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN interna-
tional conference on Principles and practice of declarative programming,
pages 1–12, New York, NY, USA, 2006. ACM.

[21] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A calculus for
trust management. In In Proceedings from Foundations of Software Tech-
nology and Theoretical Computer Science: 24th International Conference
(FSTTCS04, pages 161–173. Springer, 2004.

[22] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models:
model checking message-passing programs. SIGPLAN Not., 37(1):45–57,
2002.

[23] Satish Chandra, James R. Larus, and Anne Rogers. Where is time
spent in message-passing and shared-memory programs? SIGPLAN Not.,
29(11):61–73, 1994.

[24] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of syn-
chronization and granularity on parallel systems. SIGARCH Comput.
Archit. News, 18(3a):239–248, 1990.

74

[25] Silvia Crafa and Sabina Rossi. P-congruences as non-interference for the
pi-calculus. In FMSE ’06: Proceedings of the fourth ACM workshop on
Formal methods in security, pages 13–22, New York, NY, USA, 2006.
ACM.

[26] Ct Technology: a new perspective on Data-parallel Programming. WWW
page, 2009. http://software.intel.com/en-us/data-parallel/.

[27] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
Logp: towards a realistic model of parallel computation. In PPOPP ’93:
Proceedings of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 1–12, New York, NY, USA, 1993.
ACM.

[28] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eu-
nice E. Santos, Klaus Erik Schauser, Ramesh Subramonian, and Thorsten
von Eicken. Logp: a practical model of parallel computation. Commun.
ACM, 39(11):78–85, 1996.

[29] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard
api for shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–
55, 1998.

[30] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Simple, efficient
shared memory simulations. In SPAA ’93: Proceedings of the fifth annual
ACM symposium on Parallel algorithms and architectures, pages 110–119,
New York, NY, USA, 1993. ACM.

[31] Charles Donnelly and Richard Stallman. Bison - the yacc-compatible
parser generator. 2009.

[32] Kevin Dowd and Charles Severance. High Performance Computing.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998.

[33] Chris Edwards. The many lives of moore’s law. Engineering & Technology,
3(1):36–39, 2008.

[34] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.
Stamm, and Dean M. Tullsen. Simultaneous multithreading: A platform
for next-generation processors. IEEE Micro, 17(5):12–19, 1997.

[35] Jakob Ehmsen. Analysis and Evaluation of Modern Language Support for
Programming Multicore Processors. Master’s thesis, Esbjerg Institute of
Technology - Aalborg University, January 2009.

[36] Eric Allen Engle. Extraterritorial jurisdiction: Can rico protect human
rights? a computer analysis of a semi-determinate legal question. Suffolk
University Journal of High Technology Law, 3(1):1–28, 2004.

[37] Erlang digraph module online manual. WWW page, 2009. http:
//erlang.org/doc/man/digraph.html.

[38] Erlang timer module online manual. WWW page, 2009. http://erlang.
org/doc/man/timer.html.

75

[39] Faith E. Fich, Prabhakar L. Ragde, and Avi Wigderson. Relations be-
tween concurrent-write models of parallel computation. In PODC ’84:
Proceedings of the third annual ACM symposium on Principles of dis-
tributed computing, pages 179–189, New York, NY, USA, 1984. ACM.

[40] Steven Fortune and James Wyllie. Parallelism in random access machines.
In STOC ’78: Proceedings of the tenth annual ACM symposium on Theory
of computing, pages 114–118, New York, NY, USA, 1978. ACM.

[41] Vincent W. Freeh and Vincent W. Freeh. A comparison of implicit and
explicit parallel programming. Technical report, University of Arizona,
1994.

[42] Anwar Ghuloum, Terry Smith, Gansha Wu, Xin Zhou, Jesse Fang, Peng
Guo, Byoungro So, Mohan Rajagopalan, Yongjian Chen, and Biao Chen.
Future-proof data parallel algorithms and software on intel R©multi-core
architecture. Intel Technology Journal, 2007.

[43] P. B. Gibbons. A more practical pram model. In SPAA ’89: Proceedings of
the first annual ACM symposium on Parallel algorithms and architectures,
pages 158–168, New York, NY, USA, 1989. ACM.

[44] James Gossling, Bill Joy, Guy Steele, and Gilad Bracha. The
javaTMlanguage specification - third edition. Technical report.

[45] Graph representation. WWW page, 2009. http://www.cs.toronto.edu/
~heap/270F02/node35.html.

[46] Douglas Gregor and Andrew Lumsdaine. The parallel bgl: A generic
library for distributed graph computations. In In Parallel Object-Oriented
Scientific Computing (POOSC, 2005.

[47] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM,
31(5):532–533, 1988.

[48] A. K. Hartmann and M. Weigt. Introduction to graphs. ArXiv Condensed
Matter e-prints, February 2006.

[49] Oltea Mihaela Herescu. The probabilistic asynchronous pi-calculus. PhD
thesis, 2002. Adviser-Catuscia Palamidessi.

[50] Karem Briceño Hernández. Parallelization of scientific legacy code. Mas-
ter’s thesis, Texas Tech University, 2003.

[51] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News,
18(4):18–21, 1990.

[52] Roberto Hoyos. Inside parallel computing: present and future. 2006.

[53] Intel R©CoreTMi7 Processor. WWW page, 2009. http://www.intel.com/
products/processor/corei7/index.htm.

76

[54] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H. Kelm, Isaac Gelado,
Sam S. Stone, Robert E. Kidd, Sara S. Baghsorkhi, Aqeel A. Mahesri,
Stephanie C. Tsao, Nacho Navarro, Steve S. Lumetta, Matthew I. Frank,
and Sanjay J. Patel. Implicitly parallel programming models for thousand-
core microprocessors. In DAC ’07: Proceedings of the 44th annual confer-
ence on Design automation, pages 754–759, New York, NY, USA, 2007.
ACM.

[55] Revolutionizing How We Use TechnologyToday and Beyond. WWW page,
2008. http://www.intel.com/technology/architecture-silicon/
32nm/index.htm?cid=emea:ggl|chips_dk_32nm_en|d5BCFAB|s.

[56] Intel R©Demonstrates Industry’s First 32nm Chip and Next-Generation
Nehalem Microprocessor Architecture. WWW page, 2008. http://www.
intel.com/pressroom/archive/releases/20070918corp_a.htm.

[57] Introduction to Intel R©CoreTMDuo Processor architecture. WWW
page, 2009. http://www.intel.com/technology/itj/2006/
volume10issue02/art01_Intro_to_Core_Duo/p01_abstract.htm.

[58] Java Compiler CompilerTM(JavaCCTM) - The Java Parser Generator.
WWW page, 2009. https://javacc.dev.java.net/.

[59] Stephen C. Johnson. Yacc: Yet another compiler compiler. 1975.

[60] Brian K. Justice. A Study on Parallel Processing and Related Computer
Graphics. Master’s thesis, South Carolina Honors College, September
1995.

[61] Timothy Harold Kaiser. Dynamic load distributions for adaptive compu-
tations on MIMD machines using hybrid genetic algorithms. PhD thesis,
Albuquerque, NM, USA, 1997.

[62] Richard M. Karp. A survey of parallel algorithms for shared-memory
machines. Technical report, Berkeley, CA, USA, 1988.

[63] B. W. Kernighan and D. M. Ritchie. The C programming language.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1978.

[64] Christoph Kessler and Jörg Keller. Models for parallel computing: Review
and perspectives. Mitteilungen - Gesellschaft fr Informatik e.V., Parallel-
Algorithmen und Rechnerstrukturen, 24:?, 2007.

[65] David Jonathan King. Functional Programming and Graph Algorithms.
PhD thesis, 1996.

[66] Vipin Kumar, George Karypis, and Ananth Grama. Role of message-
passing in performance oriented parallel programming. In Proceedings of
the Eighth SIAM Parallel Processing Conference, March 1997.

[67] M. E. Lesk and E. Schmidt. Lex - a lexical analyser generator. 1975.

[68] Kenneth C. Louden. Compiler Construction: Principles and Practice.
PWS Publishing Company, 1997.

77

[69] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan
Berry. Challenges in parallel graph processing. 2007.

[70] Kenneth Lundin. Inside the erlang vm - with focus on smp, 2008.

[71] Tim Mattson and Michael Wrinn. Parallel programming: can we please get
it right this time? In DAC ’08: Proceedings of the 45th annual conference
on Design automation, pages 7–11, New York, NY, USA, 2008. ACM.

[72] Marc Mazzariol. Computer-aided parallellization of applications. 2001.

[73] Time and Frequency from A to Z. WWW page, 2009. http://tf.nist.
gov/general/enc-m.htm.

[74] Dr. Gordon E. Moore. Cramming more components into integrated cir-
cuits. Electronics, 38(8):111, 1965.

[75] Dr. Gordon E. Moore. International solid-state circuits conference. San
Fransisco, Calif., USA, February 2003. Intel.

[76] 32-core CPUs from Intel and AMD. WWW page, 2009.
http://blogs.jmls.edu/ITSHDBlog/Lists/Posts/Post.aspx?List=
5af27beb-9d65-429a-9ba3-0229e0530ddd&ID=28.

[77] Intel unveils Nehalem-EX, demos 64 core system. WWW page, 2009.
http://www.nordichardware.com/news,9350.html.

[78] AMD announces 6-core and 12-core Opteron processors. WWW page,
2009. http://www.tgdaily.com/content/view/37323/135/.

[79] AMD pulls in six-core CPU, announces 16-core for 2011. WWW page,
2009. http://www.tgdaily.com/content/view/42125/135/.

[80] Intel to detail 8-core server chip. WWW page, 2009. http://news.cnet.
com/8301-13924_3-10244564-64.html.

[81] Intel builds 80-core prototype. WWW page, 2009. http:
//www.bit-tech.net/news/hardware/2007/01/18/intel_builds_
80-core_prototype/1.

[82] Vincenzo Nicosia. Towards hard real-time erlang. In ERLANG ’07: Pro-
ceedings of the 2007 SIGPLAN workshop on ERLANG Workshop, pages
29–36, New York, NY, USA, 2007. ACM.

[83] Thomas Noll and Chanchal Kumar Roy. Modeling erlang in the pi-
calculus. In ERLANG ’05: Proceedings of the 2005 ACM SIGPLAN
workshop on Erlang, pages 72–77, New York, NY, USA, 2005. ACM.

[84] Daniel Ortiz-Arroyo and D. M. Hussain. An information theory approach
to identify sets of key players. In EuroISI ’08: Proceedings of the 1st
European Conference on Intelligence and Security Informatics, pages 15–
26, Berlin, Heidelberg, 2008. Springer-Verlag.

[85] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations
for supercomputers. Commun. ACM, 29(12):1184–1201, 1986.

78

[86] Vern Paxson. Flex, version 2.5. 1995.

[87] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus. J. ACM, 47(3):531–584, 2000.

[88] Benjamin C. Pierce and David N. Turner. Pict: a programming language
based on the pi-calculus. pages 455–494, 2000.

[89] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Education Group, 2003.

[90] Think Parallel or Perish. WWW page, 2008. http://www.devx.com/
/go-parallel/Article/32784.

[91] Martin C. Rinard and Monica S. Lam. The design, implementation, and
evaluation of jade. ACM Trans. Program. Lang. Syst., 20(3):483–545,
1998.

[92] Robin Milner. The polyadic π-calculus: a tutorial. (ECS-LFCS-91-180),
October 1991. Also in Logic and Algebra of Specification, ed. F. L. Bauer,
W. Brauer and H. Schwichtenberg, , 1993.

[93] Kenneth H. Rosen. Discrete mathematics and its applications (5th edi-
tion). McGraw-Hill, Inc., New York, NY, USA, 2002.

[94] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Suger-
man, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat
Hanrahan. Larrabee: a many-core x86 architecture for visual computing.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–15, New
York, NY, USA, 2008. ACM.

[95] David B. Skillicorn. Architecture-independent parallel computation. Com-
puter, 23(2):38–50, December 1990.

[96] J. E. Smith. Characterizing computer performance with a single number.
Commun. ACM, 31(10):1202–1206, 1988.

[97] Limited-memory, limited-CPU environments. WWW page, 2009. http:
//www.joelonsoftware.com/items/2007/09/18.html.

[98] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s Journal, 30(3), 2005.

[99] Alexandre Tiskin. The bulk-synchronous parallel random access machine.
Theor. Comput. Sci., 196(1-2):109–130, 1998.

[100] Predrag Tosic and Gul Agha. On parallel vs. sequential threshold cellular
automata. 2004.

[101] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. In ISCA ’95: Proceedings
of the 22nd annual international symposium on Computer architecture,
pages 392–403, New York, NY, USA, 1995. ACM.

79

[102] Ilkka Tuomi. The lives and the death of moore’s law. October 2002.

[103] David N. Turner. The polymorphic pi-calculus: Theory and implementa-
tion. Technical report, University of Edinburgh, 1995.

[104] Philip Wadler. An angry half-dozen. SIGPLAN Not., 33(2):25–30, 1998.

[105] William M. Waite and Gerhard Goos. Compiler construction, 1984.

[106] Claes Wikstrom. Distributed programming in erlang. In In PASCO’94 -
First International Symposium on Parallel Symbolic Computation, pages
412–421, 1994.

[107] Barry Wilkinson and Michael Allen. Parallel programming: techniques
and applications using networked workstations and parallel computers.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[108] Barry Wilkinson and Michael Allen. A state-wide senior parallel program-
ming course. IEEE Transactions on Education, 42(3):167–173, 1999.

[109] Henry Xiao. Parallel graph algorithms - algorithmic graph theory study
report. 2003.

[110] Laura A. Zager. Graph similarity and matching. 2005.

[111] Lars ke Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas Arts,
and Gennady Chugunov. A verification tool for erlang. International
Journal on Software Tools for Technology Transfer, 4(4):405–420, 2003.
http://www.sics.se/ mfd/sttt.ps.

80

