
Turbo Coding
Hardware Acceleration of an EGPRS-2 Turbo Decoder on an FPGA

Master Thesis, AAU,

Applied Signal Processing and Implementation

Spring 2009

Group 1041

Jesper Kjeldsen





Aalborg University

Institute for Electronic Systems

Fredrik Bajers Vej 7

DK-9100 Aalborg

Phone: (+45) 9635 8080

http://es.aau.dk

Title:

Turbo Coding

Hardware Acceleration of an EGPRS-2
Turbo Decoder on an FPGA

Theme:

Master Thesis

Project period:

E10, Spring term 2009

Project group:

09gr1041

Participants:

Jesper Kjeldsen

Supervisors:

Peter Koch
Ole Lodahl Mikkelsen

Copies: 4

Number of pages: 120

Appendices hereof: 30

Attachment: 1 CD-ROM

Completed: 18-06-2009

Abstract:

This report presents a hardware implementation of an

EGPRS-2 turbo decoder algorithm called soft-output

Viterbi algorithm (SOVA), where techniques for opti-

mizing the implementation has been used to establish

an Finite State Machine with Datapath (FSMD) de-

sign. The report is developed in cooperation with

Rohde & Schwarz Technology Center A/S (R&S).

EGPRS-2 is the second evolution of GPRS, a stan-

dard for wireless transmission of data over the most

widespread mobile communication network in the

world, GSM. The technologies utilized by EGPRS-

2 to improve Quality of Service is investigated in this

report to determine an application with high com-

plexity. Turbo coding is chosen and its encoder and

decoder structures are analyzed. Based on the inter-

est of R&S, a SOVA implemented in Matlab is ana-

lyzed and through profiling a bottleneck, that takes

up 70 % of the decoders execution time, is found.

This bottleneck is mapped to an FSMD implementa-

tion, where the datapath is determined through cost

optimization techniques and a pipeline is also imple-

mented. XILINX Virtex-5 is used as an implementa-

tion reference to estimate a decreased execution time

of the hardware design. It shows that a factor 1277

improvement over the Matlab implementation can be

achieved and that it is able to handle the maximum

EGPRS-2 throughput speed of 2 Mbit/s.

The content of this report is freely accessible, though publication (with reference) may only occur after permission

from the authors.



Group 1041

iv



Preface

This report documents the work for the master thesis; Turbo Coding - Hardware Acceleration
of an EGPRS-2 Turbo Decoder on an FPGA. It represents the work done on a semester long
project at Applied Signal Processing and Implementation master specialization at Department
of Electronic Systems, Aalborg University, Denmark.

The project proposal was presented by Rohde & Schwarz Technology Center A/S and a special
thanks goes out to M. Sc. E.E. Ole Lodahl Mikkelsen, SW developer at Rohde & Schwarz
Technology Center A/S, for his help throughout the course of this project.

For notation some basic rules are set. Italic notation is used for Matlab functions, while a
typewriter font is used for variables inside these Matlab functions. Furthermore ”()” indicates
if a variable contains more than one value, so variable1() would contain a set of values, whereas
variable2 would only consist of one value.

Citations are written in square brackets with a number, e.g. [3]. The citations are listed in the
bibliography on page 90.

The report is composed of three parts: the main report, appendix, and an enclosed CD-rom.
The CD-rom contains Matlab code and a digital copy of this report.

Aalborg University, June 18th 2009

Jesper Kjeldsen

v



Group 1041

vi



Contents

1 Introduction 3

1.1 Scope of Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The A3 Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Interests of R&S (Industry) 9

3 EGPRS-2; a Short Review 13

3.1 Origin and Goals of EGPRS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Technology Improvements for EGPRS-2 . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Dual-antenna terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Multiple Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Reduced transmission time interval and fast feedback . . . . . . . . . . . 16

3.2.4 Improved modulation and turbo coding . . . . . . . . . . . . . . . . . . . 17

3.2.5 Higher symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Conclusion on EGPRS-2 Improvements . . . . . . . . . . . . . . . . . . . . . . . 19

4 Turbo Coding 21

4.1 Turbo Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Internal Interleaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



Group 1041 CONTENTS

4.1.2 Puncturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Turbo Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Viterbi Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Conclusion on Turbo Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Algorithm Analysis of SOVA 29

5.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.2 Profiling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Decoder Algorithm Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Conclusion on SOVA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Algorithmic Design and Optimization 41

6.1 Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Moore Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.2 Mealy Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.3 Conclusion on FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Conclusion on Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Cost Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Left Edge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.2 Operator Merging and Graph Partitioning Algorithm . . . . . . . . . . . 65

6.3.3 Connection Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.4 Conclusion on Cost Optimization . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.1 Functional Unit Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



CONTENTS Group 1041

6.4.2 Conclusion on Performance Optimization . . . . . . . . . . . . . . . . . . 76

7 Virtex-5 Analysis and Implementation 77

7.1 Conclusion on Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Conclusion and Future Work 83

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 89

A Viterbi Decoding Example 91

B SOVAturbo sys demo.m 95

C demultiplex.m 101

D trellis.m 103

E sova0.m 105

F Truth Tables for Next State Equations 109

G Evaluation of Fixed Point Precision 113

H Combinational Logic for ALU Design 117

I Pipeline Timing Diagrams 119

ix



Group 1041 CONTENTS

0



List of Acronyms

3GPP Third Generation Partnership Project

ACK Acknowledge

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BCJR Bahl, Cocke, Jelinek and Raviv

BER Bit Error Rate

BSC Base Station Controller

BRAM Block Random-Access Memory

BTS Base Transceiver Station

BUF Buffer

CLB Configurable Logic Block

CMT Clock Management Tiles

EDGE Enhanced Data rates for GSM Evolution

EGPRS Enhanced GPRS

FPGA Field-Programmable Gate Array

GERAN GSM/EDGE Radio Access Network

GGSN Gateway GPRS Support Node

GMSC Gateway Mobile Switching Center

GPRS General Packet Radio Service

GSM Global System for Mobile communications

1



Group 1041 CONTENTS

I/O Input/Output

HLR Home Location Register

HSPA High Speed Packet Access

ITU International Telecommunication Union

LTE Long-Term Evolution

LUT Look Up Table

LLR Log-Likelihood Ratio

MMS Multimedia Messaging Service

MSC Mobile Switching Center

NACK Not Acknowledge

NW Network

PCCC Parallel Concatenated Convolutional Code

PoC Push to Talk Over Cellular

PSTN Public Switched Telephone Networks

QoS Quality of Service

RLC Radio Link Control

RTTI Reduced TTI

SGSN Serving GPRS Support Node

SISO Soft-Input Soft-Output

SNR Signal-to-Noise Ration

SOVA Soft-Output Viterbi Algorithm

TDMA Time Division Multiple Access

TTI Transmission Time Interval

VLR Visitor Location Register

VoIP Voice over IP

WCDMA Wideband Code-Division Multiple Access

2



Chapter 1

Introduction

Right now wireless communication systems are on the verge to a change in generation from 3G
to 4G. An indication of this generation change is illustrated by the amount of research done
in the two different generations. Figure 1.1 shows how the number of articles about 3G have
declined the last couple of years, while articles about 4G have increased.

600

800

1000

1200

Articles including 3G/4G

Articles including "4G"

Articles including "3G"

0

200

400

600

800

1000

1200

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Articles including 3G/4G

Articles including "4G"

Articles including "3G"

Figure 1.1: Numbers of articles about 3G and 4G wireless communication [1].

There are two reasons why a new generation is of interest. One is because the demand for fast
and stable connections to the Internet has increased with the introduction of Apple’s new 3G
iPhone and phones alike. Here music, games, movies and social networking (such as facebook)

3



Group 1041 CHAPTER 1. INTRODUCTION

is an essential part of the phone, which all are applications that require fast data connection
for streaming or downloading. Another reason is that mobile communication service providers
wants to stay competetive by introducing new services, but also wants to provide old services
at a lower cost [2, p. 16]. Upgrading the mobile communication infrastructure to support these
services is a costly and time-consuming task. As for today, not even 3G is completely deployed in
Denmark as illustrated in figure 1.2. Therefore the 3GPP - a collaboration of telecommunication
associations that manages the specifications for the 3G and GSM based mobile phone systems
- wants to evolve the already existing infrastructure in small steps. At this point 3GPP has
finished the specifications for Evolved EDGE (Enhanced Data Rates for GSM Evolution), an
intermediate step to LTE. This should make a smooth transition to LTE-Advanced that is going
to be 3GPP submission to the ITU as their suggestion for 4G (also called IMT-Advanced) [2, p.
540]. Evolved EDGE (also called EGPRS-2 which will be used in the following) is as the name
indicates a further step in enhancing the data rate for GSM based mobile systems.

Dækningskort

www.tdcmobil.dk - 26. februar 2009

TDC Mobil - Dækningskort http://62.135.167.71/netmapweb_p/Print.asp?key=dtn0lztfbnp7

1 of 1 2/26/2009 2:49 PM

Figure 1.2: 3G/Turbo 3G coverage provided by TDC over Denmark, where red symbolizes Turbo 3G coverage
and pink symbolizes regular 3G [3].

With EGPRS-2, 3GPP wants to improve mobile phone connectivity by introducing a variety
of applications that cut down latency, improves BER and increase data speed with only minor
changes to the already deployed infrastructure [2]. This provides the mobile communication
service providers with a cheap addition to their infrastructure, that will allow them keep up
with public demand and the possibility of introducing new services.

4



CHAPTER 1. INTRODUCTION Group 1041

1.1 Scope of Project

The minor changes introduced by the implementation of EGPRS-2 puts a demand for high
performance systems, which are capable of coping with the increased data rate and the more
advanced error correction and latency reduction algorithms. Therefore it is of interest to find
a platform that provides high performance. Moreover it is interesting to investigate possible
optimization of the new algorithms introduced by EGPRS-2 for faster execution. As the scope
of optimizing an entire EGPRS-2 receiver on different platforms is too large for this project,
it will instead revolve around a single application implemented on a specific platform. Rohde
& Schwarz Technology Center A/S has proposed that implementation on the Virtex-5 FPGA
platform would be of interest, as it consists of an high-speed FPGA with an embedded Power
PC (PPC). This platform makes it possible to compare three different kinds of implementations
- an all hardware (HW) on the FPGA, an all software (SW) on PPC and a hybrid of HW and
SW. This results in the following tasks for this project:

• EGPRS-2

– Investigate the receiver structure to identify an application for implementation on the
FPGA.

– Define a set of metrics that is of interest for the implementation of this application
based on industry demands.

– Investigate the algorithm of the chosen application with special interest in bottlenecks
and other delimiting factors of the application.

– Analyze the algorithm or piece hereof and find suitable techniques for optimizing an
implementation.

– Synthesize a design based on metrics and optimization techniques for FPGA imple-
mentations.

• Platform:

– Investigate Virtex-5 FPGA platform and describe components necessary in the im-
plementation of the synthesized design.

– Map the synthesized design so it utilizes the features of the platform.

– Establish whether or not the synthesized design is capable of executing at a sufficient
speed for the implementation to be applicable.

5



Group 1041 CHAPTER 1. INTRODUCTION

1.2 Delimitation

EGPRS-2 introduces several interesting features for optimizing peak bit rates and spectrum
efficiency, as will be explained in chapter 3. The scope of the project is therefore, already at this
point, limited to an investigation of these features and is thoroughly explained in other literature.
This is done, since the goal for this project is not to invent a new receiver architecture or parts
of it. Instead the goal is to investigate the effects of optimizing a specific application while
mapping it to a given platform and try to develop a framework for for this process.

Before investigating the different applications introduced by EGPRS-2, a short explanation of
why the industry (in this case R&S) is interested in this project, is presented. Establishing
which products that could be affected of the work done in this project also gives an idea of
which metrics are of interest for R&S.

1.3 The A3 Paradigm

A simple model is used for structuring this project. With the help of the A3 paradigm it should
be easier to establish the next step in the design flow. Furthermore it will provide the reader
with a guideline making the report easier to read, and the process of the design easier to follow.
It will also be a help in establishing a framework for the process of this project, as stated in the
delimitation.

The A3 paradigm is illustrated in figure 1.3, and it will be presented in the start of the following
chapters. The object and/or transition between objects that is investigated in a given chapter,
will be emphasized in the A3 model introducing the chapter. The A3 paradigm consists of the

Applications

Architectures

Algorithm

1:N

1:N

feedback

feedback

feedback

Figure 1.3: This paradigm is used throughout the entire design phase in this report [4].

three domains: Applications, Algorithms and Architectures. As indicated in fig. 1.3 the model

6



CHAPTER 1. INTRODUCTION Group 1041

describes the mapping of one application to many algorithms (1:N) and one algorithm to many
platforms. In the Application domain a or system is specified, analyzed and a main application or
set of tasks is derived from this analysis. There may be several algorithms capable of solving the
tasks specified by the system, but only the algorithm that best fits the requirements specified for
the system is chosen. In the Algorithm domain a number of algorithms appropriate algorithms
are analyzed and one specific algorithm is chosen. If no algorithm is capable of solving the tasks
of the application domain in a sufficient way, then this domain has to be revised, as indicated
by the feedback arrow. The last domain is Architecture, where a number of platforms are
investigated to find the one best suited for the algorithm. The algorithm is then implemented
and the results of this implementation is held up against the requirements set by Application.
If the architecture can not comply the these requirements a revision of these may be necessary.
The same goes for the algorithm domain.

In figure 1.4 the A3 is applied to this project. It is illustrated how a turbo decoder application
for EGPRS-2 leads to two decoding algorithms - SOVA and BCJR/Log-MAP algorithm - where
SOVA is profiled and a bottleneck is established. This bottleneck is then mapped to two different
pipeline designs for implementation on a Virtex-5 FPGA. Finally the two designs are compared
with the requirements set by the specification for EGPRS-2 and an architecture is chosen.

Applications

Architectures

Algorithms

EGPRS-2
Turbo Coding

Turbo Decoder

SOVA

Requirements

Virtex-5 FPGA

Turbo DeCoder

BCJR/
Log-MAPBottleneck

Pipeline
Non-

Pipeline

Cost 
FunctionArchitecture

Figure 1.4: A3 applied to this project.

7



Group 1041 CHAPTER 1. INTRODUCTION

8



Chapter 2

Interests of R&S (Industry)

Applications

Architectures

EGPRS-2

Virtex-5 FPGA

Figure 2.1: As this chapter explains why R&S is interested in EGPRS-2 and its applications, the Application
object is emphasized. Some attention to choice of platform is also put in this chapter, thus the architecture object
is not totally faded.

Rohde & Schwarz Technology Center A/S proposed this project, and this chapter will concern
R&S’ interest in the subject. It will show why R&S is interested in EGPRS-2 and its applications.
This chapter should also help in further delimitation to the scope of this project.

R&S was started by the two doctors - Dr. Hermann Schwarz and Dr. Lothar Rohde. They
where both physicists who met while studying under the same professor at the university in
Jena, Germany. Their first product was an instrument for measuring interference over a large
wavelength range and was to be used in laboratories. Since then R&S have kept on making
measurement and laboratory equipment, but also added broadcasting and radio communication
systems to their portfolio.

As described in the delimitation, this project will concern the implementation considerations of
some application in the EGPRS-2 receiver part on an FPGA with an embedded Power PC (PPC).

9



Group 1041 CHAPTER 2. INTERESTS OF R&S (INDUSTRY)

R&S interest in this is connected to their test and measurement equipment. Their product
portfolio consist of equipment capable of protocol testing 2G/3G mobile radio standards. The
product of interest for this EGPRS-2 project is the R&SrCRTU seen in fig. 2.2. This equipment
is used in the research and development of newly developed systems, for a wide variety of wireless
communication concepts used in the 2G/3G mobile radio standards. It also provides the user the
opportunity to test if certain services, such as MMS, PoC and video telephony is plausible for
a given system. The flexibility of the R&SrCRTU provides the user with a test bed for almost
any kind of application, as well as the ability to program one’s own test scenarios. Testing of
mobile phone systems is time consuming, as several hundred of tests are necessary to establish
that a mobile phone satisfy the requirements set by 3GPP. To make up for this, it is possible to
make completely automatic test sequences on the R&SrCRTU, it is even capable of controlling
external equipment [5].

Figure 2.2: R&SrCRTU protocol tester for 2G/3G mobile radio standards [6].

Looking at these features shows two underlying demands. First of all it puts a demand for
high performance, not only for reducing test time, but also for testing peak performances of a
given communication equipment or system. The list of features also shows a high demand for
flexibility. This is especially necessary for further research of communication standards, as new
methods may suddenly show themselves beneficial for implementation. As R&S’ interest for
EGPRS-2 is in the development of test and measuring equipment and not in the development
of new handsets, it is safe to conclude that area cost is not a parameter of much concern. Power
consumption is always a concern in a environmental aspect, but compared to how significant it
is in wireless components, it is not a big issue for this design.

The high performance and flexibility demands make the FPGA with embedded PPC a platform

10



CHAPTER 2. INTERESTS OF R&S (INDUSTRY) Group 1041

of special interest, as it provides a huge amount of computational power as well as the inherently
great amount of flexibility provided by an FPGA. In the project proposal, R&S recommends
the newest platform from XILINX Virtex-5 FXT, which consists of the Virtex-5 FPGA and an
embedded PPC. With such a powerful platform, the application that should be investigated for
implementation, should also be the part of the EGPRS-2 receiver that puts the highest demand
for computational power.

The following chapter investigates the new technologies introduced by EGPRS-2 for improv-
ing the peak bit rates, spectrum efficiency, latency and many other parameters. Through this
investigation it is decided which technology should be chosen for further analysis and implemen-
tation.

11



Group 1041 CHAPTER 2. INTERESTS OF R&S (INDUSTRY)

12



Chapter 3

EGPRS-2; a Short Review

Applications
EGPRS-2

Turbo Coding

Figure 3.1: In this chapter EGPRS-2, its applications and their properties are investigated.

This chapter will investigate some of the most important new technologies introduced by EGPRS-
2 and explain how EGPRS-2 benefits from these technologies. It is based on [2, chapter 24.4]
and [7]. The survey done in this chapter leads to a selection of an application used in EGPRS-2
for further investigation and analysis.

3.1 Origin and Goals of EGPRS-2

EGPRS-2 originates from GSM or rather its packet-switched service GPRS. GSM is the most
widely used cellular standard in the world with more than 2.6 billion users. Only three countries
in the world does not use GSM [2, chapter 1.1]. The first data service introduced in 2G was SMS
and circuit-switched data services for e-mail and other applications. 2.5G introduced GPRS,
which showed the great potential of packet data in mobile systems. The evolution towards
EGPRS-2 started out with the standardization of GPRS as EDGE. This was done to enhance
the data transfer rate of GSM and GPRS by introducing higher order modulation. EGPRS
originates from the work of this, as several additions, such as advanced scheduling techniques

13



Group 1041 CHAPTER 3. EGPRS-2; A SHORT REVIEW

Figure 3.2: GSM network architecture where the part affected by the implementation of EDGE is encircled. It is
3GPPs goal to incorporate EGPRS-2 in the existing GSM/EDGE infrastructure by the same minor effect as was
the case for the incorporation of EDGE [2, chapter 24.4]. For explanation of acronyms please locate the acronym
list in the beginning of this report p. 1.

were added to the standard. To keep up with new services such as VoIP, 3GPP evolved further on
GSM/EDGE based on the study of Evolved GERAN (also called Evolved EDGE or EGPRS-2).
Figure 3.2 illustrates the part of the GSM network infrastructure affected by the incorporation
of EDGE. 3GPP wants to implement EGPRS-2 with only a minor impact on Base Transceiver
Station (BTS), Base Station Controller (BSC) and core network hardware as was the case for
EDGE. In this way the already existing GSM/EDGE network architecture is reused and the
cost of implementation is minimized. This was also stated in the introduction as a main goal
for catching the service provider’s interest.

Besides implementing EGPRS-2 in an already existing architecture, 3GPP five essential goals
for the new standard, which are listed below:

• 50% increasement of spectrum efficiency.

• 100% increase in data transfer rate in both down- and uplink.

• Improve the coverage by increasing the sensitivity for downlink by 3 dB.

• Improve the service at cell edges planned for voice with 50% in mean data transfer rate.

• Reduce round trip time (RTT) and thereby latency to 450 ms for initial access and less
than 100 ms hereafter.

14



CHAPTER 3. EGPRS-2; A SHORT REVIEW Group 1041

3.2 Technology Improvements for EGPRS-2

To obtain these goals 3GPP incorporated several technologies in their new standard. These
technologies and their benefits are investigated below.

3.2.1 Dual-antenna terminals

Dual-antenna terminals makes it possible to do interference cancellation and reduce the effect of
multipath fading. Multipath fading is caused by objects that scatter the signal from transmitter
to receiver, which may cause the received signal strength to vary rapidly. In a worst-case-scenario
it may even be to weak to be captured. Introducing two antennas with different polarization
and/or separated in space, increases the probability that at least one of the received signals, from
the same transmission, is above the receivers noise floor as illustrated in fig. 3.3a. Moreover
with two antennas it is possible to combine the received signal from both antennas and thereby
increase its power, retrieving signals that would have been too weak for one antenna to retrieve.
Combining signals is also beneficial when it comes to canceling out an interfering signal. There
are different ways of doing so, one is to take the instantaneous attenuation caused by fading into
account, which is different for the desired and the interfering signal see fig. 3.3b. Another way is
to use the cyclostationary properties of a signal, which differs from transmitter to transmitter.
This is investigated in [8]. A paper by the mobile phone manufacturer Ericsson [7], states that
dual-antenna terminals could increase the coverage with 6 dB and cope with almost 10 dB
more interference compared to EDGE. Eventhough this is an interesting subject, no further
investigation will be done in this subject. Implementing dual antennas will impact the terminal
itself but will not affect the hardware or software in the BSC.

3.2.2 Multiple Carriers

The idea behind multiple carriers is to increase the data rate by adding carriers to the up-
and downlink, so the obtainable speed is increased proportional to the number of carriers.
GSM/EDGE uses TDMA with a maximum of eight time slots and a carrier frequency of 200
kHz. With an 8-PSK modulation scheme this would lead to a peak data rate of almost 480 kbps,
but due to design and complexity issues, a terminal usually receives on five time slots, while
using the last three for transmission and measurement of neighboring cell’s signal strength. Still
though, by adding e.g. four carriers, it is possible to achieve a theoretical peak bit rate close
to 2 Mbps. Figure 3.4 shows how the additional carriers could be perceived. Introducing this
technology puts some cost and complexity on the terminal, as it would need multiple receivers
and transmitters or a wideband transmitter and receiver. Otherwise the implementation only
has a minor effect on the BTS.

15



Group 1041 CHAPTER 3. EGPRS-2; A SHORT REVIEW

(a) (b)

Figure 3.3: (a) Variation of signal strength in the received signal at two antennas. (b) The received signals are
weighted with different fading factors a, b, c and d to illustrate the different paths of the received signals. The
desired and interfering signal are combined for each receiver, which makes it possible to cancel the interferer [7].

3.2.3 Reduced transmission time interval and fast feedback

RTTI and fast feedback reduces the latency and in doing so improves the user experience, espe-
cially for services such as VoIP, video telephony and gaming. Low delay is crucial for all these
services for satisfying the user’s demand for quality. With 3GPPs EGPRS-2 standard, the TTI
of GSM/EDGE is reduced from 20 ms to 10 ms. As explained earlier, GSM/EDGE uses TDMA
to send data via radio blocks on parallel time slots. Each time slot consists of four consecutive
bursts over which the radio blocks are transmitted. There are two ways of reducing TTI: One
way is by reducing the number of bursts, which brings down the size of radio blocks. The other
way is by spreading the bursts out on two carriers with parallel time slots. Latency can also be

0 1 2 3 4 5 6 7
Time slot number

20

40

Time 
(ms)

Time 
(ms)

Frequency

0 1 2 3 4 5 6 7
Time slot number

20

40

(a) (b)

Figure 3.4: (a) Single carrier sending five radio blocks in parallel. (b) Two carriers sending ten radio blocks in
parallel. [7].

16



CHAPTER 3. EGPRS-2; A SHORT REVIEW Group 1041

reduced by faster feedback of information about the radio environment. This is done by the RLC
protocol, which sends ACK or NACK from receiver to transmitter depending on whether a data
block is received or lost respectively. Faster feedback is obtained by harsher requirements to
reaction times, and by immediate response when a radio block is lost. This reduces the latency
by ensuring that a lost block is sent as fast as possible. It is also possible to add ACK/NACK
to the user data, thereby reducing the overhead. Figure 3.5 illustrates the difference between
GSM/EDGE and EGPRS-2 with RTTI and faster feedback.

NACK

NACK

NACK

NACK

A

A

A

A

B

B

B

B

0

20

40

60

80

100

120

Time (ms)

Regular TTI (20 ms) 
and feedback

Reduced TTI (10ms) 
and fast feedback

BSC BSCBTS MS BTS MS

} Reduced 
reaction time

Figure 3.5: Comparison of regular TTI and feedback with reduced TTI and faster feedback [7].

3.2.4 Improved modulation and turbo coding

Improved modulation such as 16QAM and 32QAM is possible due to improved error correcting
code, and [7] states an increase around 30% - 40% for user bit rates by this addition. From
GSM to EDGE the modulation was changed from Gaussian minimum-shift keying (GMSK) to
octonary phase shift keying (8-PSK), which increased the peak transfer rate from approx 20
kbps to almost 60 kpbs. For both modulation schemes convolutional coding was used to recover
lost data. EGPRS-2 introduces 16QAM and 32QAM, going from 8-PSKs 3 bits/symbol to 4
and 5 bits/symbol for 16QAM and 32QAM respectively (for higher symbol rates it will also
use QPSK). This reduces the distance between signal points as it is illustrated in figure 3.6,
indicating that 16QAM and 32QAM are more susceptible to noise and interference. However,
by introducing turbo coding, these new modulation schemes becomes feasible for even low SNR
levels, accomplishing near Shannon limit data rates [2]. Claude Shannon showed that a com-

17



Group 1041 CHAPTER 3. EGPRS-2; A SHORT REVIEW

munication channel has a capacity (C) in bits/s and when transmitting at a rate (R) lower than
this capacity, error free transmission should be obtainable with the right coding. He found the
capacity explicitly for the AWGN channel, where the normalized capacity is given by:

C
W
= log2

(
1 +

R
W

Eb

N0

)
[bit/s/Hz] (3.1)

where: W is bandwidth of the channel [Hz]
R/W is the normalized transmission rate [bit/s/Hz]
Eb/N0 is the signal bit energy to noise power spectral density ratio [dB]

Simulations done by Berrou and Glavieux [9] showed turbo codes that could achieve BER of
10−5 at Eb/N0 = 0.7 dB, meaning that turbo codes are only 0.7 dB from the Shannon limit
(optimum) coding performance, as 10−5 is regarded as close to zero. The above equation and
explanation of Shannon limit, is taken from [10].

Turbo coding needs large code blocks to perform well and is therefore applicable for high data rate
channels such as 8-PSK, 16QAM and 32QAM. This is also the reason QPSK is only applicable
for use when having higher symbol rates. Turbo coding more than makes up for the increased
noise and interference susceptibility of 16QAM and 32QAM. Turbo coding is more complex and
computational heavy than the convolutional code used by GSM and EDGE, however, turbo
coding is already in use by WCDMA and HSPA. As many GSM/EDGE terminals already
support WCDMA/HSPA, it is possible to reuse this turbo coding circuitry for EGPRS-2 as
well.

Figure 3.6: Constellation diagrams for GSM (GMSK), EDGE (8-PSK) and evolved EDGE (QPSK, 16QAM and
32QAM) [2, chapter 24.4].

18



CHAPTER 3. EGPRS-2; A SHORT REVIEW Group 1041

Terminal capability Symbol rate Modulation schemes
Uplink Level A 271 ksymbols\s GMSK, 8-PSK, 16QAM
Uplink Level B 271 ksymbols\s GMSK
Uplink Level B 325 ksymbols\s QPSK, 16QAM, 32QAM

Downlink Level A 271 ksymbols\s GMSK, 8-PSK, 16QAM, 32QAM
Downlink Level B 271 ksymbols\s GMSK
Downlink Level B 325 ksymbols\s QPSK, 16QAM, 32QAM

Table 3.1: Listing of which modulation schemes are used at different symbol rates in EGPRS-2. [2, fig. 24.6]

3.2.5 Higher symbol rates

3GPP has increased the symbol rates for EGPRS-2 by 20% for some modulation schemes. Table
3.1 shows which modulation schemes are used for a given symbol rate. Note that QPSK is only
used for cases where the symbol rate is increased by 20 %. This is due to the necessity of large
data blocks for turbo coding to work properly.

3.3 Conclusion on EGPRS-2 Improvements

As described above many additions can be made to the already existing infrastructure that
increases throughput and reduces latency, with only minor changes to the hardware and software
at the terminals and base stations. This makes EGPRS-2 easy and cheap to implement and
therefore interesting for the service providers that want to keep a competitive edge. Figures 3.7a
and 3.7b illustrate the gain of EGPRS-2 compared to the old GPRS and EDGE technologies in
peak bit rate and spectrum efficiency respectively. Furthermore table 3.2 displays which features
are affected by the new technologies presented in this chapter.

(a) (b)

Figure 3.7: (a) Theoretical peak bit rates for GPRS, EDGE and EGPRS-2 for 2 and 4 carriers. Note the
different number of TS for the two EGPRS-2 cases (EGPRS-2 is denoted as EDGE CE) [7]. (b) Spectrum
efficiency for GPRS, EDGE, EDGE with single antenna interference cancellation (SAIC) and interference rejection
combining(IRC), and EGPRS-2 [7].

19



Group 1041 CHAPTER 3. EGPRS-2; A SHORT REVIEW

Feature/ Mean Peak La- Cover- Spectrum
Technologies data rate data rate tency age efficiency

Dual-antenna terminals x - - x x
Multicarrier EDGE x x - - x

RTTI and fast feedback - - x - -
Improved modulation and coding x x - - x

Higher symbol rate x x - - x

Table 3.2: The new technologies - introduced by 3GPP to meet the goals stated for EGPRS-2 - have a positive
effect on the features marked by x [7].

Turbo coding was introduced as a complex and computationally advanced addition to the
EGPRS-2 standardization, making it ideal for investigating the benefits of implementing this
technique on different platforms. Furthermore Rohde & Schwarz is interested in possibility
of hardware-accelerating the computational heavy turbo code [11]. In the next chapter turbo
coding is examined throughly with implementing issues in mind.

20



Chapter 4

Turbo Coding

Algorithms

Turbo Coding

Turbo Decoder

SOVA

Turbo DeCoder

BCJR/
Log-MAP

Figure 4.1: A deeper analysis of the turbo code application, which in the end leads to a choice of algorithms for
further analysis.

Before an in depth analysis of the turbo decoder algorithm is undertaken, a short survey of
both the turbo encoder and decoder is outlined in this chapter. This is done to display the
different functions of turbo coding and to provide knowledge that will help in the understanding
of the turbo decoder algorithm analyzed in the next chapter. The material concerning the turbo
encoder is taken from [12, 5.1a].

4.1 Turbo Encoder

Figure 4.2 illustrates the turbo encoder structure as specified by 3GPP. It consists of two 8-
state constituent encoders and an interleaver and it produces a recursive Parallel Concatenated
Convolutional Code (PCCC). Here the first constituent encoder receives input bits directly,
whereas the second constituent encoder is fed with input bits through the interleaver. Each

21



Group 1041 CHAPTER 4. TURBO CODING

Turbo code 
internal 

interleaver

+ D D D

+ +

+

Systematic + tail bits

Parity check bits 1

+ D D D

+ +

+

Parity check bits 2

Tail bits

xk

zk

x’k

z’k

Input
xk

x’k Data

Tail

Data

Tail

1st 8-state constituent encoder

2nd 8-state constituent encoder

Figure 4.2: Structure of turbo encoder specified by 3GPP for EGPRS-2, the boxes labeled D is the encoders shift
registers [12, 5.1a].

constituent encoder is build around a shift register of length = 3 resulting in 23 = 8 different
states. Which state each constituent encoder is in depends on the input bits. Furthermore the
figure shows that the entire turbo encoder is an 1/3 rate encoder, thus for each input, three
outputs are generated. This rate is however altered depending on possible puncturing of bits
and tail bits from the second constituent encoder at termination.

The encoder outputs are labeled as seen in equation 4.1, but for emptying the shift registers
(termination), the labeling changes as another output is introduced, which is stated in equation
4.2. This labeling is for when the switches of figure 4.2 are in the lower position, meaning trellis
termination is activated and the shift registers are brought back to an all zero state. Termination
is done by first passing three tail bits into the shift registers of the upper encoder of figure 4.2
and hereafter three tail bits into the lower encoder. While one encoder is being terminated, no
bits are put into the other encoder.

C(3i − 3) = xi

C(3i − 2) = zi for i = 1, ...,K (4.1)

C(3i − 1) = z′i

C(3K + 2i − 2) = xK+i

C(3K + 2i − 1) = zK+i for i = 1, 2, 3 (4.2)

C(3K + 2i + 4) = x′K+i

C(3K + 2i + 5) = z′K+i

22



CHAPTER 4. TURBO CODING Group 1041

where: C(i) represents the output bit stream [-]
xi is the input bit stream [-]
zi is the output from 1st constituent encoder [-]
z′i is the output from 2nd constituent encoder [-]
x′i is the output from the interleaver block [-]

The generator matrix for one constituent encoder - of the turbo encoder illustrated in figure 4.2
- is given by equation 4.3 where the second entry is the transfer function for the parity check
bit generating part. The nominator of this function is the feed forward part of the constituent
encoder and the denominator is the feedback part, which besides from the figure, shows that the
turbo encoder is recursive. The constituent encoders are made recursively so their shift registers
depend on previous outputs. This increases the performance of the encoder, as one error in the
systematic input bits (xi) would result in several errors in parity check bits.

G(D) =
[
1, 1+D+D3

1+D2+D3

]
(4.3)

4.1.1 Internal Interleaver

In an interleaver the input bits are permuted in a matrix, such that the interleaver output
is a pseudo-random string of the input bits. This means that the input and output bits of
the interleaver is the same just in a different temporal order. Interleaving helps by linking
easily error-prone code and burst errors together with error free code. A simple example of the
properties of an interleaver is given in figure 4.3. Without the interleaver it is impossible to derive
the message when a burst error corrupts a chunk of letters in the middle of the text. Interleaving
the text before sending it through a noisy channel spreads out the burst error and the text is
much easier to derive after deinterleaving. In 3GPPs standardization of internal interleaver for
turbo coding [12, section 5.1a.1.3.4] the permutation matrix is based on the number of bits
per block. Padding and pruning is used to fill up and remove possible empty spaces in the
permutation matrix respectively. Functions based on prime numbers and modulus are used to
make intra- and inter-row permutation to assure that each input bit is allocated to different
indexes in the permutation matrix. For specific knowledge about these functions please refer to
[12, section 5.1a.1.3.4].

4.1.2 Puncturing

Puncturing is a way of removing or adding parity bits based on the channel properties. Turbo
coding introduces puncturing for two reasons. One is rate matching where bits are punctured
so the number of coded bits fit the available bits in the physical channel. Another reason is to
make different redundancy versions, adding more parity bits when the decoder fails to decode the

23



Group 1041 CHAPTER 4. TURBO CODING

Original Message:  
“Prediction is very difficult, especially if it's about the future” 
       -Niels Bohr, Danish physicist (1885 - 1962) 
 
Received message with burst error:  
PredictionIsVeryDifficult,XXXXXXXXXXIfIt'sAboutTheFuture 
 
Original message interleaved:  
PioVDitpaI'ohtrcneic,elfsueuetIrfuEclIAtFrdisyflsiytbTue 
 
Interleaved message with burst error:  
PioVDitpaI'ohtrcneic,elfsuXXXXXXXXXXAtFrdisyflsiytbTue 
 
De-interleaved message with burst error:  
PrXdicXionXsVeXyDiXficXlt,XspeXiallyIfIt'sAboutThXFutXre 

Figure 4.3: Interleaver example on a quote from the famous Danish physicists Niels Bohr. X represents an error.

transmitted bits. Puncturing can be used to prioritize between systematic bits and parity bits.
An example of prioritizing could be seen between the first transmission and a retransmission. For
the first transmission systematic bits should be prioritized so the decoder receives a minimum
of redundancy. An error in the decoding of the first transmission implies a need for redundancy
and therefore priority bits should be prioritized. Which priority to use can be established by
the use of ACK/NACK in the RLC [2, chapter 9].

This concludes the basic functions of the encoder. Next up is an investigation of the function-
alities of the turbo decoder and hereinafter an analysis of an specific decoder algorithm.

4.2 Turbo Decoder

The job of the turbo decoder is to reestablish the transmitted data from the received systematic
bitstream and the two parity check bitstreams, even though these are corrupted by noise. Or
said more specific; the systematic bits xk are encoded resulting in two sets of parity check bits
zk and z′k. Then xk, zk and z′k is send through a channel where it is corrupted by noise such that
xk, zk and z′k at the decoder may differ from what was originally send. It is now the decoders
job to make an estimate x̂k of xk based on an estimate of zk and z′k (ẑk and ẑ′k).

24



CHAPTER 4. TURBO CODING Group 1041

SISO 
Decoder 2

Π-1

SISO 
Decoder 1

Deinterleaver

Interleaver

Hard Decision Output

Noisy Systematic + tail bits

Noisy Parity check bits 1

Noisy Parity check bits 2

 k2
inL

 k1
lrL

 k2
exL

 k1
inL

 k1
exL

 k2
lrL

Π

Π

Figure 4.4: Structure of a turbo decoder where the two decoder blocks are soft-input soft-output (SISO) decoders,
based on either SOVA or the BCJR algorithm [13, chapter 10].

There are two different well known decoding algorithms, developed for turbo coding: The soft-
output Viterbi algortihm (SOVA) invented by Hagenauer and Hoher based on the Viterbi al-
gorithm by Andrew J. Viterbi. The other algorithm is the BCJR algorithm invented by Bahl,
Cocke, Jelinek and Raviv. Even though the performance of BCJR is slightly better than that
of the Viterbi (never worse), BCJR - which is a maximum a posteriori probability (MAP) al-
gorithm - also introduce a backward recursion and is therefore more complex than Viterbi [13,
chapter 10]. Figure 4.5 shows that the gain of using the Log-MAP based decoder compared to
new SOVA based decoders is only around 0.1 dB for an Eb/N0 around 2.0 dB [14]. Comparison
of complexity for the two algorithms, shows that Log-MAP has a complexity of OC(n2), OS (2n2)
and SOVA has a complexity of OC(0.5n2), OS (0.5n2), where n is the number of bits for decoding,
C stands for comparisons and S stands for summations [15]. The small BCJR decoder gain does
not make up for increased complexity cost and is therefore not as interesting for the industry
as SOVA [11]. This is the reason for investigating SOVA thoroughly instead of the BCJR algo-
rithm. However some comments on BCJR and differences between the two decoding algorithms
is mentioned.

25



Group 1041 CHAPTER 4. TURBO CODING

Figure 4.5: Comparison of SOVA based and Log-MAP based turbo decoders [14].

Identically for both SOVA and BCJR is the way that the internal decoders (SISO Dec. 1 and 2)
interchange the extrinsic information that is used as a priori information in an iterative manner.
A descriptions of this process follows here, use figure 4.4 as reference.

From the front-end receiver the received bit stream is demultiplexed into three parts; systematic
bits, and parity check bits 1 and 2. SISO Decoder 1 uses the systematic bits, parity check
bits 1 and a priori information from SISO Decoder 2 (zero at the first iteration) to estimate
a bit sequence by use of SOVA. This results in two outputs; extrinsic information L1

ex and a
log-likelihood ratio (LLR) L1

lr. The extrinsic information is interleaved on its way to the SISO
decoder 2 where it is used as a priori information. It is then, together with an interleaved version
of the systematic bits and the parity check bits used to form a decoding. SISO decoder 2 - also
based on SOVA - outputs extrinsic information L2

ex and a LLR L2
lr. L2

ex is deinterleaved and is
used as a priori information in SISO decoder 1 for a second iteration on the same systematic and
parity check bits as for the first iteration. After a number of iterations the two LLR outputs L1

lr

and L2
lr are used to make a hard decision on the bit sequence. The number of iterations needed to

provide a good estimate of bit sequence depends on the encoder that is used. E.g. in [13, chapter
10.9] 8 to 10 iterations are suggested for BCJR decoding of a convolutional turbo encoder with
generating functions [1, 1, 1] for encoder 1 and [1, 0, 1] for encoder 2. In [16, chapter 9.8.5] 18
iterations is needed to reach a performance just 0.7 dB from the Shannon limit. Please refer
to the stated sources for further details. The decoder structure illustrated in figure 4.4 is well

26



CHAPTER 4. TURBO CODING Group 1041

known by the industry and is also the one used by R&S.

4.2.1 Viterbi Decoding Algorithm

The Viterbi algorithm works as a maximum likelihood sequence estimator utilizing the encoders
trellis diagram, hence it looks at all possible sequences through a trellis diagram and chooses the
sequence or ”path” with the highest likelihood. It uses the Hamming distance between incoming
bits and possible transitions in the encoder (or trellis) as a metric to establish which path has
the highest likelihood. An example of this is shown in figure A.1 in appendix A on p. 91 for
decoding of a simple convolutional code. This is different from the BCJR algorithm, which
also uses the encoders trellis diagram but treats the incoming bits as a maximum a posteriori
probability (MAP) detection problem and produces a soft estimate for each bit. Viterbi on the
other hand finds the most likely sequence and thereby estimates several bits at once instead of
maximizing the likelihood function for each bit. This is the reason why Viterbi does not perform
as well as BCJR [13, chapter 10].

Looking at the trellis diagram for one of the two constituent encoders in figure 4.6, it becomes
clear that there are several possible paths through this diagram. To calculate all possible paths
would require an immense amount of memory, so instead Viterbi does two things to reduce the
amount of memory needed. Viterbi introduces something called survivor paths, which are the
paths through the trellis diagram with smallest Hamming distance. Viterbi only keeps 2K−1

survivor paths where K is the constraint length of the encoder - the encoders memory plus one
(K = M+1). This means for the sake of one single encoder in figure 4.2 a total of 8 paths have to
be stored in which the path with the maximum likelihood choice is always contained [13, chapter
10]. To decrease the amount of memory needed even further, a window of length delta is used.
This lets the Viterbi algorithm work on small frames of the trellis diagram, where a decision of
the best path is made for each iteration, outputting the resulting symbol for the first branch of
the trellis. The decoding window is then moved forward one time interval (branch) and a new
decision is made based on the code encapsulated by this frame. This means that the decoding
no longer is truly maximum likelihood, but keeping the window length delta = 5 · K or more
has shown satisfying results [13, chapter 10]. For a good illustration of the Viterbi decoding
algorithm, check out http://www.brianjoseph.com/viterbi/workshop.htm (Java is required).

4.3 Conclusion on Turbo Coding

The SOVA presented above is the de facto standard for industry turbo decoding, as it performs
nearly as well as the Log-MAP algorithm at a much lower cost. In the following chapter further
analysis of SOVA is done to find potential bottlenecks.

27



Group 1041 CHAPTER 4. TURBO CODING

Figure 4.6: Trellis diagram for one 8-state constituent encoder as illustrated in figure 4.2 [17].

28



Chapter 5

Algorithm Analysis of SOVA

Algorithms

SOVA

Turbo DeCoder

Bottleneck

Figure 5.1: Based on the selection of SOVA in the previous chapter, this algorithm is further analyzed mainly by
profiling. Based on the results of this profiling a part of SOVA is chosen for in-depth analysis and implementation.

In this chapter the turbo decoding algorithm discussed in the previous chapter is analyzed
and profiled to establish possible bottlenecks that later on will be mapped to an architecture.
Soft-output Viterbi algorithm (SOVA) implemented as the SISO decoders illustrated in 4.4 is
the algorithm of choice. The SOVA decoder algorithm used for this in-depth analysis is part
of Yufei Wu’s [18] turbo encoding and decoding simulation script written in Matlab. Besides
incorporating a SOVA decoder it also has a Log-MAP decoder and gives the user the opportunity
to specify the generating function of the encoder, which also determines the trellis diagram used
by the SOVA decoder. Yufei Wu’s SOVA decoder have been used and referred to in other works
such as [19], [20] and the book [21]. As this is a simulation tool it is not optimized to achieve the
same performance as the improved SOVA decoders in figure 4.5. It will, however, be possible by
profiling to identify bottlenecks in the SOVA decoder, bottlenecks being parts of the code that
reduce the performance of the entire decoder algorithm.

29



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

After profiling and a description of the algorithms functions and subfunctions, the part of the
algorithm identified as a bottleneck is mapped to an FPGA as an ASIC architecture. During
this mapping optimizing techniques for area and performance is applied in an effort of reduc-
ing the cost and execution time of the bottleneck. The Matlab code for Yufei Wu’s entire
encoder/decoder simulation script is located on the enclosed CD.

5.1 Profiling

Matlab’s own profiler is used for profiling four different setups on two different systems - a
desktop and a laptop. This is done to investigate if different setups introduce different workloads.
The profiling is done on the entire script, but further analysis will revolve around the decoder
algorithm.

5.1.1 Setup

A few modification to the Matlab code is made to make it run automatically. The unmodified
code asks for parameters as it is initialized, which will show up as a time consuming task
in the profiler. Therefore the Matlab code is modified to contain the necessary parameters
upon initialization. Both the modified (ModifiedSOVAtest turbo sys demo.m) and unmodified
(turbo sys demo.m) Matlab code is located on the enclosed CD. The parameter settings are the
following (the brackets indicate the parameter setting):

• Log-MAP or SOVA decoder: (SOVA decoder).

• Frame size, the number of information bits + tail bits per frame and also the size of the
internal interleaver: (400 bits default by Matlab script).

• Code generator matrix G where G[1, :] is feedback and G[2, :] is feedforward: (Two dif-
ferent code generators is tested: specific for EGPRS-2 G1 = [0011; 1101] and default for
the Matlab code G2 = [111; 101]).

• Punctured or unpunctured: (Both are tested resulting in a rate 1/3 test and 1/2 test
respectively).

• Number of decoder iterations: (5 default by Matlab script).

• Number of frame errors used as stop criteria: (15 default by Matlab script).

• SNR for a AWGN channel as given by Eb/N0: (2 dB default by Matlab script).

30



CHAPTER 5. ALGORITHM ANALYSIS OF SOVA Group 1041

Components Desktop Laptop

Operating System Windows 7 Ultimate 32-bit Windows Vista Business 32-bit SP1
Processor Intel Core 2 Duo E6400 2.13 GHz Intel Core 2 Duo T9600 2.80 GHz

Motherboard Intel 945G Express (Gigabyte) N/A
Memory 3 GB PC2-5300 667 MHz 3 GB PC3-8500 DDR3 1067MHz

Table 5.1: Components of test systems.

SOVA decoder is chosen as it is the decoder of interest. The rest of the parameters with a
constant value is based on the given default value of the Matlab script. The different generating
functions is to identify if any change in workload is detectable when changing the encoder and
thereby the trellis for the decoder. The shift in between punctured and unpunctured is to see if
the workload of the decoder is changed by an increase of redundancy provided by the encoder.
Unpunctured coding should reduce the BER, increasing the number of iterations needed to reach
the stop criteria, which should be accounted for when inspecting the profiling results.

The four test setups was tested on a desktop and a laptop with the specifications stated in table
5.1. This is done to see if different profiling results is produced on different systems. In both
systems Matlab version 7.8.0.347 (R2009a) is used.

Both systems support dual core processing, hence they are able to use two processors for ex-
ecution of the Matlab code. However, to perform the most efficient and accurate profiling,
Mathworks recommends that only one CPU is activated, during profiling [22].

5.1.2 Profiling Results

Profiling on the two different systems only resulted in a change of execution time, the laptop
being twice as fast as the desktop for all four test setups. Looking at the execution time spend in
each function percentage wise, shows neglectable deviations between the two systems. Therefore
only the results for the desktop profiling is given in this section. The results of the profiling is
stated in table 5.2. The changes in parameters implies four different tests: G1 rate=1/2, G1

rate=1/3, G2 rate=1/2, and G2 rate=1/3.

Function Name G1 G1 G2 G2
rate=1/2 rate=1/3 rate=1/2 rate=1/3

sova0() 94.2279 % 93.6555 % 94.1342 % 93.8641 %
encoderm() 1.9468 % 2.2488 % 2.1410 % 2.3735 %
rsc encode() 1.6652 % 1.7876 % 1.8351 % 1.8746 %
encode bit() 1.1945 % 1.3455 % 1.2661 % 1.2851 %

Functions with < 1 % of total time 0.9657 % 0.9626 % 0.6236 % 0.6026 %

Table 5.2: Results from profiling Yufei Wu’s turbo encoder/decoder simulation script.

31



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

As expected the overall profiling of the Matlab script stated that the by far biggest amount of
computation time is located in the decoder function sova0(). For every setup, sova0() takes up
more than 93 % of the total computation time as seen in table 5.2. The Matlab profiler also
states the amount of time used in each line of code inside the sova0() function. Inspection shows
that one for loop in sova0() stands for almost 70 % of the entire execution time of the sova0()
function, indicating a bottleneck. Remember that the number of frame errors was set as stop
criteria and depending on the decoder and the rate of the code (punctured/unpunctured) the
execution time will differ from setup to setup. However these different runtimes does not have
much effect on the position of the workload. A small increase is spotted for rate 1/3 at the
encoderm() function, which is due to an increase in making unpunctured mapping. A cut out
of the profiling results is illustrated in figure 5.2 to confirm this.

A description of the SOVA decoder is given in the next section, before further investigation into
the bottleneck of the sova0() function is undertaken. This will provide an overview of the entire
decoder, while most effort is put into explaining the sova0() function.

(a)

(b)

Figure 5.2: A cut out from the profiling of encoderm() with unpunctured mapping (a) showing an time increase
of almost twice that of punctured mapping in (b).

32



CHAPTER 5. ALGORITHM ANALYSIS OF SOVA Group 1041

5.2 Decoder Algorithm Structure

To get an overview of the algorithm structure for the SOVA decoder please refer to figure
5.3, which besides from showing the blocks of the decoder and its functions (written in italic),
also shows the flow of the decoder algorithm. The reader is encouraged to compare this block
diagram with the decoder structure given in fig. 4.4 in chapter 4.2. The Matlab code on which
the following is derived is found in appendix B, and should be used as an assistance in grasping
the algorithm.

demultiplex()

Random 
interleaver 
mapping
(alpha)

Received 
signal

Punctured/
Unpunctured

Scaling based 
on channel 
reliability

Channel 
parameters

sova0()
Decoder 1

sova0()
Decoder 2

Generator 
matrix

Extrinsic info.
Demapping 

(alpha)
trellis() Hard decision Estimated 

Output

Figure 5.3: Block diagram of the decoder algorithm with Matlab functions written in italic.

The input (Received signal) to the decoder is the encoded bits send through an AWGN channel.
The parity check bits and systematic bits are extracted from this input string of bits. The
systematic bits that is going to the second decoder is interleaved using the same mapping as the
interleaver in the encoder. Extraction and interleaving is done by the demultiplex() function. To
do this it needs to know the Random interleaver mapping given by the interleaver mapping
alpha and if the code is Punctured or Unpunctured. The next step is Scaling, where every
bit of the demultiplexed signal is multiplied with a channel reliability constant. This constant
is based on Channel parameters, such as Eb/N0 measurements and fading. As specified in
chapter 5.1, Eb/N0 for the AWGN channel is set to 2 dB. Channel fading based on for example
Rayleigh fading, however, is neglected in this case and fading is therefore a constant set to 1,
meaning it does not affect the reliability constant. The reliability constant is also based on
the rate of the turbo code, which is 1/2 for punctured and 1/3 for unpunctured. This decoder
algorithm does not provide dynamic puncturing, meaning that each simulation runs with either
rate 1/2 or 1/3, not both or any other rate. Dynamic puncturing is a feature usually provided
by turbo coding [11].

The interleaved and deinterleaved bit streams are fed into the appropriate SISO decoder in the
sova0() decoder function. In figure 5.3 two decoders are depicted even though only one sova0()
function is used. The reason for this, is to clarify the decoding process of sova0() and show
that Extrinsic information is utilized by both decoders. The extrinsic information is also
demapped based on the interleaver mapping alpha, just as illustrated by deinterleaving and

33



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

interleaving blocks between SISO decoder 1 and 2 in figure 4.4. The two decoders needs to know
the Generator matrix to derive the number of states used in the encoder. Whereas the trellis
diagram needed to measure Hamming distance between the received signal and possible paths
through the trellis, is given by the trellis() function. This function is therefore also provided
with information about the Generator matrix.

Finally, after a specified number of iterations through the decoder, the soft-output from the
decoders are used to estimate the output based on a Hard decision. Hard decision means
that the algorithm does not distinguish between e.g. a strong zero or a weak zero. The histogram
plots in figure 5.4 illustrates the distribution of the soft-output from the SOVA decoders after 5
iterations. In the case of the hard decision decoder every soft-output above zero will be estimated
as a ”1” and every soft-output below zero as a ”0”. For the case of Eb/N0 = 0.5 dB in 5.4(a) the
variance of the signal is so big that a lot of wrong estimations are bound to happen. The case of
Eb/N0 = 3.0 dB in fig. 5.4(b) on the other hand, shows that the smaller variance gives a low/no
frequency around zero, resulting in a much better estimation, as expected. The difference in
mean value is due to the scaling factor, which is based on the Eb/N0 of the channel.

-60 -40 -20 0 20 40 60
0

50

100

150

200

250

300

350

400

450

500

F
re

qu
en

cy

Soft output values

Eb/N0=3dB

-150 -100 -50 0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000

Soft output values

F
re

qu
en

cy

Eb/N0=3dB

(a) (b)

Figure 5.4: (a) Histogram of the soft-output data at a Eb/N0=0.5 dB test scenario with a frame size of 20.000
bits. (b) Histogram of the soft-output data at a Eb/N0=3 dB test scenario with a frame size of 20.000 bits.

Knowing the overall code structure of the decoder it is easier to understand how the three
functions demultiplex(), trellis(), and sova0() interact. These functions will now be explained
more thoroughly. For the sova0() function, emphasis will be put on the for loop that takes up
almost 70 % of the sova0() functions execution time.

demultiplex()

This function is best described by figure 5.5, as this function just maps the input bit vector to a
two row matrix, where parity check bits and systematic bits are stored in even and odd columns

34



CHAPTER 5. ALGORITHM ANALYSIS OF SOVA Group 1041

respectively. The interleaver mapping alpha is used to map the systematic bits into the row
appointed for the second decoder, so the interleaved systematic bits fits the encoded parity bits.
The Matlab code for the demultiplex() function is found in appendix C

x1 z1 z’1 z’K+3

x1 z1 x2 zK+3

x’1 z’1 x’2 z’K+3

interleaved

x2

z2

z’2

Figure 5.5: Mapping of input bit string to decoder input matrix.

trellis()

This function uses the functions bin state(), encode bit(), and int state() to generate four ma-
trices that is necessary for the sova0() function to calculate the Hamming distance between
the received signal and possible paths through the trellis. The only parameter needed to con-
struct this trellis is the generator matrix. The Matlab code for the trellis() function is found
in appendix D. The reader is encouraged to use this appendix with the description below to
understand its functionality.

In the trellis() function, bin state() converts a vector of integers into a matrix where each row
now corresponds to the integers value in binary form. A depiction of this is given in figure
5.6. Each row of this matrix is a state vector (binary combinations of the shift registers in the
encoder, see fig. 4.2), which is used by trellis() to calculate an input to encode bit().

[0, 1, 2, 3, 4, 5, 6, 7] bin_state()

































111

011

101

001

110

010

100

000

Figure 5.6: bin state() transform a vector with integers to a matrix of corresponding binary values.

encode bit() uses the input value from trellis() (”0” or ”1”), as well as the state vectors from

35



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

bin state(), to construct a matrix consisting of next state vectors. It also calculate outputs
resulting from the transition between the state given in bin state() and the next state of en-
code bit(). Figure 5.7a illustrates the two resulting matrices, Output and Next state of the
encode bit() function, which is based on results from bin state() (Present state) and the Input

value calculated in trellis(). Figure 5.7b shows that the result from encode bit() can be viewed
upon as one time interval of a trellis diagram. But for sova() to use the results of encode bit()
for trellis decoding, the results needs to be stored in a next state and a last state matrix corre-
sponding to right and left side of fig. 5.7b respectively. This is explained shortly. The results in
figure 5.7 is based on the same convolutional encoder as used in the Viterbi decoding example
of appendix A.

Output Next stateInputPresent state


 )bin_state(































11

10

01

00
















1

0
          

1

0
          

1

0
          

1

0
          

trellis( )   
( )encode_bit

































































11

10

01

00

11

10

01

00

         

01

10

00

11

10

01

11

00

 

00

11

10

11

01

01

00

10

00

10

01

11

(a) (b)

Figure 5.7: (a) The two matrices for output and next state created in encode bit() is based on the present state
matrix generated in bin state() and the input bits calculated in trellis(). (b) Combining the results listed in (a)
gives the information needed to construct one time interval of the trellis diagram.

In trellis() the binary output values of encode bit() are converted to ”-1” for binary ”0” and ”1”
for binary ”1”. Furthermore the int state() function is then used to convert the binary states
of encode bit() into a next state matrix of integer states. This next state matrix is then used
to find two states that leads to one given next state called last states. The outputs resulting
from transition between last state and next state, and vice versa is also store in two matrices.
To summarize, trellis() gives four matrices; next state, next out, last state, and last out, which
describes a time interval in a trellis diagram based on the given generator function. An example
of this is the trellis time interval in figure 5.7b.

36



CHAPTER 5. ALGORITHM ANALYSIS OF SOVA Group 1041

sova0()

As illustrated in figure 5.3, sova0() uses the scaled received bits, the generator matrix and the
trellis() function as well as extrinsic information to establish a soft-output, which is the most
likely sequence of bits. The Matlab code for the sova0() function is listed in appendix E and the
reader is encouraged to use this listing for ease in comprehending the functionality of sova0().

First of all the generator matrix is used to let the decoder know the number of states, as this is
used for iterating through the matrices provided by trellis(). Then based on the scaled received
bits, trellis(), and the extrinsic information two metric values are calculated - one for the binary
”0” (Mk0) and one for the binary ”1” (Mk1). These two values are compared, and the highest value
is stored as well as its corresponding binary value, and the difference between the two (Mdiff).
This is done for an entire frame block (usually the size of the interleaver), which corresponds to
going forward in the trellis diagram while calculating the metric of each path.

Now the decoders are almost ready to start their traceback to find the most likely sequence of
bits. But first the most likely state for each decoder has to be found. This can be depicted
as standing at the end of the trellis diagram looking at each of the final states, trying to find
the one with the highest metric of likelihood. This is easily done for decoder 1, as its trellis is
terminated to an all zero state in the encoder, causing the final state in the decoder to be the
all zero state as well.

Due to the interleaver it is not possible to terminate the trellis of decoder 2 without some
additions to the decoder that is not included in Yufei Wu’ code. Instead the decoder compares
the metric for all the states at the end of the trellis, yielding the highest metric as the most
likely.

With a starting point stated for each decoder, it is now possible to start the traceback through the
trellis to find the most likely sequence. A sequence is estimated based on the stored binary values
and their corresponding metric values (Mk0), and (Mk1) as explained above. This estimation is
then compared with a competition path based upon possible paths inside a frame of the trellis
of length delta = 5 · K as explained in chapter 4.2.1. Should the bits of this competition path
and the estimated sequence differ from each other, a log likelihood ratio (LLR) is calculated.
This LLR is based upon the difference Mdiff between the two values described above; (Mk0),
and (Mk1). The estimated sequence is then converted to ”-1” for binary ”0” and ”1” for binary ”1”
and multiplied with the LLR. Resulting in a negative LLR value when the estimated bit value
is zero, and a positive LLR when the estimation is one. This is the so called soft-output result
of the decoder, but the decoding process does not stop here. As seen in figure 4.4 the extrinsic
information of one decoder is fed back to its counterpart. The extrinsic information is found
by subtracting the received signal specified for the given decoder, and the a priori information
fed to the decoder in the beginning. Using this extrinsic information as a priori information,

37



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

another decoding is undertaken on the same received signal, and the code keeps this up for a
number of iterations, specified by the user. After the last iteration a hard decision is made as
explained in chapter 5.2.

5.3 Conclusion on SOVA Analysis

As the profiling shows that the last part of sova0() - calculating competition path and comparing
its bit sequence with the estimated bit sequence - takes up the most computation time by far,
this part is chosen for optimization. Results from profiling showed that this part took up 20.66
seconds for 150 iteration. Each iteration consists of 400 bits, giving this part of the SOVA
decoder the following throughput:

Execution time per bit =
20.66 s

150 · 400 bit
= 344.33 [µs/bit] (5.1)

Throughput =
1

344.33 µs/bit
= 2.9 [kbit/s] (5.2)

Given that this part of the SOVA decoder is the biggest bottleneck and the fact that it takes up
70 % of the entire runtime of the SOVA decoder, the total throughput of the decoder is:

Throughput for SOVA = 0.7 · 2.90 kbit/s = 2.03 [kbit/s] (5.3)

The throughput based on the total runtime of the SOVA decoder is calculated to establish that
the above bottleneck assumption is true:

Execution time per bit for SOVA =
29.714 s

150 · 400 bit
= 495.23 [µs/bit] (5.4)

Throughput for SOVA =
1

495.23 µs/bit
= 2.02 [kbit/s] (5.5)

The above assumption is proven, as the two result for SOVA throughput is only 0.01 bit/s
apart. This throughput is almost a factor of 1000 lower than the necessary throughput of 2
Mbit/s stated in chapter 3.3. The goal of implementing this algorithm is therefore to achieve an
1000 times acceleration of this SOVA decoder algorithm part. In figure 5.8 the flowchart for this
specific part of code is illustrated. Based on this flowchart the code in listing 5.1 is optimized
and mapped to the Virtex-5 FPGA as an ASIC implementation.

38



CHAPTER 5. ALGORITHM ANALYSIS OF SOVA Group 1041

1 for t=1:L_total

2 llr = Infty;

3 for i=0:delta %delta is the traceback search window which should be between 5 and

9 times K

4 if t+i<L_total+1

5 bit = 1−est(t+i); %inverting the estimated bits 0=1 1=0

6 temp_state = last_state(mlstate(t+i+1), bit+1); %temp state = the most

likely last state based on bit

7 for j=i−1:−1:0 %traceback in the window of size delta

8 bit = prev_bit(temp_state,t+j+1); %competition bit values

9 temp_state = last_state(temp_state, bit+1); %competition path

10 end

11 if bit˜=est(t) %if estimated and compition bit deviates

12 llr = min( llr,Mdiff(mlstate(t+i+1), t+i+1) ); % the llr is updated if a

lower Mdiff is obtainable

13 end

14 end

15 end

16 L_all(t) = (2∗est(t) − 1) ∗ llr; %llr is negative for est(t)=0 and positive for est(t)=1

17 end

Listing 5.1: The Matlab code used for calculating a competition path of length delta.

39



Group 1041 CHAPTER 5. ALGORITHM ANALYSIS OF SOVA

1 for true
0 for false

t + i < L_total + 1
01

j ≥ 0
0

1

bit ~= est(t)

01

Start

j < 0

i > delta

t > L_total 
0

1

Stop

t = 1

llr = 1e10
i = 0

bit = 1 - est(t + i)

temp_state = last_state(mlstate(t+i+1), bit+1)

j = i - 1

bit = 
prev_bit(temp_state,t+j+1)

temp_state = 
last_state(temp_state, bit+1)

j = j - 1

llr = min( llr,Mdiff(mlstate(t+i+1),t+i+1))

t = t + 1

L_all(t) = 
(2*est(t) - 1) * llr

i = i + 1

1

0

0

1

Figure 5.8: Flowchart of the code seen in listing 5.1.

40



Chapter 6

Algorithmic Design and

Optimization

Having determined the algorithm for implementation in the previous chapter, it is now time
to look on possible techniques for optimizing the algorithm as it is implemented. This chapter
illustrates techniques for optimizing both cost and performance as well as an architectural design
of the datapath and its control logic.

Architectures

SOVA

Virtex-5 FPGA

Bottleneck

Pipeline
Non-

Pipeline

Figure 6.1: Mapping the algorithm to an architecture leads to changes in the algorithm. This chapter ends out
with a design optimized for cost and a design optimized for performance.

The first thing to establish when implementing an algorithm is which architecture should be
used for the implementation. Should it be a single architecture or a co-design of different archi-
tectures. In the case of this project R&S suggested the Virtex-5 FPGA platform, which includes
both an PowerPC architecture and an FPGA architecture. This provides the opportunity for a
hardware-software co-design, with software implementation in the PowerPC and a hardware im-
plementation on the FPGA. Figure 6.2a shows how a HW/SW co-design affect performance and

41



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

cost constraints. As described in chapter 2, R&S design interest for their product R&SrCRTU
was located in performance optimization. It is therefore decided to concentrate on a pure hard-
ware implementation, as specified by the red dot in fig. 6.2a. This leads to the best performance,
but also the highest cost.

(a) (b)

Figure 6.2: (a) Design space exploration (DSE) for a HW/SW co-design . (b) Area vs. Time DSE, the dot
indicating the desired trade-off [23].

Optimizing the pure hardware implementation of the algorithm leads to further DSE, as a
reduction in area often directly implies a decrease in performance and vice versa. In the following
techniques for optimizing both area and performance are presented and since increasing the
performance metric is the most essential task, some choices are made in favor of performance.
This leads to the design space of figure 6.2b, where again the red dot illustrates, that even though
most effort is put in increasing performance, some area optimization techniques are introduced.

6.1 Finite State Machines

There are several ways of doing optimization when implementing an algorithm, but Daniel D.
Gajski presents well explained methods in [24], where optimization by pipelining and merging
of functional units, registers, and connections into buses, is based upon ASM charts. Besides
pointing out parts for optimization, this method also gives an in depth understanding of the
logic and arithmetic units needed for an implementation. Figure 6.3 illustrates a basic register
transfer level block diagram for a Mealy machine, which shows some of the blocks that is going
to be optimized in this chapter.

42



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Figure 6.3: Block diagram of a basic register-transfer-level design.

In the following the algorithm from 5.1 is put into two different algorithmic state machine (ASM)
charts. The first ASM chart is based on a Moore finite state machine (FSM) and the second is
based on a Mealy FSM. This is done to compare if the reduction of clock cycles in the Mealy
structure makes up for the increased complexity of its output logic. Later on the selected ASM
chart and its corresponding state action table is used for optimizing purposes.

6.1.1 Moore Machine

A Moore machine is a state based machine, meaning that its output only depends on the current
state the machine is in. It changes states based on the input to its next state logic, and its state
and thereby output logic may be changed at each clock cycle. This means that the output control
signals from the output logic of the Moore machine (G) to the datapath is always synchronized
with the clock. The structure of a Moore machine control unit is illustrated in figure 6.4. Based

Figure 6.4: Moore machine control unit [4].

43



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

on this control unit structure a ASM chart is derived from the flowchart in figure 5.8. The overall
structure for this flowchart is kept in the new ASM chart and only some minor modifications are
necessary for a state based implementation of the algorithm. The main difference between the
flowchart and the ASM chart is the introduction of states. In the Moore ASM chart each square
box represents a state, indicating that one clock cycle is necessary to execute the operation in
this state box. It is, however, possible to group a state box together with a decision box, making
this grouping an ASM block. An entire ASM block also needs one clock cycle to execute the
operations within. The changes made from flowchart to ASM chart are listed underneath and
the Moore ASM chart is illustrated in figure 6.5:

• A new box and thereby state is implemented for saving t + i to a new variable x. This
is done to save the calculations of t + i in following states.

• The variable x is compared with L_total and a decision is made based on whether x ≤

L_total. As both x and L_total are integers the +1 can be saved by using the ≤ operation
instead.

• State box x = t + i and decision box x ≤ L_total is grouped together in an ASM block,
meaning that for one clock cycle x and L_total are saved in two registers and a decision
is made based upon their values.

• A false result of the above decision box leads to state s3 followed by s4. As the result of s4

(temp_state) depends on the value of bit in s3, the two states needs to be separated.

• A new ASM block is implemented for assigning a value to j and to decide if j ≥ 0, all
done in s5. Should this be false the algorithm jumps to an empty state (s9). Is it on the
other hand true, then bit and temp_state are assigned new values in s6 and s7.

• In s8 j is decreased by one and in the same ASM block it is checked if j < 0. If true the
algorithm jumps to empty state s9 and if false it loops back to s6.

• s9 is an empty state due to the principals of the Moore machine. Here a decision box
cannot directly follow another decision box. A new state is necessary to setup the correct
control signals in the output logic of the Moore machine before the new decision can be
made.

• Based on the comparison of bit and est(t) the ASM chart either jumps to s10 or s11,
where in s10 a addition is saved by using the variable x instead of t+i.

• An ASM block is created around state box s11 and the following decision box. Remem-
bering once again that one decision box cannot be followed by another decision box, it is
clear that s2 has another advantage besides creating x. It also ensures the separation of
the i > delta and x ≤ L_total decision boxes.

44



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

• In s12 the variable L_all(t) is computed and this is followed by one last ASM block, for
incrementing t and checking if the stop conditions are met.

From the ASM chart it is possible to derive a state action tabel, which is later on used to
find the next state equations for the control unit. With these next state equations it is possible
to set up a control unit for implementation.

45



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

1 for true
0 for false

s0

s1

x ≤ L_total
01

j ≥ 0
0

1

s2

bit ≠ est(t)

10

Start

j ≥ 0

i > delta

t > L_total 
0

1

Stop

x = t + i

t = 1

llr = 1e10
i = 0

bit = 1 - est(x)

temp_state = last_state(mlstate(x+1), bit+1)

j = i - 1

bit = 
prev_bit(temp_state,t+j+1)

temp_state = 
last_state(temp_state, bit+1)

j = j - 1

llr = min( llr,Mdiff(mlstate(x+1),x+1))

t = t + 1

L_all(t) = 
(2*est(t) - 1) * llr

i = i + 1 s3

s4

s5

1

0

s6

s7

s8

s9

s11

s12

s13

s10

0

1

Figure 6.5: State based ASM chart. This chart is based on a Moore finite state machine with a datapath (FSMD).

46



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Present State Next state Datapath actions
Q3 Q2 Q1 Q0 Name Condition State Condition Operations
0 0 0 0 s0 s1 t = 1
0 0 0 1 s1 s2 llr = 1e10 , i = 0

0 0 1 0 s2
x ≤ L total s3 t + i = x
x > L total s11

0 0 1 1 s3 s4 bit = 1 - est(x)

0 1 0 0 s4 s5
temp state =

last state(mlstate(x+1), bit+1)

0 1 0 1 s5
j ≥ 0 s6 j = i - 1
j < 0 s9

0 1 1 0 s6 s7
bit =

prev bit(temp state,t+j+1)

0 1 1 1 s7 s8
temp state =

last state(temp state, bit+1)

1 0 0 0 s8
j ≥ 0 s9 j = j - 1
j < 0 s6

1 0 0 1 s9
bit , est(t) s10
bit = est(t) s11

1 0 1 0 s10 s11
llr =

min(llr,Mdiff(mlstate(x+1),x+1))

1 0 1 1 s11
i > delta s12 i = i + 1
i ≤ delta s2

1 1 0 0 s12 s13
L all(t) =

(2*est(t) - 1) * llr

1 1 0 1 s13
t > L total Stop

t = t + 1
t ≤ L total s1

Table 6.1: State action tabel for the state based (Moore) ASM chart in figure 6.5. Note that after state s2 where
x = t + i, the variable x is used throughout the table instead of t + i which differs from the algorithm in 5.1.

47



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Based solely on this state action table the next state equations are derived for a Moore FSM
implementation of the algorithm. The state action table also shows that 4-bit state registers
are necessary for storing these 13 states as well as how the encoding of these 13 states should
be done. This is shown by the next state equations derived below. Note that these next state
equations uses the same decision statements as in the ASM chart as well as their opposite. As a
false argument equaled a 0 and a true argument a 1 in the ASM chart, the opposite arguments
of these next state equations should be seen as a 0 and vice versa when constructing the control
unit. Or said more specific for the case of the next state condition x ≤ L_total; x ≤ L_total

= x > L_total and x ≤ L_total = x > L_total.

D3 = Q3(next) = s2(x > L_total) + s5(j < 0) + s7 + s8(j ≥ 0) + s9 + s10...

+ s11(i > delta) + s12

D3 = Q3(next) = Q′3Q′2Q1Q′0(x > L_total) + Q′3Q2Q′1Q0(j < 0) + Q′3Q2Q1Q0...

+ Q3Q′2Q′1Q′0(j ≥ 0) + Q3Q′2Q′1Q0 + Q3Q′2Q1Q′0 + Q3Q′2Q1Q0(i > delta) + Q3Q2Q′1Q′0
D2 = Q2(next) = s3 + s4 + s5(j ≥ 0) + s6 + s8(j < 0) + s11(i > delta) + s12

D2 = Q2(next) = Q′3Q′2Q1Q0 + Q′3Q2Q′1Q′0 + Q′3Q2Q′1Q0(j ≥ 0) + Q′3Q2Q1Q′0...

+ Q3Q′2Q′1Q′0(j < 0) + Q3Q′2Q1Q0(i > delta) + Q3Q2Q′1Q′0
D1 = Q1(next) = s1 + s2 + s5(j ≥ 0) + s6 + s8(j < 0) + s9 + s10 + s11(i ≤ delta) + s12 (6.1)

D1 = Q1(next) = Q′3Q′2Q′1Q0 + Q′3Q′2Q1Q′0 + Q′3Q2Q′1Q0(j ≥ 0) + Q′3Q2Q1Q′0...

+ Q3Q′2Q′1Q′0(j < 0) + Q3Q′2Q′1Q0 + Q3Q′2Q1Q′0 + Q3Q′2Q1Q0(i ≤ delta) + Q3Q2Q′1Q′0
D0 = Q0(next) = s0 + s2 + s4 + s5(j < 0) + s6 + s8(j ≥ 0) + s9(bit = est(t)) + s10...

+ s12 + s13(t ≤ L_total)

D0 = Q0(next) = Q′3Q′2Q′1Q′0 + Q′3Q′2Q1Q′0 + Q′3Q2Q′1Q′0 + Q′3Q2Q′1Q0(j < 0)...

+ Q′3Q2Q1Q′0 + Q3Q′2Q′1Q′0(j ≥ 0) + Q3Q′2Q′1Q0(bit = est(t)) + Q3Q′2Q1Q′0...

+ Q3Q2Q′1Q′0 + Q3Q2Q′1Q0(t ≤ L_total)

Before implementing the control unit, the next state equations above could be simplified with
some algebraic manipulation, which would reduce the size and number of gates necessary for
the implementation of the control unit. One way of doing this by hand is using Karnaugh maps
and in the following a description of this procedure is explained via an example. The the theory
behind Karnaugh maps is based on [25]. These maps are based on the truth table for each
next state equation, mapping the output from the next state equations into minterm boxes (see
fig. 6.6), so they corresponds to the binary values of the next state equation variables. A four
variable Karnaugh map example for next state equation D3 is illustrated in fig. 6.6. Here the
next state conditions have been ignored to simplify the illustration. The truth table on which
this Karnaugh map is based can be found in appendix F, fig. F.1. Truth tables for the remaining
states (D2, D1, and D0) is also found in appendix F.

48



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

In the Karnaugh map of fig. 6.6 the next state equation of D3 without it next state conditions

0 0 1 1

0 1 0 1

0 1 x 1

1 0 x 1
1462 10

1573 11

1351 9

1240 8

00 01 11 10

1
0

11
01

00

Q3Q2

Q
1Q

0

Blue: Q3Q2'

Brown: Q3Q1

Green: Q3'Q2Q0

Red: Q3Q1'Q0'

Black: Q2'Q1Q0'

D3 = Q3'Q2'Q1Q0' + Q3'Q2Q1'Q0 + Q3'Q2Q1Q0 + Q3Q2'Q1'Q0' + Q3Q2'Q1'Q0 + Q3Q2'Q1Q0' + Q3Q2Q1'Q0' 

D3 =  Q3Q2' + Q3Q1 + Q3'Q2Q0 + Q3Q1'Q0' + Q2'Q1Q0'

Minterm box #2

0 1 1 1

0 0 1 1

0 1 0 1

0 1 0 1
1462 10

1573 11

1351 9

1240 8

00 01 11 10

10
11

0
1

00

Q2Q1

Q
0x

<
=

L_
to

ta
l

Figure 6.6: Modified D3 next state equation simplified by Karnaugh map.

is reduced by the use of Karnaugh mapping. This is done by grouping the minterm boxes
containing 1’s and ”don’t cares” (labeled by x) together. These groupings have to be rectangular
and their area has to be in the power of two. With these rules in mind, the 1’s and x’s are
grouped into as big rectangles as possible. Note that minterm 2 and 10 are grouped together.
This is done as it is possible to wrap around edges of the Karnaugh map. Another possible wrap
around grouping would be of minterms 8, 10, 12, and 14. With the 5 groupings in fig. 6.6 it
is fairly easy to see how D3 can be reduced. Taking the blue box as an example, shows that
Q3 and Q2 are constant for all 1’s in this box, while Q1 and Q0 are both 0 and 1 for this box.
This means that Q1 and Q0 can be excluded and as Q3 is always 1 and Q2 is always 0 for the
blue box, the boolean term for this box would be Q3Q′2. Same method is used for the remaining
boxes and the result is a reduction of D3 as indicated in the bottom of fig. 6.6. Should this next
state equation be implemented as natural binary encoding, the reduction provided by Karnaugh
mapping would save 2 AND gates and only 13 AND gate inputs would be needed compared to
28 of the modified D3 equation. Finally two OR gate inputs is also saved by this reduction.

Constructing a Karnaugh map for the next state equations including all variables would produce
a map with 26 minterms for D2 and D1, while 27 minterms are necessary for D3 and D0. This
would a tedious and very time consuming tax to do by hand, so instead a Quine-McCluskey
(QM) algorithm is used. The QM algorithm works similar to the Karnaugh maps where the
main difference is that, where Karnaugh maps benefits pattern recognition properties of the
human mind, the QM algorithm uses systematic tables for deriving simplified expressions. The
tabular method of the QM algorithm makes it suitable for a computer implementation. One of

49



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Gates used AND gates OR gates Total number
# of inputs pr gate 2 3 4 5 6 7 8 9 10 of gates of inputs

Unmodified 0 0 20 14 0 1 1 1 1 38 184
QM minimized 1 7 18 1 2 1 1 0 0 27 127

Table 6.2: Comparison between unmodified and Quine-McCluskey minimized next state equations.

such was developed by Antonio Costa and can be found in [26]. Using this code the next state
equations was reduced to the following:

D3 = Q3(next) = Q′2Q1Q′0(x > L_total) + Q′3Q2Q0(j < 0) + Q′3Q2Q1Q0...

+ Q3Q′2Q′0(j ≥ 0) + Q3Q′2Q′1Q0 + Q3Q′2Q1Q′0 + Q3Q′2Q1(i > delta) + Q3Q2Q′1Q′0
D2 = Q2(next) = Q′3Q2Q′0 + Q2Q′1Q′0 + Q′2Q1Q0(i > delta) + Q′3Q2Q′1(j ≥ 0)...

+ Q′3Q′2Q1Q0 + Q3Q′1Q′0(j < 0)

D1 = Q1(next) = Q′2Q′1Q0 + Q′3Q1Q′0 + Q′3Q′1Q0(j < 0) + Q3Q2Q′1Q′0... (6.2)

+ Q3Q′2Q1(j < 0) + Q3Q′2Q0(i ≤ delta)

D0 = Q0(next) = Q′3Q′0 + Q′2Q′0(j < 0) + Q′2Q1Q′0 + Q2Q′1Q′0 + Q3Q2Q′1(t ≤ L_total)...

+ Q′3Q2Q′1(j < 0) + Q3Q′2Q′1Q0(bit = est(t))

Comparing these next state equations with the ones first derived in eq. 6.1, it is possible to see
how much combinational logic is saved by using the Quine-McCluskey algorithm. The results
are listed in table 6.2 and from these it is possible to derive that 11 AND gates and 57 inputs
are saved by QM minimization. In the next section it is explained how Karnaugh maps are also
a good aid in detecting and removing race hazards. This is not a problem in a Moore FSM, as
the control outputs are based solely on the present state of the state register, which is controlled
by a clock signal. This ensures that the control signals from the output logic are based on
the present state and synchronized with the clock. The same cannot be said about the Mealy
Machine, where special attention to race conditions may be necessary [4].

6.1.2 Mealy Machine

Using a Mealy structure gives the capability to produce several control outputs for each state.
As long as the information for the present state is maintained, the datapath may generate inputs
to the Mealy machines output logic. This will cause the control output to change in-between
present and next state, which means that the control outputs can be asynchronous with respect
to the clock signal. These intermediate changes in the control output via the output logic
between states are called conditional outputs, as the control outputs are based on the condition
of the datapath. Utilizing this FSM structure the designer is able to reduce the amount of
states with the cost of an increased complexity of the output logic. A Mealy machine structure

50



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

is illustrated in figure 6.7 which only differs from the Moore machine in 6.4 in the input fed
directly to the output logic.

Figure 6.7: Control unit for a Mealy machine. Notice that inputs are not only fed to the next state logic, but the
output logic as well [4].

An ASM chart utilizing the conditional control outputs of the Mealy machine is derived based
on the Moore ASM chart. The considerations done in the construction of this ASM chart is
listed below and the ASM chart itself is illustrated in figure 6.8.

• The first two states resembles the Moore ASM chart, as the loop back to s0 and s1 constrains
the modification of this part of the ASM chart.

• The first ASM block is encountered at s2 and differs from the Moore ASM chart by in-
cluding two conditional boxes. This is possible as the information for the present state is
kept and each conditional output can be used for generating a new control output. This
modification introduces a reduction of states by two.

• An empty state is introduced after s3 due to the removal of a decision box and the loop back
of s5. Besides the benefit of removing one decision block, this modification also reduces
the number of states by one compared to the Moore ASM chart.

• The third ASM block (starting with s6) resembles the Moore ASM chart, but now it
includes the min function removing yet another state.

• The last states of the Mealy ASM chart is the same as for the Moore ASM chart. It is
necessary to keep s8 a state of its own because this state creates the final output of the
datapath. This means the state cannot be a conditional output of the ASM block prior to
this state.

The Mealy structure allows the algorithm to be executed in 9 clock cycles compared to the
13 clock cycles of the Moore structure. The Mealy ASM chart is found in figure 6.8 and its
corresponding state action table is located in table 6.3.
The state action table for the input based Mealy implementation is a bit more complex than the

51



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

1 for true 
0 for false

s0

s1

x ≤ L_total
01

j ≥ 0
0

1

s2

bit ~= est(t)

Start

t > L_total 
0

1

Stop

x = t + i 

t = 1

llr = 1e10
i = 0

bit = 1 - est(x)
temp_state = last_state(mlstate(x+1), bit+1)

j = i - 1

bit = prev_bit(temp_state,t+j+1)
temp_state = last_state(temp_state, bit+1)

j = j - 1
llr = min( llr,Mdiff(mlstate(x+1), x+1) )

t = t + 1

L_all(t) = (2*est(t) - 1) * llr

i = i + 1

s3

1

0

s6

s7

s9

0

1

i > delta

s4

s5

s8

Figure 6.8: Mealy ASM chart. The input based output (conditional boxes) gives a reduction of states by 4
compared to the Moore ASM chart.

one for Moore. In this table, conditions are added to the operations of the datapath, denoting
that the condition of the decision boxes not only specify the next state, but also the operation
that is executed in the present state. This increases the complexity of the output logic compared
to the output logic of a Moore FSM [24]. As were the case for state based next state equations,
it is also possible to derive next state equations for the input based Mealy machine, based solely
on the state action table. The next state logic can be reduced a bit by noticing that Q3 is only
’1’ for s8 and s9, making it possible to define the states as follows: s0 = Q′2Q′1Q′0, s1 = Q′2Q′1Q0,
s2 = Q′2Q1Q′0, s3 = Q′2Q1Q0, s4 = Q2Q′1Q′0, s5 = Q2Q′1Q0, s6 = Q2Q1Q′0, s7 = Q2Q1Q0, s8 =
Q3Q0’, and s9 = Q3Q0. Using this in the next state equations for the Mealy machine gives the

52



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Present State Next state Datapath actions
Q3 Q2 Q1 Q0 Name Condition State Condition Operations
0 0 0 0 s0 s1 t = 1
0 0 0 1 s1 s2 llr = 1e10 , i = 0

0 0 1 0 s2 x ≤ L total s3

x = t + i

x ≤ L total
bit = 1 - est(x)
temp state =

last state(mlstate(x+1), bit+1)
x > L total s7

0 0 1 1 s3 s4 j = i - 1

0 1 0 0 s4
j ≥ 0 s5 j ≥ 0

temp state =
last state(temp state, bit+1)

bit =
prev bit(temp state,t+j+1)

j < 0 s6

0 1 0 1 s5 s4 j = j - 1

0 1 1 0 s6 s7 bit , est(t)
llr =

min(llr,Mdiff(mlstate(x+1),x+1))

0 1 1 1 s7

i = i + 1
i > delta s2
i ≤ delta s8

1 0 0 0 s8 s9 L all(t) = (2*est(t) - 1) * llr

1 0 0 1 s9
t > L total Stop

t = t + 1
t ≤ L total s1

Table 6.3: State action tabel for the input based (Mealy) ASM chart in figure 6.8. Note that by the use of Mealy
FSM the state action table is reduced to 9 states compared to the 13 of Moore FSM.

53



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

following:

D3 = Q3(next) = s7(i ≤ delta) + s8

D3 = Q3(next) = Q2Q1Q0(i ≤ delta) + Q3Q′0
D2 = Q2(next) = s2(x > L total) + s3 + s4 + s5 + s6

D2 = Q2(next) = Q′2Q1Q′0(x > L total) + Q′2Q1Q0 + Q2Q′1Q′0 + Q2Q′1Q0 + Q2Q1Q′0
D1 = Q1(next) = s1 + s2 + s4( j < 0) + s6

D1 = Q1(next) = Q′2Q′1Q0 + Q′2Q1Q′0 + Q2Q′1Q′0( j < 0) + Q2Q1Q′0
D0 = Q0(next) = s0 + s2 + s4( j ≥ 0) + s6 + s8 + s9(t ≤ L total)

D0 = Q0(next) = Q′2Q′1Q′0 + Q′2Q1Q′0 + Q2Q′1Q′0( j ≥ 0) + Q2Q1Q′0 + Q3Q′0 + Q3Q0(t ≤ L total)

Further reduction of the next state equations can be achieved by algebraic manipulations through
the aid of Karnaugh maps or the QM algorithm. But more importantly the Karnaugh maps
and the QM algorithm can also aid in the detection and elimination of race hazards [27].

Race hazards occur in combinational logic circuits because of different signal paths with different
propagation delays, resulting in unwanted output ”glitches”. Elimination of race hazards becomes
an issue when dealing with Mealy machines, as status signals are fed from the datapath directly
to the output logic. Had these signals, as in Moore, been fed through the next state logic and
state registers, the state registers would have worked as a latch. In the synchronous Moore
system these state registers look at their input signals for each clock signal where all signals
have reached steady state, which removes the issue of race hazards [25].

Looking at the Karnaugh map example in fig. 6.6 of section 6.1.1 as a map for a Mealy implemen-
tation, possible race hazards are detected as a transition between adjacent, disjoint groupings of
this map. This means that a possible race hazard exist between minterm 8 and 10. Here Q3Q2Q0

are static (1 0 0) while a transition of Q1 should still produce a consistent 1 output. There is,
however, no term that ensures this, therefore a new term should be added to the reduced next
state equation D3. The method for this is just the same as for creating the other terms for the
boxes in the Karnaugh map. In this case Q3Q2Q0 where static, while Q1 could be both 1 or 0,
resulting in the term Q3Q′2Q′0 which should be added to D3 in fig. 6.6. Another potential race
hazard exist between minterm 2 and 8. The race hazards removed by this method are called
static-1 hazards.[25]

6.1.3 Conclusion on FSM

The Moore FSM needs 13 states to execute the algorithm in question, whereas a Mealy FSM can
execute the same algorithm in 9 states. However, due to the more complex design of the Mealy
output logic and the special care needed for eliminating the race hazards from the next state

54



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

equations, the further work will revolve around optimizing the Moore structure. A concetual
finite state machine with datapath (FSMD) design is illustrated in fig. 6.9. In this figure f
denotes the next state equations from 6.2, which derives the next state based on control inputs
(IC), datapath status signals (ID) and the current state (S ) of the state register. h : S → O

denotes the mapping performed in output logic and as it is a Moore FSM, the output (O) is
solely based on the current state (S ). At this point the next state logic has been specified,

Q

Q
SET

CLR

D

D3

Q

Q
SET

CLR

D

D2

Q

Q
SET

CLR

D

D1

Q

Q
SET

CLR

D

D0

Next state 
logic

f: S × I  S

Output logic

h: S  O

Datapath

Clk

Control Inputs Datapath inputs

Current state 
signals

Datapath status signals

Control 
signals

State Register

Figure 6.9: State based (Moore) FSMD design necessary for implementing the Moore adapted algorithm of fig.
6.5. Based on fig. 6.18 and 8.1 in [24].

but it is necessary to design the datapath before the output logic can be determined. Output
logic controls the selection of operands from memory elements, the operation of functional units
and where a result should be stored. It is therefore essential to establish parameters of the
datapath, such as number of functional units, their operations, interconnects in the datapath
and memory elements, before it is possible to design the output logic. The design of the datapath
is undertaken in the following section and throughout this design phase, several optimization
techniques are used for reducing cost and to boost the performance of the datapath. Before
optimization techniques are utilized in the design of the Moore adapted algorithm, the necessary
word length and size of memory elements is established and one of three memory elements is
chosen for each variable.

55



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

6.2 Data Structures

The flow chart in fig. 5.8 shows that 15 variables are used throughout the entire algorithm. The
data structure of these variables are mainly based on the specifications stated in [12] for the
turbo coder in EGPRS-2. The variables t, x, and L_total are based on the size of the turbo
coders internal interleaver block, where L_total is the specific size of this interleaver. Remember
that x = t + i and that the maximum value of i is delta. In [12] the maximum block size
for any packet data block type to be interleaved, is that of DBS-10. This block type interleaves
2500 bits at a time. Meaning that for this maximum block size L_total would be assigned the
value 2501 (the additional 1 is due to constraints of indexing in Matlab), t would be any integer
between 1 and 2501 and x would be any integer between 1 and 2501 + delta ≥ 5 · K (see p. 27
for further explanation). With the turbo encoder constraint length K = 4 in EGPRS-2 x would
have a maximum value of 2521 or a little bit above. A word length of of 12 bit is therefore
necessary to represent the values of t, x, and L_total if 2’s complement arithmetic is used.
Furthermore since delta ≥ 5 · 4 it is established that i and delta should have a word length
of 6 bits. With a 12-bit word length and 2’s complement arithmetic it is possible to represent
integers from [-212−1:212−1 − 1] = [-4096:4095] and a 6-bit word length from [-32:31].

The variables bit and est() can only take the values ’1’ and ’0’, meaning that these variables can
be seen as binary values. The memory element containing est() should be able to save L_total
number of values (2500 in when DBS-10 is used), whereas the memory element containing bit,
should only be able to save one value. The memory element for mlstate() is also based on
L_total, but its word length is based on the values of last_state() as seen in listing E.1
of sova0.m line 71, which is found in appendix E. The values of last_state() is based on
the number of states in the trellis for the turbo code, which is given by 2K−1. As mentioned
earlier K = 4 for the EGPRS-2 turbo coder (states from 0 to 7 or 1-8 in Matlab), so the memory
elements for mlstate() and last_state() should have a word length of 4 bits as 2’s complement
arithmetic is used. Investigating the Matlab code for the states where bit is used as an operand,
s4 and s5, the following turns out. last_state, in which bit is used for indexing, is a matrix
with row length given by the number of constituent encoders and a column length given by
2K−1. This means that for the EGPRS-2 turbo coding, last_state would be an 8-by-2 matrix,
as EGPRS-2 consists of two constituent encoders with a constraint length of K = 4. last_state
memory element should therefore have a word length of 4 bits and a length of 16 needing 4 bit
for addressing. As it is the values of mlstate() and bit that decides the value of last_state,
it would be preferable to use these as indirect adressing of last_state. This could be done by
letting the value of mlstate() be the three LSBs and the value of bit the MSB for the memory
element containing last_state.

The variable temp_state takes on the same values as last_state and its register should there-
fore also have a word length of 4 bits, but it only needs to store one value at a time. j is given

56



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

by i-1 and its register should therefore have the same 6-bit word length as i. Only one value is
stored for j.

Listing E.1 in appendix E shows in line 56 and 60 that prev_bit() can take on the val-
ues ”1” and ”0” and a word length of 1 bit is therefore sufficient. As indicated in s6 of 6.5
prev_bit() is indexed by temp_state and t+j+1. This means prev_bit() is a matrix of the
size 2K−1x(interleaver block length). In this case prev_bit() could be as big as an 8x2500 matrix
which means the memory element storing prev_bit() should be able to contain 20000 values.
This means that the memory element for prev_bit() should have a word length of 1 bit and
needs 15 bits for addressing. Mdiff() uses mlstate() and x+1 for indexing and as these values
resembles those of temp_state and t+j+1, so should Mdiff() be able to contain 20000 values
and therefore use 15 bits for addressing. Establishing the word length of Mdiff() requires some
considerations and Matlab simulations, which is done in the following.

L_all() can take on values ranging from -llr to llr and should be able to contain up to 2500
values. In the flowchart in fig. 5.8 llr is set to 1e10 and an implementation would require a
34 bit register to represent such high a value. It is therefore investigated if this value can be
reduced to lower the word length of the memory elements for llr and L_all(). The variable
llr is mainly used for comparison with Mdiff() in s10 and its initial value should always be
bigger than the maximum value of Mdiff. Simulation of the Matlab code shows that Mdiff() is
only affected by the SNR (Eb/N0) of the received signal and the encoders transfer function. As
the transfer function for EGPRS-2 is constant, simulations for different SNR was undertaken.
The received signal strength for EGPRS-2 is in the range from -115 dBm to -38 dBm, leading
to a maximum SNR of 77 dB [11]. The plot illustrated in figure 6.10 shows the maximum value
for Mdiff() at increasing SNR. From this plot it is possible to derive that the maximum value
for Mdiff() at a SNR of 77 dB is around 1.003 · 108. The initial value for llr should therefore
be equal or exceed this value. Using 2’s complement fixed point arithmetic the minimum word
length for representing a value of 1.003 · 108 would be 27 bit, making it possible to represent
values from [-227:227-1] = [-134.217.728:134.217.727]. The word length will increase if a fraction
part is needed for representing more precise values of Mdiff() and llr. An example of a 2’s
complement arithmetic representation is illustrated in figure 6.11a. It is possible to bring down
the size of the memory element containing these variables by use of floating point arithmetic
instead. Floating point arithmetic consist of a mantissa and an exponent. The mantissa is a
fraction part which is multiplied with an exponent to form the decimal value [28]. An example
of how the floating point arithmetic can be used to represent a value of at least 1.003 · 108 is
illustrated in figure 6.11b.

57



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

0 10 20 30 40 50 60 70 80 90 100
10

0

10
2

10
4

10
6

10
8

10
10

10
12

X: 77
Y: 1.003e+008

Maximum Mdiff values based on SNR

M
di

ff 
[-

]

SNR [dB]

Figure 6.10: Mdiff increases exponentially as Eb/N0 is increased, it is therefore important to establish the dynamic
range of the received input as to determine the size of the memory elements containing the values for llr, Mdiff()
and L_all().

1 1 1 0 1 1 0 1

1·(-20) + 1·2-1 + 1·2-2 + 0·2-3 + 1·2-4 + 1·2-5 + 0·2-6 + 1·2-7

= -1 + 0.5 + 0.25 + 0.0625 + 0.03125 + 0.0078125 
= -0.1484375

Fixed-point arithmetic 

Radix

Sign bit

(a)

1 1 0 1 1 0 1

ExponentMantissa

0·(-25) + 1·24 + 1·23 + 0·22 + 1·21 = 260·(-21) + 1·20 + 1·2-1 = 1.5

Decimal value = 1.5 · 226 = 100,663,296 = 1.007 * 108

Floating point arithmetic

0

Implied Mantissa bit (always 1)

Sign Bit Sign Bit 0

(b)

Figure 6.11: (a) 8-bit fixed point example with 2’s complement (note the - sign in the MSB). The radix is moved
to the right for representing larger values, which however, leads to a reduction of precision. (b) Example showing
that an 9-bit floating point representation is sufficient to reach the maximum value of the 77 dB SNR requirement.

58



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

As the variables L_all() and llr() can take on both positive and negative non-integer values,
fixed-point 2’s complement arithmetic is chosen. This will ease the in the execution of state 12,
where sign change is done based on the value of est(). A 2’s complement representation also
simplifies addition and subtraction, as it is unnecessary to treat sign bits separately from the
rest of the bits [24].

To establish the minimum fraction length of this 2’s complement fixed point representation, so
the BER of the turbo encoder is not increased, Matlab simulations are done. Mdiff() in sova0.m
is quantized using fixed-point arithmetic and a minimum word length of 27 bits. The fractional
part of this quantization is then increased until BER of the quantized Mdiff() version reaches
the BER of Matlabs double precision Mdiff(). Figures G.2a to G.2f in appendix G shows
selected results from these simulations. The wanted precision is obtained at a word length of
44 bits giving a 17-bit fraction length, which is illustrated in figure 6.12a. Here there is no
increase of BER between the fixed point and double precision versions. To illustrate the need
for a fractional representation of Mdiff(), L_all(), and llr() the results for a word length of
27 and a fraction length of 0 is seen in figure 6.12b.

59



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 44, fractionlength = 17, Error increase by fixed point precision = 0%

 

 
Double precision
Fixed point precision

(a)

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 27, fractionlength = 0, Error increase by fixed point precision = 3.4775%

 

 
Double precision
Fixed point precision

(b)

Figure 6.12: (a) A 0 % error increase is acheived at a word length of 44 and a fraction length of 17. (b) Without
a fractional representation the quantized version introduces a 3.47 % increase in decoding errors.

60



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

As the results plotted in figure 6.12 is based on random sequences of ones and zeros, the 0 %
increase of errors might be acheived at a slightly higher or lower word length. However several
simulations showed no errors occured while using a word length of 44 bits. The observant reader
might have noticed that the BER plots of figure 6.12 deviates from its decreasing slope as Eb/N0

increases. The reason for this lies in the simulation algorithm where ”only” 10.000 samples were
processed for each value of Eb/N0. A consequence of this is that almost no errors are detected as
Eb/N0 reaches 10-11 dB, which increases the variance of the error probability and makes the BER
less reliable. For a more detailed explanation on how the simulation should be done instead, see
appendix G. In this appendix the setup of the quantizer in Matlab is also explained.

For storing the variables mentioned above three slightly different memory elements are available.
These are illustrated in figure 6.13. The simplest memory element is the register, which consist
of n number of D flip-flops as in fig. 6.13a, which illustrates a 4-bit register. Registers are limited
to contain one value if more values needs to be stored, register files comes in handy. Basically
a register file consists of 2n register rows and some control logic. Each row is capable of saving
an m-bit value, where m is the number of D flip-flops, just like in the case of the register. The
control logic in a register file is used for determining the row (address) on which a value is either
written to or read from. Register files are usually used for storing 2, 4, 8 or 16 values. Finally
there is the random access memory (RAM), which resembles the register file, but differs as its
input and output is combined, illustrated by the data arrow in fig. 6.13c. Otherwise it also
consists of 2n rows each capable of storing an m-bit value. RAM usually stores around 216 to
232 values with a word length in the power of two ranging from 1 to 32.[24]

61



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Clk
Clear

Preset
I3 I2 I1 I0

Q3' Q3 Q2' Q2 Q1' Q1

(a)

RF

2n × m

m

m

n n

I

O

WA

WE

Clk

RA

RE

A
dd

re
ss

D
at

a

CS

WR/RD 2n × m RAM

(b) (c)

Figure 6.13: (a) 4-bit register with preset and clear. This register also provides an inversion of the input. (b)
Register file with m-bit word length and capable of storing 2n different values. (c) RAM memory with a m-bit
word length and capability of storing 2n values.[24]

6.2.1 Conclusion on Data Structures

With the knowledge established in this section it is possible to determine the size of the memory
elements needed for each variable. The word length and memory size for each variable is listed
in table 6.4 as well as the memory element that fits the variable the best. These distributions
of variables into memory elements may be subdued to change when merging of variables, as an
optimization of cost, is done in the following section.

6.3 Cost Optimization Techniques

The ASM charts derived in section 6.1.1 is a good aid in the creation of a datapath that fits the
Moore FSM, which was also presented in that section. In [24] several techniques for cost and
performance optimizing a datapath design is presented and many of them are based on the ASM
chart. Some of the techniques used for cost optimization is presented in this section, starting
out with optimization of memory allocation. This will reduce the cost of the implementation, as
it reduces the number of memory elements needed, but also the number of connections needed
between memory elements and functional units.

Table 6.5 is a variable usage table that shows the lifetime of the variables in the Moore ASM

62



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Variable Word length # of values Memory type
t 12-bit 1 Register
llr 44-bit 1 Register
i 6-bit 1 Register
x 12-bit 1 Register

L_total 12-bit 1 Register
bit 1-bit 1 Register
est() 1-bit 2500 RAM

temp_state 4 bit 1 Register
last_state() 4 bit 16 Register file
mlstate() 4-bit 2500 RAM

j 6-bit 1 Register
prev_bit() 1-bit 20000 RAM

delta 6-bit 1 Register
Mdiff() 44-bit 20000 RAM
L_all() 44-bit 2500 RAM

Table 6.4: Word length and number of values for all variables used in the algortihm of listing 5.1.

chart illustrated in figure 6.5. A variable’s lifetime starts at the state following the variable’s
write state - the state in which a variable is assigned a value for the first time. An ’x’ is put in
the table for the state following this write state to indicate the start of the variables lifetime.
Furthermore an ’x’ is assigned the states where the variable is used on the right hand side,
known as a read state. Finally the states in between the first ’x’ and the last read state of the
variable, are marked with an ’x’.

6.3.1 Left Edge Algorithm

The variable usage table in 6.5 is used for grouping non-overlapping variables together in as few
memory elementss as possible. One way of grouping variables together is with the use of the
left edge algorithm [24, chapter 8]. Here the variables are first prioritized based on their start
state and then their lifetime span. Should two or more variables have the same start state and
lifetime span, a random prioritizing is used. This sorting of the variables have already been done
in table 6.5 and it shows that 12 memory elements are needed to contain all the variables. The
result of allocating memory elements by use of the left edge algorithm is shown in figure 6.14a
and a flowchart for the left edge algorithm is illustrated in figure 6.14b. Note that in figure 6.5
several variables are only stated on the right side of the equations and it would therefore seem
like no value were ever assigned to this variable. However in tab. 6.5 this is interpreted as these
variables are assigned their values i the state previous to the state it is first used in. These
variables are actually supplied by the first part of the sova0.m algorithm, which was ignored as
no bottlenecks showed up in the profiling.

63



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Variable/State s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

t x x x x x x x x x x x x x
llr x x x x x x x x x x x
i x x x x x x x x x x x

L total x x x x x x x x x x x
x x x x x x x x x

est() x x x x x x x x x
mlstate() x x x x x x x

bit x x x x x x
last state() x x x x

temp state() x x x x
j x x x x

prev bit() x
Mdiff() x
delta x

L all(t) x
Number of live variables 0 1 3 5 9 10 12 11 10 9 8 6 5 3

Table 6.5: Sorted variable usage table which shows the variables lifetime span.

64



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

List empty?

Start

Stop

Allocate a new register

Determine variable 
lifetimes

Sort variables by write 
state and life length

Remove all assigned 
variables from the list

Assign to the register 
all nonoverlapping 

variables starting from 
the top of the list

yesno

ME1 = [ t ]

ME2 = [ llr, L_all(t) ]

ME3 = [ i ]

ME4 = [ L_total ]

ME5 = [ x, delta ]

ME6 = [ est() ]

ME7 = [ mlstate() ]

ME8 = [ bit, Mdiff() ]

ME9 = [ last_state() ]

ME10 = [ temp_state ]

ME11 = [ j ]

ME12 = [ prev_bit() ]

(a) (b)

Figure 6.14: (a) Flowchart for the left edge algorithm used for memory allocation [24, fig. 8.13]. (b) Allocation of
variables into memory elements based on the left edge algorithm. Note that even though L all(t) and llr are used
in the same state (s12), they can still be allocated in the same memory element, as L all(t) is the destination of
s12 and therefore first starts its lifetime in the following state.

6.3.2 Operator Merging and Graph Partitioning Algorithm

Another way to allocate variables is by use of compatibility graphs [24]. These graphs link
variables together with incompatible and priority edges. An incompatible edge is put between
two variables with overlapping lifetime, whereas a priority edge is put between variables with
non-overlapping lifetimes and which shares a source or destination with each other. A weight
metric is assigned to each priority edge describing how many functional units that uses the two
connected variables as source and/or destination (s/d). Here s is the number of functional units
that uses both connected variables as left or right side operands. d indicates the number of
functional units that generates values for both connected variables. The higher the weight of
s/d the higher priority of merging the variables. By merging variables based on these priorities
it is possible to reduce the cost of memory elements as well as the connectivity cost.

65



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Merging of Operators

Before establishing the weight of priority edges, it is a good idea to see if any operations can
be merged into a single functional unit. This will further reduce the number of connections in
the datapath and the cost of the functional units. But before the merging of functional units
is commenced, the operations of the Moore ASM chart is modified to take advantage of the
resources a hardware implementation provides. First the 1-est(x) function is simplified to an
inverter, as est() can only take on the values ”1” and ”0”. This also affects s12, where llr

changes sign if est(t) = 0. Changing sign of a binary value is fairly simple if a 2’s complement
representation is used. Instead of using the multiplier, the 2’s complement is found by inverting
the bits representing the value of llr and adding 1 to this value. This method is feasible as
long as llr is not the highest representable negative value for its word length. The reason for
this lies in the range of 2’s complement; [-2n−1:2n−1 − 1] which shows that there does not exist
a 2’s complement for -2n−1 where n is the word length of the variable. An easy way to perform
this operation is explained later on when an ALU design is determined.

Another interesting aspect of the algorithm is the ”bit+1” operation in s4 and s7. The reason
why ”1” is added to bit, which only takes on the values ”0” and ”1”, is because Matlab can
not index with zero. As this is not a limitation of a hardware implementation, the ”bit+1” is
neglected. This would of course require some additional modification of the surrounding code
providing the variables for last_state(). These additional changes are however not in the
aspects of this report.

With these modification the different operations are listed in an operation usage table 6.6 based
on the states they are used in. This table shows the maximum number of any given operation in
any state and thereby also the maximum number of functional units needed. E.g. two additions
are needed in state s4 and s6, which means two adders are needed in the datapath. The table
also shows that many operators are only used in a single state and is therefore idling in the rest.
This indicates that a merging of operations into functional units may be beneficial.

Note from the operation usage table 6.6 that only one ”+”-operation is done in s4 and none are
done in s7 contrary to what is stated in fig. 6.5. As previous explained these increment bit by
one operations were neglected, as they originated from the index constraints of Matlab.

In tab. 6.6 it is also stated that two ”+”-operations are necessary in s6. It will be explained later
on, how the ALU can add two variables and still increment by one. This removes the need for
a second functional unit, which would otherwise be necessary to conduct two ”+”-operations in
one state.

Merging operations into functional units based on how they are computed, results in two func-

66



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Operand
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Max #
/State units

+ 1 1 2 1 1 1 2
≤ 1 1

inv 1 1
- 1 1 1
≥ 1 1 1
, 1 1

min 1 1
> 1 1 1

sign 1 1
Number of

2 1 1 2 2 2 1 2 2 1 2
operations

Table 6.6: Operation usage table. Note that only sign is used in s12 indicating that this operation can be merged
into both functional units.

tional units, each containing the operators as specified: FU1 = [+, -, inv, sign] and FU2 = [≤,
,, ≥, >, min]. The operations conducted by FU1 are all standard ALU operations. In [24] an
ALU is presented which is capable of conducting all of the operations needed in FU1.

ALU Design for FU1

Since all arithmetic operations are based on the adder, the main building blocks of the ALU is n
number of full adders (FA) linked together as a ripple-carry adder or a carry look ahead adder.
Modifying logic called arithmetic and logic extenders (AE and LE) is connected to each input of
these adders. With only three control signals it is possible to conduct all the operations needed
for FU1. Table 6.7 and 6.8 lists the operations available by the partial ALU design illustrated
in figure 6.15. The AE, LE, and FA blocks of fig. 6.15 consists of simple combinational logic.

i

i+1 i

i i

0
1

Figure 6.15: One section of an ALU based on the full adder ripple carry design.

67



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

M S1 S0 Function Name F X Y c0

1 0 0 Decrement A-1 A all 1’s 0
1 0 1 Add A + B A B 0
1 1 0 Subtract A + B’ + 1 A B’ 1
1 1 1 Increment A + 1 A all 0’s 1

Table 6.7: Control signals and how the input signals are modified based on these control signals in the arithmetic
extender. [24]

M S1 S0 Function Name F X Y c0

1 0 0 Complement A’ A’ 0 0
1 0 1 AND A AND B A AND B 0 0
1 1 0 Identity A A 0 0
1 1 1 OR A OR B A OR B 0 0

Table 6.8: List of logic operations provided by the logic extender. [24]

With this ALU design it becomes easy to conduct the increment by one and decrement by one
operations needed in s5, s6, s8, s10, and s13 as illustrated in fig. 6.5. The t+j+1 operation in s6

is accomplished by choosing the ALU’s add function and setting the carry c0 to ”1”.

It takes a little effort to perform a sign change of llr based on the value of est(), but here
is how it is done. The A input to the ALU should be all 0’s while the B input is the value of
llr. est() is used as an internal datapath control signal, setting the values of S1, S0 and c0,
whereas M should be set by the output logic of the control unit. Figure 6.16 illustrates these
modifications. The additional logic added to this FU1 design could be seen as additional logic
added to the output logic of the control unit, where operation is changed based on the value of
est(). This leads to a design that resembles the Mealy FSM a bit.

c0

0

c1

0

M

S0

S1

Figure 6.16: Implementation of the operation in s12. As llr is 44 bit value the FA in this figure should be followed
by 43 other resembling circuits (leaving out the control logic from est(t)

Of the logic operations stated in table 6.8 only the complement and identity functions are used.

68



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

Complement is used to invert est(x) in s3 and identity is used to pass the A input through
to the full adder. This ALU implementation is of course an overkill to provide a single logic
inverter function, so instead the LE block could be replaced with an inverter separated from the
ALU. In the following however, the inverter operations is treated as part of FU1. Combinational
logic and truth tables for AE, LE and FA is given in appendix H.

Comparator Design for FU2

FU2 mainly consists of comparison operations used for making decisions throughout the al-
gorithm, the exception being the min-operation in s10. As FU2 consists of a wide variety of
comparators, a universal comparator would be a good way of realizing FU2. The problem with
a universal comparator as the one given in [24, chaptef 5.10] is that it only works for positive
integers. This is an issue for s5 and s8 as the variable j at some point becomes negative. Another
way of implementing a comparator is with the use of an ALU, but such an implementation is
left for future work.

Memory Merging by Graph Partitioning Algorithm

With the merging of operators into functional units given above, all the necessary information
for designing a compatibility graph for merging variables is obtained. The graph is illustrated
in figure 6.17b and a list of how the weights were calculated is given below. Variables which
are incompatible due to overlapping lifetimes or does not share a source or destination, are not
mentioned in the following.

• x is the left side operand of FU2 as it uses the ”≤” operation in s2. delta is the right side
operand of FU2 in s11, which results in a 1/0 weight between x and delta.

• j shares weight 1/0 with Mdiff() and delta due to comparator operation in FU2.

• Both Mdiff() and delta are sources for a comparator and therefore share weight 1/0.

This concludes the first step of the graph partitioning algorithm shown in figure 6.17a, resulting
in the initial compatibility graph illustrated in figure 6.17b. The next step is to merge the nodes
with highest priority (variables that share the highest weight) into supernodes. This is done until
only incompatibility edges are left, and the supernodes should then be the optimum memory
allocation based on functional units available in the datapath.

69



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

All nodes 
incompatible?

Start

Stop

Upgrade compatibility 
graph

Create compatibility 
graph

Merge highest priority 
nodes

yesno

t

llr

i

x

L_total
bit

est()

temp_
state

last_
state()

ml
state() j

prev_
bit()

Mdiff()

delta

L_all(t)

1/0

1/0

1/0

1/0

(a) (b)

Figure 6.17: (a) Flowchart for the graph partitioning algorithm [24, fig. 8.16]. (b) Initial compatibility graph for
a Moore FSM and the functional unit grouping given by FU1 and FU2.

In figure 6.17b it is seen that all weights are equal and in this case [24] states that the variable
with the highest number of priority edges should be merged first. This leads to merging of
delta, Mdiff(), and j since they all have more compatibilty edges than x. Lastly L_all(t) is
merged with delta, j, and Mdiff() to reduce the amount of memory elements needed. This
leads to the final compatibility graph illustrated in figure 6.18a and the memory allocation listed
in figure 6.18b.

70



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

t

llr

i

x

L_total

est()

temp_
state

last_
state()

ml
state()

bit

prev_
bit()

L_all(t) delta j Mdiff()

ME1 = [ L_all(), delta, j, Mdiff() ]

ME2 = [ t ]

ME3 = [ llr ]

ME4 = [ i ]

ME5 = [ L_total ]

ME6 = [ x ]

ME7 = [ est() ]

ME8 = [ mlstate() ]

ME9 = [ bit ]

ME10 = [ last_state() ]

ME11 = [ temp_state ]

ME12 = [ prev_bit() ]

(a) (b)

Figure 6.18: (a) Final compatibility graph with one supernode and only incompatibility edges left. (b) Optimum
memory allocation of variables based on FUs. Still 12 memory elements are needed.

With the allocation given in 6.18b it is possible to find the size of the 12 memory elements needed
in the hardware implementation. These sizes are given in table 6.9. Based on this allocation of
variables a datapath for each state is derived and illustrated in figure 6.19a and b. Note that each
connection in this figure has a short abbreviation attached to it. These specifies if a connection is
an output to a register (O-), a input to a functional unit (I-) or a indirect addressing connection.
Based on these notations several buses are derived with the use of the graph partition algorithm.
Note in 6.19b that a red arrow indicating indirect addressing is points to the side of FU1 ([+, -,
inv, sign]). This is done to indicate the sign change operation illustrated in 6.16. Furthermore
its connection indicator (AKX) is marked with an ”X” to illustrate that this connection should
not be merged together with others into a bus. The rest of the connections are merged in the
following section.

The representation of the datapath operations needed at each state, eases the job of identifying
the state with the worst register to register delay (or memory element to memory element delay).
Even though no exhaustive knowledge has been established for the computation speed of the
functional units at this point, it would be a fairly good assumption that state 10 would have

71



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Variables Memory element Word length # of values Memory type
L_all(), delta, j, Mdiff() ME1 44-bit 22502 RAM

t ME2 12-bit 1 Register
llr ME3 44-bit 1 Register
i ME4 6-bit 1 Register

L_total ME5 12-bit 1 Register
x ME6 12-bit 1 Register

est() ME7 1-bit 2500 RAM
mlstate() ME8 4 bit 2500 RAM

bit ME9 1 bit 1 Register
last_state() ME10 4-bit 16 Register file
temp_state ME11 4-bit 1 Register
prev_bit ME12 1-bit 20000 RAM

Table 6.9: Word length and number of values each memory element needs to contain for all variables used in the
algortihm of listing 5.1.

the worst register to register delay. In state 10 both functional units are used sequentially
with two intermediate memory reads. Assuming that the register to register delay is the main
contributer to the critical path compared to the contribution of the propagation delay through
the control unit. It is possible to establish the execution time for a hardware implementation
of the algorithm. As the clock signal and thereby period time for each state is determined by
the propagation delay of the critical path, the total execution time is established based on the
propagation delay from status register to status register in state 10. First though a merging of
connections is done and pipelining of the functional unit is undertaken.

6.3.3 Connection Merging

The final cost optimization technique is applied to the datapath schematics mentioned above.
As explained earlier each individual connection is marked with an abbreviation starting with
A, I or O, indicating if a connection is for indirect addressing, input to a FU or input for to a
memory element (usually output from a FU) respectivly. This is done to help identifying which
connections should be merged together as Address Input or Output bus.

Once again the graph partitioning algorithm is used, but first a connection use table is made
that indicates which states a connection is active in. Connections that are active in the same
state cannot be merged into the same bus and is indicated with an incompatibility edge. Priority
edges are made between connections with the same source or destination. All this was done for
the 11 input connections, resulting in 4 separate input buses illustrated in figure 6.20a. The
same was done for the 17 output connections with the 3 output buses in fig. 6.20b as the result.
Finally the 10 indirect addressing connections are merged into the 3 buses seen in fig. 6.20c.

72



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

State 0

State 1

OA

OB OC

3 4

2

OD

5

State 2

inv, 
sign

Status signal

2 4

5

6

7

State 3

6

7

8

9

10

State 4

10

8 9

11

inv, 
sign

≤, ≠, ≥, 
>, min

State 5

Status signal

≥0

-112 4

1

inv, 
sign

State 6

+1

1 2

11

12

9

State 7

9 11

10

11

6

≤, ≠, ≥, 
>, min

OE

IA IB

OFIDIC

OG OH

AA

IE

OI

AB

AC AD

OJ

OK

IB

OL ID

IF IA

AE AF

AD AG

OJ

OM

inv, 
sign

inv, 
sign

IK

(a)

inv, 
sign

≤, ≠, ≥, 
>, min

Status signal

State 8

-1

≥0

1

1

≤, ≠, ≥, 
>, min

Status signal

State 9

2 9

7

1

≤, ≠, ≥, 
>, min

State 10

6

8

1 3

3

inv, 
sign

≤, ≠, ≥, 
>, min

State 11

Status signal

+1 4

4

1

inv, 
sign

State 12

2

7 3

1

inv, 
sign

≤, ≠, ≥, 
>, min

State 13

Status signal

+1
2

5

2

IF

OL

ID

AH

IG
IH

ON

IB

ID

OO

II

AI

AB

AJ

II IJ

OP

AH

AK
X

IE

OL

IA

IC
OQ ID

inv, 
sign

IK

1

ON

+1

(b)

Figure 6.19: (a) Datapath operations needed for state 1 to 7. Indirect addressing is indicated by red arrows that
enters the side of memory elements. (b) Datapath operations for state 8 to 13.

73



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Addr BUS1

Addr BUS3Addr BUS2

AC AF AG AJ

AA AD AH AI

AB AE ID

Input BUS1

Input BUS3

Input BUS4

Input BUS2

IC IE IF IG II

IBIA IH IJ IK

(a) (b)
Output BUS1

Output BUS3 Output BUS2

OD OG

OA OC OF OI OL OM ON OP OQ

OB OE OH OJ OK OO

(c)

Figure 6.20: (a) Compatibility graph for indirect addressing resulting in 3 separate buses. (b) Compatibility graph
for connection merging of input connections resulting in 4 separate buses. (c) Compatibility graph for connection
merging of output connections resulting in 3 separate buses.

Note that in fig. 6.20b connection ID is not merged with any other connections. The reason
for this is not only because it is incompatible with the other constellations of buses. It is also
because this connection feeds the output of FU1 directly to FU2 and is therefore an essential
part of the datapath. These buses greatly decreases the cost of the datapath implementation.
Figure 6.21 shows the datapath with these 10 buses. The memory elements and functional units
connected to these buses, drives the bus through a tristate bus driver, which activates the bus in
the necessary states. By using these buses the necessity of selectors in front of functional units
is removed, further reducing the cost of this implementation.

6.3.4 Conclusion on Cost Optimization

This concludes the use of techniques for optimizing the cost of an datapath implementation for
the algorithm listed in listing 5.1. It has been demonstrated how based on the ASM chart for a
Moore FSM, it was possible to merge variables, operators, and connections together in ways that
decreased the cost of the implementation. In the following pipelining will be used for optimizing
the performance of the datapath.

74



CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION Group 1041

3

4

2 5 6

7 8

9

10

11

121

Input BUS1

Input BUS2

Input BUS3

Input BUS4

, inv, 
sign

≤, ≠, ≥, 
>, min

Output BUS1
Output BUS2

Output BUS3

Address BUS2

Address BUS3

Address BUS1

[L_all(t), delta, j, 
Mdiff(), t, i]

[llr, est(), last_state(), 
prev_bit()] [L_total, mlstate()]

Figure 6.21: Datapath with connections merged into 10 buses. Note that only three inputs for loading the variables
is necessary in this bus design.

6.4 Performance Optimization

There are several ways to optimize performance of a design and some has already been done at
this point. Removing the need for an extra adder in chapter 6.3.2 by ignoring the ”bit+1” as a
Matlab constraint, is one way of optimizing the performance. Another is the reduction of next
state equations using the Quine-McCluskey Algorithm. In the following pipelining is used to
optimize the performance of FSMD design.

6.4.1 Functional Unit Pipelining

The pipelining method used for the datapath is called functional unit pipelining, where the the
FU is divided into stages. Each stage of the FU is then capable of running simultaneously with
the other stages on different parts of a given operation. This means that while one following
pipeline stage of an FU is performing one part of an operation, the preceding stage can take
on a new operation. Other forms of pipelining is datapath and control unit pipelining. A good
metaphor for a pipeline is a assembly line at a factory. [24, chapter 8]

75



Group 1041 CHAPTER 6. ALGORITHMIC DESIGN AND OPTIMIZATION

Pipelining of a FU optimizes both latency and throughput of the FU and thereby also the
datapath. There is no time improvements for processing the first set of operands that is put
through a pipelined FU. But for the next set of operands the latency is brought down with a
rate equal to the number of pipeline stages. E.g if a non-pipelined design has a delay of 30 ns,
a 3-stage pipeline would still use 30 ns to process the first set of operands, but for the following
sets of operands a new result is obtained for every 10 ns. When implementing a pipeline the
main goal is to cut the critical path into equal sizes. Two-stage pipelining of a functional unit
is done by inserting latches in the middle between its inputs and outputs. This means that two
clock cycles (or states) are necessary to perform one result, but if the pipelining is done in the
exact middle of the critical path, it is possible to increase the clock signal by two.

A 2-stage pipeline is implemented in FU1 as FU1 is located near the middle of datapath for
nearly every state, illustrated in fig. 6.19a and 6.19b. This does not introduce immediate changes
to the overall datapath design, but the number of states required to execute the algorithm is
increased as expected. Timing diagrams for the non-pipeline and pipeline execution of the
algorithm is given in table I.1 and I.2 in appendix I. Here the read and write operations as
well as the operations executed by the functional units are listed for each state. Note from the
pipeline timing diagram, that one of the two FU1 stages is idling in several states. This is due
to several decisions made throughout the algorithm. It is not possible to merge a state where
a decision is made together with the following state, because the decision state does not always
jump to its following state. For this reason there are only three parts of the algorithm that is
capable of utilizing both stages of FU1. One part is from s3 to s5, the second part is from s6 to
s8, and the third is from s12 to s13, as no decision blocks interrupts the data flow for these states.

6.4.2 Conclusion on Performance Optimization

The pipeline of FU1 increases the number of states by six, but as mentioned earlier if the pipeline
of FU1 cuts the critical path in two equal sizes, it is possible to increase the clock frequency by
two. As a result it is possible to execute the 19 states of the pipeline in the same time it takes
to execute 9.5 states in the non-pipeline design. If the pipeline does not separate the critical
path in two equal parts, the clock frequency is based on the biggest part of the critical path.
In the next chapter a description of the Virtex-5 FPGA from Xilinx is given and based on the
performance of this FPGA an estimate for the execution time for the algorithm is established.
Finally this is used to see if the pipeline hardware implementation of the algorithm is capable
of executing at a sufficient rate.

76



Chapter 7

Virtex-5 Analysis and

Implementation

This analysis will mainly revolve around the parts of the Virtex-5 architecture that is of interest
for the hardware design given in the previous chapter. Based on the analysis components are
chosen for a hardware implementation and the performance of these components is used to
determine the execution time and throughput of the FSMD design from the previous chapter.
These results is held up against the EGPRS-2 requirements to turbo coding, specified in chapter
3. For the following description [29] and [30] is used as reference.

Applications

Architectures

EGPRS-2

Requirements

Virtex-5 FPGA

Pipeline
Non-

Pipeline

Cost 
FunctionArchitecture

Figure 7.1: Analysis of the FPGA chosen for hardware implementation results in estimations of execution time
and throughput. These are compared for the two designs with the specifications for throughput in chapter 3 and
a architectural design is chosen based on this comparison.

The Virtex-5 FPGA consist of 6 main building blocks. A simple diagram of these components
is illustrated in figure 7.2. Starting from left to right the first components are high-speed I/O’s
that incorporates ASIC circuits for improved performance. Next up is a set of buffers (BUF)

77



Group 1041 CHAPTER 7. VIRTEX-5 ANALYSIS AND IMPLEMENTATION

followed by configurable logic blocks (CLB), which can be used for implementing combinational
an sequential logic. Then an array of block RAM (BRAM) is depicted followed by yet another
set of CLBs before a set of high performance DSP48E digital signal processors. The DSP48E
provides arithmetic functions such as adders and multipliers, but it can also perform logic
operations. Virtex-5 uses block RAM for building memory arrays and clock management tiles
(CMT) for reducing clock skew and jitter. One important part is left out of fig. 7.2, this is the
switch matrix that provides interconnects between the components depicted in the figure.

Figure 7.2: Simple diagram of the Virtex-5 FPGA’s components [29].

As described in the previous chapter both the control unit of the FSM and the functional
units of the datapath could be implemented as sequential and combinational logic respectively.
This makes the CLBs of the FPGA ideal for implementing the control unit and the arithmetic
operations of the functional units. Furthermore the CLBs may be used for implementing memory
elements as well.

A CLB consists of two slices to which the switch matrix is capable of connecting other CLBs so
designs that exceeds the capacity of one CLB can be implemented. Each CLB slice consists of
four look up tables (LUT) and four flip-flops (FF). With a LUT is is possible to implement any
truth table as long as it meets the constrains set by number of in- and outputs. The LUT of
the Virtex-5 has 6 inputs and 1 output, but can be combined with other LUTs to increase the
number of outputs. This makes the LUT ideal for implementing the combinational logic of the
functional units. The FF acts like memory elements and together with the LUT it can be used
for implementing sequential logic, such as that of the control unit.

Propagation delay through interconnects between CLBs may account for more than 50 % of the
delay through the critical path. To reduce this, Virtex-5 incorporates a diagonally symmetric
interconnect patern, [30] . This allows for a faster interconnect pattern as more connections can
be made with only a few hops. It also allows the Xilinx ISE software to derive the optimum

78



CHAPTER 7. VIRTEX-5 ANALYSIS AND IMPLEMENTATION Group 1041

Functional Blocks Execution time
6-Input Function 0.9 ns

Adder, 64-bit 2.5 ns
Ternary Adder, 64-bit 3.0 ns
Barrel Shifter, 32-bit 2.8 ns

Magnitude Comparator, 48-bit 1.8 ns
LUT RAM, 128 x 32-bit 1.1 ns

Table 7.1: Execution time for a variety of CLB implemented functional blocks.

routing between CLBs. The routing delay from one CLB to its surrounding CLBs is 665 ps, and
for the second ring CLBs the delay is 723 ps. Figure 7.3 illustrates the CLB design described
above.

Slice (1)

LUT0

LUT1

LUT2

LUT3

FF0

FF1

FF2

FF3

Slice (0)

LUT0

LUT1

LUT2

LUT3

FF0

FF1

FF2

FF3

Switch 
Matrix

CLB

Carry in Carry in

Carry out Carry out

Figure 7.3: Arrangement of LUTs, FFs, slices, switch circuit and CLBs in the Virtex-5 FPGA. Note that the dots
represents the CLB being surrounded by other CLBs in all directions. Note also the arrow arrangement in the
switch matrix block, indicating that connections can be made directly to adjacent CLBs in all directions [29].

Table 7.1 states the time it takes to execute different functional blocks implemented by CLBs.
Furthermore it is stated that the block RAM of the FPGA can operate up to speeds of 550 MHz.
Interfaces to external memory may operate up to speeds of 333 MHz (DDR2 and RLDRAM II)
[31]. With these specifications it is possible to compute the execution time of the pipeline
hardware implementation based on state 10 being the state with the longest state register to
state register delay. The results are listed in table 7.2 and the operations for state 10 is illustrated
in fig. 7.4.

79



Group 1041 CHAPTER 7. VIRTEX-5 ANALYSIS AND IMPLEMENTATION

Operation Execution time
Control Unit 3 × 0.9 ns = 2.7 ns
Read ME6 1.1 ns

Increment ME6 0.47 ns
Read ME8 1.82 ns

Read ME1 and ME3 3 ns
min 1.8 ns

Write ME1 and ME3 3 ns
Interconnects 2 · 13.89 ns

Total time for s10 27.78 ns

Table 7.2: Execution time for each operation in state 10. Note that it is assumed that interconnects make up for
half of the entire execution time.

≤, ≠, ≥, 
>, min

State 10

6

8

1 3

3

OO

AI
AB

AJ

II

inv, 
sign

IK

1

ON

+1

Figure 7.4: Datapath for state 10.

The execution time for the increment ME6 operation is based on the execution time of the 64-
bit adder operation. It assumed that this adder operation is implemented as an ripple carry
adder, where the propagation delay is proportional to the word length. This means that the
propagation delay for the 12-bit value of ME6 is given by 12

64 · 2.5 ns = 0.47 ns. It should be
noted that ME6 is implemented in LUT RAM. ME8 and ME3 is implemented as block RAM,
because their base is 36 Kbits and may contain bit widths as high as 72 bits. ME1 is stored in
external RAM as it contains 22502 values with a word length of 44 bit, resulting in almost 1 Mb
of memory usage. The latency for block RAM and external RAM is calculated as 1/(maximum
operation frequency) assuming that only one clock cycle is necessary for reading and writing to
these memory elements. Note also that the latency of the control unit is set at 3 × (latency of
6-input function). The reason for this assumption is caused by the fact that the reduced next
state equation for D0 in 6.2 uses seven variables and two 6-input LUT is therefore combined in an
implementation of this function. Furthermore the output logic is combinational logic based on
the four outputs from the state register and can therefore be implemented as a 6 input function.

80



CHAPTER 7. VIRTEX-5 ANALYSIS AND IMPLEMENTATION Group 1041

It may however, be necessary to implement several 6-input functions in parallel to provide the
needed amount of control signals. This should not increase the propagation delay through the
output logic, as the 6-input functions is coupled in parallel to supply enough control signals.

With a total execution time for state 10 of 27.78 ns and 13 states in the non-pipeline implemen-
tation, clock frequency and execution time is given by:

Clock frequency =
1

27.78 ns
≈ 35 [MHz] (7.1)

Total execution time = 13 ·
1

35 MHz
= 371.43 [ns] (7.2)

Note that the clock frequency is rounded down to the nearest integer MHz value. If instead the
clock frequency was rounded to the nearest integer (in this case 36 MHz), then state 10 would
not be able to execute at this rate. Remembering from chapter 5.1 about profiling, that this
Moore adapted algorithm took up 70 % of the total execution time, and from fig. 6.5 that one
bit is calculated for each full iteration of the ASM chart, the thoughput of the entire SOVA
algorithm is given by:

Total execution time for SOVA =
1

70%
· 371.43 ns = 530.6143 [ns] (7.3)

Throughput =
1 bit

530.6143 ns
= 1.88 [Mbit/s] (7.4)

Note that these results are only true if a hardware implementation on the remaining algorithm
delivers a performance increase similar to the one of this non-pipeline implementation.

Assuming that the pipeline of FU1 cuts the critical path in two equal sizes, the clock frequency
may be doubled, giving a clock frequency of 70 MHz. As the pipeline implementation consists
of 19 states, its total execution time and throughput for the pipeline implementation would be:

Total execution time = 19 ·
1

70 MHz
= 271.43 [ns] (7.5)

Throughput =
1 bit

1
70% · 271.43 ns

= 2.58 [Mbit/s] (7.6)

7.1 Conclusion on Implementation

In chapter 3.3 figure 3.7a a peak bit rate close to 2 Mbit/s was stated for EGPRS-2 with 4 car-
riers and 8 time slots. In chapter 5.3 eq. 5.5 the throughput of the Matlab SOVA decoder was
computed to be 2.02 kbit/s. It was shown in the previous section that a non-pipeline implemen-
tation can not handle the required speed of EGPRS-2. However, the pipeline implementation
is capable of reaching a sufficient bit rate to comply with the requirements set by EGPRS-2
and it seen that this implementation improves the throughput with a factor of 2.52 Mbit/s

2.02 kbit/s
= 1277

81



Group 1041 CHAPTER 7. VIRTEX-5 ANALYSIS AND IMPLEMENTATION

compared to the Matlab implementation. With these results it has been illustrated that a SOVA
decoder implemented on the Virtex-5 FPGA is feasible. Further comments on the results of this
report is summarized in the following chapter.

82



Chapter 8

Conclusion and Future Work

In this chapter the essential parts of the subconclusions drawn throughout this report is sum-
marized. A general conclusion is also presented based on the goals set in the start of this report.
Finally this report ends with suggestions for future work, which will revolve round further im-
provements to the already accomplished work.

8.1 Conclusion

The demand for fast and stable wireless Internet connections has never been bigger, and it is
now more a rule than an exception that mobile phones support Internet access. This strains the
mobile communication infrastructure, and as upgrading the entire infrastructure is an expensive
and time consuming affair, new methods for better utilization of the existing infrastructure is
developed. One of these is EGPRS-2, which improves both peak bit rate and spectrum utilization
of the most widespread wireless communication standard in the world, GSM.

EGPRS-2 introduces a wide variety of new technologies to enhance the QoS of wireless data
transfers. The most computational heavy of these technologies is turbo coding, an error correct-
ing code for reaching near Shannon limit (optimum) coding performance. Due to the computa-
tional complexity of this feature, it is chosen for further analysis with regards to optimizing cost
and performance through hardware implementation. An investigation of turbo code algorithms
shows, that the soft-output Viterbi algorithm (SOVA) achieves the same BER at only 0.1 dB
higher SNR than the optimum Log-MAP algorithm. The Log-MAP algorithm, however, intro-
duces a backward recursion that increases its complexity to OC(n2), OS (2n2) compared to the
OC(0.5n2), OS (0.5n2) complexity of SOVA. For this reason Log-MAP decoding is not as inter-
esting to the industry as SOVA and consequently the SOVA algorithm was selected for further
analysis.

83



Group 1041 CHAPTER 8. CONCLUSION AND FUTURE WORK

Yufei Wu’s turbo coding simulation script for Matlab [18], provides the SOVA algorithm used
in this report. Profiling of this script revealed bottlenecks in the code and it shows that the
SOVA decoder takes up over 93 % of the entire runtime of the simulation script. A part of the
algorithm that compares possible paths through a trellis diagram with the received bit stream
is responsible for 70 % of the SOVA decoders execution time. Based on this outcome, this part
of the SOVA decoder is chosen for optimization.

Through DSE, based on the interest of Rohde & Schwarz Technology Center A/S, it is decided
to do an all hardware implementation of the bottleneck in the SOVA decoder. Furthermore
it is decided to put the main focus on performance optimization, but utilize cost optimization
techniques in the procedure of determining the hardware design. The bottleneck part of the
SOVA decoder is adapted to a state based (Moore) ASM chart, which is used throughout the
process of optimizing the datapath design. In the procedure of constructing this datapath,
techniques for optimizing memory allocations, functional units and connections throughout the
datapath, is utilized. Finally a pipeline is implemented in a functional unit to increase the
performance of the hardware implementation.

One concern when mapping the SOVA decoder algorithm to a hardware implementation, is in the
process of determining the necessary word length for the variables of the algorithm. As they are
mapped to hardware, they are assigned a finite word length. This showed through simulations
to be 44 bits for some variables, before no increase in BER was obtained. Furthermore the
mapping of these variables to hardware revealed that one of them (Mdiff()) contained up to
20.000 values. It would be interesting to see if this 20.000-by-44 bit allocation of memory could
be brought down by reducing either the number of values or the word length, this will further
reduce the cost of the design. One way could be adaptive memory allocation based on the
parameters of the turbo coder and utilizing the flexibility of the FPGA.

The XILINX Virtex-5 FPGA is used as a design reference for implementing a Moore based FSMD
design. A critical path delay for the FSMD implementation is found based on performance
specifications of the combinational and sequential logic available on the Virtex-5. It shows that
the non-pipeline implementation can run with a clock frequency of 35 MHz and that the pipeline
implementation can run at a rate twice of that, namely 70 MHz. At these rates, the non-pipeline
implementation can achieve a throughput of 1.88 Mbit/s and the pipeline version can go as high
as 2.58 Mbit/s.

One of the interesting aspects regarding the implementation, is the time spend fetching data.
The error correcting probabilities of turbo coding is build upon the availability of large amounts
of data. This becomes a problem in the FPGA design as showed in chapter 7, as the availability
of fast memory elements in the FPGA is limited by the number and size of its CLBs. In the case
of this designs critical path, it was necessary to use memory interfaces to DDR2 RAM twice.
This resulted in an increased execution time of the critical path by 6 ns, over twice the amount

84



CHAPTER 8. CONCLUSION AND FUTURE WORK Group 1041

of time spent in the control unit, and almost three times the amount of time spent in the two
functional units. Hence it is another reason for investigating the possibilities of bringing down
the necessary memory to store the variables.

For the hardware implementations to be applicable in the testing of EGPRS-2 communication
systems, a throughput of nearly 2 Mbit/s is necessary. This is only achieved by the pipeline
hardware implementation, but even without the pipeline, a hardware implementation provides
almost sufficient throughput. However, as performance is essential in this design, the pipeline
implementation is selected over the non-pipeline. Only one optimization technique was applied
to the design in this report, so it should be possible to achieve even higher throughput rates.
Other optimization techniques are discussed in future work.

Throughout the report the A3 paradigm illustrated in fig. 8.1 is used as a tool to organize the
report into interrelated domains, as well as illustrating the mapping from one domain to another.
One issue with this paradigm is its lack of different abstraction levels in the architecture design
phase. A meta-model that provides several abstraction levels is the Rugby meta-model. This
helps the designer with a consistent design flow, and links different domains of design together
at the same abstraction levels. The Rugby meta-model would therefore be a helpful tool in
reaching the goal of establishing a framework for the process of mapping an application to a
given platform. A more thorough explanation of the Rugby model is given in Future Work and
the model is illustrated in fig. 8.2.

Applications

Architectures

Algorithms

EGPRS-2
Turbo Coding

Turbo Decoder

SOVA

Requirements

Virtex-5 FPGA

Turbo DeCoder

BCJR/
Log-MAPBottleneck

Pipeline
Non-

Pipeline

Cost 
FunctionArchitecture

Figure 8.1: A3 used throughout the report as a guideline in the design flow, resulting in the selection of a pipeline
implementation.

This report showed that a hardware implementation, optimized with one method of performance
optimization, is capable of providing a factor 1277 throughput improvement over a Matlab
implementation and this is at a clock rate of 70 MHz compared to the 2.8 GHz of the Laptop
running the Matlab code. These results are, however, based on rough estimates, and to assure
that the synthesized design of this report is really capable of achieving these speeds, such that
R&S may find it usable, some further work is needed. The immediate work necessary is described

85



Group 1041 CHAPTER 8. CONCLUSION AND FUTURE WORK

in the next section, with a discussion of some additional improvements to the design, but also
the design process.

8.2 Future Work

The throughput results of this report, is an estimate on whether or not the optimized hardware
implementation of the SOVA algorithm, is capable of decoding at a rate of 2 Mbit/s. To establish
if this hardware implementation really can achieve throughput as high as the estimated results,
some additions to the already synthesized design are necessary.

First of all the output logic for the Moore FSM has not been established at this point. This
should be fitted to each state of the datapath, so it provides the correct control signals in
each state. Also a comparator design for FU2 is missing, and it should be specified before a
implementation in VHDL can be done. With this VHDL code implemented on the Virtex-5
FPGA, it would be possible to test and find the real execution time for the Moore adapted
algorithm. Should it reveal that the execution time is insufficient, there are some enhancements
described below, that would be of interest.

As described in chapter 6.1 the input based (Mealy) FSM, reduced the number of necessary
states by four compared to the Moore FSM. This reduction of states, is a trade-off for an
increase in output logic and critical path of the datapath. It would, however, be interesting
to see if this reduction of states, can match the increase of critical path and thereby provide a
higher throughput. Other pipeline techniques as the one described in this report, would also be
of interest to further increase the performance. [24] presents techniques for datapath and control
unit pipelining. A pipeline implementation in both control unit and datapath will however, imply
new states in the ASM chart and therefore affect the optimization techniques applied in this
report, as these all originates from the state based ASM chart.

In the conclusion, memory allocation is mentioned as an issue in the critical path. To reduce
the affect that reading and writing to external memory has on the critical path, some scheduling
method might be of help. Instead of reading the variable from these slow memory elements in
the state where it is used, it could be written to a fast register in one of the previous states.
This is for example possible in the case of the critical path. Here the variable Mdiff() is read
from an external memory, due to its size, but the exact value needed in Mdiff() could actually
be written to an intermediate register several states before it is used. This may however, also
increase the execution time of the algorithm, because whether or not Mdiff() is actually used
in the algorithmic flow, depends on a decision box.

The A3 model was used as a method for structuring the report, going from application and algo-
rithmic analysis to hardware synthesis. For a one man project, concerning the implementation

86



CHAPTER 8. CONCLUSION AND FUTURE WORK Group 1041

of a small, but complex part of an SOVA decoder algorithm, this model showed to be helpful in
organizing the project. One issue with this model, however, was the lack of abstraction levels.
Had the project concerned an entire SOVA decoder algorithm, being implemented by a group
of people in a HW/SW co-design, it would be advisable to use more complex meta-models.
One example, that is developed specifically for HW/SW co-design, is the Rugby meta-model,
proposed by A. Jantsch et al. [32]. The Rugby model starts out with an idea that spreads into
four domains; Computation, Communication, Data, and Time, ending with a physical system.
Each domain is divided into different abstraction levels, with the highest abstraction level at the
start of a design process and lowest at the end. These different abstraction levels reminds the
developer about abstraction levels that are necessary to consider through a design phase. The
process of deciding the word length of the memory element containing the value of Mdiff(), is a
good example of different abstraction levels in the data domain. Going from the decimal value of
the variable in Matlab, to how it is affected by the SNR of the input. Figure 8.2 is an overview
of the Rugby meta-model, where different abstraction levels would be vertical slices through
this model. A specific framework for optimizing a HW/SW co-design should incorporate this
meta-model to ensure all abstraction levels are considered under the design development.

Figure 8.2: Rugby meta-model overview used in the a design phase from idea to physical system [32].

87





Bibliography

[1] http://www.engineeringvillage2.org, June 2009. Search for 3G and 4G.

[2] E. Dahlman, S. Parkvall, J. Sköld, and P. Beming, 3G Evolution HSPA and LTE for Mobile
Broadband. Elsevier Ltd., 2 ed., 2008.

[3] TDC, “Dækningskort.” internet, 2009.

[4] A. B. Olsen, “DSP Algorithms and Architectures Minimodule 1 and 2.” Slides, 2008.

[5] Rohde & Schwarz, Protocol Test Platform R&SrCRTU, 2008.

[6] Rohde & Schwarz, “R&SrCRTU Protocol Test Platform.” internet, 2009.05.12.

[7] H. Axelsson, P. Björkén, P. de Bruin, S. Eriksson, and H. Persson, “GSM/EDGE continued
evolution,” 2006.

[8] J. Kjeldsen and M. Lauridsen, “Specific Emitter Identification Approach to Adaptive Inter-
ference Cancellation.” Wireless@VT, 2009.

[9] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-
codes,” Communications, IEEE Transactions on, vol. 44, pp. 1261–1271, Oct 1996.

[10] M. Schwartz, Mobile Wireless Communications. Cambridge University Press, 2005.

[11] Ole Mikkelsen, et al., “Meetings with R&S.” Oral, 2009.

[12] 3GPP, “3GPP TS 45.003 V7.5.0.” Internet, 2008.

[13] S. Haykin, Communication Systems. John Wiley and Sons, Inc., 2001.

[14] Z. Wang and K. Parhi, “High performance, high throughput turbo/SOVA decoder design,”
Communications, IEEE Transactions on, vol. 51, pp. 570–579, April 2003.

[15] L. Sabeti, “New Design of a MAP Decoder.” Slides, 2004.

[16] J. G. Proakis and M. Salehi, Communication Systems Engineering. Prentise Hall, 2002.

89



[17] J. G. Harrison, “Implementation of a 3GPP Turbo Decoder on a Programmable DSP Core.”
Internet, October 2nd, 2001.

[18] Y. Wu, “Copyright Nov 1998, Yufei Wu.” internet, 1998.

[19] K. Popovski, T. Wysocki, and B. Wysocki, “Combined User Multiplexing and Data Modu-
lation Through Non-Binary Turbo Codes for UWB,” pp. 1038–1043, 31 2008-April 3 2008.

[20] M. Hata, E. Yamaguchi, Y. Hamasuna, T. Ishizaka, and I. Takumi, “High performance
error correcting code of the high-dimensional discrete torus knot,” pp. 547–552, Apr 2001.

[21] H. Abut, DSP for In-Vehicle and Mobile Systems. Springer, 1st ed., 2004.

[22] The Mathworks helpdesk, “profile.” internet.

[23] Y. L. Moullec, “ASPI S2 11 HW/SW Co-design.” Slides, 2008.

[24] D. D. Gajski, Principles of Digital Design. Prentice Hall International, Inc., 1997.

[25] J. F. Wakerly, Digital Design Principles and Practices. Prentice Hall International, Inc.,
2001.

[26] http://www.dei.isep.ipp.pt/ ACC/bfunc/, June 2009. Download bfunc.zip.

[27] S. Nowick and D. Dill,“Exact two-level minimization of hazard-free logic with multiple-input
changes,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 14, pp. 986–997, Aug 1995.

[28] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals. Berkely
Design Technology, Inc., 1994.

[29] M. Long, “Implementing Skein Hash Function on Xilinx Virtex-5 FPGA Platform,” 2009.

[30] A. Cosoroaba and F. Rivoallon, “Achieving Higher System Performance with the Virtex-5
Family of FPGAs,” 2006.

[31] XILINX, “Virtex-5 FPGA Data Sheet: DC and Switching Characteristics,” 2009.

[32] A. Jantsch, S. Kumar, and A. Hemani, “A metamodel for studying concepts in electronic
system design,” Design & Test of Computers, IEEE, vol. 17, pp. 78–85, Jul/Sep 2000.

[33] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar, Communication
Systems Simulation with Wireless Applications. Prentcie Hall PTR, 2004.



Appendix A

Viterbi Decoding Example

Figure A.1 illustrates a Viterbi decoding through trellis iteration of a simple convolutional code.
The encoders state diagram is also depicted to show the possible transitions in the encoder and
its output based on the encoder input. A punctured line represents a binary ”1” as input and a
solid line represents a binary ”0” as input in both state and trellis diagram. Looking at the state
diagram it should be noted that the numbers located on the transition edges are the outputs
for one given input bit. This shows that the encoder is a rate 1/2 encoder, meaning for each
input bit, two output bits are encoded. The numbers located at each dot in the state diagram
corresponds to a state which is the same states located at the right end of the trellis diagram.

The following is a description of decoding the encoded bit sequence 0000000000 which after
transmission is received as 0100010000, meaning noise i the transmission channel have corrupted
two bits. The description follows the example illustrated in figure A.1 which is taken from [13,
figure 10.17].

As explained in 4.2.1 on p. 27 Viterbi decoding works by calculating the Hamming distance
between a bit sequence made possible by different paths through a trellis diagram and the
received bit sequence. The Hamming distance between different paths are then compared and
the path with lowest Hamming distance is chosen as the most likely bit sequence.

Before it is possible to exclude any paths, the Viterbi algorithm needs to reach a state in the
trellis diagram where paths conjoin, giving the possibility to compare the Hamming distance for
the paths in this state. In this case it is assumed that the encoder was terminated before trans-
mission meaning that the decoding trellis should start at state ”00”. Note that in the encoder
state diagram possible transitions from state ”00” leads to either ”11” or ”00” depending if the
input to the encoder is ”1” or ”0” respectively. Note further that the first two received bits are
”01” indicating an error and increasing the Hamming distance for the two possible paths by 1,
this value is noted at each state point. The two next received bits are ”00” which leads to the

91



Group 1041 APPENDIX A. VITERBI DECODING EXAMPLE

Received Start Transition Output End Increment Resulting
bits state edge bits state in HD HD

00
00

0 00 00 0 1
1 11 10 2 3

10
0 10 01 1 2
1 01 11 1 2

Table A.1: Results from Viterbi decoding for second transition in figure A.1b.

following Hamming distances (HD) shown in table A.1.

This procedure is also done for the next step before paths can be excluded. Looking at the state
points furthest right in figure A.1b two HDs are noted for each point. The paths leading to the
highest HD is removed, in this case the HD = 3 for state ”00”, the HD = 3 for state ”10”, the HD
= 5 for state ”01”, and the HD = 4 for state ”11”. The remaining paths are called survivor paths.
The HD between the next set of received bits and the bits resulting from the next transitions
in the trellis is calculated. Once again the highest HD at each state is removed and the Viterbi
algorithm keeps on iterating in this way through the entire received block of bits. At the end
all the survivor paths are compared and the one with lowest HD is chosen. Should the HD of
two competing paths be of the same size at some point, a path is chosen randomly. The final
survivor paths in figure A.1f shows that the bit sequence 0000000000 has the lowest HD = 2.
This sequence is also the original encoder output showing that the Viterbi algorithm worked
successfully. The Viterbi algorithm may however fail if additional errors are located in the bit
sequence.

92



APPENDIX A. VITERBI DECODING EXAMPLE Group 1041

11

00

0110

11

10

00

11

01

10

00

01

00

10

11

01

0

1

1 1 2 2

2

3 2 4

4

2 5 3

3

2 3

4

3

2 4

3

3 2

3

0

1

1 1 2

3 2

2 3

2

3

4

4

3

2

3

2

0

1

1 1 2

3 2

2

2

3

5

4

2

4

3

3

3

3

2

3

2

0

1

1 1 2

3 2

2

2

3

5

4

2

3

3

3

2

3

2

0

1

1 1 2

3 2

2

2

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00
(r):

0101 00 00

(r): 0101 00 00 (r): 0101 00 00

Received vector (r): 01 00 (r): 0101 00

Encoder State Diagram Viterbi Trellis Iteration

Survivors

00

0000

0001

(a)

(b) (c)

(d) (e)

(f)

Figure A.1: Iterations done by the Viterbi algorithm to establish survivor paths based on a given encoder that
leads to a decision for a bit sequence. Edited version of fig. 10.17 in [13]

93



Group 1041 APPENDIX A. VITERBI DECODING EXAMPLE

94



Appendix B

SOVAturbo sys demo.m

The Matlab code listed in this appendix is a modified version of Yufei Wu’s original code. Some
explanatory text is added as well as making the code run automatically upon initialization.

1 % This script simulates the classical turbo encoding−decoding system.

2 % It simulates parallel concatenated convolutional codes.

3 % Two component rate 1/2 RSC (Recursive Systematic Convolutional) component

encoders are assumed.

4 % First encoder is terminated with tails bits. (Info + tail) bits are scrambled and

passed to

5 % the second encoder, while second encoder is left open without tail bits of itself.

6 %

7 % Random information bits are modulated into +1/−1, and transmitted through a

AWGN channel.

8 % Interleavers are randomly generated for each frame.

9 %

10 % Log−MAP algorithm without quantization or approximation is used.

11 % By making use of ln(eˆx+eˆy) = max(x,y) + ln(1+eˆ(−abs(x−y))),

12 % the Log−MAP can be simplified with a look−up table for the correction function.

13 % If use approximation ln(eˆx+eˆy) = max(x,y), it becomes MAX−Log−MAP.

14 %

15 % Copyright Nov 1998, Yufei Wu

16 % MPRG lab, Virginia Tech.

17 % for academic use only

18

19 clear all

20

21 % Write display messages to a text file

22 diary turbo_logmap.txt

23

24 % Choose decoding algorithm

25 %dec alg = input(’ Please enter the decoding algorithm. (0:Log−MAP, 1:SOVA) default

0 ’);

95



Group 1041 APPENDIX B. SOVATURBO SYS DEMO.M

26 %if isempty(dec alg)

27 dec_alg = 1;

28 %end

29

30 % Frame size

31 %L total = input(’ Please enter the frame size (= info + tail, default: 400) ’);

32 %if isempty(L total)

33 L_total = 400; % infomation bits plus tail bits

34 %end

35

36 % Code generator

37 %g = input(’ Please enter code generator: ( default: g = [1 1 1; 1 0 1] ) ’) ;

38 %if isempty(g)

39 g = [1 1 1; 1 0 1];

40 %end

41 %default: g = [1 1 1; 1 0 1]

42 %g = [0 0 1 1 ; 1 1 0 1]; Turbo Encoder for EGPRS−2 1st row feedback 2nd

43 %row feedforward

44 %g = [1 1 0 1; 1 1 1 1];

45 %g = [1 1 1 1 1; 1 0 0 0 1];

46

47 [n,K] = size(g);

48 m = K − 1;

49 nstates = 2ˆm;

50

51 %puncture = 0, puncturing into rate 1/2;

52 %puncture = 1, no puncturing

53 %puncture = input(’ Please choose punctured / unpunctured (0/1): default 0 ’);

54 %if isempty(puncture)

55 puncture = 1;

56 %end

57

58 % Code rate

59 rate = 1/(2+puncture);

60

61 % Fading amplitude; a=1 in AWGN channel

62 a = 1;

63

64 % Number of iterations

65 %niter = input(’ Please enter number of iterations for each frame: default 5 ’) ;

66 %if isempty(niter)

67 niter = 1;

68 %end

69 % Number of frame errors to count as a stop criterior

70 %ferrlim = input(’ Please enter number of frame errors to terminate: default 15 ’) ;

71 %if isempty(ferrlim)

72 ferrlim = 12;

73 %end

96



APPENDIX B. SOVATURBO SYS DEMO.M Group 1041

74

75 %EbN0db = input(’ Please enter Eb/N0 in dB : default [2.0] ’);

76 %if isempty(EbN0db)

77 EbN0db = [2];

78 %end

79

80 fprintf(’\n\n----------------------------------------------------\n’);

81 if dec_alg == 0

82 fprintf(’ === Log-MAP decoder === \n’);

83 else

84 fprintf(’ === SOVA decoder === \n’);

85 end

86 fprintf(’ Frame size = %6d\n’,L_total);

87 fprintf(’ code generator: \n’);

88 for i = 1:n

89 for j = 1:K

90 fprintf( ’%6d’, g(i,j)) ;

91 end

92 fprintf(’\n’);

93 end

94 if puncture==0

95 fprintf(’ Punctured, code rate = 1/2 \n’);

96 else

97 fprintf(’ Unpunctured, code rate = 1/3 \n’);

98 end

99 fprintf(’ iteration number = %6d\n’, niter);

100 fprintf(’ terminate frame errors = %6d\n’, ferrlim);

101 fprintf(’ Eb / N0 (dB) = ’);

102 for i = 1:length(EbN0db)

103 fprintf(’%10.2f’,EbN0db(i));

104 end

105 fprintf(’\n----------------------------------------------------\n\n’);

106

107 fprintf(’+ + + + Please be patient. Wait a while to get the result. + + + +\n’);

108

109 for nEN = 1:length(EbN0db)

110 en = 10ˆ(EbN0db(nEN)/10); % convert Eb/N0 from unit db to normal numbers

111 L_c = 4∗a∗en∗rate; % reliability value of the channel

112 sigma = 1/sqrt(2∗rate∗en); % standard deviation of AWGN noise

113

114 % Clear bit error counter and frame error counter

115 errs(nEN,1:niter) = zeros(1,niter);

116 nferr(nEN,1:niter) = zeros(1,niter);

117

118 nframe = 0; % clear counter of transmitted frames

119 while nferr(nEN, niter)<ferrlim

120 nframe = nframe + 1;

121 x = round(rand(1, L_total−m)); % info. bits

97



Group 1041 APPENDIX B. SOVATURBO SYS DEMO.M

122 [temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping

123 en_output = encoderm( x, g, alpha, puncture ) ; % encoder output (+1/−1)

124

125 r = en_output+sigma∗randn(1,L_total∗(2+puncture)); % received bits

126 yk = demultiplex(r,alpha,puncture); % demultiplex to get input for decoder 1 and

2

127

128 % Scale the received bits

129 rec_s = 0.5∗L_c∗yk;

130

131 % Initialize extrinsic information

132 L_e(1:L_total) = zeros(1,L_total);

133

134 for iter = 1:niter

135 % Decoder one

136 L_a(alpha) = L_e; % a priori info.

137 if dec_alg == 0

138 L_all = logmapo(rec_s(1,:), g, L_a, 1); % complete info.

139 else

140 L_all = sova0(rec_s(1,:), g, L_a, 1); % complete info.

141 end

142 L_e = L_all − 2∗rec_s(1,1:2:2∗L_total) − L_a; % extrinsic info.

143

144 % Decoder two

145 L_a = L_e(alpha); % a priori info.

146 if dec_alg == 0

147 L_all = logmapo(rec_s(2,:), g, L_a, 2); % complete info.

148 else

149 L_all = sova0(rec_s(2,:), g, L_a, 2); % complete info.

150 end

151 L_e = L_all − 2∗rec_s(2,1:2:2∗L_total) − L_a; % extrinsic info.

152

153 % Estimate the info. bits

154 xhat(alpha) = (sign(L_all)+1)/2;

155

156 % Number of bit errors in current iteration

157 err(iter) = length(find(xhat(1:L_total−m)˜=x));

158 % Count frame errors for the current iteration

159 if err(iter)>0

160 nferr(nEN,iter) = nferr(nEN,iter)+1;

161 end

162 end %iter

163

164 % Total number of bit errors for all iterations

165 errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter);

166

167 if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim

168 % Bit error rate

98



APPENDIX B. SOVATURBO SYS DEMO.M Group 1041

169 ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total−m);

170 % Frame error rate

171 fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe;

172

173 % Display intermediate results in process

174 fprintf(’************** Eb/N0 = %5.2f db **************\n’, EbN0db(nEN));

175 fprintf(’Frame size = %d, rate 1/%d. \n’, L_total, 2+puncture);

176 fprintf(’%d frames transmitted, %d frames in error.\n’, nframe, nferr(nEN,

niter));

177 fprintf(’Bit Error Rate (from iteration 1 to iteration %d):\n’, niter);

178 for i=1:niter

179 fprintf(’%8.4e ’, ber(nEN,i));

180 end

181 fprintf(’\n’);

182 fprintf(’Frame Error Rate (from iteration 1 to iteration %d):\n’, niter);

183 for i=1:niter

184 fprintf(’%8.4e ’, fer(nEN,i));

185 end

186 fprintf(’\n’);

187 fprintf(’***********************************************\n\n’);

188

189 % Save intermediate results

190 save turbo_sys_demo EbN0db ber fer

191 end

192

193 end %while

194 end %nEN

195

196 diary off

Listing B.1: The main Matlab code for Yufei Wu’s turbo encoder/decoder simulation script.

99



Group 1041 APPENDIX B. SOVATURBO SYS DEMO.M

100



Appendix C

demultiplex.m

The Matlab code listed in this appendix is Yufei Wu’s original code for the demultiplex() function.
Some explanatory text is added.

1 function subr = demultiplex(r, alpha, puncture);

2 % Copyright 1998, Yufei Wu

3 % MPRG lab, Virginia Tech.

4 % for academic use only

5

6 % At receiver end, serial to paralle demultiplex to get the code word of each

7 % encoder

8 % alpha: interleaver mapping

9 % puncture = 0: use puncturing to increase rate to 1/2;

10 % puncture = 1; unpunctured, rate 1/3;

11

12 % Frame size, which includes info. bits and tail bits

13 L_total = length(r)/(2+puncture);

14

15 % Extract the parity bits for both decoders

16 if puncture == 1 % unpunctured

17 for i = 1:L_total

18 x_sys(i) = r(3∗(i−1)+1); %the systematic bits are stored

19 for j = 1:2 %1 for decoder 1 and 2 for decoder 2

20 subr(j,2∗i) = r(3∗(i−1)+1+j); %the parity check bits are put in every even

column

21 end

22 end

23 else % punctured

24 for i = 1:L_total

25 x_sys(i) = r(2∗(i−1)+1);

26 for j = 1:2

27 subr(j,2∗i) = 0;

28 end

101



Group 1041 APPENDIX C. DEMULTIPLEX.M

29 if rem(i,2)>0

30 subr(1,2∗i) = r(2∗i);

31 else

32 subr(2,2∗i) = r(2∗i);

33 end

34 end

35 end

36

37 % Extract the systematic bits for both decoders

38 for j = 1:L_total

39 % For decoder one

40 subr(1,2∗(j−1)+1) = x_sys(j); %systematic bits are put in every odd column

41 % For decoder two: interleave the systematic bits

42 subr(2,2∗(j−1)+1) = x_sys(alpha(j)); %systematic bits are interleaved and put in

every odd column

43 end

Listing C.1: The Matlab code for Yufei Wu’s demultiplex function.

102



Appendix D

trellis.m

The Matlab code listed in this appendix is Yufei Wu’s original code for the trellis() function.
Some explanatory text is added.

1 function [next_out, next_state, last_out, last_state] = trellis(g)

2 % copyright Nov. 1998 Yufei Wu

3 % MPRG lab, Virginia Tech

4 % for academic use only

5

6 % set up the trellis given code generator g

7 % g given in binary matrix form. e.g. g = [ 1 1 1; 1 0 1 ];

8

9 % next out(i,1:2): trellis next out (systematic bit; parity bit) when input = 0, state = i

; next out(i,j) = −1 or 1

10 % next out(i,3:4): trellis next out (systematic bit; parity bit) when input = 1, state =

i;

11 % next state(i,1): next state when input = 0, state = i; next state(i,i) = 1,...2ˆm

12 % next state(i,2): next state when input = 1, state = i;

13 % last out(i,1:2): trellis last out (systematic bit; parity bit) when input = 0, state = i;

last out(i,j) = −1 or 1

14 % last out(i,3:4): trellis last out (systematic bit; parity bit) when input = 1, state =

i;

15 % last state(i,1): previous state that comes to state i when info. bit = 0;

16 % last state(i,2): previous state that comes to state i when info. bit = 1;

17

18 [n,K] = size(g);

19 m = K − 1;

20 max_state = 2ˆm;

21

22 % set up next out and next state matrices for systematic code

23 for state=1:max_state

24 state_vector = bin_state( state−1, m );

25

103



Group 1041 APPENDIX D. TRELLIS.M

26 % when receive a 0

27 d_k = 0;

28 a_k = rem( g(1,:)∗[0 state_vector]’, 2 );

29 [out_0, state_0] = encode_bit(g, a_k, state_vector);

30 out_0(1) = 0;

31

32 % when receive a 1

33 d_k = 1;

34 a_k = rem( g(1,:)∗[1 state_vector]’, 2 );

35 [out_1, state_1] = encode_bit(g, a_k, state_vector);

36 out_1(1) = 1;

37 next_out(state,:) = 2∗[out_0 out_1]−1; %conversion 0 = −1 and 1 = 1

38 next_state(state,:) = [(int_state(state_0)+1) (int_state(state_1)+1)];

39 %conversion of binary states into integer states

40 end

41

42 % find out which two previous states can come to present state

43 last_state = zeros(max_state,2);

44 for bit=0:1

45 for state=1:max_state

46 last_state(next_state(state,bit+1), bit+1)=state;

47 last_out(next_state(state, bit+1), bit∗2+1:bit∗2+2) ...

48 = next_out(state, bit∗2+1:bit∗2+2);

49 end

50 end

Listing D.1: The Matlab code for Yufei Wu’s trellis function.

104



Appendix E

sova0.m

The Matlab code listed in this appendix is Yufei Wu’s original code for the sova() function.
Some explanatory text is added.

1 function L_all = sova(rec_s, g, L_a, ind_dec)

2 % This function implememts Soft Output Viterbi Algorithm in trace back mode

3 % Input:

4 % rec s: scaled received bits. rec s(k) = 0.5 ∗ L c(k) ∗ y(k)

5 % L c = 4 ∗ a ∗ Es/No, reliability value of the channel

6 % y: received bits

7 % g: encoder generator matrix in binary form, g(1,:) for feedback, g(2,:) for

feedforward

8 % L a: a priori information about the info. bits. Extrinsic info. from the previous

9 % component decoder

10 % ind dec: index of the component decoder.

11 % =1: component decoder 1; The trellis is terminated to all zero state

12 % =2: component decoder 2; The trellis is not perfectly terminated.

13 % Output:

14 % L all: log ( P(x=1|y) ) / ( P(x=−1|y) )

15 %

16 % Copyright: Yufei Wu, Nov. 1998

17 % MPRG lab, Virginia Tech

18 % for academic use only

19

20 % Frame size, info. + tail bits

21 L_total = length(L_a);

22 [n,K] = size(g); %generator matrix from demo file

23 m = K − 1; %shiftregisters in encoder

24 nstates = 2ˆm; %number of states

25 Infty = 1e10;

26

27 % SOVA window size. Make decision after ’delta’ delay. Decide bit k when received bits

28 % for bit (k+delta) are processed. Trace back from (k+delta) to k.

105



Group 1041 APPENDIX E. SOVA0.M

29 delta = 30;

30

31 % Set up the trellis defined by g.

32 [next_out, next_state, last_out, last_state] = trellis(g);

33

34 % Initialize path metrics to −Infty

35 for t=1:L_total+1

36 for state=1:nstates

37 path_metric(state,t) = −Infty;

38 end

39 end

40

41 % Trace forward to compute all the path metrics

42 path_metric(1,1) = 0;

43 for t=1:L_total

44 y = rec_s(2∗t−1:2∗t);

45 for state=1:nstates

46 sym0 = last_out(state,1:2);

47 sym1 = last_out(state,3:4);

48 state0 = last_state(state,1);

49 state1 = last_state(state,2);

50 Mk0 = y∗sym0’ − L_a(t)/2 + path_metric(state0,t);

51 Mk1 = y∗sym1’ + L_a(t)/2 + path_metric(state1,t);

52

53 if Mk0>Mk1

54 path_metric(state,t+1)=Mk0;

55 Mdiff(state,t+1) = Mk0 − Mk1;

56 prev_bit(state, t+1) = 0;

57 else

58 path_metric(state,t+1)=Mk1;

59 Mdiff(state,t+1) = Mk1 − Mk0;

60 prev_bit(state,t+1) = 1;

61 end

62

63 end

64 end

65

66 % For decoder 1, trace back from all zero state,

67 % for decoder two, trace back from the most likely state

68 if ind_dec == 1

69 mlstate(L_total+1) = 1; %As the first decoder always starts from zero state

70 else

71 mlstate(L_total+1) = find( path_metric(:,L_total+1)==max(path_metric(:,L_total

+1)) );

72 end

73

74 % Trace back to get the estimated bits, and the most likely path

75 for t=L_total:−1:1

106



APPENDIX E. SOVA0.M Group 1041

76 est(t) = prev_bit(mlstate(t+1),t+1);

77 mlstate(t) = last_state(mlstate(t+1), est(t)+1);

78 end

79

80 % Find the minimum delta that corresponds to a compitition path with different info.

bit estimation.

81 % Give the soft output

82 for t=1:L_total

83 llr = Infty;

84 for i=0:delta %delta is the traceback search window which should be between 5 and

9 times K

85 if t+i<L_total+1

86 bit = 1−est(t+i); %inverting the estimated bits 0=1 1=0

87 temp_state = last_state(mlstate(t+i+1), bit+1); %opposite state is chosen

compared to line 77

88 for j=i−1:−1:0

89 bit = prev_bit(temp_state,t+j+1);

90 temp_state = last_state(temp_state, bit+1);

91 end

92 if bit˜=est(t)

93 llr = min( llr,Mdiff(mlstate(t+i+1), t+i+1) );

94 end

95 end

96 end

97 L_all(t) = (2∗est(t) − 1) ∗ llr; %converted to −1 and 1 and multiplied with Mdiff

98 end

Listing E.1: The Matlab code for Yufei Wu’s sova0() function.

107



Group 1041 APPENDIX E. SOVA0.M

108



Appendix F

Truth Tables for Next State

Equations

The following four tables are truth tables for the state based next state equations in eq. 6.1.
These are used in the Quine-McCluskey (QM) algorithm to reduce the next state equations to
the ones stated in eq. 6.2.

109



Group 1041 APPENDIX F. TRUTH TABLES FOR NEXT STATE EQUATIONS

D3 Q3 Q2 Q1 Q0 x ≤ L_total j ≥ 0 i > delta bit , est(t) t > L_total

0 0 0 0 0 x x x x x
0 0 0 0 1 x x x x x
1 0 0 1 0 0 x x x x
0 0 0 1 1 x x x x x
0 0 1 0 0 x x x x x
1 0 1 0 1 x 0 x x x
0 0 1 1 0 x x x x x
1 0 1 1 1 x x x x x
1 1 0 0 0 x 1 x x x
1 1 0 0 1 x x x x x
1 1 0 1 0 x x x x x
1 1 0 1 1 x x 1 x x
1 1 1 0 0 x x x x x
0 1 1 0 1 x x x x x

Table F.1: Truth table for next state equation D3.

D2 Q3 Q2 Q1 Q0 x ≤ L_total j ≥ 0 i > delta bit , est(t) t > L_total

0 0 0 0 0 x x x x x
0 0 0 0 1 x x x x x
0 0 0 1 0 x x x x x
1 0 0 1 1 x x x x x
1 0 1 0 0 x x x x x
1 0 1 0 1 x 1 x x x
1 0 1 1 0 x x x x x
0 0 1 1 1 x x x x x
1 1 0 0 0 x 0 x x x
0 1 0 0 1 x x x x x
0 1 0 1 0 x x x x x
1 1 0 1 1 x x 1 x x
1 1 1 0 0 x x x x x
0 1 1 0 1 x x x x x

Table F.2: Truth table for next state equation D2.

110



APPENDIX F. TRUTH TABLES FOR NEXT STATE EQUATIONS Group 1041

D1 Q3 Q2 Q1 Q0 x ≤ L_total j ≥ 0 i > delta bit , est(t) t > L_total

0 0 0 0 0 x x x x x
1 0 0 0 1 x x x x x
1 0 0 1 0 x x x x x
0 0 0 1 1 x x x x x
0 0 1 0 0 x x x x x
1 0 1 0 1 x 0 x x x
1 0 1 1 0 x x x x x
0 0 1 1 1 x x x x x
1 1 0 0 0 x 0 x x x
1 1 0 0 1 x x x x x
1 1 0 1 0 x x x x x
1 1 0 1 1 x x 0 x x
1 1 1 0 0 x x x x x
0 1 1 0 1 x x x x x

Table F.3: Truth table for next state equation D1.

D0 Q3 Q2 Q1 Q0 x ≤ L_total j ≥ 0 i > delta bit , est(t) t > L_total

1 0 0 0 0 x x x x x
0 0 0 0 1 x x x x x
1 0 0 1 0 x x x x x
0 0 0 1 1 x x x x x
1 0 1 0 0 x x x x x
1 0 1 0 1 x 0 x x x
1 0 1 1 0 x x x x x
0 0 1 1 1 x x x x x
1 1 0 0 0 x 1 x x x
1 1 0 0 1 x x x 0 x
1 1 0 1 0 x x x x x
0 1 0 1 1 x x x x x
1 1 1 0 0 x x x x x
1 1 1 0 1 x x x x 0

Table F.4: Truth table for next state equation D0.

111



Group 1041 APPENDIX F. TRUTH TABLES FOR NEXT STATE EQUATIONS

112



Appendix G

Evaluation of Fixed Point Precision

To determine the required word length for the variables Mdiff(), L_all(), and llr() in a hard-
ware implementation of the sova0.m algorithm, a quantizer was build in Matlab. In Matlab the
function quantizer() constructs a quantizer object with the parameters set in the parentheses.
An example would be quantizer(’fixed’, ’floor’, ’saturate’, [27 0]), where ’fixed’

means the quantizer object will use a signed fixed point arithmetic representation (such as that
of figure 6.11b on p. 58). ’floor’ sets the round mode of the quantizer object to round towards
minus infinity resembling a truncation of the LSB in hardware. The quantizers overflow mode is
set to ’saturate’, which means the quantizer will represent a value higher than what is possible
to represent with the given word length, as the highest possible value of the given word length.
The last property of ’quantizer’ sets the word length and fraction length for the quantizer
object. [22]

The Monte Carlo technique is used to estimate the BER of the different setups. Here N number
of samples are passed through the simulation model, comparing each sample at the end to
determine the number of errors Ne. This leads to an estimation of the BER given by:

P̂E =
Ne

N
(G.1)

Where the true error probability is:

PE = lim
N→∞

Ne

N
(G.2)

Showing that the estimated error probability reaches the true error probability as N goes to
infinity. For the plots in fig. G.2 number of samples was set to N = 10,000. It turns out,
however, that this is not a sufficiently high number of samples for large Eb/N0 values. This is
seen in the plots as the increased variance of the BER curve as Eb/N0 is increased.

113



Group 1041 APPENDIX G. EVALUATION OF FIXED POINT PRECISION

Instead of increasing the number of samples processed by the simulation to one arbitrary ex-
tremely high value, there is another way around the problem of a sufficient number of samples.
In [33, chapter 10] N is based on the theoretical error probability (PT ) of an AWGN channel.
Here the N is calculated as a K/PT , where K is the number of observed errors. E.g. if PT = 0.5 -
which is based directly on the value of Eb/N0 - and 20 errors is needed to provide a reliable BER
estimate, 40 samples have to be processed. As PT is based on the theoretical error probability,
the number of errors in the simulation achieved by setting N = K/PT will be higher than K, as
decoding errors will add to the number of errors.

1 2 3 4 5 6 7 8 9 10 11
102

103

104

105

106

107

108
X: 11
Y: 7.654e+007

Eb/N0 [dB]

N
um

be
r o

f s
am

pl
es

 (N
)

Number of samples needed for reliable error probability estimation

Figure G.1: The number of samples needed to obtain a reliable BER increases exponentially as Eb/N0 is increased.
But note also how few samples are needed for low Eb/N0 values.

So why was this method not used for the simulations investigating the necessary word length?
The main reason is time. The number of samples necessary to obtain a reliable BER estimate
increases exponentially as Eb/N0 increases, as illustrated in fig. G.1. If 20 errors is set as
the necessary amount of errors for each value of Eb/N0, 76,538,385 samples would have to be
simulated at 11 dB. Eb/N0 ranges from 1 to 11 dB in steps of 0.1 in the plots of fig. G.2a - G.2f
and would require a total of 317,254,892 samples for each simulation instead of the 1,010,000
used. Should this method be used it is advised to lower the range and increase the stepsize, as
this will greatly reduce N. Another reason is that these simulations where not done to establish
the performance of the SOVA decoder, but to determine the size of some internal registers for
a hardware implementation. The number of samples does not affect the different error rates,
between the double and fixed point precision results and it is therefore save to base the decision
of word length from the results illustrated in the following figures.

114



APPENDIX G. EVALUATION OF FIXED POINT PRECISION Group 1041

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 27, fractionlength = 0, Error increase by fixed point precision = 3.4775%

 

 
Double precision
Fixed point precision

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 37, fractionlength = 10, Error increase by fixed point precision = 0.0021782%

 

 
Double precision
Fixed point precision

(a) (d)

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 28, fractionlength = 1, Error increase by fixed point precision = 1.5339%

 

 
Double precision
Fixed point precision

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 40, fractionlength = 13, Error increase by fixed point precision = 0.00019802%

 

 
Double precision
Fixed point precision

(b) (e)

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 29, fractionlength = 2, Error increase by fixed point precision = 0.71238%

 

 
Double precision
Fixed point precision

1 2 3 4 5 6 7 8 9 10 11
10-4

10-3

10-2

10-1

100

BE
R

Eb/N0 [dB]

BER for wordlength = 44, fractionlength = 17, Error increase by fixed point precision = 0%

 

 
Double precision
Fixed point precision

(c) (f)

Figure G.2: (a) A word length of 27 bit resulted in 35,123 errors out of 1,010,000 samples compared to double
precision. (b) Here the quantized simulation caused 15,492 more errors reducing the number of errors by more
than one half. (c) Once again an increase of the fraction length by 1 more than halved the number of errors =
7,195. (d) The word length is now 37 leading to a fraction length of 10 and the quantizer now only introduces 22
errors. (e) Here the quantizer only produce 2 errors more than Matlabs double precision. (f) To reach the goal of
no error increase, a word length 44 and fraction length of 17 is needed. A fairly big increase of 4 bits to remove
2 errors.

115



Group 1041 APPENDIX G. EVALUATION OF FIXED POINT PRECISION

116



Appendix H

Combinational Logic for ALU Design

The combinational circuits necessary for implementing an ALU capable of performing the oper-
ations of FU1 given in chapter 6.3.2, is illustrated in figure H.1a to H.1c. Their corresponding
truth tables are listed in table H.1 to H.3.

bi

S0

S1

M

yi

bi

S0

S1

M

ai

xi

xi yi

ci

ci+1

fi

(a) (b) (c)

Figure H.1: (a) Combinational logic for the arithmetic extender (AE). (b) Combinational logic for the logic
extender (LE). (c) Combinational logic for the full adder (FA). [24, chapter 5]

117



Group 1041 APPENDIX H. COMBINATIONAL LOGIC FOR ALU DESIGN

M S 1 S 0 bi yi

1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table H.1: Arithmetic extender truth table [24, chapter 5].

M S 1 S 0 yi

0 0 0 a′i
0 0 1 aibi

0 1 0 ai

0 1 1 ai+bi

1 X X ai

Table H.2: Arithmetic extender truth table [24, chapter 5].

xi yi ci ci+1 fi
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table H.3: Full adder truth table [24, chapter 5].

118



Appendix I

Pipeline Timing Diagrams

In this appendix the timing diagram for the non-pipeline design is presented with the timing
diagram with the pipeline design. Each row in these diagrams represents a read or write of a
specific memory element or an operation done by the functional units. Each column represents
the state of the control unit and indicates the operation done by the datapath in a given state.

Timing diagram without pipelining
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Read ME1 j j Mdiff() delta
Read ME2 t t t t t
Read ME3 llr llr
Read ME4 i i i
Read ME5 L_total L_total
Read ME6 x x x x
Read ME7 est() est() est()
Read ME8 mlstate() mlstate()
Read ME9 bit bit bit
Read ME10 last_state() last_state()
Read ME11 temp_state temp_state
Read ME12 prev_bit()
FU1  t+i inv(est()) x+1 i‐1 t+j+1 j‐1 bit≠est x+1 i+1 sign t+1
FU2  x≤L_total j≥0 j≥0 min i>delta t>L_total
write ME1 j j Mdiff() delta L_all()
write ME2 t t
write ME3 llr llr
write ME4 i i
write ME5 L_total
write ME6 x
write ME7 est()
write ME8 mlstate()
write ME9 bit bit
write ME10 last_state()
write ME11 temp_state temp_state
write ME12 prev_bit()

Figure I.1: Timing diagram for the non-pipeline hardware implementation.

The timing diagram for the non-pipeline design is just a tabular representation of the Moore
ASM chart in 6.5. This table is inserted here to ease the comparison of the two designs.

119



Group 1041 APPENDIX I. PIPELINE TIMING DIAGRAMS

Note from table I.2 the representation for each state. E.g. one state is marked (s6-1 s-7 s8-0).
This is done to illustrate that the last part of state 6, the entire state 7, and the first part of
state 8, is executed in one state. A possibility as the operation of state 7 does not rely on the
result of state 6 and state 8 is independent of the results from both state 6 and 7. With this
merging of states there is actually no increase of states from the non-pipeline design for state 6
to 8.

Other parts of state merging is seen for state 3, 4, and 5, as well as for state 12 and 13. Here
however, the pipeline causes an increase of one state, so it takes four states to compute state
3-5 and three states to compute state 12 and 13.

Overall the number of states is increased by six, but if the pipelining of FU1 is done in the
exact middle of the critical path, dividing this in two paths of equal latency. It is possible to
increase the clock frequency by two and thereby bring down both the latency and throughput
of hardware implementation.

120



APPENDIX I. PIPELINE TIMING DIAGRAMS Group 1041

Timing diagram with pipelining
s0 s1 s2‐0 s2‐1 s3‐0 s3‐1 s4‐0 s4‐1 s5‐0 s5‐1 s6‐0 s6‐1 s‐7 s8‐0

Read ME1 j j
Read ME2 t t
Read ME3
Read ME4 i i
Read ME5 L_total
Read ME6 x x x x
Read ME7 est()
Read ME8 mlstate()
Read ME9 bit bit
Read ME10 last_state() last_state()
Read ME11 temp_state
Read ME12 prev_bit()
FU 1 stage 1 t+i inv(est()) x+1 i‐1 t+j+1 j‐1
FU 1 stage 2 t+i inv(est()) x+1 i‐1 t+j+1
FU2 x≤L_total j≥0
write ME1 j
write ME2 t
write ME3 llr
write ME4 i
write ME5 L_total
write ME6 x
write ME7 est()
write ME8 mlstate()
write ME9 bit bit
write ME10 last_state()
write ME11 temp_state temp_state
write ME12 prev_bit() prev_bit()

s8‐1 s9 s10‐0 s10‐1 s11‐0 s11‐1 s12‐0 s12‐1 s13‐0 s13‐1
Read ME1 Mdiff() delta
Read ME2 t t t t
Read ME3 llr llr
Read ME4 i
Read ME5 L_total
Read ME6 x
Read ME7 est() est(t)
Read ME8 mlstate()
Read ME9 bit
Read ME10
Read ME11
Read ME12
FU 1 stage 1 x+1 i+1 sign t+1
FU 1 stage 2 j‐1 x+1 i+1 sign t+1
FU2 j≥0 bit≠est(t) min i>delta t>L_total
write ME1 j Mdiff() delta t
write ME2 llr L_all()
write ME3 i
write ME4
write ME5
write ME6
write ME7
write ME8
write ME9
write ME10
write ME11
write ME12

Figure I.2: Timing diagram for the FU1 pipeline hardware implementation.

121


	Introduction
	Scope of Project
	Delimitation
	The A3 Paradigm

	Interests of R&S (Industry)
	EGPRS-2; a Short Review
	Origin and Goals of EGPRS-2
	Technology Improvements for EGPRS-2
	Dual-antenna terminals
	Multiple Carriers
	Reduced transmission time interval and fast feedback
	Improved modulation and turbo coding
	Higher symbol rates

	Conclusion on EGPRS-2 Improvements

	Turbo Coding
	Turbo Encoder
	Internal Interleaver
	Puncturing

	Turbo Decoder
	Viterbi Decoding Algorithm

	Conclusion on Turbo Coding

	Algorithm Analysis of SOVA
	Profiling
	Setup
	Profiling Results

	Decoder Algorithm Structure
	Conclusion on SOVA Analysis

	Algorithmic Design and Optimization
	Finite State Machines
	Moore Machine
	Mealy Machine
	Conclusion on FSM

	Data Structures
	Conclusion on Data Structures

	Cost Optimization Techniques
	Left Edge Algorithm
	Operator Merging and Graph Partitioning Algorithm
	Connection Merging
	Conclusion on Cost Optimization

	Performance Optimization
	Functional Unit Pipelining
	Conclusion on Performance Optimization


	Virtex-5 Analysis and Implementation
	Conclusion on Implementation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Viterbi Decoding Example
	SOVAturbo_sys_demo.m
	demultiplex.m
	trellis.m
	sova0.m
	Truth Tables for Next State Equations
	Evaluation of Fixed Point Precision
	Combinational Logic for ALU Design
	Pipeline Timing Diagrams

