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Rain/wind induced vibrations for the most severe natural load on cables used as support will be examined. 

The theory behind rain/wind induced vibrations on stay-cables will be outlined, based on the present 

available literature. A numerical quasi-static multi degree of freedom model of a stay cable is developed 

and a load model is established to implement the rain/wind induced aeroelastic loading on the cable. 

Four different types of damping mechanisms are considered for mitigation of the rain/wind induced 

vibrations. Active control of the axial forces by an actuator at the lower cable support point is initially 

considered. The control in the remaining three types is based on a perpendicular connection between the 

damping mechanism and the cable, at a constant distance away from the lower cable support point. Here, 

passive viscous damping is introduced where the damping coefficient is tuned to the first in-plane cable 

mode of vibration. Semi-active MR-damping is introduced with the objective to reduce the vibration 

response from passive viscous control. Finally, active control by use of the pole placement method is 

analysed.  Furthermore, the active control by pole placement is supported by integral control in order to 

remove a static offset of the cable displacement from the applied mean wind. 

Special attention is brought to evaluate the relative effectiveness of the considered damping mechanisms. 

Practical considerations, general theory, and control algorithms with regard to the mentioned control 

strategies will be handled. 
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1 Introduction 

Many structures today use cables as vital structural elements, such as cable-stayed bridges, guyed masts, 

etc. Due to very low inherent damping and relatively low stiffness, the cables are disposed to various 

environment induced vibrations either caused by wind, combined rain- and wind, or by motions of the 

support-structure. In the end, this can lead to cable- and connection failure or cracked corrosion protection 

which altogether reduce the life span of the cable system. 

Especially the simultaneous occurrence of moderate rain and wind has been given significant attention in 

recent years, as it is not yet fully understood. As Hikami observed in 1986, this type of event can lead to 

extreme cable vibrations, (Hikami, 1986). These rain/wind induced vibrations occur at wind speeds 

significantly lower than the design wind speed and thus have a high probability of occurrence. The 

rain/wind induced vibrations of stay-cables at a stay-cable bridge will be examined further in this thesis. 

Several methods have been proposed as mitigation measures for these vibrations. Cable cross ties have 

a significant effect as it reduces the free length of the cables. However, the bridge aesthetics is by some 

considered to be violated, (Yamaguchi, et al., 1995). The same applies for fluid-can dampers or changed 

surface geometry of the cable which may also be difficult to implement as a subsequent installation. 

Transversely attached linear viscous dampers can be efficient, but the connection point is restricted to a 

level where access due to maintenance is still possible. 

The point of attachment of the damper is of great importance regarding the damping efficiency. The 

maximum amount of added damping is proportional to the distance, relative to the total cable length, 

between the point of contact and the cable anchorage, (Krenk, 2000),(Kovacs, 1982). Generally, a viscous 

damper may be tuned to optimal performance in a single vibration mode of the cable. However, field 

observations of rain/wind induced vibrations show that many modes are involved. Actually, the vibrations 

appear in some cases as travelling waves along the cable. Hence, the efficiency of linear viscous damping 

for the observed multi-mode performance may be questioned. According to the above, the implementation 

of another damping mechanism could be interesting. 

Semi-active dampers such as magneto-rheological (MR) or electro-rheological (ER) dampers have the 

potential to change the damper characteristics, and hence adjust to multi-mode behaviour. Johnson, 

Baker, Spencer, and Fujino claimed that the performance level from semi-active control is near what can 

be obtained from a comparable active device, (Johnson, et al., 2007). Significant merits are the 

significantly reduced power source and a mechanism which will work as a passive damper in case of 

power failure. 

Furthermore, an active control of the damping mechanism may be implemented. By doing so, the damping 

properties of the lower important modes may be prescribed on the condition that the required power is 

available in the damper mechanism. In the present case, the control algorithm for the active controller is 

defined by the pole placement method. 

Finally, several studies have been made on active control of cable vibrations by axial support motion, 

(Wang, et al., 2007),(Fujino, et al., 1993). This active vibration control seems to be fairly efficient, but it has 

a drawback with respect to the required power source needed. The underlying control laws are evaluated 

to determine if this type of damping should be considered. 

According to the above, the mitigation of rain/wind induced vibrations will be investigated where passive 

viscous damping, semi-active MR damping, and active control is used in order to evaluate the relative 

effectiveness of the different damping mechanisms. 
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2 Rain/wind induced vibrations 

Due to the rain, a water film is formed on the surface of the cable. A downward flow on the cable surface 

will be present due to gravity. Under combined rain and wind, a retarding upward flow will be generated 

due to wind friction on the upper windward area of the cable. In case of higher mean wind speed �� 

corresponding to supercritical Reynolds numbers, the point of separation moves backward which may also 

lead to an upward flow due to wind friction on the lower leeward side of the cable. In a certain wind speed 

range, the stabilizing upward flow creates an equilibrium state where water stowage leads to the formation 

of a rivulet. The centre angle �� and ��
∗ which describe the static equilibrium position of the upper- and 

lower rivulet, respectively, are therefore merely expected to depend on the mean wind speed. The above 

is illustrated in figure 1. 

It should be noted that rivulets may be formed at up to four different ranges of equilibrium positions, 

specified by the centre angle �� and ��
∗. These ranges are divided into two lower regions and two upper 

regions. The wind yaw angle � will naturally determine, in which regions of the cable the rivulets can be 

formed and only two rivulets may be present on a cable section at the same time, (Verwiebe, 1996), 

(Verwiebe, 1998). Verwiebe’s test setup is illustrated in figure 2a where the cable is described in an 

��, 
, ��-coordinate system. The ��, 
�-plane is placed in the static equilibrium plane of the cable. The �-

axis is placed along the cable chord and has the inclination 
� with the horizontal plane. The 
-axis is 

placed in the upwards direction and the �-axis is placed in the out-of-plane direction. 

0
U

0
θ

*

0θ

 

Figure 1: Formation of the upper rivulet due to water stowage. 

ϕ

β

0

0
U

U

U

U

90<β �

Figure 2: Verwiebe’s model set up and some general findings. 
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The rivulets cause a modified surface that creates an unsymmetrical wind pressure distribution that can 

cause periodic exciting forces on the cable. This is understood in the way that uplift- and drag forces are 

changed according to a dynamic change in position of the rivulets. If these wind forces are changing 

resonance to the natural frequency of the cables, large vibrations can occur, (Verwiebe, 1996), (Verwiebe, 

1998). 

The results from Verwiebe’s tests indicated that the phenomenon is characterized by in-plane- and out-of-

plane vibrations governed by the wind yaw angle. The component � of the mean wind �� perpendicular to 

the cable, and the orbit of the cable vibrations are illustrated in figure 2b, figure 2c, and figure 2d. When 

� = 90° and the rivulets oscillate symmetrically, in-plane vibrations occur as illustrated in figure 2b. When 

� = 90° and the rivulets oscillate anti-symmetrically, out-of-plane vibrations occur as illustrated in figure 

2c. When � < 90° both in-plane- and out-of-plane vibrations exist, in which the in-plane vibrations are 

dominating, as illustrated in figure 2d. 

It has been found both experimentally and numerically that maximum amplitudes occur when the cable 

angle of inclination 
� = 30° and the wind yaw angle � = ±35°. Furthermore, results show that a rivulet 

along the upper part of the cable surface is the primary reason for rain/wind induced vibrations, (Hikami, 

1986), (Gu, et al., 2004), (Gu, et al., 2008). Hikami and Shiraishi found a critical mean wind speed range 

of 9-15� �⁄ , which is also considered in the following,(Hikami, et al., 1988). This is used in the following as 

to describe the most severe natural loading on a stay-cable. 

2.1 Analytical models 

In the past 20 years, different analytical models of the rain/wind induced vibrations have been devised. 

Yamaguchi developed one of the first models in 1990, illustrated in figure 3a, (Yamaguchi, 1990), where 

the asymmetric position of the rivulet causes galloping instability of the cable. The system is a SDOF 

system with a quasi-stationary laminar wind load applied. The model is strongly simplified as no structural 

damping is included, and the time varying displacement of the rivulet position not is considered. 

 

The model by Robra showed in figure 3b is an extension of the Yamaguchi model, where an additional 
DOF for the motion of the rivulet is added, (Robra, 2003). The parameters �� , ��, �� , ��, ��  are to be 

interpreted as modal mass, stiffness and damping for the fundamental in-plane and out-of-plane motion, 

respectively. The motion of the rivulet is modelled by a nonlinear SDOF oscillator, driven by the motion of 

the cable. A further analysis of a 2DOF system is conducted in section 4.2. The vibration theory in Robras 

model is based on linear theory. However nonlinear geometric stiffness terms may easily be included. 

θ
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Figure 3: Analytical cable models. 
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Even more advanced models have been developed, where the wind force on the rivulet is included and 

some models have more than one rivulet. Because of the complicated models, the equation of motion is 

described by non-linear theory why wind tunnel tests are needed in order to determine the aerodynamic 

dependencies of the rivulet positions. 

2.2 Numerical model 

In the following analysis a numerical quasi-static MDOF model will be developed, describing a stay-cable 

at a stay-cable bridge under influence of rain/wind induced vibrations. The nonlinear geometric coupling 

between in-plane and out-of-plane vibrations will not be accounted for and only in-plane vibrations will be 

considered. 

The cable mechanics is described in three different coordinate systems. ��, �,  � is a global Cartesian 

coordinate system which describes the equilibrium state. The ��, �� -plane is placed in the static 

equilibrium plane of the cable. The �-axis is horizontal, and the �-axis is orientated in the vertical direction. 

The origin is placed at the lower end of the cable. The ��, 
, ��-coordinate system is a global auxiliary 

coordinate system with the same origin as the ��, �,  �-coordinate system. The ��, 
�-plane is placed in 

the static equilibrium plane and the �-axis is placed along the cable chord, which has the inclination 
� to 

the �-axis. The ��′, 
′, �′�-coordinate system is a local coordinate system for each cable element with 

origin at the lowest end. The ��′, 
′�-plane is placed in the static equilibrium plane of the cable and each 

local �′-axis is placed along the element chord, which has the inclination 
" to the �-axis. Furthermore, # 

is the chord length, $ is the sag of the cable, %� is the prestressing force, and & is the acceleration of 

gravity. The above is illustrated in figure 4. 

The mentioned MDOF model will be formulated by the finite element method, where the continuous cable 

system is subdivided into a finite number of elements. The rain/wind induced aeroelastic loading on the 

cable finite element is accounted for by also including the motion of the rivulet. The numerical model is 

described in chapter 4. 

In what follows all capital bold letters denotes a matrix, lower case bold letters denotes a vector, and italic 

letters denotes a scalar. 

x

y

L

F0

F0

f

Figure 4: Global Cartesian-, global auxiliary-, and local coordinate system. 
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3 Vibration control of shallow cables 

As mentioned in chapter 1 the mitigation of cable vibrations will be investigated by passive viscous 

damping, semi-active MR-damping, and active control. The control strategies take into consideration the 

response of the system by use of sensors, i.e. both collocated and state feedback control is considered. 

The damping types are defined according to the amount of energy used when active and will be described 

in the following section. 

A segment of a cable stayed bridge with the considered damper types installed is illustrated in figure 5. 

The control of axial forces works as illustrated in figure 5b while the remaining control types work as 

illustrated in figure 5a. Here '�(� is a non-dimensional representation of the chord elongation, ) is the 

distance between the connection of the damper and the lower support point of the cable, *  is the 

inclination angle of the damper with horizontal, +, and +-, is the cable displacement and cable velocity in 

the direction of the damper, respectively, and .�(� is the damper force. 

a

c

( )u t

( ) ( ),d dv t v tɺ

Ψ

( )e t

 

Figure 5: Damping mechanisms installed on a cable stayed bridge. 

In figure 5a, only one damper is installed on each cable, but often two dampers are used to account for 

both in-plane and out-of-plane vibrations. These dampers will be placed in an inverted V-shape at the 

same connection point. In this report only in-plane vibrations are considered, why only one damper is 

included. 

It should be noted that the control laws of the passive and semi-active dampers, as described in section 

4.3.1 and 4.3.2, depend merely on local kinematics of the support point of the damper on the cable - as 

measured by the local damper elongation +,�(� and velocity +-,�(�, i.e. the control is collocated. The active 

controls on the other hand, require that the total state of the cable is known at a given time for which the 

active controls are not collocated. 

In what follows the uncontrolled system will be referred to as the open loop system while the controlled 

system will be referred to as the closed loop system. The damping mechanisms of each of the control 

strategies will be treated in the following. 

3.1 Passive dampers 

The passive dampers are characterised by suppressing vibrations without any supplied external energy. 

One of the simplest passive dampers (and the only one considered in this thesis) is the linear viscous 

damper, where a fluid, often oil, is compressed by a piston. Depending on the damper type, the fluid is 



 

8 

 

 

pressed trough some valves, which sizes and the viscosity of the fluid, determine the damping 

characteristics. The structure of the damper and the viscosity of the oil must be carefully chosen. It must 

neither be too rigid nor too compliant, but should be made as an optimum which lies in between. The 

characteristics of the damper are fixed and fitted to the characteristics of the cable, usually the 

fundamental mode of vibration.  

3.2 Semi-active dampers 

Semi-active dampers are characterized by having the capability of changing the properties for a system 

with relative large control effect in response of a command signal and very little energy input. The 

properties and the background for semi-active damping mechanisms are outlined in the following, based 

on, (Srinivasan, et al., 2001).  

The MR-damper operates by use of a fluid which properties changes in response to an applied magnetic 

field. Similar to the MR-fluids, ER-fluids are applied an electric field instead. In the following only MR-fluids 

will be considered, but the physics of MR- and ER-fluids are almost identical. 

The most remarkable property of the MR-fluids is the field-induced change of the ability to support a 

tremendous increase or decrease in shear stress. This ability is the result of the formation of particles 

within a fluid in response to the magnetic field. A typical MR-fluid consists of 20-40% iron particles of size 

1 to 10/� added to a fluid, often mineral oil or silicon oil. Besides the iron particles, most MR-fluids also 

contain a small amount of additives that prevents the particles from setteling and to effect the polarization. 

These may however be neglected in most modelling. 

An MR-fluid may in absence of the magnetic field be characterized as a Newtonian fluid, as resisting a 

shear strain 0 with a shear stress 1 proportional to the product of the strain rate 0-  and viscosity 2 

 =τ ηγɺ  (3.1) 

This is acknowledged as an approximation, since most MR-fluids are in fact non-Newtonian because of 

the large amount of solid particles. The field-induced component of the shear stress is however often 

much larger than the 20- term, why (3.1) is an adequate model of the rate-dependent part of the total shear 

stress, also illustrated in figure 6. 

The purpose of applying a magnetic field to the MR-fluid is to create chains in the direction of the magnetic 

field. The creation of the chains occurs in a few milliseconds and when there is no motion of the fluid or 

the walls surrounding the fluid, the chains are static structures that span the gap between the poles. The 

scenario is illustrated in figure 7, where a magnetic field is applied on a valve.  

τ

η

γɺ
0

0  

Figure 6: A Newtonian fluid shears at a rate 

proportional to stress. 
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Because of the created chains, shear strain occurs in the fluid that passes the valves and a shear stress 

distribution develops across the fluid. According to the strength of the field, the created chains will break 

and new chains will be created. The continual breaking and reforming of these particle chains results in a 

force resisting the motion of the fluid, and give rise to the field-dependent component of the shear stress 1. 

In most cases this component is much larger than the viscous shear stress 20-. It is this large controllable 

shear stress that makes these fluids useable in mechanical systems.  

It might be expected that the viscosity of the MR-fluid increases as a result of the formed chains, but this is 

not the case. The slope of the shear stress development, the viscosity 2, changes very little if at all. The 

chains create instead a shear stress that is independently of the strain rate, this is also referred to as the 
yield stress 1�. If the yield stress is added to the Newtonian model (3.1), the following Bingham stress-

strain rate appear 

 ( )y H= +τ τ ηγɺ  (3.2) 

where 3 represents the strength of the applied magnetic field. The response of the model is plotted in 

figure 8, which is the by far the most popular model used in modelling of MR-fluids. 

The design of the MR-damper is basically the same as for the linear viscous damper, where a piston 

forces a fluid through some valves. The advantage of the MR-damper is that the damping coefficient is 

changeable, by changing the magnetic field surrounding the MR-fluid. Additionally, a hystereric friction 

damping component may be introduced. 

Figure 7: Effects when a magnetic field is applied 

to the MR-fluid. 

τ

η

γɺ
0

0

η

η

η

0Η = 0

1Η

2Η

3Η

( )1y Hτ

( )2y Hτ

( )3y Hτ

 

Figure 8: Shear stress versus shear 

strain rate for the Bingham model. 
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The amount of energy needed to control the magnetic field is very small, and often small batteries have 

sufficient amount of power. If, by some reason, the power supply to the mechanism is cut off, the MR-

damper should be tuned in the same way as an optimal viscous damper. Hereby, the stand-by position 

has the same abilities as a linear viscous damper. 

3.3 Active control 

In active control a controller-chosen number of modes of vibration are controlled actively by applying a 

control force. The active control mechanism is in contrast to the passive and the semi-active damper 

characterized by use of a relative large amount of energy. Therefore, it is often necessary to connect the 

actuators to an external power supply. Two active control mechanisms are considered in this thesis. One 

is control of axial forces and the other operates by use of an actuator installed similar as the above 

mentioned dampers. 

The control of axial forces operates by control of the elongation of the cable ∆# through an actuator at one 

of the support points. Hereby, a variation in the tension %� is generated through the cable. By applying a 

control law for these elongations, the vibrations of the cable may be damped. 

By increasing the modal damping ratio of selected modes an asymptotical stability of the system can be 

reached. One approach of doing so is by use of the pole placement method, as introduced in section 

4.3.3.  

As opposed to the semi-active MR-damper, the active controllers have no direct safety mechanism in case 

of power failure. Instead of having the same abilities as a viscous damper when no power is applied, the 

actuator will either lock the cable or have no resistance at all, which is a drawback.  
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4 Numerical modelling 

To formulate the equation of motion for the stay-cable it is necessary to determine the load caused by the 

oscillating rivulet. The cable is assumed only to be inflicted by a constant static mean wind load, which 

entail that the only change in the load on the cable is based on the change in the position of the rivulet. 

4.1 Modelling of the rain/wind induced loading 

The load model for the rain/wind induced aeroelastic loading will be presented, presuming that merely a 

single rivulet is influencing the flow pattern around the cable.  

The rain/wind induced force on the cable is a contribution of a lift- and drag force which depends on the 

wind angle of attack and the flow conditions. Static wind tunnel tests are used to determine the lift- and 

drag coefficient dependencies which will be described initially. 

4.1.1 Description of static wind tunnel tests 
The following rely on the tests performed by Gu, Du, and Li, (Gu, et al., 2008). In the tests the rivulet is 

represented by a semi-circle with the radius 5 and the position given by the centre angle 6, while the cable 

cross sectional radius is denoted 7 . The undisturbed wind flow have mean wind speed �� . The 

geometrical parameters and the assumed development of the streamlines in the upper side of the 

boundary layers are illustrated in figure 9. As seen, the rivulet on the upper half of the cross section is 

expected to create an earlier point of separation than for the lower part.  

As mentioned in chapter 2 the rain/wind induced vibration problem is caused by the formation and 

oscillation of the rivulet. Based on dimensional analysis the time dependent lift- and drag coefficients may 

be given as 

 

, , , ,

, , , ,

D D

L L

r
c c Re St t

R

r
c c Re St t

R

 
=  

 

 
=  

 

α

α

 (4.1) 

where 7' is Reynolds number, 8( is the Strouhal number, and ( is the time. 7' is defined as 

 02U R
Re =

υ
 (4.2) 

where 9 is the kinematic viscosity of air. As mentioned in chapter 2, the considered domain of the critical 

mean wind velocity is 9 − 15 � �⁄  and in this report the radius of the cable cross section 7 is considered 

around 5 − 9��. The considered temperatures are in the range of 5°< − 20°< which leads to kinematic 

viscosities in the range 1.3 ∙ 10?@ �A �⁄ ≤ 9 ≤ 1.5 ∙ 10?@ �A �⁄ . Then, the maximum value of 7' becomes 

7' ≈ 1.6 ∙ 10@ . The transition from laminar to turbulent boundary layer flow is near 7' = 5 ∙ 10@  which 

α
0

U

Lc

Dc

r

Figure 9: 2D representation of the wind tunnel tests. 
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implies a flow in the subcritical domain with laminar attached boundary layer. Then, the dependence of 7' 

is small, and hence it is ignored as an independent variable of the aerodynamic coefficients, (Peil, et al., 

2007). Further, 8( is constant and approximately equal to 0.20 throughout the sub-critical domain. 

The relative rivulet magnitudes are in the range 5 7⁄ ∈ [0.01 , 0.10] . Model tests show that �I  and �J 

depend very little on the actual magnitude of the rivulet in this interval, (Gu, et al., 2008). This suggests 

that the effect of the rivulet merely is to cause a separation of the upper boundary layer as illustrated in 

figure 9. 

The explicit dependence of ( is partly due to rhythmic vortex shedding, and partly due to turbulence in the 

incoming wind field. The vortex shedding is assumed to be periodic with the Strouhals angular frequency 

KL given as 

 0 02 0.63
2

S

U U
St

R R
=ω π ≃  (4.3) 

The above observations leads to the following reduced expression of (4.1) 

 
( ) ( )

( ) ( )

, ,

, ,

L L S

D D S

c t c t T

c t c t T

= +

= +

α α

α α
 (4.4) 

where ML = 2N KL⁄ . As the vortex shedding is assumed to be periodic, a Fourier series may be used to 

decompose the expressions in (4.3) and (4.4). It is well known that �I�6, (�  is dominated by the 1
st
 

harmonic and �J�6, (� by the 2
nd

 harmonic in the Fourier series expansion, (Prostas, et al., 2003). This 

suggests the following approximate expressions 

 
( ) ( ) ( ) ( )( )
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≃

≃
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where �I,O�6�  and �J,O�6�  represent the time-averaged mean values, �I,P�6�  and �J,Q�6�  are the 

dominating harminic amplitudes, and RI�6� and RJ�6� are the related phases. The most correct way 

would be to apply the models (4.5) in the dynamic analysis. As no data of the Fourier amplitudes and 

phases are available in the achieved literature this approach has not been possible. In the achieved 

literature, merely the RMS-values �SI and �SJ are indicated. These are related to (4.5) as follows 
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 (4.6) 

The test results are obtained by pressure taps mounted on the cable periphery as illustrated in figure 10. 

Here, TU�(� is the pressure and �V,U  is the centre angle of the Wth
 pressure tap, and T� is the referential 

pressure. The pressure coefficient �X,U in the Wth
 pressure tap is determined as follows 

 ( )
( ) 0

,
2

0

1

2

i

p i

p t p
c t

U

−
=

ρ
 (4.7) 
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The pressure coefficients are used to determine �I and �J by integration on the cable circumference as 

 

( ) ( )

( ) ( )

2

0

2

0

, , sin

, , cos

L P P P P

D P P P P

c t c t d

c t c t d

=

=

∫

∫

π

π

α θ θ θ

α θ θ θ

 (4.8) 

This procedure must be repeated while varying the position of the artificial rivulet, as given by the angle 6. 

The variation of the aerodynamic coefficients as function of rivulet position is hereby clarified. 

4.1.2 Interpretation of test results 
Figure 11 shows the variation of the RMS values �SI and �SJ as a function of the angle of attack 6.  

The significant drop in �I and increase in �J, in the vicinity of the critical angle of attack 6�YU, are observed 

in all the tests within the range 10° ≤ 6 ≤ 48° and cannot be consideret as an outlier which was initially 

expected. In order to illustrate the observed rapid variation of �I and �J, the pressure distribution on the 

cable surface is presented in figure 12. The three distributions are representative for the position of the 

rivulet in the following segments which is illustrated by hatched areas in figure 12: 

• figure 12a: 0° ≤ 6 < 10°  
• figure 12b: 10° ≤ 6 < 48°  
• figure 12c: 48° ≤ 6 ≤ 90°  

,p i
c

0 0
,p U

L
c

D
cα

,
θ

p i

Figure 10: Definition of pressure at 

the \th
 pressure tap. 

Dc
DcLc

Lc

Figure 11: Variation of the lift- and drag coefficients. 



 

14 

 

 

The governing expressions for �SI and �SJ are fitted the points as illustrated in figure 11 by polynomials c.f. 

(4.9). The slope of the curves changes dramatically when 6 = 6�YU = 48°. The expressions are therefore 

divided into two ranges distinguished by 6�YU. 

 

2 4 2 4 3 6 4 8 5

2 2 2 3 4 2 5

2

0.24 4.62 10 9.55 10 1.1 10 5.1 10 5.83 10
0 0.84    

0.51 4.38 10 0.15 3.21 10 0.16 6.21 10                

0.28 0.15 0.16 9.1 10
0.84  

2

L

D

L

c
rad rad

c

c
rad rad

− − − − −

− − −

 = + ⋅ − ⋅ − ⋅ + ⋅ − ⋅
≤ < 

= + ⋅ − − ⋅ + + ⋅

= − + + ⋅
≤ ≤

α α α α α
α

α α α α α

α απ
α

2 3 2 4

2 2 2 3 4 4

5.52 10             

0.86 0.19 5.79 10 4.63 10 5.78 10Dc

− −

− − −

 − ⋅


= − − ⋅ + ⋅ + ⋅

α α

α α α α

 (4.9) 

4.1.3 Derivation of load model  
In the following, the expressions (4.9) for the fitted �SI and �SJ will be used to express the aerodynamic load 

on the cable in the local 
′-direction of the cable finite element. 

The following delimitations and assumptions are used in the load model. 

• Quasi-static flow conditions for the RMS values of the lift- and drag coefficients 

• The upper rivulet is assumed to be uniformly distributed along the longitudinal axis for each cable 

finite element and oscillates circumferentially over the cable surface 

• Turbulent effects and axial flow effects are not considered 

• The cable chord inclination 
" is considered to be constant for the considered cable finite element 

• The elasticity of the cable supports due to the flexibility of pylons and bridge deck are not included 

• The mean wind speed �� is assumed constant along the discretized cable even though the wind 

profile change with height  

The quasi-static approximation entail that memory effects on the aerodynamic coefficients are ignored. 

This implies that the change in �SI and  �SJ over time, when the angle of attack varies, is assumed to take 

place momentarily. This simplification will be commented in section 4.1.4. 

In what follows, �Y"]  is the mean wind speed relative to the moving cable, 6�  is the angle of attack 

between � and the static position of the rivulet ��, � is the dynamic increment of the rivulet centre angle, 0 
is the angle between � and the �′-axis,  and 6"^^ signifies the effective, static angle of attack between �Y"] 

and the displaced position of the rivulet. The above is illustrated in figure 13 which is used to clarify the 

relation between cable- and rivulet motions in the following. 

1.3Pc = −
2.1Pc = −

0.9Pc = − 0.9Pc = −

0.5Pc = −
0.8Pc = −

0.8Pc = 0.8Pc =

1.0Pc = −

0.9Pc = −

0.8Pc =

0.9Pc = −

 

Figure 12: Pressure distributions on the cable surface as a function of the rivulet position. 
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As illustrated, the drag- and lift forces per unit of length, TI and TJ are perpendicular and parallel to the 

relative wind velocity �Y"], respectively. An expression for �Y"] is therefore sought initially. � is related to 

the undisturbed mean wind velocity �� as follows 

 
2 2 2

0 0cos sin sinU U= +β ϕ β  (4.10) 

The angle 0 is expressed as 

 
1 0

2 2 2

0

sin sin
sin

cos sin sin

−
 
 =
 + 

ϕ β
γ

β ϕ β
 (4.11) 

Assuming _+-�`_ ≪ �, the relative wind velocity may be linearized as follows, c.f. figure 13. 

 

( ) ( )
2 2

2

' '

'2

sin cos

1 2sin

rel y y

y

U U v v

v
U

U

= − +

 
− 

 

γ γ

γ

ɺ ɺ

ɺ
≃

 (4.12) 

where +-�` is the velocity of the cable finite element in the local 
′-direction. The effective angle of attack 

between the relative wind velocity and the position of the displaced rivulet becomes 

 
0eff = +α α ∆α  (4.13) 

where 

 

0 0

'

2

cos
y

v

U

= + −

= − −

π
α γ θ

∆α γ θ
ɺ

 (4.14) 

The centre angles defining the static position of the rivulet �� and the dynamic oscillation of the rivulet � 

are considered positive counter clockwise. The lift- and drag coefficients are supposed to depend merely 
on the present value of 6"^^ due to a quasi-static assumption. If the dynamic increment fulfils |∆6| ≪ 1, �SI 

and �SJ may be linearized around the static angle of attack 6"^^. In combination to the linearization of �Y"]
Q  

( )'y
p t

'y

U

relU

'
ɺ

y
v

γ

θ
0

θ

α
eff

Dp

L
p

'
cosγɺ

y
v

'
sinγɺ

y
v

0
α

'z

'
ɺ

y
v

 

Figure 13: Definition of parameters used in the load model. 
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as given in (4.12) this provides the following linearized expressions for the lift- and drag force per unit of 

length. 

 

( )2

' ',02

,0

',0 ,02

,0 ,0

1 2sin cos

2sin cos

L rel L eff

y yL

L

yL L

L L
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U U
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U R c c

U
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 ∂   
− − +     ∂    

 ∂ ∂ 
− + −  

∂ ∂  

ρ α

ρ γ γ θ
α

ρ γ γ θ
α α

ɺ ɺ
≃

ɺ
≃

 (4.15) 

 

( )2

',0 ,02

,0 ,02sin cos
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yD D

D D

p U Rc
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U R c c

U

=

 ∂ ∂ 
− + −  

∂ ∂  

ρ α

ρ γ γ θ
α α

ɺ
≃

 (4.16) 

where �SI,� = �SI�6�� and �SJ,� = �SJ�6��. The load per unit length T�` in the local 
′-direction is obtained by 

projection of TI  and TJ in the 
′-direction. Again a linearization is used to expand the sine and cosine 

functions around 0. 

 

' '

'

' '2

',0 ',1 ' ',2
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 (4.17) 

where 
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',0 ,0 ,0

,0 ,02 2

',1 ,0 ,0
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sin cos

1 1
1 sin sin2 sin2 cos

2 2
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y L D

L D

y L D

L D
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p U R c c
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p U R
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∂ ∂ 

∂ ∂ 
= − + 

∂ ∂ 

ρ γ γ

ρ γ γ γ γ
α α

ρ γ γ
α α

 (4.18) 

From (4.18), a static offset of the cable displacement is expected due to the static load term T�c,�. Based 

on a stability analysis of the boundary layer equations for the water film, it was shown by Verwiebe that up 

to four ranges of equilibrium positions defined by different centre angles �� exist, (Peil, et al., 2007). The 

equilibrium positions are expected to depend merely on the mean wind speed, as investigated e.g. by 

Hikami, (Hikami, et al., 1988). The governing equation for �� = ������ is fitted the results indicated in 

figure 14 by a 4
th
 order polynomial. 
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The test performed by Hikami and Shiraishi was performed for one specific set-up only. However, this is 

the only achieved information for which it is used in the following. 

4.1.4 Memory effect and non-stationarity 
As mentioned, the considered load model assumes quasi-stationary conditions. The aerodynamic forces 

are hereby assumed to change momentarily due to changes of the effective angle of attack. In reality the 

non-stationary flow around the cable will not adjust to the new flow conditions until the elapse of some 

time. This transient phase is displayed as a memory effect on the lift- and drag coefficients. 

A suitable upgrade to the numerical model would be to take this memory effects into consideration. 

Experimental results would be necessary for this to be implemented, which are not available. However, a 

brief exposition of the issue is made for the lift-coefficient, and the principle is assumed to be similar for 
the drag-coefficient. An increment d6"^^�1� of the effective angle takes place at some time 1 < ( prior to 

the present time (. Due to the transient establishment of stationary flow conditions, the corresponding 

increment of the lift coefficient d�I�(� is delayed as given as 

 ( )
( )

( ) ( )0L

L L eff

dc
dc t t d

d
= −

α
Φ τ α τ

α
 (4.19) 

where eI represents a non-dimensional impulse response function, also named an indicial function, for 

the lift coefficient �I�(�. The total non-stationary lift-coefficient at time ( is obtained by superposition as 

 ( ) ( )
( )

( ) ( )0

0

0

t
L

L L L eff

dc
c t c t d

d
= + −∫

α
α Φ τ α τ τ

α
ɺ  (4.20) 

No exact information about the indicial function for this specific problem is available, for which reason the 

following is based on experience with aerofoils and general reasoning.
 

The Laplace transformation of the indicial function is approximated by means of a proper rational 

approximation 

 ( )
( )
( )

1

0 1 1

1

1 1

m m

m m
L n n

n n

P s p s p s p s p
s

Q s s q s q s q

−
−

−
−

+ + + +
= =

+ + + +
Φ

⋯

⋯
 (4.21) 

The coefficients T� ,..., TO  and f� ,...,  fg  are real and � ≤ h . The indicial function is not assumed to 

represent an oscillatory response for which reason all poles are assumed to be non-positive real valued. 

Figure 14: Static position of the upper rivulet as 

a function of the mean wind velocity, (Hikami, et 

al., 1988). 
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( )
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j

j

s

s

≤

=
 (4.22) 

Further, the limit e�( → ∞� = 1 implies that a zero pole � = 0 must exist corresponding to fg = 0. Then, 

(4.21) is equivalent to the following expansion in partial fractions 

 ( )
2

1 1n
j

L

j j j

a
s

s s s s=

= −
−

∑Φ  (4.23) 

where )k  are real constants. The inverse Laplace transformation provides the following expression for 

eI�(� 

 ( )
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1 j

n
s tj
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j j

a
t e
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= −∑Φ  (4.24) 

Next, (4.24) is inserted into (4.20) 
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(4.25) 

The final expression for the lift-coefficient is only depending on 6"^^ and the state variables �k�(� defined 

by 

 ( ) ( ) ( )
0

j

t
s t

j effz t e d
−

= ∫
τ

α τ τ  (4.26) 

Since no complex poles occur, the eI function can be illustrated as in figure 15 where a dimensionless 

time variable has been introduced.  

To implement the memory effect in the model, tests are to be made to determine the coefficients )k and 

the poles �k. 

( )L tΦ

tU

R

( )0LΦ

Figure 15: Qualitative dependence of lm�n� as 

a function of time. 
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4.2 Structural modelling 

A cable as described in section 2.2 is considered. The chord length is divided into h equivalent intervals 

∆� = # h⁄  which corresponds to h + 1 equidistance nodes with �� = 0 and �gpP = #. The end-points �U and 

�UpP of the i
th

 interval defines the nodal points of the i
th
 cable element as shown on figure 16. It should be 

noted that when the damper is accounted for, a correction could prove to be beneficial. Adding a separate 

damper node allows for a decrease in h, reducing the total computational time. 

Each node has three degrees of freedom. Since the cable is fixed at the supports this implies that the 

cable has � = 3�h − 1�  number of degrees of freedom. The sag of the cable is considered small 

compared to the chord length. As a consequence, the prestressing force along the chord in the static 

equilibrium state is assumed constant for all elements. Furthermore, a parabolic static suspension may be 

assumed, given by 

 ( ) 4 1
x x

y x f
L L

 
= − − 

 
 (4.27) 

The sag $ is given as 

 

2

0

0

1
cos

8

gL
f

F
=

µ
ϕ  (4.28) 

The length q"  of the cable element W and the inclination of the element 
" in the static equilibrium state is 

defined as the angle from the local �′-axis to global x-axis positive in the � -direction. The following 

formulations are based on (Nielsen, 2004). 

A deformed cable element is illustrated in figure 17. The dynamic displacement vector of a particle with the 
referential position at �’ is denoted s"

` ��’, (� with local components  +t’��’, (�, +�’��’, (�, and +�’��’, (�. The 

external dynamic load vector per unit length of the referential static equilibrium suspension u"
` ��’, (� has 

the local components Tt’��’, (�, T�’��’, (�, and T�’��’, (�. The element degrees of freedom are assembled in 

the vector v"
` w�(� = [fP

` �(�, … , fy
` �(�] , where fP

` �(�, … , fy
` �(�  signify the components of the end section 

displacements relative to the local ��′, 
′, �′� -coordinate system. The nodal reaction force vector 

conjugated to v"
` �(� is denoted z"

`�(� and contains the components 5P
`�(�, … , 5y

`�(�. 

y

x

1
nx +

1
ix +

ix

x∆

z
'z

'y

el

'x

eϕ

Figure 16: Cable shown in the global auxiliary coordinate system, 

discretisized in { elements. 
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The displacement field s"
` ��’, (�  in local coordinates along the element is approximated by linear 

interpolation between the displacements of the end sections as 

 ( ) ( ) ( ),e ex t x t′ ′ ′ ′=v N q  (4.29) 

The shape functions in the shapematrix |��’� are given as 
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e e

x x
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l l

′ ′
′ ′= − =  (4.31) 

The local equation of motion for the element is formulated by Lagranges equation for the chosen degrees 

of freedom. The Lagrangian becomes 

 ( ) ( ) ( ),e e e e e e eL T U′ ′ ′ ′= −q q q qɺ ɺ  (4.32) 

where the kinetic energy M"�v- }` � and the potential energy �"�v}
` �, including the potential energy of the 

conservative external loads and reaction forces, are given as 
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(4.34) 

The consistent mass matrix ~"
` , stiffness matrix �"

`  and nodal load vector u"
`  of the structural element are 

given as follows 

Figure 17: Cable element in the local coordinate system. 
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In the final result of (4.37) it has been assumed that the loads per unit length are constant within the 

element. The Lagrange equations of motion of one element can now be written as 
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 (4.38) 

�"
`  is the linear viscous element damping matrix. The damping matrix is assumed to be proportional to the 

mass- and stiffness matrices, i.e. Rayleigh damping 

 0 1e e e
a a′ ′ ′= +C M K  (4.39) 

The two damping coefficients )� and )P are determined from the corresponding global structural damping 

matrix as indicated in the following.  
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4.2.1 Cable equation of motion 
The equation of motion of one element in the global ��, �,  �-coordinate system may be written as 

 ( ) ( )e e e e e e e et t+ + = +Mq C q K q p rɺɺ ɺ  (4.40) 

The transformation between local and global components of the DOF-vector may be written as 

 ( ) ( )e e et t′=q A q  (4.41) 

The corresponding transformation between local and global components of the element matrices, load and 

reaction vectors read 

 , ,T T T

e e e e e e e e e e e e
′ ′ ′= = =M A M A C A C A K A K A  (4.42) 

 ( ) ( ) ( ) ( ),T T

e e e e e et t t t′ ′= =p A p r A r  (4.43) 

The transformation matrix �� is given by 
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A 0
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0 A

ϕ ϕ

ϕ ϕ  (4.44) 

Assembling all element matrices and correction for kinematic boundary conditions leads to the global 

equation of motion 

 ( )
1 1 1 1

,S S S S S S S S S
mxmmx mxmmx mxmmx mx

θθθθ+ + =M v C v K v p vɺɺ ɺ ɺ  (4.45) 

where s� = s��(�, s-� = s-��(�, and s�� = s���(� denotes the time dependent systems displacement-, velocity-, 

and acceleration vector in the global ��, �,  � coordinate system, respectively and ~L, �L, and �L are the 

structural mass-, damping-, and stiffness matrices, respectively. According to (4.39), )�  and )P  are 

determined so the damping matrix represents the 1
st
 and 2

nd
 in-plane modal damping ratios �P and �Q 

correct. This implies the calibration, (Nielsen, 2004) 
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ω ω
ζ2ω ω

ζω − ω
ω ω

 (4.46) 

where KP and KQ denotes the undamped angular frequencies of the two lowest in-plane eigenmodes, and 

�P and �Q  are the corresponding modal damping ratios, which are assumed to be known. 

The contribution to uS�(� from self-induced aerodynamic loads are described in section 4.1. Only loads in 

the 
′-direction is considered. Hence, loads in the local �′-direction (chord-wise) and the local �′-direction 

(out-of-plane) are ignored. According to (4.18), the load per unit length may be expressed as follows 

 ( )', ', ',0 ',1 ', ',2,y e e y e y y y e y ep v p p v p= + +θ θɺ ɺ  (4.47) 

where �" = �"�(� is the centre angle describing the dynamic position of the rivulet which is assumed 

constant along the cable finite element, c.f. section 4.1. The three components in (4.47) specifies a quasi-

static contribution, an aerodynamic viscous damping term, and an aerodynamic stiffness term, 

respectively. On matrix form and expressed in global coordinates they are written as follows 

 ( ) 1 1 0
1 1 1 1

,
S S S S S

mxn mxmmx nx mx mx

θ θθ θθ θθ θ= + +p v K C v pɺ ɺ  (4.48) 
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where 
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It should be noted that the �� contributions are computed by the displacements defined in (4.29) which is 

the mean of the displacements in each node. 

4.2.2 Rivulet equation of motion 
The equation of motion of the rivulet will be generated by use of an analytical model similar to the Robra 

model, c.f. section 2.1. The oscillation of the rivulet will in nature behave differently along the cable, but in 

the numerical model it is assumed to oscillate in a uniform way along each finite element. Hence, no 

coupling of the rivulet motion between adjacent elements. However, as will be accounted for below, the 

rivulet motion merely depends on the cable motion which in turn introduces a connection of the rivulet 

motion between adjacent elements. The SDOF representation of the rivulet model is illustrated in figure 

18. 

' ' ,  y yv vɺɺ

'y

'z

0θ
θ

Rθɺɺ

Figure 18: Excitation 

mechanism and SDOF model 

of the rivulet motion. 
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When �� is imposed a small perturbation �, the rivulets will perform damped eigenvibrations around �� 

specified by the undamped angular eigenfrequency KY and a non-linear damping mechanism indicated 

below. Results from wind tunnel tests indicate that the frequency of the rivulet motion is almost the same 

as that of the cable motion when rain/wind induced vibrations take place, (Hikami, et al., 1988). In the 

numerical model KY = K� will be used, where K� signifies the fundamental frequency of the cable model. 

The motion of the rivulet is caused by the tangential acceleration −+��`�Wh�� + ��� of the cable at the 

position of the rivulet in the direction defined by the DOF �. 

The dynamic equation of motion for the rivulet follows by application of Newton’s 2
nd

 law of motion to 

rivulet mass �, (Wang, et al., 2003). A linearization around �� has been introduced in consistence with the 

previous approximations. 
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 (4.53) 

where �Y is a non-dimensional damping parameter which is assumed to be known. Based on the achieved 

literature �Y = 10, (Wang, et al., 2003). The parameter )Y is in the interval )Y  � [0,1] which means that the 

damping model may be envisioned as an interpolation between a linear viscous damping model �)Y = 0� 

and a fluid damping model �)Y = 1�. 

The equations of motion for the h number of rivulets are assembled in the matrix equation 

 ( ) ( )2 2 1
11 1 1 1

S S S S S S
nxnxn nxmnx nx nx mxnxn

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ+ + − =C θ K M v 0ɺɺɺ ɺɺ  (4.54) 

where 
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(4.55) 

The constants KY , �Y , and )Y  are assumed to be the same for all cable finite elements and the 

transformation vector �U
w is defined by  

 [ ],
1 1

           0 0 sin cos 0 0T T

y i i S i i i
xmmx

v = = −a v a ϕ ϕ⋯ ⋯  (4.56) 

As mentioned, the linearized approximations require that the dynamic increment fulfils |Δ�| ≪ 1 when � is 

measured in radians. This has been accounted for in the numerical model as the computations will stop if 

the condition is violated. 

4.2.3 Linearization of the rivulet damping term 
When the pole placement method is applied, c.f. section 4.3.3, the coefficient matrix � must be constant. 

An equivalent damping parameter �Y," of the rivulet oscillator is therefore sought. 

The nonlinear damping force $, on the rivulet from (4.53) reads 

 2
ra

d r rf = ζ ω θ θɺ ɺ  (4.57) 

 

 

 



 

25 

 

 

The linearization must satisfy an equal energy dissipation per period MY, which results in the following 

 ( ) ( ) 2

,

0 0 0

2 2
r r r

r

T T T
a

d r r r e rf t t dt dt dt= =∫ ∫ ∫θ ζ ω θ θ ζ ω θɺ ɺ ɺ ɺ  (4.58) 

where �Y," is the equivalent damping ratio. Isolation of �Y," yields 
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 (4.59) 

A harmonic oscillation is assumed with the period KY( and the amplitude ��OX 

 ( ) ( ) ( ) ( )cos sinamp r amp r rt t t t= ⇒ =−θ θ ω θ θ ω ωɺ  (4.60) 

If (4.60) is inserted in (4.59) the following expression for �Y," appear 
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 (4.61) 

where 1 = KY( = Q�

w�
. Substituting 
 = cos ( and solving $�)Y� numerically, yields 
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The parameter )Y is chosen in accordance with (Wang, et al., 2003). Wind tunnel tests have indicated 
rivulet amplitudes of ��OX = 10° ≈ 0.175)d, (Hikami, et al., 1988). It must be noted that this value entail 

some uncertainty. The rivulet damping ratio �Y = 10 and the undamped angular eigenfrequency of the 

rivulet KY ≈ K� = 2.37�?P. The general expression of �Y," reads 
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4.2.4 State vector formulation 
The expressions (4.45), (4.48) and (4.54) may be assembled in the following global nonlinear equation of 

motion describing the coupled cable-rivulet system 
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 (4.64) 

which may be expressed on matrix form as 

 ( ) ( ) ( ) ( ) ( )    ,   0S St t t tθ θθ θθ θθ θ+ + = >M w C w Kw pɺɺɺ ɺ  (4.65) 

The introduced matrices in (4.65) are defined as 
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The time-varying ordinary differential equation (4.64) is solved with respect to the initial conditions 

��0� = �� and  �- �0� = �- �, by means of numerical integration. In the present case this is done by explicit 

integration where the fourth order Runge-Kutta method (RK4) is applied. Then, (4.64) must be expressed 

on the state vector form. (4.65) may be written as 
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which may be written as the following state vector formulation 
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where the introduced matrices in the latter expression are defined as 
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The inverse of the mass matrix is given as 
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The RK4 method, according to (4.72), may be used to evaluate ��(gpP�.  
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where Δ(  is the time step and $���  denotes the right hand side of (4.72). The implementation of the 

damping mechanisms described in chapter 3 will be treated consequently. 

4.3 Control Algorithms 

Introducing a damper force leads to an expansion of the state vector formulation (4.68). In collocated 

feedback control the control force depends on the response of the damper node only. In state feedback 

control the control force depends on the state of the system, which in the present case is described by the 

state vector ��(�. In the following sections, the control algorithms used in the numerical model will be 

described. The perpendicularly attached dampers are handled initially, followed by the active control of 

axial forces. 

The cable, the position of the perpendicularly attached damper (as introduced in chapter 3), and the 

related variables are illustrated in figure 19. The damper is attached to node W, which has the displacement 

vector sU  with the global components +AU?Q, +AU?P, and +AU  in the global ��, �,  �-coordinate system. The 

unit vector � is used to signify the direction of the damper force .�(�. The derivation of the global control 

force for the perpendicularly attached dampers is descried consequently. 

The damper is placed in the ��, ��-plane and has the inclination * with the �-axis. Then, the displacement 

+, and the velocity +-, of the damper support point in the direction of � are given as 

 ( ) ( ) ( ) ( ) [ ]     ,           ,      cos sin 0T T T

d i d iv t t v t t= = = −n v n v n Ψ Ψɺɺ  (4.73) 

nΨ
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3 2iv −

3 1iv −
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( )u t

 

Figure 19:  Control forces on the cable in the dynamic state. 
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Formally, the nodal displacement vector corresponding to node W can be written in terms of the global 

system displacement vector by means of the following transformation 
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The control force must be expressed in terms of components related to the global coordinate system. The 

control force on node W has the magnitude .�(� and is opposite directed to �. Then, the global control force 

vector u��(� of dimension ��1 may be expressed as 

 ( ) ( )T

c it u t= −p A n  (4.75) 

u��(� is added to the static aerodynamic load in (4.65). Then, (4.65) may be written as 

 ( ) ( ) ( ) ( ) ( ) ( )1   ,   0S St t t u t tθ θθ θθ θθ θ+ + = + >M w C w Kw p pɺɺɺ ɺ  (4.76) 

where  
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Then, (4.68) may be recasted as follows 

 ( ) ( ) ( ) ( ) ( ) ( )0,    ,   0S S S St t u t tθ θ θ θθ θ θ θθ θ θ θθ θ θ θ= + + >z A z b bɺɺ  (4.78) 

where 
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Using (4.71) and (4.77) the matrix product ~?P����u� may be evaluated as 
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The following sections will give specifications for .�(�  in accordance to the considered damping 

mechanism. The global control force vector u��(� will be expressed according to each of the control laws. 

4.3.1 Passive viscous damping 
The co-reaction force .�(� induced by the viscous damper is given by the expression 

 ( ) ( )du t cv t= ɺ  (4.81) 

where � is the damping coefficient fitted to the cable characteristics. The damping coefficient in case of 

optimal tuning to the n
th
 mode is given by the following expressions on the condition that the damper is 

acting in the orthogonal direction to the cable chord, (Krenk, 2000),(Kovacs, 1982). 
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The optimal damping ratio becomes 
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opt

a

L
ζ ≃  (4.83) 

If the tuning is performed to the 1
st
 mode �P = ��X�, the modal damping ratio of the higher modes are 

approximately given as, (Krenk, 2000) 
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The global control force distribution vector according to (4.75) for the viscous damper can be written as 
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4.3.2 Semi active MR-damping 
The MR damper is considered as a combined variable linear viscous and friction damper. The friction part 

of the model has for long been described by the Bouc-Wen model, which has been rather accurate, (Zhou, 

et al., 2006). However, the number of parameters to be identified in this model is up to 14, which can 

make it quite impractical. As the well known Coulomb friction model does not rightfully represent the force-

velocity relationship in the low-velocity range, neither this model should be used. Instead, Zhou, Nielsen 

and Qu suggested a modified Dahl hysteresis model as illustrated in figure 20, based on experimental 

results, (Zhou, et al., 2006). This model has proved good accuracy, reduces the amount of unidentified 

parameters to 8, and it is valid in the low-velocity range. The model basis is that the friction force is only 

position dependent, as it is only a function of the dynamic cable displacement and sign of cable velocity. 

The control force is given by 

 ( ) ( ) ( ) ( ) ( )0 0 0d d fu t k v t c v t p t z t p= + + −ɺ  (4.86) 

where �� is the linear stiffness coefficient, �� is the variable viscous damping coefficient, T^ is the friction 

force modulated by the applied magnetic field, and T�  is a damper force caused by seals and 

measurement bias. � is a hysteretic variable which describes the following hysteresis relation between the 

friction force and the cable velocity 

 ( ) ( ) ( )( ) ( )( )1 sgnd dz t v t v t z t= −σɺ ɺ ɺ  (4.87) 

where � characterize the hysteretic loop shape. When the fluctuating magnetic field is applied, the Dahl 
model should be calibrated. This is done through the parameters �� and T^, which depend on the applied 

magnetic field. 

( )u t( ) ( ),  d dv t v tɺ

0k

0c

fp

Figure 20: Modified Dahl model of the MR damper. 
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 ( ) ( )0 0,0 0,1c t c c y t= +  (4.88) 

 ( ) ( ),0 ,1f f fp t p p y t= +  (4.89) 

where ��,�  is the damping coefficient corresponding to the damping coefficient of an equivalent linear 

viscous damper and T^,� is the Coulomb force of the MR-damper when the applied voltage � = 0�. 
 is an 

intrinsic variable in the model, which is determined by the first-order filter 

 ( ) ( )( )y t y t V= − −ηɺ  (4.90) 

2 describes the response time of the MR-damper. The larger 2, the smaller response time. When 2 is 

large, 
 ≈ �, which when inserted in (4.89) gives the following expression for the needed voltage 

 
( ) ,0

,1

f f

need

f

p t p
V

p

−
=  (4.91) 

The control demand for the friction force T^ is proportional to the absolute value of the previous peak 

extremum of +,�(� determined by the functional � as illustrated in figure 21. 

Consider the formulation 

 ( ) ( ) ( ),0 ,1f f f f dp t p p y t P v t = + =  β  (4.92) 

where �̂  is a controller gain adjusted to the considered system. If (4.92) is inserted in (4.91), �g"", can be 

found by 

 ( )
( ) ,0

,1

f d f

need

f

P v t p
V t

p

  − 
=

β
 (4.93) 

The applied voltage to the MR-damper is given on the form 

 ( )

( )

( ) ( )

( )
max

max max

0          ,  0

   ,  0

     ,  

need

need need

need

V t

V t V t V t V

V V t V

 ≤


= ≤ ≤


≥

 (4.94) 

An important merit is the easy implementation as only the local dynamic responses +,�(� and +-,�(� are 
needed. However, the optimal controller gain �̂  is unknown and should be estimated by numerical trials. 

 

t

dv

s

t

( )dv t

( ) ( )d dP v t v s  = 
 

Figure 21: Peak determination. 
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Inserting (4.86) in (4.75) gives the global control force distribution vector for the semi-active MR-damper 

as 

 ( ) ( ) ( )( ) ( )0 0 0

T T T

c i i S S i ft k t c t p z p= − + − −p A nn A v v A nɺ  (4.95) 

4.3.3 Active control by pole placement 
In the active state feedback control the first 2�P closed loop poles associated with the first 2�P closed loop 

eigenmodes are prescribed, where �P < � and � = � + h. The state feedback controller gain vector �VV 

of dimension 2��1, which produce the addressed closed loop poles are determined by the pole placement 

method presented below. For a single input system, the control force may be written as 

 ( ) ( )T

PPu t t= g z  (4.96) 

(4.96) is inserted in the state vector formulation (4.78) 

 ( ) ( ) 0t t= +z Az bɺ  (4.97) 

where 

 
T

PP= +A A bg  (4.98) 

where �� = ����L, �- L  , � = ���L, �- L  , ¡� = ¡���L� , and ¡ = ¡��L� . In a practical implementation of the 

algorithm the system state vector ��(� must be estimated by a state observer equation, (Juang, et al., 

2001). Normally, only the cable displacements can be measured. Hence, it may be questioned whether 

the part of the state vector defining the rivulet motions is observable. For this reason the modes dominated 

by the rivulet motion will not be controlled. On the other hand the rivulet motions are driven by the cable 

acceleration. Hence these will be damped simultaneous with the dominant cable mode. 

The open loop state vector equation of motion is given by (4.68) in which the dependence of �, ¡� and ¡ 

on the state vector ��t�  stems from the nonlinear damping term and the time varying tangential 

acceleration in the rivulet equations of motion. In the following pole placement control design, an 

equivalent linear rivulet equation is introduced, corresponding to replacing �Y_�-_
��

 with an equivalent 

damping ratio �Y," in (4.53). The linearization of the rivulet damping term is presented in section 4.2.3. 

Additionally, only the first term in the linearized expression of £�¤L� in (4.55) is included. Hereby, � is 

assumed a constant matrix in what follows. 

At first damped eigenvibrations of (4.68) are considered, corresponding to 

 ( ) ( )t t=z Azɺ  (4.99) 

The solution of (4.99) is given as  

 ( )= e      ,      1, ,2jt

jt j N=z Φ
λ

…  (4.100) 

where �¥k , ¦§   indicates the eigenvalues and eigenvectors of the following linear so-called open loop 

eigenvalue problem 

      ,      1, ,2j j j j N= =AΦ Φλ …  (4.101) 

If �¥k , ¦§  is an eigensolution to (4.101), so is the complex conjugate �¥k
∗, ¦§

∗ . Generally, the eigenvalues 

are complex and may be written on the form 

 j j ji=− +λ µ ν  (4.102) 

/k  specifies the damping of the ¨ th
 mode, which for a stable mode is less than zero. ©k  indicates the 

damped angular eigenfrequency of the ¨th
 mode. (4.102) may be rewritten on the form 

 ( )21j j j ji= − + −λ ω ζ ζ  (4.103) 
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where 

 
2 2

j j j j
= =ω µ + ν λ   (4.104) 

 
2 2

j

j

j j

=
+

µ
ζ

µ ν
 (4.105) 

Kk and �k may be interpreted as the undamped angular eigenfrequency and the modal damping ratio of 

the ¨th
 mode, respectively. A system is known to be unstable if one of the open loop poles have positive 

real part, corresponding to �k < 0.  

The idea of linear state feedback control is to ensure that the closed loop poles are placed as far to the left 

in the complex plane as possible. However, an undercritically damped system should be obtained. The 

pole placement method produces the mentioned control gains. The following single input control is based 

on, (Porter, et al., 1972). It should be noted that the pole placement method also exist in other forms, 

(Juang, et al., 2001). 

The equivalent damping ratio of the rivulet equations of motion �Y," is at least two order of magnitudes 

larger than the damping ratio of the cable modes. Then, the 2h eigenmodes dominated by the rivulet 
motions are identified by damping ratios �k as given by (4.105) which are of the order of magnitude as �Y,". 

The corresponding eigenmodes are specified by the index ¨ = 2� + 1, … ,2�. These modes will not be 

controlled. The remaining 2� modes indicates the modes dominated by cable vibrations. These will be 
ordered pairwise in ascending order of ©k corresponding to 

 10 ... m< < <ν ν  (4.106) 

The 2� eigenvalueproblems defined by (4.101) may be assembled in the following matrix formulation 

 =AΦ ΦΛ  (4.107) 

where the modal matrix ¦ and the diagonal eigenvalue matrix ª has the structure 

 

[ ]1 2 3 2 1 2

* * *

1 1 3 3 2 1 2 1

1 1

*

2 1

2 1 2 1

*

2 2 1

, , , ,

, , , , ,

0 0 0 0

0 0

0 0

0 0 0 0

N N

N N

N N

N N

−

− −

− −

−

=

 =  

   
   
   
   = =
   
   
      

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ

Λ

λ λ

λ λ

λ λ

λ λ

⋯

⋯

⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯

 (4.108) 

The adjoint eigenvalue problem reads 

 , 1, ,2T

j j j j N= =A Ψ Ψλ …  (4.109) 

As seen, the eigenvalues of the original and the adjoint eigenvalue problems are identical. Moreover, the 

corresponding eigenvectors fulfil the orthogonality conditions, (Nielsen, 2004) 

 
0 ,

1 ,

T

j k

j k

j k

≠
= 

=
Ψ Φ  (4.110) 

 
0 ,

,
T

j k

j

j k

j k

≠
= 

=
Ψ AΦ

λ
 (4.111) 

Notice that (4.110) and (4.111) presume a proper normalization of either « or ¦ so the scalar product 

«§
T¦k = 1. Correspondingly, the orthogonality relations may be written in the matrix form 
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T

T

=

=

Ψ Φ I

Ψ AΦ Λ
 (4.112) 

From (4.111) follows that the original and the adjoint eigenvectors are related as 

 ( )1
T

−=Ψ Φ  (4.113) 

(4.109) may be assembled on the matrix form 

 
* * *

1 1 2 2

T

N N

=

 =  

A Ψ ΨΛ

Ψ Ψ Ψ Ψ Ψ Ψ Ψ⋯
 (4.114) 

The order of the eigenvectors of « follow the same rule as those of ¦. 

The lowest 2�P < 2� modes (the 2�P modes with lowest damped eigenfrequency ©k) will be controlled. In 

this respect the gain vector �VV is chosen as a linear combination of the lowest 2�P modes of the adjoint 

eigenvectors 

 
12

1

N

PP j j

j

g
=

=∑g Ψ  (4.115) 

where &k denotes the modal control gains which will fulfil &Q­ = &Q­?P
∗  for � = 1, … , �P. Insertion of (4.115) 

in (4.98) provides the following closed loop system matrix 

 
12

1

N
T

l l

l

g
=

= − ∑A A b Ψ  (4.116) 

The eigenvalues ®k and eigenmodes ¦�k of �� are denoted the closed loop eigenvalues and eigenmodes. 

These fulfil 

 `      ,     1, ...,2j j j j N= =AΦ Φρ  (4.117) 

Again, the closed loop eigenmodes are ordered after the same principle as the open loop eigenmodes. It 

follows from (4.110) and (4.116) that 

 1=      ,     2 1,...2k k k k k N N= = +AΦ AΦ Φλ  (4.118) 

This means that ®­ = ¥­ and ¦� ­ = ¦­ for � = 2�P + 1, … ,2�. Hence, the eigenvalues and eigenvectors of 

the uncontrolled modes of the closed loop system are identical to those of the open loop system. 

Because the open loop eigenvectors ¦k , ¨ = 1, … ,2�  are linearly independent, the closed loop 

eigenvectors can be expanded in the vector base formed by the open loop eigenvectors 

 

2

1

1

     ,     1,...,2
N

j jk k

k

d j N
=

= =∑Φ Φ  (4.119) 

Insertion of (4.119) and (4.116) in (4.117) for ¨ = 1, … ,2�P  and use the orthogonality property (4.110) 

provides 

 

1

1

2 2 2

1 1 1

22 2

1 1 1

                                                                              ,     1,...,2

N N N
T

l l jk k j jk k

l k k

NN N

jk k k jl l jk j k

k l k

g d d

j N

d d g d

= = =

= = =

 
− = 

 

⇓ =

− =

∑ ∑ ∑

∑ ∑ ∑

A b Ψ Φ Φ

Φ b Φ

ρ

λ ρ

 (4.120) 
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Further, the vector ¡ may be decomposed in the vector base formed by the open loop eigenvectors 

 

2

1

N

k k

k

b
=

=∑b Φ  (4.121) 

where 

      ,     1,...,2T

k kb k N= =Ψ b  (4.122) 

Insertion of (4.121) in (4.120) provides the following vector identities 

 ( )
122 2

1

1 1 1

0     ,     1,...,2
NN N

j k jk k k jl l k

k k l

d b d g j N
= = =

 
− + = = 

 
∑ ∑ ∑Φ Φρ λ  (4.123) 

(4.123) is equivalent to the following 2�P × 2� linear equations 

 ( )
12

1

1

0     ,     1,...,2      ,     1,...,2
N

j k jk k jl l

l

d b d g j N k N
=

− + = = =∑ρ λ  (4.124) 

For fixed ¨, (4.124) represents a system of homogenous linear equations for the determination of dk­ , 

� = 1, … ,2�. On matrix form these equations read 

 

1

1

11 1 1 1 1

1 1 1 1 1

1

1 1 1 1 2 1 2  1

2 1 2 2 2 2 2  2

 22 1 2 2 2 2 2

 22 1 1 2 1 2 2 1 2 2 1

2 1 2 2 2 2 2

0 0

0 0

0 0

0 0

0

j N j

j N j

j NN N j N N N

j NN N N N j N

N N N N j N

b g b g b g d

b g b g b g d

db g b g b g

db g b g b g

b g b g b g

+ + + +

− + 
 

− + 
 
 
 − +
 

− 
 
 
 − 

ρ λ

ρ λ

ρ λ

ρ λ

ρ λ

⋯ ⋯

⋯ ⋯

⋮⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

1 1

 2

0

0

0

0

0
j Nd

+

                 =                  

⋮

⋮⋮

(4.125) 

Non-trivial solutions for dk] where q = 1, … ,2�P requires that the coefficient matrix of the first 2�P equations 

are singular. Assume that these solutions are given as 

 1     ,     1, ,2k
jk

j k

b
d k N= =

−ρ λ
…  (4.126) 

Then, the first 2�P equations of (4.125) may be written as 

 

( )
( )

( )

1 1

1 1

1 1 1 1

1 1 1 1 2 2 2 2

2 2 1 1 2 2 2 2

2 2 1 1 2 2 2 2

0

0

0

j j j j j N N

j j j j j N N

j N j N j j j N N

d d d g d g d g

d d d g d g d g

d d d g d g d g

+ + + + =

+ + + + =

+ + + + =

…

…

⋮

…

 (4.127) 

Hence, (4.126) is indeed a solution to (4.125) for arbitrary ¨ if 

 
1 11 1 2 2 2 2 1j j j N Nd g d g d g+ + + = −…  (4.128) 

Then, the solution (4.126) also applies for the remaining equations, i.e. 

 1     ,     2 1, ,2k
jk

j k

b
d k N N= = +

−ρ λ
…  (4.129) 

It can be shown that the coefficient matrix of (4.125) has the rank 2�P − 1. This means that save for an 

arbitrary common factor the solution (4.126) is unique if (4.128) is fulfilled. 
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The idea of the pole placement method is to prescribe the eigenvalues ®k , ¨ = 1, … ,2�P . Hence, dk­ , 

� = 1, … ,2�P in (4.126) are known (i.e. prescribed quantities for arbitrary indices ¨). Then, the unknown 
gains &P, &Q, … , &Q°± can be determined by formulating (4.128) for ¨ = 1, … ,2�P. This results in the linear 

equations 

 

1

1

1

1

1

1
1 1 1 1

21 2 1

1 1 1 2 1 2

2 21 2

2 1 2 2 2 2
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2
2 1 2 2 2 2
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N
N N N N

bb b g

b gb b
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g

    −      − − −          −      − − − =                       −   − − −   

ρ λ ρ λ ρ λ

ρ λ ρ λ ρ λ

ρ λ ρ λ ρ λ

⋯

⋯

⋮ ⋮⋮ ⋮ ⋱ ⋮

⋯

 (4.130) 

The solution of (4.130) can be shown to be 

 

( )

( )

1

1

2

1
12

1

1
     ,     1,...,2

N

k j

k
j N

j
k j

k
k j

g j N
b

=

=
≠

−

= − =

−

∏

∏

ρ λ

λ λ

 (4.131) 

In the present case the closed loop eigenvalues ®k will be chosen so the undamped eigenfrequencies Kk 

are equal to those of the open loop system, c.f. (4.103). Only the closed loop damping ratios � Sk  are 

chosen. Hence, ®k is given as 

 ( )2

11      ,     1,...,2j j j ji j N= − ± − =ρ ω ζ ζ  (4.132) 

4.3.4 Active control by combined pole placement and integral control 
In addition to the active controller, an integral controller is added to the system. The part of the control 

force from integral control is expected to increase the damping ratio of low frequency modes. 

Especially, the integral control will eliminate any static response of the cable. In the current case of 

rain/wind induced vibrations such an offset is present due to the static load from the considered mean 

wind. The integral control force is given as 

 ( ) ( ) , 0
t

IC d ICu t v d
−∞

= >∫γ τ τ γ  (4.133) 

where  0IC  is the integral control gain which must be determined by numerical trials. From (4.73) and 

(4.74) follows 

 ( ) ( ) ( )
t t

T T

IC i S ICu t d dγγγγ
−∞ −∞

= =∫ ∫n A v wγ τ τ τ τ  (4.134) 

where the gain vector ´IC of dimension � × 1 is given as 

 

T

IC i
IC T

γγγγ
 

=  
 

A n

0

γ
 (4.135) 

Expressed by the state vector ��t�, (4.134) allows the form 

 ( ) ( )
t

T

ICu t d
−∞

= ∫g z τ τ  (4.136) 
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where the integral gain vector �IC of dimension 2� × 1 is given as 

 
IC

IC

γγγγ 
=  
 

g
0

 (4.137) 

If the indicated components are specified to non-zero values, it means that a stiffness contribution is 

introduced in the control force, which has already been accounted for by the pole placement term. 

Insertion of (4.96) and (4.136) in (4.78) the systems equation of motion provides the following closed loop 

state equation 

 ( ) ( ) ( )0 1

t

t t b d
−∞

= − + ∫z Az b z τ τɺ  (4.138) 

where 

 
T

PP= −A A bg  (4.139) 

 1

T

ICb =bg  (4.140) 

where µP = µP��L�. 

4.3.5 Active control of axial forces 
This approach operates by control of the elongation of the cable ∆# through an actuator at one of the 

support points. Hereby, a variation in the tension %� is generated through the cable. By applying a control 

law for these elongations, the vibrations of the cable may be damped. First a 2DOF system in modal 

coordinates is accounted for, after which two different control laws are described. The following is 

supported by figure 22, where the cable is illustrated in the equilibrium state with initial sag $ and chord 

length #. The in-plane displacements are denoted + and the out-of-plane displacements are denoted ¶. 

Only the fundamental in-plane and out-of-plane modes are considered. In the shallow cable case, the 

eigenfrequencies will be pair wise closely spaced. As the static equilibrium plane works as a symmetry 

plane the eigenvibrations decouple in the in-plane mode which only affects +��, (� and the out-of-plane 

mode which only affects ¶��, (�. The modal expansion for the displacements + and ¶ becomes 

 
( ) ( ) ( )

( ) ( ) ( )
1 1

2 2

,

,

w x t x q t

v x t x q t

Φ

Φ

≃

≃
 (4.141) 

where eP��� and eQ��� are the two lowest out-of-plane and in-plane eigenmodes and fP�(� and fQ�(� are 

the related modal coordinates. Retaining geometrical nonlinearities up to cubic order, the following 

coupled ordinary differential equations of motion for modal coordinates fP = fP�(� and fQ = fQ�(� has been 

derived as follows, (Larsen, 2005) 

 

( )( ) ( )
( )( ) ( ) ( )

2 2 2

1 1 1 1 1 1 1 1 2 1 1 1 2 2

2 2 2 2 2

2 2 2 2 2 2 2 1 3 2 2 3 1 4 2

2 1 0

2 1

q q e t q q q q q q

q q e t q q q q q q e t

+ + + + + + =

+ + + + + + + = −

ζ ω ω β γ γ

ζ ω ω α β β γ γ δ

ɺɺ ɺ

ɺɺ ɺ
 (4.142) 
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Figure 22: Cable in the equilibrium state. 
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Where KP and KQ are the fundamental angular eigenfrequencies and �P, �Q are the corresponding modal 

damping ratios, respectively. Furthermore 6, �P , �Q , �A, �· , 0P , 0Q , 0A , 0· , and ¸  are parameters, which 

depends on the eigenmodes eP��� , eQ���  in addition to the sag $ , the fundamental angular 

eigenfrequency K� of a taut wire, and the Irvine parameter given as follows 

 

2
2

0 0

64
EA f

F L
=γ  (4.143) 

where #� denotes the length of the parabolic suspension. In (4.142) the non-dimensional representation of 

the chord elongation is of the order of magnitude 1 and defined as 

 ( )
( )

0

L tEA
e t

F L

∆
=  (4.144) 

As seen from (4.142) the chord elongation both implies a parametric excitation of both modal coordinates 

and an additive load term on the in-plane mode. 

Axial vibration control implies the specification of a control law via the axial elongation '�(�. Basically two 

approaches are possible, in which the control is performed via the additive and the parametric load terms, 

respectively. The two approaches are consequently described. 

Control of the additive load 

Axial control via the additive load implies the following feedback control, (Fujino, et al., 1993) 

 ( ) 2      ,      0e t cq c= >ɺ  (4.145) 

Then, by insertion of (4.145) in (4.142) the closed loop system becomes 

 

( ) ( )
( ) ( ) ( )

2 2 2

1 1 1 1 1 2 1 1 1 2 1 1 1 2 2

2 2 2 2 2

2 2 2 2 2 2 2 2 1 3 2 2 3 1 4 2

2 1 0

2 1 0

q q cq q q q q q q

q c q cq q q q q q q

+ + + + + + =

+ + + + + + + + =

ζ ω ω β γ γ

ζ ω δ ω α β β γ γ

ɺɺ ɺ ɺ

ɺɺ ɺ ɺ
 (4.146) 

As seen the control law increases the damping of the in-plane mode. Moreover, in harmonic motions 

 ( ) ( )
2

2 2
0

0
T

q t q t dt =∫ ɺ  (4.147) 

Hence, the control law is not supposed to have significant influence on the stiffness of the controlled 

fundamental in-plane mode. 

Control of parametric excitation 

Axial control via the parametric load term implies the following feedback control, (Wang, et al., 2007) 

 ( ) 2

2

     ,      0
q

e t c c
q

= >
ɺ

 (4.148) 

Then, by insertion of (4.148) in (4.142) the closed loop system becomes 
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2 2 22
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2

2 2 2 2 2
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2

2 1 0
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q
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q

 
+ + + + + + = 

 

 
+ + + + + + + + = 
 

ζ ω ω β γ γ

δ
ζ ω α ω β β γ γ

ɺ
ɺɺ ɺ

ɺɺ ɺ ɺ

  (4.149) 

The latter control law is problematic because '�(� may be very large, whenever fQ = 0. 

Generally the control of axial forces requires very large actuators. Since the coordinates are measured by 

sensors along the cable, the control is not collocated. Hence, significant observation- or control spillover 

effects may be present. For these reasons, this type of control will not be considered any further. 
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5 Simulation 

The numerical model introduced in chapter 4 is used to simulate rain/wind induced loadings on a stay-

cable at a cable stayed bridge. The results of repeated simulations from different damping configurations 

will be presented and compared in the following. 

A cable with chord length # = 150�, radius 7 = 0.07�, axial stiffness ¹º = 2.17 ∙ 10»�, mass per unit 

length / = 108�&/�, and a prestressing force of %� = 1.1 ∙ 10y� is considered in the global ��-plane. The 

cable chord has the initial angle of inclination 
� = 30° . The four lowest undamped in-plane angular 

eigenfrequencies become 

 1 1 1 1

1 2 3 42.52 4.70 7.13 9.63s s s s− − − −= = = =ω  , ω  , ω  , ω  (5.1) 

In the simulations a mean wind �� is applied which has a wind yaw angle � = 35°. The damper will be 

placed with a distance ) = 3� between the lower support point and the connection point between the 

damper and the cable and the damper has an angle of inclination * = 60° with the global �-axis. By 

choosing ) = 3�  the connection is 1.5�  above the bridge deck level which will ease possible 
maintenance tasks. Furthermore, according to (4.83) the modal damping ratio becomes ��X� = �P = 0.01, 

for a linear viscous damper tuned to the first mode of vibration. The above is illustrated in figure 23. 

In what follows the efficiency of the considered damping strategies will be evaluated partly on a 

comparison of the mid-point displacements of the cable, and partly on the mean damper power estimated 

from 

 ( ) ( )
0

1
T

d dP u v d
T

= ∫ τ τ τɺ  (5.2) 

The damping strategies are handled by separate colours when the results are displayed. The following 

damper configurations are considered 

1. Rain/wind induced vibrations without control [black] 

2. Vibration control by passive viscous damping [blue] 

3. Vibration control by semi-active MR-damping [green] 

4. Active vibration control by pole placement [red] 

5. Active vibration control by combined pole placement and integral control [purple] 
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Figure 23: Definition of general parameters in the 

numerical model. 
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5.1 Rain/wind induced vibrations without control 

The obtained results depend on the spatial discretization as measured by the number h of finite elements. 

In figure 24, the results of the mid-point cable displacements, for repeated simulations subjecting the 

system to a mean wind speed �� = 11.5�/� during 15� with different cable discretizations, are displayed. 

The vibration amplitude obtained for 15 elements converge satisfactory for which h = 15 is used in the 

following. 

In order to achieve the distance requirement ) = 3� to the connection point of the damper, an additional 

node is added at the distance ) from the lower support point along the cable chord. The remaining cable 

length above the support point of the damper is subdivided in �h − 1� equal elements. 

As mentioned in chapter 2 the equilibrium position �� of the upper rivulet depends on the mean wind 

velocity. The response of the system, when �� is varied within the considered wind range 9�/� ≤ �� ≤
15�/� , is clarified by repeated simulations. The results of maximum cable displacements and rivulet 

oscillations are displayed in figure 25 when sample times of 100� are considered. 

The ranges �� < 10.5�/�  and �� > 13�/� are combined and denoted the outer range. Here, the cable 

displacement and the rivulet oscillations are kept at a very low level. In the range of approximately 

10.5�/� ≤ �� ≤ 13�/� aerodynamic instability occur which leads to large cable displacements and rivulet 

oscillations. Hence, the rain/wind induced vibrations are indeed dependent on the mean wind velocity. 

5n= 15n= 50n=

Figure 24: Vibration amplitude as a function of 

number of elements. 

Figure 25: Maximum cable displacements and rivulet oscillation amplitudes. 
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By considering the variation of the aerodynamic coefficients c.f. figure 11, the dependence of the mean 

wind velocity on the static position of the rivulet c.f. figure 14, and the definition of the effective wind angle 
of attack (4.13), the critical interval of the effective wind angle of attack is found to be 56° ≤ 6"^^ ≤ 72°. As 

seen in figure 11, ¾�SI/¾6 is negative in the critical interval of 6"^^ where aeroelastic instability occurs. It is 

well known that negative values of the gradient of the lift coefficient are crucial for triggering galloping 
instability, (Den Hartog, 1956). When �� is in the outer range, 6"^^ will move out of the indicated critical 

interval because the static position of the rivulet ������ is changed. As maximum displacement amplitudes 

are observed for �� = 11.5�/� this mean wind velocity is used in all the simulations. 

Related to the above it is found that the cable displacement and rivulet oscillations stabilize when �� is in 

the outer range. On the contrary, the displacement amplitude increase rapidly in the range where 

aerodynamic instability occur which is also the reason for the high amplitude oscillations of the rivulet. In 

general a static offset of the cable displacement exists due to the mean wind and the related load T�, c.f. 

(4.52). The maximum cable displacement response and rivulet oscillation response are found at the mid-

point and on an element at mid-point position, respectively. The indicated responses are displayed in 

figure 26. 

Results from wind tunnel tests and field observations indicate that the cable- and rivulet displacement 

amplitudes reach a stationary peak-to-peak value, (Hikami, et al., 1988). The self-limitation of the cable 

vibration is due to geometric non-linear stiffness terms, which are ignored in the present numerical model. 

Therefore, the results in figure 26 does not rightfully describe the real behaviour of the cable. However, the 

maximum cable displacement amplitude +OU, = 0.5� after 100 � is used in the following as a reference 

value in order to compare the uncontrolled- and controlled vibrations. 

Solving the eigenvalue problem corresponding to the damped eigenvibrations (4.99) leads to 

determination of the uncontrolled in-plane cable modes of vibration. These are determined as the modes 

with negative value of the modal damping ratio. When �� = 11.5�/� the four unstable modes have modal 

damping ratios corresponding to 

 
1 2 3 40.0085 ,  0.0038 ,  0.0017 ,  0.0004= − = − = − = −ζ ζ ζ ζ  (5.3) 

As the load on each finite element is the same, standing waves are found to dominate the vibration 

response. 

5.2 Vibration control by passive viscous damping 

According to (4.82) the optimal damping coefficient becomes ��X� ≈ 1.64 ∙ 10@��/� when the distance to 

the damper is ) = 3� and the damper is tuned to the first in-plane cable mode of vibration. By doing so, 

all closed loop poles have negative real part and the modal damping ratios related to the cable are within 

the range � Sk ∈ ]0,1[. Then, asymptotic stability is expected as the system is considered to be linear. 

Figure 26: Maximum displacement response of the cable and rivulet oscillations in the 

uncontrolled case.  
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The maximum displacement response of the cable and the rivulet when controlled by the viscous damper, 

as displayed in figure 27, are found at the mid-point of the cable. As seen, the vibration amplitude of the 

cable does not converge towards zero but towards a stationary value of 0.25� reached after 280�. The 

corresponding rivulet oscillation amplitude is 13° . The explanation must lie within the linearized 

approximations as the results do not show the expected behaviour of a linear system. 

The control law for the passive viscous damping, as described in section 4.3.1, depends on +-,�(� . 

Because the response is dominated by the first mode, +,�(� develops in a similar way as +OU,�(� in figure 

27, which explains the development of the control force as illustrated in figure 28a. In figure 28b the mean 

damping power performed by the linear viscous damper is displayed. The mean power converges after 

1600� at 56¿. 

Compared to the reference value of the uncontrolled system, the passive viscous damper reduce the 

maximum cable displacement after 100� by 35%. It should be noted that in case of reduced values of )/#, 

the efficiency of the passive viscous damper is reduced. 

5.3 Vibration control by semi-active MR-damping 

The idea in the semi-active damping strategy is to change the viscosity of the fluid in the damper 

according to the response of the system and hereby obtain a better performance, relative to the passive 

viscous damper. As mentioned in section 4.3.2 a number of parameters must be calibrated for optimal 

Figure 27: Maximum displacement response of the cable and the rivulet when the vibrations are 

controlled by passive viscous damping. 

)a  damper force )b  mean damper power

Figure 28: Development of the control force and the damper effect for passive viscous damping. 
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performance of the MR-damper. These should be chosen in such a way that the best possible damping is 

achieved. Especially, it must be ensured that locking is avoided, since this only implies a shorter chord 

length of the cable, without any energy dissipation.  

The control law for the MR-damper are outlined in section 4.3.2 and the main expressions are repeated 

below for convenience 

 ( ) ( ) ( ) ( ) ( )0 0 0d d fu t k v t c v t p t z t p= + + −ɺ  (5.4) 

 ( ) ( )0 0,0 0,1c t c c y t= +  (5.5) 

 ( ) ( ),0 ,1f f fp t p p y t= +  (5.6) 

In the present case the parameters are calibrated by separately evaluating the effect of each term in the 

control force (5.4) by keeping the remaining terms at zero values. However, the damping coefficient ��,� 

corresponding to the optimal damping coefficient of the passive viscous damper is included in all cases. 
This implies that ��,� = ��X� = 1.64 ∙ 10@��/�.  

The parameter �̂  is chosen in relation to the maximum peak-values of +,�(� in order to obtain a voltage 

output within a specified range. One of the largest advantages with the MR-damper is the small use of 

power for which �O�t  is assumed to be 10�. The static offset implies higher positive than negative peak-

values. Therefore, it is necessary to adjust the peak-values of +,�(� in order to obtain a regular variation of 

the voltage input. This may be done by considering half the difference between the considered- and the 

previous peak value. Furthermore, it is assumed that T� = 0 and the parameters 2 and � are constant as 

they depend on the damper materials. In the present case 2 = 200�?P  and � = 5 ∙ 10·�?P , which is 

chosen according to (Zhou, et al., 2006).  

From figure 29a it is realized that the stiffness term will introduce an asymmetric contribution to the control 

force as the static offset implies greater positive than negative displacement amplitudes. The stiffness 

term is evaluated by considering the mid-point displacement response of the cable in figure 29b when �� 

is included. Considering other values of �� shows the same tendency. It appears that the stiffness term 

increase the vibration response for which reason it should be disregarded. The physical explanation is that 

the stiffness term reduces the damper motion +,�(� somewhat, and hence reduce the energy dissipation. 

This may as well explain the reduced vibration period. 

Since 
�(� is non-negative it follows from (5.5) that the time dependent damping coefficient always is 

larger than the optimal viscous damping coefficient ��,�, which suggests a reduced damping effect. As 

seen in figure 30a the damper force is increased correspondingly to the term ��,P
�(�. Due to the reduced 

4

0 5.0 10 N
mk = ⋅

0 0N
mk =

)a  damper force )b  mid-span cable displacement response

Figure 29: Results when the stiffness term is included. 
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efficiency, the mid-point cable displacement is also increased as seen in figure 30b. These observations 

suggests that the ��,P coefficient should be disregarded. 

The friction term (5.6) controls both the voltage requirement by (4.93) and contributes to the total control 

force. When choosing the test values both applications must be taken into consideration. Different 

approaches exist concerning how the voltage requirement is determined. The parameters can either be 

chosen in a way so the maximum voltage is reached at small vibrations, in a way so the maximum voltage 

is reached only for the maximum vibrations of the cable, or somewhere in between. All approaches are 

considered in the numerical trials. 

Due to the non-dimensional hysteretic variable ��(� and the intrinsic variable 
�(�, the damper force is 

changed relative to the optimal linear viscous damper force, as seen in figure 31a. The corresponding 

maximum displacement response of the cable is found at the mid-point as displayed in figure 31b.  

The above indicates that the stationary mean damper power is decreased when the friction term is 

included. This is in consistence with the results as shown in table 1, where the mean damper power is 
shown for different configurations of the relationship between T^,� and T^,P. The intention is to describe the 

0,1
0Ns

mc =
4

0,1 1.5 10 Ns
mc = ⋅

)a  damper force )b  mid-span cable displacement response

Figure 30: Results when the damping term is varied. 

,0 ,10   ,   0f fp N p N= =
2 2

,0 ,11.0 10   ,   2.0 10f fp N p N= ⋅ = ⋅

)a  damper force )b  mid-point cable displacement response 

 

Figure 31: General findings when the friction term is included. 
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results in a general way, but in fact the calibration of the friction term is much more comprehensive due to 
the interaction between �̂ , T^,� and, T^,P. Hence, the results in table 1 should be considered with some 

caution. The results suggest that the friction term should be disregarded. 

 T^ = 0 T^,� = T^,P T^,� = 0.5T^,P T^,� = 2T^,P 

�,[¿] 56 50 51 45 

 

From the results indicated above it must be concluded that the MR-damper in the present case will not be 

more efficient than the passive viscous damper. 

5.4 Active vibration control by pole placement 

As mentioned in section 4.3.3, the modal damping ratios of the closed loop poles are prescribed. The cost 

in this is that increasing � Sk  implies increased need of control power. The maximum prescribed modal 

damping ratio is chosen to be � Sk = 0.1, where ¨ = 1, … ,2�P.  

When the modal damping ratios of the first four unstable in-plane cable modes are prescribed according to 

the above, asymptotic stability of the system should be obtained. The results when these four modes are 

controlled are presented in the following, considering a sampling time of 300�. The development of the 

control force is displayed in figure 32a and the corresponding displacement response of the cable in the 

damper node is illustrated in figure 32b. 

According to (4.115), the control force is proportional to the part of the state vector which describes the 

cable motion. Hence, the static offset of the cable displacement is also represented in the control force.  

A stable response of the system is obtained when the four unstable in-plane cable modes are controlled. 

The maximum displacement response of the cable is found at the mid-point as displayed in figure 33a. As 

for the linear viscous damper the displacement do not converge towards zero but a stationary peak-to-

peak amplitude of 0.002�. Compared to the reference value of the uncontrolled system, this implies a 

reduction of the maximum cable displacement after 100� by 99%. 

The rivulet motion is driven by the velocity of the cable for which reason they should be damped 

simultaneously. In figure 33b the rivulet motion corresponding to the cable displacement as seen in figure 

33a indicate that the oscillation of the rivulet is controlled when the cable is controlled. 

 

Table 1: Mean damper effect when the friction terms are varied. 

)a  damper force )b  cable displacement in the damper node

Figure 32: Development of the control force and cable displacement in the damper node. 



 

46 

 

 

It is seen that active control by pole placement reduces the maximum cable displacements significantly 

when compared to the uncontrolled displacements and also in such a way so the system is stable if the 

unstable in-plane cable modes are controlled. It is found that the mean damper power reach a stationary 

value of 0.02¿ after 1000� as illustrated in figure 34. 

In relation to the way of determining the modal gains &k as outlined in section 4.3.3 it should be noted that 

the remaining 2� − 2�P uncontrolled modes may be subject to control spillover, which in addition to the 

linearized terms in the rivulet equation of motion may account for the stationary vibration level. 

5.5 Active vibration control by combined pole placement and integral control 

The main idea of the integral controller is to remove the static offset of the cable. At first the influence on 

the static displacement of the damper node is investigated. This is estimated from the time average 

 ( ) ( )
0

1
t

d dv t v d
t

= ∫ τ τ  (5.7) 

As ( → ∞, +S,�(� converge to the static offset of the damper node. In the present case, determining the 

optimal value of the controller gain is based on the criteria that +S,�(� converge towards zero. In figure 35a, 

+S,�(� is plottet as a function of the sampling time for two simulations where the response in the damper 

node is shown for pole placement only and when combined pole placement and integral control with an 

optimal choice of 0ÁÂ = −100�/� are considered, respectively. In figure 35b the corresponding damper 

)a  mid-point cable displacement )b  rivulet oscillation on an element at mid-point position
 

Figure 33: Maximum displacement response of the cable and the rivulet. 

Figure 34: Mean damper power. 
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forces are displayed. As expected the damper force is increased when the static offset of the cable 

displacement is removed. Regarding the pole placement part, the first four in-plane cable modes are 

controlled. 

The displacement response of the damper node is displayed in figure 36a for pole placement only and in 

figure 36b for combined pole placement and integral control. As seen the static offset caused by the static 

load component is removed when integral control is applied. However, the results also indicate that the 

vibration response is increased when integral control is applied. This is confirmed by calibration of 0ÁÂ  by 

repeated simulations where 0ÁÂ is varied. By letting 0ÁÂ → 0ÁÂ
�X�

, the static offset of the cable displacement is 

minimised. However, at the same time the vibration response of the cable is increased. 

The corresponding maximum cable displacements are found at the mid-point of the cable and are 

illustrated in figure 37a and figure 37b, respectively. Again, the results indicate that the displacement 

response of the cable is increased when the integral controller is included. Furthermore, the static offset is 

not removed for which this is merely a local effect. 

)a  time averaged displacement )b  damper force
 

Figure 35: Effects on the damper node displacement and the damper force when combined pole 

placement and integral control is considered. 

)a  pole placement )b  pole placement and integral control

Figure 36: Cable displacement response in the damper node 
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The results indicate that the optimal value of the controller gain is only optimal with regards to the removal 

of the static offset. The expected additional damping of the low-frequency modes is not observed and 

instead the vibration response is increased. Hence, the integral controller does not have the intended 

effect. 

The integral control is considered separately in order to verify whether this alone or the combination with 

the pole placement control increase the vibration response of the cable. As seen in figure 38a the damper 

force have higher positive values as to account for the positive static offset. The corresponding vibration 

response in the damper node is illustrated in figure 38b where a comparison to the uncontrolled response 

is given. Again, the results indicate that when the static offset is removed the vibration response is 

increased.  

Furthermore, the effect is again observed to be local as the static offset is still present at the mid-point of 

the cable. This is illustrated in figure 39 from which it is also observed that the maximum vibration 

response of the cable is increased. 

)a  pole placement )b  pole placement and integral control

Figure 37: Maximum displacement response of the cable. 

)a  damper node displacement response)b  damper force

Figure 38: Results when separately considering integral control. 
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The results from considering the integral control separately indicate that this alone is the reason for the 

increased vibration response. 

5.6 Comparison of results 

The results from the uncontrolled system, the system controlled by viscous damping, and the system 

actively controlled by pole placement are compared below for a sample time of 100�. In figure 40a the 

vibration response of the maximum cable displacements are illustrated while the related damper forces 

are illustrated in figure 40b. 

As expected, the active control causes a better damping of the system. It should be noted that a power 
source is necessary for the actuator in the active control mechanism to work.  

Figure 39: Effects on the maximum cable displacement when integral control is implemented. 

Figure 40: Comparison of results. 
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6 Résumé 

This report deals with different methods of control of rain/wind induced vibration of stay-cables. 

Chapter 1: 

A short introduction to the phenomenon rain/wind induced vibrations and a review of the achieved 

literature is given after which some different ways of controlling the vibrations are outlined  

Chapter 2: 

In this chapter a thorough description of the rain/wind induced vibrations is given, prior to formulating a 

numerical finite element model of a stay-cable inflicted by rain/wind induced loads. The analytical models 

formulated by Robra and Yamaguchi are shortly analysed and the expected vibration pattern are clarified. 

The considered cable is defined and the set-up resulting in the most severe vibration response is outlined 

– based on experimental results.  

Chapter 3: 

The basic information about the tree different types of vibration control is discussed consisting of passive, 

semi-active and active control. The passive control is implemented by a linear viscous damper, the semi-

active control is accounted for by a MR-damping device, and the active controls are control of axial forces 

and control by the pole placement method. 

Chapter 4: 

The produced numerical model is systematically described. The quasi-static load model is derived and an 

equation of motion for both the rivulet and the cable is formulated. A multi-degree-of-freedom finite 

element model is assembled where a state vector formulation for the entire system is formulated, after 

which the control algorithms according to the considered damping strategies are included separately. 

Chapter 5:  

Finally simulations where the system is uncontrolled, controlled by passive viscous damping, controlled by 

semi-active damping, actively controlled by pole placement, and actively controlled by combined pole 

placement and integral control is conducted. The results are compared in the end in order to evaluate the 

relative effectiveness of the damping mechanisms. 
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7 Conclusion 

The purpose of this thesis is to evaluate damping of rain/wind induced vibrations of stay-cables. Passive 

viscous damping, semi-active MR-damping, active control of axial forces, active control by pole placement, 

active control by integral control, and active control by pole placement and integral control are investigated 

in order to evaluate the relative effectiveness. 

The basis is taken in a stay-cable where a rivulet is present and a uniform mean wind load is applied. 

Because of this, the cable vibrations consist of standing waves according to the eigenmodes of the cable. 

This is considered as an inadequacy of the model, since field observations show that rain/wind induced 

vibrations often consists of a combination of travelling- and standing waves. This is probably brought 

forward by randomness in the vibrations due to turbulence and randomness of the equilibrium position of 

the rivulets. Furthermore, the static offset of the cable displacement exist due a static load from the 

considered mean wind. 

The theory regarding when and how rain/wind induced vibrations occur is verified and it is found that the 

vibrations occur only in a small interval of the mean wind velocity. Furthermore, it is proven that self-

perpetuating vibrations occur when the slope of the lift coefficient d�SI/d6 is negative, which consist with 

the triggering of galloping instability, (Den Hartog, 1956). However, additional investigations should be 

made in order to describe the phenomenon in a more general way. 

When a cable without any vibration control is considered under the worst natural loading, the first four in-

plane cable modes are found to be unstable. The vibration response show that stationary peak-to-peak 

amplitudes are not reached, which is not in agreement with other literature. This is explained by lack of 

geometric non-linear stiffness terms of the cable which are ignored in the present numerical model.  

When a viscous damper, tuned to the first mode of vibration of the cable is considered it is ensured that all 

closed loop poles have negative real part and the system is undercritically damped. Then, asymptotic 

stability is expected as the system is considered to be linear. However, the results show that a stationary 

vibration response is achieved with a maximum displacement amplitude of 0.25�. A number of linearized 

approximations on terms in the rivulet equation of motion are ascribed this result. Regarding the 

performance of the linear viscous damper it is not possible to evaluate this result alone, since no exact 

field-data is available for a cable with the same dimension and setup as used in the simulation. In case of 

decreasing the distance between the lower support point and the connection point of the damper, relative 

to the length of the cable chord, the efficiency of the passive viscous damper will be reduced. 

In the present case damping by the semi-active MR-damper is found to be less efficient than the passive 

viscous damper. If the load model is expanded to account for turbulent effects, travelling waves might be 

seen in the vibration response. Then, the MR-damper is expected to be more effective, since the MR-

damper is capable of changing the damping coefficient in case of a sudden change in signal input. 

Furthermore a more comprehensive parametric study is required for the MR-damper to work more 

effectively. Consequently it has not been possible to achieve the same results as Johnson, Baker, 

Spencer, and Fujino, who claimed significant damping results, (Johnson, et al., 2007). 

When the unstable cable modes are actively controlled by pole placement asymptotic stability is expected 

for a linear system. Instead, stationary peak-to peak amplitudes are reached in consistence with the 

observations from the passive viscous damping. However, when active control by pole placement is 

considered the maximum displacement amplitude is 0.002� . A configuration where combined active 

control by pole placement and integral control is considered as the integral controller should increase 

damping of the low-frequency modes and furthermore remove the indicated static offset of the cable 

displacement. However, the results indicate that when the static offset is removed the vibration response 

of the cable is increased. Furthermore, the integral control will only remove the static offset locally – i.e. in 

the damper node. 

Summarizing what is mentioned above it is found that when the active control strategy by pole placement 

is used, the best damping of the cable is achieved. The cost is a necessary power supply for the active 

control device to work, which should be evaluated in comparison to the passive device in a practical 

design situation. 
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8 Future work 

In this thesis some delimitations and assumptions are made in order to complete the work within the given 

time period. For future work these limitations should be reconsidered in order to achieve more exact 

results.  

First of all, the load model is based on rms-values of the aerodynamic coefficients �I and �J. Additional, or 

at least the first two, of the Fourier coefficients should be included, which in turn would require better data 

from tests compared to what have been available in the present case. Hereby, the memory effects on the 

aerodynamic coefficients could also be accounted for. 

The load applied on the cable is assumed to be a constant mean wind load which is unchanged along the 

cable. This is a very crucial assumption, since the load in reality is varying both in height and in time due 

to turbulence. The turbulence .  is considered as a vertical- and a horizontal component which will 

generate random lift- and drag forces. The vertical component is expected to affect the dynamic increment 

∆6, while the horizontal component is expected to introduce random fluctuations of �� = ����� + .�. This 

will in combination affect the effective wind angle of attack. The load may be vital in achieving travelling 

vibration waves of the cable. If this is done, it would be interesting to re-evaluate the effectiveness of the 

semi-active MR-damper. 

A static offset of the cable displacement is caused by the constant mean wind load. In the active control 

method this is accounted for by including the integral control, but this is not the case when the passive and 

semi-active control is used. A combination of the viscous damper and the active integral controller could 

be interesting to evaluate compared to the pole placement integral control.  

The numerical model which is used in the present case only takes into consideration in-plane vibrations 

and the applied load model is only derived for loading in the local 
-direction. As rain/wind induced 

vibrations may consist of combined in- and out-of-plane vibrations, an extension of the model to include 

both types of vibrations may be preferred. If the model is extended to include out-of-plane vibrations, at 

least one additional damper mechanism must be included. Hence, the vibration control setup used in the 

passive, semi-active and active control strategy is made capable of controlling out-of-plane vibrations. If 

the above is implemented in the numerical model, some additional transformations are needed and the 

load model must be extended to account for both 
- and �-directional loadings. 

In general, a more detailed description of the cable motion would be obtained if the geometric non-linear 

stiffness terms of the cable are accounted for. Moreover it is possible to expand the equation of motion for 

the rivulet to include e.g. direct wind loads on the rivulet and friction between the cable and the rivulet. If 

these effects are included the movement of the rivulet will also depend on the size of the rivulet and the 

cable material. To describe these influences, additional wind tunnel tests must be performed in order to 

obtain a more detailed knowledge about the parameters influencing the motion of the rivulet.  

The active pole placement method is a state feedback control for which reason an observer equation must 

be developed to express the state of the system. The observer is commonly connected to sensors 

mounted along the cable, but it would be preferable if a collocated observer algorithm by means of +,�(� 

and +-,�(� could be found. 

The only restriction in the numerical model on the rivulet motion is that the simulation stops when the 

effective angle between the position of the rivulet and the wind angle of attack is not within a defined 

region. In reality the rivulet will probably disappear when inflicted by extreme vibrations, and a new rivulet 

will develop when the cable vibration has settled. The results from additional wind tunnel tests should be 

used to give a better description of the motion of the rivulet for this to be implemented in the numerical 

model. 
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