
A new Technique for Text Entry on Small Mobile
Devices - Summary

- SW10 master thesis by d612a -

- Group d612a -

Anders Houbak Kristiansen

Frederik Larsen

Aalborg University

The Department of Computer Science
Aalborg University

Software Engineering, 10th semester

Title:

A new Technique for Text Entry on

Small Mobile Devices - Summary

Project period:

February 2nd 2009 - June 15th, 2009

Theme:

HCI Master Thesis

Group:

d612a

Authors:

Anders Houbak Kristiansen

Frederik Larsen

Supervisor:

Jan Stage

Number printed: 4

Pages: 33

Finished: June 15th, 2009

Abstract

This study consists of a two articles and a sum-

mary of those. They deal with the question:

How can we improve text entry on small touch-

screen based mobile devices?. To answer this

we have developed a new technique for writ-

ing text on small touchscreen based mobile de-

vices, called directional selection. This tech-

nique was then evaluated through the two arti-

cles, using two different perspectives.

The first article investigates this technique to

determine if it is feasible. It deals with the

question: Can directional selection be used for

text entry on small touchscreen based mobile

devices?.

The second article compares an implementa-

tion of the technique against several existing

text entry techniques. It deals with the ques-

tion: How does QdQ compare to existing small

soft keyboards?.

Project group d612a

Anders Houbak Kristiansen Frederik Larsen

ii

Contents

1 Introduction 0

2 Article Overview 1

2.1 Article 1 . 1

2.2 Article 2 . 2

3 Empirical Study 2

3.1 Implementation . 2

3.1.1 Keyboards . 3

3.1.2 Test Application . 3

3.1.3 Tools for Analyzing the Results . 4

3.2 Research Method . 4

4 Conclusion and Future Work 5

4.1 Limitations . 6

iii

1 Introduction

Small mobile devices are used in many new areas where the desktop or laptop computer used to

dominate. Devices like smartphones are used for things like browsing homepages, writing emails

and participate in social networks. A good example of this is that many different smartphones manu-

facturers like Apple, Blackberry, Sony Ericsson and many more have made special Facebook(social

network) application for their smartphones. All of these new requirements require the smartphones

to be able to write text with a decent efficiency in many different contexts.

When smartphones first came out, they used a hardware keyboard usually based on T9 by Tegic [1],

which is a 12 key keyboard that uses a dictionary, or they used a very small QWERTY keyboard.

This has changed with the introduction of new smartphones equipped with only a couple of buttons

and a relatively large touchscreen covering almost the entire device like the iPhone from Apple and

HTC Touch Diamond2. Some of the reasons to do this is the phones becomes small and easier to

make since they do not need to have the physical keyboard and the mechanism to show and hide it.

Many of these new smartphones including the two named before, uses a capacitive touchscreen that

works by using the small amount of electricity the human body conducts. This means they will not

work with a stylus. There are many reasons to use this type of touchscreen, compared to resistive

touchscreens that uses the pressure on the screen and which is found in many older devices. First

the screen can have a glass like coat since it does not need to be flexible, this make the smartphone

look less cheap and more aesthetically pleasing. Capacitive touchscreens also has a higher clarity

then a resistive touchscreen. These reasons together with it is more durable will in terms make the

mobile manufacturer sell more smartphones. This is somewhat of a problem because most of the

researches done in the field of writing on soft keyboards (a keyboard on a touchscreen) have been

based on using a stylus, which will not work on this type of touchscreen. There is also a good reason

for not using a stylus, it is that the intense attention required can disrupt the users attention from the

actual text input and it can feel tedious using a stylus over an extended period of time[6].

This master thesis focuses on a new finger based technique for typing text on small touchscreen

based devices. One of the goals of this technique is to be independent of dictionaries, which has

two important drawbacks we want to avoid. The first is, as [4] shows, that if only 15% of the words

written is not in the dictionary all speed increase are lost. This can be words like abbreviations,

usernames, passwords, email and web page address, which all are very important for the new areas

the smartphones are used in. The other reason is the high cognitive load that the users feel when

they are writing, because they need to focus on what the dictionary shows on the screen and on the

next key they need to press [2].

Enclosed with this summary, are two articles that deals with the issue to create a soft keyboard that

does not require a stylus or a dictionary and how to cope with the problem that a finger is occluding

the target that is underneath it. This is done by suggesting a new technique for writing text on such

devices. The overall research question for this study is: How can we improve text entry on small

touchscreen based mobile devices?

0

The first article describes the technique (called directional selection) and evaluates it in a longitudi-

nal user experiment. It deals with the question: Can directional selection be used for text entry on

small touchscreen based mobile devices?

The second article takes on the perspective of an implementation of this technique (called QdQ) and

compares it to several other existing text entry techniques. It deals with the question: How does

QdQ compare to existing small soft keyboards?

2 Article Overview

2.1 Article 1

In this article we design and implement a new technique called Directional Selection, which is

developed from a technique for selection of targets on maps [5]. It works by assigning a direction to

each target, which then can be selected by pressing the finger down close to the target and dragging

in the assigned direction. The idea is to transfer this idea to a technique that can be used for soft

keyboards, since a keyboard on as small device basically also is a collection of small objects (the

keys). We do the mapping by assigning one of four directions (left, right, up and down) to each

key such that there is a maximum possible distance between two keys with the same direction. This

layout can be seen in Figure 1(a).

(a) Arrow (b) Color

Figure 1: The QdQ Keyboards

This implementation of Directional Selection uses arrows on the keys to map a key to a direction.

Another way of doing this mapping would be to use colors and then use the background to map the

color to a direction, as shown in Figure 1(b).

To determine if the technique Directional Selection for keyboard design was a good idea, we used

these implementations to perform a longitudinal user test. In this test, the 9 users were asked to

write a series of sentences and homepage addresses over a period of 30 days. They did this on six

different keyboards, where only the data for the two mentioned above is used in this article. During

this test, the test application gathered information about exactly what the participants did on the

keyboard (press down position, lift position, drag length, various timings etc.). This data were then

1

used to study how the keyboards performed, what we could improve and how they compared against

each other.

The results from this test did show that Directional Selection is in fact a feasible technique. This is

both in terms of the speed, error rate, mental overhead and the overhead time of the actual drag.

2.2 Article 2

In this article we changed the perspective from the technique to the actual implementations of the

keyboard. In article 1 we determined that the Arrow version of the QdQ keyboard performed better

in all scenarios, so naturally we used this keyboard in this experiment. The purpose of this article is

to compare our keyboard to some of the existing techniques: QWERTY, QWERTY with dictionary,

Multitap and Multitap with dictionary. This was to determine how it would perform against them in

different conditions like sentences, homepage address, sitting and walking.

To do this comparison, we used the data from a longitudinal experiment, which was the same as

described under article 1. In this article we use the data from five of the six keyboards (Arrow and

the ones mentioned above). This data was analyzed to get empirical information about how fast the

participants were with the different keyboards and how accurate they were. We also wanted to see

what the differences were between homepage addresses that were not in the dictionary and normal

sentences where all the words were in the dictionary. This is both from the dictionary perspective

as well as from the distinct keyboard perspective.

The results from this test did show that the Arrow keyboard underperformed against the QWERTY

keyboard in terms of raw speed. However, the error rates for QWERTY were much lower than those

of similar studies, so there is need for more testing in this area to verify those results. Still, the error

rate was lower on the Arrow keyboard, especially in the walking condition when entering homepage

addresses. Against the other keyboards the Arrow keyboard did prove to be more versatile than the

dictionary based keyboards (i.e. performed better in the walking and homepage address conditions)

and had a higher speed than Multitap overall.

3 Empirical Study

This section documents how we did our empirical study in terms of implementing the keyboards

and the research method we used.

3.1 Implementation

To do the experiment, we had to implement different 6 keyboards, a test program which presented

sentences and homepage addresses for the participants and tools for analyzing the data. This section

2

provides an overview of the process of the implementation.

3.1.1 Keyboards

Implementing the keyboards was done in three iterations, this were not planned, but rather forced by

the circumstances. In the beginning of the process we had two keyboards (Arrow and Color), which

we were going to implement on the Android platform and compare to existing implementations of

the other keyboards on other platforms. We started to implement our keyboards, but after some time

the existing keyboards proved not sufficient in that they all had shortcomings (e.g. strange layouts

for special buttons, not close enough to the standards, no real T9 implementation due to patents) and

one big shortcoming in that to get all the keyboard types we wanted, we had to use three different

platforms. Three platforms mean three implementations of the test application and a reboot of the

phones every time we wanted to change keyboards. So it was decided to implement the keyboards

ourselves, which would allow us to use the same test application and provide more control over the

functionality of the keyboards.

So we extended the current implementation to include the other keyboards as well as an early version

of a dictionary. However, having six working keyboards in a keyboard framework that was meant

for only two, it was clear that we could not get the performance we wanted. The low performance

was limiting the maximum possible writing speed too much. The only way to solve this was to

restructure the whole implementation, basically resulting in a complete rewrite. The new structure

was much more efficient and extend-able in terms of adding new keyboards.

Even though the keyboards now were efficient, the dictionary was not. It was meant as a prototype,

so we had to rewrite this as well. However, fitting more than 25,000 words in the very limited

memory on a smartphone as well as storing them so the (also limited) processor could check for

about 1,500 words using a maximum of 50 milliseconds, was a huge challenge, which caused several

rewrites of the data structures.

After finishing this system, it consists of 2,291 lines of Java code and 253 lines of XML code.

3.1.2 Test Application

Originally the experiment was divided into two separate experiments, with one for each article.

Based on that we developed a test application which did not record any of the information that

was needed for the second experiment. However, later on we merged the two experiments and

therefore had to change several things in the test application to support recording of a much larger

amount of data. Additionally, we had to support IPC (Inter-Process Communication) between the

test application and the keyboards, for the data to be comparable and consistent. This was necessary

because only the keyboard knows information about the actions on the keyboards (i.e. where the

user presses, for how long, drag length etc.) and only the test application knows the progress of the

user (i.e. which sentence, which user, which session etc.).

3

The development of the test application was done in several iterations, where the last one was in

the middle of the evaluation. This change was code-wise large and involved a new way of storing

the data, but was necessary, because the participants complained about the time the device had to

use between two sentences to analyze and store data. It is important to note that this change did not

interfere with the results, but only changed what happened in-between two sentences.

After finishing this system, it consists of 753 lines of Java code and 28 lines of XML code.

3.1.3 Tools for Analyzing the Results

After collecting the data, we had to analyze it. To provide an overview of how much data we are

talking about, we can look at the numbers. On average each participant pressed a button on the

keyboards about 34,000 times in total, resulting in 306,000 key presses for all nine participants. For

each key press, we record 19 different numbers, which gives us a total of 5,814,000 numbers we

need to analyze.

In the beginning of the evaluation, we were missing a way of keeping track of how well the par-

ticipants were doing, but would not invest time in a system, that was useless afterwards. Therefore

one of us used spare time to implement a homepage showing auto-generated graphs and tables with

information of their progress. This tool proved very useful for the study, and later it was decided to

use this as the tool for the final analyze of the numbers.

The graphs on this site were limited, because of how it was implemented in PHP, so we also had to

generate CSV (Comma Separated Value) files, which we could use for generation of graphs in tools

like OpenOffice Calc or Microsoft Excel.

After finishing this tool, it consists of 2001 lines of PHP code.

3.2 Research Method

Using the terminology described in [3], this project can be categorized as using Laboratory ex-

periments as research method with engineering as research purpose. Laboratory experiments are

characterized by taking place in a controlled environment, which does not necessarily have to be in

a laboratory, but could be in an office or hallway. Compared to field studies, which is conducted in

the real world, it has the following advantages:

• Control of variables: In a controlled environment it is easy to control what variables the

participants are exposed to before and during the test.

• Replicable: Given that you have more control over the variables, it is also much easier to

replicate.

4

• Easy data collection: The test environment is usually under the control of the researchers,

which allows for easier integration with data collection equipment like cameras, microphones,

computer programs etc.

And has the following disadvantages:

• Limited realism: Depending on what is being studied, the laboratory usually lacks the inter-

ruptions and other variables of the real world, which might impact the results.

• Unknown generalizability: It is hard to tell if a given results will be the same in the real world,

because the laboratory setting does usually not account for the variables that might influence

the results elsewhere.

Laboratory experiments were chosen because we want some control over how and when the partic-

ipants wrote their sentences / homepage addresses. The test was not carried out within a laboratory

and not even at a place we could directly control. Instead we told the participants how to sit and

that they should do the writing in a quiet place where they could concentrate. This approach was

chosen because the large amount of typing hours would require a lot of planning if we had to watch

over them. Additionally, we prioritized that they should be able to do it when they had time and in

parallel, which would not be feasible using laboratories.

The choice of this research method, does most likely impact the results in that we probably would

get a lower speed and higher error rates in the real world, with all the interruptions. However, doing

it in the field, the results would be inconsistent, because the performance of the participants would

depend on the current environment they were in. So with laboratory experiments it is much more

clear what works and what does not.

4 Conclusion and Future Work

In this master thesis we designed a new text entry technique based on an existing technique for basic

target selection on maps. This technique, called Directional Selection, was examined from two

different perspectives. The first perspective was from the technique itself, where we implemented

two variations of this and tried to determine if it is feasible. The second perspective was from

the keyboard implementation of this technique, where we compared it to several other existing

keyboards. The data used in both perspectives (articles), originated from the same longitudinal user

test where we collected a vast amount of data from 9 participants writing a series of sentences and

homepage addresses over a period of 30 days.

In article 1 we determined that the technique itself has a lot of potential, with a low overhead in time,

low error rate, good performance and a workload similar to the usual keyboards of the participants.

5

From article 2 we know that the implementation of Directional Selection (Arrow) had a lower speed

than a standard QWERTY, but also lower error rate. However, this result is very different than that

of similar studies, because the QWERTY error rates should be a lot higher. The Arrow keyboard did

prove to be more versatile than the dictionary based keyboards and overall performed much better

than Multitap.

In the introduction, we asked the question: How can we improve text entry on small touchscreen

based mobile devices?. This has been answered through the design, implementation and evaluation

of Directional Selection, because it has the potential to improve soft keyboards. The current im-

plementation is troublesome because the participants were not fast enough to do the mapping from

arrow or color to direction (50% of the overhead is this mapping). This could be improved in future

implementations, by using another layout where it is more obvious. This could be Multitap, where

we exploit the large buttons, by placing the letters such that their position on the button, relative to

the middle, symbolizes the dragging direction to get that letter. The point is that the technique has

proved feasible, but to gain the performance necessary to replace existing techniques, it should be

attempted implemented on other layouts that QWERTY.

4.1 Limitations

The following limitations should be considere when using the results from this paper:

• The surface of the screen were a bit resistant when it comes to dragging compared to the

default screen, which might cause a lower performance when dragging.

• The screen does only support single-touch, where a multi-touch is becoming more and more

popular. On a multi-touch screen the numbers could be very different.

• The participants were not instructed in how long a break they should have between sessions.

Too long breaks did lower the performance because they got out of the routine, and too short

did also lower the performance, because they got tired. This is a result from the experiment.

• We did only have one walking session, and based on the difference between the sessions

before that one, the results may not be accurate.

• The results may not be the same ”in the real world”, since they are based on laboratory

experiments.

References

[1] Tegic. http://www.nuance.com.

[2] COCKBURN, A., AND SIRESENA, A. Evaluating mobile text entry with the fastap keypad. In

HCI 2003 (2003), British HCI Group, pp. 77–80.

6

http://www.nuance.com

[3] KJELDSKOV, J., AND GRAHAM, C. A Review of Mobile HCI Research Methods. In Proceed-

ings of Mobile HCI 2003, 2003.

[4] MACKENZIE, I. S., KOBER, H., SMITH, D., JONES, T., AND SKEPNER, E. Letterwise:

prefix-based disambiguation for mobile text input. In UIST ’01: Proceedings of the 14th an-

nual ACM symposium on User interface software and technology (New York, NY, USA, 2001),

ACM, pp. 111–120.

[5] YATANI, K., PARTRIDGE, K., BERN, M., AND NEWMAN, M. W. Escape: a target selection

technique using visually-cued gestures. In CHI ’08: Proceeding of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems (New York, NY, USA, 2008),

ACM, pp. 285–294.

[6] ZHAI, S., AND KRISTENSSON, P.-O. Shorthand writing on stylus keyboard. In CHI ’03:

Proceedings of the SIGCHI conference on Human factors in computing systems (New York,

NY, USA, 2003), ACM, pp. 97–104.

7

QdQ: Exploring Directional Selection Techniques for Small
Soft Keyboards

Anders Houbak Kristiansen
Department of Computer Science

Aalborg University
Selma Lagerlöfs Vej 300

DK-9220 Aalborg East, Denmark
andershkristiansen@gmail.com

Frederik Larsen
Department of Computer Science

Aalborg University
Selma Lagerlöfs Vej 300

DK-9220 Aalborg East, Denmark
flabby@cs.aau.dk

ABSTRACT

This study investigates the use of directional selection as a
technique for implementing a new type of soft keyboard for
small mobile devices. This technique is used to implement
two different keyboards, with one based on arrows and one
on colors. These are then compared against each other us-
ing the results from a longitudinal user test to determine if
directional selection is feasible as well as which of the two
designs that are best. Our results show that directional selec-
tion is a feasible technique for use with soft keyboards.

Author Keywords

soft keyboards, text entry, touchscreen, QdQ, directional se-
lection

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies

INTRODUCTION

Small mobile devices are used in many new areas where the
desktop or laptop computer used to dominate, like browsing
homepages, writing emails and participating in social net-
works. All of these new requirements require them to sup-
port the users in typing text with a decent efficiency in many
different contexts. This is what this paper will try to im-
prove, by introducing a new technique and evaluating it in a
longitudinal user experiment.

One of the goals of this technique is to be independent on
dictionaries, which has two important drawbacks we want
to avoid. The first is, as [11] shows, that if only 15% of
the words written is not in the dictionary all speed increase
are lost. This can be words like abbreviations, usernames,
passwords, email and web page address, which all are very
important for the new areas the smartphones are used in. The
other reason is the high cognitive load that the users feel

Submitted for review to CHI 2010.

when they are writing, because they need to focus on what
the dictionary shows on the screen and on the next key they
need to press [8].

Another goal is to avoid using a stylus. Many new smart-
phones, like the iPhone from Apple and the HTC Touch Di-
amond 2, uses a capacitive touchscreen that works by utiliz-
ing the small amount of electricity the human body conduct.
This means they will not work with a standard stylus. An-
other reason for not using a stylus, is that the intense atten-
tion required can disrupt the users attention from the actual
text input and it can feel tedious using a stylus over an ex-
tended period of time[21].

When we do not have a stylus or dictionary to help us hit the
desired key, we have to find another way of doing so. This
problem is illustrated in Figure 1, where it is near impossible
to identify the key pressed from the position of the finger.

Figure 1. The problem with a finger on a small soft keyboard.

To solve this problem, we have developed a new technique
called Directional Selection, which will be evaluated through
this paper.

This paper deals with the following question: Can direc-
tional selection be used for text entry on small touchscreen
based mobile devices?

RELATED WORK

When implementing a keyboard, the size of the buttons is a
very important thing to consider. Previous research shows
that soft buttons needs to have a size of 22mm to be use-
able[10][13], but newer studies has shown that even smaller

1

buttons still can be useable. [16] and [9] shows that when
buttons becomes smaller than 10x10mm, the entry speed de-
creases and error rate increases. One example of this is as [9]
shows, going from buttons with the size of 13.8x9.8mm to
7.2x6.5mm the CPS(Characters per Second) went from 2.65
to 1.80 and 4.4% errors to 11.1%. Another example is [16]
that comes out with an error rate of approximately 46% with
a button size of 5.2x5.2mm. This was by using the tip of the
finger, but when they used the nail, the error rate dropped to
30%. Increasing the button size to 10.5x10.5mm resulted in
the error rate dropping to approximately 2-4%. But what can
you do, when you do not have the screen space available to
place 26 buttons larger then 10x10mm on the device?

VirHKey is a gesture based keyboard made to be used with
stylus, where each key consist of 1-4 small strokes (dragging
a small distance) where each stroke can be in one out of
5 different direction. In average each letter is 2.04 stroke,
VirHKey work by there is a circle that shows the letters you
get when dragging in a direction as seen in Figure2 and each
time a stroke is made the circle change to show what you get
the next time. They got 25.8WPM for expert users and from
a SUS-like questionnaire showed the participants had a good
satisfaction with using this keyboard.

Figure 2. The VirHKey keyboard.

[18] have created a mobile phone that uses a chorded Multi-
tap keyboard and a combination of three buttons on the back
(chords) together with the normal keys to select which letter
to write. If the first cord is pressed, the first letter is selected
on the Multitap key and the second chord selects the sec-
ond letter and so on. Using the chorded Multitap keyboard
was significantly faster than Multitap in their experiment.
[20] also created a keyboard that is using chords, where each
chord shows a distinct third of a QWERTY keyboard.

Instead of using chords to select which letter to write, an ac-
celerometer can be used like in [17], where the mobile phone
is using an accelerometer to see when it is tilted. If it is tilted
a little to the left, the first letter on the button is selected and
if it is tilted a lot the upper case version is selected. Tilt up is
the second, left the tried and down the fourth. By using this

technique in their experiment, they got a significantly faster
entry rate than with Multitap.

A technique that focuses on a combination of high speed
and accuracy when selecting small targets on a touchscreen,
rather than writing speed, is Escape[19], that is used to se-
lect small targets which was occluded by the finger that was
selecting. Escape works by giving all the objects a direction
and to select an object the user simply drags the finger in the
direction of the object. This is illustrated in Figure 3. One
of the problems with Escape is that it does not work when
many targets are close together because it then cannot map
all of them to a few different directions and still be possible
to select them. There is also a limitation on object density at
the edge of the screen. For instance, it is not possible to drag
down if the object is at bottom of the screen, but if you drag
down just above it, it will still be selected, if it is the closest
object with that gesture.

Figure 3. The Escape selection technique.

OUR TECHNIQUE: DIRECTIONAL SELECTION

The idea is to modify Escape that was described in Related
Work, such that it can be applied to a soft keyboard. Doing
this could help us achieve:

1. Independence of dictionaries, which would make it eas-
ier to write words that are not in the dictionary (like ab-
breviations, URL’s, second language words and email ad-
dresses). As shown by [11], the dictionary actually lowers
the writing performance if only 15% of the words are not
in the dictionary. This is feasible due to a lower error rate.

2. Emulation of a larger keyboard, since the area in which
you need to hit to select the desired key, is much larger
than the keys, making it more feasible to use the fingers
instead of a stylus.

3. Lower stress level, since the keyboards that are dependent
on a dictionary or a stylus are known to have a high mental
demand [8][21].

In related work, we mentioned two drawbacks regarding Es-
cape when used on maps. By transferring the technique to
a soft keyboard, we can avoid these by choosing an effec-
tive number of directions and mapping of these on the keys.
The resulting technique has been named Directional Selec-
tion and a keyboard implementation of this, named QdQ, can
be seen in Figure 4. It uses four directions, which is the min-
imum number necessary to avoid having two keys with the
same direction right besides each other. Additionally, the
mapping was carefully chosen such that you never have to
drag against an edge to select a key.

The use of arrows to map a key to a direction is the obvi-
ous way to implement this technique, but it is not the only

2

Figure 4. The QdQ keyboard in Arrow Mode.

one. Figure 5 shows another implementation of the idea us-
ing colors instead of arrows, where the background color is
used to map a button color to a direction. This could be
a good idea, because humans are a bit faster to recognize
colors compared to shapes and has a lower error rate using
colors[14]. Both of these implementations will be evaluated
through this paper, where they will be refered to as Arrow
(Figure 4) and Color (Figure 5).

Figure 5. The QdQ keyboard in Color Mode.

Note that the layout is in Danish, which is because the test
participants are from Denmark and should write in their pri-
mary language to avoid spelling trouble and other language
related slowdowns. The SET button is used to switch be-
tween this and the other keyboards we have implemented
for the evaluation, which are described in more details in the
following sections. It is important to understand that the idea
is not bound to QWERTY layouts, but can be applied to any
layout (like Dvorak [7], Fitaly [3] or OPTI [12]).

As an example of usage, to write ”hey”, you need to follow
this procedure:

1. Press down on letter h, move your finger a bit right and
lift your finger again

2. Press down on letter e, move your finger a bit up and lift
your finger again

3. Press down on letter y, move your finger a bit left and lift
your finger again

It uses the position you press down to determine the center
of the area to look for the letter and the position where you
lift your finger to determine the direction. The area around
the down-press is much larger than the actual keys, since the
keyboard always chooses the closest key with the detected
direction. Consequently, it actually emulates a larger key-
board, because you can press anywhere in that area and still
get the desired key.

Regarding the performance of the technique, we can present
the following hypotheses:

1. The performance on both keyboards improves over time
as the user learn the technique.

2. Arrow will be faster than Color in the beginning, because
the mapping from color to direction takes more time to
learn, but Color will be faster in later sessions.

3. The error rate of Color and Arrow will be about the same,
since the action required to write a letter is the same.

4. The performance of the individual key depends on the
number of times it has been used, because the user is more
likely to remember the mapping.

5. The time it takes to write one character is higher for both
Color and Arrow than on a keyboard without dragging,
since the user needs to perform one more action (the drag).

METHOD

To evaluate our technique, a comparative longitudinal user
test using within-subjects was performed using the method
described in this section. Each user did 19 sessions with two
keyboards where they wrote both sentences and homepage
addresses.

Participants

12 participants participated in this test but only 9 finished.
Six out of the 9 participants were from Aalborg University,
the last three participants were from outside the university.
All 9 participants were volunteers and did not get paid for
participating. Two of the participants where females and
seven males, they had an age range from 21 to 49 (mean
28) years old. One of the participants was left-handed and
none of the 9 participants were color-blind.

Six of the 9 participants use a mobile phone with a T9 key-
board with physical keys almost every day, where only two
uses Multitap with physical keys and none of these partic-
ipants had any experience when it comes to writing on a
touchscreen based device. The last participant had some
experience using a touchscreen based mini QWERTY key-
board on a smartphone. All of the participants were experi-
enced when it comes to writing on a standard personal com-
puter QWERTY keyboard.

Apparatus

The test was performed on two Openmoko Freerunner smart-
phones running Android with 128MB SDRAM and a 400MHz
ARMv4T processor. It has a resistive touch screen with the
dimension 480x640 pixels (1 pixel = 0.09mm), that does
not support multi-touch, which implies writing with only
one finger. The touchscreen was covered with a protective
film that added more resistance when dragging than the stan-
dard touchscreen. The test program and keyboard was pro-
grammed in Java using the Android API over a period of 3
months. There was a high focus on little resource usage and
a good performance, to ensure that it was not a bottleneck.
A screenshot can be seen in Figure 6 with the arrow based
QdQ keyboard.

3

Figure 6. The Arrow keyboard.

The test was performed with two different conditions, QdQ
and QdQ with colors.

The QdQ keyboard with arrows, is the implementation of the
idea presented in [19], where the button layout is a normal
Danish alphabet QWERTY keyboard using arrows to give
the participant a mapping from button to direction. It can be
seen in Figure 6. The 123 button gives access to the numbers
and symbols and the set button is used to change between
the five conditions(will be disabled under the test, to prevent
participants to accidently pressing it). The size of the buttons
containing letters were 3.8x4.6mm, where the enter and shift
buttons had a size of 6.5x5.8mm, ”123” and delete buttons
were a little larger with a size of 8.6x5.8mm and the space
button with a size of 13.0x5.8mm. A minimum drag size of
1.35mm was chosen from a pilot study as the size, where
a drag was long enough to not just be a simple click. The
only way to enter letters was our by technique and not by
clicking, the other buttons (bottom row) was still working
like in a normal QWERTY keyboard as they needed to be
clicked on. This was done to prevent the inconvenience it
would be to drag down to the bottom of the screen since
there is an edge and the pilot study showed that there was no
problem doing it this way.

The QdQ keyboard with colors is the same as QdQ with ar-
rows, but instead of using arrows as a mapping from button
to direction, it uses colors.

We will use Arrow as short name for the QdQ keyboard with
arrows and Color for the QdQ keyboard with colors.

Experimental Design

Within-subjects were used for the test with 19 sessions as
factor crossed with the two conditions QdQ and QdQ with
colors. There were six conditions in the actual test, but only

two of those are used in this article. The dependent variables
are entry rate (Words per Minutes and time used in different
touchscreen usage) and accuracy (coordinates and error rates
of touchscreen usage).

To prevent carryover effects, the keyboards were distributed
in a 6x6 balanced roman square where participant one started
with the first row, then second row next session. Participant
two started with the second row and so on for all the par-
ticipants. This was done to mix the order of the keyboards.
All of the sentences were picked randomly (but distinct for
the specific sessions) from a set of 602 sentences. They only
contained lower case characters. All of the sentences were
obtained from three different short stories[5][6][4]. The sen-
tences had a length between 16-44 characters (with an aver-
age of 28.5), consisted of 3192 words (1084 unique words)
and the average word length were 4.6 characters. The home-
page addresses were randomly selected from the 100 most
popular homepages in the world[1] without the ”http://www.”.
They contained lower case characters, numbers, ”-” and ”.”.
The order of the eight sentences and the three homepage ad-
dresses changed from keyboard to keyboard and also from
session to session by alternating between them. The words
in the dictionary was from [2] where all the words from the
sentences were added this was done to enable us to look at
the data from the sentence as 100% represented in the dictio-
nary. None of the homepages addresses was in the dictionary
to give us opposite data, 0% representation. It was decided
that every participant started with their own empty learning
which they kept building on throughout all of the sessions.
This was decided to be the most fair, and resemble the real
world the most, compared to no learning or perfect learning.

Procedure

Before the first session the participants got the chance to
write a few sentences with all of the different keyboards and
afterwards ask questions if there was something they did not
understand. They were instructed to write as quickly and
accurately as possible, where they were allowed to have un-
corrected errors. Sentences were instructed to be read metic-
ulously before stating to write, to keep FOA (focus of atten-
tion) down. The sentences remained visible under the test to
prevent spelling errors and prevent them from forgetting the
sentences. In each of the sessions they had to write eight sen-
tences and three homepage addresses with each of the key-
boards. After they were finished with one keyboard they had
to change the keyboard on their own and continue the ses-
sion until they were done, with all of the keyboards. There
were no restrictions on where they were located under the
test, but they were asked to make sure they sat comfortably
and undisturbed before starting. Every time a participant
was finished with a couple of sessions using the smartphone
they had to bring it to us so we could take a backup and
transfer test data from another participant to it. This was a
necessary such the two smartphones should be used by the
seven participant in the same time frame. They also had the
opportunity to borrow one of the smartphones home at the
evening or at the weekend to test. Seven of participants had
a deadline of 20 days after the test began to complete the
sessions however this timeframe had to be extended to 30

4

days because only one was finished at the deadline. The
last three participants got a seven days deadline to complete
all the sessions. How the sessions were distributed was up to
the individual participant. Pauses could be held between two
sentences, between the different keyboards and at the end of
each session. After all of the sessions we asked the Danish
version of the following questions to the participants, while
recording their responses:

1. What do you think is good about the Arrow Mode key-
board?

2. What do you think is bad about the Arrow Mode key-
board?

3. What do you generally think of the Arrow Mode key-
board?

4. What do you think is good about the Color Mode key-
board?

5. What do you think is bad about the Color Mode keyboard?

6. What do you generally think of the Color Mode keyboard?

7. Is there anything you think we could improve?

8. How does the Arrow Mode keyboard compare to what you
are used to for writing on a mobile device?

9. How does the Color Mode keyboard compare to what you
are used to for writing on a mobile device?

10. Any comments?

11. Any problems during the test?

Data Collection

For each key pressed, we collected a time stamp which started
from when the first key was pressed in a sentence, key code
(including space and backspace), session number, sentence
number, keyboard used and a reference to the written sen-
tence which was used to help find all the uncorrected errors.
At the same time all the coordinates where the participant
pressed down and lifted the finger were recorded together
with the elapsed time. All test data was automatically col-
lected on the mobile phone and saved to a mini SD Card
where all of the participants data were stored separately.

Data Analysis

The data that was collected was used to find learning effects,
WPM and error rates. WPM is calculated as the time used
to type the sentence plus the average time to correct an er-
ror multiplied with the number of uncorrected errors in the
sentence. The combined time is divided with the number of
characters in the sentence including spaces minuses the first
character. This time was then divided by 60 to get it in min-
utes. Finally this is divided with five as the accepted word
length to get WPM.

To measure the error rates, we use corrected, uncorrected
and total error rate as described in [15]. We define CPS
as Character per Second, without any error calculations in-
cluded. For statistical analysis, we use the F-test throughout
this paper.

RESULTS

In this section, we will show the results from the test which
relates to answering the research question. Additionally, we
will prove or disprove the hypotheses presented previously
in this paper.

Entry Rates

In Figure 7 the Color and Arrow keyboard are compared in
terms of WPM when entering sentences. The Arrow key-
board has the highest WPM in the beginning with 9.4 com-
pared to 7.5 for Color. The average difference between the
two keyboards is significant (F1,16 = 30.8, p = 0.0005).
Both Arrow and Color benefits from learning effects and
have a WPM increase from session 1 to 19 of 60.2% and
69.9% respectively.

Figure 7. Comparing Arrow and Color WPM (sentences)

The WPM when entering homepage addresses is shown in
Figure 10. It shows that Color actually has a higher or equal
WPM in two sessions (8 and 18), but Arrow still has the
highest average WPM (13, compared to 10.7 for Color). The
difference between the two is significant (F1,16 = 23.72, p =

0.0012). Additionally, both show a clear learning effect.

Looking at the WPM when typing sentences and homepage
addresses combined, enables us to answer hypothesis 1 and
2:

Hypothesis 1: The performance on both keyboards improves
over time as the user learn the technique.

Answer: The learning curves for sentences shows an im-
provement of 60.2% and 69.9% for Arrow and Color re-
spectively, which tells us hypothesis 5 is true.

Hypothesis 2: Arrow will be faster than Color in the begin-
ning, because the mapping from color to direction takes
more time to learn, but Color will be faster in later ses-
sions

Answer: Color is significantly slower than Arrow in all ses-
sions, but the learning curve shows that Color most likely
will stay under Arrow, so hypothesis 1 is false.

Accuracy

The error rates for the two keyboards while writing sen-
tences can be seen in Figure 9 and the error rates for home-
page addresses can be seen in 10. The average total error
rate over all sessions for Arrow is 5.5% (3.7% corrected and

5

Figure 8. Comparing Arrow and Color WPM (homepage addresses)

1.8% uncorrected) and 6.8% for Color (5.1% corrected and
1.7% uncorrected).

The difference is significant for sentences (F1,16 = 11.22, p =

0.0101), but not for homepage addresses, which enables us
to answer hypothesis 3:

Hypothesis 3: The error rate of Color and Arrow will be
about the same, since the action required to write a let-
ter is the same.

Answer: It is false, because there is a significant difference
between Color and Arrow when writing sentences. How-
ever, the hypothesis does hold for homepage addresses.

Figure 9. Comparing Arrow and Color error rates (sentences)

Figure 10. Comparing Arrow and Color error rates (homepage ad-

dresses)

Both sentence and homepage address writing benefits from
learning effects. The Error rate of the first session is 9.8%
for Arrow and 10.1% for Color. For the last session it is
4.3% for Arrow and 5.9% for Color, which is 56% and 42%
lower than the first session respectively.

Character Distribution

Figure 11 shows the CPS for the Arrow keyboard, ranging
from 0.9 CPS (c) to 1.5 CPS(e). The data does not show
any consistent sign of there being a difference between areas
(i.e. sides, center, bottom etc.) of the keyboard in terms of
entry speed. The fact that e is the character most represented
in our sentences and also has the highest CPS (1.5), could
suggest that the speed depends on the frequency of the given
letter. This is even easier to see, when comparing Figure
11 with Figure 12, which shows the frequency on the actual
keyboard.

Figure 11. The CPS distribution over the Arrow keyboard (white is

high and black is low). To map to the keyboard simply imagine placing

this figure on top of Figure 4 (the Arrow keyboard).

Figure 12. The letter frequency distribution over the Arrow keyboard

(white is high and black is low). To map to the keyboard simply imagine

placing this figure on top of Figure 4 (the Arrow keyboard).

Figure 13 and Figure 14 shows a graph over CPS and char-
acter distribution respectively. The characters in the figure
are ordered by frequency, with the left being the least fre-
quent and the right being the most frequent. Notice that the
order of the letters are different in the two figures, which is
because the frequency is based on how frequent the given
letter is with the specific keyboard and not overall.

Figure 13. CPS by key (Arrow)

Hypothesis 4: The performance of the individual key de-
pends on the number of times it has been used, because

6

Figure 14. CPS by key (Color)

the user is more likely to remember the mapping.

Answer: The results were not consistent enough for it to be
significant, but the graphs does suggest that it might be
true.

Dragging

Overhead

Based on numbers from the other four conditions in the test,
we know that the average time to write a letter on a normal
button is 990ms. The average time for typing a letter on the
Arrow keyboard, were 1106ms. The average time that the
participants held their finger on the screen while dragging,
were 203 ms for Arrow. On a normal button it is 144ms.
This tells us that the overhead for dragging is 59ms for each
character written. When compared to the 990ms a click takes
with a normal button, the dragging consequently adds 5.9%
overhead in time.

The total overhead of Directional Selection is 116ms (1106-
990). If we subtract 59ms for the actual drag, we get a 57ms
remainder, which can be considered the ”mental overhead”.
This means that half of the overhead, between our technique
and just clicking on a normal button, is to identify which
direction to drag.

Hypothesis 5: The time it takes to write one character is
higher for both Color and Arrow than on a keyboard with-
out dragging, since the user needs to perform one more
action (the drag).

Answer: Being 116ms slower, where 59ms is for the actual
drag and 57ms is the mental overhead, means that this
hypothesis is true.

Directions

Figure 15 shows the average drag directions and length, for
each for the four directions. The numbers at the lines maps
to a participant ID from 1 to 9. The important result here is
that all participants are far from the critical 45 degree (for
which you will get a wrong direction). There is no clear
evidence of a difference between our left handed participant
(9) and the others.

The participant with the shortest average dragging length
were number 2 (2.03mm) and the longest were number 8
(5.08mm). So with only 1.35mm necessary for a successful
drag, participant 8 is dragging 276% longer than necessary.

(a) Left drag (b) Right drag

(c) Up drag (d) Down drag

Figure 15. Dragging directions by participant. The width of the figures

correspond to 6mm or 66.7 pixels)

Average dragging time for participant 2 and 8 were 117.7
and 209.8 respectively. This means that the dragging time
of participant 2 was 78.2% faster than participant 8. This
suggests that if the participants learned to shorten their drag,
they would be faster.

Data Summery

If we look at the results so far, it is clear that Arrow is out-
performing Color in entry rate and they are about equal in
their error rates. The dragging concept is also working with-
out any problems or large overhead. To compare a keyboard
using Directional Selection, to one without, we can try to
look at the average cost of deletion (i.e. the time it takes to
press delete and enter a new character) which is 2,474.5ms
on Arrow. So, with an average total overhead of 116ms per
character, for the dragging to be worth it, it has to ”fix” one
error for every 21.3 characters entered. In other words, the
error rate has to be 4.7% lower on Arrow than on normal
buttons. The total error rate for Arrow were 4.3% in the last
session, which is more than 4.7% less than the 11-30% simi-
lar studies have shown for normal buttons of that size[16][9].
This tells us that Directional Selection can be a used in ap-
plications where there is a high error rate and accuracy is
important.

Questions

Generally the answers related to Arrow or Color was an-
swered with the same answer, except that almost everybody
said that the mapping from color to direction was much harder
than the arrow to direction. This resulted in they were sure
that they performed worse on the Color keyboard. The eval-
uations of the two keyboards (questions 1-6) had the follow-
ing in common:

7

Good: All participants felt that it was easy to hit the desired
key. Additionally, some said that after more practice they
could easily see themselves use Arrow as their primary
mobile keyboard.

Bad: The first item in the view field at the left side of the
screen was hard to hit, because of the high edge around
the screen.

When asked if we could improve anything, some of the par-
ticipants said that the time limit (combined with their own
deadlines) put a pressure on them to get finished, and if they
could schedule the test period themselves, then they could
perform better and more consistent. Also we got a comment
from one of the participants that she felt that the predefined
text was putting additional mental pressure on her. She ar-
gued that if she could get to use our device as her everyday
phone and write what she wants, then she would have more
energy for the actual typing.

When asked how the Arrow keyboard compares to the one
they are used to, they generally was positive about the Arrow
keyboard, but most of them would like to continue with their
usual keyboard.

When asked how the Color keyboard compares to the one
they are used to, they all said that they liked Arrow much
better, and never would use Color themselves.

None of the participants had any comments or any problems
during the test.

DISCUSSION

The accuracy and performance differences between Arrow
and Color, are a result of the different mapping between keys
and direction in the two keyboards. The Arrow keys have a
direct mapping between key and direction, where the Color
keys have an indirect mapping between key and direction.
This should result in Arrow being faster than Color for new
users. Then the question is whether people can learn the
mapping between colors and direction, so it comes naturally
to them. If that is possible, then Color should be the fastest,
because humans are faster to recognize colored objects then
shapes[14]. The data shows that the mapping from color to
direction is quite time consuming, even after 19 sessions.
This is also supported by the answers from the participants
when they were asked questions about the Color keyboard.
One said:

It was really difficult to remember the direction for each
color, so you had to take a break while you were writing
to get an overview of which direction each color has.
This is very time consuming

Similar comments came from eight of the participants.
This tells us that using colors is not a great idea even
if they are recognized faster because the mapping takes
longer than the time gained. This supports the obser-
vation made in Escape[16], where they did not see in-
creased speed in selection by adding color to the arrow
shaped objects.

As shown before, there does not seem to be difference
between the areas of the keyboard in terms of entry
speed. However, the downtime distribution in Figure
16 shows that the participants held their fingers down
longer in the sides of the device, compared to the cen-
ter. Actually, the difference between a button in the left
side (a) and a button in the middle (g), which both have
the same direction assigned, is significant (F1,3794 =

14.43, p = 0.0002). This does not necessarily map di-
rectly to a lower entry speed, since the additional time
used on the current key could be used to prepare for the
next. However, it still could indicate that some of the
participants had trouble dragging in these areas.

Figure 16. The downtime distribution over the Arrow keyboard (white

is long and black is short). To map to the keyboard simply imagine

placing this figure on top of Figure 4 (the Arrow keyboard).

When looking at the difference between left and right
handed participants in downtime(the time between the
user press down and till he/she lifts the finger again), we
saw a clear difference. The time the right handed par-
ticipants used on downtime, can be seen in Figure17. It
shows that they used more time on the all the letters in
the right side of the keyboard than those in the middle
and left. If this is compared to the one participant that
is left handed, shown in Figure18, it is almost mirrored.
This shows that participants have a longer downtime
in the same side of the keyboard as the hand they use
to write. This is most likely caused by the high edge
around the screen that forces the participant to turn the
hand such the finger is underneath it and thus losing
some of the control of the finger. But the time lost with
the longer downtime is so small that it has no visible
effect on the CPS, which tells us that the edge on the
phone has no real impact on writing speed.

Figure 17. The downtime distribution over the Arrow keyboard for

right handed (white is long and black is short). To map to the key-

board simply imagine placing this figure on top of Figure 4 (the Arrow

keyboard).

8

Figure 18. The downtime distribution over the Arrow keyboard for left

handed (white is long and black is short). To map to the keyboard sim-

ply imagine placing this figure on top of Figure 4 (the Arrow keyboard).

CONCLUSION

In this article we attempted to answer the following
question: Can directional selection be used for text en-
try on small touchscreen based mobile devices?

To answer this, we implemented two variations of this
idea. The first one, called Arrow, used arrows on the
buttons of the keyboard to map a button to a direc-
tion. The other, called Color, used colors on the but-
tons, which mapped to one of four colors to a identical
color on the background. The color on the background
was placed such that the user needs to drag in that di-
rection to choose the intended key.

These two keyboards were then tested in a longitudi-
nal user test, where 9 participants were asked to write
8 sentences and 3 homepage addresses with each key-
board 19 times.

Based on the results we can answer the research ques-
tion with a definite ”Yes”. The overhead of the drag
were tested to be 116 ms, or 4.7%, which is low com-
pared to the error rate reduction potential. The error rate
of Arrow were under half of what studies have shown
the error rate to be on keyboards without Directional
Selection.

Limitations

The following limitations should be considere when us-
ing the results from this paper:

• The surface of the screen were a bit resistant when
it comes to dragging compared to the default screen,
which might cause a lower performance when drag-
ging.

• The screen does only support single-touch, where
a multi-touch is becoming more and more popular.
On a multi-touch screen the numbers could be very
different.

Future Work

Half of the overhead, between our technique and just
clicking on a normal button, was to identify which di-
rection to drag. This suggests that any improvements in
the mapping could make a big impact in the overhead

for dragging. So Directional Dragging should be at-
tempted implemented on other layouts than QWERTY,
which might result in a better performance, if the map-
ping could be made more obvious.

REFERENCES

1. Alexa the web information company.
http://www.alexa.com/.

2. Danish wordlists.
ftp://ftp.mathematik.uni-marburg.

de/pub/mirror/openwall/wordlists/

languages/Danish/.

3. The fitaly one-finger keyboard. http://www.
fitaly.com/fitaly/fitaly.htm.

4. Rejse mod vinter. http://www.
fyldepennen.dk/tekster/29289.

5. Sort og hvidt hjerte. http://www.
fyldepennen.dk/tekster/37687.

6. Uden titel. http://www.fyldepennen.dk/
tekster/38526.

7. BROOKS, M. Introducing the dvorak keyboard.
http://dvorak.mwbrooks.com/.

8. COCKBURN, A., AND SIRESENA, A. Evaluating
mobile text entry with the fastap keypad. In HCI
2003 (2003), British HCI Group, pp. 77–80.

9. LEE, S., AND ZHAI, S. The performance of touch
screen soft buttons. In CHI ’09: Proceedings of
the 27th international conference on Human
factors in computing systems (New York, NY,
USA, 2009), ACM, pp. 309–318.

10. LEWIS, J. R. Literature review of touch-screen
research from 1980 to 1992. In IBM: Design
Center/Human Factors (Boca Raton, FL, USA,
1993), IBM, pp. 1–6.

11. MACKENZIE, I. S., KOBER, H., SMITH, D.,
JONES, T., AND SKEPNER, E. Letterwise:
prefix-based disambiguation for mobile text input.
In UIST ’01: Proceedings of the 14th annual ACM
symposium on User interface software and
technology (New York, NY, USA, 2001), ACM,
pp. 111–120.

12. MACKENZIE, I. S., AND ZHANG, S. X. The
design and evaluation of a high-performance soft
keyboard. In CHI ’99: Proceedings of the SIGCHI
conference on Human factors in computing
systems (New York, NY, USA, 1999), ACM,
pp. 25–31.

13. MARTIN HELANDER, THOMAS K. LANDAUER,
P. V. P. Handbook of human-computer
interaction. Elsevier Science Pub Co.

14. QUINLAN, P. T., AND HUMPH, G. W. Visual
search for targets defined by combinations of
color, shape, and size: An examination of the task
constraints on feature and conjunction searches. In
Perceptton & Psychophysics (1987), pp. 455–472.

9

http://www.alexa.com/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
http://www.fitaly.com/fitaly/fitaly.htm
http://www.fitaly.com/fitaly/fitaly.htm
http://www.fyldepennen.dk/tekster/29289
http://www.fyldepennen.dk/tekster/29289
http://www.fyldepennen.dk/tekster/37687
http://www.fyldepennen.dk/tekster/37687
http://www.fyldepennen.dk/tekster/38526
http://www.fyldepennen.dk/tekster/38526
http://dvorak.mwbrooks.com/

15. SOUKOREFF, R. W., AND MACKENZIE, I. S.
Metrics for text entry research: an evaluation of
msd and kspc, and a new unified error metric. In
CHI ’03: Proceedings of the SIGCHI conference
on Human factors in computing systems (New
York, NY, USA, 2003), ACM, pp. 113–120.

16. VOGEL, D., AND BAUDISCH, P. Shift: a
technique for operating pen-based interfaces using
touch. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing
systems (New York, NY, USA, 2007), ACM,
pp. 657–666.

17. WIGDOR, D., AND BALAKRISHNAN, R. Tilttext:
using tilt for text input to mobile phones. In UIST
’03: Proceedings of the 16th annual ACM
symposium on User interface software and
technology (New York, NY, USA, 2003), ACM,
pp. 81–90.

18. WIGDOR, D., AND BALAKRISHNAN, R. A
comparison of consecutive and concurrent input
text entry techniques for mobile phones. In CHI
’04: Proceedings of the SIGCHI conference on
Human factors in computing systems (New York,
NY, USA, 2004), ACM, pp. 81–88.

19. YATANI, K., PARTRIDGE, K., BERN, M., AND

NEWMAN, M. W. Escape: a target selection
technique using visually-cued gestures. In CHI
’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in
computing systems (New York, NY, USA, 2008),
ACM, pp. 285–294.

20. YATANI, K., AND TRUONG, K. N. An evaluation
of stylus-based text entry methods on handheld
devices in stationary and mobile settings. In
MobileHCI ’07: Proceedings of the 9th
international conference on Human computer
interaction with mobile devices and services (New
York, NY, USA, 2007), ACM, pp. 487–494.

21. ZHAI, S., AND KRISTENSSON, P.-O. Shorthand
writing on stylus keyboard. In CHI ’03:
Proceedings of the SIGCHI conference on Human
factors in computing systems (New York, NY,
USA, 2003), ACM, pp. 97–104.

10

QdQ: A New Keyboard for Writing Text on Small Soft
Keyboards

Anders Houbak Kristiansen
Department of Computer Science

Aalborg University
Selma Lagerlöfs Vej 300

DK-9220 Aalborg East, Denmark
andershkristiansen@gmail.com

Frederik Larsen
Department of Computer Science

Aalborg University
Selma Lagerlöfs Vej 300

DK-9220 Aalborg East, Denmark
flabby@cs.aau.dk

ABSTRACT

This study evaluates the implementation (called QdQ) of a
keyboard based on Directional Selection. It is compared
against implementations of existing keyboards like Multi-
tap and QWERTY with and without dictionaries using the
results from a longitudinal user test.

Author Keywords

soft keyboards, text entry, touchscreen, QdQ, directional se-
lection

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies

INTRODUCTION

Small mobile devices are used in many new areas where
the desktop or laptop computer used to dominate. Devices
like smartphones are used in new areas like browsing home-
pages, writing emails and participating in social networks.
All of these new requirements require them to support the
users in typing text with a decent efficiency in many differ-
ent contexts. This is what this paper will try to improve, by
introducing a new keyboard and evaluating it in a longitudi-
nal user experiment.

One of the goals of this keyboard is to be independent on
dictionaries, which has two important drawbacks we want
to avoid. The first is, as [13] shows, that if only 15% of
the words written is not in the dictionary all speed increase
are lost. This can be words like abbreviations, usernames,
passwords, email and web page address, which all are very
important for the new areas the smartphones are used in. The
other reason is the high cognitive load that the users feel
when they are writing, because they need to focus on what
the dictionary shows on the screen and on the next key they
need to press [9].

Submitted for review to CHI 2010.

Another goal is to avoid using a stylus. Many new smart-
phones, like the iPhone from Apple and the HTC Touch Di-
amond 2, uses a capacitive touchscreen that works by utiliz-
ing the small amount of electricity the human body conduct.
This means they will not work with a standard stylus. An-
other reason for not using a stylus, is that the intense atten-
tion required can disrupt the users attention from the actual
text input and it can feel tedious using a stylus over an ex-
tended period of time[19].

The keyboard developed in this paper is called QdQ (Quad
direction QWERTY) and is based on Directional Selection
(i.e. selecting something by dragging in an assigned direc-
tion) combined with a QWERTY keyboard. A screenshot of
this keyboard can be seen in Figure 4.

Figure 1. The QdQ keyboard.

In this paper, we will compare this keyboard against several
other keyboards based on existing text entry techniques, in
a longitudinal user experiment. The other keyboards are a
Multitap and a QWERTY keyboard with and without dictio-
nary.

This paper deals with the following question: How does
QdQ compare to existing small soft keyboards?

RELATED WORK

One way to design a keyboard for a small device where you
do not have the space to place a full 26 keys keyboard (for
the English language), is to have more characters on one but-
ton. A widely known example of this is Multitap, which is
used on many mobile phones that are equipped 12 hard but-
tons. The alphabet a-z is distributed on buttons 2-9 as seen
in Figure 2. For instance, to write up, you need to press
two times on 8 and one time on 7. There is a timeout period
usually 0.5-2 seconds, which is used to insert the selected
character. For example, to write on, press three times on

1

6, wait for timeout, and then press two times on 6. Some
also implements a timeout kill button that a user can press to
skip the timeout and insert the selected character. Because
there is more letters on one button, the average keystroke per
character (KSPC) is 2.0342[12] on the Multitap keyboard.

Figure 2. The Multitap keyboard.

Dictionaries are mainly used for two things, one is to gain
disambiguation. A well known example of this is T9 by Te-
gic[5] that uses a Multitap layout. If 4, 3, 9 is pressed it
will write hey, because this is the only possible word in the
English dictionary that can be written from the 36 combina-
tions that can be made. If it was 2, 6, 9 that was entered,
it would write box, but if it was not the desired word, then
there is a next word button which can be used to switch be-
tween the different words like boy, bow and cow. By using
T9 it will decrease the KSPC of Multitap from 2.0342 to
1.0072[12] and thus gain a speed increase over Multitap. A
way to gain disambiguation on a small QWERTY keyboard
is to use a dictionary to correct errors in the output by look-
ing at the surrounding characters at each key press, which
is used on smartphones like Apple iPhone and on the Nokia
Qt Extended platforms. The other thing a dictionary is used
for is word prediction, which is used to get the KSCP below
one. An example of this is [8], where wildcards can be used
instead of writing the full word. Some of the problems with
using dictionaries is if just 15%[13] of the entered words is
not in the dictionary while using T9, all speed increases are
lost. This prevents people from using abbreviations that are
often used when messaging[13]. The problem impacts the
performance of writing things like e-mail and homepage ad-
dresses.

Another way to write on a small mobile device is simply to
not use buttons, but instead use gestures. An example of this
is Shape Writing[19], where all words have their own ges-
ture, which is the shape you get when drawing a line between
each letter in the desired word on an image of a keyboard.
Some gestures based techniques, like Graffiti by Palm[7],
uses a novel character set that the user draws on the touch-
screen to resemble handwriting. One of the disadvantages
of most of these techniques is that they are made to be used
with a pen and not the finger. This is not good, because the
intense attention required when using a stylus can disrupt the

users attention from the actual text input and can feel tedious
when used over an extended period of time[19].

A technique, that focuses on a combination of high speed
and accuracy when selecting small targets on a touchscreen
rather than writing speed, is Escape[18]. It is used to select
small targets which were occluded by the finger that was
selecting. It works by giving all the objects a direction and to
select an object the user use a simply dragging gesture in the
direction of the object. This can be seen in Figure 3. One of
the problems with Escape is that it does not work when many
targets are close together because it then cannot map all of
them to a few different directions, where it is still possible
to select them. There is also a limitation on object density
at the edge of the screen. For instance, it is not possible to
drag down if the object is at bottom, but if you drag down
just above it, it will still be selected if it is the nearest object
with that gesture.

Figure 3. The Escape selection technique.

OUR KEYBOARD: QDQ

Our keyboard is a combination of a standard QWERTY key-
board and the target selection technique Escape[17]. This
combination can help us achieve:

1. Independence of dictionaries, which would make it eas-
ier to write words that are not in the dictionary (like ab-
breviations, URL’s, second language words and email ad-
dresses). As shown by [13], the dictionary actually lowers
the writing performance if only 15% of the words are not
in the dictionary. This is feasible due to a lower error rate.

2. Emulation of a larger keyboard, since the area in which
you need to hit to select the desired key, is much larger
than the keys, making it more feasible to use the fingers
instead of a stylus.

3. Lower stress level, since the keyboards that are dependent
on a dictionary or a stylus are known to have a high mental
demand [9][19].

The keyboard, named QdQ, can be seen in Figure 4.

Figure 4. The QdQ keyboard in Arrow Mode.

2

Note that the layout is in Danish, which is because the test
participants are from Denmark and should write in their pri-
mary language to avoid spelling trouble and other language
related slowdowns. The SET button is used to switch be-
tween this and the other keyboards we have implemented
for the evaluation, which are described in more details in the
following sections.

As an example of usage, to write ”hey”, you need to follow
this procedure:

1. Press down on letter h, move your finger a bit right and
lift your finger again

2. Press down on letter e, move your finger a bit up and lift
your finger again

3. Press down on letter y, move your finger a bit left and lift
your finger again

It uses the position you press down to determine the center
of the area to look for the letter and the position where you
lift your finger to determine the direction. The area around
the down-press is much larger than the actual keys, since the
keyboard always chooses the closest key with the detected
direction. Consequently, it actually emulates a larger key-
board, because you can press anywhere in that area and still
get the desired key.

Regarding the performance of the keyboard, we can present
the following hypotheses, based on the definition of the key-
board:

1. The WPM is higher than on a standard QWERTY key-
board, because the lower error rates makes up for the over-
head of the drag.

2. The error rate is lower than on a standard QWERTY key-
board, because the area the user needs to hit is larger.

3. The workload is lower than on a keyboard with dictionary,
because the dictionary adds to the stress level.

METHOD

To evaluate our technique, a comparative longitudinal user
test using within-subjects was performed using the method
described in this section. Each user did 20 sessions with five
keyboards where they wrote both sentences and homepage
addresses.

Participants

12 participants participated in this test but only 9 finished.
Six out of the 9 participants were from Aalborg University,
the last three participants were from outside the university.
All 9 participants were volunteers and did not get paid for
participating. Two of the participants where females and
seven males, they had an age range from 21 to 49 (mean
28) years old. One of the participants was left-handed and
none of the 9 participants were color-blind.

Six of the 9 participants use a mobile phone with a T9 key-
board with physical keys almost every day, where only two

uses Multitap with physical keys and none of these partic-
ipants had any experience when it comes to writing on a
touchscreen based device. The last participant had some
experience using a touchscreen based mini QWERTY key-
board on a smartphone. All of the participants were experi-
enced when it comes to writing on a standard personal com-
puter QWERTY keyboard.

Apparatus

The test was performed on two Openmoko Freerunner smart-
phones running Android with 128MB SDRAM and a 400MHz
ARMv4T processor. It has a resistive touch screen with the
dimension 480x640 pixels (1 pixel = 0.09mm), that does
not support multi-touch, which implies writing with only
one finger. The touchscreen was covered with a protective
film that added more resistance when dragging than the stan-
dard touchscreen. The test program and keyboard was pro-
grammed in Java using the Android API over a period of 3
months. There was a high focus on little resource usage and
a good performance, to ensure that it was not a bottleneck.
A screenshot can be seen in Figure 5 with a QWERTY key-
board.

Figure 5. The QWERTY keyboard.

The test was performed with five different conditions, QW-
ERTY keyboard, QWERTY keyboard with dictionary, Mul-
titap, Multitap with dictionary and QdQ.

The QWERTY keyboard is a standard Danish alphabet QW-
ERTY keyboard, which can be seen in Figure 5. The 123
button gives access to the numbers and symbols and the set
button is used to change between the five conditions(will be
disabled under the test, to prevent participants from acci-
dently pressing it). The size of the buttons containing let-
ters were 3.8x4.6mm, where the enter and shift buttons had
a size of 6.5x5.8mm, 123 and delete buttons were a little
larger with a size of 8.6x5.8mm and the space button with a
size of 13.0x5.8mm.

3

The QWERTY keyboard with dictionary looks like the QW-
ERTY keyboard, but utilizes a dictionary and learning to
help the participant by correcting errors. The way the dic-
tionary works is by looking at all adjacent keys within a
5.0mm radius. This was done to simulate a key with the
size of 10x10mm. This was also tested to be the best size
in a pilot study. The words, that the adjacent characters can
create, is shown in a prioritized order in the view field (the
bar above the keyboard in Figure5). They were prioritized
using the shortest distance, from the coordinates where the
user pressed down to the coordinates where they should have
pressed down to get the word. This is then combined with
learning that can make a word appear higher on the priori-
tized list after how many times it has been entered. When
enter or space button is pressed the first word in the view
field is selected followed by a space or enter. If the desired
word is not the first, it can be selected by pressing it, and
only that word is inserted. The view field can also scroll
horizontally if there are more words than there is room for
on the screen.

The Multitap keyboard was implemented such that all of the
buttons on the Multitap keyboard had the size of 13.0x8.6mm
which was the maximum size possible, where the test pro-
gram still could be used. The timeout were chosen to be one
second to resemble a real world implementation of Multitap
on a Sony Ericsson W800i. We decided not to implement a
timeout kill button because just pressing the first character in
the view field, which rotates at every key press, has the same
function. It can be seen in Figure 6

Figure 6. The Multitap keyboard.

The Multitap keyboard with dictionary was implemented to
resemble T9[5], which is a keyboards with a Multitap layout
that is using dictionary. It also uses learning to decide the
order of the found words. The view field works exactly like
in the QWERTY keyboard with dictionary.

The QdQ keyboard is the implementation of our technique,
where the button layout (not the look) and size is the same
as in the QWERTY keyboard. A minimum drag distance
of 1.35mm was chosen from a pilot study as the distance,
where a drag was long enough to not just be a simple click.
The only way to enter letters was by performing a drag and

not by clicking. The other buttons (bottom row) still works
like in the original QWERTY keyboard, where they need to
be clicked. This was done to prevent the inconvenience it
would be to drag down to the bottom of the screen, because
of the edge. Additionally, the pilot study did show that there
was no problem doing it this way.

We will use the following short names to refer to the key-
boards:

• QWERTY: The standard QWERTY keyboard.

• QWERTY (dic): The standard QWERTY keyboard with
dictionary.

• Multitap: The Multitap keyboard

• Multitap (dic): The multitap keyboard with dictionary.

• QdQ: The QdQ keyboard using arrows for mapping to di-
rection.

Experimental Design

Within-subjects were used for the test with 20 sessions as
factor crossed with the five conditions QWERTY keyboard,
QWERTY keyboard with dictionary, Multitap, Multitap with
dictionary and QdQ. There were six conditions in the test
where the last one was a variation of QdQ but only five was
used in this article. The dependent variables were entry rate
(Words per Minutes) and accuracy (Error rates).

To prevent carryover effects, the keyboards were distributed
in a 6x6 balanced roman square where participant one started
with the first row, then second row next session. Participant
two started with the second row and so on for all the par-
ticipants. This was done to mix the order of the keyboards.
All of the sentences were picked randomly (but distinct for
the specific sessions) from a set of 602 sentences. They only
contained lower case characters. All of the sentences were
obtained from three different short stories[4][6][3]. The sen-
tences had a length between 16-44 characters (with an aver-
age of 28.5), consisted of 3192 words (1084 unique words)
and the average word length were 4.6 characters. The home-
page addresses were randomly selected from the 100 most
popular homepages in the world[1] without the ”http://www.”.
They contained lower case characters, numbers, ”-” and ”.”.
The order of the eight sentences and the three homepage ad-
dresses changed from keyboard to keyboard and also from
session to session by alternating between them. The words
in the dictionary was from [2] where all the words from the
sentences were added this was done to enable us to look at
the data from the sentence as 100% represented in the dictio-
nary. None of the homepages addresses was in the dictionary
to give us opposite data, 0% representation. It was decided
that every participant started with their own empty learning
which they kept building on throughout all of the sessions.
This was decided to be the most fair, and resemble the real
world the most, compared to no learning or perfect learning.

Procedure

Before the first session the participants got the chance to
write a few sentences with all of the different keyboards and

4

afterwards ask questions if there was something they did not
understand. They were instructed to write as quickly and
accurately as possible, where they were allowed to have un-
corrected errors. Sentences were instructed to be read metic-
ulously before stating to write, to keep FOA (focus of atten-
tion) down. The sentences remained visible under the test to
prevent spelling errors and prevent them from forgetting the
sentences. In each of the sessions they had to write eight sen-
tences and three homepage addresses with each of the key-
boards. After they were finished with one keyboard they had
to change the keyboard on their own and continue the ses-
sion until they were done, with all of the keyboards. There
were no restrictions on where they were located under the
test, but they were asked to make sure they sat comfortably
and undisturbed before starting. Every time a participant
was finished with a couple of sessions using the smartphone
they had to bring it to us so we could take a backup and
transfer test data from another participant to it. This was a
necessary such the two smartphones should be used by the
seven participant in the same time frame. They also had the
opportunity to borrow one of the smartphones home at the
evening or at the weekend to test. Seven of participants had
a deadline of 20 days after the test began to complete the ses-
sions however this timeframe had to be extended to 30 days
because only one was finished at the deadline. The last three
participants got an seven days deadline to complete all the
sessions. How the sessions were distributed was up to the
individual participant. Pauses could be held between two
sentences, between the different keyboards and at the end
of each session. The last session was performed in a us-
ability lab with the participant walking on a treadmill with a
speed warring from 1.5-3.5 Km/h as recommended in [14],
to see how the keyboards would perform if the participant
was moving. After all the sessions the participants took a
NASA TLX test even if is some discrepancies[15].

Data Collection

For each key pressed, we collected a time stamp which started
from when the first key was pressed in a sentence, key code
(including space and backspace), session number, sentence
number, keyboard used and a reference to the written sen-
tence which was used to help find all the uncorrected er-
rors. All test data was automatically collected on the mobile
phone and saved to a mini SD Card where all of the partici-
pants data were stored separately.

Data Analysis

The data that was collected was used to find learning effects,
WPM and error rates. WPM is calculated as the time used
to type the sentence plus the average time to correct an er-
ror multiplied with the number of uncorrected errors in the
sentence. The combined time is divided with the number of
characters in the sentence including spaces minuses the first
character. This time was then divided by 60 to get it in min-
utes. Finally this is divided with five as the accepted word
length to get WPM.

To measure the error rates, we use corrected, uncorrected
and total error rate as described in [16]. We define CPS
as Character per Second, without any error calculations in-

cluded. For statistical analysis, we use the F-test throughout
this paper.

RESULTS

In this section, we will show the results from the test which
relates to answering the research question. Additionally, we
will prove or disprove the hypotheses presented previously
in this paper.

Entry Rates

In Figure 7 all the keyboards are compared in terms of WPM
when entering sentences. It shows that QWERTY, QWERTY
(dic) and Multitap (dic) are significantly faster than QdQ and
Multitap (p ranging from p = 0.0027 to p = 0.0002). QdQ
is also significantly faster than Multitap (F1,16 = 26.71, p =

0.0009). All the keyboards had a learning effect and have
seen a speed increase over the 19 sessions ranging from 46.6%
for Multitap to 80.2% for Multitap (dic).

Figure 8 shows the learning curves (approximated extrapola-
tion) for the data from Figure 7, which shows that even after
a potential 50 sessions, the order of the keyboards are still al-
most the same, except that QWERTY is slightly above QW-
ERTY (dic). The specific information about these learning
curves is shown in the table below (where the WPM learning
curve is defined as a a∗xb function and R2 is the correlation
coefficient):

a b R2

QWERTY 12.96 0.14 0.7
QWERTY (dic) 12.62 0.17 0.83
Multitap (dic) 11.29 0.2 0.75
QdQ 9.97 0.16 0.71
Multitap 7.68 0.13 0.7

Figure 8. Trend: WPM by keyboard and session (sentences)

In Figure 9 all the keyboards are compared in terms of WPM
when entering homepage addresses. The only significant
differences between entering sentences and homepage ad-
dresses is for Multitap (dic) (F1,16 = 21.58, p = 0.0003)
and QWERTY (dic) (F1,16 = 6.49, p = 0.0215). Typing
sentences is 236% faster with Multitap (dic) and 48% faster
with QWERTY (dic).

Hypothesis 1: The WPM is higher than on a standard QW-
ERTY keyboard, because the lower error rates makes up
for the overhead of the drag

Answer: This is false, even though Arrow does have a lower
error rate.

5

Figure 7. WPM by keyboard (sentences)

Figure 9. WPM by keyboard (homepage addresses)

Accuracy

The total error rates by keyboard for sentences and home-
page addresses can be seen in Figure 10 and Figure 11. Both
figures shows the improvement of the error rate over the 19
sessions for all the keyboards. For sentences, QWERTY
had a significantly higher error rate than Arrow (F1,16 =

6.76, p = 0.0316), QWERTY (dic) (F1,16 = 8.24, p =

0.0208) and Multitap (dic) (F1,16 = 6.48, p = 0.0344). For
homepage addresses, Arrow had significantly lower error
rate than both QWERTY (dic) (F1,16 = 10.77, p = 0.0112)
and Multitap (dic) (F1,16 = 36.56, p = 0.0003).

The only significant differences between entering sentences
and homepage addresses is for Multitap with dictionary (F1,16 =

33.69, p = 0.0004) and QWERTY with dictionary (F1,16 =

18.66, p = 0.0025). Since we have tested both of the key-
boards without a dictionary, where there were no signifi-
cant results, we can conclude that keyboards with dictionary
causes a significantly higher error rate when entering words
that are not in the dictionary.

Hypothesis 2: The error rate is lower than on a standard
QWERTY keyboard, because the area the user needs to
hit is larger

Answer: This is true, because Arrow does have a lower er-
ror rate than QWERTY for both sentences and homepage
addresses.

Walking vs. Sitting

The participants were asked to walk while doing session 20.
Figure 12 shows an overview of how fast the keyboards were
while walking and sitting. The WPM used for sitting in this
graph is defined as being the average WPM with the given
keyboard for session 17-19. Sitting is defined this way, be-
cause session 19 alone (as shown in Figure 7) does not pro-
vide good numbers to test against due to the low WPM in
session 19. The numbers used for walking was only the
WPM for session 20. From the comparison in Figure 12,
we can see that all keyboards show a drop in WPM when
writing sentences while walking. This drop is significant for
QWERTY (F1,16 = 5.71, p = 0.0439) and QWERTY (dic)
(F1,16 = 16.69, p = 0.0035). If we look at homepage ad-
dresses we can see the same trend.

Figure 12. Comparing Sitting and Walking (WPM)

6

Figure 10. Errors by keyboard (sentences)

Figure 11. Errors by keyboard (homepage addresses)

Figure 13 shows an overview of the total error rates of the
keyboards while walking and sitting. From this compari-
son, we can see that all keyboards had a higher total error
rate when typing while walking. On average the error rates
were 72.6% higher when walking (from 5% to 8.7%). When
looking at sentences the Arrow keyboard was comparable to
QWERTY (dic). For homepage addresses, Arrow was the
keyboard with the lowest error rate while walking and at the
same level as QWERTY when sitting.

The results showing a significant difference between enter-
ing sentences and homepage addresses for dictionary based
keyboards are also clearly visible in this figure. They also
had a 255.2% higher error rate when walking and writing
homepage addresses compared to walking and writing sen-
tences. The keyboards without a dictionary were staying at
about the same level.

NASA TLX

The results from the NASA TLX test can be seen in the fol-
lowing table. It was done to see how the participants felt the
workload for Directional Selection, compared to what they
were used to.

Figure 13. Comparing Sitting and Walking (Errors)

Arrow Usual Usual
workload workload keyboard

Partitipant 1 54 73 QWERTY
Partitipant 2 80 54 T9
Partitipant 3 39 24 T9
Partitipant 4 88 19 T9
Partitipant 5 32 49 Multitap
Partitipant 6 46 63 T9
Partitipant 7 52 49 T9
Partitipant 8 34 33 T9
Partitipant 9 75 66 Multitap

Average 56 48 -

The average workload for the keyboard they usually used

7

were 48, which for Arrow is 56. There is no significant dif-
ference (F1,16 = 0.71, p = 0.4244) between these, but even
if there were, we would have to take their much longer ex-
perience with their usual keyboard into account.

Hypothesis 3: The workload is lower than on a keyboard
with dictionary, because the dictionary adds to the stress
level

Answer: The numbers shows that Arrow might have a higher
workload than T9, but since the difference is not signifi-
cant, we cannot say for sure.

DISCUSSION

We chose to compare QdQ to Multitap, because it is used as
a baseline in many studies. Our implementation of Multitap
had an entry rate of 13 WPM which is somewhat lower than
the 15.5WPM in [13]. This difference is reasonable since
none of the participants had used the view field as a timeout
kill button and because we used soft buttons, rather than hard
buttons as they did.

Multitap with dictionary was chosen so that there was a key-
board with a dictionary to compare against keyboards with-
out any dictionary and because many people are familiar
with and using T9 daily. In our test it had an entry rate of
just below 24 WPM. In [10] they get 15.1 WPM when us-
ing newspaper text type and 25.7WPM with a chat text type.
Since our text type is a lot closer to their newspaper text type
than chat, it is a little fast, which is to expect since six of the
nine participants used a T9 keyboard daily.

The QWERTY keyboard was added to get some data from
participants use of a small QWERTY keyboard only using
their fingers to write. Additionally, we wanted see how the
basic keyboard would perform against keyboards that tries
to help people to write more correct and faster like QdQ
and QWERTY keyboard with dictionary. The experiment
we could find that resembles our QWERTY keyboard the
most in size, and that it was performed on a touchscreen,
was [14] with 22 WPM, but the participants were using a
stylus. 22 WPM is somewhat low when compared to the
QWERTY keyboards 22WPM entry rate, since their partic-
ipants are testing using a stylus and ours are testing using a
finger. If we try to take a look at the error rate, we have to
look at [11] or at articles with focus on selection instead of
keyboards because there is not a lot of research in the field of
writing using a finger on a touchscreen. So we have looked
at [11] which shows an error rate of 11% when using a but-
ton size of 7.2x6.5mm. Another article[17] shows 46% error
rate when using the tip of a finger on a touchscreen and 30%
with the nail when using 5.2x5.2mm buttons. Our letter but-
tons are 3.8x4.6mm which is 62.6% smaller than in [11] and
35.4% than in [17]. So there is to expect an error rate higher
than 30% at least, but we did only see 6-10% which also
explains why the WPM is so high.

Both [11] and [17] used automatic data collection so they
could not have caught any more errors than we could. If
we had video or was observing them, we could have caught
errors like when a participant did not press hard enough on

the touchscreen. In both articles they also instructed their
participants to be as quickly and accurately as possible as
we did. [11] sees the buttons as including the gap between
the buttons which we also do, so there is no difference there.
They also include the same errors as we do in the total error
rate, so that is not a contribution to any difference in the error
rate. [17] only has one button on the screen that the user has
to select to proceed or press a next trial button if they give
up. To see if it has an effect, we could try to look at some
larger buttons (7.8x7.8mm) in [17]. They get a 9% error rate
using nails and 18% with the tip of the finger. Because only
4 of the 13 participants in [11] are using their nail, it shows
us that [17] have a higher error rate than [11], but this is a
small difference and nothing in the area we are seeing.

The differences in error rate were not a product of partici-
pants using stylus in our experiment, since we got the same
data from sessions where the participant were observed by us
and from a small test where we tried to complete a session
with and without a stylus ourselves. With stylus we saw a
1.8% error rate and by using a finger we saw 7% which con-
firms our experiment. The average size of the index finger
of our participants were XXmm which is close to the anthro-
pomorphic average at 18.2mm[11], and one participant even
used her thumb. There is no information about the finger
size of the participants in [11] or [17], so we cannot say if it
had any effect. From what we can see there is no good ex-
planation, as to why there is such a big difference from our
error rate to the error rate reported in [11] and [17]. This is
something that should be investigated further in a new study.

We noticed that some of the participant data became irregu-
lar. We traced this to the fact that there was no time restric-
tion on how much time there can be between two sessions.
Their learning curve would go up and then drop down after
they did some sessions. This happened if they had a long
break, like one participant who had a 14 days break between
two sessions. This effect was also clearly visible if they per-
formed many sessions in a row. The worst problem with this
was that a single users data can become very irregular which
leads to that the error deviation in the graphs was high. But
they did still learn throughout all the sessions and all par-
ticipants got a learning effect on all the keyboards over the
20 sessions and they got some good entry rates compared to
other experiments. This can be seen in Figure 14, that shows
the learning curve and error deviation for all the keyboards
in one graph. Even on Multitap with dictionary we saw a
learning effect which is a keyboard type seven out of 10 par-
ticipants uses daily. This tells us that for a longitudinal test
the user must have some restrictions on how long time they
can work in a row, such that they does not get exhausted and
therefore loose performance.

Some of the participants commented that they felt that they
had not used QdQ enough for it to be efficient, and if they
had the chance, it could be faster than the QWERTY key-
board in mixed use. One also said, that she had many errors
in QdQ, when she did more than one session right after an-
other, which was not something she felt with the others.

8

Figure 14. WPM by session (sentences)

CONCLUSION

In this article we attempted to answer the following question:
How does QdQ compare to existing small soft keyboards?

The simple answer to this question is that it did perform
about average of the other keyboards in the test when it comes
to sentences and the participants were sitting down. When
replacing the sentences with homepage addresses, the Arrow
keyboard was above average, especially because the Multi-
tap keyboard with dictionary and the QWERTY keyboard
with dictionary suffered from the text not being in the dic-
tionary.

Asking the participants to walk did not affect the WPM much,
but the error rates were a lot higher, except for Arrow (sen-
tences and homepage addresses), Multitap (sentences and
homepage addresses) and Multitap with dictionary (sentences
only). This tells us that even though the Arrow keyboard
generally is a bit slower, it is much more resistant to outside
interruptions than the other two QWERTY based keyboards.

As answer to the research question, the Arrow keyboard per-
formed reasonable, but there are still improvements to be
made. Generally speaking the Arrow keyboard is versatile
when it comes to changes in environment or the type of text,
while still maintaining a reasonable entry speed.

Limitations

The following limitations should be considere when using
the results from this paper:

• The surface of the screen were a bit resistant when it comes
to dragging compared to the default screen, which might
cause a lower performance when dragging.

• The screen does only support single-touch, where a multi-
touch is becoming more and more popular. On a multi-
touch screen the numbers could be very different.

• The participants were not instructed in how long a break
they should have between sessions. Too long breaks did
lower the performance because they got out of the routine,
and too short did also lower the performance, because they
got tired. This is a result from the experiment.

• We did only have one walking session, and based on the

difference between the sessions before that one, the results
may not be accurate.

Future Work

QdQ can be improved in future implementations, by using
another layout where the mapping is more obvious. This
could be one like Multitap, where we exploit the large but-
tons, by placing the letters such that their position on the but-
ton, relative to the middle, symbolizes the dragging direction
to get that letter. The point is that the technique has proved
feasible, but to gain the performance necessary to replace
existing techniques, it should be attempted implemented on
other layouts that QWERTY.

REFERENCES

1. Alexa the web information company.
http://www.alexa.com/.

2. Danish wordlists. ftp://ftp.mathematik.
uni-marburg.de/pub/mirror/openwall/

wordlists/languages/Danish/.

3. Rejse mod vinter. http:
//www.fyldepennen.dk/tekster/29289.

4. Sort og hvidt hjerte. http:
//www.fyldepennen.dk/tekster/37687.

5. Tegic. http://www.nuance.com.

6. Uden titel. http:
//www.fyldepennen.dk/tekster/38526.

7. CASTELLUCCI, S. J., AND MACKENZIE, I. S. Graffiti
vs. unistrokes: an empirical comparison. In CHI ’08:
Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems
(New York, NY, USA, 2008), ACM, pp. 305–308.

8. CHURCH, K., AND THIESSON, B. The wild thing! In
ACL ’05: Proceedings of the ACL 2005 on Interactive
poster and demonstration sessions (Morristown, NJ,
USA, 2005), Association for Computational
Linguistics, pp. 93–96.

9. COCKBURN, A., AND SIRESENA, A. Evaluating
mobile text entry with the fastap keypad. In HCI 2003
(2003), British HCI Group, pp. 77–80.

10. JAMES, C. L., AND REISCHEL, K. M. Text input for
mobile devices: comparing model prediction to actual
performance. In CHI ’01: Proceedings of the SIGCHI
conference on Human factors in computing systems
(New York, NY, USA, 2001), ACM, pp. 365–371.

11. LEE, S., AND ZHAI, S. The performance of touch
screen soft buttons. In CHI ’09: Proceedings of the
27th international conference on Human factors in
computing systems (New York, NY, USA, 2009), ACM,
pp. 309–318.

12. MACKENZIE, I. S. KSPC (keystrokes per character) as
a characteristic of text entry techniques. In Human
Computer Interaction with Mobile Devices (2002),

9

http://www.alexa.com/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
ftp://ftp.mathematik.uni-marburg.de/pub/mirror/openwall/wordlists/languages/Danish/
http://www.fyldepennen.dk/tekster/29289
http://www.fyldepennen.dk/tekster/29289
http://www.fyldepennen.dk/tekster/37687
http://www.fyldepennen.dk/tekster/37687
http://www.nuance.com
http://www.fyldepennen.dk/tekster/38526
http://www.fyldepennen.dk/tekster/38526

vol. 2411 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 405–416.

13. MACKENZIE, I. S., KOBER, H., SMITH, D., JONES,
T., AND SKEPNER, E. Letterwise: prefix-based
disambiguation for mobile text input. In UIST ’01:
Proceedings of the 14th annual ACM symposium on
User interface software and technology (New York,
NY, USA, 2001), ACM, pp. 111–120.

14. MIZOBUCHI, S., CHIGNELL, M., AND NEWTON, D.
Mobile text entry: relationship between walking speed
and text input task difficulty. In MobileHCI ’05:
Proceedings of the 7th international conference on
Human computer interaction with mobile devices &
services (New York, NY, USA, 2005), ACM,
pp. 122–128.

15. PARK, S., HARADA, A., AND IGARASHI, H.
Influences of personal preference on product usability.
In CHI ’06: CHI ’06 extended abstracts on Human
factors in computing systems (New York, NY, USA,
2006), ACM, pp. 87–92.

16. SOUKOREFF, R. W., AND MACKENZIE, I. S. Metrics
for text entry research: an evaluation of msd and kspc,
and a new unified error metric. In CHI ’03:
Proceedings of the SIGCHI conference on Human
factors in computing systems (New York, NY, USA,
2003), ACM, pp. 113–120.

17. VOGEL, D., AND BAUDISCH, P. Shift: a technique for
operating pen-based interfaces using touch. In CHI ’07:
Proceedings of the SIGCHI conference on Human
factors in computing systems (New York, NY, USA,
2007), ACM, pp. 657–666.

18. YATANI, K., PARTRIDGE, K., BERN, M., AND

NEWMAN, M. W. Escape: a target selection technique
using visually-cued gestures. In CHI ’08: Proceeding
of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems (New York, NY,
USA, 2008), ACM, pp. 285–294.

19. ZHAI, S., AND KRISTENSSON, P.-O. Shorthand
writing on stylus keyboard. In CHI ’03: Proceedings of
the SIGCHI conference on Human factors in computing
systems (New York, NY, USA, 2003), ACM,
pp. 97–104.

10

	1 Introduction
	2 Article Overview
	2.1 Article 1
	2.2 Article 2

	3 Empirical Study
	3.1 Implementation
	3.1.1 Keyboards
	3.1.2 Test Application
	3.1.3 Tools for Analyzing the Results

	3.2 Research Method

	4 Conclusion and Future Work
	4.1 Limitations

	Introduction
	Related Work
	Our Technique: Directional Selection
	Method
	Participants
	Apparatus
	Experimental Design
	Procedure
	Data Collection
	Data Analysis

	Results
	Entry Rates
	Accuracy
	Character Distribution
	Dragging
	Overhead
	Directions

	Data Summery
	Questions

	Discussion
	Conclusion
	Limitations
	Future Work

	REFERENCES
	Introduction
	Related Work
	Our Keyboard: QdQ
	Method
	Participants
	Apparatus
	Experimental Design
	Procedure
	Data Collection
	Data Analysis

	Results
	Entry Rates
	Accuracy
	Walking vs. Sitting
	NASA TLX

	Discussion
	Conclusion
	Limitations
	Future Work

	REFERENCES

