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Chapter 1

Introduction

In modern society, electricity is one of the most important power sources. With the increased attention
on sustainability and green energy, electricity from wind turbines has become popular in the recent
years and with an annual growth of more than 30% in the last years wind energy is the fastest growing
of the sustainable energy sources today [World Resources Institute, 2008].

Traditionally wind turbines have been placed onshore in windy locations but in the last decade offshore
wind energy has increased because of the obvious advantages; more wind, more space and no nearby
neighbours to take into consideration. The market for the offshore wind industry is expected to be
fast-growing in the coming years - from 2009 to 2010 the installed offshore wind turbine capacity is
expected to increase more than 100% [Holmager, 2008].

The large growth in the wind energy demand is accompanied with a demand of improved wind tur-
bine efficiency and requires larger wind turbines to satisfy customers; normally energy companies or
governments. The reason for constructing larger wind turbines is that the expenses for e.g. grid
connection, foundation and control system is smaller for a larger wind turbine than for a comparable
number of smaller wind turbines. Figure 1.1 shows the development of wind turbine sizes over the
last 20 years. It is seen that both rotor diameter and tower heights have increased significantly.

The wind industry has traditionally been using a lower reliability level than for normal buildings and
structures. The annual probability of failure is around 10−4 to 10−3 for wind turbines and around 10−6
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Figure 1.1: Historical development of wind turbine rotor diameter and tower heights. [Sandia National
Laboratories, 2008]
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to 10−5 for normal buildings and structures [Stensgaard and Sørensen, 2008]. The knowledge gained
from numerous similar structures and the smaller possibility of loss of life compared to buildings and
structures are some of the reasons for using a lower reliability for wind turbines. With the increase in
wind turbine size the knowledge gained from smaller wind turbines is getting less relevant and instead
theoretical models for documentation of the reliability are needed.

By increasing the size of the structure without increasing the stiffness of the structure proportionally
an increased sensitivity to dynamic loads may be expected and more accurate statistical methods and
structural models for determining extreme loads on the critical parts of the wind turbines are required.
Determining the low-probability extreme responses in the chosen lifetime of the wind turbine should
be performed with a great certainty to make sure that the calculated extreme stresses or strains are
not exceeded within the lifetime.

The methods being used by the wind turbine industry today is described in the following to clarify
problems and uncertainties. Also, an example of determination of extreme loads is carried through in
the forthcoming chapter to clarify the uncertainties in choosing different parameters and probability
distribution functions in the extrapolation method.

1.1 Determination of loads on wind turbine

The IEC61400-1 standard prescribes minimum design requirements for wind turbines of different sizes
and is used by wind turbine manufacturers internationally [International Electrotechnical Commis-
sion, 2005]. The standard is published by the International Electrotechnical Commission and describes
several design situations to take into consideration when designing wind turbines; design situations
under normal or extreme external conditions, fault design situations and design conditions under trans-
portation, installation and maintenance are some examples. The different design situations described
in the standard should all be examined when designing a wind turbine.

In the standard wind turbine classes I, II and III are defined to categorise wind turbines designed
to withstand a predefined climate. The different climates are characterised by a reference average
wind speed at hub height in 10 minutes having a recurrence period of 50 years, i.e. the expected
first passage time is equal to 50 years, corresponding to an annual probability of failure of 2%. For
example wind turbine class I characterised by a 10 minutes mean wind speed of 50m/s at hub height.
In addition to the wind speed, the turbulence characteristics are of great importance and are specified
by different turbulence intensities I ∈ [0.1, 0.2] corresponding to the site turbulence level. The wind
turbine classes are not applicable on offshore wind turbine design.

By using the turbine class and turbulence intensity of a given wind turbine, different wind conditions
is to be taken into consideration. The standard specifies a dozen of different wind conditions that is
to be examined. Some of the design wind conditions are stated below.

Normal wind profile model: Average wind speed varying over height - no turbulence.

Normal turbulence model: Turbulence model using a representative 90% quantile turbulence in-
tensity for the hub height wind speed.

Extreme wind speed model: Steady and turbulent wind model with extreme wind speed.

Extreme operating gust: Extreme gust with recurrence period of 50 years.

Extreme turbulence model: Normal wind profile with extreme turbulence intensity.

Extreme direction change: Normal wind profile with extreme direction change over 6 s.

Extreme coherent gust with direction change: Rise of gust and direction change over 10 s.
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Extreme wind shear: Extreme horizontal and vertical shear gradients of mean wind field in the
rotor plane.

For each of the wind conditions the standard states whether the wind condition should be used to
analyse the wind turbine ultimate loads or fatigue loads. For each of the design load cases appropriate
partial safety factors are given. Some examples of design load situations are given below.

1) Power production: Ultimate loads and fatigue loads on structural parts are examined by using an
extrapolation method to determine extreme responses during the wind turbine life time.

2) Power production and fault: Examples are control system faults, loss of electrical network or
protection system fault. The faults are combined with different wind conditions and the ultimate
strengths or fatigue loads are determined.

3+4) Start up and shut down: Conditions at start up and shut down combined with different wind
conditions. Fatigue loads and ultimate loads are considered.

5) Emergency shut down: Ultimate loads at emergency shut down using normal turbulence model
wind conditions.

6) Parked condition: Using 50-year and 1-year recurrence periods of the mean wind speed and extreme
wind speed model the ultimate loads are examined under different conditions.

7) Parked and fault condition: Ultimate loads are examined under extreme wind speed.

8) Transport, assembly, maintenance and repair: Ultimate loads are examined under different wind
conditions.

If it is not obvious what wind speeds or turbulence levels that are most critical, different wind speeds
and turbulence levels should be analysed. For each of the analyses described the structural responses
are not easily calculated because of the rather complicated dynamic system. Some of the loads that
are to be considered are aerodynamic, gravitational, inertia and control loads. Obviously these loads
influence one another which is important to take into consideration when designing the wind turbine.
It is obvious that designing a wind turbine is not a simple task and that sophisticated tools and
methods are required.

Also other environmental effects that could have an impact on safety should be taken into considera-
tion, e.g. temperature, humidity, earthquake, snow and ice. Other site specific conditions are also to
be taken into account.

Beside the structural parts of the wind turbine the reliability of the control systems and mechanical
systems are of great importance. Equally important is the assembly, installation, operation and
maintenance that is also considered in the standard. Despite this fact this thesis will focus only on
the structural parts and other parts of wind turbines will not be treated.

1.2 Thesis description

Thesis statement
The method for determining extreme loads on wind turbines in the IEC standard assumes a known
distribution for the response peaks. Though measured data is available for verification of the distri-
bution, this data is confined to the central part of the probability distribution for which reason the
accuracy of the tail fit is unknown. Assuming exact models for wind loads and turbine structure, the
exact distribution can be estimated by so-called crude or standard crude Monte Carlo simulation. But
for low probabilities of failures crude Monte Carlo simulation results in unacceptable large variances
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on the estimate with the capabilities of present computational resources. For this reason it is desirable
to apply so-called variance reduction methods or controlled Monte Carlo methods on wind turbines
which can improve the estimate of the failure probability estimates.

Methods
The goal of this thesis is to adapt known variance reduction methods and apply them on wind turbines.
The methods to investigate are chosen in cooperation with the thesis supervisors and is based on
methods that have previously been applied on dynamic systems or systems in civil engineering that
resembles the dynamic system of a wind turbine.

To verify the application and implementation of the methods, results from chosen articles are firstly
reproduced. The methods are subsequently applied to the same simple two storey shear frame, to
investigate their relative capability on simple structural systems. Verification of the accuracy of the
methods are performed by either crude Monte Carlo simulations or analytical approximations. The
method(s) that are found usable based on these investigations are next tested on a wind turbine model.

For simulating wind loads and wind turbine responses the aero-elastic code FAST is used. The FAST
code uses a spectral model for simulating wind fields and employs a combined modal and multi body
dynamics formulation for the structural analysis. For simulations in FAST using variance reduction
methods a state formulation of the turbulence is needed. The state formulation should be implemented
with the only input being Gaussian white noise, either by an ARMA vector model or a filter model
defined by an impulse response matrix. A state space formulation of an ARMA model for simulating
turbulence is implemented in the FAST code.

Thesis boundaries
Due to limited time only three variance reduction methods are considered. The obtained results are
compared only with simulated data and no comparison with measurements are performed. Thus, it is
the probabilistic method rather than the structural model of the wind turbine which is assessed. The
only considered load case is load case 1.1 in the IEC61400-1 standard. This corresponds to determining
the response event which has a recurrence period of 50 years.
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Chapter 2

Determination of extreme loads using the

IEC61400-1 standard

In the following an introduction and discussion on the methods currently used for determining extreme
responses on wind turbines under power production will be given. In section 2.1 the extrapolation
method is described and the problems, limitations and uncertainties are clarified. In section 2.2 the
method is utilised for determination of the characteristic extreme responses for a wind turbine.

Determination of extreme responses corresponds to load situation 1.1 using a normal turbulence model
as described in section 1.1. The current method is based on the guidance given in Annex F in the
IEC61400-1 standard. Only the design situation when producing power under normal operation is
taken into account by the method described in Annex F, i.e. the method only accounts for windspeeds;
Vin < V < Vout where V , Vin and Vout are the wind speed at hub height, cut-in wind speed and cut-out
wind speed, respectively.

The IEC61400-1 standard prescribes that the design value of the material resistance should be larger
than the design value of the response corresponding to a 50 year recurrence period for each component
in the wind turbine where ultimate strength analysis is appropriate. The calculation of extreme
values shall include at least the blade in-plane moment and out-of-plane moments and the blade tip
deflections. The design value of the response is determined by dividing the characteristic response
corresponding to a 50 year recurrence period by a predefined partial safety factor. Only the tower
fore-aft moment and the blade out-of-plane moment have been considered in the following.

In the following the method from annex F in the standard is described. The following is based on the
IEC61400-1 standard, Annex F [International Electrotechnical Commission, 2005].

2.1 Description of extrapolation method

To determine the extreme response of e.g. the moment at the blade roots or tower base moments
the extrapolation method is used. Firstly the wind speeds from Vin to Vout are divided into a number
of wind speed bins, defined as a class of e.g. 2m/s in the interval [Vin, Vout]. The wind direction for
all wind speeds are assumed to be the same because variations on wind direction are assumed not
to happen in 10 minute periods and then has no influence on the calculated loads. For each of the
wind speed bins a number of turbulent wind fields with different seeds are generated and the required
response is extracted from the considered dynamic structure model. In practise between 6 and 12
turbulence wind fields are generated and the response for each turbulence wind field is calculated.
For each wind speed bin a number of extreme values for each turbulence wind field is extracted and
a probability distribution function for extreme values in the wind speed bin is fitted. Assuming that
all extracted extreme values are statistically independent the exceedance probability of the extreme
response Mext in a certain position of the turbine during the observation period T on condition of
V = v can be written as

P(Mext ≥ m|v, T ) = 1− (Fmax(m|v))E(n|v,T ) (2.1)
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where Fmax(m|v) is the probability distribution function for the maximum response and E(n|v, T ) is
the expected number of maxima in the period T on condition of V = v. The unconditional exceedance
probability is given as

P(Mext ≥ m|T ) =

∫ Vout

Vin

P(Mext ≥ m|v, T )fV (v)dv (2.2)

where fV (v) is the probability density function for the hub-height wind speed.

In practice Mext corresponding to a 50-year recurrence period is determined by fitting parameters in
candidate distributions for the exceedance probabilities P(Mext ≥ m|v, T ) in all wind speed bins. The
fitted distribution parameters is used in determination of P(Mext ≥ m|v, T ) in (2.2).

When the probability distribution functions for all wind speed bins are known, the unconditional
probability of exceedance in the period T = 600 s is determined. Assuming statistical independence
between observation intervals, the following relation between the exceedance probability in T = 600 s
and the exceedance probability in the recurrence period Tr applies

P(Mext > m|Tr) = 1− (1− P(Mext > m|T ))Tr/T (2.3)

∼= Tr

T
P(Mext > m|T ) (2.4)

By assuming that P(Mext > m|Tr) . 1 the following relation is found with T = 600 s and Tr = 50 years

P(Mext > m|T ) =
T

Tr
≈ 3.8 · 10−7 (2.5)

Next the characteristic load is determined by insertion of (2.2) into (2.5) and solving with respect to
the characteristic load m = mc. The functional relation is non-linear and iterations are needed.

An example of utilisation of this method is given in chapter 2.2.

2.1.1 Problems, limitations and uncertainties

In this section the problems, limitations and uncertainties in the method from the IEC61400-1 standard
will be discussed. Independence of extracted extreme response values, extraction of extreme values,
choice of candidate distribution function and other steps in the method are discussed. The uncertain-
ties in the method have been investigated by and IEC subcommittee, the socalled LE3 committee, see
appendix E.1.

One of the problems in the above described method is that an unknown number of extreme values
for each wind speed bins should be extracted to determine P(Mext ≥ m|T ) . The extreme values
have to be independent i.e. the extreme values should originate from different wind gusts and be
independent of previous wind gusts. For a given response time series it should be tested statistically
that the extracted values are independent. The period of wind gusts varies with time which makes
it difficult to determine if extracted values are independent. A possible solution is to set a minimum
time separation between successive maxima.
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One method of extracting extreme values is the method of global maxima. The approach is to
only extract one maximum value for each simulated wind field, which means that the number of
realisations required to obtain a reliable fit of parameters in the candidate distribution functions is
relatively high. Another available method is the peak-over-threshold method (POT) that includes a
procedure of extracting multiple extreme values over a given threshold for each simulated wind field.
The IEC standard suggests to extract extreme values using the POT method by extracting successive
upcrossings of µM + 1.4σM , where µM is the mean value and σM is the standard deviation of the
response, and then assume that all extracted values are independent. Other studies show that the
threshold can not be determined beforehand but that the optimum should be determined for each
wind speed bin by trying different thresholds and choosing the threshold that fits best to a chosen
distribution function [Ragan and Manuel, 2008]. This requires the optimum choice of distribution
function to be specified beforehand - but this is also an uncertainty in the method.

If the process, e.g. the blade out-of-plane moment is Gaussian the distribution function of the local
maxima within a given interval on condition of a given threshold is approximately independent of the
chosen threshold, see appendix F. This means that the choice of threshold should not affect the fitted
local distribution function for the wind speed bins. It is shown in appendix D that the response is not
Gaussian and that the influence from choosing different thresholds might influence the fit of candidate
probability distribution function.

Choosing the distribution function that fits the extreme values best is also an important matter in
the extrapolation method. In the IEC standard the 3-parameter Weibull and the Gumbel probability
distribution functions are suggested as candidates. For Gaussian processes it is known that the extreme
values are normally distributed for broadbanded procecesses whereas they are Rayleigh distributed
for narrowbanded processes. A Weibull distribution is able to model both a Rayleigh and a normal
distribution by choosing the right parameters, which makes it a good choice if the loads are Gaussian.
In the example in the next section a 3-parameter Weibull and a Gumbel distribution have been used as
examples. The probability distribution functions for the 3-parameter Weibull and Gumbel are given
in (2.6) and (2.7) respectively.

FM (m) = 1− exp

(

−
(

m− u0

a

)k
)

(2.6)

FM (m) = exp

(

− exp

(

x− u0

a

))

(2.7)

where u0, a and k > 0 are location, scale and shape parameters, respectively.

2.2 Extrapolation of loads on 5MW wind turbine

The method from the IEC standard is used to extrapolate the tower fore-aft bending moment and
the blade out-of-plane moments for the ”NREL offshore 5-MW baseline wind turbine” described in
appendix C. The structural model used to determine the loads is the aeroelastic code FAST. The 10
minutes wind fields used in the simulations are created by TurbSim which was setup to use recom-
mendations from the IEC standard. A description of the FAST model and input parameters used for
simulations are given in appendix A and a description of turbulence simulation in TurbSim is given
in appendix B. In the following extrapolations the annual mean wind speed at hub height is set to
10m/s and the wind speeds are assumed to be Rayleigh distributed according to the standard turbine
classes in the IEC61400-1 standard.
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The extrapolation to a load corresponding to a recurrence period of 50 years is calculated by solving
(2.2) and setting P(Mext > m|T ) = 3.8 · 10−7 corresponding to a reference period of 10 minutes. The
short-term probability distribution functions for each wind speed bin is calculated by fitting candidate
probability distribution functions to extreme data extracted by the POT method. For each wind
speed bin 10 time series with different seeds are simulated. Using only 10 time series could induce a
significant statistical uncertainty in the estimated extreme loads and other studies of the method show
that increasing the number of time series lead to lower predictions of the extreme values as shown in
figure E.1.

2.2.1 Choice of threshold

The choice of threshold might have a great impact on the extrapolated load if the response process
{M(t)} is not Gaussian. The differences between choosing a threshold of µM + 1.4σM as suggested
in the IEC standard and a threshold of µM + 3σM is shown in figure 2.1 for the blade out-of-plane
moment in wind bin 13− 15m/s. The distribution function used for the POT data is a 3-parameter
Weibull fitted by the methods of moments method as suggested in the IEC61400-1 standard. The
non-exceedance probability is assigned to each extreme value by using a Weibull plotting position
formula; Fi = 1 − i/(n + 1), where i is the peak value number when arranging the peak values in
descending order and n is the total number of peak values in the bin. The figure clearly shows that
different thresholds provide significantly different fits for the local probability distribution functions.
The high threshold leads to extraction of 25 peak values whereas the threshold of µM + 1.4σM leads
to extraction of more than 500 peak values. The abcissas have been normalized with respect to the
maximal observed peak mmax during all realisations. It is seen that the high threshold provides a
better fit to the largest extreme values. Therefore, in fitting the distribution function in the following
analyses different thresholds between µM + 1.4σM and mmax are used and the one that provides the
best fit in terms of average relative error and provides extraction of at least 10 extreme values is used.
The average relative error ǫ is defined as

ǫ =
1

n

n
∑

i=1

|Mi,fit −Mi,peak|
Mi,peak

(2.8)

where n is the number of peak values in the wind speed bin, Mi,fit is the ith fitted value whereas
Mi,peak is the ith peak value.

The significant differences in distribution functions for the maxima extracted using different thresholds,
suggests that the blade out-of-plane moment is not a Gaussian random variable. As described in
appendix F the distribution of local maxima for a Gaussian variable should not be dependent on the
chosen threshold. An analysis of the Gaussianity of the blade out-of-plane moment in appendix D
shows that the response is not Gaussian meaning that the choice of threshold might influence the
distribution of the maxima.

The extracted peak values are required to be stochastic independent. A minimum time separation of
5 s between peaks have been introduced to enhance possibility that extracted peak values arise from
different wind gusts. If multiple peak values over the threshold are found within 5 s only the largest
peak value is extracted.

2.2.2 Choice of candidate distribution function

The candidate distribution functions 3-parameter Weibull and Gumbel are fitted to the extreme date
for each bin to show differences in the extrapolated loads due to the choice of distribution function. The
extrapolated loads for tower fore-aft bending moment and blade-out-of-plane moment are shown in
figure 2.2 and 2.3, respectively. Abcissas are normalised with respect to the maximum simulated load
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Figure 2.1: Comparison of Weibull fits to POT sample values for blade out-of-plane moment in wind bin
13-15m/s using thresholds of µM + 1.4σM and µM + 3σM .

mmax. The extrapolated loads from the 3-parameter Weibull distribution and the Gumbel distribution
provides very different results. The Gumbel load is larger for both the blade out-of-plane bending
moment and the tower fore-aft bending moment. For the blade bending moment the Gumbel fit is 50%
larger than the 3-parameter Weibull fit and for the tower bending the Gumbel load is 58% larger at
the response corresponding to a recurrence period of 50 years. Similar result have also been obtained
by previous studies on extrapolating extreme loads using the Gumbel distribution [Ragan and Manuel,
2008].

The peak values and fitted probability distribution functions for the 3-parameter Weibull and Gumbel
distribution functions are shown for all wind speed bins in figures 2.4 and 2.5 respectively. The non-
exceedance probability is assigned to each extreme value by using a Weibull plotting position formula.
It is seen that the 3-parameter Weibull provides the best fits to the peak values in each bin whereas
the Gumbel distribution function consequently overestimates the probability of failure. The average
relative error ǫ for the two distribution functions is calculated by (2.8). For the Weibull fits the relative
average error is ≈ 2%. For the Gumbel fits the average relative error is ≈ 10% for all bins.

The Weibull distribution provided the best fit of the tested candidate distribution functions. Other
extreme value distribution functions could also have been used in fitting, i.e. the generalised Pareto
distribution, the generalised extreme value function and the logarithmic distribution, see appendix
E.1.

Previous studies on the extrapolation method used on measurements from wind turbines also conclude
that the 3-parameter Weibull distribution function gives the best fit of the candidate distribution
functions that were used in fitting wind turbine extreme loads [Ragan and Manuel, 2008]. However,
a comparison with 50 years of measurement or simulations is yet to be performed to show the real
deviation for the 50 year extrapolation load.

It should be noted that an amendment for the IEC-61400-1 standard was submitted for voting in
January 2009. A brief description of the amendment and its changes to the extrapolation methodology
is described in appendix E.2. However, at the end of this thesis the amendment had not been accepted
and has therefore not been treated any further.
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2.3 Conclusion

In this chapter the statistical extrapolation method from the IEC61400-1 standard has been described
and the extreme responses corresponding to a 50 year recurrence period for the tower fore-aft moment
and the blade out-of-plane moment have been determined.

It was found that the extraction of extremes from a few response realisations in each wind speed
bin provides different results when using different thresholds in the POT method. Introduction of
a minimum time separation between extraction of peaks combined with choice of a threshold higher
than the suggestion in the IEC61400-1 standard provides low dependence between extracted peak
values.

The candidate probability distribution functions suggested in the IEC61400-1 standard, Gumbel and
3-parameter Weibull, have been compared for extrapolation. The 3-parameter Weibull distribution
function provided the lowest average error when fitting to the local probabilities in each wind speed
bin and produced estimates of the response corresponding to a 50 year recurrence period significantly
smaller than the Gumbel probability distribution function.

It is concluded that the statistical extrapolation method suggested in the IEC61400-1 standard intro-
duces a statistical uncertainty of unknown size and significance.
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Chapter 3

Alternative methods for determination of

low exceedance probabilities

It might be possible to overcome some of the limitations and uncertainties described in the previous
chapter by introducing alternative simulation methods. The reason for choosing the currently used
method is simplicity and the short computational time because only a limited number of 10 minute
load series are used. The accuracy of the extrapolation is not certain because the real distribution is
neither a Weibull, generalised extreme value distribution or a Pareto distribution [Ragan and Manuel,
2008]. The real distribution is something in between and an analytical solution might be impossible
to find.

One method that could be proposed is a crude Monte Carlo simulation. By doing 109 or more simu-
lations one could achieve a good estimate of the exceedance probability of a threshold corresponding
to a 50 year recurrence load. The 109 simulations would generate around 25 time series failing. The
problem is the calculation time which would be more than 10 years on a modern processor, taking a
time-speed ratio of approximately 5 into consideration, implying that simulation of 10 minutes real
time would require 2 minutes of processor time. Of course multi processor environments could speed
up calculation but such a solution is not desirable.

Other methods of interest are controlled Monte Marlo simulation methods. By doing simulations in
the same way as when using traditional Monte Carlo and using methods to control the weight and
importance of each realisation it is possible to get better estimates of the failure probability using a
limited number of simulations. In this project controlled Monte Carlo techniques ”Russian Roulette
and Splitting with Distance Control” and ”RESTART” will be examined for use in determination of
extreme loads on wind turbines.

Importance Sampling is another method that can be useful for sampling low probability events. The
idea is to concentrate the sampling space around the part of the sample space that has greatest
influence on the probability of failure. The problem regarding the method is choosing a sampling
function that moves the samples close to the areas that has a great contribution to the probability of
failure. For multidimensional systems this can be difficult and in some cases impossible. Several tests
will be performed to check whether the method is usable in the purpose of this project.

In the following chapters the above mentioned methods will be examined on a simple structure to
gather information on complexity compared to the effectiveness in extracting low exceedance proba-
bilities. By using a simple structures in validating and studying the different methods it is expected
to be easier to discover the limitations and drawbacks. The simple structures are further analysed in
chapters 4 and 5 to choose load modelling technique and a numerical solvers.
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Chapter 4

Two storey shear frame exposed to

horizontal earthquake excitation

In this chapter a two storey shear frame exposed to horizontal earthquake excitation is analysed
for testing the different failure probability simulations techniques mentioned in chapter 3. Three
techniques for generating the acceleration process by equivalent white noise processes with finite
variance are explained. The techniques are denoted the random phase process, the broken line process
and the impulse response excitation method. A Newmark algorithm is used as numerical solver for
the dynamic system, when exposed to the random phase process and the broken line process. At
last it is investigated which of the three techniques is the fastest for simulating the response of the
frame. Before evaluating the computational time of the three techniques, a parameter study of the
three methods is carried out to estimate parameters which will result in identical accuracy for the
three methods.

4.1 Structural system

The system consists of a two storey plane shear frame exposed to a horizontal earthquake excitation
as shown in figure 4.1. The storey beams are assumed to be infinite rigid in bending and axial
deformation, with a local mass m. The columns are linear elastic with the shear stiffness k, massless
and fixed to the foundation. The energy dissipation in the columns are modelled as a viscous damper
with the damping constant c.

The equations of motion for the system formulated in the relative storey displacements Y1(t) and Y2(t)
are given by

MŸ + 2ζ0ω0kẎ + ω2
0kY = −bŸ0(t) (4.1)

Y2(t)

Y1(t)

Y0(t)

k

k k

k
c

c
m

m

kY2

kY1

c _Y2

c _Y1

c _Y2

kY2

a) b)

Figure 4.1: a) Two storey shear frame exposed to horizontal earthquake excitation. b ) Forces acting on the
free storey beams.
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where

Y(t) =

[

Y1(t)
Y2(t)

]

, M =

[

1 0
1 1

]

, k =

[

1 −1
0 1

]

, b =

[

1
1

]

The parameters ω0 and ζ0 are given as

ω0 =

√

k

m
, ζ0 =

c

2
√

mk
(4.2)

A modal analysis of the system is carried out in appendix G. The undamped angular eigenfrequencies
and the modal damping ratios are given by

ω1

ω2

}

=

√

3∓
√

5

2
ω0 (4.3)

ζ1

ζ2

}

=

√

3∓
√

5

2
ζ0 (4.4)

The first angular eigenfrequency and the first damping ratio is set to ω1 = 1 rad/s and ζ1 = 0.01
respectively. Thus by (4.3) and (4.4)

ω0 = 1.618 rad/s, ω2 = 2.618 rad/s

ζ0 = 0.01618, ζ2 = 0.0262

The frequency response function for the two storeys are given by, cf. appendix G.

H1(ω) =
P1(iω)

Q(iω)
, H2(ω) =

P2(iω)

Q(iω)
(4.5)

where

P1(z) = −z2 − 4ζ0ω0z − 2ω2
0

P2(z) = −2ζ0ω0z − ω2
0

Q(z) =

4
∏

j

(z − zj)

zj denotes the poles of the system and are given by

z1

z2

}

= ω1

(

−ζ1 ± i
√

1− ζ2
1

)

(4.6)

z3

z4

}

= ω2

(

−ζ2 ± i
√

1− ζ2
2

)

(4.7)

The frequency response functions Hi(ω) will later on be used to calculate the auto-covariance function
of each relative storey displacement response.
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4.2 Ground Surface Acceleration Models

The ground surface acceleration is modelled by a white noise process
{

Ÿ0(t), t ∈ R

}

, which is a zero-

mean homogeneous Gaussian process with the auto-covariance function given by

E
[

Ÿ0(t)Ÿ0(t + τ)
]

= 2πS0δ(τ) (4.8)

where S0 is the spectral intensity and δ(τ) is the Dirac delta function. Next, the three mentioned
techniques for generating an equivalent white noise process are investigated.

Random Phase Process

An upper cut-off frequency ωm is specified, which is above all angular eigenfrequencies in the system.
The frequency range [0, ωm] is discretised in N equidistant intervals, with a bandwidth of ∆ω as
shown in figure 4.2. Then the white noise process is replaced with an equivalent sum of random phase
processes defined by

Ÿ0(t) =

N
∑

j=1

ajcos(ωjt + Φj) (4.9)

E[Ÿ0(t)] = 0 (4.10)

E[Ÿ0(t)Ÿ0(t)] =
N
∑

j=1

1

2
a2

j (4.11)

aj and ωj are real constants and Φj are mutual independent uniformly distributed random variables
in the interval [0, 2π]. aj is calibrated so that the variance contribution from the band width with
center frequency ωj is equal to the area under SŸ0Ÿ0

= S0. The variance contribution of each harmonic
component is given by

σ2
Ÿ0,j

=
1

2
a2

j = 2S0∆ω ⇒

aj =
√

4S0∆ω (4.12)
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Figure 4.2: Discretisation of the double sided auto spectral density function SŸ0Ÿ0
(ω).
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The random phase process will converge towards a white noise process for N → ∞ and ωm → ∞.
Since an infinite number of harmonic components is not possible, a convergence study is carried out
in section 4.4.

Broken Line Process

Another approach for simulating a band-limited white noise process is a so-called broken line process
{

Õ(t)
}

, which is illustrated in figure 4.3. The process is determined by interpolating between iden-

tical distributed independent random variables Oj ∼ N(0, σO) placed at equidistant instants of time
T0, T1, ... as given by

Õ(t) = Oi + (Oi+1 −Oi)
t− Ti

∆tbl
, t ∈ [Ti, Ti + ∆tbl[ (4.13)

Ti = i ·∆tbl , i = 0, 1, . . . , T/∆tbl − 1

where ∆tbl is the interval between the time Ti and Ti+1. α is a random variable uniformly distributed
in the interval [0, 1], which is suppose to secure a stationary Õ-process, cf. figure 4.3. σO and ∆tbl are
determined so that the auto-spectral density function given by (4.14) remains flat within the frequency
band [0, ωm]. [Clough and Penzien, 1982]

SÕÕ(ω) =
σ2

O∆tbl

2π

(

sin(1
2ω∆tbl)

1
2ω∆tbl

)4

(4.14)

σO and ∆tbl is determined by presuming that the spectrum is flat within 99% of the value of the
requested auto-spectral density S0 at the angular frequency ωm. ωm is selected well above all angular
eigenfrequencies of the structure related to modes of the importance for the global dynamic response.
Hereby the following criteria must be fulfilled

∆tbl ≤
0.2455

ωm
(4.15)

σO =

√

2π

∆tbl
S0 (4.16)

O0

O1

O2
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Oi+1

Oi+2

T0 T1

T2 T3

T4 Ti Ti+1

Ti+2

®¢tbl
¢tbl

eO(t)

t0

Figure 4.3: Realization of a broken line process.
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When generating the Õ-process, problems can occur if t− (1−α)∆tbl is a integer-multiplier r of ∆tbl,
because the interpolation point (t − Ti) becomes deterministic for each realisation of α cf. appendix
H. This is overcome by choosing r as a irrational number.

Impulse response excitation method

This section explains how the so-called Franklin’s method can be used to simulate the response process
if the equations of motion of the system is formulated as an equivalent stochastic differential equation.
The method relies on the system being linear in which case it may be written on the state vector form

d

dt
Z(t) = AZ(t) + BW(t) , t > t0

Z(t0) = Z0







(4.17)

where A and B are real constant matrices of dimension n× n and n×m, respectively. Then, the Itô
and Stratonovich formulation are equivalent, see appendix J.1. For the structural system described in
section 4.1, A and B are given by

A =

[

0 I
−ω2

0k −2ζ0ω0k

]

, B =

[

0
−b

]

(4.18)

Z(t), t ∈ [t0,∞[ is an n-dimensional state vector Z = [Y1, . . . , Yn, Ẏ1, . . . , Ẏn]T with initial values Z0,
and W(t), t ∈]t0,∞[ is an m-dimensional excitation process for which the component processes are
independent white noise processes. A numerical solution to (4.17) is given on the discrete form,
[Nielsen, 2007b]

Zj+1 = eA∆tZj + R (4.19)

where R can be simulated by, [Nielsen, 2007b]

R = C
1
2

RRΞΞΞ (4.20)

where ΞΞΞ is a n-dimensional vector ΞΞΞT = [Ξ1, . . . ,Ξn]T in which all entries are mutually independent
normal variables distributed as Ξ ∼ N(0, 1). CRR is the covariance matrix of R and determined by,
[Nielsen, 2007b]

CRR = 2πS0

∫ ∆t

0

(eAuB)(eAuB)T du (4.21)

The matrix exponential function eAu is calculated as

eAu = ΨeΛuΨ−1 (4.22)
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where

Ψ =
[

Ψ(1) . . .Ψ(n)
]

(4.23)

Λ =







λ1

. . .

λn






(4.24)

and (λj ,Ψ
(j)) denotes the eigenvalues and eigenvectors of the eigenvalue problem

AΨ(j) = λjΨ
(j) (4.25)

Realisations of the response process Z is now generated by use of (4.19). The method is stable and
exact for arbitrary time steps ∆t.

4.3 Numerical time integration

The equations of motion of the shear frame are solved numerically by an unconditional stable Newmark
algorithm free of numerical damping corresponding to the integration parameters (β, γ) = (1

4 , 1
2 ).

In order to calculate the response properly, the integration time step ∆tI is set to 1
20 of the first

fundamental eigenperiod T1. The largest time step is then given by

∆tI ≤
1

20
T1 =

1

20

2π

ω1
⇒ ∆tI ≤ 0.31s (4.26)

However, if utilising the broken line process for modelling the ground surface acceleration, the upper
boundary for the integration time ∆tI step is governed by the broken line time step ∆tbl given by
(4.15) as the condition ∆tI ≤ ∆tbl should be fulfilled.

Auto-Covariance function

The stationary variance of the system exposed to a white noise acceleration process is determined by
an ergodic sampling. The corresponding analytical solution for the autocovariance function κYiYi

(τ)
for the relative displacement of storey i is given by, [Nielsen, 2007b]

κYiYi
(τ) = −πS0

s
∑

j=1

ezj |τ |

zj

Pi(zj)Pi(−zj)
s
∏

k = 1
k 6= j

(z2
k − z2

j )
, i = 1, 2 (4.27)

Pi(z) is the numerator in the rational frequency response function, (4.5) and zj are the poles of the
denominator polynomial given by (4.6) and (4.7). The order of the denominator polynomial Q is
s = 4. For a spectral intensity S0 = 1 the variance σ2

Yi
is found at τ = 0

σ2
Y1

= 82.5149 , σ2
Y2

= 32.0731
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To evaluate the performance of different acceleration processes, an ergodic sampling of the response is
carried out. The sampling interval T is divided in n subintervals of the length ∆t and assuming that
the mean value is zero an estimate of σ2

Yi
is determined by

σ̂2
Yi

=
1

n

n
∑

j=1

Y 2
i (j ·∆t) (4.28)

4.4 Parameter analysis

Before the different equivalent white noise models are evaluated, a parameter analysis is carried out.
First of all the transient phase and the minimum value for the upper cut-off frequency ωm of the
flat spectra are evaluated. Hereafter the parameters for the two equivalent white noise models are
evaluated. The important parameters for the random phase process are the discretisation increment
of the load spectra ∆ω and the integration time step ∆tI . For the broken line process the magnitude
of the integration time step ∆tI in proportion to the time step ∆tbl in the broken line process is the
important parameters.

4.4.1 Transient phase

To simulate a stationary process from the start, the initial condition has to be modelled as a stochastic
variable belonging to the same population as the displacement and velocity response in the stationary
state. This is in general difficult, but is possible in the present simple case. Despite this possibility
the initial conditions are set to the deterministic values

Y(t0) =

[

0
0

]

, Ẏ(t0) =

[

0
0

]

(4.29)

The transient phase is estimated from the eigenvibrations of {Y, t ∈ [0, ∞]} and the initial condition
given by

Y(t0) =

[

1
1

]

, Ẏ(t0) =

[

0
0

]

(4.30)

From figure 4.4 it is shown that after 50T1 the displacements are less than 5% of the initial displacement
by which it is assumed that the initial condition can be neglected for t > 50T1. Notice that the modal
damping ratios in the present case have been selected as ζ1 = ζ2 = 0.01.

In the following parameter analysis, the variance will be determined from an ergodic sampling after
the 50 fundamental eigenperiods.

4.4.2 Cut-off frequency

The maximum frequency is chosen in a way, so the eigenfrequencies of the structure are contained
within the band. In the evaluation of the upper band limit, the acceleration process is modelled by a
random phase process.

As it emerge from figure 4.5 the estimate of the standard deviation of the 1st storey displacement σŶ1

converge when ωm > ω1. Note that σY1
denote the analytical solution for the stationary standard
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Figure 4.4: Damped eigen vibration of Y given the initial condition (4.30).
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Figure 4.5: Convergence study of the cut-off frequency. Random Phase Process: ∆tI = T1/30, N = 1000
and T = 1000T1.

deviation of Y1(t), obtained from (4.27). The reason why the criteria ωm > ω1 is sufficient to obtain
convergence of σY1

is that influence on the response from the second mode is negligible.

The low influence of the second mode is also seen in the frequency response functions of the system,
figure 4.6. For this reason only σŶ1

is evaluated in the following parameter analysis, as the standard
deviation of the second storey is almost proportional.

4.4.3 Integration time step

Based on the random phase process a convergence study of the integration time step ∆tI in the
Newmark algorithm is carried out. Previously a least 20 time steps per fundamental eigenperiod T1

was proposed. This proposition is verified in figure 4.7.

4.4.4 Random phase process

Next, the influence on the estimate of σY1
as a function of the number of harmonic components N

is evaluated. The cut-off frequency ωm is kept fixed, so the frequency band ∆ω = ωm/N varies.
Convergence of the estimate as a function of N is shown in figure 4.8.
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Figure 4.6: Real part of the response functions Hi(ω) for the reference frame.
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As it is seen in figure 4.8 σ̂Y1
has converged with sufficient accuracy for approximately N ≥ 400.

4.4.5 Broken line process

To establish a flat spectra within the band-limit an upper limit for the incremental time step of the
process generation is given by (4.15). In the same way as for the random phase process the ground
surface acceleration is determined at the instants of time t = ti, where

ti = i ·∆tI , i = 0, 1, ..., n (4.31)

n is the number of integration steps. Next, a convergence study of ∆tbl/∆tI is carried out.

As seen in figure 4.9 the estimate of the variance process do converge for ∆tbl/∆tI > 1. It is also seen
that the response has increased intensity when ∆tI > ∆tbl, whereby the following criteria must be
fulfilled
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∆tbl > ∆tI (4.32)

A consequence of (4.32) is that the time step ∆tI must be decreased significantly, resulting in an
increase in the calculation time. ∆tbl can be increased by reducing the criteria of the flatness of the
spectra.

4.4.6 Evaluation of the ground surface acceleration processes

Based on the parameter analysis, the three load models will be evaluated with respect to the used
computational time for achieving a certain accuracy of the variance estimate. The parameters used
in the comparison are given table 4.1.

- Random phase process Broken line process Impulse response exiatation

ωm 3.14 rad/s 3.14 rad/s -
N 400 - -
Transient phase 50T1 50T1 50T1

∆tbl - 0.0782 s -
∆tI

2π
20 s 2π

135 s 2π
20 s

Table 4.1: Parameters used in the evaluation of the three ground acceleration processes.
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The parameters are selected so they will give the lowest possible computational time and still converge.
The computational time for the different ground surface accelerations is shown in table 4.2.

- Random phase process Broken line process Impulse response excitation

Computational time 1.1 s 5.1 s 0.1 s

Table 4.2: Computational time used to calculate the response of the shear frame for 1000 periods.

From table 4.2 it emerge that the random phase process is 5 times faster than the broken line process.
The reason for this is that the number of time steps required by the broken line process is increased
by a factor 6.75 compared to the random phase process. The broken line process might be more useful
for systems with smaller fundamental eigenperiod, as the time step is determined by the system.
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Chapter 5

Two bladed wind turbine exposed to a

turbulent wind field

In the following a simple model of a wind turbine will be set up, on which the IS method and RR&S
algorithm will be implemented to obtain the extreme response value corresponding to a recurrence
period of 50 years. The mass and stiffness of the wind turbine will be calibrated so the deflections
and eigenvibrations correspond to the 5-MW reference wind turbine described in appendix C. The
damping of the system will be modelled by using the damping ratios of the 5 MW reference wind
turbine. The wind load acts only on the blades and consists of a mean wind speed of 15m/s and a
time-varying turbulence, modelled by the state space representation of an ARMA model described in
appendix B.3.

5.1 Structural system

The wind turbine consists of a tower, a nacelle and two blades. The tower and blades are modelled as
beams which only deflect in the mean wind direction as shown in figure 5.1. Furthermore, the blades
perform rigid body rotation around the nacelle in the clockwise direction as seen from an upwind
direction and are fixed in all other directions. The nacelle is fixed to the end of the tower beam and
is modelled as a point mass.

L

h

Tower

Blade

Nacelle

Hub

q4

a) b)

x

x

q1

q2q3

q4;Ð

Figure 5.1: a) Two bladed wind turbine seen from the front. b) Two bladed wind turbine seen from the top.
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5.1.1 System reduction

The continuous beam element of each substructure is modelled by single degree-of-freedom models.
Only motions in the mean wind direction is considered for which reason no gyroscopic forces (save the
centripetal inertial forces) are present.

Let y1(x, t) denote the displacement of the tower in the mean wind direction where x ∈ [0, h] is
measured from the foundation and h is the height of the nacelle above the ground surface. Further let
y2(x, t) and y3(x, t) denote the displacement fields of the blades relative to the hub in the same direction
where x ∈ [0, L] is measured from the hub and L is the length of the blades. The indicated displacement
fields will be modelled by merely a single degree of freedom q1(t), q2(t) and q3(t) corresponding to the
representations

y1(x, t) ≃ Φ0(x)q1(t)

y2(x, t) ≃ Φ(x)q2(t)

y3(x, t) ≃ Φ(x)q3(t)











(5.1)

Φ0(x) and Φ(x) are mode shapes which fulfil the kinematic boundary conditions at the foundation
and at the hub, i.e.

Φ0(0) =
dΦ0(0)

dx
= 0

Φ(0) =
dΦ(0)

dx
= 0















(5.2)

All mode shapes are assumed to be normalized to 1 at the other end, i.e. Φ0(h) = Φ(L) = 1.

The blades are modelled as Bernoulli-Euler beams with the bending stiffness EI(x) and the mass per
unit length µ(x). The tower is also modelled as a Bernoulli-Euler beam with the bending stiffness
EI0(x). The mass per unit length is formally written as

µ0(x) = µ0(x) + M0δ(x− h) (5.3)

where µ0(x) denotes the continous mass distribution, M0 is the mass of the nacelle and δ(·) is Dirac’s
delta function. The dynamic load per unit length on the tower in the mean wind direction is denoted
p1(x, t). Correspondingly, the load on the two blades in the same direction are denoted p2(x, t) and
p3(x, t).

The drive train is modelled as a single rotational degree-of-freedom q4 by assuming infinitive stiff
driveshaft and no elastic deformation in the gear, whereby the following kinematic relation emerge

q4 = Nqg (5.4)

where N is the gear ratio and qg is the rotational speed of the generator, cf. figure 5.2. Furthermore,
the mass moment of inertia of the gear wheels and the connected shafts are included into the mass
moment of inertia Jr and Jg of the rotor and the generator rotor, respectively.
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Figure 5.2: Single degree-of-freedom representation of drive train.

The kinetic energy of the structure becomes

T (q̇1, q̇2, q̇3, q̇4) =

∫ h+

0

1

2
µ0(x)ẏ2

1(x, t)dx +

∫ L

0

1

2
µ(x)(ẏ1(h) + ẏ2(x, t))2dx+

∫ L

0

1

2
µ(x)(ẏ1(h) + ẏ3(x, t))2dx +

1

2
(J0 + N2Jg)q̇

2
4

=
1

2
m0q̇

2
1(t) +

1

2
mq̇2

2(t) +
1

2
mq̇2

3(t) + m1q̇1(t)q̇2(t) + m1q̇1(t)q̇3(t) + Jq̇2
4

(5.5)

where

m0 =

∫ h

0

µ0(x)Φ2
0(x)dx + M0 + 2

∫ L

0

µ(x)dx

m =

∫ L

0

µ(x)Φ2(x)dx

m1 =

∫ L

0

µ(x)Φ(x)dx







































(5.6)

m0 and m are the generalised masses related to the degrees of freedom q1(t) and q2(t), q3(t). m1 is a
coupling parameter and J is the generalised mass moment of inertia related to the rigid body degree
of freedom q4(t) given as

J = Jr + N2Jg (5.7)

The potential energy becomes
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U(q1, q2, q3, q4) =

∫ L

0

1

2
EI0(x)

(

d2y1

dx2

)2

dx +

∫ L

0

1

2
EI(x)

(

d2y2

dx2

)2

dx+

∫ L

0

1

2
EI(x)

(

d2y3

dx2

)2

dx−
∫ h

0

y1(x)p1(x, t)dx−
∫ L

0

(y1(h) + y2(x, t)) p2(x, t)dx−
∫ L

0

(y1(h) + y3(x, t)) p3(x, t)dx+

q4(t)(−M0 + NMg)

=
1

2
k0q

2
1 +

1

2
kq2

2 +
1

2
kq2

3 − q1F1(t)− q2F2(t)− q3F3(t)− q4F4(t) (5.8)

where the generalised stiffness coefficients are given as

k0 =

∫ h

0

EI0(x)

(

d2Φ0

dx2

)2

dx

k =

∫ h

0

EI(x)

(

d2Φ

dx2

)2

dx



















(5.9)

The generalised external dynamic loads become

F1(t) =

∫ h

0

Φ0(x)p1(x, t)dx +

∫ L

0

(Φ(x)p2(x, t) + Φ(x)p3(x, t)) dx

F2(t) =

∫ L

0

Φ(x)p2(x, t)dx

F3(t) =

∫ L

0

Φ(x)p3(x, t)dx

F4(t) = −M0 + NMg















































(5.10)

where Mr is the rotor torque and Mg is the generator torque. Next the Lagrangian is formed as

L(q, q̇) = T (q̇)− U(q) (5.11)

where

q(t) =









q1(t)
q2(t)
q3(t)
q4(t)









(5.12)

Lagrange’s equations of motion then provides [Juang and Phan, 2001]
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d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= Fd,i , i = 1, 2, 3, 4 (5.13)

where Fd,i represents the generalized non-conservative loads. These stem from structural and aero-
dynamic damping in the tower and blades and frictional damping in the bearings and gear in the
transmission system, which are all modelled as linear viscous. Insertion of (5.11) in (5.13) provides
the following matrix equations of motion

Mq̈ + Cq̇ + Kq = F(t) (5.14)

M =









m0 m1 m1 0
m1 m 0 0
m1 0 m 0
0 0 0 J









(5.15)

K =









k0 0 0 0
0 k 0 0
0 0 k 0
0 0 0 0









(5.16)

C =









2ζ0ω0m0 0 0 0
0 2ζωm 0 0
0 0 2ζωm 0
0 0 0 ηMr









(5.17)

F =









F1(t)
F2(t)
F3(t)
F4(t)









(5.18)

In the above equations of motion ω and ζ denote the eigenfrequency and damping ratio of the blades,
when these are fixed to the hub. Correspondingly ω0 and ζ0 denote the eigenfrequency and damping
ratio of the lowest mode of the wind turbine. η in (5.17) denotes the loss factor of the transmission
system, which typically is a few percent. Most of the loss is taken place in the gear.

5.2 Calibration of model

In the following, the parameters in the equations of motion are calibrated to provide motions corres-
ponding to the motions of the 5MW NREL wind turbine when applying a given load. The masses,
mode shapes and eigenfrequencies of the wind turbine are given in appendix C. The modal masses
m0, m and m1 are calculated by (5.6) using the eigenmodes of the tower and blades as shape function.

m0 = 386000 kg

m = 870 kg

m1 = 3500 kg

The lower angular eigenfrequency ω0 and the fixed bay eigenfrequency of the blades ω are given by
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ω0 = 2.1 rad/s

ω = 4.6 rad/s

The modal stiffnesses of the blades are then estimated by

ω2 =
k

m
(5.19)

thus

k0 = 1.7 · 106 N/m

k = 18.5 · 103 N/m

The structural damping ratio of the blades and tower are set to 0.01, but due to aeroelastic damping
the damping ratio of the blades are set to 0.2. The energy dissipation in the drive train is neglected,
thus the following damping ratios and coefficients are used

ζ0 = 0.01

ζ = 0.2

5.3 Loads on the system

The loads on the turbine are generated from the wind and the rotating blades. The load distributions
on the tower p1(x, t) is neglected whereas the loads on the blades p2(x, t) and p3(x, t) are assumed to
be linearly distributed with zero load at x = 0 and maximum load at x = L as shown in figure 5.3.
Further, stationary operational conditions are assumed, where the rotor is rotating with the constant
rotational speed Ωr = q̇4 so ηMr q̇4 = Mr −NMg. The load on the blade is given as

pi(x, t) = ptip(t)
x

L
, x ∈ [0, L] , i = 2, 3 (5.20)

The load normal to the rotor plane on the tip airfoil is given by

ptip(t) =
1

2
ρcCNV 2

r (t) (5.21)

where ρ is the air mass density, c is the mean chord length of the outer 1/3 of the blade, set to 2.5m.
CL and CD are the lift and drag coefficient and CN is the normal coefficient, which depends on the
angle of attack relative to the zero-line of the airfoil. It is assumed that the pretwist of the blade is so
that CN = 0.9 all along the blade. Vr is the resulting wind speed acting on the ith blade. In reality a
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Figure 5.3: a) Load distribution on the blades. b) Forces on the airfoil.

reduction of the wind speed is introduced due to the induction effect. This effect is neglected whereby
the resulting wind speed at the tip is given by

V 2
r (t) = (Vm + v(t))

2
+ (ΩL)

2
(5.22)

where Vm is the 10min mean wind speed, v(t) is the turbulence component in the mean wind direction.
The turbulence in the two other directions are neglected. The rotational speed is set to a constant
value of 12 rpm or 2

5π rad/s. For simplicity a linearisation of the resulting wind speed is introduced as

V 2
r (t) = V 2

m + 2Vmv(t) + (ΩL)
2

(5.23)

The load vector F is determined by insertion of p1(x, t) = 0, p2(x, t) and p3(x, t) in (5.10). The result
may be written on the matrix form

F(t) = b(fs + aT v(t)) (5.24)

where

b =









0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0









, fs =









0
fs

fs

0









, v(t) =









0
v1

v2

0









(5.25)
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The components of fs, fs and the constant aT are given by the following expressions

fs =
1

2
ρCN

∫ L

0

c(x)Φ(x)
(

V 2
m + (ΩL)2

) x

L
dx (5.26)

aT =
1

2
ρCN

∫ L

0

c(x)Φ(x)2Vm
x

L
dx (5.27)

where c(x) = c is the chord length of the airfoil and rho = 1.25 kg/m3 is the mass density of air.

All simulations are performed using Vm = 15m/s corresponding to fs = 108 ·103 N and aT = 525 kg/s.
Note that aT is multiplied by 20 to obtain realistic contribution to the response from the dynamic
load, whereby aT = 10500 kg/s is used.

5.3.1 Turbulence

The turbulence on the systems is generated by means of the state space representation of the ARMA
model (SSM) described in appendix B.3. Since the SSM is derived for fixed spatial points it is
not possible to generate the turbulence directly at the rotating tip of the blade, whereby a spacial
interpolation between fixed spatial points is needed. Note that only interpolation in the rotor plane is
preformed. The turbulence is generated at a number of points m on the periphery of the rotor plane
as shown in figure 5.4.

To avoid variance reduction of the interpolated turbulence a zero order interpolation method is used.
The turbulence component vi(t) at the tip of the ith blade is formally defined

vi(t) = Ni(q4(t))v(t) , i = 1, 2 (5.28)

where v is a m × 1 nodal turbulence vector and Ni(q4, t) is a 1 × m shape function matrix. The
azimuthal location of the ith blade is determined by

θi(t) = Ωt + θ0,i (5.29)

where θ0,i is the location of the ith blade at t = 0. Since θi(t) is repeated with 2π a relative angle of
the ith blade is introduced as

θr,i(t) = θi(t)− 2πn , n =

⌊

ΩL

2π

⌋

(5.30)

The jth component of the shape function matrix is then defined by a zero-order interpolation as

Ni,j(q4, t) =

{

1 , θr,i ∈ [ θj − ∆θ
2 θj + ∆θ

2 [
0 , else

(5.31)
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Figure 5.4: Turbulence grid on the rotor plane.

where θj is the angle associated with the jth grid point, cf. figure 5.4.

The turbulence vector v(t) may be written on the matrix form

v(t)
(4×1)

= N(q4(t))
(4×m)

v(t)
(m×1)

=









0 0 . . . 0
N1,1 N1,2 . . . N1,m

N2,1 N2,2 . . . N2,m

0 0 . . . 0









v(t) (5.32)

5.4 Results

In the following a sample of the turbulence and the corresponding response is given. A sample response
of the three dofs are given in figure 5.5 where as a sample of the turbulence v1 is given in figure 5.6.

The turbulence is simulated from an empiric spectral representation. The simulated turbulence is
verified by comparing the analytical one sided auto-spectral density function Svi

with the one sided
auto-spectral density function for the simulated turbulence Ŝvi

. Also, the auto-spectral density func-
tion for the simulated interpolated turbulence at the blade tip Ŝvi

is compared to the analytical
auto-spectral density function. The auto-spectral density functions of the simulated turbulence is
obtained by a Fourier analysis using T = 50000Tb, where Tb is the eigenperiod of the blade. The com-
parison is shown in figure 5.7. The interpolated turbulence shows peaks at ω = 2/5π, ω = 4/5π...
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Figure 5.5: Sample response of tower and blades for three dof wind turbine.
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Figure 5.6: Sample of turbulence in fixed spatial point.
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corresponding to integer multiple of the rotational angular frequency of the blades Ω = 2/5π. The
peaks originates in the correlation length of the turbulence. Note that the area under Ŝv1 and Ŝv1

must
be the same due to energy conservation. To be able to generate the spectral change, 10 turbulence
grid points has been used. In the following only 4 grid points is used.
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Figure 5.7: Comparison of analytical one sided auto-spectral density function and the one sided auto-spectral
density function obtained by Fourier analysis of sample simulation.

In all simulations the mean value and standard deviations of the stationary responses q1, q2 and q3

are used in determining the barrier levels. The mean values and standard deviations are determined
by simulation of 10 sample series of T = 1000Tb. The first 100Tb are discarded to obtain stationary
mean values and standard deviations. The values obtained are shown in table 5.1.

Component µ̂qi
σ̂qi

Tower, q1 0.13m 0.076m
Blade 1, q2 5.89m 1.51m
Blade 2, q3 5.89m 1.51m

Table 5.1: Estimated mean values and standard deviations of the stationary responses.
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Chapter 6

Crude Monte Carlo simulations

In this chapter simulations are performed for crude Monte Carlo (CMC) simulation techniques to
gather information on problems, limitations and computational time required for determining failure
probabilities for rather low barrier levels. Two different CMC simulation methods denoted ”simple”
and ”ergodic” are used in the following.

In the simple CMC simulation method the failure probability is determined by simulating N time
series of length T , e.g. T = 600 s for wind turbines, and determine the number of time series that
crosses out into the failure domain F .

The probability of failure Pf ([0, T ]) in the interval [0, T ] is in the simple CMC simulation method
then determined by

Pf ([0, t]) =
1

N

N
∑

i=1

Ii (6.1)

where Ii is the indicator function for the ith realisation. The indicator function is 1 if the realisation has
crossed out in the interval [0, T ] and 0 if the realisation has not crossed out in the interval [0, T ]. The
method is applicable to both stationary and non-stationery processes with or without time-constant
safe domains.

The ergodic CMC simulation method is based on a single time series. The method is only applicable
to stationary processes with a time-constant safe domain. By using ergodic sampling on the time
series, estimates of the distribution function of time lengths spent in the safe domain FL(l), their
mean value E[L] and the probability of being in the safe domain initially at time t = 0, P (Y(0) ∈ S)
can be estimated as [Nielsen, 2007b]

FL(l) ≃ N≤l

N
(6.2)

E[L] ≃ 1

N

N
∑

j=1

Lj (6.3)

P (Y(0) ∈ S) ≃ 1

T

N
∑

j=1

Lj (6.4)

where N≤l is the number of interval lengths spent in the safe domain S smaller than l, N is the total
number of outcrossings from the safe domain, L is the random variable representing interval lengths
spent in the safe domain, T is the total length of the time series and Y(0) is the displacement vector
at the beginning of the time series.

The first-passage time probability density function can then be calculated by [Nielsen, 2007b]
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fT (t) =
1

E[L]
(1− FL(t)) (6.5)

As the first passage time probability density function fT (t) is estimated from a simulated distribution
function FL(t) a smooth curve is obtained.

By insertion of (6.2) and (6.3) into (6.5) and subsequently integrating (6.5) the first passage time
distribution function FT (t) is determined. Then, the probability of failure in a specified time interval
Pf ([0, t]) can be calculated as, [Nielsen, 2007b]

Pf ([0, t]) = 1− P (Y(0) ∈ S) + FT (t)P (Y(0) ∈ S) (6.6)

The performance of the two CMC simulation methods for determining the failure probability is evalua-
ted on the 2-dof shear frame described in chapter 4. The applied load is a horizontal white noise
earthquake excitation with autospectral density S0 = 1 modelled by a broken line process. Through-
out this thesis barrier levels are specified by the non-dimensional parameter α corresponding to the
physical barrier level given as

yc,i = µYi
+ ασYi

(6.7)

where σYi
is the stationary standard deviation and µYi

is the mean value of the considered response
process. In the present case the barrier level is chosen to α = 3 and since µYi

= 0 this corresponds to
yc,i = 3σYi

for the ith storey.

A transient phase of 50T1 has been discarded from the simulation to make sure that the initial
conditions do not influence the results. Figure 6.1 shows a comparison between the first passage time
probability distribution in the interval [0, 50T1] obtained by a simple CMC simulation and the ergodic
CMC simulation method with a time series length of 500000T1 corresponding to the same total length
as for the simple CMC simulation method. In the simple CMC simulation this corresponds to having
10000 sample curves of each 50T1. The first passage time probability distribution function is very
smooth for the ergodic CMC simulation, and is also relatively smooth for the simple CMC simulation
method because of the high number of sample curves and the low barrier levels used.

A comparison of the convergence of the probability of failure in the two methods is shown in figure 6.2.
For the simple CMC simulation method the probability of failure is calculated whenever a simulation
is finished, i.e. for every 50 periods. For the ergodic CMC simulation method the probability of failure
is calculated at each outcrossing. It is seen that the failure probability converges at approximately
sam speed for both methods even when using a small barrier level providing a rather large probability
of failure. The failure probability equal to the estimated first passage time probability distribution
function at T = 50T1 of the two different simulation methods converge towards values between 0.22
and 0.24. None of the methods can be concluded to be superior to the other as they converge at the
same speed.

To test whether the same results are obtained for higher barrier levels, i.e. smaller probability of
failures, the same simulation is performed for the barrier level α = 4. The comparison of the first
passage time probability distribution function for the barrier level α = 4 is shown in figure 6.3 and
shows a very smooth curve for the ergodic CMC simulation method and a more irregular curve for
the simple CMC simulation method which was also seen for α = 3.
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Figure 6.1: First passage time probability distribution function for CMC methods, α = 3.
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Figure 6.3: First passage time probability distribution function for CMC methods, α = 4.

Convergence for the probability of failure within a time interval of 50T1 in the two methods and a
barrier level α = 4 is shown in figure 6.4. Again, none of the methods can be concluded to be superior
to the other. The computational time of the methods shows that the ergodic CMC simulation method
is around 20% faster than the simple CMC simulation method for the tested cases which means that
it is preferable. The differences in computational time is mainly due to the transient phase which is
simulated N times for the simple Monte Carlo method, but only once for the ergodic version.

Because of the slow convergence and demanding computational time required even for rather low
barrier levels other methods are needed, which will be studied further in the following chapters.
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Figure 6.4: Convergence of probability of failure for CMC simulation methods as a function of simulation
time, α = 4.
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Chapter 7

Importance Sampling

In this chapter the variance reduction Monte Carlo simulation method known as Importance Sampling
(IS) is investigated for possible use for determining extreme responses of wind turbines. The basic
idea of this method is to generate samples close to the failure surface and to reduce the statistical
weight so the consistency is preserved. The result of this approach is more outcrossings with fewer
simulations, and thereby a faster convergence. First, a short description of the IS method is given.

Given a failure function g(w) and a failure surface defined by g(w) = 0 cf. figure 7.1 then the related
failure domain is defined as

F = {w | g(w) ≤ 0} (7.1)

where w denotes samples of an M -dimensional stochastic vector W with the joint probability density
function fW(w).

wi

wj

g

¡

w

¢

= 0

Figure 7.1: Failure and safe domain separated by the failure surface.

Then, the probability of failure is given as

Pf =

∫

F
fW(w)dw =

∫

RM

I(w)fW(w)dw = E
[

I(W)
]

(7.2)

where I(w) is an indicator function defined as

I(w) =

{

1 , w ∈ F
0 , w ∈ S

}

(7.3)

The probability measure PW(B) relates a probability to any sub-domain B of R
M . The probability of

samples in a differential volume dw around a sample point w has the measure
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dPW(w) = fW(w)dw (7.4)

Next, another M -dimensional stochastic vector W̃ with the probability measure PW̃(B) and the joint
probability density function fW̃(w̃) is introduced. Then, (7.2) may be written as

Pf =

∫

RM

I(w)
fW(w)dw

fW̃(w)dw
fW̃(w) dw =

∫

RM

I(w)
dPW(w)

dPW̃(w)
fW̃(w) dw = E

[

I(W̃)
dPW(W̃)

dPW̃(W̃)

]

(7.5)

The fraction dPW(w)
dP

W̃
(w) is known as the Radon-Nikodym derivative of the measure PW(w) with respect

to the measure PW̃(w) at the sample point w. The expectations in (7.2) and (7.5) are evaluated with
respect to the joint probability density functions fW(w) and fW̃(w), respectively.

The expectation in (7.2) forms the basis for CMC simulation of the failure probability. Given N
samples w1,w2, . . . ,wN of the random vector W, an unbiased estimate P̂f of the failure probability
is given as

P̂f =
1

N

N
∑

j=1

I(wj) (7.6)

The expectation in (7.5) forms the basis for IS of the failure probability. Given N samples w̃1, w̃2, . . . , w̃N

of the random vector W̃, an unbiased estimate of P̂f of the failure probability is given as

P̂f =
1

N

N
∑

j=1

I(w̃j)
dPW(w̃j)

dPW̃(w̃j)
(7.7)

7.0.1 Sample density function

Ideally, the sampling measure PW̃(w) should have its probability mass concentrated near the failure
surface as illustrated for the marginal distribution of the ith component of w in figure 7.2. fW(w) is
very small in the area around g(w) = 0, whereas fW̃(w) is of relatively large magnitude in this area.

In order to determine the sample measure, the system of interest needs to be modelled. The IS method
used in this project takes its basis in the Itô stochastic differential equation

dZ(t) = µµµ(t,Z)dt + σσσ(t,Z)dW(t) (7.8)

where Z(t) is the n-dimensional system state vector, µµµ(t,Z) is a n-dimensional drift vector, σσσ(t,Z) is a
n×m-dimensional diffusion matrix and dW(t) is a m-dimensional incremental Wiener vector process
with mutual independent component processes with zero mean and the variance dt. (7.8) can be
solved directly by means of any predictor based numerical integration scheme as long as the diffusion
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Figure 7.2: Marginal probability density function for W̃ and W.

term is state vector independent. In cases where the diffusion matrix is state dependent numerical
solution may still be obtained by the Euler scheme with forward increments or the impulse response
method (4.19) for drift vectors which depends linearly on the drift vector. If higher order integration
schemes relies on future state vectors in the time-interval a so-called Wong-Zakai correction must be
applied cf. appendix J.1. For simplicity and generality a forward Euler scheme is used in what follows

Zi+1 = Zi + µµµ(ti,Zi)∆t + σσσ(ti,Zi)∆Wi

ti = ∆t · i , ∆t =
T

M
, i = 0, 1, . . . ,M − 1







(7.9)

where Zi = Z(ti). In order to establish an effective IS, the samples are generated near the failure
surface by utilising a Girsanov transformation of the incremental input process dW(t). The Girsanov
transformation of the Wiener process increments is determined by, cf. appendix J.1.1

∆W̃(t) = u(t)∆t + ∆W(t) (7.10)

where u(t) is a so-called control function vector.

Selection of the sample control function

The control function determines the effeciency of the importance measure and is proposed determined
by the First Order Reliability Method (FORM) by [Tanaka, 1998]. u(t) is a deterministic sample
control function which can be interpreted as the realisation of ∆W which has the highest probability
of occurring and which also gives failure at the design time t∗. By utilising an optimal sample control
function, approximately half of the samples generated under the IS density function is in the failure
domain.

Let the failure function of the ith component of the system be defined as

g(Yi(t)) = yc,i − Yi(t) (7.11)

where Yi(t) is the ith component of Y(t) which is determined by (7.9) and yc,i is a deterministic
barrier function of the ith component defined by (6.7).
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A minimal distance β is introduced as the shortest distance from origo to the failure surface in the
standard normal distributed space, spanned by the Gaussian vector ΞΞΞ cf. figure 7.3. The components
of ΞΞΞ are mutual independent and identical distributed with zero mean and unit variance. The location
of the shortest distance to the failure surface in the Ξ-space is denoted the design point. The minimal
distance β corresponds to the reliability index used in time invariant reliability theory.

In what follows (7.8), due to simplicity is reduced to a single dimensional stochastic differential equa-
tion. Note that ∆W now is a vector containing the increments ∆W1,∆W2, ...,∆WM . The relation
between the jth component of ∆W and Ξ is given by

∆Wj =
√

∆t Ξj (7.12)

The minimal distance β from the failure surface gi(Ξ1, ...,ΞM ) = 0 to the design time t∗ = tM is given
by

β(tM ) =

√

√

√

√

M
∑

j=1

(ξ∗j )2 (7.13)

where ξ∗j are the coordinates of the design point in the normal distributed space. Next, the control

function u(tM )(t) is determined so the expectation EP
W̃

[∆W̃] of ∆W̃ with respect to the measure PW̃

becomes equal to zero, i.e. half of the samples of ∆W̃ will in average bring the system into the failure
domain. From (7.10) follows

EP
W̃

[

∆W̃j

]

= EP∆W̃
[∆Wj ] + uj∆t = 0⇒

uj = −EP
W̃

[∆Wj ]

∆t
= −EP

W̃
[Ξj ]√

∆t
(7.14)

By choosing a realisation of the incremental load process ∆Wj with the highest failure probability of
Z at the time tM , an optimal sampling control function is achieved. This is in fact the deterministic
design point ξ∗j whereby (7.14) becomes

¯(tM )

¥k

¥j

gi (¥1; :::; ¥M ) = 0

»»»
¤

Figure 7.3: Design point at the time tM .
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uj =
−ξ∗j√

∆t
(7.15)

The joint probability density function f∆W(∆w) of ∆W at ∆w = ∆w̃ is given by

f∆W(∆w̃) =
1

(2π∆t)M/2
exp



− 1

2∆t

M
∑

j=1

(∆w̃j)
2



 (7.16)

Since ∆W̃j ∼ N
(

uj∆t,
√

∆t
)

the joint probability density function f∆W̃(∆w̃) of ∆W̃ at ∆w̃ is given
by

f∆W̃(∆w̃) =
1

(2π∆t)M/2
exp



− 1

2∆t

M
∑

j=1

(∆w̃j − uj∆t)2



 (7.17)

whereby the Radon-Nikodym derivative at the sample point ∆W̃ is determined by

f∆W(∆w̃)

f∆W̃(∆w̃)
= exp



−1

2

M
∑

j=1

u2
j∆t−

M
∑

j=1

uj∆wj



 (7.18)

By using the design point ξ∗ it is possible to determine a control function u(t) so the highest likelihood
of the event Yi(t) > yc,i, t ∈ [t0, T ] is achieved. This kind of approximation fits systems which are
dominated by a single exit time as for instance crack growth problems. The method has successfully
been applied for a scalar diffusion process in appendix J.3, which verifies that the approximation is
valid for single exit-time systems. The expectation of the exit time is typical found at t = T , whereby
the design point is found at t∗ = T .

However, first passage time probability of oscillatory systems are generally not dominated by a single
exit time, since the contribution to the first passage time probability is determined by several exit
times [Olsen, 2006]. A method to overcome this problem is proposed by [Macke and Bucher, 2002]
and described in the following.

Multi-modal sampling density

As the system is not dominated by a single exit time there is a considerable contribution to the failure
probability from other exit times different from t∗ = T by which (7.18) is inadequate. A way to
overcome this is by introducing a so-called multi-modal sample density function where samples are
generated around M design points, where the region around a design point is emphasised in proportion
to the probability density function at that design point. An illustration of the method is given in figure
7.4.

The emphasising of the design points isachieved by attaching the following weights to each of the
design points
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Figure 7.4: CMC and multi-modal IS probability density function

Wi =
Φ(−β(i))

M
∑

j=1

Φ(−β(i))

(7.19)

The weights Wi are proposed by [Macke and Bucher, 2002]. Then, the multi-modal sampling proba-
bility density function h∆W̃ is defined as

h∆W̃(∆w̃(l)) =

M
∑

i=1

Wi f
(i)

∆W̃
(∆w̃(l))⇒ (7.20)

h∆W̃(∆w̃(l)) =
1

M
∑

s=1
Φ(−β(s))

M
∑

i=1





Φ(−β(i))

(2π∆t)2/M
exp



− 1

2∆t

M
∑

j=1

(∆w̃
(l)
j − u

(i)
j ∆t)2







 (7.21)

where f
(i)

∆W̃
(∆w̃) is the original sample density with the mean shifted to u

(i)
j which is the control

function at the time j∆t for the design point β(i). ∆w̃
(l)
j is a realisation of ∆W̃j determined from

(7.10) with the mean u(l)(t) which is the control function corresponding to the design point β(l). The
Radon-Nikodym derivative used in (7.7) is derived in appendix J.2 and given by

f∆W(∆w̃(l))

h∆W̃(∆w̃(l))
= R(l) (7.22)

where

1

R(l)
=

1
M
∑

s=1
Φ(−β(s))

M
∑

i=1



Φ(−β(i)) exp





M
∑

j=1

u
(i)
j ∆wj +

1

2

M
∑

j=1

u
(i)
j (2u

(l)
j − u

(i)
j )∆t







 (7.23)



7.1. Implementation on two storey shear frame exposed to a turbulent wind field 49

whereby an estimate of the failure probability is determined from

P̂f =
1

N

N
∑

l=1

I
(

w̃(l)
)

R(l) (7.24)

For systems described by a multi dimension stochastic differential equation e.g. (7.8), is (7.23) given
by

1

R(l)
=

1
M
∑

s=1
Φ(−β(s))

M
∑

i=1



Φ(−β(i)) exp





m
∑

k=1





M
∑

j=1

u
(i)
k (j)∆wk(j) +

1

2

M
∑

j=1

u
(i)
k (j)(2u

(l)
k (j)− u

(i)
k (j))∆t













(7.25)

where uk(j) and wk(j) is the kth entry in the m-dimensional vectors u(t) and ∆w(t), at the jth time
increment.

In what follows is Pf in (7.24) equal to the first passage time distribution function FT , since all
realisation belongs to the safe domain at t = 0.

The method has successfully been applied to a single dof linear oscillator exposed to a unit white
noise, cf. appendix J.4. In section 7.1 the method will be applied to the two dof shear frame exposed
to a turbulent stationary wind load process with correlated load components.

7.1 Implementation on two storey shear frame exposed to a turbulent

wind field

In the following example the multi-modal IS method will be applied to the two storey shear frame
described in chapter 4, where the load process is changed from a single input earthquake to a two
dimensional stationary stochastic wind load vector, with correlated components acting on the storey
beams. The equations of motion given in a state space formulation becomes

d

dt
Z(t) = AZ(t) + BV(t) , t > t0

Z(t0) = Z0







(7.26)

where

A
(4×4)

=

[

0 I
−ω2

0k −2ζ0ω0k

]

, B
(4×2)

=

[

0
I

]

, Z
(4×1)

=

[

Y

Ẏ

]

(7.27)

The turbulence load process {V(t), t ∈ [0,∞]} acts on the storey beams and is determined by the
turbulence vector process described in appendix B.2, which in a discrete form is determined by the
causal convolution integral
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V(l)
(2×1)

=
√

4π

∞
∑

k=0

h̃(k)
(2×4)

∆W(l − k)
(4×1)

, j = 0, 1, ... (7.28)

where the abbreviated notation V(l) = V(l ·∆t) and ∆W(l) = ∆W(l ·∆t) is used. The stochastic
sequence {∆W(l), l = 0,±1± 2, . . .} consists of independent and identical distributed stochastic vec-
tors ∆W(l). Furthermore, all components of ∆W(l) are mutual independent, zero mean Gaussian
variables with the variance ∆t. h̃(k) is an impulse response matrix. (7.28) corresponds to the Moving
Average part of an ARMA model, where the upper limit in (7.28) is set to a finite value, which cor-
responds to the Nyquist frequency. Note that the turbulence vector V(t) is used directly as the force
on the storey beams. This means that the displacements are measured from the static deformation of
the frame caused by the static wind load. In this case an analytical solution of the control function
can be achieved.

The solution of (7.26) may be written as

Z(t) = eAtZ(0) +

∫ t

0

eA(t−τ)BV(τ) dτ (7.29)

where the matrix exponential may be evaluated as indicated by (4.22). Upon discretisation of (7.29)
the following numerical solution is achieved

Z(j) = h0(j)Z(0) +

j
∑

l=0

hs(j − l)V(l) , j = 1, 2, ... (7.30)

where

h0(j) = eAj∆t (7.31)

hs(j) = eAj∆tB∆t (7.32)

By inserting (7.28) into (7.30) the solution to (7.26) is given on the form

Z(j) = h0(j)Z(0) +
√

4π

j
∑

l=0

hs (j − l)

q
∑

k=0

h̃(k)∆W(l − k) , j = 0, 1, ... (7.33)

In order to determine the design point (7.33) is rewritten on matrix form

Z(j) = h0(j)Z(0) +
√

4πHG∆V (7.34)
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where

H
(4×2·j)

= [hs(j) hs(j − 1) . . . hs(0)]

G
(2·j×4(q+j))

=



















h̃(q) . . . h̃(0) 0 . . . 0 0

0 h̃(q) . . . h̃(0)
...

...

0
. . . 0

...
... h̃(q) . . . h̃(0) 0

0 0 . . . 0 h̃(q) . . . h̃(0)



















∆V
(4(q+j)×1)

=





∆W(−q)
. . .

∆W(j)





The the failure function gr of the rth storey at the design time t∗ = j for a deterministic barrier
function yc,r is given by

gr = yc,r − h0
(r)(j)Z(0) +

√
4πH(r)G∆V (7.35)

where subscript (r) denotes the rth row, corresponding to the rth storey. The safety margin M is
then given in the standard normal distributed space by

M = yc,r − h0
(r)(j)Z(0) +

√
4πH(r)GΞ

√
∆t (7.36)

where it has been used that V =
√

∆tΞ. As seen in (7.36),M = 0 is a plane hyper-surface in R
4(q+j),

whereby the mean value and the standard deviation of the safety marginM is determined directly as

µM = yc,r − h0
(r)(j)Z(0) , σM =

∣

∣

∣

√
4π∆tH(r)G

∣

∣

∣ (7.37)

The minimal distance β(j) and the normal vector at the failure surface ααα(j) found at the design time
t∗ = j is then determined as

β(j) =
µM
σM

=
yc,r − h0

(r)(j − 1)Z(0)
√

4π
∣

∣

∣

√
∆tH(r)G

∣

∣

∣

, ααα(j) =
−
√

4π
(

H(r)G
)T √

∆t
√

4π
∣

∣

∣

√
∆tH(r)G

∣

∣

∣

(7.38)

whereby the design point becomes

ξξξ∗(j)

(4(q+j)×1)

= β(j)ααα(j) =
−
(

yc − h0
(r)(j − 1)Z(0)

)

(

H(r)G
)T

√
4π
∣

∣H(r)G
∣

∣

2√
∆t

(7.39)
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By using (7.15) a transformation back to the original ∆V-space is achieved

u(j)

(4(q+j)×1)
=

(

yc − h0
(r)(j − 1)Z(0)

)

(

H(r)G
)T

√
4π
∣

∣H(r)G
∣

∣

2
∆t

(7.40)

IS of the response process Z̃(t) is now achieved by utilising the transformed Wiener process ∆W̃ and
the control function given in (7.40)

Z̃(i) = h0(i)Z̃(0) +
√

4π

i
∑

l=0

hs (i− l)

q
∑

k=0

h̃(k)∆W̃(j)(l − k) , i = 0, 1, ... (7.41)

where ∆W̃(j)(i) is the transformed incremental Wiener process at time t = i with the mean value
u(j)(i).

7.1.1 Results

The sample control functions corresponding to a design time t∗ = T = 35 eigenperiods is shown in
figure 7.5
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Figure 7.5: The control functions for the four input processes.

As seen in figure 7.5 the sample control functions of the system is non-zero for t < 0, since the
turbulence model is determined from the white noise process before t = 0 cf. (7.28). The control
function has a relative small intensity for the time t < 0, where after the intensity increases and the
control function oscillates in phase with the first mode of the frame. This is so because the response
is dominated by the first mode. This resonance behavior of the sampling control functions seems to
be general for oscillating systems that only are dominated by a single mode.

The minimal distance β determined from (7.13) is shown in figure 7.6.
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Figure 7.6: β function.

It appears that the β function is oscillating and local extremes emerge, which signifies the need of the
multi-modal IS method. An unexpected behavior is seen in the time interval t = [0, 2T1], where the β
function attains a lower value than in the following time interval. This is not to be expected since the
system is quiescent at t = 0, whereby it must be concluded that an inaccurate estimate of the beta
function in the first two eigenperiods occur. This issue is not a problem for time series larger than 10
eigenperiods, since the outcrossing probability during the first two periods is negligible compared to
the total outcrossing probability. This is evident when considering the weight function given by (7.19)
since it is zero in the first periods, cf. figure 7.7.
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Figure 7.7: Weight function.

The response of the first storey of the structure exposed to the turbulent vector process with and
without utilisation of the control function is shown in figure 7.8. The same seed has been used for
the two trajectories, whereby only the control function causes the deviation. As seen in figure 7.8 the
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control function is dominating the response almost from the beginning, which differs from systems
exposed to a white noise process cf. appendix J.4.
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Figure 7.8: Response of the first storey with and without the control function.

The probability of failure for different barrier levels, estimated with the IS method and the CMC
method, is shown in figure 7.9. For each barrier and exit-time, three estimates are calculated to give
an idea of the standard deviation.

As seen in figure 7.9 the multi-modal IS method gives a good and effective estimates of the first
passage time distribution function determined from a deterministic initial state. In the following, the
recurrence period and the barrier corresponding to a given recurrence period are determined for the
stationary case.

0 5 10 15 20 25 30

10
−10

10
−5

10
0

 

 
CMC
IS

α = 3

α = 4

α = 5

α = 6

t/T1

FT (t)

Figure 7.9: The first passage time probability distribution function for different barrier levels α. 104 and
105 simulation are used for the CMC simulation for α = 3 and α = 4, respectively. 500 simulations are used
for all IS simulations.
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7.1.2 Characteristic extreme responses

In the previous section, IS was used to estimate first passage time for responses with deterministic
initial condition, i.e. non-stationary responses. In this section it is shown how IS can also be used to
estimate failure probabilities for stationary responses. The reason for considering stationary responses
is that characteristic extreme responses for wind turbines are determined from stationary responses.

There are two ways by which IS can be used to estimate first passage times for stationary responses.
The first way is to include the distribution of the initial stationary state vector Z(t0) in the safety
margin. Since the distribution of the initial state in general is difficult to determine, this approach is
not preferred.

The second way is to determine the first passage time probability from an estimated hazard rate of
the stationary response.

Firstly, let the deterministic initial state belong to the safe domain z(t0) ∈ S, then the first passage
time distribution is determined by [Nielsen, 2007b]

FT (t) = 1− exp

(

−
∫ t

0

λ(τ, yc) dτ

)

(7.42)

where λ(t, yc) is the hazard rate. By assumed excursions from the safe domain are independent of
previous outcrossings, the hazard rate is approximated by the outcrossing intensity, thus

λ(t, yc) ≃ ν+(t, yc) (7.43)

For a stationary process {Y (t)} with a constant safe domain, the outcrossing intensity is constant,
whereby FT (t) becomes

FT (t) ≃ 1− exp
(

−ν+(yc)t
)

(7.44)

For small arguments the approximation exp(ǫ) ≈ 1 + ǫ holds, whereby (7.44) becomes

FT (t) ≃ ν+(yc)t (7.45)

From (7.45) it is evident that the outcrossing intensity ν+(yc) of the stationary response is equal to the
slope of a linear fitted line through the first passage time probabilities found after a transient phase.
For the two storey shear frame exposed to a turbulent wind field it is assumed that the stationary
response is obtained after 25 eigenperiods, whereby the outcrossing intensity ν+ of the barrier level
α = 6.1 is determined as the slope of the fitted line shown in figure 7.10.

Using the same approach as shown in figure 7.10, an estimate of ν+(yc) is made for the barrier levels
α = [3, 4, 5, 6, 6.1]. From these five estimates of ν+(yc) an estimate of the first passage time probability
of the stationary response within 600 s P (y1 ≥ yc,1|T = 600 s) is made.
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Figure 7.10: Linear fit of FT (t) after a transient phase of 25 eigenperiods. Barrier level α = 6.1.

In the following the first passage time probability obtained by IS method by the above described
method is compared with the corresponding failure probability obtained by using the POT extrapola-
tion method described in section 2.1. The obtained failure probability for the IS method is obtained by
500 simulations using T = 600 s. The extrapolated failure probability is obtained by 100 simulations
using T = 600 s. Extraction of extreme responses are performed using the POT method. Extreme
values over a threshold µY1

+ 3σY1
are extracted and 3-parameter Weibull and Gumbel probability

distribution functions are fitted to the extreme values. Different thresholds are tested and threshold
which provideds the smallest average relative error is chosen. Figure 7.11 shows the comparison of
the results by importance sampling and extrapolation.

The comparison shows that the extrapolation method using a 3-parameter Weibull probability dis-
tribution function estimates a response value with a 50 year recurrence period that is around 7%
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Figure 7.11: Comparison of probabilities of failure for IS and extrapolation methods using Gumbel and
3-parameter Weibull distribution functions.
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larger than the response determined by the IS method, whereas the Gumbel probability distribution
function estimates a response value that is around 15% larger than the IS estimate. The difference
either orginates from inaccuracies in the IS method, the assumption that the outcrossing rate is con-
stant for the barriers tested or inaccuracies in the extrapolation method. The extrapolation method
is expected to be the latgest source of error, since other comparisons have shown that the IS method
can simulate correct failure probabilities for barriers yc = 3σY1

and yc = 4σY1
when comparing with

CMC simulations.

As seen in figure 7.11 it is possible to determine the characteristic load on a linear two dof shear
frame exposed to at turbulent wind field with the IS method. Using only a few hundred simulations a
good estimate of the failure probabilities is achieved. It is hereby concluded that the method is very
suitable for simple linear systems exposed to a turbulent wind field. Determination of the control
function is the time consuming part of the Multi-modal IS method. Especially the calculations of the
load process is very time consuming, by which improvements can be made. In that connections, the
state space representation of the ARMA model will be implemented. Furthermore the Multi-modal
IS method will be implemented on a system that resembles, the structural behavior of a wind turbine
more.

7.2 Implementation on two bladed wind turbine exposed to a turbulent

wind field

In the following the multi-modal IS method will be applied to the simple two bladed wind turbine
exposed to a turbulent wind field as described in chapter 5. The equations of motion on a state space
formulation is given as

d

dt
Z(t) = AZ(t) + BF(Z(t), t) , t > t0

Z(t0) = Z0







(7.46)

where A, B and Z(t) are given by

A
(8×8)

=

[

0 I
−M−1K −M−1C

]

, B
(8×4)

=

[

0
−M−1b

]

, Z(t)
(8×1)

=

[

q(t)
q̇(t)

]

(7.47)

F(Z(t), t) is the load normal to the rotor plane at the tip of the blades and given by (5.24). The state
dependency of F(Z(t), t) is due to the interpolation of the turbulence at the fixed grid. The SSM
described in appendix B.3 is used to generate the turbulence in the fixed grid.

By reformulating the SSM to a convolution integral the turbulence is given as a sum of uncorrelated
normal distributed stochastic variables, thus

V(l) =

l
∑

i=1

G(l − i)∆W(i) (7.48)

where ∆W(i) is a discrete incremental Wiener vector process and G(i) is the turbulence impulse
response matrix given by
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G(0) = D
G(1) = CB
G(2) = CAB

...

G(n) = CAn−2B

where A, B, C and D are the state vector matrices in (B.34) and the matrix multiplication notation
An = AAA... has been used.

A solution to (7.47) may be determined from (7.29), whereby the solution on a discrete form is given
as

Z(j +1) = h0(j)Z(0)+

j
∑

l=0

hs (j − l)

(

fs + N(l)aT

l
∑

k=0

G(k)∆W(l − k)

)

, j = 0, 1, ...,M (7.49)

where N(t) is defined in (5.32) and aT , fs in (5.24).

In order to determine the design point, (7.49) is rewritten on a matrix form

Z = H0Z0 +Hsfs + aTHNG∆V (7.50)

where

Z
(8M×1)

=







Z(0)
...

Z(M)






, H0

(8M×8)
=







h0(0)
...

h0(M)






, Hs

(8M×1)
=















0
∑

l=0

hs(0)fs

...
M
∑

l=0

hs(l)fs















∆V
(4M×1)

=







∆W(0)
...

∆W(M)






, H

(8M×4M)
=













hs(0) 0 . . . 0

hs(1) hs(0)
. . .

...
...

. . .
. . . 0

hs(M) . . . hs(1) hs(0)













N
(4M×4M)

=













N(0) 0 . . . 0

0 N(1)
. . .

...
...

. . .
. . . 0

0 . . . 0 N(M)













, G
(4M×4M)

=













G(0) 0 . . . 0

G(1) G(0)
. . .

...
...

. . .
. . . 0

G(M) . . . G(1) G(0)












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The failure function of the rth element at the design time t∗ = j is given as

gr = qc,r −Z(j,r) = qc,r −H0
(j,r)Z0 −Hs

(j,r)fs − aTH(j,r)NG∆V (7.51)

where (j, r) denotes the rth entry in the jth matrix row and qc,r is the critical displacement of the
rth element. The safety margin is then given as

M = qc,r −H0
(j,r)Z0 −Hs

(j,r)fs − aTH(j,r)NGΞΞΞ
√

∆t (7.52)

Where it has been used that ∆V =
√

∆tΞΞΞ. The mean value and the standard deviation of the safety
marginM is given as

µM = qc,r −H0
(j,r)Z0 −Hs

(j,r)fs , σM =
∣

∣

∣
aT

√
∆tH(j,r)NG

∣

∣

∣
(7.53)

The minimal distance function β(j) and failure surface normal ααα(j) is found at the design time t∗ = j

β(j) =
qc,r −H0

(j,r)Z0 −Hs
(j,r)fs

∣

∣

∣aT

√
∆tH(j,r)NG

∣

∣

∣

, ααα(j) =
−aT

√
∆t
(

H(j,r)NG
)T

∣

∣

∣aT

√
∆tH(j,r)NG

∣

∣

∣

(7.54)

whereby the design point becomes

ξξξ(j) =
−qc,r +H0

(j,r)Z0 +Hs
(j,r)fs

aT

√
∆t
∣

∣H(j,r)NG
∣

∣

2 ·
(

H(j,r)NG
)T

(7.55)

By using (7.15) a transformation back to the original ∆V-space is achieved

u(j) =
qc,r −H0

(j,r)Z0 −Hs
(j,r)fs

aT ∆t
∣

∣H(j,r)NG
∣

∣

2 ·
(

H(j,r)NG
)T

(7.56)

IS of the response Z(t) is generated by using the transformed Wiener process ∆W̃.

7.2.1 Results

In the following the results from implementing the multi-modal IS method on the two bladed wind
turbine are presented. The structural parameters for the wind turbine model are given in section 5.2
and the turbulence is discretised with four nodes on the periphery of the rotor plane. To minimize the
transient phase the initial displacement is set to the estimated mean value of the stationary response
cf. table 5.1.
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The following results are obtained by “aiming” for failure in the tower, where failure occurs when
q1 ≥ qc,1 = 4σq1

+ µq1
which corresponds to barrier level α = 4.

The minimal distance function β(t) is shown in figure 7.12.

The minimal distance function β(t) is oscillating which is also observed for the two dof shear frame
exposed to a turbulence wind field cf. section 7.1. The oscillations are more irregular since the
response of the tower is affected by all modes. After 30 s the beta function is oscillating around a
constant value which corresponds to a constant outcrossing rate. The response is therefore dominated
by several exit-times, thus there is indeed a need for a multi-modal sampling density function.

The set of sample control functions that in mean drive the tower to failure at the design time t∗ = 70 s
is shown in figure 7.13.

The sample control functions consists of a number of discontinuous intervals where every second
interval acts in phase with the tower mode. The control functions is chopped in to discontinuous
intervals which corresponds to a blade passing by at that node, which is illustrated for u1(t) in figure
7.14.

If ∆W̃(t) = u(t)∆t is used in (7.50) failure occurs exactly at the design time t∗ as seen in figure 7.15.
The response of the blades is not affected by the sample control functions in the same manner as the
tower, thus only failure of the tower is estimated when aiming at the tower. The first passage time
probability of the entire system requires aiming for all subcomponents.

The first passage time probability distribution function FT (t) of the rotating wind turbine with a
static load is estimated by means of the CMC method and by means the IS method, cf. figure 7.16.
5000 and 20000 time series are used in the CMC method for the barrier levels α = [3, 4], respectively
and 500 are used in the IS method for the barrier levels α = [3, 4, 5, 6]. By a visual evaluation of the
two methods it is evident that the IS method is very effective.

The results shown in figure 7.16 are calculated for a deterministic start and therefore FT (t) is not
directly applicable for estimating the failure probability of the stationary response, which is needed
for determining the characteristic extreme response value. As described in section 7.1.2 it is reason-
able to assume a constant outcrossing rate for the stationary response and by applying the Poisson
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Figure 7.12: The minimal distance function for the barrier level α = 4.
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Figure 7.13: The set of sample control functions that in mean drive the system to failure at t∗ = 70 s.
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Figure 7.15: Response of the wind turbine components where only the sample control function is applied as
load. a) is the response of the tower. b) is the response of the two blades.
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assumption the estimates of the first passage time probability distribution function of the stationary
response is determined by (7.45). The response is assumed to be stationary after 40 s whereafter the
outcrossing rate is estimated as the slope of the best fitted line through the estimated first passage
time probabilities as shown in figure 7.17 for the barrier level α = 6.

Several points are used to achieve a good estimate by which the calculation time is increased. The
increased calculation time is however not substantial since the time consuming part of the IS is the
calculation of the sample control functions. The accuracy of the outcrossing rate estimate is increased
compared to the estimated first passage time probabilities, but due extrapolation when estimating the
first passage time probabilities of the stationary response the accuracy of the final estimate is reduced.
The estimated outcrossing rates for the different barrier levels are shown in figure 7.18.

To evaluate the estimated characteristic extreme response value with a 50 year recurrence period
on condition of a wind speed of 15m/s. The extreme response is estimated by means of the POT
method where a Gumbel and a 3-parametric Weibull distribution is used as candidate distribution,
cf. 2.1. 600 s are used as reference frame for determination of the characteristic extreme response,
whereby the characteristic extreme response value with a 50 year recurrence period corresponds to
FT (600) = 3.8 · 10−7. 100 time series of 600 s are used to generate the local maxima used in the POT
method. The first passage time probability during a time period of 600 s, estimated by means of the
POT method and the IS method is shown in figure 7.19.

By a comparison of the candidate distributions it emerge that there is a 20 % deviation in the estimated
characteristic extreme response with a 50 year recurrence period. It seems like the extreme response
distribution estimated with the IS method is not linear in a logaritmic scale and whereby it does not
constitute a Gumbel distribution. The Gumbel distribution deviates 6% from the results by the IS
method at the 50 year recurrence period whereas the Weibull distribution deviates 11 %. Therefore it
must be concluded that the Gumbel distribution gives the best estimate of the characteristic extreme
response with a 50 year recurrence period at the 15m/s wind bin, assuming that the IS method
provides the more accurate extreme response value.
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Figure 7.17: Estimation of the outcrossing rate for the barrier level α = 6.



64 Chapter 7. Importance Sampling

3 4 5 6 7
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

α

ν+
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Figure 7.19: Extreme response distribution estimated by means of the POT and IS.

7.3 Conclusion

The IS method has been implement on the following systems

• Scalar diffusion process with a constant drift

• Single dof oscillator exposed to white noise

• The two storey shear frame exposed to a turbulent wind field

• Two bladed wind turbine exposed to at turbulent wind field
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The IS method has successfully been implemented on a scalar diffusion process with a constant drift
term. The nature of a diffusion process indicates that the first passage time probability is dominated
by a single exit time, whereby an effective importance measure is determined by means of the Girsanov
transformation and a sample control function obtained by use of the FORM.

For oscillating systems the first passage time probability is not dominated by a single exit time,
whereby a multi-modal importance measure is needed, to include the first passage time probability
from all exit times. Again, an effective importance measure is obtained by means of the Girsanov
transformation, but to incorporate the effect from all exit times the need of multiple sample control
functions is evident. The multi-modal IS method has successfully been implemented on a linear single
dof oscillator exposed to a Gaussian white noise.

Since the scope of this project is to evaluate the use of alternative statistical simulation methods to
determine extreme loads on wind turbines, it is necessary to incorporate a turbulence model in the
considered systems. In that connection the IS method has successfully been implemented on a two
storey shear frame exposed to a turbulent wind field, which is obtained through a filter model. The
incorporated filter model increases the calculation time of the sample control function significantly
due to the long memory of the filter model.

Finally, the multi-modal IS method has successfully been applied to a linear four degree of freedom
wind turbine where the turbulence on the turbine is determined by interpolating on a fixed turbulence
grid. To increase the accuracy of the turbulence model and decrease the calculation time a State Space
representation of the ARMA turbulence model has been used. Again, the time consuming part of the
simulation, is the calculation of the sample control function and especially the total number of time
steps is very crucial for the calculation time, since a set of sample control functions are calculated for
each time step.

The first passage time distribution function estimated by the IS method determined for deterministic
initial states, whereby the characteristic extreme response is not determined directly. An estimate of
the hazard rate of the stationary response is calculated, whereafter the first passage time probability
distribution function of the stationary response is determined. The standard error of the estimated
hazard rate is amplified when extrapolating the first passage time probabilities of the stationary
response. The uncertainties connected with estimation of the hazard rate need to be investigated
further.

7.3.1 New challenges

The control system in wind turbines which needs to be incorporated when calculating the sample
control functions, has not been treated in this project . A way to evaluate the applicability of the IS
method on systems with active control is to include a control system on the simple two bladed wind
turbine addressed in this project.

Only the first passage time probability distribution function of the tower has been determined. In
general the nature of controlled simulation methods, is that only the first passage time probability
of a single component is estimated. The combined first passage time probability of all components
can be estimated by the IS method by including all components when establishing the multi-modal
sample density function. A further investigating of this is needed to evaluate the effectiveness.

Generally, the dependency of the number of state state space variables in the IS method determines
the limitation of the method. In that sense implementing the IS method on the FAST code might be
difficult, since the turbulence grid used in FAST is discretised into 61 nodes, thus 61 sample control
functions are needed for each time step. The number of sample control functions needed to establish
an effective importance measure can be reduced, which corresponds to reducing the total number of
sample points, which samples are generated around.
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Chapter 8

Russian Roulette & Splitting with

Distance Control

This chapter describes the variance reduction method ”Russian Roulette & Splitting with Distance
Control” (RR&S) and presents the results achieved for estimating first passage times for different
systems with the algorithm. The systems which the algorithm is implemented on are

• a one dof non-linear oscillator

• a two dof shear frame - earthquake

• a two dof shear frame - earthquake, static load & carrier wave

• a three dof wind turbine

• a 24 dof wind turbine modelled in FAST

The 1-dof non-linear oscillator is used for verifying that the RR&S algorithm has been implemented
correctly. The verification is performed by comparing results for first passage time distribution func-
tions FT (t) for the 1-dof oscillator with results obtained by [Pradlwarter and Schuëller, 1999]. The
1-dof oscillator and the comparison of the results is presented in appendix I.1.

Next, the RR&S algorithm is implemented on the 2-dof shear frame described in chapter 4. At first
the 2-dof shear frame is exposed only to a horisontal earthquake acceleration process modelled by a
broken line process, see section 4.2. The achieved results are presented in section 8.3.

Hereafter, an intermediate step is taken to investigate the efficiency of different so-called distance
variables in the case where the two dof shear frame is exposed to also a static load and a carrier wave.
From this investigation a distance variable is chosen for use in simulation of the three dof wind turbine
and the 24-dof wind turbine. The investigation is presented in appendix I.2.

After having chosen a distance variable from the above mentioned investigation, the RR&S algorithm
is implemented on the three dof wind turbine described in section 5. The achieved results are presented
in section 8.4.

Lastly, the RR&S algorithm is implemented on the FAST code which models a wind turbine with up
to 24 dofs. The achieved results are presented in section 8.5.

Based on the obtained results on these systems, a conclusion is finally made regarding the potential
of the RR&S algorithm for simulating low failure probabilities for wind turbines.

8.1 RR&S algorithm

In this section the RR&S algorithm is described and the parameters of the algorithm are defined. The
description is based on [Pradlwarter and Schuëller, 1999].
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The method overall consists of the two concepts ”Russian Roulette & Splitting”and ”Distance Control”.
”Russian Roulette & Splitting” takes care of replacing ”unimportant” realisations with ”important”
ones, and ”Distance Control”determines the importance of each realisation and works toward a uniform
density of realisations within a chosen sub-space of the state vector space. A uniformly density of
realisations is supposed to increase the probability of rare realisations to occur. Already at this
point it is clear that the performance of the method depends on the selection of a proper sub-space
for distance control. RR&S is claimed to be applicable for multi-dimensional dynamic state vector
proccesses, [Pradlwarter and Schuëller, 1999]. In this respect the dynamic system is represented by
an arbitrary M -dimensional state vector process {Z(t) ∈ R

M}.

In figure 8.1 it is illustrated how the RR&S algorithm redistributes the samples. As the samples moves
through space some of them are killed, while others are splitted to replace the ones which are killed.

The advantage of RR&S simulation compared to CMC simulation is illustrated by first considering
how N realisations can be used to describe the joint probability density function of Z(t) using CMC
simulation. Afterwards it is explained how RR&S simulation can be used to describe the same proba-
bility density function more accurately using the same amount of realisations. In this procedure it is
seen that RR&S simulation is more efficient for estimating the probability of rare events compared to
CMC simulation.

Let N stochastic independent realisations of Z(τi) at a certain instant of time τi be denoted z
(j)
τi , j =

1, . . . , N . The components of z
(j)
τi are denoted as z

(j)
τi,k

, k = 1, . . . ,M . The probability density function
of the kth component Z(τi) is shown in figure 8.2a.

In a CMC simulation, the joint probability density function of Z(τi) will be estimated by a discrete

distribution. The discrete distribution is given by the discrete set {z(j)
τi , w

(j)
τi }, where w

(j)
τi are the

statistical weights associated with the samples. In a CMC simulation all sample weights are identical

for any instant of time and given by w
(j)
τi = w(j) = 1/N . A CMC simulation will therefore distribute the

realisations so the density of realisations are proportional to the joint probability density function. This
implies that CMC will concentrate the samples near the peaks of the probability density function as
illustrated in figure 8.2b for the one-dimensional case. Since all realisations have identical weights, high
probability areas have high density of realisations, whereas the tails have relatively few realisations.
Hence, the low probability areas are not accurately estimated.

The idea of the RR&S algorithm is to adjust the weights w
(j)
τi in a way that the samples become

uniformly distributed in the sample space. Ideally the distribution looks as illustrated in figure 8.2c.
In this way relatively more samples are located at the tails, for which reason low probability can
be estimated with higher accuracy than is the case for the CMC simulation method. Generally, the
realisations may be distributed differently than uniformly, but it is argued in appendix I.3 that this

(¿1) (¿2) (¿3) (¿4)

t

Figure 8.1: Illustration of how samples are killed and splitted at times τi , i = 1, 2, 3, 4.
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may introduce a larger statistical uncertainty. The key to RR&S is therefore to adjust the weights
and distribute the samples as shown in figure 8.2c.

The difference between CMC and RR&S simulation is that CMC simulation distributes the samples
in a way so the realisation density is proportional to the joint probability density function, whereas
RR&S simulation distributes the samples in way so the statistical weights are proportional to the joint
probability density function.

In order to approach a uniform density of realisations in the sample space as shown in figure 8.2c,

it is necessary to evaluate the sample set {z(j)
τi , w

(j)
τi } at equidistant time intervals ∆τ . At each τi,

where τi = ∆τ · i and i = 1, . . . , T/∆τ , where T is the length of the simulation, the following steps
are performed

1. Ranking of realisations according to an importance measure.

2. Perform Russian Roulette to remove some of the unimportant realisations.

3. Perform Splitting of the most important realisations to keep the same number of realisations.

4. Normalisation of weights to maintain the statistical probability mass 1.

5. Integration of the system forward to next control time τi+1.

These steps are explained in detail in the following.

Step 1, Ranking of realisations. In order to rank the realisations an importance measure is used.
The importance measure serves to indicate which samples have a high probability of being killed
and which have not. The statistical weight of the samples will then be adjusted according to how
important the sample is. The importance measure is a normalised positive scalar quantity associated
with each realisation, and is a function of a distance measure and a weight measure.

In the general case the distance measure is a positive definite function of the D-dimensional vector l,
denoted the distance variable. The physical nature of the D components included in l are combinations
of the state variables and may differ from system to system and must be chosen by analysing the nature
of the system. For a distance variable to be efficient there should be a clear relation between the value
of the distance variable and closeness to failure. What to be aware of when choosing a distance variable
will be adressed in section 8.2.

ffZkg(zk)

w

w

zk

zk

zk

Figure 8.2: a) Probability density function. b) CMC sampling with identical weights. c) RR&S sampling
with adjusted weights.
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The distance measure serves to distribute the samples uniformly in the D-dimensional subspace in
which l is defined. Obviously, a uniform distribution in the l-space does not guarantee a uniform
distribution in the state space.

Each M -dimensional realisation z
(j)
τi is then associated with a D-dimensional vector l

(j)
τi . To avoid

arbitrariness introduced by components of different units, l
(j)
τi is generally normalised into an D-

dimensional cube
D
∏

h=1

[−sh,+sh]. This normalisation is for the D-dimensional case performed by

l̃
(j)
τi,h

= sh

(

2
l
(j)
τi,h
− l

(min)
τi,h

l
(max)
τi,h

− l
(min)
τi,h

+ ǫ
− 1

)

, j = 1, . . . , N ∧ h = 1, . . . ,D (8.1)

where ǫ is a small constant used to avoid a zero denominator in the rather unlikely case where

l
(max)
τi,h

= l
(min)
τi,h

. The amplitudes sh are next used as weights to augment or lower the importance of

components. If the hth entry in l
(j)
τi has no importance then sh = 0. The distance measure for the jth

realisation is now defined by

d(j)
τi

=

K
∑

r=1

ai‖̃l(jr|j)
τi

− l̃(j)τi
‖ , a1 > a2 > . . . > aK > 0 (8.2)

‖ · ‖ denotes the Euclidian norm and l̃
(jr|j)
τi the rth nearest realisation to l̃

(j)
τi among the other (N − 1)

realisations, i.e.

‖̃l(j1|j)τi
− l̃(j)τi

‖ ≤ ‖̃l(j2|j)τi
− l̃(j)τi

‖ ≤ . . . ≤ ‖̃l(jN−1|j)
τi

− l̃(j)τi
‖ (8.3)

d
(j)
τi expresses the ”loneliness” of the jth realisation. As only the closest neighbouring realisations

provide information on the loneliness of l
(j)
τi , d

(j)
τi depends only on the distance to the K closest

realisations. Furthermore, the weights ai provide a tool for weighting the importance of the K closest
realisations in a way that the nearest neighbours are weighted most. [Pradlwarter and Schuëller, 1999]
suggests that the weights ai are given by

ai = 21−i (8.4)

Although it is demonstrated in appendix I.5 that the influence of these weights may be neglectable
and that ai = 1 may provide similar results it is chosen to keep these weights as an option.

In figure 8.3 it is illustrated how the distance between samples are measured in the D-dimensional
space. The boundaries of the D-dimensional cube are given by the constants sh from (8.1).

By (8.2), samples which are located in high density areas will hereby have a small distance measure

d
(j)
τi , whereas samples located in low density areas will have a large distance measure.

The weight measure is now introduced. It serves to define the size of the statistical weight of a sample
compared to neighbouring samples. The weight measure is not to be confused with the statistical
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Figure 8.3: Illustration of distance between samples in a 2D-section of the D-dimensional cube.

weight of the sample itself. The statistical weight carries the statistical information for the realisation,
whereas the weight measure defines the size of the statistical weight compared to those of neighbouring
realisations.

To illustrate the purpose of the weight measure, consider the joint probability density function of
L. In the ideal case the discrete joint probability density function will be approximated in the same
manner as figure 8.2c. An illustration which represents an actual realisation better is shown in figure
8.4.

If the sample density in the region of l(j) and l(j1|j) becomes too large, the RR&S algorithm will kill
some samples in this region. The most efficient is then to kill samples with small weights as they have
neglible influence compared to samples with relatively large weights in the same region. In this way
a minimum of samples are used to describe the statistical mass of the region. The weight measure
should therefore increase the survival probability more for l(j1|j) than for l(j), as w(j1|j) is seen in
figure 8.4 to be larger than w(j). The weight measure is defined by

v(j)
τi

= 1 +
1

w
(j)
τi

K
∑

r=1

aiw
(jr|j)
τi

, a1 > a2 > . . . > aK > 0 (8.5)

where the weights w
(jr|j)
τi are associated with the realisation l̃

(jr|j)
τi in (8.2).

There are now two measures carrying information on the importance of a realisation, namely the

l

w

lk

l
(j)

l
(j1jj)

w(j1jj)

w(j)

Figure 8.4: Illustration of a realisation of the discrete joint probability density function for the distance
variable L.
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distance measure and the weight measure. To obtain one scalar quantity which combines all the
information, the distance and weight measure are weighted together into one measure. This measure
is denoted the importance measure and is an empirical expression suggested by [Pradlwarter and
Schuëller, 1999] and is defined by

c(j)
τi

=
d
(j)
τi

1 +
(

ln
(

v
(j)
τi

))η (8.6)

where η controls how much the weight measure reduces the importance measure. From (8.6) it is
seen that samples located in low density areas with relatively large statistical weight, compared to
the neighbouring samples, are considered most important. The denominator in (8.6) has a significant
influence on the performance of the RR&S algorithm. If the denominator is disregarded and thereby

c
(j)
τi = d

(j)
τi , it will influence the variance adversely.

Now, to specify which realisations are to be splitted and which are to be killed, a survival probability
is associated with each realisation. This probability depends on the importance of the sample and is
given by

p(j)
τi

=

{

1 if c̃
(j)
τi ≥ 1

1− P0(1− c̃
(j)
τi ) if c̃

(j)
τi < 1

(8.7)

where 0 < P0 < 1 is a constant controlling the probability of unimportant realisations being killed,

and c̃
(j)
τi is defined as c

(j)
τi normalised with respect to the mean value of of this quantity among all N

realisations

c̃(j)
τi

=
c
(j)
τi

cτi

, cτi
=

1

N

N
∑

j=1

c(j)
τi

(8.8)

Important realisations are then characterised by c̃
(j)
τi ≥ 1, and unimportant by c̃

(j)
τi < 1. Important

realisations are thus the realisations which have the greatest distance to neighbouring realisations as
well as the largest weight compared to neighbouring realisations. In order to make the distribtution
more uniform, it is thus the important realisations that should be splitted.

Before the first evaluation at the time τ1 the estimate of the joint probability density function will look
as figure 8.2b, where all realisations have equal weight. Therefore, at τ1 only the distance between
the realisations have an influence on the importance measure. Thus the realisations in the low density
areas will be regarded as important and realisations in the high density area will be regarded as
unimportant.

Step 2, Russian Roulette. Russian Roulette is performed according to the realised value of the

binary stochastic indicator I
(j)
R,τi

for all unimportant realisations. I
(j)
R,τi

= 1 indicates survival, and

I
(j)
R,τi

= 0 indicates extinction. The probability distribution of I
(j)
R,τi

is given by

I
(j)
R,τi

=

{

P
(

I
(j)
R,τi

= 0
)

= 1− p
(j)
τi

P
(

I
(j)
R,τi

= 1
)

= p
(j)
τi

(8.9)
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To maintain an unbiased estimate all weights are subsequent to the Russian Roulette operation modfied
by

W̃ (j)
τi

=
I
(j)
R,τi

p
(j)
τi

w(j)
τi

(8.10)

whereby

E[W̃ (j)
τi

] = w(j)
τi

(8.11)

which is used later to show that the RR&S algorithm produces unbiased estimates.

Step 3, Splitting. To maintain the same number of samples, each killed sample is replaced by a
splitting of an important sample. Samples killed by Russian Roulette can be disregarded since their
statistical weight are zero after modification by (8.10). Now, the meaning of a splitting is to replace

the distance variable l
(j)
τi and the state vector z

(j)
τi associated with a killed sample with a duplicate of

an important sample. To maintain the statistical weight, the weight of the splitted sample, w
(j)
τi , is

shared equally between itself and its duplicate. Splitting is always performed in decending order, so
that the most important realisations are splitted at first.

In principle an important realisation may be splitted into an arbitrary number of new realisations, but
to maintain the same amount of realisations the number of splitted realisations must equal the number
of killed realisations. In what follows, important realisations are only splitted into two realisations.

After the splitting procedure the low density areas experience an increase in realisation density, but
the distribution of statistical mass is maintained because the weight of the splitted realisation is shared
equally between the original realisation and its copy.

After performing splitting and Russian Roulette the set of samples {z(j)
τi , w

(j)
τi } has been modified and

is now given by {z̃(j)
τi , w̃

(j)
τi }. To show that this set still comprise an unbiased representation of the

M -dimensional density function fZ(x) consider the estimator of the distribution function FZ(z) given
by

F̂Z(z) =

N
∑

j=1

W̃ (j)
τi

IF (Z̃(j)
τi

, z) (8.12)

where Z̃
(j)
τi , j = 1, . . . , N denotes a random sample set of Z. Z̃

(j)
τi are mutually independent and

indentical distributed as Z. The proof of the assertion follows by taking the expectation of (8.12)
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E[F̂Z(z)] =
N
∑

j=1

E[W̃ (j)
τi

IF (Z̃(j)
τi

, z)] = (8.13)

E[F̂Z(z)] =
N
∑

j=1

E[E[W̃ (j)
τi

IF (Ẑ(j)
τi

, z)|Z̃(j)
τi

]] = (8.14)

E[F̂Z(z)] =

N
∑

j=1

w(j)
τi

E[E[IF (Ẑ(j)
τi

, z)|Z̃(j)
τi

]] = (8.15)

E[F̂Z(z)] =

N
∑

j=1

w(j)
τi

E[IF (Z̃(j)
τi

, z)] = (8.16)

FZ(z)

N
∑

j=1

w(j)
τi

= FZ(z) (8.17)

The latter is seen since w
(j)
τi = 1/N at the beginning.

Step 4, Normalisation of weights. With the previous steps, the density of realisations has been
moved towards a uniform distribution, but in doing so, the statistical mass has been modified in three
significant ways. Such modifications calls for a normalisation of the statistical weights of the processes
as the sum of the total statistical mass should be unity at all times. The way in which the weights
have been modified are firstly, that some important processes have been splitted and in this procedure
the weights are splitted as well. Secondly, some unimportant processes have survived the Russian
Roulette whereby their weights have been increased by (8.10). Thirdly and most noticeable, some
processes have crossed out and subsequently been replaced by splitting an important process.

If no outcrossings has occured in the time interval t = [0, τi], the sum wt of the weights w
(j)
τi should

be unity as

wt =

N
∑

j=1

w(j)
τi

= 1 (8.18)

This is illustrated in figure 8.5a where the N processes represents the total statistical mass of 1.

If some processes with a total statistical mass of wo has crossed out in the time interval t = [0, τi], the

sum wt of the weights w
(j)
τi should represent the remaining statistical mass which has not crossed out.

This is illustrated by figure 8.5b where the N processes represents only the statistical mass which has
not crossed out, wt = 1− wo.

Therefore, in the general case the weights should be normalised according to

N
∑

j=1

w(j)
τi

= 1− wo (8.19)

Step 5, Step foreward. After the normalisation of the weights, the numerical process is continued
until τi+1, where step 1− 5 are performed again.
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N N
wo

wt = 1¡ wo

wt = 1

Figure 8.5: a) Illustrates the statistical mass of the N processes in the case where no outcrossings has
occured in the interval t = [0, τi]. b) Illustrates the statistical mass of the N processes in the case where some
outcrossings with gathered statistical mass of w0 has occured in the interval t = [0, τi].

This concludes the description of the variance reduction method RR&S. Next, some comments are
given on the choice of the distance variable.

8.2 Choice of distance variable

The efficiency of the RR&S algorithm depends highly on which combination of the state vector com-
ponents is utilised for the distance variable. The distance variable is used to calculate the distance
measure (8.2) which again relates to the importance measure through (8.6). The distance variable
is thus the main basis for determining the importance measure from which the RR&S algorithm re-
distributes the realisations. In the following, it is qualitatively assessed what influence the choice
of distance variable has for the efficiency of the algorithm. To assess this, temporarily consider the
special case where all realisations have the same statistical weight. In this case, the weight measure
will not influence the importance measure in (8.6) and the efficiency of the RR&S algorithm solely
depends on the choice of distance variable.

To illustrate some undesired effects, three different distance variables are qualitatively described in
the following to illustrate what to be aware of when choosing the distance variable. The illustration
takes its basis in two simple realisations which both are performing harmonic oscillations but with
different amplitudes. The two realisations are shown in figure 8.6. It is seen that realisation B has a
larger amplitude than realisation A implying that B is more important than A.

Now, consider three different distance variables for the realisations A and B. The distance variables
in question are a two-dimensional distance variable l1 and two one-dimensional distance variables
l2 and l3. More precisely, the distance variables are given by the combinations of the state variables
y and ẏ given by

• l1 = z = [y, ẏ]T

• l2 = y

• l3 =
1

2
ky2 +

1

2
mẏ2

where y is the displacement and ẏ is the velocity of the system. Thus, the D-space is two-dimensional
for l1 and one-dimensional for l2 and l3. It is seen that l1 corresponds to the state vector of the system

y(t) tty(t)

Figure 8.6: Illustration of displacement response A and B.
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z, l2 corresponds to the displacement of the system and l3 corresponds to the mechanical energy of the
system if k and m are the stiffness and mass of the system, respectively. To illustrate the qualitative
difference between the distance variables, consider how the realisations are moving around in their
respective D-space. This is illustrated in figure 8.7.

In figure 8.7a the realisations are moving around in the displacement and velocity space given by l1.
Assuming the realisations are oscillating with an angular frequency of ω = 1, the realisations will
orbit clockwise in circles centered at origo. If the two realisations are in phase, the distance between
the two realisations at any instant of time will be d1 whereas the distance between them will be some
distance d2 if there is a phase delay between the two realisations. In the case of harmonic oscillating
realisations it is seen that realisations with large oscillations will orbit in circles with large radius. l1
thus makes a rather clear separation of realisations with large amplitudes and realisations with small
amplitudes for any instant of time.

In figure 8.7b the realisations are moving around in only the displacement space. Now, realisation A
is oscillating between a1 and a2 and realisation B is oscillating between b1 and b2 on the y-axis. As
the velocity dimension is not included in l2 it is seen that the realisations are no longer well separated
at any instant of time as in the case of l1. This can be realised by considering the case where both A
and B are located at the same point, e.g. a1.

In figure 8.7c the realisations are moving around in the mechanical energy space. As the realisations
are performing harmonic oscillations around zero with constant amplitudes, the mechanical energy is
constant. The position of realisation A and B is therefore constant in the l3 space. l3 thus makes a
clear separation of realisations with large amplitudes and realisations with small amplitudes at any
instant of time.

From these three examples of distance variables it is seen that there is a qualitative difference in how
well the realisations are separated, depending on the choice of distance variable. If the distance variable
do not separate the realisations close to failure from those far from failure, the RR&S algorithm will
be less efficienct. In the simple case of systems oscillating around zero, the mechanical energy seems
to provide a clear separation of the realisations as seen in figure 8.7c.
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Figure 8.7: a) Illustration of A and B in the velocity and displacement space, l1. b) Illustration of realisation
A and B in the displacement space, l2. c) Illustration of realisation A and B in the mechanical energy space,
l1.
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8.3 Implementaion on two dof shear frame exposed to earthquake

In this section the RR&S algorithm is implemented on the two dof shear frame described in chapter
4. The two dof shear frame is exposed to a horisontal earthquake acceleration process modelled by a
broken line process, see section 4.2. Firstly, some comments and assumptions are made on the distance
variable and next, the obtained results for the simulation of the first passage time distribution function
FT (t) are presented and commented.

In appendix I.5 a parameter analysis of the RR&S parameters have been performed to investigate the
influence of the parameters.

8.3.1 Distance variable

Prior to implementation of the RR&S algorithm on the shear frame it is necessary to choose a distance
variable. In section 8.2 it is argued that the mechanical energy may be a good choice of distance
variable for systems which performs harmonic oscillations around zero. From figure 8.8a it is seen
that the response of the storeys are oscillating around zero, but with varying amplitude. Despite the
varying amplitude, the mechanical energy is chosen as distance variable. By comparison of figure 8.8a
and 8.8b it is seen that high values of the mechanical energy, denoted Em, indicates large displacements
and thereby also high probability of failure. As only relative displacements are of importance when
considering failure of a system, the mechanical energy is calculated from the relative displacements of
the system.
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y1(t) em(t)

t/T1t/T1

Figure 8.8: a) Realisation of the relative displacement response Y1. b) Realisation of the mechanical energy
of the two storey frame Em.

The fuzziness of the mechanical energy is due to the equivalent white noise process used as ground sur-
face acceleration process, which makes the velocity process non-differentiable. em could be smoothened
by a moving average filter but no significant difference in the performance of the RR&S algorithm has
been noticed if such a filtering is performed.

In the following, the mechanical energy is utilised as distance variable whereby the D-dimensional
distance variable becomes a scalar l = em. Now, as the distance variable only has one entry, there is
no need to perform the normalisation by (8.1) whereby l̃ = l is used. em and thereby l̃ is given by

l̃(t) = em(t) =
1

2
y(t)T Ky(t) +

1

2
ẏ(t)T Mẏ(t) (8.20)

where y(t) is the relative displacement vector of the storeys given by yT (t) = [y1(t) y2(t)] and K and
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M is the related stiffness and mass matrix, respectively, from section 4. y1(t) is relative to the ground
surface displacement and y2(t) is relative to y1(t).

8.3.2 Results

In this section the results obtained when using the RR&S algorithm to simulate first passage times for
the two storey frame is presented. The purpose of the results is to estimate the efficiency of the RR&S
algorithm. The efficiency P is measured as the ratio between the computational time for CMC and
RR&S simulation. The computational time for simulating the first passage probability distribution
function FT (t) for t = 600 s is denoted FT (600).

Approach

In the following the computational savings are estimated for the barrier levels α = [4, 5, 6]. The number
of realisations used in the CMC and RR&S simulation, denoted NCMC and NRR&S, respectively,
is adjusted so the estimate of FT (600), denoted F̂T (600), has a coefficient of variation (COV ) of
approximately COV = 15%. The COV will be estimated based on 50 independent trials. Then, the
COV is calculated by

COV =
σF̂T (600)

µF̂T (600)

(8.21)

where σF̂T (600) and µF̂T (600) are the standard deviation and mean value of F̂T (600), respectively, and
given by

µF̂T (600) =
1

50

50
∑

i=1

F̂T (600)i (8.22)

σF̂T (600) =

√

√

√

√

1

50

50
∑

i=1

(F̂T (600)i − µF̂T (600))
2 (8.23)

The standard deviation σ of an estimated probability µ based on N realisations is generally calculated
by [Ayyub and McCuen, 1997]

σ =

√

µ(1− µ)

N
(8.24)

Substituting σ = σF̂T (600), µ = µF̂T (600) and N = NCMC, (8.24) is used to determine the number

of realisations NCMC needed in a CMC simulation to obtain the same COV ≈ 15%. By inserting
σF̂T (600) and µF̂T (600) into (8.24) and subsequently rearranging, NCMC can be determined by

σF̂T (600) =

√

µF̂T (600)(1− µF̂T (600))

NCMC
⇒ NCMC =

µF̂T (600)(1− µF̂T (600))

σ2
F̂T (600)

(8.25)
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The computational time in an RR&S and CMC simulation are denoted TRR&S
CPU and TCMC

CPU , respec-
tively. TRR&S

CPU is obtained by measuring it directly during the simulation. TCMC
CPU is obtained by linear

extrapolation of the computational time needed to perform a CMC simulation using 10000 realisations.
The reference computational time for 10000 realisations is denoted TCMC

CPU (10000) and is measured to

TCMC
CPU (10000) = 77s (8.26)

Results

The results obtained by the approach described above is given in table 8.1. Second column in table
8.1 shows the efficiency P for the barrier levels α = [4, 5, 6]. P is defined as

P =
TCMC

CPU

TRR&S
CPU

(8.27)

It is seen that the efficiency of the method increases dramatically as the barrier α increases. At the
barrier level α = 4 the efficiency P is seen to be less than one, implying that the RR&S algorithm
is more costly in computational time than CMC simulation. This is due to the computational cost
related to the RR&S algorithm. At the barrier level α = 6 the efficiency has been calculated to 418,
implying a computational cost reduction of more than 99%.

The third, fourth and fifth column of table 8.1 shows the mean value, standard deviation and COV
calculated by the 50 estimates of FT (600) by RR&S simulation. The number of realisations NCMC

needed for a CMC simulation to produce the COV given in the fifth column of table 8.1 is estimated
by inserting values of µF̂T (600) and σF̂T (600) from table 8.1 into (8.25).

α P µF̂T (600) σF̂T (600) COV NRR&S NCMC

4 0.6 2.34 · 10−2 33.4 · 10−2 14.3% 1500 2.5 · 103

5 12 3.77 · 10−4 58.7 · 10−4 15.6% 3000 10.9 · 104

6 418 1.99 · 10−6 28.1 · 10−6 14.1% 10000 25.2 · 106

Table 8.1: Results for RR&S for two storey frame.

In figure 8.9 estimates of FT (t) are shown for barrier levels α = [4, 5, 6]. The estimates have been
produced by both RR&S and CMC simulations using values of NRR&S and NCMC as given in table
8.1. CMC simulation is only performed for α = [4, 5] due to extensive simulation time for α = 6. As
seen in table 8.1 a CMC simulation for α = 6 would require NCMC = 25.2 ·106 realisations to produce
a COV ≈ 15%.
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Figure 8.9: Estimates of FT (t) produced by RR&S and CMC simulation.

The RR&S parameters used to produce the estimates of FT (t) in figure 8.9 are given in table 8.2.

N α ∆τ/T1 η P0 wmin K T [s]

1500 4 0.1 0.8 0.5 1 · 10−5 10 600
3000 5 0.1 0.8 0.5 1 · 10−7 10 600
10000 6 0.1 0.8 0.5 1 · 10−9 10 600

Table 8.2: Settings for the RR&S simulations in figure 8.9.

8.3.3 Conclusion

The efficiency of the RR&S algorithm is tested for simulating first passage times for the two dof shear
frame presented in chapter 4 exposed to horisontal earthquake. The efficiency P is measured in terms
of savings in the computational time compared to CMC simulation, i.e. P = TCMC

CPU /TRR&S
CPU , where

TCMC
CPU and TRR&S

CPU is the computational time for CMC and RR&S simulation, respectively.

The results show that the efficiency P depends on the barrier level α. As the barrier level increases,
so does the efficiency P of the RR&S algorithm. The efficiency P for the barrier levels α = [4, 5, 6] is
calculated to P = [0.6, 12, 418]. The highest efficiency P = 418 corresponds to a computational saving
of more than 99%.

Generally, the efficiency of the RR&S algorithm seems to depend strongly on the choice of distance
variable and implementation of the RR&S algorithm on more complex structures therefore depends
on locating such an efficient distance variable.

8.4 Implementation on three dof wind turbine

In the following section the results from the implementation of the RR&S algorithm on the simple
wind turbine model described in section 5 are presented. The RR&S algorithm is implemented on
the simple turbine to assess the ability of the RR&S algorithm to estimate first passage times for a
system which resembles a wind turbine and is exposed to wind load consisting of turbulence and a
mean wind velocity. A mean wind velocity of 15m/s is used and turbulence is generated by the state
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space turbulence model described in appendix B.3. As shown in figure 5.4 the turbulence is generated
in a number of points on the periphery of the rotor plane. Four grid points have been used in the
following and a interpolation of the turbulence is performed as indicated by (5.28).

Now, as it is only possible to aim for failure of one dof at the time a dof has to be chosen. In the
following it is chosen to test the RR&S algorithm for simulating first passage times of the tower top
displacement q1 which is illustrated in figure 8.10. Furthermore, only failure of the tower is considered
and only the positive barrier is checked.

q1

Figure 8.10: Illustration of tower top displacement q1.

8.4.1 Barrier

The one sided barrier qc,1 which defines failure for the tower is given by (6.7) using µq1
and σq1

where
µq1

and σq1
are the mean value and the stationary standard deviation of the displacement response

of q1. The values of µq1
and σq1

are determined by an ergodic sampling and are given in table 5.1.

8.4.2 Distance variable

To locate an efficient distance variable to use for systems exposed to wind load a number of different
distance variables are investigated. The investigation is performed on the 2-dof shear frame exposed
to loads which imitates the characteristics of wind load. These characeristics are turbulence and a
static wind load. The loads used to imitate these characteristics in the investigation on the 2-dof
shear frame is horisontal earthquake, a static load and a carrier wave. The efficiency of the different
distance variables are measured by their ability to estimate the first passage time distribution function
for the 2-dof shear frame. Out of the seven investigated candidates, candidate 1 turned out as the
most efficient and is therefore used in the following investigation of the three dof wind turbine. The
investigation of the distance variables is performed in appendix I.2.

Candidate 1 from appendix I.2 corresponds to the mechanical energy calculated after subtracting the
static displacement µq1

. The distance variable is then given by

l̃1(t) = em(t) =
1

2
k0(q1(t)− µq1

)2 +
1

2
m0q̇1(t)

2 (8.28)
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where k0 and m0 is the stiffness and mass of the tower given by (5.2)and (5.2), respectively.

8.4.3 Results

In the following the results for estimating the first passage time distribution function FT (t) are pre-
sented. FT (t) is estimated by CMC and RR&S simulation and a qualitative comparison of the results
achieved by the two methods are given in figure 8.11. The parameter values used for the RR&S
algorithm to produce the results given in figure 8.11 are shown in table 8.3.

α ∆τ/Tt η P0 wmin K N T [s]

3 0.2 0.8 0.5 10−4 10 500 600
4 0.2 0.8 0.5 10−4 10 500 600
5 0.2 0.8 0.5 10−6 10 500 600
6 0.2 0.8 0.5 10−8 10 500 600
7 0.2 0.8 0.5 10−10 10 500 600

Table 8.3: Parameter settings for RR&S algorithm for producing results in figure 8.11.

CMC simulation is only used to estimate FT (t) for the barrier level α = [3, 4] whereas RR&S simulation
is used to estimate FT (t) for the barrier levels α = [3, 4, 5, 6, 7]. It is seen in figure 8.11 that CMC and
RR&S simulation gives similar results for α = [3, 4] which indicates that RR&S simulation converge
toward the same result as CMC simulation. Figure 8.11 shows that the RR&S algortihm is able to
estimate failure probabilities far below 1/N also for the three dof wind turbine.

The conclusion from the implementation of the RR&S algorithm onto the simple wind turbine model is
that clear improvements are achieved when using RR&S simulation for estimating failure probabilities
below 1/N compared to CMC simulation. This is seen for the barrier levels α = [5, 6, 7] in figure 8.11.
Next, the RR&S algorithm is implemented onto the FAST code.
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Figure 8.11: Comparison of realisations of FT (t) produced by RR&S and CMC simulation.
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8.5 Implementation on 5MW reference wind turbine

In the following section the results for simulation of the first passage time distribution function FT (t)
for the 5MW reference wind turbine modelled by FAST are presented. The 5MW reference wind
turbine is described in appendix C. A mean wind velocity of 15m/s and turbulence generated by
the state space turbulence model described in appendix B.3 is used in the simulation of the 5MW
reference wind turbine.

Now, in the same way as described in section 8.4 for the simple three dof wind turbine it is only
possible to aim for failure of one dof at the time. As for the simple three dof wind turbine it is chosen
to test the RR&S algorithm for simulating first passage times of the tower top displacement yt which
is illustrated in figure 8.12. Again, only failure of the tower is considered.

yt

Figure 8.12: Illustration of tower top displacement yt.

The distance variable used for the RR&S simulation is candidate 1 from section I.2.2 which corre-
sponds to the mechanical energy calculated after subtracting the static displacement. Given that the
used distance variable is candidate 1, it will be shown that the RR&S algorithm will only provide
improved estimates of FT (t) if the control system in FAST is disabled. Therefore two different cases
are considered for estimating FT (t). The first case is where the control system is disabled and the
second case is where the control system is enabled.

The barrier is defined by (6.7) using µyt
and σyt

where µyt
and σyt

depends on whether the control
system is disabled or enabled. Next, it is shown how the mechanical energy of the tower is calculated
and then, the estimates for the first passage time probability distribution function FT (t) are presented.

8.5.1 Distance variable

The distance measure used for the 5MW reference wind turbine is the same as used for the three dof
wind turbine, i.e. candidate 1 from appendix I.2 which corresponds to the mechanical energy of the
tower calculated after subtracting the static displacement of the tower µyt

. FAST uses two modal
coordinates q7 and q8 to describe the fore-aft displacement of the tower top yt, see figure A.1. Now,
as both first and second eigen mode is normalised to displacement 1 at the tower top, yt corresponds
directly to the sum of the modal coordinates q7 and q8. The modal coordinates and eigen modes for
the 1st and 2nd eigen mode of the tower is shown in figure 8.13.

Now, the mechanical energy of the tower calculated as indicated by candidate 1 where the static
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q7

q9

2nd mode

1st mode

Normalised to 1

Figure 8.13: Illustration of 1st and 2nd eigen mode with corresponding modal coordinates q7 and q8.

contribution is subtracted, is generally calculated by

l̃1(t) = em(t) =
1

2
(q(t)− qs)

T (t)K(q(t)− qs) +
1

2
q̇T (t)Mq̇(t) (8.29)

where q(t) = [q7, q8]
T is the displacement vector, qs = [qs,7, qs,8]

T is the static displacment vector
where qs,7 and qs,8 is the static displacement of q7(t) and q8(t), respectively. q̇ = [q̇7, q̇8]

T is the
velocity vector, K is the modal stiffness matrix and M is the modal mass matrix. The stiffness and
mass matrix which FAST calculates are given by

K =

[

1.91 2.91
2.91 10244

]

· 106 [N/m] , M =

[

4.0 0
0 275

]

· 105 [kg] (8.30)

It is seen that K includes cross terms which indicates that q7 and q8 are not modal coordinates, since
K and M decouples in the case of a modal description. The cross terms arise due to the approximation
of the mode shapes by a 6th order polynomial, whereby the orthogonality condition of the modeshapes
is not totally fulfilled. FAST does not calculate the cross terms for M which is the reason why the
mass matrix is shown as decoupled.

Now, concerning the calculation of the mechanical energy of the tower, it will be argued that a good
approximation of the mechanical energy is given by

l̃1(t) = em(t) =
1

2
(q7(t)− qs,7(t))

2K11 +
1

2
q̇7(t)

2M11 (8.31)

whereby the contribution arising from the cross terms in K and mode 2 is disregarded. The approx-
imation holds due to a difference in magnitude of q7 and q8 of approximately an order of 5. This
difference of magnitude is seen in figure 8.14 which indicates that the response of yt is carried by the
first mode.
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Figure 8.14: a) Realisation of q7(t). b) Realisation of q8(t).

In the calculation of the distance measure, the distance variable given by (8.31) is therefore used. In
the following (8.31) is used for estimating FT (t) in the case where the control system is firstly disabled
and then enabled.

8.5.2 Disabled control system

In the following the effeciency of RR&S simulation using (8.31) as distance variable is compared with
CMC simulation. The control system is disabled and the rotor speed is held constant at approximately
12.1 rpm. Due to the negligible contribution from mode 2 to the displacement, no difference will be
made between the response of the tower top yt(t) and the response of mode 1 q7(t). The barrier for
failure q7,c is calculated by (6.7) using µq7

and σq7
where µq7

and σq7
are calculated by an ergodic

sampling to

µq7
= 0.225m , σq7

= 0.131m (8.32)

The realisation from which µq7
and σq7

is determined is shown in figure 8.15 where Tt is the eigenperiod
of the tower given by (I.3). A transient phase of 50 s is used to damp out the intial conditions, so a
stationary response is obtained for the ergodic sampling.

The distance variable is now calculated by (8.31) using qs,7 = µq7
. The results obtained for simulating

the first passage time distribution function FT (t) using CMC and RR&S simulation are shown in
figure 8.16. The parameters used for the RR&S simulation is given in table 8.4.
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Figure 8.15: Realisation of q7(t) with control system disabled and constant rotor speed of 12.1 rpm.
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α ∆τ [s] η P0 wmin K N T [s]

[2, 3] 1.0 0.8 0.5 1 · 10−3 10 100 100
4 1.0 0.8 0.5 5 · 10−6 10 [100,500] 100

Table 8.4: Parameter settings for RR&S algorithm for results in figure 8.16.

It is seen in figure 8.16 that CMC and RR&S simulation produce comparable results for the barrier
levels α = [2, 3]. As only one estimate of FT (t) is produced with CMC and RR&S simulation for each
barrier level, the variance is unknown. The number of outcrossings for each estimate of FT (t) are
shown in the figure. Comparison of these numbers shows that the RR&S simulation produce more
outcrossings than the CMC simulation for all the barrier levels. For the barrier level α = 4 the CMC
simulation using 100 time series estimated the failure probability within 100 s to 0. RR&S simulation
was performed for the barrier level α = 4 using both 100 and 500 time series. The RR&S simulation
estimated the failure probability within 100 s to around 10−3 and 10−4 using 100 and 500 time series,
respectively.

The conclusion is that RR&S simulation seems to provide improved estimates for FT (t) when simu-
lating failure probabilities below 1/N and the control system is disabled.

8.5.3 Enabled control system

In the following the effeciency of RR&S simulation using (8.31) as distance variable is compared with
CMC simulation. The control system is enabled and the rotor speed is therefore no longer constant.
Again, due to the negligible contribution from mode 2 to the displacement, no difference will be made
between the response of the tower top yt(t) and the response of mode 1 q7(t). The barrier for failure
qc,7 is calculated by (6.7) using µq7

and σq7
where µq7

and σq7
are calculated by an ergodic sampling

to

µq7
= 0.219m , σq7

= 0.100m (8.33)

The realisation from which µq7
and σq7

is determined is shown in figure 8.17 where Tt is the eigenperiod
of the tower given by (I.3). A transient phase of 50 s is used to damp out the intial conditions, so a
stationary response is obtained for the ergodic sampling.
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Figure 8.16: Comparison of estimates of FT (t) produced by RR&S and CMC simulation. RR&S parameters
are given in table 8.4. Numbers on plot indicates the achieved number of outcrossings.
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Figure 8.17: Realisation of q7(t) with mean value and barrier levels.

The distance variable is now calculated by (8.31) using qs,7 = µq7
. The results obtained for simulating

the first passage time distribution function FT (t) using CMC and RR&S simulation is shown in figure
8.18. The parameters used for the RR&S simulation is given in table 8.5.

α ∆τ [s] η P0 wmin K N T [s]

[2, 3, 4] 1.0 0.8 0.5 1 · 10−6 10 100 100

Table 8.5: Parameter settings for RR&S algorithm for results in figure 8.18.

It is seen in figure 8.18 that CMC and RR&S simulation produce comparable results for the barrier
levels α = [2, 3]. As only one realisation of FT (t) is produced with CMC and RR&S simulation for
each barrier level, the variance of the estimates of FT (t) is unknown. The number of outcrossings for
each estimate of FT (t) are shown in the figure. Comparison of these numbers show that the RR&S
simulation still produce more outcrossings than the CMC simulation for the barrier levels α = [2, 3].
For α = 4, one outcrossing was achieved by CMC simulation whereas the RR&S simulation did not
produce any outcrossings.

The conclusion is that RR&S simulation does not seem to provide improved estimates for FT (t) when
simulating failure probabilities below 1/N and the control system is enabled. This implies that there
is a qualitatively difference in the efficiency of the mechanical energy as a distance variable depending
on whether or not the control system is enabled or disabled.
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Figure 8.18: Comparison of realisations of FT (t) produced by RR&S and CMC simulation. RR&S parameters
are given in table 8.5. Numbers on plot indicates the achieved number of outcrossings.
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8.5.4 Conclusion for RR&S algorithm on wind turbine

The RR&S algorithm was implemented on the FAST code for estimating first passage times of the
tower displacement response. Results were produced for the case where the control system was both
disabled and enabled. In either case, no conclusion was made on whether the RR&S algorithm
improved the estimate of FT (t) for failure probabilities larger than 1/N . When the control system
was enabled, no improvements were seen for simulating failure probabilities below 1/N .

When the control system was disabled clear improvements of the estimate of FT (t) was seen when
simulating failure probabilities below 1/N . Failure probabilities around 5 · 10−5 was estimated using
both 100 and 500 time series. However, the variance of the estimates was not investigated.

In order to produce improvements of FT (t) when the control system is enabled, more investigations
are necessary to determine an efficient distance variable. It is suggested that such a distance variable
includes information on the mechanical energy of the system, but also the state of the control system.
In this way it may be possible to locate the realisations for which the control system is not able to
pitch the blades fast enough to avoid failure.

Finally, it is suggested to investigate the efficiency of RR&S simulation compared to CMC simulation
more thoroughly, as the above sections only give a qualitative indication of the efficiency.

8.6 Conclusion

The RR&S algorithm has been tested for estimating first passage times for the five different systems

• a one dof non-linear oscillator

• a two dof shear frame - earthquake exposed

• a two dof shear frame - earthquake, static load & carrier wave

• a three dof three dof wind turbine

• a 24 dof wind turbine modelled in FAST

The 1-dof non-linear oscillator was used for verifying the implementation of the method by comparing
the results with results achieved by [Pradlwarter and Schuëller, 1999].

The overall conclusion is that the efficiency of the RR&S algorithm depends highly on locating an
efficient distance variable by which it is possible to separate the processes according to their closeness
to failure. In section 8.2 it was argued that the mechanical energy seems to provide a reasonable
choice of distance variable for separating the realisations according to their closeness to failure.

For the two dof shear frame exposed to earthquake, the mechanical energy turned out to be an efficient
choice of distance variable. By use of the mechanical energy, computational savings of more than 99%
has been achieved.

For the two dof shear frame exposed to earthquake, static load and a carrier wave, seven different
distance variable candidates were suggested to test which one provided the best results for loadings
consisting of noise, static load and a carrier wave. The best distance variable turned out to be candidate
1 which was the mechanical energy calculated by subtracting the static displacement. Candidate 1
was therefore the choice for testing the RR&S algorithm on the simple three dof wind turbine.
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For the simple three dof wind turbine only qualitative results for the efficiency were produced and the
computational saving is therefore unknown. However, RR&S simulation was used to estimate failure
probabilities around 10−9 using 500 time series which is far below 1/N .

As for the simple three dof wind turbine only qualitative results were produced for FT (t) for the
24-dof turbine modelled by FAST. Two different cases were investigated. In the first case the control
system was disabled and in the second case it was enabled. In the case where the control system was
disabled, failure probabilities around 5 · 10−5 was estimated for the barrier level α = 4 using both 100
and 500 time series. In the case where the control system was enabled, no estimates of FT (t) were
achieved for α = 4 which indicates that using the mechanical energy as distance variable is less efficient
when the control system is enabled. In order to make the RR&S algorithm efficient for simulating
low probabilities for wind turbines, it therefore seems necessary to refine the distance variable. A
refinement of the distance variable might be concerned with including information regarding the state
of the control system and the load history into the distance variable.
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Chapter 9

RESTART

The RESTART algorithm is a so-called accellerated simulation technique that allows evaluation of
low probability events. The RESTART method was presented in 1991 [Villén-Altamirano and Villén-
Altamirano, 1991] in a one-threshold version and in 1994 it was enhanced to a multiple-threshold
version [Villén-Altamirano et al., 1994]. Since then the method has been applied to different appli-
cations regarding telecommunication networks and large computing systems. In [Villén-Altamirano
et al., 1994] an example of the performance of an ATM multiplexer is described. An estimate of
the queue length distribution is calculated using RESTART. In [Villén-Altamirano, 1997] the unre-
liability of a large computing system with multiple processors and storage disk is determined. The
probability of multiple processors of storage disks failing leading to a total failure is presented. In
[Villén-Altamirano and Villén-Altamirano, 2006] the RESTART algorithm is used to simulate the
queue length distribution of a two node tandem network. None of the articles actually describe the
parameters used in the RESTART simulations but states that the method is fitted by running trial
simulations that provide an estimate of the optimal parameters. This means that a reproduction of
the results might be difficult.

Of the several articles published on the RESTART method all describe use on Markovian systems
whereas applications on non-Markovian systems are not available. In [Villén-Altamirano and Villén-
Altamirano, 2002], though, it is stated that the estimate of the probability of failure is also unbiased
for non-Markovian systems. Further study will have to be performed to clarify assumptions regarding
the use on non-Markovian systems.

In the following a general description of the method is firstly given after which a reproduction of the
results for the two node tandem network is sought.

9.1 Description of the method

The basics of the RESTART method is to define a number of thresholds where the state vector is
splitted and multiple simulations are performed. This leads to a greater confidence and less computa-
tional effort in estimation of low probability events because a lower number of simulations are required
compared to CMC simulation.

The RESTART method relies on definition of a so-called importance function - a non-negative scalar
process {E(t), t ∈ [0, T ]} for which multiple thresholds ei describing the importance of a given state
of the system are defined. The thresholds are chosen so that thresholds e1 . . . eM corresponds to
increasing values of the importance function E(t).

The main principle of the method is shown in figure 9.1. When the process upcrosses a threshold ei the
state vector is splitted on Ri identical processes. This means that the weight of each realisation should
be modified accordingly. The weight of each new realisation wnew can be written as wnew = wold/Ri,
where wold is the weight before splitting. If the Ri new realisations are independent the probability
of upcrossing the next threshold is simply increased by Ri.

For a CMC simulation using N realisations the weight of each realisation wi = 1/N is constant and
the probability of failure Pf can be written as a sum of the weights of the Nout ourcrossed realisations



92 Chapter 9. RESTART

1e

2e

3e

1U

2U

3U

1D 1D 1D

2D2D

3D 3D

( )E t

t

A

Figure 9.1: Realisations of the importance process showing events in the RESTART method.

Pf =

Nout
∑

i=1

wi (9.1)

The same applies for the RESTART method using adjusted weights wi. The weights are adjusted by

the number of splittings at each threshold. Hence, the weight w
(M)
i of a realisation over M thresholds

e1 . . . eM is

w
(M)
i =

1

N
M
∏

i=1

Ri

(9.2)

The probability of failure for a RESTART simulation using Ri . . . RM splittings at M thresholds can
be written from (9.2) and (9.1)

Pf =
1

N

Nout
∑

i=1

1
M
∏

i=1

Ri

(9.3)

where N should be interpreted as the number of simulations performed in the interval [t0, T ] - the same
interval as for the CMC simulation, i.e. the number of retrials at each threshold does not influence N .

Implementing the method requires definition of events where realisations are splitted and killed. The
events of transition from E < ei to E ≥ ei are defined as events of upcrossings Ui and transitions
from E ≥ ei to E < ei are defined as events of downcrossings Di. The following procedure is followed
when implementing the RESTART method.
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• When an event Ui occurs the system state is saved.

• When an event Di occurs the system state at Ui is restored and the interval Ui to Di is repeated
Ri times.

• When the system state Ui has been restored Ri times, retrial number RM continues even if
crossing down under the threshold ei and continues until another event Ui occurs or until t = T .

• During a retrial of threshold ei an event Ui+1 may occur and Ri+1 retrials of level i + 1 is made
before the retrial of level i is continued. The simulation of that trial including further retrials of
higher levels are continued until an event Di occurs.

The above described procedure is repeated until all retrials for all thresholds are performed and the
simulation reaches t = T . An illustration of a realisation of the importance function and transitions
are shown in figure 9.1.

In the general formulation of the RESTART method all realisations take initial condition corresponding
to an importance function with a value between a lower boundary and e1.

In the following section the method is tested on a simple, well-defined system.

9.2 Implementation on two node tandem network

A simple representation of a telecommunication network or a computing system is the two node
tandem network. The simple network consists of two random queues in tandem with packets arriving
in the first queue according to a stationary Poisson counting process with the arrival rate λ. When
packets leave the first queue they arrive in the second queue. The service times of packets in the first
queue are exponentially distributed with the rate µ1 while service of packets in the second queue are
exponentialy distributed with the service rate µ2. The sizes of queues are denoted Q1(t) and Q2(t).
An illustration of the two node tandem network is shown in figure 9.2.

Different studies have been made on using the RESTART algorithm in estimation of the exceedance
probability of the number of packets L in one or more queues in a two node tandem network. In
[Villén-Altamirano and Villén-Altamirano, 2006] results are obtained for the method used on a two-
queue tandem network for calculating exceedance probabilities of the safety margins Q1(t)+Q2(t) > L,
Q2(t) ≥ L and Min(Q1(t), Q2(t)) ≥ L. The study includes a description of the general behavior of a
two node tandem network, a discussion on optimal choice of parameters in the RESTART algorithm
and discussions on simulation cost in RESTART simulations compared to CMC simulations. However,
as described in the previous section, specific values of the parameters used in the RESTART algorithm,
e.g. number of restarts at each threshold and values of e1 . . . eM are not stated.

To reproduce the results, a numerical model for the two node tandem network is formulated and
exceedance probabilities for small thresholds are verified by using CMC simulations. In [Villén-
Altamirano and Villén-Altamirano, 2006] an exceedance probability when using the mean arrival rate

¸
¹1 ¹2

Figure 9.2: Two-queue tandem network.
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λ = 1 s−1 and service times µ1 = 1/2 s and µ2 = 1/3 s is found to P (Q1(t)+Q2(t) ≥ 14) = 1.22 ·10−4.
This result has been reproduced by running 106 packet arrivals using CMC simulation. Due to the
extensive simulation time using CMC simulation it was not possible to reproduce results obtained for
lower exceedance probabilities.

Reproduction of the low-exceedance probabilities obtained in the articles by using the RESTART
method is sought by implementing the RESTART algorithm on the two node tandem network. In
the RESTART simulations the parameters are chosen to fit the quasi-optimal parameters as de-
fined in [Villén-Altamirano, 1997], i.e. the number of retrials Ri for each threshold and the val-
ues of the different thresholds ei are set according to the quasi-optimal values; the probability of
an upcrossing over a given threshold ei+1 on condition of an importance function at threshold ei

should be P (ei+1|ei) = exp(1)−2 and the number of retrials at each threshold should attain the value
Ri = exp(1)2. In practise the probability P (ei+1|ei) can not be calculated analytically for the system
under investigation and is instead fitted by doing trial simulations.

The system state includes the following parameters for the two node tandem network; queue lenghts,
total time, time to next arrival at queue 1 and time until queue 1 and 2 are finished processing the
current packet. One of the important parts of the RESTART algorithm is how to restore the system
state when the system reaches a threshold. In the implementation of the algorithm the system state is
saved whenever an event Ui occurs. When a retrial is performed the system state is recovered and the
simulation is continued. However, restoring the time of occurrence of next arrivals and service times
directly, leads to a correlation between retrials [Ui,Di] and an algorithm taking the previous arrival
times and start time of current service into consideration, is used. This means that for each retrial new
values for the arrival time and service times are calculated from an exponential distribution having a
mean arrival rate of the time until next arrival and finishing of service in the two nodes, respectively.
The queue length q2 has been used as importance measure in the simulations.

The analytical solutions for the probabilities P (q2 ≥ 20) and P (q2 ≥ 60) are shown in table 9.1. In
[Villén-Altamirano and Villén-Altamirano, 2006] the authors obtain results within 5% of the analytical
solution by using RESTART with a 95% confidence interval of ±10%. To reproduce these result, the
following parameters are chosen; thresholds are set to e1 = 2, e2 = 4 . . . e9 = 18 and the number of
retrials for each threshold is set to Ri = 7. Using a mean arrival rate λ = 1packet/s, mean service
rates µ1 = 2packet/s, µ1 = 3packet/s and a total simulation time of T = 106 s the results obtained
are shown in table 9.1. It is seen that the deviations from the results in [Villén-Altamirano and
Villén-Altamirano, 2006] are quite large.

It is seen that the RESTART-algorithm overestimate the failure probabilities for both thresholds
tested. Also, the standard deviation for the 10 simulations is quite large considering the relatively
high number of packet arrivals (more than 107 for L = 60). Also, the simulation for q2 ≥ 20 is
performed using T = 107 to be certain that the simulation time does not give rise to convergence
problems. The simulation using T = 107 does not provide results closer to the analytical solution,
hence a larger simulation time does not influence the results.

L Analytical solution Pf T Simulated ˆ̄Pf COV

20 2.87 · 10−10 106 7.20 · 10−10 0.26
60 2.36 · 10−29 106 1.32 · 10−28 0.18

Table 9.1: Comparison of results from RESTART simulations with analytical solutions for the two node

tandem network. The table shows the mean probability of 10 RESTART samples ˆ̄Pf and the coefficient of
variation (COV) for the 10 samples.
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9.3 Conclusion

In the following section an attempt was made to reproduce the results from an example in the literature
using the RESTART method. Unfortunately the results could not be reproduced which could be the
result of using unstable parameters ei and Ri. In general however, the algorithm should be stable for
any value of ei and Ri which seems not to be the case for the results presented in the previous section.

As the results obtained for the simple case using a two node tandem queue were not satisfactory
implementation on the 2-dof shear frame has not been performed. Further study will have to be
performed to make the algorithm work on simple systems before implementing it on structural systems.
Another problem to consider in the implementation on a structural system is to find and verify the of
a suitable non-negative scalar process that can serve as importance process of the system.

Due to the negative outcome of these initial investigations of the RESTART algorithm, the focus of
this thesis will be on the methods Importance Sampling and Russian Roulette and Splitting. Both
methods will be tested in the application of determining 50-year recurrence period low-probability
events for a simple three dof wind turbine.
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Chapter 10

Comparison of RR&S and IS with the

POT method.

In the following, the estimates of the extreme response distribution for the tower top displacement
of the three dof wind turbine estimated by the RR&S, IS and POT methods are compared. The
comparison is made to show the potential of using variance reduction methods such as the RR&S and
IS method instead of the POT method for determining the characteristic response for wind turbines.

In figure 10.1 the different estimates of the extreme response distribution is shown as the exceedance
probability P (q1 > qc,1|T = 600 s, Vm = 15m/s). In what follows, the notation P (q1 > qc,1) will be
used for P (q1 > qc,1|T = 600 s, Vm = 15m/s). The RR&S data points in figure 10.1 corresponds to
the estimates of FT (600) in figure 8.11 and the IS data points corresponds to the data points in figure
7.19.

As described in section 2.1.1 the problems and uncertainties regarding the POT method is that it
depends on the extraction of independent maxima from relative few simulations and the choice of the
candidate distribution function and that the correct distribution function is unknown. This is also
evident in figure 10.1 where it is seen that the estimate of P (q1 > qc,1) produced by the POT method
depends on the choice of distribution function, e.g. the 3-parameter Weibull or Gumbel.

The standard error of the IS is expected to be very small, since the only significant contribution to
the standard error of the estimate is in the extrapolation of the first passage distribution function, cf
7.2.1. The standard error of the RR&S method is expected to be higher than the IS and especially
for the high barriers, due to the rather rough estimat of the first passage time distribution function,
cf. figure 10.1. The estimated P (q1 > qc,1) is however consider robust since the most of the estimated
points is coinciding with the IS.

The estimates of P (q1 > qc,1) produced by RR&S and IS simulation has a tendency to follow a curved
line in the logarithm scale, whereby the the extreme response distribution does not constitute a Gumbel
distribution. The Weibull distribution represents the curved nature of the extreme response, but is
underestimating in the entire interval. The extreme response corresponding to a 50 year recurrence
period estimated by the two candidate distributions deviate 6% and 11 % from the value estimated
by IS, Gumbel and 3-parameter Weibull, respectively. Eventhough the Gumbel distribution does not
constitute the correct extreme response distribution, it is concluded that it gives the best fit of the
two candidates. However, as these estimates of P (q1 > qc,1) are calculated for a system which is not
effected by a control system, nothing can be said about how well the Gumbel and the 3-parameter
Weibull distribution fits the extreme values in the case of a real wind turbine where the response is
affected by a control system.
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Figure 10.1: Extreme response distribution estimated by means of RR&S, IS and POT using a Gumbel and
3-parametric Weibull distribution.

Neither IS or RR&S has been successfully applied on a wind turbine model with a control system,
whereby an evaluation of the applicability on real turbines is not possible.
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Chapter 11

Conclusion

In this master thesis the methods currently used for determining extreme loads on wind turbines
have been described and tested on a 5MW reference wind turbine. The current method produces
a significant variance on the estimate of the extreme response, hence it is desirable to implement
so-called variance reduction methods. Three variance reduction methods have been investigated and
two of the methods has been found suitable for implementation on structural systems.

In chapter 2 investigations on the extrapolation method from the IEC61400-1 standard has been
performed. As only a few simulations are performed in each wind speed bin the main issues have
been found to be the extraction of a sufficient number of statistical independent peak values. The
peak over threshold method has been tested in chapter 2.2 and seen to provide differing results when
comparing it for different thresholds. The candidate probability distribution functions suggested in
the standard have been compared and found to estimate extreme responses with a recurrence period of
50 years deviating more than 50% when comparing the 3-parameter Weibull and Gumbel probability
distribution functions.

Two of the three variance reduction methods have been evaluated on simple structural systems in the
form of a simple two dof shear frame and a simple model of a three dof wind turbine. The models
used for modelling the turbulence have been described in appendix B.

The importance sampling method has been evaluated on two different structural systems. To establish
an effective importance measure, the Girsanov transformation has been used to apply a mean value
to the zero-mean Gaussian input process. The mean value, referred to as the sample control function
is obtained by means of the First Order Reliability Method and can be interpreted as an underlying
process, that in mean drives the response process of the system to failure at a given design time.
The first passage time probability of oscillating systems is dominated by several exit times whereby
it is necessary to use a multi modal sample density function, where samples are generated around
several design points. The method has successfully been applied for the three dof wind turbine and
first passage time probabilities of the order of magnitude 10−10 has been estimated with only 500
simulations. The first passage time probability distribution function estimated by the importance
sampling method is determined for deterministic initial states, whereby the characteristic extreme
response is not determined directly. An estimate of the hazard rate of the stationary response is
calculated, whereafter the first passage time probability distribution function of the stationary response
is determined. Some uncertainties are introduced when calculating the hazard rate, which needs to be
clarified. Also, incorporating a stochastic initial state might be worth considering in future research.

Before anything can be concluded on the applicability of the importance sampling on “real” wind
turbines the control systems need to be incorporated in the sample control functions. Further, the
number of state variables is crucial for the calculation time of the sample control functions. However
this is merely a programming optimisation problem.

In chapter 8 the variance reduction method Russian Roulette & Splitting with Distance Control
(RR&S) has been described and results obtained on four different systems has been presented. Overall,
the algorithm is highly dependent on the choice of a so-called distance variable. This is indicated in
section 8.2 and in appendix I.2 where qualitative and quantitative investigations of different distance
variables has been performed. The investigations show that the mechanical energy calculated after
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subtracting a possible static displacement is generally a reasonable choice of distance variable and this
is used throughout the investigations.

In section 8.3 and 8.4 the results obtained on the preliminary simple systems has been presented and
they have shown that the efficiency of the algorithm compared to CMC simulation increases as the
barrier level increases. Computational savings of more than 99% has been achieved in section 8.3
using 10000 time series in the RR&S simulation and in section 8.4 failure probabilities in the order of
10−9 has been estimated using 500 time series.

The results from the implementation on to the 5MW reference wind turbine have been presented
in section 8.5. The results shows that the control system of the wind turbine effects the results
significantly. In section 8.5.2 results are presented for the case where the control system has been
disabled and failure probabilities in the order of 10−4 has been simulated using 100 time series.
As shown in section 8.5.3 no improvements were seen when the control system was enabled. From
this it has been concluded that the control system effects the efficiency of the mechanical energy
as distance variable and more investigations are therefore needed in order to determine an efficient
distance variable for the case where the control system is enabled. It has been suggested that such
a distance variable should include information on the mechanical energy but also on the state of the
control system.

In chapter 9 RESTART have been investigated for use on structural systems. Difficulties on getting
the method to provide promising results on even a simple Markovian system lead to the conclusion
that the method was not suitable for use on simple structural systems and therefore not applicable
for determining extreme responses for wind turbines.

The results achieved by the RR&S and importance sampling methods suggest that the importance
sampling method is the most efficient of the two methods but also the hardest to implement. The
conclusion on the thesis is that more work needs to be done before any of the variance reduction
methods can be succesfully applied to a wind turbine which includes a control system.
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Appendix A

FAST

A.1 Basic description of the FAST code

In this chapter a basic description of the servo-aero-elastic simulator FAST (Fatigue, Aerodynamics,
Structures and Turbulence) is given. FAST is capable of determining extreme- and fatigue loads for
two- and three-bladed wind turbines. In the present thesis, FAST has been used to calculate response
time series for a three-bladed wind turbine under normal operation. The turbulence given as input
to FAST is simulated by TurbSim and a state space representation of an ARMA model, described in
appendix B.

The FAST model employs a combined modal and multibody dynamics formulation. When modelling
a three-bladed wind turbine, the model has 24 dofs. The first six dofs represent the motions of the
support platform, the translational dofs surge q1, sway q2 and heave q3 and the rotational dofs roll q4,
pitch q5 and yaw q6. Four dofs account for tower motions, two modes in the fore-aft direction q7, q8

and two modes in the side-side direction q9, q10. Yawing motion of the nacell, generator azimuth angle
and compliance in the drivetrain between the rotor and generator are described by the dofs q11,q12 and
q13. Nine dofs q14−q22 define blade motions - three dofs for each blade; two dofs defining out-of-plane
motions and one dof defining in-plane motions for each blade. The last two dofs, rotor- and tail furl,
are normally not used for larger wind turbines. All dofs, except the dofs for blade 2 and 3, rotor- and
tail furl, are shown in figure A.1.

The model relies on a simple representation of the flow stream used to determine the forces on the
blades. Each blade is split into elements having well defined aerodynamic properties assuming that
the pretwist angle and the position of the blade elements is known. The forces on the blades are
then calculated at each element and integrated over the total blade length to determine the total
force affecting a blade. The calculation of aero dynamic forces is done by the code AeroDyn, which is
bundled with the FAST code.

The equations of motion are solved by a fourth-order Adams-Beshforth predictor method. The pre-
dictor estimates displacements and velocities at each time step for all dofs and provides an estimate
of the acceleration. The estimated acceleration is used in estimating displacements and velocities over
again. This procedure is repeated several times. At last a fourth order Adams-Mounton corrector is
used to make final estimates of the accelerations. The first four time steps are solved by a fourth-order
Runge-Kutta method as the predictor-corrector method require that the previous four time steps are
known.

Several control systems can be activated; blade pitch control, variable-speed generator control, high-
speed-shaft brake control, nacelle yaw control and tip brakes. For the wind turbine under study in
this thesis, the blade pitch control and variable-speed generator controls are activated by using control
systems designed especially for the present wind turbine.
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Figure A.1: Sketch of dofs used in FAST.
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Appendix B

Turbulence simulation

The turbulence represents the random fluctuations of the incoming wind field around a mean value.
The turbulence is modelled as a stochastic Gaussian process {vj(z, t), (z, t) ∈ R3 × R} which is
homogeneous in the spatial index parameters z = (z1, z2, z3) and stationary in time t. Hence, the
process is uniquely defined by the cross-covariance function κvj ,vk

(r, τ) defined as

κvjvk
(r, τ) = E[vj(z1, t1)vk(z2, t2)], r = z2 − z1, τ = t2 − t1 (B.1)

The corresponding cross-spectral density function is defined by the Wiener-Khintchine relation [Nielsen,
2007b]

Svjvk
(r, ω) =

1

2π

∫ ∞

−∞
eiωτκvj ,vk

(r, τ)dω (B.2)

The variance of the turbulence in the zj-direction is given as

σ2
j = κv(j)v(j)

(0, 0) =

∫ ∞

−∞
Sv(j)v(j)

(0, ω)dω (B.3)

where the parentheses around the index j indicate that summation over the dummy indices is aban-
doned. Turbulence in shear-flow is non-isotropic for which reason the standard deviations σ1, σ2 and
σ3 are different. Typically the following applies

σ2 ≃ 0.7σ1, σ3 ≃ 0.5σ1 (B.4)

Further, the turbulence components v1(z, t) and v3(z, t) at the same position z and time t are negative
correlated. Typically, the correlation coefficients become

ρv1v3
=

κv1v3
(0, 0)

σ1σ3
≃ −0.3 (B.5)

Empirically, the cross-spectral density function is defined via the coherence function given as

γvjvk
(r, ω) =

Svjvk
(r, ω)

√

Sv(j)v(j)
(ω)Sv(k)v(k)

(ω)
(B.6)
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where Sv(j)v(k)
(ω) = Sv(j)v(k)

(−ω) is the double-sided auto-spectral density function. Due to the
correlation between the turbulence components, γvjvk

(r, ω) 6= 0, j 6= k. The coherence function is
complex and may be written on the polar form

γvjvk
(r, ω) = |γvjvk

(r, ω)|eiΘ(r,ω) (B.7)

where Θ(r, ω) is denoted the phase spectrum. Both the modulus |γvjvk
(r, ω)| and the phase spectrum

may be modelled by empirical specification. In numerical applications for wind turbines the domain
in the vicinity of the rotor is discretized by a 3-dimensional grid with a given spacing ∆z1, ∆z2 and
∆z3 in the coordinate directions. The idea is that turbulence is generated in the grid points. Next,
the turbulence components vj(z, t) at any point within the discretized domain is obtained by linear
interpolation between the turbulence components in the nearest grid points. The 3N turbulence
components in the N grid points are assembled in the stochastic vector

v(t) =























v1(z1, t)
v2(z1, t)
v3(z1, t)

...
v1(zN , t)
v2(zN , t)
v3(zN , t)























(B.8)

The corresponding cross-spectral density matrix is denoted Svv(ω). This is a Hermitian matrix ful-
filling the symmetry properties

S∗
vv(ω) = ST

vv(ω) (B.9)

where ∗ denotes complex conjugation. A consequence of (B.9) is that all eigenvalues of Svv(ω) are
real for arbitrary frequencies ω. Svv(ω) admits the eigenvalue decomposition

Svv(ω) = Ψ(ω)Λ(ω)Ψ−1(ω) (B.10)

where Λ(ω) is a diagonal matrix with the eigenvalues of Svv(ω) stored in the main diagonal, and the
corresponding eigenvectors are stored columnwise in the modal matrix Ψ(ω). Due to the discretization
Svv(ω) is not necessarily positive definite, i.e. some of the eigenvalues may attain small negative values.
For this reason Λ(ω) in (B.10) is replaced by an eigenvalue matrix Λ(ω) where all negative eigenvalues
in Λ(ω) are replaced by 0. Thereby the following modified positive semi-definite cross-spectral density
function is defined

Svv(ω) = Ψ(ω)Λ(ω)Ψ−1(ω) (B.11)

Then, the following factorization of Svv(ω) is possible [Sichani et al., 2009]
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Svv(ω) = H∗
v(ω)HT

v (ω) (B.12)

If the eigenvectors in Ψ(ω) are normalized to unit length, then [Nielsen, 2007a]

Ψ−1(ω) = Ψ∗T (ω) (B.13)

Then, a solution to (B.12) is given as

Hv(ω) = Ψ∗(ω)Λ
1
2 (ω) (B.14)

Alternatively, Hv(ω) may be obtained as a lower triangular matrix by Choleski decomposition of
Svv(ω) [Shinozuka and Jan, 1972].

Define a vector process of dimension 3N {W(t), t ∈ R}. The component processes {Wj(t)} are
mutual independent zero-mean Gaussian white noise processes with the double-sided auto-spectral
density function SW(j)W(j)

(ω) ≡ 1. Then, (B.12) may be written as

Svv(ω) = H∗
v(ω)SWW(ω)HT

v (ω) (B.15)

From (B.15) follows that v(t) may be implemented as a filtration of W(t) through a linear filter with
the frequency response matrix Hv(ω). The related impulse response matrix is obtained from [Nielsen,
2007b]

hv(t) =
1

2π

∫ ∞

−∞
eiωtHv(ω)dω (B.16)

Then, v(t) is related to W(t) via the convolution integral

v(t) =

∫ ∞

−∞
hv(t− τ)W(τ)dτ (B.17)

It should be noticed that hv(t) is not causal, so the convolution integral (B.17) cannot be truncated
at the upper limit t = τ .

Alternatively, v(t) can be obtained from the spectral representation, [Nielsen, 2007b]

v(t) =

∫ ∞

−∞
eiωtHv(ω)dX(ω) (B.18)
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where dX(ω) are mutual complex, zero mean, normal distributed independent random increments
fulfilling

E[dX∗(ω1)dX
T (ω2)] =

{

0
Idω

, ω1 6= ω2

, ω1 = ω2
(B.19)

(B.17) form the basis of various filter methods including vector ARMA methods for Monte Carlo
simulation of realisations of the vector process {v(t), t ∈ R}. Similarly, (B.18) is the basis for various
spectral simulation methods (sum of harmonics). For applications the integrals in (B.17) and (B.18)
are replaced by sums.

The requirements for turbulence applied on the wind turbine is described in the IEC-61400 code. The
recommended turbulence model is the Mann uniform shear turbulence model. However, the preferred
turbulence simulator for use with FAST, TurbSim, does not have the Mann model implemented. In-
stead a more simple model based on a Kaimal spetrum and exponential coherence is used. Turbulence
modelling with TurbSim is described in section B.1.

The basics of the turbulence simulation is a spectral density function. In the IEC-61400 code (Annex
B.2) a Kaimal power spectral density function is given [International Electrotechnical Commission,
2005]. The empirical expressions for the double-sided autospectral density function Sv(i)v(i)

(ω) is given
by

Sv(i)v(i)
(ω) =

σ2
i

3V

6Li

(1 + 6|Lik|)5/3
(B.20)

where σi is the standard deviation of the turbulence in the zi direction, V is the mean wind velocity at
hub height assumed to be constant over the rotor area, Li is the correlation length for the zi direction.
The correlation length is given as Lz1

= 8.1Λ1, Lz2
= 2.7Λ1 and Lz3

= 0.66Λ1 for directions z1, z2

and z3, respectively. The scale parameter Λ1 is given as Λ1 = 0.7h, z ≤ 60m and Λ1 = 42m, z ≥ 60m.

For all simulations, the wind conditions are assumed to be medium turbulence conditions correspon-
ding to a turbulence intensity of Iref = 0.14. The standard deviation σ1 for the normal turbulence
model, which is the turbulence model used in this thesis, is determined by

σ1 = Iref (0.75V + b) , b = 5.6m/s (B.21)

The basics of the turbulence models described in the following is that the turbulence in the longitudinal,
lateral and vertical directions are uncorrelated and thereby disregarding the known correlation given
by (B.5). The standard deviations for the lateral and upwards directions are given as σ2 = 0.7σ1 and
σ3 = 0.5σ1, respectively.

B.1 Turbulence simulation using TurbSim

TurbSim is a full-field, turbulent-wind simulator developed by NREL built on basic of an older code,
SNLWIND. SNLWIND was written by Paul Veers from Sandia National Laboratories (SNL) in 1988
[Veers, 1988] and further developed to SNLWIND-3D and SNwind by different researchers from SNL
and NREL in the following 15 years. Today, TurbSim can be used in connection with FAST to generate
a full turbulence wind field.
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The turbulence is generated by discretising the spectral representation shown in (B.18), [Veers, 1988].

In TurbSIM the rotor plane is discretised into a rectangular grid as shown in figure B.1. Layers in
the z1-direction can be added. For each time step in FAST the turbulence affecting the blades are
determined by bilinear interpolation between the points in the rectangular grid.

The spectral density function (B.20) is used in TurbSim. and as multiple correlated points in space are
to be modelled a coherence function is needed. The IEC-61400 code suggests the following exponential
coherence model γi which is being used in TurbSim

γi(r, f) = exp
(

−12
√

(f |r|/Vhub)2 + (0.12|r|/Lc)2
)

(B.22)

where f is the frequency in [Hz], r is the individual distance between points in a plane normal to the
wind direction and Lc is a coherence scale parameter, Lc = 8.1Λ1.

z1

z2

z3

z1

z2

r

¢z2

¢z3

Figure B.1: Rectangular grid used in Turbsim.
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B.2 Turbulence simulation using moving average model

When using variance reduction methods such as RR&S and IS the spectral representation of the
turbulence used in TurbSim is not applicable. The RR&S algorithm relies on being able to split
realisations, which requires the turbulence to develop independently from the time of splitting. This
requires, that the turbulence is represented by a Markov state vector, as is the case in the filter method
but not for the spectral representation of the turbulence.

A simple model that comply with the above described conditions is a Moving Average vector model.
This is merely a reformulation of the discretised version of (B.17), [Sichani et al., 2009] given as

v(j) =

N/2
∑

−N/2

hv(l)∆W(j − l) (B.23)

where W(j − l) is a zero mean Gaussian vector with mutually independent random variables with
the variance 2π∆t. To obtain a causal filter corresponding to (B.23) the following is given for the
convolution integral in (B.17)

v(t) =

∫ ∞

−∞
(hs(τ) + ha(τ))W(t− τ)dτ

= 2

∫ ∞

0

hs(τ)Ws(t− τ)dτ + 2

∫ ∞

0

ha(τ)Wa(t− τ)dτ (B.24)

where hs(τ) and ha(τ) denote the symmetric and skew-symmetric part of hv(τ) and Ws(t − τ) and
Wa(t− τ) denote the symmetric and skew-symmetric part of W(t− τ) given by

hs(τ) = 1
2 (hv(τ) + hv(−τ))

ha(τ) = 1
2 (h(τ)− hv(−τ))

(B.25)

Ws(t− τ) = 1
2 (W(t− τ) + W(t + τ))

Wa(t− τ) = 1
2 (W(t− τ)−W(t + τ))

(B.26)

The symmetric and skew-symmetric parts of W(τ) are mutually independent white noise vector
processes. Each input in W(t) is normally distributed with zero mean and variance σ2

v = 2π∆t, where
∆t denotes the time step in the convolution integral. (B.24) can be written in discrete form as

v(j) =

∞
∑

l=0

hs(l)∆Ws(j − l) +

∞
∑

l=0

ha(l)∆Wa(j − l) (B.27)

Ws and Wa(j) are mutually independent, identical distributed zero mean M -dimensional Gaussian
random vectors
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E[∆Ws(j)∆WT
s (k)] = E[∆Wa(j)∆WT

a (k)] =

{

0
4π∆tI

, j 6= k
, j = k

(B.28)

Then (B.27) can be written in the following form

v(j) =

∞
∑

l=0

h̃(l)∆W̆(j − l) (B.29)

where

h̃(l) = [ hs(l) hs(l) ] (B.30)

∆W̆(j) =

[

∆Ws(j)
∆Wa(j)

]

(B.31)

(B.29) may be interpreted as an equivalent causal filter with the impulse response matrix h̃(l) of

dimension M ×2M . W̆(j) is a zero mean normal vector with mutually independent random variables
given as

E[∆W̆(j)∆W̆(k)] =

{

0
4π∆tI

, j 6= k
, j = k

(B.32)

To minimise the number of points, a grid described in angular and radial directions is used, see figure
B.2. For each time step in the numerical integrator, the turbulence at a given point is determined by
bilinear interpolation in the grid. No interpolation in the z1 direction is performed, i.e. the structural
part of the system that is affected by the turbulence is assumed to be positioned at z1 = 0 at each
time step cf. figure B.2.

For modelling the turbulence using the filter and the state space model the spectral density function
(B.20) and the coherence function γs described in [Sichani et al., 2009] has been used

γs(r, ω) = exp

(

−|r||ω|
V

d1

)

exp

(

i
s(r)|r|ω

V
d2

)

(B.33)

where the sign function s is defined so that s(r) = 1 and s(−r) = −1. The parameters d1 and d2 are
given as d1 ≃ 1.5 and d2 ≃ 1.3.

The model is very sensitive to the frequency resolution. If an insufficient frequency resolution is used,
the turbulence calculated by the models does not converge towards the analytical autocovariance and
covariance functions. To obtain convergence, the frequency response function should include more
than 211 = 2048 frequency steps for each point in the grid if using a ∆t of 0.1 s. The relatively
high number of frequency steps mean that generation of 40-50 grid points at each time step requires
extensive computational time. Turbulence simulation for FAST therefore requires an ARMA model
or a state space representation of an ARMA model.
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Figure B.2: Grid used in Moving Average model.

B.3 Turbulence simulation using state space ARMA model

The state space model is used for simulation of turbulence having only short memory. In addition
the turbulence can be calculated simultaneously at each timestep while solving the structural system
in e.g. FAST, which is a requirement for using the RR&S algorithm. The general formulation of the
state space representation of an ARMA model is [Sichani et al., 2009]

x̂(j + 1) = Ax̂(j) + B∆W(j) (B.34)

v(j) = Cx̂(j) +D∆W(j)

where the state vector x̂(j) has dimension M × 1, ∆W(j) is a stationary white noise vector process
of dimension N × 1. A is a system matrix of dimension M ×M , B is the Kalman gain matrix of
dimension M × N , C is an observation matrix of dimension N ×M and D is an identity matrix of
dimension N ×N .

The idea of the state space model is to estimate the matrices A, B, C and D so that the output
process v(j) satisfy a given cross-covariance using a model order M sufficiently small to provide fast
simulation of N coherent turbulence processes. An explanation of estimation of the matrices are out
of the scope of this thesis - an explanation of the estimation technique is given in [Sichani et al., 2009].

For testing the RR&S algorithm a state space model for N = 61 spatial points in a radial grid and
model of order M = 175 has been fitted for a mean wind speed at hub height of 15m/s.
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Appendix C

Description of 5MW reference wind

turbine

The aeroelastic simulations in FAST are performed on a 5-MW reference wind turbine, the ”NREL off-
shore 5-MW baseline wind turbine”, designed by the National Renewable Energy Laboratory (NREL)
on basis of the REpower 5M offshore wind turbine [Jonkman et al., 2009]. This wind turbine is used
throughout the project to have a frame of reference for all calculations.

Data for the three-bladed, variable-speed, variable blade-pitch-to-feather-controlled wind turbine is
given in table C.1.

Rating 5MW
Rated Rotor Speed 12.1 rpm
Rated generator speed 1173.7 rpm
Rotor diameter 126m
Blade lengths 61.5m
Hub height 90m
Cut-in, Rated, Cut-out wind speeds 5m/s,11.4m/s,25m/s
Rated tip speed 80m/s
Blade masses 17000 kg
Total rotor mass 90000 kg
Nacelle mass 240000 kg
Tower mass 347460 kg

Table C.1: Data for 5MW reference wind turbine [Jonkman et al., 2009].

The simulation in FAST includes 22 dofs distributed over the support platform, tower motions, nacelle
motion, generator azimuth, compliance between generator and rotor and displacements of blades. The
simulation assumes a fixed support at the tower bottom. The tower and blade motions are described
by modal coordinates and corresponding mode shapes. The mode shapes for for the tower and blades
are shown in figure C.1 and C.2, respectively. The tower mode shape 1 and 2 for fore-aft and side-side
motions are almost alike and can not be distinguished on the figure. The expressions for the modes
are also given in table C.2.

Tower fore-aft mode 1 Φ7(x) = 0.70x2 + 2.19x3 − 5.62x4 + 6.22x5 − 2.50x6

Tower fore-aft mode 2 Φ8(x) = −70.53x2 − 63.76x3 + 289.73x4 − 176.51x5 + 22.07x6

Tower side-side mode 1 Φ9(x) = 1.38x2 − 1.76x3 + 3.08x4 − 2.23x5 + 0.53x6

Tower side-side mode 2 Φ10(x) = −121.20x2 + 184.41x3 − 224.90x4 + 298.53x5 − 135.83x6

Blade flap mode 1 Φ14(x) = 0.06x2 + 1.72x3 − 3.24x4 + 4.71x5 − 2.25x6

Blade flap mode 2 Φ15(x) = −0.58x2 + 1.20x3 − 15.53x4 + 29.73x5 − 13.82x6

Blade edge mode 1 Φ16(x) = 0.36x2 + 2.53x3 − 3.57x4 + 2.37x5 − 0.69x6

Table C.2: Expressions for mode shapes of tower and blades. Numbering of the dofs are given in figure A.1.
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Figure C.1: Mode shapes for tower fore-aft (FA) and side-side (SS) motions.
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Figure C.2: Mode shapes for blade in-plane (IP) and out-of-plane (OP) motions.

The eigenfrequencies of the structural parts of the wind turbine are given in table C.3.

Mode [ rad/s]

Tower fore-aft mode 1 2.1
Tower fore-aft mode 2 19.2
Tower side-side mode 1 2.1
Tower side-side mode 2 19.2

Blade flap mode 1 4.6
Blade flap mode 2 12.7
Blade edge mode 1 7.0

Table C.3: Angular eigenfrequencies of modes.

The initial conditions for all simulations are set according to steady-state behavior as described in
the definition paper of the wind turbine [Jonkman et al., 2009]. The initial conditions that can be
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specified in the FAST input file are; blade pitch angles, blade out-of-plane displacement, tower top
fore-aft displacement and rotor speed. For all simulations the total run time is set to 650 s of which
the last 600 s are used for analysis to make sure that no influence from initial conditions is present.

The turbulence applied is simulated by TurbSim or the state space model described in appendices B.1
and B.3, respectively. The turbulence from Turbsim is simulated in a rectangular grid of 160× 160m
using a total of 64 grid points - 8 grid points in both vertical and horisontal direction. The turbulence
simulated using a state space model is simulated in a circular grid with diameter 125m using a total
of 61 grid points - 1 grid point in the hub center, 10 grid points in angular direction and 6 in radial
direction.
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Appendix D

Analysis of wind turbine response

Gaussianity

In order to test the Gaussianity of the response from the wind turbine structural model, the statistical
moments of the 1st order distribution are useful. For Gaussian random variables the following results
for the normalised n’th order statistical moment, mn, apply [Nielsen, 2007b].

mn =
E[(M − µM )n]

σn
M

=

{

0
(n− 1)(n− 3)...3 · 1

, n odd
, n even

(D.1)

This means that the 3rd order normalised central moment (skewness) should be 0 and the 4th order
normalised central moment (kurtosis) should be 3. The sample data used are the data from the
analysis in section 2.2. For different wind speed bins the skewness and kurtosis have been calculated.
For all wind speed bins, except 13 − 15m/s and 15 − 17m/s, the skewness is in the interval −0.2 to
0.2. For the 13 − 15m/s and 15 − 17m/s bins the skewnesses are 0.46 and 0.36 respectively which
seems to be a relatively high deviation from the Gaussianity criteria. The largest deviations from
the kurtosis for a Gaussian random variable occurs in the 11 − 13m/s and 15 − 17m/s bins having
values of 2.59 and 3.2, respectively. Convergence of estimates of the skewness and kurtosis in the
13− 15m/s bin as a function of the sampling interval t is shown in figure D.1. The curves represent
the mean values of the running ergodic estimates of 10 independent realisations. It seems that the
response is not Gaussian and will neither be Gaussian for larger times series as m3 and m4 does not
converge toward 0 and 3, respectively. The reason for the non-Gaussianity might be non-linearities
in the control systems or non-linearities in the aerodynamic loads which consequently seems to be
specific active in the 13−15m/s bin. A description of the non-linearities included in the FAST model
is given in appendix A.

0 2000 4000 6000
0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000
2

2.5

3

3.5

4

t [s]t [s]

m
3
(t

)

m
4
(t

)

Figure D.1: Convergence of ergodic sampling of skewness and kurtosis for 13 − 15 m/s bin as a function of
time. Mean values of 10 realisations.
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Appendix E

Load extrapolation

E.1 Extrapolation results and observations by LE3

The load extrapolation requirements were introduced in the IEC61400-1 standard in 2005. Shortly
after, the IEC decided to commission a subcommittee ”Loads Extrapolation and Evaluation Excercise
(LE3) [Moriarty and Veers, 2008]. A part of the work by this subcommittee was the socalled LE3

meeting, which were held in April 2007. The meeting was based on the 2005 version of the IEC61400-1
standard (Annex F) which concerns determination of extreme responses for wind turbines. Several
members of the wind turbine industry were invited to present results obtained on the same dataset from
simulations of the ”NREL offshore 5-MW baseline wind turbine”. The participants presented results
obtained by using the normal methods used in determining extreme responses in their organisation or
company. The following description is based on [Moriarty, 2007]

The results obtained by the participants are listed in table E.1. The table lists methods used for data
extraction, probability distribution function (CDF), the number of simulations used in each wind speed
bin and the results obtained using the different methods. In the following, details of the methods and
results from the different participants are shown.

Participant 1 tested both the global maxima method and the POT method using the 3-parameter
Weibull probability distribution function and a minimum time separation of 5 s between maxima. It
is seen that the global maxima and the POT methods provide significantly different extrapolated
responses, even when utilising a large number of simulations in each bin. The participant suggests
that a threshold is chosen by visual inspection of the probability distribution function of the maxima.
The probability distribution function shows a sudden change of slope which makes the 3-parameter
Weibull distribution function fit inferior. Instead the threshold is chosen as the value of the response
where a change of slope occurs, see figure E.1

Participant 2 tested the global maxima method using 3 different candidate distribution functions; the
generalised extreme value distribution function, the 3-parameter Weibull distribution function and the
log-normal distribution function. The results obtained for the 3-parameter Weibull and the log-normal
distribution functions seems to correspond well to the results obtained by participant 1, whereas the
generalised extreme value distribution function seems to give considerable larger responses.

Participant 3 tested the generalised Pareto probability distribution function using a minimum time
separation between maxima of 15 s. The participant concludes that at least 40 simulations in each
bin are required to get a reliable extrapolation of responses corresponding to a 50 year recurrence
period. Also, it is concluded that choosing the threshold providing the best fit is very difficult because
the optimal short term fit in terms of average relative error does not necessarily lead to a ”good”
extrapolation.

Participant 4 tested the 3-parameter Weibull probability distribution function using maxima for every
100 s of the simulations. The out-of-plane bending moment corresponding to a 50 year recurrence
period is estimated using different numbers of simulations - see figure E.2. The number of simulations
seems to have a great influence on the confidence of the obtained response.
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Figure E.1: Choice of threshold suggested by participant 1 [Moriarty, 2007].

Figure E.2: Results obtained for different number of simulations in each wind speed bin using 3-parameter
Weibull probability distribution function. The values on the ordinate are normalised with respect to the mean
value obtained for 80 simulations/bin. The figure shows the estimates (dots), the mean value of the estimates
(stars) and the confidence intervals (lines) [Moriarty, 2007].
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Participant Extraction CDF Sim./bin Response [ kNm]

1 Global Maxima 3P Wiebull 30 18750
100 17667
200 17500

POT - µM + 1.4σM 30 22333
POT - µM + 2.5σM 30 22000
POT1 - µM + 1.4σM 30 22500
Assembled Variable 16000

2 Global Maxima GEV 30 21841
3P Weibull 30 17426
Log-normal 30 17723

3 Top 175 or less Pareto 200 19637

4 Max in 100 sec. 3P Weibull 10 18324
20 18548
40 18411
80 18948

5 Top 175 to Top 19 Pareto 10 27817
20 24665
40 22464
80 21127

3P Weibull 10 22078
20 20880
40 19625
80 18886

6 POT - m+1.4sd Lexpol 10 16847
20 16744
40 16638
60 16582
80 16576

100 16552
200 16537

Table E.1: Results obtained by participants at LE3Boulder meeting. The response shown is the blade
out-of-plane moment. 1Global peak over threshold for all bins. [Moriarty, 2007]

Participant 5 tested the Pareto and 3-parameter Weibull probability distribution functions using a
minimum time separation of 7.5 s in extracting maxima. The short term probability distribution
functions are fitted using between 19 and 175 extreme values. The fits providing an average relative
error above 5% are discarded and so are fits obtained using a large number of extreme values. The
response is determined by the mean of the extrapolated responses of the remaining fits. The response
obtained for the candidate probability distribition functions using different number of simulations in
each bin is shown in figure E.3. In general it can be concluded that the 3-parameter Weibull probability
distribution function is more stable than the Pareto probability distribution function for low number
of seeds. However, it is also seen that a large number of simulations are needed to obtain convergence.

Participant 6 tested the commercial code Lexpol. No further comments will be given on the results
obtained by this code as the methods behind the code is not fully publicly available.
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Figure E.3: Results obtained by 3-parameter Weibull and Pareto probability distribution functions for
different number of simulations in each wind speed bin for participant 5 [Moriarty, 2007].

E.1.1 Conclusion

The meeting summary points out the problems and uncertainties found by the participants. Regard-
ing extraction of maxima, the general observation is that by using the POT method one might loose
important points and care should be taken that the extracted values are independent, e.g. by intro-
ducing a minimum time separation. Time separations between 5 s and 15 s have been used and it is
concluded that a method of determining independence between maxima should be developed.

The contributors used different probability distribution functions in fitting the local probabilities in
each wind speed bin. No conclusion was made on which probability distribution function to prefer.
However, the 3-parameter Weibull probability distribution function was chosen by most participants
and was also found to be more stable than the Pareto distribution function c.f. figure E.3.

The number of simulations to use in each bin for convergence is dependent on the choice of probability
distribution function. It is concluded that using only 10 simulations in each bin, which was the case for
most of the industry, is not sufficient. Instead some convergence criteria that can be easily employed
has to be developed.

E.2 Amendment to IEC61400-1:2005 - draft for voting

Because of the problem and uncertainties described in appendix E.1, the IEC Technical Committee for
Wind Turbines has prepared an amendment for the IEC61400-1:2005 [IEC Technical Committee 88,
2009]. This amendment clarifies and provides guidance to specific topics and issues in the standard.
The load extrapolation method is clarified in the amendment by total rewriting the description of load
extrapolation in Annex F. In the following a description of the overall changes in the extrapolation
method are described.

The amendment suggest two general methods of extrapolating the extreme response:

1. Extract extreme values in each wind speed bin and determine probability distribution functions
in each wind speed bin by fitting candidate distribution functions. The response corresponding
to a 50-year recurrence period is determined by weighing the probability distribution functions
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by the probability of occurrence of each wind speed bin.

2. Perform a given number of simulations in each wind speed bin. The number of simulations in each
wind speed bin is determined by the wind speed probability distribution function. Aggregate
all extracted maximum values and fit one global probability distribution function and determine
the load from the global probability distribution function.

The amendment does not suggests use of the Gumbel and 3-parameter Weibull distribution functions
as candidates. Instead it is now up to the designer to choose a suitable probability distribution
function.

In the IEC61400-1:2005 standard extrapolation of maximum values is performed by the POT method
by extracting values larger than the mean value plus 1.4 times the standard deviation. The amendment
suggests use of one global maxima in each 10 minute time series or use of a block method, where e.g.
the 10 minute time series are split into 10 time series of 1 minute and maxima in each block is extracted.
When utilising one of the extraction methods a minimum time separation between successive maximas
should be at least three response cycles to minimise dependence between maximum values. Also,
different methods for testing independence between maximas are suggested in the amendment.

The minimum number of simulations to perform in each wind speed bin is set to 15 by the amendment.
This is significantly larger than in the IEC61400-1:2005 where a minimum simulation time of 300 s
distributed over the significant wind conditions were suggested. Also, a convergence criteria is to be
applied to the extracted maximas. Different methods are suggested to make sure that the extrapolated
response is within a given confidence level.
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Appendix F

Extremes of stationary Gaussian processes

Distribution of local maxima in stationary Gaussian processes

{X(t) , t ∈ R} is a stationary Gaussian process with the mean value function µX , the standard
deviation σX , and the autocorrelation coefficient function ρXX(τ). Let {A1, A2, . . . An} denote the
stationary stochastic sequence of the local maxima of the process in a given interval [0, T ]. Further,
if certain ergodicity properties are fulfilled the first order probability distribution function of the
indicated sequence is given as [Nielsen, 2007b]

FA(a) = 1− µa

µ0
(F.1)

where µa and µ0 denote the expected number of local maxima in the interval above the levels a and
µX , respectively. If the process is at least twice differentiable, so the standard deviations σẊ and σẌ

exist, these become [Nielsen, 2007b]

µ0 =
1

2π

σẌ

σẊ

(F.2)

µa =
1√
2π

σẌ

σẊ

∫ ∞

α

ϕ(u)

(∫ 0

−∞
− w√

1− r2
ϕ
( w − ru√

1− r2

)

dw

)

du (F.3)

where ϕ(·) indicates the standardized normal probability density function, and

α =
a− µX

σX
, r = −

σ2
Ẋ

σXσẌ

(F.4)

The innermost integral in (F.3) can be evaluated analytically in terms of the standardized normal
probability density and distribution functions. r denotes the correlation coefficient between X(t) and
Ẍ(t), which is slightly above −1 for a narrow-banded process. In the extreme narrow-banded limit,
as r → −1, (F.1) reduces to the Rayleigh distribution [Nielsen, 2007b]

FA(a) = 1− exp

(

−1

2

(

a− µX

σX

)2
)

(F.5)
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In the extreme broad-banded limit, as r → 0, the distribution function becomes Gaussian [Nielsen,
2007b]

FA(a) = 1− Φ
(a− µX

σX

)

(F.6)

where Φ(·) indicates the standardized normal probability distribution function.

Distribution of extremes in stationary Gaussian processes

Let

Amax(T ) = max
(

A1, A2, . . . , An

)

(F.7)

Further, assume that the local maxima of the process in the considered interval of the length T is
stochastic independent and identical distributed random variables. Then, the distribution function of
Amax(T ) becomes

FAmax(T )(a) = P
(

Amax(T ) ≤ a
)

= P
(

A1 ≤ a ∧ A2 ≤ a ∧ · · · ∧ An ≤ a
)

=

n
∏

j=1

FAj
(a) = F n

A (a) =

(

1− µa

µ0

)n

= exp

(

n ln

(

1− µa

µ0

)

)

≃ exp

(

−n
µa

µ0

)

(F.8)

The last statement of (F.8) presumes that µa ≪ µ0. Let n denote the expected number of local
maxima above µX during the interval T . Then, n is given as

n = T µ0 (F.9)

In turn this means that (F.8) reduces to

FAmax(T )(a) = exp
(

− µa T
)

(F.10)

Next, we are interested in the distribution function of the maximum local maxima during the interval
T , on condition that the local maxima are above some threshold a0 > µX . The conditional distribution
function becomes

FA

(

a|A > a0

)

=
P (a0 < A ≤ a)

P (a0 < A)
=

FA(a)− FA(a0)

1− FA(a0)
=

µa0

µ0
− µa

µ0
µa0

µ0

= 1− µa

µa0

(F.11)
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The distribution function of the maximum local maxima on condition that the local maxima are above
the threshold a0 becomes, cf. (F.8)

FAmax(T )

(

a|A > a0

)

= F n
A

(

a|A > a0

)

=

(

1− µa

µa0

)n

≃ exp

(

−n
µa

µa0

)

(F.12)

where µa ≪ µ0 has been assumed in the last statement of (F.12). Now, let n denote the expected
number of local maxima above a0 during the interval T . Then, n is given as

n = T µa0
(F.13)

In turn this means that (F.12) reduces to

FAmax(T )

(

a|A > a0

)

= exp
(

− µa T
)

(F.14)

From (F.14) is concluding that the distribution function of the maximum local maxima during the
interval on condition of maxima above a certain threshold a0 is not depending on the threshold level.
The result presumes Gaussianity of the underlying stochastic process, and that µa ≪ µa0

.

First passage time distribution and recurrence period

Let b denote a critical upper barrier of the considered process, and let T1 be the first-passage time of
the process in relation to the thus defined safe domain. The probability distribution function of T1

follows from

FT1
(t) = P

(

T1 ≤ t
)

= P
(

Amax(t) > b
)

= 1− exp
(

− µb t
)

(F.15)

(F.15) shows that the hazard rate of the process is given by µb as calculated from (F.3) for b = a. The
recurrence period Tr = E[T1] becomes

Tr =
1

µb
(F.16)

For a given recurrence period the design value bcr of the barrier function is obtained as the solution
b = bcr to (F.15).
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Appendix G

Modal analysis of plane n storey shear

frame exposed to a horizontal earthquake

excitation

Equations of Motion

The total horizontal displacements xj of the storey beams relative to the ground surface are chosen as
degree of freedom. This is inconsistent with the equation of motion given in chapter 4, but this allows
to set up the system parameters on a simple analytical form. The damping ratios and eigenfrequencies
of the system are independent of the reference frame, whereby the relative displacements are easily
achieved. The absolute storey displacement is given as xj and the relative storey displacement is
denoted yj .

k(xj+1 ¡ xj) + c( _xj+1 ¡ _xj)

k(xj ¡ xj¡1) + c( _xj ¡ _xj¡1)

m

k

k

m

m

c

c

x2(t)

x1(t)

x0(t)

k

m

c
m

xj(t)

xj¡1(t)

k

m

c
m

xn(t)

xn¡1(t)

Figure G.1: Illustration of the absolute displacments and forces acting on the jth storey for a n storey shear
frame.

The storeys are cut free from the columns and the damper elements, and Newton’s 2nd law of motion
is applied to each storey mass:
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m
(

ẍ0 + ẍ1

)

= −k x1 + k
(

x2 − x1

)

− c ẋ1 + c
(

ẋ2 − ẋ1

)

...

m
(

ẍ0 + ẍj

)

= −k
(

xj − xj−1

)

+ k
(

xj+1 − xj

)

− c
(

ẋj − ẋj−1

)

+ c
(

ẋj+1 − ẋj

)

, j = 2, . . . , n− 1

...

m
(

ẍ0 + ẍn

)

= −k
(

xn − xn−1

)

− c
(

ẋn − ẋn−1

)











































(G.1)

(G.1) may be stated in the following matrix format

ẍ + 2ζ0ω0 k ẋ + ω2
0 kx = −bẍ0(t) (G.2)

where

x(t) =











x1(t)
x2(t)

...
xn(t)











, k =















2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1















, b =











1
1
...
1











(G.3)

ω0 =

√

k

m
, ζ0 =

c

2
√

km
(G.4)

Eigenvibration Analysis

Given the following eigenvalue problem

(

k− λ I
)

Φ = 0 , λ =
ω2

ω2
0

, Φ =















Φ1

Φ2

...
Φn−1

Φn















(G.5)

The homogeneous matrix equation (G.5) may be restated in terms of the following component equa-
tions

2Φ1 − Φ2 − λΦ1 = 0 , j = 1

−Φj−1 + 2Φj − Φj+1 − λΦj = 0 , j = 2, . . . , n− 1

−Φn−1 + Φn − λΦn = 0 , j = n











(G.6)
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A solution to (G.6) is searched on the form [Geradin and Rixen, 1997]

Φj = sin(jµ) , j = 1, . . . , n (G.7)

µ and λ are next determined, so all n equations in (G.6) are fulfilled. Insertion into the equations for
j = 2, . . . , n− 1 provides

− sin
(

(j − 1)µ
)

+ 2 sin(jµ)− sin
(

(j + 1)µ
)

− λ sin(jµ) = 0 ⇒
− sin(jµ) cos µ + cos(jµ) sin µ + 2 sin(jµ)− sin(jµ) cos µ− cos(jµ) sin µ− λ sin(jµ) = 0 ⇒
− sin(jµ)

(

cos µ− 2 + cos µ + λ
)

= 0 (G.8)

(G.8) is fulfilled for sin(jµ) = Φj = 0, which corresponds to the trivial solutions. Hence, (G.7)
represents non-trivial solutions, if the following relation is fulfilled between λ and µ

λ = 2
(

1− cos µ
)

(G.9)

Upon insertion of (G.7) into the first equation in (G.6), it is seen that fulfillment of this equation
again leads to the relation (G.9). Finally, insertion into the last equation of (G.6) provides

− sin
(

(n− 1)µ
)

+ sin(nµ)− λ sin(nµ) = 0 ⇒
− sin(nµ) cos µ + cos(nµ) sin µ + sin(nµ)− 2 sin(nµ) + 2 sin(nµ) cos µ = 0 ⇒
− sin(nµ) + sin(nµ) cos µ + cos(nµ) sin µ = 0 ⇒
sin
(

(n + 1)µ)
)

= sin(nµ) = sin(π − nµ) (G.10)

where (G.9) has been used to eliminate λ. (G.10) has the solutions

(n + 1)µ = nµ + 2π(l − 1) ⇒ µl = 2π(l − 1)

(n + 1)µ = π − nµ + 2π(l − 1) ⇒ µl =
2l − 1

2n + 1
π







, l = 1, 2, . . . , n (G.11)

The first solution implies that sin(jµl) = 0, and hence implies the trivial solution. The second solution
determines the non-trivial solutions to the problem. The components of the lth eigenmode become

Φ
(l)
j = sin

(

jµl

)

= sin

(

j
2l − 1

2n + 1
π

)

, l = 1, 2, . . . , n (G.12)

The undamped angular eigenfrequencies follow from (G.9) and (G.11)
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ωl = ω0

√

2
(

1− cos µl

)

= ω0

√

2

(

1− cos
( 2l − 1

2n + 1
π
)

)

, l = 1, 2, . . . , n (G.13)

For a two storey frame (G.12) and (G.13) provides the results

ω2
l =











√

2
(

1− cos(π/5)
)

ω0 , l = 1
√

2
(

1− cos(3π/5)
)

ω0 , l = 2











(G.14)

ΦΦΦ(l) =



















[

sin(π/5)

sin(2π/5)

]

, l = 1

[

sin(3π/5)

sin(6π/5)

]

, l = 2



















(G.15)

Modal Masses

ml = mΦΦΦ(l)T IΦΦΦ(l) = m

n
∑

j=1

(

Φ
(l)
j

)2

= m

n
∑

j=1

sin2
(

jµl) =

m

(

2n + 1

4
− 1

4

sin
(

(2n + 1)µl

)

sin µl

)

=
2n + 1

4
m (G.16)

where it has been used that sin
(

(2n + 1)µl

)

= sin
(

(2l − 1)π
)

= 0. Hence, the modal masses are
identical for all modes.

Modal Damping Ratios

2 ζl ωl ml = ΦΦΦ(l)T CΦΦΦ(l) =
c

k
ΦΦΦ(l)T KΦΦΦ(l) =

c

k
ω2

l ml ⇒

ζl =
1

2

c

k
ωl = ζ0

√

2

(

1− cos
( 2l − 1

2n + 1
π
)

)

, l = 1, . . . , n (G.17)

where C and K are the modal damping matrix and modal stiffness matrix, respectively.

Modal Loads

Fl(t) = −ΦΦΦ(l)T b ẍ0(t) (G.18)

where
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ΦΦΦ(l)T b =

n
∑

j=1

Φ
(l)
j =

n
∑

j=1

sin
(

jµl) =

1

2

cos
(

µl

2

)

− cos
(

(2n + 1)µl

2

)

sin
(

µl

2

) =
1

2

cos
(

µl

2

)

sin
(

µl

2

) , l = 1, 2, . . . , n (G.19)

where it has been used that cos
(

(2n + 1)
µj

2

)

= cos
(

(2l − 1)π
2

)

= 0.

Frequency Response Function of Relative Storey Displacements

Now, the frequency response function of the relative storey displacement is determined. The frequency
response matrix of the system admits the following expansion in outer products of the eigenmodes
[Nielsen, 2007b]

H(z) =
(

I z2 + 2 ζ0 ω0 kz + ω2
0 k
)−1

=
n
∑

l=1

ΦΦΦ(l)ΦΦΦ(l)T

ml

(

z2 + 2 ζl ωl z + ω2
l

) (G.20)

The relative displacement between the j − 1th and jth storey is given as

yj(t) = xj(t)− xj−1(t) = aT
j x(t) (G.21)

where
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← jth component
, j = 2, . . . , n (G.22)

A harmonically varying support point acceleration with the amplitude Ẍ0(z) causes a harmonically
varying relative storey displacement with the amplitude Ÿj(z) given as

Ÿj(z) = Hj(z)Ẍ0(z) (G.23)

where

Hj(z) = −aT
j H(z)b = −aT

j

(

n
∑

l=1

ΦΦΦ(l)ΦΦΦ(l)T

ml

(

z2 + 2 ζl ωl z + ω2
l

)

)

b =

n
∑

l=1

cjl

z2 + 2 ζl ωl z + ω2
l

(G.24)
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cjl = − 1

ml
aT

j ΦΦΦ(l) ΦΦΦ(l)T b = − 4

(2n + 1)m

(

Φ
(l)
j − Φ
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)
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(
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(
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(
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2
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2

)

cos
(µl

2
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(G.25)

Upon assembling the terms within the summation in (G.24) with a common denominator the frequency
response function may be written as the following rational function

Hj(z) =
Pj(z)

Q(z)
(G.26)

Pj(z) = pj0z
2n−2 + pj1z

2n−3 + · · ·+ pj 2n−3z + pj 2n−2 , j = 1, . . . , n (G.27)

Q(z) =

2n
∏

k=1

(z − zk) (G.28)

where the poles zk are given as

z2k−1

z2k

}

= ωk

(

−ζk ±
√

1− ζ2
k

)

, k = 1, . . . , n (G.29)

The function values of Pj(z) can be evaluated from the relation

Pj(z) = Hj(z)Q(z) =

n
∑

l=1

cjl

z2 + 2 ζl ωl z + ω2
l

·
2n
∏

k=1

(z − zk) (G.30)

By entering 2n − 1 different values of z (G.29) a linear system of equations may be formulated from
which the coefficients pj0, pj1, . . . , pj 2n−3, pj 2n−2 in (G.27) may be determined. For n=5, m = ω0 = 1,
ζ0 = 0.01 the following results are obtained for the 5 interstoreys

→ l = 0, · · · 8
↓
j

∣
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∣
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∣

∣

−1.0000 −0.1600 −8.0084 −0.8402 −21.0240 −1.2002 −20.0120 −0.4000 −5.0000
−0.0000 −0.0200 −1.0024 −0.2401 −6.0120 −0.6001 −10.0096 −0.3200 −4.0000
−0.0000 0.0000 −0.0004 −0.0400 −1.0048 −0.2401 −4.0072 −0.2400 −3.0000

0.0000 −0.0000 0.0000 −0.0000 −0.0012 −0.0601 −1.0048 −0.1600 −2.0000
−0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 −0.0024 −0.0800 −1.0000
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∣

∣
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Table 1: Coefficients pjl for the numerator polynomials in the frequency response function for the jth
relative interstorey displacement yj(t) for a 5 storey shear frame. m = 1, ζ0 = 0.01, ω0 = 1.

As seen from the table the order of the numerator polynomials decrease with one for each storey above
the surface. Hence, the response of these become increasingly smooth.
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Appendix H

Assessments of the Broken Line Process

Some issues can occur when generating the broken line process which will be investigated in this
appendix. Consider a random variable Õj of the broken line process randomly interpolated linearily
between the two variables Oi and Oi+1 cf. figure H.1. O1 . . . On are independent zero-mean normally
distributed random variables with the variance σ2

O. The random variable Õj is obtained by

Õj = Oi + (Oi+1 −Oi)
ǫ∆tbl

∆tbl
(H.1)

where ǫ is a random uniformly distributed variable in the interval [0, 1]. Note that Õj is not Gaussian

unless ǫ is deterministic. The reason for distinguishing between indices i and j on the O and Õ
processes is that the number of interpolated time intervals for the Õ process is not equal to the
number of original time steps for the O process.

Since ǫ is independent of Oi and Oi+1, the expectation of Õj becomes

E
[

Õj

]

= E [Oi + (Oi+1 −Oi) ǫ] =

E [Oi] + E [Oi+1 −Oi] E [ǫ] = 0 (H.2)

The variance of Õj is determined by

Oi

Oi+1

Ti

Ti+1

¢tbl
eO(t)

t

²¢tbl

eOj

Figure H.1: Interpolation of the process Õj .
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E[ÕjÕj ] = E
[

O2
i

]

+
(

E
[

O2
i+1

]

+ E
[

O2
i

]

− 2E [OiOi+1]
)

E
[

ǫ2
]

+ 2 (E [Oi+1Oi]− E [OiOi]) E [ǫ]

= σ2
O + 2σ2

OE
[

ǫ2
]

− 2σ2
OE [ǫ] (H.3)

= σ2
O

(

1 +
2

3
− 1

)

=
2

3
σ2

O

If ǫ is deterministic as shown on figure H.2 σ2
Õj

is determined by

σ2
Õj

= σ2
O

(

2ǫ2 − 2ǫ + 1
)

(H.4)

As seen in (H.4), σ2
Õj

attains a value in the interval
[

1
2σ2

O, σ2
O

]

, whereby σ2
Õj

is unambiguous. In cases

where ∆tbl is an integer multiple r of ∆tI it corresponds to ǫ taking a sequence of r numbers in the
interval [0, 1]. For r → ∞ the analytical result is given by (H.3). By choosing the ratios ∆tbl

∆tI
and

∆tI

∆tbl
as irrational numbers a converging broken line process is achieved.
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t

¢tI = 2¢tbl

²

eOj

eOj+1

eOj+2

¢tI = 2¢tbl¢tI = 2¢tbl

Figure H.2: Interpolation of the broken line process when the integration time step is an integer multiple of
the broken line time step.
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Appendix I

RR&S

I.1 Implementation on one dof oscillator

In the following the so-called Takens-Bogdanov single degree of freedom, non-linear oscillator used in
[Pradlwarter and Schuëller, 1999] will be used for verification of the implementation of the method.
The oscillator is given by the equation of motion

ẍ = λ1 + λ2x + x2 + xẋ + X(t) ⇒ ẍ− λ2x− x2 − xẋ = λ1 + X(t) (I.1)

where X(t) is non-Gaussian noise bounded by ρ and given by

X(t) = ρ · sin(W (t))

where W (t) denotes the standard Wiener process, i.e. E[W 2(t)] = t for t ≥ 0. To verify the RR&S
algorithm the following values are used (λ1, λ2) = (−0.3,−1.0). The used threshold values are |xc| =
1.5 and |ẋc| = 100, where | · | denotes absolute value. For the given values of λ1 and λ2 (I.1) takes the
form

ẍ− xẋ + x− x2 = −0.3 + X(t) (I.2)

The barriers and initial conditions of the system are illustrated in figure I.1.

x

_x

(¡0:2416; 0:0)

1:5¡1:5

¡100

100

Figure I.1: Barriers and initial condition for Takens-Bogdanov oscillator.

According to [Pradlwarter and Schuëller, 1999], starting at time t = 0 with initial conditions (x, ẋ) =
(−0.2416, 0.0) the oscillator is unstable for ρ > ρc = 0.0924. This means that the oscillator will leave
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the save domain within an infinite time for ρ > ρc. Using CMC simulation only few samples passing
the threshold can be generated for ρc < ρ < 0.20. The first passage time probability distribution
function for this range is investigated in [Pradlwarter and Schuëller, 1999] using the discrete values
ρ = [0.19, 0.18, 0.17, 0.16, 0.15]. In the following only the first passage time probability distribution
function for ρ = 0.19 is used for verification.

The state vector of the oscillator is Z(t) = [x(t), ẋ(t)]T . The interval widths used in the normalisation
in (8.1) are set to s1 = s2 = 1.

The settings for the RR&S simulation are shown in table I.1.

N ρ ∆τ η P0 wmin K

200 0.19 1.0 0.5 0.4 5 · 10−5 6

Table I.1: Settings for the RR&S simulation in figure I.2.

The results of the CMC and RR&S simulation are shown in figure I.2.
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Figure I.2: First passage time distribution function for Takens-Bogdanov oscillator with settings as in table
I.1.

The result shown in figure I.2 is comparable with the top most result in figure I.3. Figure I.3 is a copy
of figure 4 in [Pradlwarter and Schuëller, 1999].
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Figure I.3: Estimates of exit probabilities of Takens-Bogdanov oscillator for various excitation ranges ρ
(DC[n]: distance controlled Monte Carlo (RR&S) using a sample size n; MCS[n]: direct Monte Carlo Simula-
tion using a sample size n). This figure corresponds to figure 4 in [Pradlwarter and Schuëller, 1999].

As the results in figure I.2 are comparable with results obtained by [Pradlwarter and Schuëller, 1999]
it is verified that the RR&S algorithm has been correctly implemented to the one dof non-linear
Takens-Bogdanov oscillator.

I.2 Implementation on two dof shear frame exposed to earthquake, static

load & carrier wave

The implementation of the RR&S algorithm onto the earthquake exposed two dof shear frame is the
first step toward implementing the algorithm on more complex systems. Before moving on to the
three dof wind turbine and the 5MW reference wind turbine the two dof shear frame is tested with
another set of loadings than just horisontal earthquake. The reason for this is a marked qualitatively
difference between the displacement response of the wind turbine tower and the two dof shear frame,
see figure I.4.
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0.4

a)

0 10 20 30 40 50

−1
0
1

b)

yt(t) [m]

y1(t)

σy1

t/Tt

t/T1

Figure I.4: a) Realisation of the tower fore-aft displacement response for the 5MW reference wind turbine.
b) Normalised realisation of the displacement response for the first storey of the frame.
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In figure I.4a a realisation of the tower fore-aft displacement obtained by the FAST program is shown
and in figure I.4b a realisation of the displacement for the first storey of the frame is shown. The time
has been normalised with respect to the eigenperiod. The eigenperiod for the tower is denoted Tt and
the eigenperiod for the frame is denoted T1. The values of the eigenperiod of the tower is

Tt =
2π

ω
=

2π

2.1
= 2.99 [seconds] (I.3)

where ω is the angular eigenfrequency of the tower fore-aft mode 1 from table C.3.

As seen from the figures the displacement response of the frame is narrow banded and has a mean
value zero whereas the fore-aft displacement response of the tower is broad banded and has a mean
value different from zero. To assess what effect this has to the efficiency of the mechanical energy as
distance variable, a set of loadings are constructed which causes the displacement response of the frame
to imitate the main characteristics of the displacement response of the tower. The tower response has
two characteristics, namely

• Static displacement

• Carrier wave

These characteristics arise due to the static and quasi-static nature of the wind load and it is shown in
appendix I.4 that these characteristics introduce some disturbing oscillations in the mechanical energy.

I.2.1 Two storey frame with modified loading

Up to now, the shear frame has only been exposed to horisontal earthquake with zero mean. To
resemble the characteristics from the wind turbine the shear frame is next exposed to an additional
horisontal static wind load Fs and a horisontal carrier load on both storeys as shown in figure I.5.
The static force, Fs is set to Fs = 50N. The carrier wave Fc is modelled as a harmonic varying load
with amplitude 10 and the angular frequency 2π/30 rad/s

Fc = 10cos

(

2π

30
t + Φi

)

N (I.4)

where Φi is a random phase associated with the ith realisation and uniformly distributed, Φi ∼
U(0, 2π). The earthquake acceleration, Ÿ0, is modelled as a bandlimited white noise with intensity
S0 = 1. As shown in figure I.5a the earthquake proces Ÿ0 gives rise to the relative forces F0 on the
storeys when describing the system in relative coordinates. Since the storey masses are the same for
both storeys F0 is also the same for both storeys. The relative loads entering in the equation of motion
in the case of relative coordinates are illustrated in figure I.5b.

A realisation of the load process and the corresponding relative displacement response for the first
storey is shown in figure I.6.

I.2.2 Candidates for distance variable

In the following some candidate expressions for the distance variable are assessed to choose a distance
variable to use when implementing the RR&S algorithm on FAST. The candidates are



Candidates for distance variable 145
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Fs + Fc + F0F0

F0 Fs + Fc + F0

Figure I.5: a) Relative loads on shear frame due to Ÿ0. b) All relative loads acting on shear frame.
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Figure I.6: a) Realisation of relative load process. a) Normalised realisation of displacement response relative
to the ground surface of the first storey of the frame.

1. Candidate 1 - Mechanical energy (static displacement is subtracted).

2. Candidate 2 - Mechanical energy.

3. Candidate 3 - Sum of absolute normalised displacements and velocities. Normalised with respect
to the maximum and minimum values.

4. Candidate 4 - Sum of absolute normalised displacements and velocities. Normalised with respect
to barrier levels.

5. Candidate 5 - Maximum mechanical energy within 1 eigenperiod.

6. Candidate 6 - Average mechanical energy within 1 eigenperiod.

7. Candidate 7 - Pradlwarter and Schuëller’s definition.

In the following the analytical expressions for the distance variables are given.

Candidate 1 is the mechanical energy, where the static displacement contribution has been subtracted
before calculating the mechanical energy. According to the observation in appendix I.4 concerning
oscillations in the mechanical energy due to a static displacement, this should be more efficient than
using the total mechanical energy. However, in appendix I.4 it is also argued that the carrier wave
introduces some oscillations in the same manner as the static displacement does. It is not possible
to circumvent the oscillations due to the carrier wave and the carrier wave is therefore expected to
have a negative influence on the efficiency of the mechanical energy as distance variable. The distance
variable l̃ for candidate 1 is given by
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l̃ =
1

2
(y(t)− ys(t))

T K(y(t)− ys(t)) +
1

2
ẏ(t)T M ˙y(t) (I.5)

where ys is the constant static displacement vector due to Fs given by ys = [ys1
, ys2

] where ys1
and

ys2
are the static displacement for the first and second storey, respectively. The static displacements

are found by exposing the shear frame only to the static load.

Candidate 2 is the mechanical energy, without subtracting the static displacement contribution.
Though, the observation in section I.4 does not favour this method, it is tested to verify the reduced
efficiency compared to candidate 1. The distance variable l̃ for candidate 2 is given by

l̃ =
1

2
y(t)T Ky(t) +

1

2
ẏ(t)T Mẏ(t) (I.6)

Candidate 3 is a weighting of the displacements and velocities. Each displacement and velocity
component of the state vector zT = [y1, y2, ẏ1, ẏ2] are mapped into the interval [0, 1] as shown be-
low. Furthermore, all displacements and velocities are weighted equally. The distance variable l̃ for
candidate 3 is given by

l̃ = z̃1 + z̃2 + z̃3 + z̃4 , z̃
(j)
i =

|z(j)
i | − zmin

i

zmax
i − zmin

i

(I.7)

where | · | denotes the absolute value, uppercase (j) denotes the jth realisation, zmin
i and zmax

i denotes
the minimum and maximum value of |zi|.

Candidate 4 is also a weighting of the displacements and velocities. In this case the displacements
and velocities are normalised with respect to their outcrossing barrier. In this connection a velocity
barrier is introduced. l̃ for candidate 4 is given by

l̃ =
|y1|
yc,1

+
|y2|
yc,2

+
|ẏ1|
ẏc,1

+
|ẏ2|
ẏc,2

(I.8)

where yc,i are displacements barriers, ẏc,i are velocity barriers. ẏc,i are calculated by assuming that
failure happens at a specific value of mechanical energy. The needed mechanical energy for a storey
to fail is then calculated as the potential energy the storey will have when reaching its displacement
barrier yc,i. The idea is then, to calculate the velocity barrier by putting the kinetic energy equal to
the potential energy which is needed for the storey to fail, i.e.

1

2
ky2

c,i =
1

2
mẏ2

c,i (I.9)

where k and m are the stiffness and mass of the storeys.

Candidate 5. l̃ is determined as the maximum value of the mechanical energy within the last
eigenperiod. The mechanical energy is calculated in the same way as shown for candidate 1. The
idea is to eliminate the effect of the oscillations by only using the maximum value within the last
eigenperiod. In this way the troughs in the oscillations are disregarded.
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Candidate 6. l̃ is determined as the average value of the mechanical energy within the last eigenpe-
riod. The mechanical energy is calculated in the same way as shown for candidate 1. The idea is to
reduce the effects of the oscillations by performing an average over the last eigenperiod.

Candidate 7. l is put equal to the state vector z. l̃ is then calculated by (8.1). This method is tested
to see if it provides better results when distributing the realisations uniformly in the state space z.

I.2.3 Assessment of candidates

In the following the candidates are compared pair-wise. The efficiency of the candidates are compared
by the number of outcrossings they produce and the candidate which produces the most outcrossings
is said to be the most efficient candidate. The comparison assumes that the parameter values of the
RR&S algorithm is the same for all simulations. The used RR&S simulation parameters are given in
table I.2.

α ∆τ/T1 β P0 wmin K N T/T1

6 0.1 0.8 0.5 1 · 10−9 10 2000 100

Table I.2: Parameter values for RR&S simulation in assessment of the distance variables candidate 1 to
candidate 7.

The barriers yci
are determined by (6.7) using µyi

and σyi
where µyi

is determined by exposing the
frame only to the static load Fs in both dofs and σyi

is determined by an ergodic sampling. The values
of µyi

and σyi
are given by

µµµy =

[

µy1

µy2

]

=

[

38.2
19.1

]

, σσσy =

[

σy1

σy2

]

=

[

10.7703
6.3797

]

(I.10)

In the following the candidates are compared pair-wise. To show that candidate 1 seems to provide
the best result, all candidates are compared to candidate 1. Candidate 1 seems to provide the most
efficient distance measures, based on a visual judgement of the first passage time distribution function
as well as on the number of outcrossings achieved. The number of outcrossings for each candidate is
shown in the legends of the figures.

Comparison of candidate 1 and 2. The first passage time distribution functions for candidate
1 and 2 are shown in figure I.7a. Candidate 1 has produced 860 outcrossings, whereas candidate 2
has only produced 4. A realisation of l̃ calculated by candidate 1 and 2 is shown in figure I.7c and
I.7d, respectively. The poor result produced by candidate 2 is assumed to be due to the very periodic
oscillations seen in l̃ in figure I.7.

Comparison of candidate 1 and 3. The first passage time distribution functions for candidate 1 and
3 are shown in figure I.8a. Candidate 3 has produced 102 outcrossings. A realisation of l̃ calculated
by candidate 1 and 3 is shown in figure I.8c and I.8d, respectively. The poor result produced by
candidate 3 is assumed to be due to the periodic troughs in l̃. When the displacement response is in
a trough, the displacement has a local minimum and the velocity is zero. Therefore l̃, calculated by
candidate 3, will have troughs at same time as the displacement response.

Comparison of candidate 1 and 4. The first passage time distribution functions for candidate 1 and
4 are shown in figure I.9a. Candidate 4 has produced 16 outcrossings. A realisation of L̃ calculated by
candidate 1 and 4 is shown in figure I.9c and I.9d, respectively. The poor result produced by candidate
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Figure I.7: a) Comparison of first passage distribution functions for candidate 1 and candidate 2. b)
Realisations of relative displacement response. c) Realisation of L̃ for candidate 1. d) Realisation of L̃ for
candidate 2.

4 is assumed to be due to same problem as described for candidate 3. When the displacement response
is in a trough, a local minimum occurs in l̃ for candidate 4.

Comparison of candidate 1 and 5. The first passage time distribution functions for candidate
1 and 5 are shown in figure I.10a. Candidate 5 has produced 326 outcrossings. A realisation of L̃
calculated by candidate 1 and 5 is shown in figure I.10c and I.10d, respectively. It appears that the
peak value of the mechanical energy within the latest eigenperiod is not a very good measure due to
a too short memory.

Comparison of candidate 1 and 6. The first passage time distribution functions for candidate
1 and 6 are shown in figure I.11a. Candidate 6 has produced 97 outcrossings. A realisation of L̃
calculated by candidate 1 and 6 is shown in figure I.11c and I.11d, respectively. Looking at l̃ in figure
I.11c and I.11d, it is seen that averaging the mechanical energy over the last eigenperiod delays the
peaks in l̃. This is assumed to reduce the efficiency of candidate 6.



Assessment of candidates 149

0 50 100
10

−9

10
−8

10
−7

10
−6

10
−5

a)

 

 

0 2 4 6 8 10 12 14 16 18 20
0

40

b)

 

 

0 2 4 6 8 10 12 14 16 18 20
0

500

c)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3
d)

Cand. 1 : 860 outcrossings
Cand. 3 : 102 outcrossings

FT (t)

yi

l̃

l̃

y1

y2

t/T1

t/T1

t/T1

t/T1

Figure I.8: a) Comparison of first passage distribution functions for candidate 1 and candidate 3. b)
Realisation of relative displacement response. c) Realisation of L̃ for candidate 1. d) Realisation of L̃ for
candidate 3.

Comparison of candidate 1 and 7. The first passage time distribution functions for candidate
1 and 7 are shown in figure I.12. Candidate 7 has produced 16 outcrossings. As l̃ calculated by
candidate 7 is not a scalar, no plots of l̃ is made. Candidate 7 works toward a uniformly distribution
of realisation in state space Z which is seen to be less efficient than distributing realisations in the
mechanical energy space.
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Figure I.9: a) Comparison of first passage distribution functions for candidate 1 and candidate 4. b)
Realisation of relative displacement response. c) Realisation of L̃ for candidate 1. d) Realisation of L̃ for
candidate 4.
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Figure I.11: a) Comparison of first passage distribution functions for candidate 1 and candidate 6. b)
Realisation of relative displacement response. c) Realisation of L̃ for candidate 1. d) Realisation of L̃ for
candidate 6.
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I.2.4 Conclusion

The conclusion from figure I.7 to I.12 is that candidate 1 is the most efficient of the candidates for
estimating the first passage times for the two dof shear frame exposed to the set of relative loadings
shown in figure I.5. A ranking of the candidates according to the produced number of outcrossings is
provided in table I.3.

Rank Candidate Outcrossings

1 1 860
2 5 326
3 3 102
4 6 97
5 4 16
5 7 16
6 2 4

Table I.3: Rank of candidate 1-7 based on the produced number of outcrossings.

Candidate 5 is the 2nd most efficient candidate. It seems that the attempt to smoothen candidate 1
by choosing the largest peak value within the last eigenperiod do not improve the efficiency, on the
contrary it reduces it. A problem with candidate 5 is that its efficiency depends on the displacement
response having a certain memory which it may not have. To illustrate the problem, consider figure
I.10d at the time t/T1 ≈ 7.2 where candidate 5 takes the value of the peak in figure I.10c at the same
time t/T1 ≈ 7.2. Now, candidate 5 maintains this value for the next eigenperiod as no other peaks
occur which exceeds this peak value. This implies that the realisation is equally important within
this eigenperiod, which it may not actually be. This issue seems to reduce the efficiency compared to
candidate 1.

Candidate 3 is the 3rd most efficient candidate. A problem with candidate 3 is that when the displace-
ment response enters a trough, the displacement has a minimum and the velocity is zero. Therefore,
l̃ is bound to experience a trough as well. These periodic troughs seems to reduce the efficiency of l̃
calculated by candidate 3.

Candidate 6 is the 4th most efficient candidate. Candidate 6 is another method to smoothen candidate
1. A problem with candidate 6 is that it displaces the peaks in candidate 1. This can be seen in figure
I.11d by considering the peak at t/T1 ≈ 7.9. Comparing the location of this peak with the response in
figure I.11b it is seen that the smoothening of candidate 1 displace the peak in time. Therefore, when
the peak at t/T1 ≈ 7.9 in figure I.11 occurs, the displacement response has already past its peak, and
is therefore no longer as important as candidate 6 implies that it is.

Candidate 4 and 7 both produced 16 outcrossings and is therefore considered equally inefficient.
They rank as the 5th most efficient candidates. What is noticed about candidate 4 is that it only
produced approximately 15% of the outcrossings achieved by candidate 3. This implies that how the
displacements and velocities are weighted has a significant influence on the efficiency.

The poor result produced by candidate 7 may be explained from figure I.13. Figure I.13a is a copy
of figure 8.7a from section 8.2 where it was argued that realisations which oscillates harmonically will
be well separated when distributed in the velocity displacement space. By considering figure I.13b it
can be argued that this is also the case when the realisations has a static displacement ys as this only
displaces the circles by ys.

However, if the realisations are influenced by a carrier wave, their quasi static displacements may
not be the same. In this case the realisations may have quasi static displacements ys,a and ys,b as
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Figure I.13: a) Illustration of A and B in the velocity and displacement space. b) Illustration of A and B in
the velocity and displacement space in case of a static displacement. c) Illustration of A and B in the velocity
and displacement space in the case of a static displacement and carrier wave.

illustrated by figure I.13c. This implies that the realisations are no longer well separated.

Candidate 2 ranks as number 6 and is thereby the less efficient candidate. The problem with candidate
2 is the static displacement, which in section I.4 is argued to introduce oscillations in the mechanical
energy. These oscillations have the effect that realisations close to failure are no longer well separated
from realisations far from failure in the mechanical energy space. The investigation of the distance
variables shows that candidate 1 is the most efficient of the 7 investigated candidates and candidate
1 is therefore used in the implementation onto the simple three dof turbine.

I.3 Non-uniform distribution of realisations

The suggested distance measure (8.3) works towards a uniform distribution in the D-space. A uniform
distribution is approached because the distance measure depends on the distance between neighbouring
realisations. Hereby, realisations with large distance measure implies that the density of realisations
should be increased in this area. In this way the whole range of the probability density function for
L is described equally well. When simulating first passage times at high barriers, it is as such of no
importance to have a description of the whole probability density function. A correct description is
only needed for the part of the probability density function where the outcrossings occur.

Therefore an alternative distance measure which increases the density of realisations in the failure area
of the probability density function is suggested. The distance measure which is proposed assumes that
the distance variable is a scalar which means that no difference is made between the normalised and
unnormalised distance variable, whereby l = l̃.

The idea is to make the distance measure depend on the distance from origo instead of the relative
distance to neighbouring realisations. In this way, realisations far away from origo, and thereby close
to failure will be considered more important and thereby be splitted.

The difference between the distance measure (8.3) and (I.11) is illustrated by figure I.14. The distance

measure (8.3) is calculated as illustrated by figure I.14a where the distance measure d
(j)
τ is calculated

as a weighted sum of distances to the neighbouring realisations.

In figure I.14b it is seen that the distance measure (I.11) will be given directly by the distance variable
as

d(j)
τi

= l(j)τi
(I.11)
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Figure I.14: a) Distance measure given by (8.3). b) Distance measure given by (I.11).

Using (I.11) as distance measure, implies that realisations with large l
(j)
τi will be considered important.

Hereby the realisation density will increase for high values of l
(j)
τi and decrease for low values of l

(j)
τi .

This is illustrated in figure I.15 where the realisation density is low towards zero and high towards
high values of lτi

.

The alternative distance measure (I.11) have been assessed by using it for simulation of the first passage
time probability distribution function for the 2-dof shear frame exposed to horisontal earthquake. The
parameter settings for the RR&S algorithm is given in table I.4.

α ∆τ/T1 η P0 wmin K N T [T1]

6 0.1 0.8 0.5 1 · 10−9 10 2000 100

Table I.4: Parameter settings for RR&S algorithm for assessment of distance measure given by (I.11).

The first passage time distribtion function produced by (8.3) and (I.11) have been compared in figure
I.15.

It can be concluded by a visual judegement of figure I.15 that the distance measure (I.14) produces a
very poor estimate. The reason for the poor result is seeked in the approximation of the probability
density function of L. Therefore an approximation of the probability density function by CMC simula-
tion and RR&S simulation is made. The approximations are seen in figure I.17 where 200 realisations
have been used to approximate the probability density function of L. In figure I.17a the probability
density function is approximated by a CMC simulation. It is seen that only the high probability area
of the probability density function is represented.

In figure I.17b the probability density function is represented by a RR&S simulation using the distance
measure (8.3). It is seen that the weights have been adjusted and a larger range of the probability
density function is described.

0
lτi

wτi

Figure I.15: Distribution of realiasations when using distance measure by (I.11).
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Figure I.17: a) Approximation of probability density function by CMC simulation. b) Approximation
of probability density function by RR&S simulation using (8.3) as distance measure. c) Approximation of
probability density function by RR&S simulation using (I.11) as distance measure.

In figure I.17c the probability density function is described by a RR&S simulation using the distance
measure (I.11). It seems that the RR&S algorithm with this distance measure and using N = 200 does
not represent the probability density function at all in the range lτi

= [0, 2000]. This has the effect
that the statistical mass which actually belongs to the interval lτi

= [0, 2000] is wrongly distributed
across the interval lτi

= [2000, 5500]. This has the effect that the associated with the realisations
which crosses out are too high. Looking at samples around lτi

= 3000 it is seen that the weights given
by figure I.17b are far below 10−5 whereas weights in figure I.17c are above 10−5. Therefore FT (t) is
poorly estimated.

The conclusion is that distributing the realisations differently than uniform may lead to a larger
statistical uncertainty on the estimates. It is thus important that areas with large statistical mass
is described properly which is best obtained by distributing the realisations uniformly. The distance
measure (I.11) is disregarded and (8.3) will be used in the further work.
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I.4 Mechanical energy oscillations

It is shown in the following that the kind of loading which the wind turbine experiences introduces
some oscillations in the mechanical energy which disturb the separation of the realisations according
to their closeness to failure. Thus, the realisations are no longer well separated as illustrated by figure
8.7c. This is assumed to reduce the efficiency of the distance variable.

To illustrate the problem a single dof system with stiffness k = 1 and mass m = 1 is considered. The
system is undamped and performs harmonic eigen vibrations around a static displacement ys with the
amplitude A and the angular frequency ω. Then,

y(t) = Acos(ωt) + ys , T =
2π

ω
(I.12)

where T is the eigenperiod. The mechanical energy of the system is given by

em(t) =
1

2
k(ys + Acos(ωt))2 +

1

2
m(−Aωsin(ωt))2 (I.13)

=
1

2
(k + mω2)A2 +

1

2
ky2

s + kysAcos(ωt) (I.14)

The term kysAcos(ωt) introduces oscillations in the mechanical energy as shown in figure I.18b where
ys/A = 0.05 has been used.

The oscillations in the mechanical energy disturb the distance measure as the displacement response
in figure I.18a should be equally important over the range t/T = [0, 3]. To emphasise the problem,
consider the case where the static displacement ys is equal to zero. In this case the mechanical energy
is constant, which implies that the response is equally important no matter what instant of time it
is observed. Now, adding a static displacement to the response should not change the importance of
the realisation. If ys is known it is possible to subtract this in (I.12) whereby a a distance measure
which do not oscillate still can be obtained. It therefore seems possible to circumvent the problem
concerning the static load.
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Figure I.18: a) Normalised displacement of (I.12). b) Normalised potential, kinetic and mechanical energy
for oscillation in figure I.18a.
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Low frequency load

The second characteristic in the loading of the wind turbine is the low frequency component in the wind
load, a so-called carrier wave. A carrier wave introduces a quasi-static displacement on the system
which introduces oscillations in the mechanical energy in quite the same way as seen for the static
load above. Since the carrier wave consists of low frequency oscillations only a negligible contribution
to the kinetic energy appears.

To illustrate the effect of a carrier wave a harmonic oscillation with a lower frequency is added to
(I.12). The harmonic oscillation is given by

yc(t) =
A

2
cos
( ω

10
t
)

(I.15)

The displacements y + yc and yc are shown in figure I.19a. The corresponding variation in mechanical
energy is shown in figure I.19b. It is seen that oscillations due to the carrier wave arise.
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Figure I.19: a) Normalised displacement. b) Normalised potential, kinetic and mechanical energy for oscil-
lation in figure I.19a.

When implementing RR&S on the wind turbine a distance variable which is effected as little as possible
by this type of carrier waves should be chosen. As this type of carrier waves are a part of the wind
load it can not be circumvented in the same way as for the static load.

I.5 Parameter analysis

In this section the influence of the parameters of the RR&S algorithm is investigated to evaluate
how sensitive the parameters are to variations. The assessment is performed on the two dof shear
frame exposed to horisontal earthquake and the mechanical energy is utilised for the distance variable.
The parameters are assessed by considering their influence on the estimated mean value µF̂T (600) and

standard deviation σF̂T (600) of the first passage time distribution function FT (t) at t = 600, denoted

FT (600). The reference for the assessment is the estimation of FT (600) for the barrier level α = 5
using N = 200. µF̂T (600) and σF̂T (600) are calculated from 50 estimates of FT (600) by
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µF̂T (600) =
1

50

50
∑

i=1

F̂
(i)
T (600) (I.16)

σF̂T (600) =
1

50

50
∑

i=1

(F̂
(i)
T (600)− µF̂T (600))

2 (I.17)

where uppercase (i) denotes the ith estimate of FT (600). For comparison a reference mean value
µref

FT (600) for FT (600) has been calculated using a CMC simulation with N = 106. The reference value
is simulated to

µref
FT (600) = 3.87 · 10−4 (I.18)

The assessed parameters are the time step between the evaluation points ∆τ , the minimum allowable
weight of samples wmin, the exponent in the imperical expression for the importance measure η, the
number of neighbouring samples K to use for calculating the distance measure and the killing rate
parameter P0.

Assessment of ∆τ

In this section the timestep between each evaluation point, ∆τ , is assessed to see if any arbitrary
low value can be chosen without making the method unstable. Furthermore it is investigated if some
optimal ∆τ seems to occur. The optimal ∆τ is considered as the value of ∆τ which provides the
correct mean value with the smallest variance.

Generally the evaluation time step ∆τ needs to be larger than the integration time step ∆t. Some
overall considerations when choosing ∆τ is firstly made according to: 1) the order of the failure
probability which is to be estimated. 2) the rate of change in the mechanical energy.

1) The order of the failure probability: What is noticed here, is that a certain number of splittings are
necessary in order to bring the weights down from the start weights to weights which as a minimum
are smaller than the failure probability. Consider as an example the case where 10 time series are used
to estimate a failure probability of 1%. As the start weights will be 1/10, 4-5 splittings are needed
in order to achieve weights of the order of 1%. However, as the weights are modified and normalised
during the RR&S algorithm, the necessary number of evaluation points are not found as simple as in
the example.

2) The rate of change in the mechanical energy: What is noticed here is that it seems reasonable not
to choose values of ∆τ which would give rise to peaks in the energy arising and disappearing within
∆τ . This is not preferable as a splitting of these peaks will increase the probability of an outcrossing.

In figure I.20 a realisation of the displacement response Y1(t) of the first storey relative to the ground
surface and a realisations of the mechanical energy Em(t) response of both storeys are shown. As the
response of the two storeys are rather afine only the displacement of the first storey is shown. What is
noticed about the mechanical energy response is that it is not as smooth as the displacement response.
The fuzziness of em is due to the equivalent white noise used as load, which makes the velocity process
non-differentiable.
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Figure I.20: a) Realisation of the displacement response Y1. b) Realisation of the mechanical energy Em of
the two storey frame.

Next, it is investigated if arbitrary small values of ∆τ will provide unbiased failure estimates. The
results are given in figure I.21, where the RR&S parameters used to produce the results are given in
table I.5.

N α ∆τ/T1 η P0 wmin K T [s]

200 5 [0.1, 10] 0.8 0.5 1 · 10−7 10 600

Table I.5: Parameter values for RR&S simulation in figure I.21.

Figure I.21a shows the mean value µF̂T (600) as a function of ∆τ and figure I.21b shows the standard
deviation σF̂T (600) as a function of ∆τ . From figure I.21b it is seen that the standard deviation
decreases when ∆τ decreases. This implies that the variance of an estimate by RR&S simulation can
be reduced simply by lowering ∆τ . But, decreasing the value of ∆τ also has a negative effect. From
figure I.21a it is seen that the algorithm produces a bias on the estimate of FT (600) when ∆τ goes
toward zero. It is suggested that this bias occur when the evaluation time step becomes so small that
a splitted realisation and its copy do not have enough time to develop into independent realisations
before the next evaluation time occurs. This means that the outcrossings are no longer independent
and a bias may be expected. By increasing ∆τ the variance is seen to increase and the mean value is
fluctuating around µref

FT (600).
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Figure I.21: a) Mean value of failure estimates as a function of ∆τ . b) Standard deviation of failure estimates
as a function of ∆τ .
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Figure I.21 is produced using the number of realisations N = 200. If N = 50 is used instead, the same
tendency is seen, i.e. increasing bias for ∆τ < T1. But, for increasing N the bias seems to converge
toward zero. This indicates that it is not a bias but a statistical uncertainty. Table I.6 shows results
for µF̂T (600) and σF̂T (600) for varying N and ∆τ . It thus seems possible to use values of ∆τ smaller
than T1 and still produce unbiased results of µF̂T (600).

N RR&S RR&S
(∆τ = 0.1T1) (∆τ = T1)

µF̂T (600) σF̂T (600) µF̂T (600) σF̂T (600)

[10−4] [10−4] [10−4] [10−4]
50 13.5 17.2688 7.50 18.5851
200 7.85 4.5595 4.10 4.6858
500 5.19 3.0499 3.91 2.8456

1.000 4.33 1.2144 4.52 3.5138
2.000 4.10 0.9202 4.05 1.3669

Table I.6: Estimates of FT (600) produced by RR&S simulation with two different values for ∆τ and five
different values of N .

The obtained gain when decreasing ∆τ is illustrated in figure I.22. Figure I.22a shows 50 estimates
of FT (t) which are produced using ∆τ = T1 and figure I.22b shows 50 estimates of FT (t) which are
produced using ∆τ = 0.1T1. It is seen that the variance of the estimates of FT (t) are reduced in figure
I.22b compared to figure I.22a.
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Figure I.22: a) 50 realisations of FT (600) for α = 5.0 using N = 1000 and ∆τ ≈ T1. b) 50 realisations of
FT (600) for α = 5.0 using N = 1000 and ∆τ = 0.1T1.

The conclusion from the investigation of ∆τ is that it seems reasonable to use values of ∆τ in the
interval ∆τ = [0.1T1, T1].

Assessment of wmin

wmin is the minimum allowable statistical weight of a realisation. [Pradlwarter and Schuëller, 1999]
states that it must be selected small enough to assess the failure domain, but not too small as it will
lead to an increased variance of the reliability estimation. As example is mentioned, that if a failure
probability of the order 10−5 is to be estimated, then wmin = 10−5 is too large and wmin = 10−9 is
too small, whereas wmin = 10−7 would be more appropriate.



162 Chapter I. RR&S

In figure I.23 the mean value µF̂T (600) and standard deviation σF̂T (600) is shown as a function of wmin.
The parameters used for the RR&S simulations are shown in table I.7.

From figure I.23 it seems that the value of wmin is less critical compared to ∆τ . Increasing wmin

towards 10−4 shows a slight divergence from µref
F̂T (600)

. However, when wmin is increased, the number

of outcrossings are reduced and therefore the divergence in figure I.23a is believed not to be a bias,
but rather due to random fluctuations around µref

FT (600). In figure I.23b it is seen that the standard

deviation seems rather insensible to wmin. Values of wmin close to µref
F̂T (600)

shows an increase in the

variance. Lowering wmin several orders of magnitude below µref
F̂T (600)

seems only to lower the variance

of µF̂T (600). The increase in variance, which [Pradlwarter and Schuëller, 1999] have indicated to occur
when decreasing wmin too much is not seen in this assessment.

The most significant effect when varying wmin is the number of outcrossing which is experienced. This
is clearly seen on figure I.24. Figure I.24a shows 50 estimates of FT (t) using wmin = 10−4 and figure
I.24b shows 50 estimates of FT (t) using wmin = 10−7.

The conclusion from the assessment of wmin is that it seems reasonable to use values of wmin at least a
few orders of magnitude below the failure probability which is simulated. As indicated by [Pradlwarter
and Schuëller, 1999] then wmin = 10−5 is a too low value of wmin for simulation of failure probabilities
around 10−5. No significant difference in the variance is experienced when using values of wmin 2-4
orders of magnitude lower than the simulated failure probability.

Assessment of η

η is the exponent in the imperical expression for the importance measure. It determines the influence of
the weight to the distance measure. The importance measure is defined by [Pradlwarter and Schuëller,
1999] as

N α ∆τ/T1 η P0 wmin K T

200 5 1 0.8 0.5 [10−9, 10−4] 10 600

Table I.7: Parameter values for RR&S simulations in figure I.23.
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Figure I.23: a) Mean value of failure estimates as a function of wmin. b) Standard deviation of failure
estimates as a function of wmin.
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Figure I.24: a) 50 realisations of FT (t) for α = 5.0 using N = 200 and wmin = 5 · 10−4. b) 50 realisations of
FT (t) for α = 5.0 using wmin = 10−7.

c(j)
τ =

d
(j)
τ

1 +
(

ln
(

v
(j)
τ

))η (I.19)

where c
(j)
τ is the importance measure, d

(j)
τ is the distance measure and ν

(j)
τ is the weight measure.

In figure I.25 the importance measure from (I.19) has been normalised with respect to the distance

measure d
(j)
τ and it is seen how the weights are suppressed faster if η is low. Using η = 0 means that

the weights no longer have any influence on the importance measure.

In figure I.26 µF̂T (600) and σF̂T (600) is shown as a function of η. In figure I.26 it is seen that µF̂T (600)

fluctuates as η goes towards zero. Furthermore, σF̂T (600) increases as η goes towards zero.

The parameters for the RR&S algorithm used to produce figure I.26 are shown in table I.8.

The conclusion from the assessment of η is that it seems reasonable to use values of η around 0.8-1.5.
In [Pradlwarter and Schuëller, 1999] values of η between 0.5-0.8 is used. The choice of η is therefore
not unambiguous.
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Figure I.25: Normalised importance measure as a function of the weight measure.
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Figure I.26: a) Mean value of failure estimates as a function of η. b) Standard deviation of failure estimates
as a function of η.

N α ∆τ/T1 η P0 wmin K

200 5 1 [0,1.5] 0.5 1 · 10−7 10

Table I.8: Parameter values for RR&S in figure I.26.

Assessment of K

K is the number of neighbouring realisations which are included in the calculation of the distance and
weight measure. [Pradlwarter and Schuëller, 1999] suggests the following expression for how the K
neighbouring realisations should be weighted. This expression is given by

ai = 21−i , i = 1, . . . ,K (I.20)

Where ai is the weight given to the ith closest realisation. By (I.20) the closest neighbouring realisa-
tions have an influence on the distance measure, whereas other realisations have negligible influence.
As figure I.27 shows then values of K above 10 seems unnecessary.

Assessment of ai

The weights ai are used in the expressions for calculating the distance measure (8.2) and weights
measure (8.5). [Pradlwarter and Schuëller, 1999] suggests to use an expression for ai given by
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Figure I.27: Weights a as a function of K.
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ai = 21−i (I.21)

To assess the effect of the weights ai, µF̂T (600) and σF̂T (600) are first calculated by RR&S simulation

using (I.21). These results are compared with results for µF̂T (600) and σF̂T (600) calculated by RR&S
simulation using the constant values of the weights ai given by

ai = 1 (I.22)

The parameter values for the RR&S algorithm is given in table I.9.

N α ∆τ/T1 η P0 wmin K

200 5 1 0.8 0.5 1 · 10−7 10

Table I.9: Parameter values for RR&S algorithm used to produce results in table I.10.

The results are shown in table I.10. It is seen that no significant difference is seen in neither µF̂T (600)

or σF̂T (600).

ai µF̂T (600) σF̂T (600)

21−i 5.18 · 10−4 7.38 · 10−4

1 4.62 · 10−4 7.99 · 10−4

Table I.10: Two estimates of µFT (600) and σFT (600) using (I.21) and (I.22) for ai.

The conclusion from the assessment of ai is that no significant difference is seen in µF̂T (600) or σF̂T (600)

when using the expression (I.22) instead of (I.21).

Assessment of P0

P0 controls the rate of killing of ”unimportant” realisations. [Pradlwarter and Schuëller, 1999] suggests
the following expression for the killing probability

p(j)
τ =

{

1 if ĉ
(j)
τ ≥ 1

1− P0(1− ĉ
(j)
τ ) if ĉ

(j)
τ < 1

ĉ
(j)
τ is the normalised importance measure, where ĉ

(j)
τ > 1 characterises the jth realisation as important

and ĉ
(j)
τ < 1 as unimportant. The survival probability, of the unimportant realisations will then be

in the interval [1 − P0, 1[. Setting P0 too high can then have the effect that more realisations are to
be killed than the amount of important realisations available to split. If this happens the algorithm
will start to split unimportant realisations which have survived Russian Roulette. If the algorithm
runs out of realisations to split it aborts. The conclusion is that P0 should be set as high as possible
as this will imply the largest possible interchange between important and unimportant realisations.
Decreasing P0 will simply mean that fewer important realisation are splitted as fewer unimportant
realisations are killed.
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Conclusion

The conclusion of the parameter analysis is that the most crucial parameter is ∆τ as this parameter has
great influence on the variance of the estimate of FT (t). The optimal value seems to be somewhere in
the range [0.1T1, T1] eigenperiods. wmin increases the variance if it is set to high and the value of wmin

should therefore be around two orders of magnitude smaller than the simulated failure probability.
The choice of η was not unambiguous but the assessment shows that η = 0.8 is a reasonable value.
P0 should be choosen as high as possible, but setting P0 too high will make the algorithm abort. The
value of P0 is therefore not unambiguous but a value of P0 = 0.5 has been used in all the RR&S
simulations performed in this section. The weights ai does not seem to have any significant influence
and it can be chosen to put them constant ai = 1. However, in all simulations performed in the thesis
the weights ai = 21−i is used.
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Appendix J

Importance Sampling

J.1 Stochastic differential equations

Itô Stochastic Differential Equations

The standard form of a one-dimensional stochastic differential equation for the unknown response
process {X(t) , t ∈ [0, T ]} is given as [Arnold, 1974]

dX(t) = µ
(

X(t), t
)

dt + σ
(

X(t), t
)

dW (t) , t > 0

X(0) = X0

}

(J.1)

The indicated equation is referred to as an Itô stochastic differential equation after the mathematician
who at first presented the theory on a rigorous footing. {W (t) , t ∈ [0, T ]} is a unit Wiener process,
which is defined below. X0 is the initial value, which may be a stochastic variable. µ

(

X(t), t
)

and

σ
(

X(t), t) are denoted the drift term and diffusion term, respectively. It is shown below, that the drift

and diffusion terms control the mean value function E
[

X(t)]
]

and the variance of {X(t) , t ∈ [0, T ]},
respectively. For an unloaded system with deterministic start x(0) = x0, Eq. (J.1) reduces to

dx(t)

dt
= µ

(

x(t), t
)

, t > 0

x(0) = x0







(J.2)

Hence, in a generalized multi-dimensional version the drift term determines the non-linear eigenvibra-
tion of the system. Correspondingly, the drift and diffusion terms represent the internal and external
forces in a non-linear discretized model of the structure on state vector form.

dX(t) = X(t+dt)−X(t) indicates the increment of the response process during the interval ]t, t+dt].
Similarly, dW (t) = W (t + dt)−W (t) indicates the increment in the same interval of the unit Wiener
process {W (t) t ∈ [0, T ]}, which is a continuous, non-differential, Gaussian process fulfilling the
properties [Nielsen, 2007b]

W (0) = 0

E
[

W (t)
]

= 0

E
[

W (t1)W (t2)
]

= min(t1, t2)

E
[(

W (t2)−W (t1)
)(

W (t4)−W (t3)
)]

= 0 , t1 < t2 < t3 < t4























(J.3)

As a consequence, the increment dW (t) becomes normal distributed with the mean value 0 and the
variance dt, i.e. dW (t) ∼ N(0, dt). Further, the increment dW (t1) and dW (t2) belonging to different
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intervals are mutual independent, and independent of the initial value X0. In turn, this means that
σ
(

X(t), t) and dW (t) becomes independent random variables. This implies that the evolution of the
mean value function is obtained from

E
[

dX(t)
]

= dE
[

X(t)
]

= E
[

µ
(

X(t), t
)

dt
]

+ E
[

σ
(

X(t), t) dW (t)
]

=

E
[

µ
(

X(t), t
)]

dt + E
[

σ
(

X(t), t)
]

E
[

dW (t)
]

= E
[

µ
(

X(t), t
)]

dt ⇒
d

dt
E
[

X(t)
]

= E
[

µ
(

X(t), t
)]

(J.4)

(J.4) is solved with the initial value E
[

X(0)
]

= E
[

X0

]

. Hence, the evolution of the mean value
function is controlled by the mean of the drift term and the mean of the initial value X0.

Assume that X(t) realizes the value X(t) = x at the time t. Then, dX(t) becomes normal distributed
with the mean value µ(x, t) dt and the variance σ2(x, t)dt, i.e. dX(t) ∼ N

(

µ(x, t) dt, σ2(x, t)dt
)

. The
indicated distribution should be interpreted as the distribution of dX(t) on condition of X(t) = x.
The essential point is that dX(t) = X(t+ dt)−x only depends on dW (t) = W (t+ dt)−W (t) and the
latest realized value x. More generally, on condition that X(t1) = x1 is known, the response X(t2) at a
later time t2 only depends on the sub-Wiener process {W (t) , t ∈]t1, t2]} and x1, whereas realizations
previous to t1 of the response process and the Wiener process are of no importance. Such a process
with restricted memory is denoted a Markov process.

Stochastic Differential Equations in Engineering

The engineering interpretation of (J.1) is given as

dX̃(t)

dt
= µ

(

X̃(t), t
)

+ σ
(

X̃(t), t) w̃(t) , t > 0

X(0) = X0











(J.5)

where {w̃(t) , t ∈ [0, T ]} is a broad-banded stationary zero-mean Gaussian process with finite variance,
for which the double-sided auto-spectral density function attains the value S0 = 1

2π over a sufficiently
broad frequency range encompassing all significant eigenfrequencies of the structure. As the band-
width of the excitation process {w̃(t) , t ∈ [0, T ]} is extended beyond limits it is assumed that the
process may by replaced by a unit white noise process {w̃(t) , t ∈ [0, T ]}, i.e. a Gaussian process with
the properties

E
[

w̃(t)
]

= 0

E
[

w̃(t1)w̃(t2)
]

= δ(t2 − t1)

}

(J.6)

where δ(·) denotes the Dirac delta function. Despite the Wiener process is not differentiable, w(t) is

interpreted as the formal derivative dW (t)
dt of a unit Wiener process in engineering. If this derivative is

inserted for w̃(t) in (J.5), Eq. (J.1) is formally recovered. The problem is whether the response process
{X̃(t) , t ∈ [0, T ]} obtained from (J.5) in the limit as the band-width goes to infinity is the same
response process as obtained from (J.1). Unfortunately, the answer to this question is no. Instead the
limit process is obtained as the solution to the so-called Stratonovich stochastic differential equation
given as
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dX̃(t) = µ
(

X̃
(

t + 1
2dt
)

, t + 1
2dt
)

dt + σ
(

X̃
(

t + 1
2dt
)

, t + 1
2dt
)

dW (t) , t > 0

X̃(0) = X0







(J.7)

The essential difference to Eq. (J.1) is that the drift- and diffusion terms are now evaluated in the midst

of the interval ]t, t+dt]. This is of no importance for the drift term. However, σ
(

X̃
(

t+ 1
2dt
)

, t+ 1
2dt
)

and

dW (t) are no longer mutual mutual independent, so the expectation of σ
(

X̃
(

t + 1
2dt
)

, t + 1
2dt
)

dW (t)

does not vanishes, but causes a net drift of system. In order to calculate this net contribution the
following first order Taylor expansion is considered

σ
(

X̃
(

t + 1
2dt
)

, t + 1
2dt
)

= σ
(

X̃(t), t
)

+
∂σ
(

X̃(t), t
)

∂t
1
2dt +

∂σ
(

X̃(t), t
)

∂X

(

X̃
(

t + 1
2dt
)

− X̃
(

t
)

)

=

σ
(

X̃(t), t
)

+
∂σ
(

X̃(t), t
)

∂t
1
2dt +

∂σ
(

X̃(t), t
)

∂X

(

µ
(

X̃(t), t
)

1
2dt + σ

(

X̃(t), t
)

(

W
(

t + 1
2dt
)

−W
(

t
)

)

)

(J.8)

Then,

E
[

σ
(

X̃
(

t + 1
2dt
)

, t + 1
2dt
)

dW (t)
]

=

E

[

∂σ
(

X̃(t), t
)

∂X
σ
(

X̃(t), t
)

(

W
(

t + 1
2dt
)

−W
(

t
)

)(

W
(

t + dt
)

−W
(

t
)

)

]

=

E

[

∂σ
(

X̃(t), t
)

∂X
σ
(

X̃(t), t
)

]

E
[(

W
(

t + 1
2dt
)

−W
(

t
)

)(

W
(

t + dt
)

−W
(

t
)

)]

=

E

[

∂σ
(

X̃(t), t
)

∂X
σ
(

X̃(t), t
)

]

E

[

(

W
(

t + 1
2dt
)

−W
(

t
)

)2
]

=

E

[

∂σ
(

X̃(t), t
)

∂X
σ
(

X̃(t), t
)

]

1
2dt (J.9)

This suggests the equivalence of (J.7) with the following Itô differential equation

dX̃(t) =

(

µ
(

X̃(t), t
)

+
1

2

∂σ
(

X̃(t), t
)

∂X
σ
(

X̃(t), t
)

)

dt + σ
(

X̃(t), t
)

dW (t) , t > 0

X̃(0) = X0















(J.10)

Actually, the validity of (J.7) can be proven. The indicated correction of the drift term is known as
the Wong-Zakai correction.[Wong and Zakai, 1965]
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J.1.1 Girsanov’s Theorem

¢t (j ¡ 1)¢t j¢t

¢w1

¢wj

¢wM

(M ¡ 1)¢t T = M¢t

W (t)

Figure J.1: Increments of a unit Wiener process.

Let the interval [0, T ] be divided into m subintervals each of the length ∆t = T
M . Then, a unit Wiener

process {W (t) , t ∈ [0, T ]} is discretized into an M -dimensional vector

∆WT = [∆W1,∆W2, . . . ,∆WM ] (J.11)

where ∆Wj denotes the increment in the jth subinterval, cf. figure J.1.

∆Wj = W
(

j∆t
)

−W
(

(j − 1)∆t
)

, j = 1, . . . ,M (J.12)

The random variables ∆Wj are mutually independent and identical distributed normal random vari-
ables with zero mean and variance ∆t, i.e. the probability density function is given as

f∆Wj
(∆wj) =

1
(

2π∆t
)1/2

exp

(

−
∆w2

j

2∆t

)

(J.13)

Then, the joint probability density function of ∆W becomes

f∆W(∆w) =

M
∏

j=1

f∆Wj
(∆wj) =

1
(

2π∆t
)M/2

exp

(

−
∑M

j=1 ∆w2
j

2∆t

)

(J.14)

Next, consider an auxiliary stochastic process {W̃ (t) , t ∈ [0, T ]}, where
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W̃ (t) = W (t) +

∫ t

0

u(s)ds (J.15)

where u(t) is a suitable chosen function. (J.15) is known as the Girsanov transformation.[Girsanov,
1960]
{W̃ (t) , t ∈ [0, T ]}, is dicretized in the same way as {W (t) , t ∈ [0, T ]} into an n-dimensional
vector

∆W̃T = [∆W̃1,∆W̃2, . . . ,∆W̃M ] (J.16)

where ∆W̃j denotes the increment of {W̃ (t) , t ∈ [0, T ]} in the jth subinterval

∆W̃j = W̃
(

j∆t
)

− W̃
(

(j − 1)∆t
)

≃ ∆Wj + uj∆t , j = 1, . . . , n (J.17)

and uj = u(j∆t). The random variables ∆W̃j are mutually independent normal random variables
with mean value uj∆t and variance ∆t, i.e. the probability density function is given as

f∆W̃j
(∆w̃j) =

1
(

2π∆t
)1/2

exp

(

−
(

∆w̃j − uj∆t
)2

2∆t

)

(J.18)

The joint probability density function of ∆W̃ becomes

f∆W̃(∆w̃) =
M
∏

j=1

f∆W̃j
(∆w̃j) =

1
(

2π∆t
)M/2

exp

(

−
∑M

j=1

(

∆w̃j − uj∆t
)2

2∆t

)

(J.19)

Hence, the Radon-Nikodym derivative of the measure P∆W(∆w̃) with respect to the measure P∆W̃(∆w̃)
at the sample point ∆w̃ becomes

dP∆W(∆w̃)

dP∆W̃(∆w̃)
=

f∆W(∆w̃)

f∆W̃(∆w̃)
= exp





M
∑

j=1

uj∆w̃j −
1

2

M
∑

j=1

u2
j∆t



 (J.20)

Let M → ∞. Then, ∆W and ∆W̃ converge to the stochastic processes {dW (t) , t ∈ [0, T ]} and
{dW̃ (t) , t ∈ [0, T ]}. Let P{dW} and P{dW̃} denote the probability measures of the infinite many
stochastic variables contained in the indicated processes. Then, the Radon-Nikodym derivative of
P{dW}[dw̃(t)] with respect to P{dW̃}[dw̃(t)] evaluated at increments of the same sample curve w̃(t) of

{W̃(t) , t ∈ [0, T ]} follows from the limit of (J.20)
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dP{dW}[dw̃(t)]

dP{dW̃}[dw̃(t)]
= exp

(

∫ T

0

u(t)dw̃(t)− 1

2

∫ T

0

u2(t)dt

)

(J.21)

We search the realizations x̃j(t) of the process {X̃(t) , t ∈ [0, T ]}, obtained when the Wiener unit

process in (J.1) is replaced by the process {W̃ (t) , t ∈ [0, T ]}, i.e.

dX̃(t) = µ
(

X̃(t), t
)

dt + σ
(

X̃(t), t
)

dW̃ (t) , t > 0

X̃(0) = X0

}

(J.22)

From (J.15) follows

dW̃ (t) = dW (t) + u(t) dt (J.23)

Then, (J.21) and (J.22) may be rewritten in the form

dP{dW}[dw̃(t)]

dP{dW̃}[dw̃(t)]
= exp

(

−
∫ T

0

u(t)dw(t)− 1

2

∫ T

0

u2(t)dt

)

(J.24)

dX̃(t) =
(

µ
(

X̃(t), t
)

+ σ
(

X̃(t), t
)

u(t)
)

dt + σ
(

X̃(t), t
)

dW (t) , t > 0

X̃(0) = X0







(J.25)

In (J.25) {W (t) , t ∈ [0, T ]} denotes a unit Wiener process, and dw(t) in (J.24) represents the incre-
ments of a given realization w(t) of this process.

Let w1(t), . . . , wN (t) denote N realizations of {W (t) , t ∈ [0, T ]}, and let x̃1(t), . . . , x̃N (t) be the
corresponding realizations of {X̃(t) , t ∈ [0, T ]}, obtained by numerical integration of the differential
equation of (J.25). Then, an unbiased estimate of the failure probability is given as

P̂f =
1

N

N
∑

j=1

I[x̃j(t)]
dP{dW}[dw̃j(t)]

dP{dW̃}[dw̃j(t)]
=

1

N

N
∑

j=1

I[x̃j(t)] exp

(

−
∫ T

0

u(t)dwj(t)−
1

2

∫ T

0

u2(t)dt

)

(J.26)

I[x̃j ] denotes an indicator functional, which is 1, if the realization x̃j(t) causes failure, and 0, if x̃j(t)
remains in the safe domain throughout the interval [0, T ]. It should be emphasized that (J.26) pro-
vides an unbiased estimate of the failure probability no matter which function u(t) is used. However,
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should the method be efficient it is of importance that the function, which is referred to as the sample
control function, will induce failure in approximated half of the realization. In turn this means that

the Radon-Nikodym derivative
dP{dW}[dw̃(t)]

dP{dW̃}[dw̃(t)] should attain a small value.

The Itô stochastic differential equation an n-dimensional dynamic response process {X(t) , t ∈ [0, T ]}
is given as

dX(t) = µµµ
(

X(t), t
)

dt + σσσ
(

X(t), t
)

dW(t) , t > 0
X(0) = X0

}

(J.27)

X(t) =











X1(t)

X2(t)

...
Xn(t)











, W(t) =











W1(t)

W2(t)

...
Wn(t)











, µµµ
(

X(t), t
)

=











µ1

(

X(t), t
)

µ2

(

X(t), t
)

...
µn

(

X(t), t
)











σσσ
(

X(t), t
)

=













σ11

(

X(t), t
)

σ12

(

X(t), t
)

· · · σ1m

(

X(t), t
)

σ21

(

X(t), t
)

σ22

(

X(t), t
)

· · · σ2m

(

X(t), t
)

...
...

. . .
...

σn1

(

X(t), t
)

σn2

(

X(t), t
)

· · · σnm

(

X(t), t
)










































































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





(J.28)

The n-dimensional vector µµµ
(

X(t), t
)

and the n×m dimensional matrix σσσ
(

X(t), t
)

are referred to as the
drift vector and the diffusion matrix, respectively. {Wj(t) , t ∈ [0, T ]} , j = 1, . . . ,m are independent
unit Wiener processes fulfilling the properties, cf. (J.3)

E
[

Wj(t)
]

= 0

E
[

Wj(t1)Wk(t2)
]

= δjk min(t1, t2)

}

(J.29)

where δjk signifies the Kronecker’s delta. In analogy to (J.15) an auxiliary vector process {W̃(t) , t ∈
[0, T ]} is introduced with increments given by

dW̃(t) + dW(t) + u(t) dt (J.30)

The components of the m-dimensional vector u(t) represents the control functions on each of the M
input Wiener processes. The Radon-Nikodym derivative of P{dW}[dw̃(t)] with respect to P{dW̃}[dw̃(t)]

evaluated at increments of the same sample curve w̃(t) of {W̃(t) , t ∈ [0, T ]} follows from the limit
of (J.20)

dP{dW}[dw̃(t)]

dP{dW̃}[dw̃(t)]
= exp



−
m
∑

j=1

∫ T

0

uj(t)dwj(t)−
m
∑

j=1

1

2

∫ T

0

u2
j (t)dt



 (J.31)
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dX̃(t) =
(

µµµ
(

X̃(t), t
)

− σσσ
(

X̃(t), t
)

u(t)
)

dt + σσσ
(

X̃(t), t
)

dW(t) , t > 0

X̃(0) = X0







(J.32)

In (J.31) {W (t) , t ∈ [0, T ]} denotes a unit Wiener process, and dw(t) in (J.32) represents the incre-
ments of a given realization w(t) of this process.

Let w1(t), . . . ,wN (t) denote N realizations of {W(t) , t ∈ [0, T ]}, and let x̃1(t), . . . , x̃N (t) be the
corresponding realizations of {X̃(t) , t ∈ [0, T ]}, obtained by numerical integration of (J.32). Then,
an unbiased estimate of the failure probability is given as

P̂f =
1

N

N
∑

j=1

I[x̃j(t)]
dP{dW}[dw̃(t)]

dP{dW̃}[dw̃(t)]
=

1

N

N
∑

j=1

I[x̃j(t)] exp



−
m
∑

j=1

∫ T

0

uj(t)dwj(t)−
m
∑

j=1

1

2

∫ T

0

u2
j (t)dt



 (J.33)

J.2 Multi-modal sampling simulation methods

In conventional IS methods, samples are generated in the failure domain with relative high probability
density. Since the nature of oscillating systems provide wide spread failure domain, it is not sufficient
to generate samples in the region with the largest probability density. A way to overcome this problem
is by using the so-called multi-modal sampling density, which generates samples around a number of
points in the failure domain, but emphasizes the region around a point in proportion to the probability
density at that point. Let

{

∆w̃(1),∆w̃(2), . . . ,∆w̃(M)
}

be at set of points in the failure region, which
are used to construct the multi-modal sampling density, which is given by [Karamchandani, 1990]

h∆W̃(∆w̃(l)) =

M
∑

i=1

Wif
(i)

∆W̃
(∆w̃(l)) (J.34)

where f∆W(∆w(l)) is determined by (J.19), upper index (l) corresponds to the control function u(l)

and W are the weights estimated by

Wi =
Φ(−β(i))

M
∑

j=1

Φ(−β(j))

(J.35)

An auxiliary fraction is introduced as

R(l)
i =

f∆W̃(∆w̃(l))

f∆W(∆w̃(l))
(J.36)
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by inserting (J.14), (J.19) and (J.17) the following emerge

R(l)
i = exp





−1

2∆t

M
∑

j=1

(

(

∆w̃
(l)
j − u

(i)
j ∆t

)2

−∆w̃
(l)
j

)





= exp





−1

2∆t

M
∑

j=1

(

(

u
(i)
j

)2

∆t2 − 2∆w̃
(l)
j u

(i)
j ∆t

)





= exp





−1

2∆t

M
∑

j=1

(

(

u
(i)
j

)2

∆t2 − 2∆u
(i)
j ∆t(u

(l)
j ∆t + ∆wj)

)





= exp





−1

2∆t

M
∑

j=1

(

u
(i)
j ∆t(u

(i)
j ∆t− 2u

(l)
j ∆t)− 2u

(i)
j ∆wj∆t

)





= exp





M
∑

j=1

u
(i)
j ∆wj +

1

2

M
∑

j=1

u
(i)
j (2u

(l)
j − u

(i)
j )∆t



 (J.37)

The Radon-Nikodym derivative is then given by

1

R(l)
=

h∆W̃(∆w̃(l))

f∆W(∆w̃(l))
=

M
∑

i=1

WiR(l)
i (J.38)

whereby an estimate of the failure probability is determined from

P̂f =
1

N

N
∑

s=1

I (w̃s)R(l) (J.39)

Upper index (l) corresponds to the design point β(l) and is a random integer in the interval [1M ]
generated from the W distribution.

J.3 Scalar diffusion with a constant drift

In the following the IS method is verified for a simple dynamic system. The example which is taken
from [Tanaka, 1998] takes its basis in the scalar Itô differential equation

dX(t) = µdt + σdW (t) , t ∈ [0, T ] (J.40)

where the drift and diffusion term µ and σ are constants and W (t) is a unit Wiener process W (t) ∼
N(0, t).

Utilising the Girsanov transformation a drift is introduced into the diffusion process X(t) via the
excitation process W̃ (t) with increments given as
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dW̃ (t) = u(t)dt + dW (t) (J.41)

The control function u(t) is specified so X(t) reaches the critical level xc at the design time t∗ = T .
The failure function is then given by

g(x) = xc − x (J.42)

By using the Euler time integration, the failure function g (x(T )) is described by the stochastic safety
marginM which in the standard normal distributed space is given by

M(Ξ) = xc − x0 −M∆t− σ
√

∆t
M
∑

i=1

Ξi (J.43)

where X(0) = x0 is the deterministic initial value, M is the number of discretisations given by M = T
∆t

and Ξi = ∆Wi√
∆t

. By using the FORM notation, (J.43) can be written as

M = β −
M
∑

i=1

αiΞi , i = 1, 2, ...,M (J.44)

where

β(t) =
xc − x0 − µt

σ
√

t
, αi =

−1√
M

The optimal load process driving the response process to failure at the design time t∗ = T is in the
standard normal distributed space given by

Ξ∗
i = β(tM )αi =

−xc + x0 + µT

Mσ
√

∆t
(J.45)

(J.45) is transformed back to the original space by a requirement of variance consistence of (J.41).

ui =
xc − x0 − µT

σT
(J.46)

From (J.46) it emerge that the control function is constant. Realisations of the process X̃(t) is obtained
as a solution to (J.40), where (J.41) is used.
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Figure J.2: Realisation of x(t) and x̃(t).

Utilizing the parameters µ = 2, σ = 1, ∆t = 1.0 · 10−4, T = 1.6, x0 = 0 and xc = 6, realisations of
X(t) exposed to W̃ (t) and W (t) is shown in figure J.2.

As seen, the control function u(t) gives a contribution to the drift term which in average drives the
process to failure.

The estimated first passage probability distribution function FT (t) determined by IS method as shown
in figure J.3, along with the analytical solution to (J.40) which is obtained by, [Tanaka, 1998]

FT (t) =

∫ τ

0

xc − x0

σ
√

2πτ3
· exp

[

− (xc − x0 − µτ)2

2σ2τ

]

dt (J.47)
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Figure J.3: Estimated first passage time probability distribution function.
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As seen in figure J.3 the IS method produce very good result with a relative few number of simulations,
even for high failure probabilities. Regarding the CMC simulation it is in this case not practical
possible to simulate failure probabilities lower than 10−5.

J.4 Importance sampling applied to a single dof linear oscillator

In the following example the failure probability for a single dof linear oscillator will be determined by
means of the multi-modal sampling simulation method. The equation of motion is given as

Ÿ (t) + 2ζẎ (t) + Y (t) =
√

4ζẆ (t), Y (0) = Ẏ (0) = 0 (J.48)

where Ẇ (t) is a zero-mean unit Gaussian white noise and ζ is the damping ratio. The displacement
Y (t) and the velocity Ẏ (t) have been normalised to a unit stationary variance. The equation is written
in a state vector form, as

d

dt
Z(t) = AZ(t) + cẆ (t) (J.49)

Z(t) =

[

Y(t)

Ẏ(t)

]

, A =

[

0 1
−1 −2ζ

]

, c =

[

0√
4ζ

]

Equation (J.49) is reformulated to the following Itô-differential equation

dZ = AZ(t)dt + cdW (t) (J.50)

For quiescent initial conditions, the response process {Y (t), t ∈ [0 T ]} is determined by the Duhamel-
integral

Y (t) =
√

4ζ

∫ t

0

h(t− τ)dW (τ) (J.51)

where h is the impulse response function given by

h(t) =
exp(−ζt)
√

1− ζ2
sin
√

1− ζ2t (J.52)

By means of an Euler iteration scheme (J.51) becomes

Y (i) =
√

4ζ

i
∑

j=1

h(i− j)Ξ(j)
√

∆t, (J.53)

where Y (i) = Y (i∆t), h(i− j) = h ((i− j)∆t), ∆W (j) =
√

∆t Ξ(j) and Ξ ∼ N(0, 1). Failure occurs
when the response process is greater than the deterministic barrier function yc, thus the linear safety
margin at t = i is given as
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M(Y (i)) = yc − Y (i) = yc −
√

4ζ

i
∑

j=1

h(i− j)Ξ(j)
√

∆t (J.54)

The mean value and standard deviation of the linear safety margin is given as

µM = yc , σM =

√

√

√

√4ζ∆t

j
∑

j=1

(h(i− j))
2

(J.55)

The minimal distance β(i) and the normal vector to the failure surface at the design time t = i is then
determined as

β(i) =
µM
σM

=
yc

√

4ζ∆t
j
∑

j=1

(h(i− j))
2

, α(i)(j) =
−√4ζ∆th(i− j)

√

4ζ∆t
j
∑

j=1

(h(i− j))
2

(J.56)

whereby the design point becomes

ξ(i)∗(j) = β(i)α(i)(j) =
−ych(i− j)

√
4ζ∆t

j
∑

j=1

(h(i− j))
2

(J.57)

The sample control function u(t) corresponding to the design point ξ∗i in the original space is deter-
mined by (7.15) as

u(i)(j) =
yc

√
4ζ

i
∑

j=1

(h(j − i))
2
∆t

h(i− j) (J.58)

As mentioned earlier u(i)(t) is merely an underlying process that drives the response process to failure
at t∗ = i. As it emerge from (J.58), u(t) is a time inverted impulse response function as shown in
figure J.4 for different design points.

The sample paths is generated by inserting (7.10) into (J.53), thus

ỹ(i) =
√

4ζ

i
∑

j=1

hij

(

u
(l)
j ∆t + ∆wj

)

, (J.59)

where u(l) corresponds to the minimal distance β(l) at the design time t∗ = l. A Realisation of the
response process Ỹ (t) and Y (t) generated from the incremental Wiener process series [∆w1, . . . ,∆wM ]
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Figure J.4: Sample control function u(l)(t) for different values of (l)

.

is shown in figure J.5. Only small differences in the trajectories can be observed in the first part of
the time interval, however the control function u(l)(t) becomes dominant and affects the oscillator in
its eigenmode.

As seen in figure J.6 the sample control function with the highest likelihood of Y (t) ∈ F is found at
the design time t∗ = T . It is evident that β(t) for t ∈ [15, T ] is almost constant which indicates that
the failure probability is not dominated by a single exit time and thereby a single design time.

To validate the first passage time probability density function approximation W(t) given by (7.19) a
CMC simulation is preformed cf. figure J.7.

As seen in figure J.7 W(t) is a rather good approximation of fT (t) and thereby suitable for weighting
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σY0

ỹ(t)
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Figure J.5: Realisation of the response process with and without the control function u∗(t)
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Figure J.6: Reliability index β(t) for for the barrier yc = 4.
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Figure J.7: First passage probility density function.

the control function corresponding to different exit times. The failure probability for different exit
times is shown in figure J.8
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Figure J.8: Failure probability estimated by the IS method (N = 500), Poisson approximation and by a
CMC simulation (N = 106).

The Poisson assumption shown in figure J.8 is determined in appendix K. As seen in figure J.8 the
IS method is very effective and the required number of simulations are independent of the threshold.
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Appendix K

Poisson approximation

Poisson approximation to the first passage time probability density function. Consider a linear sdof
oscillator exposed to a stationary white noise acceleration

Ẍ + 2ζω0Ẋ + ω2
0X =

1

m
Ẇ (t) , t > 0

X(0) = x0 , Ẋ = ẋ0







(K.1)

m is the mass, ω0 is the undamped angular frequency and ζ is the damping ratio. The oscillator starts
at the deterministic initial values

(

X(0), Ẋ(0)
)

=
(

x0, ẋ0

)

. {Ẇ (t), t ∈ R} is a stationary zero mean
white noise process with the double sided auto spectral density S0.

The stationary auto-covariance function of the response process {X(t), t ∈ R} is given as [Nielsen,
2007b]

κXX(τ) = σ2
X0

ρ(τ) (K.2)

σ2
X0

=
πS0

2ζω3
0m2

(K.3)

ρ(τ) = e−ζω0|τ |
(

cos(ωdτ) +
ζ

√

1− ζ2
sin(ωd|τ |)

)

(K.4)

where

ωd = ω0

√

1− ζ2 (K.5)

The 1st and 2nd derivative of the auto correlation coefficient function become

ρ′(τ) = − ω0
√

1− ζ2
e−ζω0|τ | sin(ωdτ) (K.6)

ρ′′(τ) = −ω2
0e−ζω0|τ |

(

cos(ωdτ)− ζ
√

1− ζ2
sin(ωdτ)

)

(K.7)

The joint probability density function of
(

X(t), Ẋ(t)
)

on condition of
(

X(0), Ẋ(0)
)

=
(

x0, ẋ0

)

be-
comes, [Nielsen, 2007b]
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f(
X|X0

)(x|x0) =
1

2π|CX|X0
| exp

(

−1

2

(

x− µx|x0

)T
C−1

X|X0

(

x− µx|x0

)

)

(K.8)

where

X(t) =

[

X(t)

Ẋ(t)

]

, X0(t) =

[

X(0)

Ẋ(0)

]

(K.9)

µX|X0
(t) and CX|X0

(t) denote the mean value function and covariance matrix of X(t) on condition of
X(0) = x0 = [x0, ẋ0]

T . These are given as

µµµX|X0
(t) =

[

µX(t)
µẊ(t)

]

=









ρ(t)x0 − ρ′(t)
ẋ0

ω2
0

ρ′(t)x0 − ρ′′(t)
ẋ0

ω2
0









(K.10)

CX|X0
(t) = σ2

X0













1− ρ2(t)−
(

ρ′(t)
)2

ω2
0

−ρ′(t)

(

ρ(t) +
ρ′′(t)

ω2
0

)

−ρ′(t)

(

ρ(t) +
ρ′′(t)

ω2
0

)

ω2
0 −

(

ρ′(t)
)2 −

(

ρ′′(t)
)2

ω2
0













(K.11)

t
t

x(t)

xc

Figure K.1: Single barrier problem with constant upper barrier.

Consider a single barrier reliability problem with a constant upper barrier xc, figure K.1. The out-
crossing rate f1(t) on condition of deterministic start at the state X0 = x0 is given by Rice’s formula

f1(t) =

∫ ∞

0

ẋfX|X0

(

xc, ẋ|x0

)

dẋ (K.12)

CX|X0
(t) can be written
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CX|X0
(t) =

[

σ2
X σXσẊr(t)

σXσẊr(t) σ2
Ẋ

]

(K.13)

σ2
X(t) = σ2

X0

(

1− ρ2(t)−
(

ρ′(t)
)2

ω2
0

)

(K.14)

σ2
Ẋ

(t) = ω2
0σ2

X0

(

1−
(

ρ′(t)
)2

ω2
0

−
(

ρ′′(t)
)2

ω4
0

)

(K.15)

r(t) =
2ζ

ω0

σ2
X0

σXσẊ

(

ρ′(t)
)2

(K.16)

In (K.16) the relation ρ′′(t) + ω2
0ρ(t) = −2ζω0ρ

′(t) is used, cf. [Nielsen, 2007b]. σX(t), σẊ(t) and r(t)

denote the standard deviations of X(t) and Ẋ(t), and the correlation coefficient between X(t) and
Ẋ(t) on condition of X(0) = x0. Then fX|X0

(

xc, ẋ|x0

)

can be written as

fX|X0

(

xc, ẋ|x0

)

= fX(xc)fẊ|X(ẋ) (K.17)

where

fX(xc) =
1√

2πσX(t)
exp

(

−1

2

(

xc − µX(t)
)2

σ2
X(t)

)

(K.18)

fẊ|X(ẋ) =
1√

2πσ(t)
exp

(

−1

2

(

ẋ− µ(t)
)2

σ2(t)

)

(K.19)

where

µ(t) = µẊ(t) + r(t)
σẊ(t)

σX(t)

(

xc − µX(t)
)

(K.20)

σ(t) = σẊ(t)
√

1− r2(t) (K.21)

where µX(t) and µẊ(t) are given by (K.10). Inserting (K.17), (K.18) and (K.19) into (K.12) provides

f1(t) =
1

σX
ϕ

(

xc − µX

σX

)∫ ∞

0

ẋ√
2πσ

exp

(

−1

2

(ẋ− µ)2

σ2

)

dẋ (K.22)

The integral in (K.22) is evaluated as
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∫ ∞

0

ẋ√
2πσ

exp

(

−1

2

(ẋ− µ)2

σ2

)

dẋ = (K.23)

σ

∫ ∞

−
µ

σ

u√
2π

exp

(

−1

2
u2

)

du + µ

∫ ∞

−
µ

σ

1√
2π

exp

(

−1

2
u2

)

du = (K.24)

σϕ
(µ

σ

)

+ µΦ
(µ

σ

)

(K.25)

Hence, the final result for f1(t) becomes

f1(t) =
1

σX(t)
ϕ

(

xc − µX(t)

σX(t)

)(

σ(t)ϕ(t)

(

µ(t)

σ(t)

)

+ µ(t)Φ

(

µ(t)

σ(t)

))

(K.26)

Assuming stochastic independent outcrossings of the barrier xc (the ”Poisson assumption”) the ap-
proximation for the first passage probability density function reads, [Nielsen, 2007b].

fT (t) ≈ f1(t) = exp

(

−
∫ t

0

f1(τ) dτ

)

(K.27)




