A Data Warehouse Solution for Flow Analysis
Utilising Sequential Pattern Mining

DEPARTMENT OF COMPUTER SCIENCE @ AALBORG UNIVERSITY

EntranceT3 ...
BT :
. 026_:.-":

Land
EntranceT2 \E %
Security 24
” SECL“W :" _

7 020 021 @3

TransferT2 R

TransferT1
9

Terminal 2

Master’s Thesis in Database Technology by
Simon Nicholas Moesby Tinggaard
Rune Leth Wejdling

Department of Computer Science

Aalborg University

Title:
A Data Warehouse Solution for
Flow Analysis Utilising Sequen-
tial Pattern Mining

Project period:
DATSE:
1st of February to 12th of June,
2009

Project Group:
Computer Science, d621a

Members:
Simon Nicholas M. Tinggaard
Rune L. Wejdling

Supervisor:
Torben Bach Pedersen

Copies:
5

Pages in Report:
57

Pages in Appendix:
3

Pages in total:
60

Abstract:

Tracking of visitors in indoor
spaces has many applications,
specifically when administrat-
ing large public areas, like air-
ports and train stations. In
this work we present a data
warehouse solution, designed
to store and facilitate analy-
sis of large amounts of tracking
data. The solution is designed
specifically for a data set pro-
vided by Blip Systems A/S,
tracking visitors in Copen-
hagen airport. @ We propose
to utilise sequential pattern
mining to precompute flow in-
formation and present three
different approaches, to in-
corporating frequent patterns
for flow analysis in the data
warehouse. A prototype sys-
tem is implemented to pro-
vide grounds for an exten-
sive experimental study. The
study discloses the strengths
and weaknesses of the differ-
ent approaches, and indicates
in which cases the different ap-
proaches are applicable.

The content of this report is freely available, but publication (with source reference) may only

be made with the approval of the authors.

Preface

This master’s thesis was written in the spring of 2009 by Simon Nicholas M.
Tinggaard and Rune L. Wejdling, with guidance and supervision of Torben Bach
Pedersen. The thesis is the result of our work at the Database and Programming
Technologies (DPT) research unit at Aalborg University (AAU). The work in
this thesis is based on a data set produced by Blip Systems A/S, a company lo-
cated in North Jutland, Denmark. Blip Systems A/S is a software development
firm specialised in Bluetooth marketing and tracking solutions.

This thesis focusses on developing a data warehouse solution facilitating flow
analysis on visitor movement in Copenhagen airport. The data warehouse so-
lution utilises some ideas and techniques presented in our pre-master thesis [9].
Section 3.2 describing the bouncing problem in the Blip Systems data set is a
revised edition inspired by the work in our pre-master thesis. The data ware-
house schema presented in Section 4 extends a simplified version of the schema
presented in our pre-master thesis and the algorithms presented in Section 6.3.1
are improved versions of the algorithms introduced in our pre-master thesis.

We would like to thank our supervisor Torben Bach Pedersen for his sup-
port and Lars Tgrholm Christensen from Blip Systems A /S for his cooperation,
during the preparation of this thesis.

II1

Contents

Contents
1 Introduction
2 Problem Definition
3 The Blip Data Set
3.1 SourceData
3.2 The Bouncing Problem L.
3.3 Data Set Zone Divisions L.
4 Data Warehouse Schema
5 Pattern Indexing Approaches
5.1 Frequent Pattern Index Overview
5.2 Visit Pattern Association
5.3 Pattern Count Aggregation
5.4 Pattern Aggregation Hybrid
6 Extract Transform Load
6.1 Extraction Phase oL
6.2 Transformation Phase Overview
6.3 Transformation of Tracking Records
6.4 Transformation of Visits
6.5 Transformation of Patterns
6.6 Load Phase
7 FCQ Processor Implementation
7.1 OLAP Cube Design
7.2 FCQ Processor Description
8 Experimental Study
8.1 Experimental Setting L.
8.2 Recall Study
8.3 Execution Timeo
84 Space Usage o
8.5 Experimental Study Conclusion
9 Conclusion

10 Future Work

References

Appendix

A Blip Data Set Zone Division Table

B Summary in Danish

o U i

10
10
11
12
13

15
15
17
17
23
26
28

30
30
31

34
34
35
41
43
44

46

47

48

50

50

51

1 Introduction

In recent years, there have been advancements in the area of tracking and mon-
itoring moving objects, using spatiotemporal data collection. Research within
the area includes, tracking cars moving around in cities to find shared patterns
for carpooling [6], identifying frequently used (hot) routes in road networks [14],
tracking of people moving in indoor spaces [2, 3, 5, 11, 15], and tracking prod-
ucts in a supply chain [4, 7, 8]. Different technologies are used to track the
moving objects, depending on the environment in which the tracking system
is deployed. Global Positioning System (GPS) is mostly used if the objects
are tracked in outdoor environments, where the position of the object can be
reported at anytime and anywhere. When tracking objects in indoor spaces,
technologies such as RFID [2, 7, 15, 21] and Bluetooth [5, 22], are more appli-
cable. These technologies rely on a series of strategically placed sensor points
(e.g., RFID readers or Bluetooth access points), that track the position of ob-
jects within the range of the sensor points. This makes these technologies fit for
use in environments where the signal to the GPS satellites may be interrupted,
e.g., indoor spaces.

The spatiotemporal data collected by the tracking and monitoring systems
has many different applications including, real-time tracking systems that as-
sist in, e.g., problem detection and prevention, and location based and context
aware services. Among these applications the collected data is also being used
for historical analysis, e.g., to provide statistics for staff planning, assessing
market trends, and analysing the shopping habits of customers. The amount of
applications are many.

The advancement in the area of tracking systems, has lead to research in
the challenges of storing and analysing the huge amount of spatiotemporal data
generated by these tracking systems. The solutions range from highly specialised
storage models [7, 15] to solutions based on a relational or multidimensional
databases [4, 8]. One of the challenges in analysing the spatiotemporal data,
and the main subject of the current work, is to find patterns in the way the
tracked objects behave and identify common trends [1, 16, 17, 19].

Application The task of planning and maintaining the internal layout of large
indoor spaces like shopping malls, airports, train stations, and other public
areas, is becoming increasingly complex. The ability to track how visitors move
through and around inside a building, is an essential part of the planning process.
The tracking information can be used to find information on areas of congestion,
which are used in, e.g., the planning of internal layout changes, the pricing of
advertising spaces, and other applications. Apart from the benefits of historical
analysis, a visitor tracking system can provide useful information for real-time
monitoring systems and location based services.

The current work is based on a application concerning tracking of visitors in
an airport, more specifically Copenhagen airport (CPH). Blip Systems A/S [22]
(Blip) in cooperation with Copenhagen Airports A/S [23], collects spatiotem-
poral tracking data on visitors at CPH, using a Bluetooth tracking system.
The tracking systems consists of a number of Bluetooth access points placed
at strategic locations in CPH, tracking Bluetooth devices moving around the
airport. This information can be used to track the movement of the visitors
carrying the devices. The system currently collects close to 750,000 tracking

1 Introduction

records per day. Given a steady increasing number of Bluetooth enabled de-
vices tracked by the system, and a request for increased accuracy, by the air-
port administration, this number is likely to grow. In order to get some useful
movement information from this amount of data and make it accessible to the
airport administration, an efficient storage and analysis solution is needed.

In previous work [9] we proposed a data warehouse solution to store and
facilitate a statistical analysis of the tracking data from the airport. In the
current work we develop an extended data warehouse solution, for flow analysis,
by exploiting the fact that every visit, to the airport, can be represented as a
sequence of locations, which represent the route the visitor has travelled through
the airport. When working with flow analysis of the visitors, these sequences
can be utilised to find patterns in the movement of visitors. These patterns
can in turn be used to answer the following two questions raised by CPH’s
administration: How many visitors traverse a given path and where are they
seen before and after? and How do the wisitors diverge from a given path?,
where a path is a sequence of one or more selected locations, e.g., ” Security
Check and Gate A”. Answering these questions could assist CPH in making
decisions like where to put different advertisements, what rent to charge for the
stores in the different areas, and which areas tend to be congested.

The previous questions, specifically the first, can be answered by implement-
ing modified versions of the FlowCube [7] or S-OLAP [15] warehouse systems.
Both systems are designed to provide flow analysis in large amounts of tracking
data. Our current work differs from these systems by providing a design that
is simple to implement in an RDBMS, and therefore simpler to integrate in an
existing data warehouse solution. This evades the added complexity of imple-
menting a specialised data warehouse to provide flow analysis, and enables the
use of existing online analytical processing (OLAP) tools.

Research in the area of identifying common trends includes mining associa-
tion rules [1, 19]. Association rules is similar to the first of the above mentioned
question, e.g., the rule stating that visitors traversing the path ” Entrance and
Security Check” are with a certain probability seen later at ” Gate A”, is similar
to answering that a certain percentage of the visitors traversing the path are
later seen at ” Gate A”. Our current work differs from mining association rules
by answering the second question, as presented above, though related by the
fact that both rely on frequent pattern mining [16, 17].

Contributions In the current work we present a data warehouse solution,
supporting flow analysis, for the tracking data collected by Blip at CPH. The
solution is designed to be implemented in an RDBMS and support the use of
existing OLAP tools. We present three different approaches to store and index
frequent patterns found in the tracking data. An ETL system is designed to load
the tracking data into the data warehouse, while cleansing information skewing
the flow analysis results from the tracking data. We implement a prototype
flow count query processor able to answer the flow analysis questions presented
above, using each of the three different indexing approaches. An experimental
study is performed with the implementation to evaluate the performance and
effectiveness of the three approaches. We show that each approach is applicable
under different scenarios, depending on the requirements for recall, execution
time, and space usage.

2 Problem Definition

The goal of the current work is to develop a data warehouse solution that assists
answering the previously introduced questions. To answer those questions we
must first be able to answer the following (simpler) question: ” Where have the
visitors been before, in between, and after passing a given series of locations?”

Assuming we have a set L of all possible locations denoted as {l1, ..., 1, }, we
introduce the following definitions:

Definition 1. A sequence « is an ordered list of locations from L denoted by
(lyls...1,), where [; is called an element of the sequence a.

Definition 2. A sequence database S is a set of tuples {(id,)}, where id is
a sequence id and s is a sequence.

Definition 3. A sequence « is a subsequence of a sequence S if |a| < |§] and
all elements in « exist in § in the same sequential order, e.g., given the sequence
Y= <l1l2l3>, then <lllglg>, <111213>, <lllg>, <1113>, <1213>, and <12> are some of the
subsequences of 7, but, e.g., (l2l1) is not a subsequence of ~.

Definition 4. A sequence [is a supersequence of « if « is a subsequence of

3.

Definition 5. A sequence (is said to contain a sequence « if « is a subsequence
of 3. The support of « in a sequence database S is the number of sequences
in S that contain «, denoted as support(a).

Definition 6. A sequence « is a (frequent) pattern in a sequence database
S if « is contained in at least minsypport Sequences in S, i.e., support(a) >
MiNsypport, Where Ming,pport 1S a positive integer.

Since analysts are mostly interested in statistically significant information,
e.g., things that happen frequently, we propose to use frequent patterns to
perform flow analysis on the Blip data set described in Section 3.

To be able to conduct flow analysis on the Blip data set, we introduce the
notion of a visit. A visit describes a visitor spending an amount of time in the
airport. Visitors will typically spend from a few hours to a day in the airport,
depending on the type of visitor. A visitor arriving with a plane and entering
the country will typically only spend the time it takes to get through customs
and fetch her luggage. Whereas a visitor in transit can spend from a few hours
to a day waiting for the next flight.

A visitor can visit the airport multiple times, and thereby generate multiple
visits. The notion of a visit is described in the following definition:

Definition 7. A visit identifies the collection of tracking records produced by
a device (a.k.a. visitor) at the airport, describing when and where a device
has been tracked, from the visit is created, until the visit is closed. A visit is
created when no open visits exist for the tracked device, and it is closed when
the time since the device was last tracked exceeds a given threshold. Through
the collection of tracking records the following information is accumulated in a
visit: The entry location and time of entry, the exit location and time of exit, the
length of the visit, and a sequence of locations at which the device was tracked
during the visit. The sequence of locations generated during a visit is known as

3 The Blip Data Set

the visit sequence. The entry and exit locations are used to characterise the
visit as follows: Departing if the device enters the airport from land and exits
through a gate, Arriving if the device enters through a gate and exits through a
land entrance, Transit if the device enters and exits the airport by a gate, and
KissAndFarewell if the device enters and exits the airport at one of the land
entrances.

The visits and their visit sequences can be utilised to construct a sequence
database for flow analysis. The visits included in the sequence database can
be selected with the attributes relevant to the specific analysis, e.g., construct
a sequence database only containing visit sequences collected in a specific time
period or with a specific characterisation.

The goal of the current work is to develop an efficient method to store and
compute the answers to the Flow Count Query as presented in the following
definition.

Definition 8. Given a sequence s = (I;...l,,) and a sequence database S, the
Flow Count Query (FCQ) computes the following:

1. The set R of all supersequences r of s, where r is of the form (I7...0p_1?lg...0,,)
for 1 <k <n+1, where ? is a wildcard representing any location from L.

2. The support of each supersequence r in the sequence database S and the
support of s in S.

The support counts returned by FCQ enables the analyst to answer questions
like: ”Where do people go after leaving the security area and before they leave
through a specific gate?”.

3 The Blip Data Set

The current work is based on a data set collected by Blip at Copenhagen airport.
We have worked together with Blip in order to better understand the data in
relation to the problems introduced in Section 2. This section describes the
source data set and some data issues introduced in the collection process.

3.1 Source Data

This section describes the structure and contents of the Blip data set. The data
set consists of the following three tables:

bluetoothaddress The bluetoothaddress table contains records for all blue-
tooth devices tracked by the system listed with the following attributes (id,
bluetoothAddress, cod, mobileManufacturer, mobileModel). The
bluetoothaddress attribute is the unique bluetooth address of the given device.
The cod attribute is the class of device, it is an internal classification of differ-
ent types of bluetooth devices, e.g., smartphones, PDAs, or mobile phones. The
mobileManufacturer attribute contains the name of the mobile manufacturer,
e.g., SonyFEricsson, Nokia, or Samsung. The mobileModel attribute contains the
specific model of the device, e.g., F50, K800i, or 6300. Only bluetoothaddress
is available throughout the data set, the rest of the attributes are only available

3.2 The Bouncing Problem

for some device records. The following table shows an example of a complete
device record.

id bluetoothAddress | cod | mobileManufacturer | mobileModel
259838 006225251A4B 12564 SonyEricsson Pli

Ibszone The 1bszone table contains a record for each bluetooth access point
used in the system. Every access point is represented with an id and a zone
attribute, where zone is a unique name for the access point. An example of this
is the zone with id 16 and the name ms-spoposi.16 and as it can be seen on
the map shown in Figure 1, this zone is covering the security area at CPH. An
example of a zone record is shown in the following table.

id zone
16 | ms-spoposl.16

tracking The tracking table contains the tracking records collected by the
system. A tracking record contains the following attributes, (id, enterTime,
leaveTime, maxRssi, maxRssiTimestamp, zone fk, user_fk). The enterTime
and leaveTime are timestamps describing when the device was first and last
seen by the access point. The maxRssi is the highest signal strength recorded at
that access point and maxRssiTimestamp is a timestamp describing when it was
recorded. The attributes zone_fk and user_fk are foreign keys to the 1bszone
and bluetoothaddress tables, respectively.

The following table shows an example of a tracking record. The tracking
record shows that a device, with user id: 259838, is tracked at a zone, with zone
id: 16, for 14 minutes 32 seconds, with a maximal signal strength of -71.

id enterTime leaveTime maxRssi | maxRssiTimestamp | zone_fk | user_fk

50 | 2008-04-23 15:10:49 | 2008-04-23 15:25:21 -71 2008-04-23 15:12:43 16 259838

The current data set is collected in the period from the April 23" 2008 to
October 16th 2008. During this period Blip experienced some outages in the
form of failing access points, resulting in reduced coverage in large parts of the
period. The data collected in the period from April 24th 2008 to May 24th 2008
is the most complete and is used in the remainder of the current work. In this
period Blip recorded 131,304 unique Bluetooth devices using 25 access points,
resulting in over 14.2 million tracking records.

3.2 The Bouncing Problem

The tracking data is collected by 25 strategically placed Bluetooth access points
that scan for active Bluetooth devices once every second. To get a good cov-
erage of the important areas of the airport, the range of some access points
overlap, which introduces a problem we refer to as the bouncing problem.
The bouncing problem occurs when a series of tracking records makes it look
like the device is bouncing back and forth between two or more access points.
An example of this problem is shown in Figure 2 where the grey areas are
areas where the access points overlap. When a device is traversing though the

3 The Blip Data Set

TransferT3

" 023

EntranceT3
N24 %
17 _

Terminal 3

...."f}"a'.nsfer

T I @
5 E
© (3] o
- 3 k4
0
@
[)
H H
i? PN ~N
i —_—
P K H ©
N PN B s
Eoe B2 §=
H 5 H]
O 2 H
c o K I= E
gig ; =
€ i MRS e ()]
wi

. #1001

TransferT1

Figure 1: Blip access point placements in CPH. The red dots represent access
points, and the green text/circles represent our zone divisions. For simplicity
the "ms-spopos1.” prefix is removed from the access point names.

3.2 The Bouncing Problem

areas covered by AP1l, AP2, AP3, and AP4 as indicated by the red line, the
device will be tracked by two or three access points when located in the grey
areas.

The data gathering application used by Blip is not designed to handle devices
that are tracked in more than one location at the same time. This means that
when a device is located in an area that is covered by more than one access point,
the data gathering application creates bounce records. A bounce record is
a tracking record where the dwell time' is less than or equal to some system
specified bounce threshold. The bounce records are usually created when a
device is located in range of two or more overlapping access points. Bounce
records can also appear when a device moves past a access point, just at the
edge of the access points range. This will result in the device only tracked by
the access point form zero to a few seconds, also creating a bounce record.

Figure 2: A bouncing problem scenario.

The bounce records can have a very negative effect on the flow analysis if
they result in the generation of a visit sequence with many repeating patterns
like: (... AP1 AP2 AP1 AP2 ...). This often happens when the device was located
in an area covered by both access points AP1 and AP2. A repeating pattern
makes it look like the device was moving back and forth between the two access
points, even though it could have been stationary or just moving from one area
to the other. In order to detect these bouncing records two factors must be
taken into account. First, the dwell time of the tracking record, and second, the
time in-between? the tracking records.

To reduce the impact of this problem we have excluded access point 14,
from the remainder of this current work, as described in Section 6.1. The
bouncing problem is further addressed in Section 6.3.1, where we introduce a
flow optimised Bounce Detection and Elimination algorithm.

IThe dwell time of a tracking record, is defined as (1eaveTime - enterTime).
2This is introduced later as idle time in Section 6.3.1.

4 Data Warehouse Schema

3.3 Data Set Zone Divisions

To introduce some higher levels of abstraction in the movement of visitors we
introduce a location hierarchy, built on top of the access points in the 1bszone
table. The location hierarchy consists of 4 levels: Location, Zone, Area, and
Site. Location is the bottom level in the hierarchy and represents the actual
access points. Zone is a collection of one or more locations represented by a Zone
name and is used to represent a small section of the airport, e.g., EntranceT3
and TransferT3. Area is a collection of one or more Zones represented by a
Area name, and is used to represent a larger section of the airport, e.g., Land or
Transfer. Site is the top level of the hierarchy and includes one or more areas.
Site is represented by a Site name, and is used to represent the actual airport,
e.g., CPH.

The Location and Zone levels in CPH are marked on the map shown in
Figure 1. A table showing all levels of the hierarchy is presented in Appendix A.
In the remainder of this work, we use the Zone level as the lowest level of
abstraction in visitor movement. This can help eliminate some of the noisy data
produced by the bouncing problem, and thereby improve the quality of the flow
analysis with the cost of a reduction in the granularity of the movement.

4 Data Warehouse Schema

In this section we present the data warehouse schema shown in Figure 3, and
discuss the less trivial parts of the schema. The proposed multidimensional
database schema [12] is designed to accommodate the data from the Blip data
set, using the basic assumption that, in some aspects, space is not as costly as
complexity. The design is a mixture between a star and a snowflake schema, pre-
ferring the star schema for its low complexity [13], and using snowflake schema
where needed.

All dimension tables contain a ID attribute as a surrogate key. This key has
no reference to the original data set, it is a unique key assigned to each row,
when the data is loaded into the warehouse.

Fact Tracking The Fact_Tracking fact table contains the tracking records,
with foreign keys to the relevant entries in the dimension tables. Each row
contains a tracking record with foreign keys to the date, time, location, visit, and
classification dimensions representing all the attributes of the tracking record,
as well as the two base facts DwellTime and MaxRSSI.

The classification attribute is used to classify the state of the tracking record.
This is mainly to note if the tracking record has been modified when loaded into
the data warehouse. This will be further discussed in Section 6, specifically in
the transformation phase.

Time and Date Dimensions The tables Dimension TimeOfDay and
Dimension Date tables are used to model time and date respectively. Besides
the attributes needed to model date and time, the tables include two string
attributes. These attributes enable classification of a date or time, e.g., classify
a specific day as a holiday or a specific time of day as morning rush hour.

EndZone: key
——————————————————————————————————— StartTime: key
| T T T T T EndTi me: key
e = - - StartDate: key
L e - - - - - =] EndDate: key

Dimension_TimeOfDay

r=> ID: int << -

1 Hour: 1nt 1 - -

\ Minute: int | Dimension_Area

| Second: int 1 >l 10 int

1 Ti meOf DayType: string 1 | AreaName: string

! ! Fact_Tracking 1 SiteName: string

1 Dimension_Date 1 - |

1 Pl EnterTi me: key

| ©> 1D int <= — =1 ;= —] ExitTime: key ! - -

! Year: int 1 — — - PeakTime: key ! Dimension_Zone

! Hal f Year: int F— —— - EnterDate: key : 1D int lc—1- - -

1 [} Quarter: int F———- ExitDate: key . ToneName: string | \

! Month: int - — — — - PeakDate: key - areaip: key | |

1 [} DayOf Mont h: int Location key = \ |

! DayOf Year: int Visit: key F=d - - - 1 1

P! DateType: string Dwel 1 Time: int :| Dimension_Location X .

1 1 DayOf Week: int MaxRSSIE int II_> D int | |

1 : I—— Classification key . Tocationi D: int | 1

! | Dimension_Classification 1 1 LocationName: string ! !

1 | | Zonel D: key -4 1

! I D: int << 1 1

: : ClassificationName: string | Dimension_Visit :

1 ! —

P Dimension_BluetoothDevice > Lo int) !

[} VisitClassification: string 1

1! ID: int |- — — -] BluetoothDevice: key 1

! Bluetoot hAddress: bigint VisitSequence: string 1

! Mobi |l eManufacturer: string VisitSequencelLength: int I

1 ! Mobil eModel : string VisitTi meLength: int 1

| : ClassOf Device: string StartZone: key -4
.

! }

I

Figure 3: Data warehouse schema.

Time and date are split into two dimensions in order to save a significant
amount of rows. In this way the date dimension contains a few records per day
and the time dimension a few records per second of a day, depending on the
number of classifications in both cases. If the two dimensions where joined, it
would result in a few rows for every second of every day, which would make the
dimension grow heavily (> 31.5 million rows per year). The cost of splitting the
dimensions is an extra foreign key, for each time stamp, in the fact table and
visit dimension, which is considered a better solution in this case.

Location, Zone, and Area Dimensions The location dimensions represent
the access points present in the source data set. The dimensions represent a
four level hierarchy, as presented in Section 3.3, split into the three tables:
Dimension Location, and its two outrigger dimension, Dimension_Zone and
Dimension_Area.

The Dimension_Location table contains the actual access points present
in the source data set, represented with a LocationName and a ZoneID. The
Dimension_Zone table enables the access points to be divided into different
”zones” represented with a ZoneName and a ArealID. This is used to group access
points with the same physical placement in the airport. The Dimension_Area
table contains the different sections (areas) of the airport. The AreaName is the
name of the section, and SiteName is the name of the airport. The area concept
is used to group different zones together.

The location dimensions are split into three tables to allow linking to a
specific zone or area without also linking to a specific location. This is required
later on in the visit dimension.

5 Pattern Indexing Approaches

Bluetooth Dimension The Dimension Bluetooth table contains the Blue-
tooth devices present in the source data set, with all the available attributes.

Classification Dimension The classification dimension

(Dimension Classification) is used to classify a specific tracking record as,
e.g., OK or ModifiedBounceRecord. This dimension allows the analyst to select
if records that have been altered when loaded into the data warehouse should
be included in the analysis or not.

Visit Dimension The visit dimension (Dimension_Visit) is used to identify,
classify, and associate each tracking record with a specific visit. The visit di-
mension is inserted between the two tables Fact_Tracking and
Dimension_BluetoothDevice, to stress that a Bluetooth device cannot be
tracked in the airport without being associated to one or more visits.

The dimension contains four foreign keys that represent the period in which
the visit took place (StartTime, EndTime, StartDate, and EndDate), two for-
eign keys to identify the start and end zone of the visit (StartZone, EndZone),
and an outrigger BluetoothDevice to identify the tracked Bluetooth device.
The amount of zones traversed and the time period of a specific visit is stored
using the two attributes VisitSequencelength and VisitTimeLength. The
sequence of zones traversed during the visit is stored as a string in the
VisitSequence attribute. It should be noted that this attribute is only neces-
sary in some of the approaches presented later. The last attribute
VisitClassification is used to characterise a specific visit using the classifi-
cations introduced in Section 2 (Departing, Arriving, Transit, and
KissAndFarewell). These classifications enable the analyst to, e.g., limit the
flow analysis to visitors that are actually departing from the airport.

5 Pattern Indexing Approaches

In this section we propose three different approaches to implementing flow analy-
sis, in the data warehouse, that all build on a general frequent pattern approach,
as described in the following sections. First, the prerequisites for utilising fre-
quent patterns are presented. Then the three different approaches are presented.

5.1 Frequent Pattern Index Overview

The idea behind the three approaches is to exploit precomputed frequent pat-
terns to make an efficient flow analysis. The frequent patterns can be used to
either locate preaggregated results or limit the search space, when querying the
visit sequence database. Given the results in [16] and [17], we have chosen to use
the PrefixSpan algorithm as presented later on in Section 6, since this algorithm
has still shown to be one of the fastest algorithms available for frequent pattern
mining. The use of frequent patterns imply that only patterns with a support
above a certain threshold will be stored.

To store these frequent patterns we extend the data warehouse, described
in Section 4, with a new pattern dimension (Dimension Pattern). This di-
mension contains the following attributes: An ID to identify the pattern, and a

10

5.2 Visit Pattern Association

Dimension_Pattern VisitPattern Dimension_Visit
I D: int |<<— - PatternlD: key > | D: int
Pattern: string VisitlD: key -4 VisitClassification: string
PatternDescription: string - Bl uet oot hDevice: key
PatternLength: int VisitSequence: string
ZoneO: int VisitSequencelLength: int
Zonel: int VisitTimeLength: int
Zone2: int StartZone: int
Zone3: int EndZone: int
Zone4: int StartTime: int
Zone5: int EndTime: int
Zone6: int StartDate: int
Zone7: int EndDate: int
Zone8: int
Zone9: int

Figure 4: Visit Pattern Association schema.

Pattern and PatternDescription which holds the specific pattern and its tex-
tual description, respectively. The PatternLength attribute stores the amount
of elements in the pattern, and the ten zone attributes (ZoneO - Zone9) store
each element of the pattern. These zone attributes are combined to make a
browsable pattern hierarchy when building a multidimensional OLAP cube on
the dimension. Based on the current data set we have decided to only support
patterns of length up to 10 in the pattern hierarchy, since longer patterns do
not occur frequently.

The pattern dimension is shown as part of Figure 4 and can be linked to the
existing data warehouse in different ways, as described in the following sections.

5.2 Visit Pattern Association

The main idea behind the Visit Pattern Association (VPA) approach is to limit
the search space used to compute the results needed to answer the FCQ. The
approach is inspired by the Inverted Indexing Approach presented in [15].

The VPA approach is based on a new bridge table (VisitPattern) added
between the pattern dimension and the visit dimension, as shown in Figure 4.
The bridge table is responsible for associating each pattern in the pattern di-
mension with the visits, where the visit sequence contains the specific pattern.
This makes it a many-to-many relationship, since a visit sequence can contain
many patterns, and a pattern can be found in many visit sequences.

The VisitPattern table is a new fact table in the data warehouse, used to lo-
cate the visit sequences that contain a given pattern and thereby giving an exact
visit count or a limited search space. As described in Section 2, the query should
compute visit counts for all the frequent supersequences of the given query se-
quence. These visit counts are easily found for all supersequences present in the
pattern dimension, by counting the associations in the VisitPattern fact table.
If a supersequence is not present in the pattern dimension, a subsequence of that
supersequence, present in the pattern dimension, is used to select a limited set
of visit sequences that might contain the supersequence, given the Apriori prop-
erty [1]. A one-pass scan of the limited set of visit sequences can then compute
the amount of sequences that contain each of the missing supersequences.

11

5 Pattern Indexing Approaches

Pros: The search space limitation approach is motivated by the fact that
the amount of tracked users is large which results in a heavily growing visit
dimension and therefore a large amount of visit sequences. This results in a
large search space when searching for a specific query sequence. By utilising
the precomputed associations in the VisitPattern fact table, this search space
can be greatly reduced or even eliminated if all patterns necessary to answer
the query are present in the pattern dimension.

Another key feature of this approach is that, since each pattern is linked
to all visits containing the pattern, all attributes in the visit dimension can be
utilised to query the patterns. An example of this would be to only select visits
classified as departing or selecting visits that start in a certain zone.

Cons: The amount of rows in the VisitPattern fact table can become very
large, due to the fact that all patterns are associated with all the visits in which
they occur. An example of this could be a pattern only containing a central
location where most visitors pass by. This pattern will then be associated with
up to 100% of the visits, creating a huge amount of rows in the fact table.

The selection of the specific visit sequences, by random reads in the database,
is potentially more costly than performing linear scan of all visit sequences in
the sequence database [20]. This means that the method is only effective when
the amount of extracted sequences is greatly reduced. An example of this could
be if the selected pattern is present in about 90% of the visits then it would be
faster to select all visit sequences to utilise sequential read. But if the pattern
is only present in about 5% of the visits, we assume that random reads would
perform better.

5.3 Pattern Count Aggregation

The Pattern Count Aggregation (PCA) approach is based on preaggregations
in a new fact table and is motivated by the ability to quickly find exact visit
counts, as needed to answer an FCQ. The fact table contains a preaggregated
count of visits for each pattern during a given time interval and a given set
of preaggregated dimension attributes. The aggregation time interval can be
set to any level in the time or date hierarchies, depending on the desired time
granularity. Figure 5 shows an example with a daily time aggregation interval
including the visit dimension classification attribute. The PCA approach pro-
vides an efficient lookup when the query level is coarser than, or equal to the
aggregation time interval, e.g., if a query requests the weekly count of visits for a
given pattern, then a daily time interval could simply be summed up to weeks.
If the query level is finer than the aggregation time interval, the aggregated
count is unusable.

The aggregation interval is application specific and a balance has to be found
between the desired granularity and the amount of space used to store the aggre-
gated values. The fact table contains one row per pattern for each aggregation
interval, which is multiplied by the amount of distinct values for each visit
dimension attribute preaggregated.

Pros: This approach is motivated by the efficient query performance gained
by utilising the preaggregated counts. The amount of rows in the fact table is
greatly reduced, compared to the Visit Pattern Association.

12

5.4 Pattern Aggregation Hybrid

Dimension_Pattern PatternDailyCount Dimension_Date
ID: int |«<<- — 4 Patternl D: key —>| I D: int
Pattern: string Date: key L ! Year: int
PatternDescription: string VisitCount: int Hal f Year: int
PatternLength: int VisitClassification: String Quarter: int
ZoneO: int Month: int
Zonel: int DayOf Mont h: int
Zone2: int DayOf Year: int
Zone3: int Dat eType: string
Zone4: int DayOf Week: int
Zone5: int
Zone6: int
Zone7: int
Zone8: int
Zone9: int

Figure 5: Pattern Count Aggregation schema.

Cons: The lack of ability to locate the actual visit sequences that contain the
pattern, limits the possibility of using the aggregation as a selection filter and
thereby extract the visits sequences used to compute patterns that fall under
the minimum support threshold.

The PCA approach has a potential penalty in the size of the fact table if the
aggregation interval and the minimum support threshold are set too low and
the amount of preaggregated visit dimension attributes is large.

5.4 Pattern Aggregation Hybrid

The Pattern Aggregation Hybrid (PAH) approach is a combination of the two
previous approaches. The idea is to utilise strengths of both approaches. We
propose to use the PCA approach to answer FCQs concerning patterns that can
be preaggregated within the specified support threshold and use the visit pattern
associations of the VPA approach to associate a domain specific set of patterns
with the visits containing these. The associations are then used to answer FCQs
targeting patterns that do not pass the specified support threshold. The data
warehouse schema of this approach is shown in Figure 6.

This approach utilises the fact that the PCA approach is an efficient way of
storing precomputed counts, and thereby also efficient in returning results to a
given sequence query. The storage space used by the PCA approach to store
very frequent patterns is low compared to the VPA approach, but when the
support gets low both approaches tend grow fast in the amount of rows in the
fact tables.

We propose to use the VPA approach to associate a domain specific set of
patterns with the visits containing them. By domain specific we mean that
this depends on the application in which the PAH approach is used. In our
PAH implementation described in Section 6.5 we associate all patterns of length
three with the visits containing them. This is based on the fact that associating
too short, and thereby too frequent patterns, will result in a large amount of
associations. And too long patterns will degrade the usability of the approach.

By making these associations we maintain the ability to extract the greatly
reduced amount of visit sequences containing the patterns, and utilise these for
a result computation at an even lower support threshold.

13

5 Pattern Indexing Approaches

Dimension_Date

~— I D: int <y

PatternDailyCount ! Year: int 1

f - 1 Hal f Year: int 1
Dimension_Pattern — o PatterniD: key) Quarter: int .

1 D: int <—1I Date: key = Mont h: int 1
Pattern: string 1 V!s!tcountf !nt . . . DayOf Mont h: int 1
PatternDescription: string . VisitClassification: String DayOf Year: int |
PatternLength: int 1 DateType: string 1
| sAggregated: Bool ean 1 DayOf Week: int 1
ZoneO: int 1 1
Zonel: int 1 1
Zone2: int 1 VisitPattern Dimension_Visit 1
Zone3: int 1
Zoned4: int I—- Patternl D: key - 3> 1D int 1
Zone5: int W——I VisitClassification: string 1
Zone6: int - Bl uet oot hDevice: key 1
Zone7: int V!s\tSequence: strlng. 1
Zone8: int V!swlS.equenceLengfh: int 1
Zone9: int VisitTimeLength: int 1
StartZone: int 1

EndZone: int 1

StartTime: int 1

EndTi me: int 1

StartDate: int]

EndDate: int —

Figure 6: Pattern Aggregation Hybrid schema.

Pros: This approach utilises the strengths of both approaches by providing
the efficient storage from the PCA approach, and the limitation in the search
space of patterns with a low support threshold from the VPA approach.

Cons: This is a more complex model. The patterns that are stored as preag-
gregated counts are only present for a predefined amount of attributes from
the visit dimension and a predefined time level, where patterns that are asso-
ciated with the visits containing them, supports the use of all visit dimension
attributes.

The decision of which patterns to associate can be complex since it depends
on the domain in which the system is deployed. By only looking at the support
threshold when deciding which patterns should be associated, there is a possi-
bility that some patterns could be poorly represented in the system, resulting
in a varying result quality. These issues will be discussed further in Section 8.

14

6 Extract Transform Load

In this section we present our Extract Transform Load (ETL) system. The
ETL system is designed and implemented using the good practice techniques
presented in [13]. The architecture of the ETL is shown in Figure 7. It is
divided into three phases: The extraction phase responsible for extracting the
data from the source database, the transformation phase responsible for cleaning
and transforming the data to match the data warehouse, and the load phase
responsible for loading the transformed data into the data warehouse.

Extractor

v

Transformer

v

Blip Data Set Loader Data Warehouse

Figure 7: ETL Architecture.

The ETL system is implemented as a multi-threaded C# application exe-
cuting each phase in a separate thread. This enables us to pipeline the whole
process of extracting, transforming and loading the source data into the data
warehouse. We choose to implement our own hand-coded ETL system instead
of using an ETL tool, because the transformations required in the transforma-
tion phase are highly specialised and would be complex to implement using an
ETL tool.

Between each phase of the ETL system the data is stored in thread-safe
queues enabling the phases to work concurrently by dequeuing data from the
previous phase as soon as it is ready, and enqueuing data for the next phase
when it is processed.

To exemplify the effect of the different phases we use the data from our
current implementation as a running example throughout this section.

The following Section 6.1 describes the extraction phase, Section 6.2 gives
an overview of the transformation phase where Section 6.3, Section 6.4, and
Section 6.5 describe the three subphases of the transformation phase. Section 6.6
describes the load phase of the ETL.

6.1 Extraction Phase

The Extractor shown in Figure 8 is responsible for extracting the data from
the source database described in Section 3. The Extraction phase consist of
three steps: First all locations and Bluetooth devices present in the source
database are extracted and passed to the Loader for prepopulation of the re-
spective dimensions. When finished all tracking records are extracted utilising
the following selection criteria to ensure that only complete and meaningful data
get extracted, since incomplete data could skew the later flow analysis.

15

6 Extract Transform Load

Extractor

Extract Dimension Data

Select Tracking Records

—»| Transformer

Enqueue Records

Blip Data Set R

Figure 8: ETL Extractor.

Selection Criteria The extracted tracking records have to pass the following
criteria. The first criteria ensures that only data from the specified time period is
extracted. The second criteria is introduced to exclude location 14, that mostly
generated noisy data. The access point at location 14 is physically located close
to location 13 and 15 (shown on the map in Figure 1 on page 6), but tests have
shown it to have bouncing problems with locations in many different parts of
the airport, skewing the flow analysis. The decision to exclude the location was
made in cooperation with Blip, and has shown to have a positive effect on flow
analysis.

The third criteria concerns data that is incomplete, and the forth and fifth
criteria concerns data that is considered incorrect since it contains one or more
invalid time attributes.

1. The records must have an enterTime within the time period April 94th
2008 to May 23th 2008, both days included.

2. The records must have zone_fk different from 14.
3. All attributes must be complete, no null values.
4. The records must have leaveTime > enterTime.

5. The following must apply to maxRssiTimestamp:
enterTime < maxRssiTimestamp < leaveTime.

In our running example with the Blip data set, the selection criteria has
the following effects. A total of 14.2 million records are recorded in the time
period (first criteria), after zone_fk 14 (second criteria) is removed a total of
12.2 million records are left. 46,302 records contain null values (third criteria)
and 1,844,982 have invalid timestamps (forth and fifth criteria), which leaves a
total of 10,342,331 records extracted from the data set.

All tracking records that pass the selection criteria are ordered by ascending
enterTime and enqueued as ready for the Transformer. The tracking records are
currently of the form: (EnterTime, ExitTime, PeakTime, BluetoothDevice, Lo-
cation, MazRSSI, Classification), where EnterTime, ExitTime, and PeakTime
represent enterTime, leaveTime, and maxRssiTimestamp respectively, Blue-
toothDevice represents user_fk, Location represents zone _fk, MazRSSI repre-
sents maxRssi, and Classification represents their current classification (thus so
far all are classified as OK).

16

6.2 Transformation Phase Overview

6.2 Transformation Phase Overview

The transformation phase is responsible for cleansing and transforming the ex-
tracted data. The cleansed data is then used to compute all the information
needed to match the data warehouse schema described in Section 4. An overview
of the transformation phase is shown in Figure 9.

Transformer

Transform Tracking Records

-
L}
L}
:

Extractor |—— Transform Visits —) Loader

'
'
Transform Patterns .
'
'

Figure 9: ETL Transformer Overview.

The transformation phase is as shown in Figure 9 divided into the following
three subphases with separate responsibilities:

Transform Tracking Records This subphase is responsible for transforming
the tracking records and detecting visits. The tracking records and detected
visits are sent to the next subphase. The steps of this subphase are described
in Section 6.3.

Transform Visits This subphase is responsible for making the final cleansing
of the detected visits before enqueuing the visits and tracking records for loading,
and computing the frequent patterns from the set of detected visits. Once the
patterns are cleansed the patterns are enqueued for loading and sent to the next
subphase. The steps of this subphase are described in Section 6.4.

Transform Patterns This subphase includes three different steps that can
be executed independently of each other. Each step is responsible for computing
the data necessary for one of the indexing approaches presented in Section 5.
The steps of this subphase are described in Section 6.5.

6.3 Transformation of Tracking Records

The transformation subphase called Transform Tracking Records described in
this section concerns the cleansing and transformation of tracking records and
the detection of visits. An overview of this subphase is shown in Figure 10.

The Transformer receives a queue of tracking records from the Extractor.
This queue is first processed by the Bounce Detection step described in the
following section. The resulting tracking record queue is then processed by the
Collapse Detection step described in Section 6.3.2. The tracking record queue
returned by the Collapse Detection step is then used in the detection of visits
in Section 6.3.3.

The following sections contain a description of the different steps executed
in this subphase.

17

6 Extract Transform Load

Transform Tracking Records

. — — — — — — —
* — -~
*
.

Bounce Detection

Transformer

hl
' -
v| Transform Tracking Records [E | L B |
1 J
' , — =
[} e .
: Transform Visits S | Collapse Detection |
' AN - _J
[} (] $‘ - —
L} L}
: Transform Patterns ! \‘ | Visit Detection |
L} L] *

.
(

)
pe— — — — — — — —

Figure 10: ETL Transformation subphase Transform Tracking Records.

6.3.1 Bounce Detection

This section presents the Bounce Detection step which is responsible for min-
imising the bouncing problem described in Section 3.2. In the beginning of this
step the dwell time and idle time of each record is computed and stored on the
specific tracking records. These records are then processed by the Bounce Detec-
tion algorithm shown in Algorithm 1. The form of the tracking records is now
extended with three new attributes, DwellTime, IdleTime, and BluetoothAd-
dress. DuwellTime we recall from Section 3.2 and IdleTime is defined below.
BluetoothAddress is the Bluetooth address of the device that was tracked by
the tracking record. The Bluetooth address is used to identify devices in the
ETL system, because the user_fk attribute from the Blip data set is no longer
needed and therefore not stored in the data warehouse.

To describe the algorithm a clear definition of the following terms is needed.
The bounce threshold B; is an implementation specific threshold set accord-
ing to the constraints of the given data set. Idle time denotes the time since a
device was last tracked. We recall the bounce record, presented in Section 3.2,
as a tracking record with dwell time < By for By > 0. We define a bounce
region as a time span in which a device only generates bounce records and the
idle time between the records is less than B;. The terms bounce record and
bounce region are clarified by the following example.

Example Figure 11 presents an example of a device that moves through the
area presented in Figure 2 on page 7. At time t0 the device is detected by
AP1, and at time t1 the device starts to bounce between AP1 and AP2, which
starts the bounce region, until t2. As the device moves around the area covered
by multiple access points, the bounce region continues. The device is next
being tracked through a number of bounce records between AP2 and AP3 in the
timespan from t2 to t3. In the timespan from t3 to t4, the device is detected by
three different access points, AP1, AP2 and AP3. The last part of the bounce
region is from t5 to t6, where the device is detected by both AP1 and AP3. At
time t5 the bounce region ends because the device produces a tracking record
with a dwell time > B; in AP3. At time t6 the device makes a clean shift from
AP3 to AP4 with no bounce records.

18

6.3 Transformation of Tracking Records

AP 4

AP 3

AP 2

AP 1

I >

t6 Time

Figure 11: Time line example showing the tracking history of the device move-
ment shown in Figure 2. Each solid white box represents a clean tracking record,
and the greyed boxes represent many bounce records. The red line presents an
example of the tracking record distribution.

Bounce Detection Algorithm The Bounce Detection algorithm is shown
in Algorithm 1, and is designed to locate and process bounce regions in a queue
of tracking records.

From Line 2 to 19 every tracking record ¢r is processed to detect bounce
regions and eliminate the bounce records in these. On Line 3 in the algorithm,
the queue BE of all previous bounce records from B@ with the same Bluetooth
address as the current tr, is created. On Line 4 the dwell time of ¢r is compared
to By. If the dwell time of ¢r is larger than B, the current bounce region is
ended and all bounce records in BE are removed from B(@). On Line 7 and
9 the Bounce Elimination algorithm presented later in this section, is run on
the queue BE and an AddToCollapseQueue function is run on the current tr.
AddT oCollapseQueue takes a processed tracking record and adds it to a queue
of records that are ready for Collapse Detection presented in Section 6.3.2. On
Line 11 to 16 the algorithm handles the case where dwell time of ¢r is less than
or equal to By. If the idle time of ¢r is unknown or less than B; we add tr to
BQ), which continues the current bounce region or starts a new one. Otherwise,
we end the current bounce region by, removing the records in BE from BQ,
running the Bounce Elimination algorithm on BE, and adding tr to BQ to start
a new bounce region.

To process all bounce records left in B(Q the set BT of the Bluetooth ad-
dresses of the devices that still have records in B(@ is created on Line 20. From
Line 21 to 25 all the remaining bounce records in B(@) are processed.

Bounce Elimination Algorithm The Bounce Elimination algorithm is
shown in Algorithm 2. The algorithm takes a queue of bounce records detected
as a bounce region and eliminates the bounce records by combining them into
as few records as possible.

On Line 1 the algorithm handles the case where there is only 1 bounce record

19

6 Extract Transform Load

Algorithm 1: BounceDetection (T RQ), detects bounce regions within a
queue T'RQ of tracking records ordered by ascending enter time. Uses the
system specific bounce threshold B; in seconds.

BQ.clear();
while ¢r — TRQ.dequeue() do

N =

3 BE «— Queue of tracking records t from B where
t BluetoothAddress = tT Bluetooth Address)

4 if tr pweliTime > By then

5 if BE.length() > 0 then

6 Remove all elements in BE from BQ);

7 BounceElimination(BE) ;

8 end

9 AddToCollapseQueue (i1) ;
10 else
11 if trrgiemime < Bt V trigierime = Unknown then
12 | BQ.enqueue(tr);
13 else
14 Remove all elements in BE from BQ);
15 BounceElimination(BE);

16 BQ.enqueue(tr);

17 end

18 end

19 end

20 BT « Set of all unique BluetoothAddress in BQ);
21 foreach bt € BT do

22 BE — Queue of tracking records t from B where
tBluetoothAddress = bt;

23 Remove all elements in BE from BQ;

24 BounceElimination(BE);

25 end

in BE. The bounce record is simply added unmodified to the collapse detection
queue, since there are no other records to combine it with.

If there is more than one record in BE, the start and end time of the bounce
region is found on Line 5 and 6. The start time is set to the minimum enter time
and the end time is set to the maximal exit time of all the records in the bounce
region. On Line 7 the queue L of all locations in the bounce region is created
by utilising the GetOrderedLocations function. GetOrderedLocations takes a
bounce region queue as input and returns a queue of the locations visited in the
bounce region. The locations are ordered by the first time they are visited in
the bounce region queue. Except if a location in the queue is the last locations
to be visited before the device enters the bounce region. Then this location is
set as the first location in the queue. In this way the bounce record can possibly
be joined with the previous tracking record in the latter Collapse Detection.

In the case that only one location is visited in the bounce region, a new
tracking record is created and added to the collapse queue on Line 8 to 15.

If more than one location is part of the bounce region a new tracking record

20

6.3 Transformation of Tracking Records

Algorithm 2: BounceElimination(BFE), given a queue BE of bounce
records it creates new records that match all locations and time span of
the bounce region.

1 if BE.length() =1 then

2 br — BE.dequeue();
3 AddToCollapseQueue (br);
4 else
5 regionsiart <— OrEnterTime, Where br is the element i BE with the
lowest enter time;
6 regiongnd < b gritTime, Where br is the element in BE with the
highest exit time;
L «— GetOrderedLocations(BE);
if L.length() =1 then
br < Any element from BE;
10 br EnterTime < Tegionstart;
11 br BritTime < T€JIONEnd;
12 bTDwellTime — bTEmitTime - brEnterTime;
13 brciassification < " ModifiedBounceRecord”;
14 AddToCollapseQueue (br);
15 else
16 TeGLONTotal <— TEJLONERd — TEGIONStart |
17 tofrset < 0;
18 while loc — L.dequeue() do
19 tcount < The number of elements br in BE where
br Location = ZOC;
20 tDwellTime < (%7%? * regionTotal);
21 br < Any element br from BE where brpocqtion = loc;
22 brEnterTime A regionstart + tOffset;
23 br EzitTime < b7 EnterTime + tDwellTime;
24 br pweliTime < tDwellTime;
25 brciassification < "ModifiedBounceRecord”;
26 AddToCollapseQueue (br);
27 tOffset — tOffset + tDwellTime;
28 end
29 end
30 end

for each location is created on Line 18 to 28. The value of region;yiq; represents
the total time span of the bounce region in seconds and t,yfse¢ is the amount
of dwell time already allocated to already processed locations in the current
bounce region. On Line 19 the total amount of tracking records for the given
location is counted in order to make a weighted distribution of the regionsotq;
on Line 20. This is done to divide the total time of the bounce region according
to the amount of tracking records produced for a given location. On Line 21 to
25 the new tracking record is created and classified as a Modified BounceRecord.
The record is then added to the load queue and ¢,¢fs¢+ is updated.

In our running example the Bounce Detection step, with B; = 20 seconds,

21

6 Extract Transform Load

removes 2,707,844 records from the tracking record queue, leaving a total of
7,634,487 records.

The queue of tracking records generated by the Bounce Detection and Bounce
Elimination algorithms is then given as input to the Collapse Detection step,
presented in the following section.

6.3.2 Collapse Detection

This step is responsible for reducing the total amount of records loaded into
the data warehouse by combining repeating tracking records into fewer records.
The step is motivated by the following assumption: If a device is tracked at a
location and tracked at that same location at some point later in time, without
being tracked at any other locations in between, we can combine the records
into one longer record. We can not determine where the device has been in-
between the two tracking records and we therefore assume it has stayed at
the same location. In order to avoid the case with visitors leaving the airport
and returning through the same entry at a later time, we specify a collapse
threshold. If the idle time between two records exceeds the collapse threshold,
they will not be joined.

This step keeps track of where and when all devices were last seen. This
knowledge is then used to join the tracking records for all devices, that comply
with the following criteria:

e The tracking records are from the same location and device.

e The device has not been tracked at other locations in-between the tracking
records.

e The idle time between the tracking records does not exceed the collapse
threshold.

The collapse threshold is set to 5 minutes in the running example, removing
2,811,614 records from the tracking record queue, leaving a total of 4,822,873
records.

The tracking record queue computed by this step is then given as an input
to the Visit Detection step, presented in the following section.

6.3.3 Visit Detection

In this step the Visit Detection algorithm, shown in Algorithm 3, is utilised to
detect visits in the queue of tracking records passed on by the Collapse Detection
step.

To describe the algorithm we need to introduce and refine a few data types.
Recall the visit from Section 4 of the form: (ID, BluetoothAddress, VisitSe-
quence, StartTime, EndTime), where ID is the surrogate key for the visit in
the data warehouse, BluetoothAddress is the Bluetooth address of the device
tracked by this visit, VisitSequence is the sequence of locations visited during
the visit, and StartTime and EndTime contain the start and end times of the
visit. To associate each tracking record to a specific visit, a VisitID attribute
is now added to the tracking records. The attribute will contain the surro-
gate key to the visit the tracking record is part of. To maintain the state of

22

6.4 Transformation of Visits

the devices in the system, we introduce a known device record of the form:
(BluetoothAddress, Visit, LastSeen).

From line 1 to 28 the algorithm iterates through all tracking records in the
tracking record queue while keeping track of which devices have been seen before
and when they have been seen before. On line 2 it checks if the device is seen
before and extracts the known device record td on line 3. td is removed from the
set of known devices DS on line 4 to be updated and is added again on line 19.
On line 5 to 11 the algorithm handles the case where the time, from the device
last was seen, to the current record exceeds the visit threshold V;. This ends
the current visit and starts a new visit with the current ¢r as the first record.
To end the current visit td,;si:, the CompleteVisit function is executed with
the visit and the device last seen time as input. The CompleteVisit function
completes the visit by adding and updating the following attributes on the visit:
EndTime of the visit is set to the device last seen time (which is the exit time
of the last tracking record in the visit), VisitSequenceLength is computed from
the length of the visit sequence, VisitTimeLength is computed from the start
and end time, and StartZone and EndZone are set to the first and last element
in the visit sequence.

The completed visit is added to the set of visits V'S and a new visit is created
with the NewVisit function taking the values of the current tracking record as
input. The try;si¢rp is updated with the new visit id v;p, the visit is applied
to the known device record td, and the tdy,stseen attribute is updated with the
exit time of the current tracking record.

Line 12 to 17 handles the case where the idle time before the tracking record
is less than the visit threshold. In this case the visit sequence is update, the
tryvisitrp 18 set to the id of the current visit, and the devices last seen value is
updated. Line 20 to 26 handles the case where the device has not been seen
before. A new known device record is created with the Bluetooth address of the
tracking record, and a new visit is associated with the known device record and
the tracking record. On line 29 to 33 all visits contained in the known device
records in DS, are completed and added to V.S, since there are no more tracking
records. On line 34 the algorithm returns the set of all detected visits V' S.

In our running example a total of 247,366 visits are detected in the 4.8
million tracking records. The set of detected visits computed by this step and
the tracking record queue, are given as input to the Transform Visits subphase.

6.4 Transformation of Visits

This subphase is responsible for computing the frequent patterns needed by the
indexing approaches, which are loaded in the next subphase of the Transformer.
An overview of this subphase is shown in Figure 12.

The steps shown in Figure 12 extracts and cleans all visit sequences before
inserting them into a sequence database. The sequence database is then written
to a file and given as an input to a PrefixSpan implementation [10, 16] which
returns all patterns satisfying a specified support threshold. The set of frequent
patterns computed by PrefixSpan is then cleaned before it is passed to the next
transformation phase and enqueued for the Loader.

23

6 Extract Transform Load

Algorithm 3: VisitDetection(TRQ), detects and returns the set V.S
of all visits in a queue T'RQ of tracking records. Uses a set DS of known
device records to keep track of all devices and the visit threshold V; to
determine when a new visit starts.

1 while tr «— TRQ.dequeue() do

2 if td DS|tdBluetoothAddress = Y Bluetooth Address then
3 td < The element td from DS where
tdBluetoothAddress = tTBluetoothAddress;
4 DS « DS\{td};
5 if trpnterTime — tdLastSeen > Vi then
6 tdy;sit < CompleteVisit (tdysit, tdrastSeen);
7 VS — VS U {thisit};
8 v «— NewVisit (trBluetoothAddressy T Locations tTEnterTime) >
9 UrvisitiD <= VID;
10 tdyisit < v;
11 tdLastSeen — tTEritTime;
12 else
13 v tdyisit;
14 UVisitSequence-append(trl/ocation);
15 Urvisitip <= VID;
16 tdyisit < v;
17 tdLastSeen — tTErcitTime;
18 end
19 DS «— DS U {td};
20 else
21 td <+ NewKnownDevice ({7 Biuctooth Address) ;
22 v «— NewVisit (trBluetoothAddressv trLocationa tTEnterTime) 5
23 tryisitID < VID;
24 tdyisit < v;
25 tdLastSeen — trEzitTime;
26 DS — DS U {td};
27 end
28 end
29 foreach td € DS do
30 DS «— DS\{td};
31 thisit — CompleteViSit (thisit7 tdLastSeen) ;
32 VS — VSU{tdvisit};

33 end
34 Return V'S,

24

6.4 Transformation of Visits

Transform Visits

| ——

g Clean Visit Sequences
Transformer . |¥ 4|

Transform Tracking Records

| Enqueue Visits |

v

———

| Enqueue Tracking Records |

Ao 4
(
\

)
J

'
'

'

L]

'

' Transform Visits
:

'

: Transform Patterns
L]

'

.

Compute Patterns

\(
J\

* Clean Patterns |

(
\

— e— e— e— e— e— e— — —

Figure 12: ETL Transformation subphase Transform Visits.

6.4.1 Clean Visit Sequence

All the visits detected in the Visit Detection step contain a sequence of locations
traversed. Since we decided to raise the abstraction level to zones instead of
locations as described in Section 3.3, the location ids in the visit sequences are
now converted to the corresponding zones ids.

After the conversion the visit sequences can contain a lot of repeating zones
caused by multiple detections in the same zone. An example of this could be if a
device was tracked at location 20, 21, and 22 which all refer to the zone named
EntranceT?2 then the sequence would contain three entries for this specific zone.
This results in longer sequences which again makes the pattern computation
task more complex without supplying new information.

The sequences have to be cleansed for repeating zones. This is done in this
step by only extracting the non repeating parts of the sequence. An example
of this is the sequence (l1l1l1l2l1). In this sequence the step first extracts Iy
then skips the following [; elements, before extracting the Iy element, and the
subsequent /; element. The resulting sequence being (l1lsl;).

As an effect of the conversion into zones and the cleansing of the visit se-
quences, the VisitSequenceLength, StartZone, and EndZone attributes of each
visit are updated accordingly.

The set of visits is now ready to be loaded and is enqueued for the Loader
as well as the queue of tracking records from the previous subphase. This is the
two steps shown as Enqueue Visits and Enqueue Tracking Records in Figure 12.
The tracking records are not enqueued for the Loader in the previous subphase
do to dependency with the visits.

In our running example approximately 11 elements are in average removed
per visit, resulting in an average visit sequence length of 8.5 elements. The set
of visits is now passed to the Compute Patterns step.

25

6 Extract Transform Load

6.4.2 Compute Patterns

In this step all visit sequences are extracted from the set of visits and written
to a sequence file. The sequence file is then given as input to the PrefixSpan
implementation, along with the system specified support threshold. PrefixSpan
computes and returns the set of all frequent patterns satisfying the given support
threshold, in the sequence file.

In our running example we compute patterns from the visit seqenence set
for one day at a time. This is done to simulate the case where data is importet
on a daily basis.

The set of frequent patterns computed by PrefixSpan is extracted from the
output file and given as an input to the Clean Patterns step.

6.4.3 Clean Patterns

This step is responsible for removing patterns, from the frequent pattern set,
which do not provide significant information, i.e., other patterns exist which can
provide approximately the same results. After some initial experiments with the
Blip data set, we discovered a large amount of frequent patterns with repeating
zones and zone pairs. On account of this observation, to reduce the amount of
patterns, the following pattern cleansing rules are introduced.

Frequent patterns containing repeating zones and repeating zone pairs, e.g.,
the repeating zone (l1l1) and the repeating zone pair (l1l3l1l3), are removed
from the pattern set. In this case repeating implies that no other zone elements
exist in the frequent pattern between the repeating zone pairs. Given the Apriori
property [1] a subsequence of the patterns will be present in the frequent pattern
set, with equal or higher support.

Example 1 Two patterns, (a) (I1l1l111) and (b) (l;l3l1), containing the zone
l;. Pattern (a) will be removed because the zone is repeating, but pattern (b)
will not.

Example 2 Two patterns, (a) (l1l2l1l2) and (b) (l1lal3lils), containing the
zone pair [1ly. Pattern (a) will be removed because the zone pair is repeating,
but pattern (b) will not.

The set of cleansed patterns is now updated with an pattern id for each
pattern, so the patterns are of the form: (ID, Pattern). In our running example
a total of 112,403 frequent patterns are computed with a support > 1%. Of
these only 7,850 pass this step. The set of patterns is then enqueued for the
Loader and passed to the Transform Patterns subphase.

6.5 Transformation of Patterns

This section describes the steps needed to compute and load the index data for
the three indexing approaches, presented in Section 5. Each step is responsible
for computing data for one of the indexing approaches. Depending on which
approach is selected in the ETL system, only the matching step is executed.

26

6.5 Transformation of Patterns

6.5.1 Initialise the VPA Approach

This step is responsible for computing the associations, in the VisitPattern
table, for all patterns. The computations are described in Algorithm 4, and
performed by iterating through all patterns, while searching for visit sequences
containing the selected pattern. The set VPAS of visit pattern associations,
computed by the algorithm, is then enqueued for the Loader to be loaded into
the data warehouse.

Algorithm 4: VPAComputation(VS, PS) computes and returns
the set VPAS of visit pattern associations given a set V.S
of visits, and a set PS of patterns.

1 foreach p € PS do

2 foreach v € VS do

3 if Vsequence €ONLAINS Ppattern then
4 ‘ VPASHVPASU{(UID,])[D)};
5 end

6 end

7 end

8 return VPAS,

6.5.2 Initialise the PCA Approach

This step is responsible for computing the daily pattern counts needed to form
the PatternDailyCount table. The daily computation is performed, as de-
scribed in Algorithm 5, by iterating through all dates represented in the set
of visit. For each day the algorithm iterates though all patterns and counts
the visits containing the specific pattern. This count is then inserted into the
pattern daily count set PDC' along with the date and the pattern id.

When finished, the set PDC' of pattern daily counts is enqueued for the
Loader to be loaded into the data warehouse.

6.5.3 Initialise the PAH Approach

This step is responsible for computing the daily pattern counts needed to form
the PatternDailyCount table, and the visit pattern associations needed to form
the VisitPattern table. The daily pattern count computation is performed as
described in the previous Initialise the PCA Approach step.

As described in Section 5.4, concerning the PAH approach, we need to de-
cide which patterns to associate and which to preaggregate. We decided to
associate all patterns of length three with the visits containing them. This was
decided since the patterns of length three in most cases represent a great re-
duction in the search space, and since most of the shorter patterns are already
preaggregated. By associating patterns of length three the amount of rows in
the PAH VisitPattern table ranges from 5.4 down to 2.2 million rows at a
support thresholds of 1 to 10 percent respectively.

Algorithm 6 describing this step iterates through all dates represented in
the visit set. For each day the algorithm iterates though all patterns and if the

27

6 Extract Transform Load

Algorithm 5: PCAComputation(V.S, PS) computes and returns the
set PDC of pattern daily counts given a set VS of visits
and a set PS of patterns.

1 D < GetDates(VS) ;

2 foreach d € D do

3 foreach p € P do

4 pde «— 0;

5 foreach v € VS|vstartpate = d do

6 if Vsequence cONLAINS Ppattern then
7 | pdc — pde+1;

8 end

9 end

10 if pdc > 0 then

11 ‘ PDC «— PDC U{(pip,d,pdc)} ;
12 end

13 end

14 end

15 return PDC;

pattern is of length three the algorithm iterates through all visits of that day
to calculate all visit pattern associations. These associations are then added to
the set V. PAS of visit pattern associations. If the pattern is not of length three
the algorithm iterates through all visits to count the amount of visit sequences
that contain the specific pattern. This count it added to the set of pattern daily
counts PDC along with the pattern id and the specific date.

When done, the set PDC' of pattern daily counts and the set of visit pat-
tern associations VPAS, is passed to the Loader to be loaded into the data
warehouse.

6.6 Load Phase

The Loader is responsible for loading the extracted and transformed data into
the data warehouse. This section provides a description of the different steps of
the Loader shown in Figure 13.

Prepopulate Dimensions The Loader starts by populating the date, time,
location, and Bluetooth device dimensions. The dimension information is bulk
loaded into the data warehouse and hash tables containing the corresponding
surrogate keys are maintained in main memory to speed up the loading of visits
and tracking records.

The date dimension is populated to match the outer constraints of the data
loaded and the time dimension is populated to match every second of a day.
The location and its outrigger dimensions are populated according to the zone
division presented in Section 3.3. The Bluetooth device dimension is populated
with the Bluetooth devices that have produced tracking records in the extracted
part of the data set.

28

6.6 Load Phase

Algorithm 6: PAHComputation(PS, VS) computes and returns the
set PDC of pattern daily counts and the set VPAS of visit
pattern associations given a set V.S of visits and a set PS

of patterns.

1 D < GetDates(VS) ;

2 foreach d € D do

3 foreach p € P do

4 if |ppattern| = 3 then

5 foreach v € VS|vstartpate = d do

6 if Vsequence contains ppattern then
7 ‘ VPA;S'(—VPASU{(U[D,])]D)};
8 end

9 end
10 end
11 else
12 pdc «— 0;

13 foreach v € VS|vstartpate = d do

14 if Vsequence cONtains ppattern then
15 | pdc — pde+1;

16 end

17 end

18 if pc > 0 then

19 | PDC — PDC U{(prp,d,pdc)} ;
20 end

21 end

22 end

23 end

24 return PDC,VPAS,;

Load Visit The set of visits enqueued for the Loader is updated with the
correct Bluetooth device, locations and date surrogate keys, and bulk loaded
into the data warehouse. When finished a hash table of the visit surrogate keys
assigned by the data warehouse is created.

Load Tracking Records When the Loader receives a queue of tracking
records this step updates each tracking record with the correct surrogate keys
for date, time, location, classification and visit. When this is done the records
are bulk loaded into the data warehouse.

Load Patterns The set of patterns enqueued for the Loader is bulk loaded
into the data warehouse and a hash table containing the surrogate keys is created
to speed up the loading of pattern counts and pattern associations.

Load Pattern Counts This step is responsible for loading the pattern counts
into the data warehouse, if the PCA og PAH approach is selected, while main-
taining the correct pattern surrogate keys.

29

7 FCQ Processor Implementation

Loader

Load Visits

Load Tracking Records

Load Patterns

Data Warehouse DB

v

.
:
:
:
L]
L]
"
L]
L]
L]
1]
.
:
:
Ll

Transformer —>
L]
L]
L]
L]
.
:
:
L]
L]
"
L]
L]
L]
L

Figure 13: ETL Loader.

Load Pattern Associations This step is responsible for loading the visit
pattern associations into the data warehouse if the VPA or PAH approach is
selected. Before loading the associations, the pattern and visit ids are updated
with the correct surrogate keys. When finished the associations are bulk loaded
into the data warehouse.

7 FCQ Processor Implementation

In this section we present a brief overview of the implemented FCQ Processor
prototype. First, the different OLAP cube designs are presented, to support
each of the three indexing approaches. Second, we present a step by step de-
scription of the steps needed to process a Flow Count Query (FCQ) on the
different OLAP cube designs.

7.1 OLAP Cube Design

The data warehouse schema presented in Section 4, combined with the schema
extensions presented for each of the pattern indexing approaches, are used as
the base for each of the OLAP cubes presented in the following paragraphs. The
presented cubes only include the dimensions and measures required to answer
a FCQ, as presented in Section 2.

In the current prototype the data warehouse is implemented in Microsoft®)
SQL Server® 2008 (MSSQL) and the OLAP cubes are built in Microsoft®)
Analysis Services using MOLAP.

VPA Cube The VPA Cube consists of the following three dimensions:

Dimension Pattern representing all patterns in the cube, Dimension Visit
representing all visits in the cube, and the Dimension Date is indirectly a part
of the cube, represented as the StartDate attribute in the visit dimension. The
dimensions for the exceeding attributes in the visit dimension are not included
in the current implementation, in order to reduce the size of the cube and
thereby make it comparable to the other approaches. The cube contains a

30

7.2 FCQ Processor Description

measure (Visit Pattern Count), which is an aggregated count of the number
of associations in the underlying VisitPattern fact table. This measure is used
to compute the amount of visits for a given pattern, or vice versa, within the
scope of the selected dimension.

PCA Cube The PCA cube consists of the following two dimensions:
Dimension Pattern representing the patterns and Dimension Date represent-
ing the date on which the pattern count have been detected. The cube is
built by combining the two dimensions using the PatternDailyCount fact table
in the underlying relational database and aggregating the VisitCount values
for each date as a Visit Count measure. In the current implementation the
VisitClassification attribute is excluded, to reduce the size of the cube.

PAH Cubes The OLAP implementation of the PAH approach consist of
two cubes, as indicated by the two fact tables shown in Figure 6. The PAH-
Association cube is built using the VisitPattern fact table and is imple-
mented using the same dimensions as the VPA cube. The PAH-Aggregation
cube is built using the PatternDailyCount fact table and is implemented using
the same dimensions as the PCA cube.

7.2 FCQ Processor Description

In the following we present the steps needed to process a FCQ on each of the
different cubes presented in the previous section. In all three cases the input
and the first steps are the same. The input to the processor is a query sequence
qs and a time period.

In all steps the time period is used, as a selection criteria in the date dimen-
sion, to limit the results to the given time period. The following three steps are
the same for all three processors:

1. Compute the supersequence set SS of ¢s, by generating all possible su-
persequences of ¢gs with length |gs| + 1, and add gs to SS.

2. Extract the set P of patterns represented in the pattern dimension of the
cube.

3. Extract the set P.S of supersequences from SS that are present in the set
P.

VPA FCQ Processor The following steps are specific to executing a FCQ
on the VPA Cube.

4. The set of visit counts for the supersequences in PS' is computed by se-
lecting the matching patterns in the pattern dimension and by using the
Visit Pattern Count measure to compute the amount of visits.

5. A set of patterns, each matching a subsequence of a supersequence left in
5SS, is selected from the pattern dimension. If multiple subsequences of a
supersequence are represented as patterns in the pattern dimension, the
pattern associated with the least amount of visits is chosen to minimise
the search space as much as possible.

31

7 FCQ Processor Implementation

6.

8.

The set of visit sequences containing the patterns found in the previous
step, is extracted from the visit dimension.

The set of visit sequences is then scanned for the supersequences left in S.S
and the amount of visit sequences containing each of the supersequences,
is computed.

When done, all supersequences in P.S and SS, and their visit counts, are
returned as the answer to the FCQ.

PCA FCQ Processor The following steps are specific to executing a FCQ
on the PCA cube.

4.

5.

The set of visit counts of the supersequences in PS is computed by se-
lecting the matching patterns in the pattern dimension and by using the
Visit Count measure to compute the amount of visits.

When done, all supersequences in PS, and their visit counts are returned
as the answer to the FCQ.

PAH FCQ Processor The following steps are specific to executing a FCQ
on the PAH cubes. The first three steps (1-3) are performed on the PAH-
Aggregation cube.

4.

The set of visit counts of the supersequences in PS' is computed by select-
ing the matching patterns in the pattern dimension and by using the Visit
Count measure of the PAH-Aggregation cube to compute the amount of
visits.

The set PS is stored as PS2 and Step 2 and 3 are repeated using the
PAH-Association cube to compute a new pattern set PS.

The set of visit counts of the supersequences in PS is computed by se-
lecting the matching patterns in the pattern dimension and by using the
Visit Pattern Count measure to compute the amount of visits.

The steps 5-7 of the VPA FCQ Processor are then executed on the PAH-
Association cube.

When done, all the supersequences in PS, all the supersequences in PS2,
the supersequences from SS that could be computed, and their visit
counts, are returned as the answer to the FCQ.

The prototype application shown in Figure 14, displays a map of CPH air-
port, where each zone is marked with a circle and a check box. The idea is that
an analyst will plot a query sequence ¢s by selecting one, or more check boxes,
and perform the FCQ on the plotted sequence. The result computed by one of
the above FCQ processors is then displayed on the map. As shown in Figure 14
the selected g¢s is { Security) and the two counts on each zone is the percentage
of visits before (red) and after (green) the selected gs respectively.

32

7.2 FCQ Processor Description

£ 1(]| U0z pajaajag
B0 LS UDpa]as Ul sjsip 210]

ojur uonssjs g |

D

J8jen 9 "
Jajsuel),

-3 ¥

eALLY funosag e

&-

puey

€ |leujwia)

glsouenuy Q -

asieo @

d
Z leulway

Zliajsues)

@I_

Zlesuenuy

R |
UL A UOH A [<

<2qu g
A"

Lli@jsues)

@

uiajed aswolg

800z ssqorp al | o)

S PR A UNS] e fsiieg S

800z

|ude:

.mm_] e

suonoajag 1eay

w04 Andwoy

A05530044d 004 _mm

Figure 14: Screenshot of the implemented FCQ Processor prototype.

33

8 Experimental Study

8 Experimental Study

In this section we present a series of experiments performed on the three indexing
approaches presented in Section 5, using the implemented prototype of the FCQ
Processor described in Section 7. The Blip data set presented in Section 3 is
used as source data and an implementation of the ETL system presented in
Section 6 is used to load the data set.

Section 8.1 describes the experimental settings, followed by Section 8.2 de-
scribing the recall experiment concerning the effectiveness of the three indexing
approaches. Section 8.3 describes the experiments performed to measure the
execution time of each approach, followed by Section 8.4 concerning the space
usage of each approach.

8.1 Experimental Setting

All experiments are performed on a modern desktop computer, with an Intel®
Core™2 Duo E6750 dual core CPU clocked at 2.66GHz and 8GB main memory,
running Windows Server®) 2008 64bit Edition.

The data used in the following experiments is the most complete part of the
Blip data set, which is from the time period of April 24th 2008 to May 24th
2008, as described in Section 3. A total of 247,366 visits are registered in this
period.

We have designed twelve query sequences for the experiments. Six frequent
and six infrequent query sequences to study the performance of the three ap-
proaches in both scenarios. The query sequences are shown in Table 1 and
Table 2 along with their support in the visit sequence database. The support is
computed by scanning the visit sequences directly in the visit dimension of the
data warehouse.

The twelve query sequences, both frequent and infrequent, are designed to:
(1) represent a wide range of patterns in the data set, through an even distri-
bution of support and length, and (2) simulate a series of queries that would be
relevant for a visitor flow analyst in the airport.

Support | Query Sequence
qs1 47.47% | (Transfer)

qsa 32.02% | (Security Transfer)

qs3 28.02% | (Land Security Transfer)

qS4 20.94% | (EntranceT8 Land Security Transfer)
qss 17.13% | (GateC')

qs6 11.46% | (GateC TransferTs3)

Table 1: The set of frequent query sequences used in the experiments. Support is
the support of the sequence in the visit sequence database, and Query Sequence
represents the query sequences as a sequence of Zone names.

The experiments are performed on 10 different OLAP cubes built on 10
different data warehouses with the Blip data set loaded using support thresholds
ranging from 1% to 10%. This range of support thresholds is chosen to match
the outer bounds of the infrequent query sequence set, and thereby showing the
effect of having the sequences included in pattern dimension, or not.

34

8.2 Recall Study

Support | Query Sequence
qs7 9.36% | (EntranceT2 TransferT3)
qss 8.00% | (Land GateA)
qS9 6.58% | (Security Transfer GateC')
qs10 4.90% | (EntranceT2 TransferT2 TransferT1)
qs11 2.76% | (EntranceT2 Security TransferT8 GateC')
qs12 1.01% | (GateA TransferT2 EntranceT?2)

Table 2: The set of infrequent query sequences used in the experiments. Sup-
port is the support of the sequence in the visit sequence database, and Query
Sequence represents the query sequences as a sequence of Zone names.

8.2 Recall Study

A precision and recall study is commonly used to measure the effectiveness of
an information retrieval system [18]. Precision and recall measures the systems
ability to retrieve relevant information, and it is assumed that a higher precision
and recall gives a more effective system.

The recall study performed, is designed to evaluate the quality of the results
computed when using the three different indexing approaches. A precision study
has been omitted since none of the approaches can return false positives and
the precision is therefore given to be 100% in all approaches.

In the following experiments we measure recall as follows. The recall of an
approach is the percentage of material actually retrieved in an answer to a FCQ.

We measure two types of recall: Pattern Count (PC) recall and Visit
Count (VC) recall. The PC recall study measures the ratio of all relevant
supersequences returned by the FCQ for a given query sequence:

PCComputed .

PC Recall =
PCTotal

100 (1)
PCcomputed is the amount of supersequences computed by the FCQ Processor
and PCrq; is the total amount of supersequences of a given query sequence.

The VC recall measures the ratio of visit counts (support) returned by the
FCQ for a given query sequence.

VCC’omputed

VC Recall =
VCTotal

- 100 (2)
VCcomputea is the sum of the visit counts for the supersequences computed by
the FCQ Processor. VCryiq is the total sum of visit counts for all superse-
quences of the given query sequence.

Recall Study Overview

In this section, the two types of recall (PC and VC) are evaluated in the following
two scenarios using both the frequent and infrequent set of query sequences.

1. The FCQ Processor is set to compute all supersequences of the given
query sequences. This experiment is performed to show the overall strength
and weaknesses in the three approaches. The results of this experiment
are presented in Section 8.2.1

35

8 Experimental Study

2. The FCQ Processor is set to compute the 15 most frequent superse-
quences (Topl5). This experiment is designed to show a more realistic
case where only the more statistically significant results are computed.
We choose to do a Topl5d experiment since, a Top20 would be too close
to the total amount of supersequences computed for most of the query
sequences, and a Topl0 would produce too few supersequences to give a
usable result. The results of this experiment are presented in Section 8.2.2

In this recall study the VPA approach is only included for comparison, and
we only evaluate on the PCA and PAH approach, since the VPA approach gives a
100% recall at all the included levels of support threshold. This is due to the fact
that VPA per definition finds a set of subsequences that are represented in the
pattern dimension, and thereby is able to extract and scan the limited amount
of visit sequences for all supersequences of the query sequence. The high recall
of the VPA approach gives some penalties in the form of, longer execution time
and a higher space usage. This is addressed in the later experiments regarding
execution time and space usage.

8.2.1 Recall of All Supersequences

This section first presents the results of the experiment using the set of frequent
query sequences, while computing all supersequences to answer a FCQ, and
later presents the results using the infrequent query sequences.

All Supersequences of Frequent Query Sequences Figure 15 shows the
average PC recall of each indexing approach, given the set of frequent query
sequences. As seen in the figure the recall of PCA and PAH declines as the
support threshold increases. This is due to the fact that PCA can only com-
pute results for the supersequences that are included in the pattern dimension,
and thereby aggregated. PAH produces a slightly higher PC recall than PCA,
because it is able to scan for additional supersequences, by using the limited set
of patterns that have been associated with the visit dimension.

The average VC recall for each approach is shown in Figure 16. This exper-
iment shows that the VC recall of the PCA and PAH approach is significantly
higher than the PC recall shown in the previous experiment result. This is due
to the fact that most of the patterns missed by PCA and PAH in the PC recall
study, are less frequent, and thereby have a low visit count.

This VC recall experiment shows that even though the PCA approach only
computes counts for less than 70% of the supersequences (PC recall) at 1%
support threshold, the most frequent supersequences are still included, giving
a VC recall close to 100%. Considering the two recall studies, primarily the
VC recall study, the PCA approach is considered applicable with a support
threshold up to 5%, where the PAH approach is considered applicable using
support threshold of up to 7%.

All Supersequences of Infrequent Query Sequences This study evalu-
ates the performance of the three approaches, using the set of infrequent query
sequences. The average PC recall for each approach is shown in Figure 17. As
expected this experiment shows that the PCA approach is only efficient on the
more frequent query sequences, since the recall starts below 40% at a support

36

8.2 Recall Study

100,00% I L L i i L L L i u

90,00%
80,00%
70,00%
60,00%

50,00% - VPA

40,00% ~<=PCA
% PAH

Pattern Count Recall

30,00%
20,00%
10,00%

0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

Support threshold

Figure 15: Average PC recall for all frequent query sequences, with all superse-
quences computed.

100,00%
90,00%
80,00%

70,00%

60,00%

50,00% - \PA
40,00% *-PCA
¥ PAH

Visit Count Recall

30,00%
20,00%
10,00%

0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

Support threshold

Figure 16: Average VC recall for all frequent query sequences, with all super-
sequences computed.

37

8 Experimental Study

threshold of 1%. This experiment also gives a clear view of the benefits obtained
by the visit associations in the PAH approach, since the PAH approach in most
cases gives a much higher recall than the PCA approach. The figure shows that
the recall of the PAH approach drops between support thresholds of 7% and 8%,
this is due to the limited amount of patterns associated in the PAH approach
when the support threshold gets higher. This shows that on average this is the
point where the approach looses the associations needed for the visit extraction,
on this set of query sequences.

100,00% L L L i i L i L l

90,00%
80,00%
70,00%
60,00%

50,00% & \/PA

40,00% “=PCA
 PAH

Pattern Count Recall

30,00%
20,00%
10,00%

0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

Support threshold

Figure 17: Average PC recall for all infrequent query sequences, with all super-
sequences computed.

100,00%
90,00%
80,00%
70,00%
60,00%

50,00% = \/PA

==PCA
“¥=PAH

40,00%

Visit Count Recall

30,00%
20,00%

10,00%

0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

Support threshold

Figure 18: Average VC recall for all infrequent query sequences, with all super-
sequences computed.

38

8.2 Recall Study

The average VC recall for each approach, using infrequent query sequences,
is shown in Figure 18. This experiment again shows that the VC recall of the
PCA and PAH approach is significantly higher than the PC recall.

The two experiments on this set of query sequences, shows that the PCA
approach is only applicable when the support threshold is at 1%, where the
PAH approach is applicable using support threshold of up to 4%.

8.2.2 Recall of Topl5 Supersequences

This section first presents the results of the experiment on the set of frequent
query sequences, while computing Topl5 supersequences and later presents the
results using the infrequent query sequences.

Topl5 Supersequences of Frequent Query Sequences The Topl5 PC
recall experiment for each approach, using frequent query sequences, is shown
in Figure 19. This study shows that both the PCA and PAH actually give a
higher recall in regards to the statistically significant results (Top15). The PAH
approach has the same tendencies as in the prior study, but with a increased
recall. The PCA approach also gives a higher recall even though it declines
faster than in the results of the experiment computing all supersequences.

100,00%

90,00%
80,00%

70,00%

©

[$]

& 60,00%

§ 50,00% - \/PA
o

= 40,00% =PCA
g %= PAH
©

o

30,00%
20,00%
10,00%
0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,006 7,00% 8,00% 9,00% 10,00%
Support threshold

Figure 19: Average PC recall for all frequent query sequences, with Topl5
supersequences computed.

The average VC recall for each approach using frequent sequence queries
is shown in Figure 20. Again the experiment shows that the PCA and PAH
approaches give a higher recall when only computing the statistically significant
results (Toplh).

Considering the two recall results presented, using frequent query sequences,
the PCA and PAH approaches could be applicable for a support threshold of
up to 6% and 8%, respectively.

Topl5 Supersequences of Infrequent Query Sequences The Topl5 PC
recall for each approach using infrequent query sequences is shown in Figure 21.

39

8 Experimental Study

100,00%
90,00%

80,00%

70,00%
60,00%

50,00% = \/PA

40,00% “*PCA
¥ PAH

Visit Count Recall

30,00%
20,00%
10,00%
0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%
Support threshold

Figure 20: Average VC recall for all frequent query sequences, with Toplh
supersequences computed.

The experiment shows that both the PCA and PAH gives a higher recall in
regard to the statistically significant results (Topl5). The PAH approach has
the same tendencies as in the prior study regarding all supersequences, but with
an increased recall. The PCA approach also gives a higher recall even though
it declines faster than in the all supersequence study.

100,00% L L i L L L L L L
90,00%

80,00%

70,00%

60,00%

50,00% & \PA
40,00% *PCA

=¥ PAH
30,00%

Pattern Count Recall

20,00%
10,00%
0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%
Support threshold

Figure 21: Average PC recall for all infrequent query sequences, with Topl5
supersequences computed.

The average VC recall for each approach using infrequent sequence queries is
shown in Figure 22. The experiment shows that the PCA and PAH approaches
give a higher recall, when only computing the statistically significant results
(Toplb).

40

8.3 Execution Time

100,00%

90,00%

80,00%

70,00%
T 60009
8 0,00%
o
€ 50,00% = VPA
=1
o
O 40,00% ==PCA
= ¥ PAH
£

30,00%
20,00%

10,00%

0,00%
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

Support threshold

Figure 22: Average VC recall for all infrequent query sequences, with Topl5
supersequences computed.

Considering the two recall results presented using infrequent query sequences,
the PAH approach could still be applicable for a support threshold of up to 4%,
but the PCA approach would only be applicable using a support threshold of
up to 2%.

8.3 Execution Time

In this study we measure two types of execution time. The first experiment
measures the performance of the three approaches compared to the support
threshold. The second experiment measures the performance of the three ap-
proaches when querying on time periods of varying length.

Execution Time Compared to Support Threshold In this study we mea-
sure the average execution time of the three approaches on the ten cubes with
support thresholds ranging from 1% to 10%. The execution time is the average
time it takes to compute and return results for all supersequences of each of the
twelve query sequences. The results are shown in Figure 23, and as expected it
can be seen that the VPA approach is the slowest, followed by the PAH method.
This is due to the fact that these two approaches utilise extraction and scan of
a limited set of visit sequences. The PCA approach is significantly faster at all
support thresholds. This is partly due to the fact that all results are precom-
puted and stored in the data warehouse, making the result computation less
complex, and partly that the PCA approach has a relatively limited PC recall,
when the support thresholds gets higher, which results in fewer queries to the
cube than in the two other approaches.

Figure 23 shows that the VPA approach increases rapidly in execution time
when the support threshold exceeds 7%. This shows the time penalty caused
by extracting the increasingly larger set of visit sequences for the visit count
computation. As a comparison, a total extraction of all visit sequences and a

41

8 Experimental Study

& \PA
3 ~=PCA
%= PAH

Average Execution Time (sec)

v O o o N - by
0 & © = @ —

3 0 y 0 s 0 y 0 y (] y 0 3 0 y ‘0 y 0 s 0
1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00 8,006 9,00% 10,00%
Support threshold

Figure 23: The average execution time, for the three approaches, when execut-
ing the query sequences on the data warehouse loaded with a varying support
threshold.

linear scan for all supersequences for each query sequences executes on average
in 20 seconds, making the VPA approach more than 70% faster, even at 10%
support threshold. This result is excluded from the graph to improve readability.

Considering the execution time results presented, the PCA and PAH ap-
proach are considered applicable for all the presented support thresholds, but
the VPA approach would only be applicable using a support threshold of up to
7%.

Execution Time on Increasing Time Periods In this study we measure
the performance of the three approaches, when the query time period increases.
This is done by measuring the average time it takes the three methods to com-
pute and return results, for all query sequences on all support thresholds (from
1% to 10%), using different query periods ranging from 1 to 4 weeks.

Figure 24 shows the effect the time period has on the average execution time
of each indexing approach. The figure shows that the PCA approach has an
almost constant average execution time, where the PAH and VPA approaches
increases when the query period increases. The figure again shows the VPA
approaches time penalty in extracting the increasingly growing visit sequence
set. Even though the results only range up to 3,5 seconds the experiment
still shows that the VPA grows fast when the query period increases. The
study indicates that, if the query period is multiplied up to one year, the VPA
approach would use approximately 32 seconds to compute the results, where
the PAH approach only would use approximately 12 seconds. Based on these
observations we conclude that, the VPA approach does not scale as well as the
PAH and PCA approaches.

42

8.4 Space Usage

4
3,5
3 3
2
[0}
E 25
'_
c
g 2 - \VPA
3 ~-PCA
g 15 ¥ PAH
[0
(o))
o1
2
<
0,5
0
1 2 3 4

Query Period (weeks)

Figure 24: The average execution time, for the three approaches, when executing
all query sequences at all support thresholds (from 1% to 10%), with query time
periods ranging from 1 to 4 weeks.

8.4 Space Usage

In this study we measure the space usage of the three indexing approaches to
see how well the different approaches scale compared to the amount of tracking
records.

To measure the space usage of the three approaches we introduce a measure
called Row Measure. As described next the Row Measure is computed
differently on each approach to make the result comparable:

VPA Row Measure The row measure of the VPA approach is the amount
of rows in the fact table VisitPattern. These rows contain two integer
attributes: PatternID and VisitID.

PCA Row Measure The row measure of the PCA approach is the amount of
rows in the fact table PatternDailyCount multiplied by 2 since this fact
table contains four integer attributes: PatternID, Date, VisitCount, and
VisitClassification, assuming the classification has been implemented
as a classification dimension to avoid having a string in the fact table.

PAH Row Measure The row measure of the PAH approach is computed by
adding: The amount of rows in the visit association fact table, that con-
tains two integer attributes: PatternID and VisitID, with the amount
of rows in the pattern count fact table, multiplied by 2 since this ta-
ble contains four integer attributes: PatternID, Date, VisitCount and
VisitClassification. Assuming the classification has been implemented
as a classification dimension to avoid having a string in the fact table.

The row measure of each approach is shown in Figure 25. As shown, the VPA
approach uses a huge amount of space at the low support thresholds, whereas
both the PCA and PAH approaches have a more reasonable space usage, even
at 1% support threshold.

43

8 Experimental Study

60
50
=
S
S 40
€
3
o
© 30 = \/PA
5 ==PCA
12}
S 5 - PAH
=
2
[e)
ST
‘\F - =
G N : X . Y Z Z —Y

0 G g ¢ G

1,00% 2,00 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%
Support threshold

Figure 25: Space usage in row measure count for each of the three approaches,
at the different support thresholds.

Comparing the space usage of the three approaches to the amount of tracking
records in the Fact_Tracking fact table, gives the following information: The
current Fact_Tracking table in the data warehouse includes a total of 4.8 million
tracking records. This shows that the VPA grows at a rate of more than ten rows
per new tracking record, loaded into the system, at 1% support threshold. With
this taken into consideration, the VPA approach is only considered feasible at a
support threshold higher than 6% where the space usage is increasing at a rate
of less than three rows per tracking record. The space usage of the PCA and
PAH approaches is significantly lower than the VPA and is therefore considered
feasible even at a support threshold of 1%.

8.5 Experimental Study Conclusion

This section describes our conclusions on the three indexing approaches with
regards to the experiments performed in the previous sections. We discuss the
pros and cons of the three approaches in regard to our observations in the
experiments.

VPA Indexing Approach The strength and weakness of the VPA approach
is clearly the fact that all patterns are associated with all visits containing them.
This results in a 100% recall on all FCQ’s, but it also demands a lot of space
to be used for these associations. As shown in the space usage study the VPA
approach is only considered feasible when the support threshold is set to 6%
or more. The study regarding execution time shows that the VPA approach
performs the best when the support is set to 7% or less. The execution time
study also shows that the VPA approach does not scale as well as the two other
approaches, since the average execution time used to compute the answer to
an FCQ increases with a little less than a second, per week in the query time
period. This does not sound as much, but as the query time period increases,
this will become an issue.

44

8.5 Experimental Study Conclusion

The experimental study shows that the VPA approach is most suitable in
applications where a 100% recall is required, and either space usage or execution
time is not an issue. By adjusting the support threshold, the approach can
perform fast with a high demand for space usage in the data warehouse, or
perform slower with a more moderate space usage in the data warehouse.

PCA Indexing Approach The strengths of the PCA approach is the fast
FCQ computation and the relatively small amount of space used. This can be
seen in the execution time study, where this approach is not noticeably affected
by the increasing query time period. The study concerning the space usage
shows that, the PCA approach could easily be aggregated on a lower support
threshold, which would improve the recall.

The weakness of the PCA approach is the varying recall. The recall study
shows that, if the support threshold is set to 1%, then the PC recall ranges from
35% to almost 100%, and the VC recall ranges from 90% to 100%.

The experimental study shows that the PCA approach is most suitable in
applications where a 100% recall is not required and where the VC recall is
considered more important than the PC recall. Since the PCA approach is
so fast and space efficient, a support threshold even lower than 1% can be
considered.

PAH Indexing Approach The PAH approach provides a faster FCQ compu-
tation than the VPA approach and with a higher recall than the PCA approach.

The recall study shows that if the support threshold is set to 1% then the
PC recall ranges from 85% to almost 100% and the VC recall ranges from 97%
to 100%.

Like the PCA the PAH approach could be utilised with an even lower support
threshold than 1%, since it would not demand an unacceptable amount of space.
This would increase the amount of queries that can be answered, by utilising
the preaggregated counts, which in turn would result in a higher recall and
execution time.

The weakness of the PAH approach is, as introduced in Section 5.4, how to
determine which patterns to include in the visit pattern associations.

As seen in this experimental study the PAH approach is most suitable in
application where a close to 100% recall is prefered and where the VC recall is
considered more important than the PC recall. The decision of which patterns
to associate is then a factor that should be adjusted depending on the domain
in which the approach is used.

45

9 Conclusion

9 Conclusion

The current work presents a data warehouse solution for flow analysis on indoor
spatiotemporal tracking data collected by Blip Systems (Blip) at Copenhagen
airport. The solution is designed to be implemented in an RDBMS and to
support the use of OLAP tools, e.g., for statistical analysis of the tracking data.
We present a prototype implementation of a flow count query (FCQ) processor
that, utilising an OLAP cube generated on the data warehouse solution, is able
to answer queries on flow information.

We design a multidimensional database schema and an ETL system capable
of extracting, transforming, and loading the Blip data set into the data ware-
house. The ETL system is designed to only extract complete and meaningful
data and to use the extracted data to compute visit sequences utilised in the
flow analysis. The transformation phase of the ETL system passes the data
through a series of data cleansing steps, where noisy and faulty data, generated
by the tracking system, and the total amount of tracking records are reduced.
The current implementation of the ETL system extracted a total of 12.2 million
tracking records from the Blip data set and reduced this amount with approx-
imately 60%, down to 4.8 million tracking records. The remaining tracking
information is divided into visits, that represent visitors at the airport. The
tracking information of each visit is combined into sequences representing the
locations traversed during the visit at the airport.

We propose to utilise the PrefixSpan sequential pattern mining algorithm to
compute frequent patterns in the set of detected visit sequences. We present the
following three different approaches, to store and index the frequent patterns
utilised to answer an FCQ: The Visit Pattern Association (VPA) approach is
designed to associate all frequent patterns computed, with the visits that con-
tain the given pattern. The Pattern Count Aggregation (PCA) approach is
designed to preaggregate the amount of visits containing the frequent patterns
at a predefined time interval. The Pattern Aggregation Hybrid (PAH) approach
is designed, as a combination of the two prior approaches, to utilise both visit
pattern association and visit count preaggregation.

An experimental study is performed using a prototype implementation of the
presented FCQ Processor, to study the recall, execution time, and space usage
of the three approaches. The study shows that each approach is applicable in
different applications depending on the requirements on recall, execution time,
and space usage. Observations made through the experimental study indicates
that the VPA approach is only applicable using a support threshold of 6% to 7%,
where both the PCA and PAH approach are applicable at a support threshold
of 1% or less. The VPA approach provides 100% recall on every sequence query
with the penalty of increased execution time and space usage. The results at
the previously mentioned support thresholds shows that the VPA approach has
an approximately 400% longer execution time and a space usage approximately
600% higher than the PCA approach. The PCA approach is storage efficient
and provides fast execution times, at the cost of a reduction in recall. The
recall study of the PCA approach shows a visit count recall ranging from 90%
to 100%, and a pattern recall ranging from 35% to almost 100%, using a support
threshold of 1%. The PAH approach preserves the strengths of each approach
at the cost of being more domain specific, i.e., the PAH approach needs to be
customised to fit the application in which it is applied.

46

10 Future Work

A relevant subject for further research is the possibility of developing a generic
version of the PAH approach to avoid the domain specialisation. This could
enhance the possibility of providing a solution with a close to 100% recall, with
a low execution time and space usage. Another relevant subject is the utilisation
of virtual fact tables, in the generation of the OLAP cube, e.g., by introducing a
dynamic view that computes the visit pattern associations of the VPA approach,
instead of storing precomputed results. This would reduce the space usage in
the data warehouse significantly, but at the cost of performance, when querying
associations in the virtual table.

The following issue related to the current design of the approaches presented
in Section 5, is left for future work. Depending on how the data is loaded into
the data warehouse and how the frequent patterns are computed, it is likely
that new frequent patterns will appear over time, and some existing patterns
will cease to be frequent. This introduces a problem of deciding which patterns
should be included, when updating the association and aggregation tables in
the indexing approaches.

This issue could arise when loading visits into the data warehouse on a daily
basis. On the first few days the same set of frequent patterns are found in the
visits, but after a while some new patterns appear in the visit sequences. In
this case there are two options: The new patterns are associated with the visits;
(1) from the day they appear and all subsequent visits, or (2) all past, current,
and subsequent visits. Option 2 is clearly the best possible solution, given the
accuracy of results, when performing queries on patterns over time. Searching
through all previous visits in the warehouse, on the other hand, can become
an infeasible option, given the amount of previous data. Option 1 is faster to
maintain, but more complex to query. It would require a first seen attribute
on the pattern dimension, indicating from which point in time the pattern is
included. This is simple to maintain in the ETL system, but is more complex
to include in the results computation of a FCQ. Given the scope of the current
work, this issue has not been further studied and is thereby left for future work.

47

References

References

[1]

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB. Morgan Kauf-
mann, 1994.

Alexandra Instituttet A/S. Spopos project. http://www.spopos.dk, 2007,
Accessed: 01/06,/2009.

P. Bahl and V. N. Padmanabhan. RADAR: an in-building RF-based user
location and tracking system. 2000.

Sudarshan S. Chawathe, Venkat Krishnamurthy, Sridhar Ramachandran,
and Sanjay Sarma. Managing RFID data. In VLDB °04: Proceedings
of the Thirtieth international conference on Very large data bases. VLDB
Endowment, 2004.

Silke Feldmann, Kyandoghere Kyamakya, Ana Zapater, and Zighuo Lue.
An indoor bluetooth-based positioning system: Concept, implementation
and experimental evaluation. In International Conference on Wireless Net-

works, 2003.

Gy6z6 Gidéfalvi and Torben Bach Pedersen. Mining long, sharable patterns
in trajectories of moving objects. Geoinformatica, 2009.

Hector Gonzalez, Jiawei Han, and Xiaolei Li. Flowcube: constructing RFID
flowcubes for multi-dimensional analysis of commodity flows. In Proceed-
ings of the 32nd international conference on Very large data bases. VLDB
Endowment, 2006.

Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego Klabjan. Warehousing
and analyzing massive RFID data sets. In Proceedings of the 22nd Inter-
national Conference on Data Engineering, ICDE 2006, Atlanta, GA, USA.
IEEE Computer Society, 2006.

Jonas T. Hansen, Stig Jgrgensen, Simon Nicholas M. Tinggaard, and
Rune L. Wejdling. Pre-master Thesis: A Data Warehouse Solution for
Analysis on Indoor Tracking Data, 2008.

Illimine - partially open-source data mining package. http://illimine.
cs.uiuc.edu, 2006, Accessed: 05/18/2009.

Christian S. Jensen, Hua Lu, and Bin Yang. Indexing the trajectories of
moving objects in symbolic indoor space. 1Ith International Symposium
on Spatial and Temporal Databases, 2009.

Christian S. Jensen and Torben B. Pedersen. Multidimensional databases
and OLAP. Submitted to J. Hammer and M. Schneider (Ed.s): Handbook
of Database Technologies, CRC' Press, forthcoming, 2007.

Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit: Practi-
cal Techniques for Extracting, Cleaning, Conforming, and Delivering Data.
John Wiley & Sons, 2004.

48

http://www.spopos.dk
http://illimine.cs.uiuc.edu
http://illimine.cs.uiuc.edu

References

[14]

[15]

[16]

[17]

[18]
[19]

Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. Traffic density-
based discovery of hot routes in road networks. In Advances in Spatial and
Temporal Databases, 10th International Symposium, SSTD 2007, Boston,
MA, USA, July 16-18, 2007, Proceedings. Springer, 2007.

FEric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and
David W. Cheung. OLAP on sequence data. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, New
York, NY, USA, 2008. ACM.

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-chun Hsu. Prefixspan: Mining sequential pat-
terns efficiently by prefix-projected pattern growth. In Proceedings of
the 17th International Conference on Data Engineering, Washington, DC,
USA, 2001. IEEE Computer Society.

Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar
Dayal. Multi-dimensional sequential pattern mining. In CIKM ’01: Pro-
ceedings of the tenth international conference on Information and knowl-
edge management, New York, NY, USA, 2001. ACM.

Cornelis J. Van Rijsbergen. Information Retrieval. Butterworths, 1979.

Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating associ-
ation rule mining with relational database systems: alternatives and impli-
cations. SIGMOD Rec., 1998.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database Sys-
tems Concepts. McGraw-Hill, fifth edition, 2006.

Roy Want. RFID explained: a primer on radio frequency identification
technologies. Morgan & Claypool Publishers, 2006.

Blip Systems - Bluetooth Marketing Solutions. http://www.blipsystems.
com/, 2008, Accessed: 04/15/2009.

Copenhagen Airports A/S. http://www.cph.dk/, 2008, Accessed:
04/15/2009.

49

http://www.blipsystems.com/
http://www.blipsystems.com/
http://www.cph.dk/

A Blip Data Set Zone Division Table

A Blip Data Set Zone Division Table

Location Zone Area Site

1 TransferT2 | Transfer | Copenhagen
2 TransferT1 | Transfer | Copenhagen
3 GateA Transfer | Copenhagen
4 TransferT2 | Transfer | Copenhagen
5 TransferT2 | Transfer | Copenhagen
6 GateB Transfer | Copenhagen
7 Transfer Transfer | Copenhagen
9 Transfer Transfer | Copenhagen
11 TransferT3 | Transfer | Copenhagen
12 GateC Transfer | Copenhagen
13 TransferT3 | Transfer | Copenhagen
15 TransferT3 | Transfer | Copenhagen
16 Security Transfer | Copenhagen
17 Land Land Copenhagen
18 Land Land Copenhagen
19 Transfer Transfer | Copenhagen
20 EntranceT?2 Land Copenhagen
21 EntranceT?2 Land Copenhagen
22 EntranceT?2 Land Copenhagen
23 EntranceT3 Land Copenhagen
24 Land Land Copenhagen
26 EntranceT3 Land Copenhagen
999 GateA Transfer | Copenhagen
1001 EntranceT?2 Land Copenhagen

Table 3: Table of Locations in CPH, showing their respective Zone and Area
divisions. For simplicity the "ms-spopos1.” prefix is removed from the location
names.

50

B Summary in Danish

Vi har under udarbejdelsen af denne kandidatafhandling, arbejdet inden for
feltet analyse af personers bevaegelse i indendgrs arealer, for eksempel i en
lufthavn. I denne forbindelse har vi samarbejdet med Blip Systems A/S (Blip),
en nordjysk virksomhed, der har specialiseret sig i lgsninger der benytter Blue-
tooth teknologien. Blip har i samarbejde med Copenhagen Airports A/S, im-
plementeret et Bluetooth baseret sporingssystem, der overvager besggende i
Kgben- havns lufthavn (CPH). Overvagningen forgar ved at spore de besggendes
Bluetooth enheder, ved hjelp af malestationer placeret udvalgte steder i lufthav-
nen. Dette sporingssystem generer dagligt en stor meengde maledata, der kan
benyttes til flere forskellige analyseopgaver. Eksempler pa sadanne analyseop-
gaver inkluderer, analysering af kgtider i forskellige dele af lufthavnen, og anal-
yse af de besggendes bevagelses mgnstre.

I athandlingen praesenterer vi et Data Warehouse (DW) design, som un-
derstotter lagring og analyse af maledata, genereret af Blips sporingssystem,
med henblik pa analyse af de besggendes bevaegelsesmgnstre. Strukturen i
det praesenteret DW design er udviklet til at understgtte statistisk analyse af
de store meengder data, ved hjeelp af Online Analytical Processing (OLAP)
veerktgjer.

I afhandlingen praesenteres et (ETL) system der er designet til at tilpasse
Blips maledata til strukturen i det praesenterede DW. Systemet eliminere
ugyldigt data, reducere maengden af overfladigt data og detekterer besgg i
lufthavnen. Et besgg definerer vi som en meengde maledata, der beskriver en
Bluetooth enheds fzerden i en sammenhzngende periode i lufthavnen. Et besgg
deekker dermed over en persons tilstedevaerelse og feerden i lufthavnen.

Vi definerer en Flow Count Query (FCQ) som den forespgrgsel, vi vil kunne
besvare ved hjalp af vores DW: Givet en sekvens af lokationer og en tidsperiode,
beregner en FCQ antallet af besgg der indeholder den forespurgte sekvens og
hvor de er set, bade fgr, efter og ind i mellem lokationerne i den forespurte
sekvens.

Vi forslar at benytte Sequential Pattern Mining til at beregne ofte fremkomne
mgnstre i de detekterede besgg i lufthavnen. Vi praesenterer de fglgende tre
forskellige lgsninger pa hvorledes mgnstrene kan lagres i det praesenterede DW,
samt hvordan de benyttes i besvarelsen af en FCQ:

Visit Pattern Association (VPA) VPA metoden benytter associationer
mellem de beregnede mgnstre og de besgg mgnstrene opstar i. Disse as-
sociationer forudberegnes og lagres, som bindinger i en tilfgjelse til det
praesenterede DW. Associationerne benyttes derefter til at beregne hvor
mange besgg der indeholder et udvalgt mgnster. Hvis dette mgnster er
blandt de forudberegnede ofte fremkomne mgnstre, beregnes besggs an-
tallet direkte ved at teelle dets associationer. Hvis mgnstret ikke er forud-
beregnet, udtraekkes en maengde af besgg, som med stor sandsynlighed
indeholder mgnstret, givet Apriori egenskaberne. Hvorefter der foretages
en linieer sggning efter mgnstret i denne maengde.

Pattern Count Aggregation (PCA) PCA metoden forudberegner
vaerdierne for hvor mange besgg der indeholder et specifikt mgnster for
eksempelvis en dag. De forudberegnede veerdier lagres i en udvidelse til det
praesenterede DW. Antallet af besgg der indeholder et specifikt mgnstre

o1

B Summary in Danish

kan herefter hentes direkte, ved at summere dagsveerdierne op for den
givne periode.

Pattern Aggregation Hybrid (PAH) PAH metoden er en hybrid af de to
andre metoder (VPA og PCA) i det at metoden benytter bade forudbereg-
nede associationer og opsummerede vaerdier. Metoden kan derved benytte
de opsummerede veerdier, sa laenge et mgnster er forudberegnet. Hvis et
mgnster ikke er forudberegnet kan associationerne bruges til at udtraekke
en maengde af besgg, til linser sggning, i samme stil som i VPA metoden.

Vi praesenterer og implementerer et prototype system der kan benytte de tre
metoder til at beregne resultatet til en FCQ. Prototypen danner grundlag for en
evaluering af de tre metoder hvor effektiviteten, tidsforbruget og pladsforbruget
af hver metode vurderes.

Vi konkludere at de tre metoder har styrker inden for hvert deres felt, da VPA
metoden altid giver et komplet resultat, pa bekostning af et stort pladsforbrug
og lang eksekveringstid. PCA metoden giver hurtige resultater og benytter
betydeligt mindre plads end VPA metoden, dog pa bekostning af et ikke helt
komplet resultat. PAH metoden ligger imellem de to andre og giver derfor et
bedre resultat end PCA ved brug af mindre plads og tid end VPA. Dog pa den
bekostning af metoden skal tilpasses det domeene hvori den benyttes.

52

	Introduction
	Problem Definition
	The Blip Data Set
	Source Data
	The Bouncing Problem
	Data Set Zone Divisions

	Data Warehouse Schema
	Pattern Indexing Approaches
	Frequent Pattern Index Overview
	Visit Pattern Association
	Pattern Count Aggregation
	Pattern Aggregation Hybrid

	Extract Transform Load
	Extraction Phase
	Transformation Phase Overview
	Transformation of Tracking Records
	Transformation of Visits
	Transformation of Patterns
	Load Phase

	FCQ Processor Implementation
	OLAP Cube Design
	FCQ Processor Description

	Experimental Study
	Experimental Setting
	Recall Study
	Execution Time
	Space Usage
	Experimental Study Conclusion

	Conclusion
	Future Work
	References
	Appendix
	Blip Data Set Zone Division Table
	Summary in Danish

