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Abstract

Reinforcement learning is a powerful model

of learning, but has the practical problems

of requiring a large amount of experience,

and bad initial performance of the learner.

This master degree thesis presents a possi-

ble solution to the second of these problems

in the domain of backgammon, where a su-

pervisor is employed to ensure adequate ini-

tial performance, while retaining the ability

of the learning agent to discover new strate-

gies, enabling it to surpass the supervisor.

There is no standard measure for this kind of

improvement, so an ad-hoc measure is pro-

posed, which is used to guide the experimen-

tation. Using this measure shows that su-

pervised reinforcement learning can be used

to solve the problems posed by ordinary re-

inforcement learning in the backgammon do-

main.
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Chapter 1

Introduction

Machine learning is often based on the same principles as human learning. Imagine for in-
stance a boy, trying to throw a ball through a ring. One way to for the boy to learn this, is
to just throw the ball and observe what happens. At �rst the results will seem random, but
little by little, the aim and throw will get better, as the boy learns by experience, what does
and does not work. This is the basic principle behind the �eld of machine learning known as
reinforcement learning: Learning comes from interacting with the environment.

This simple principle gives rise to the reinforcement learning model, in which an agent inter-
acts with the environment by performing actions dependent on the state of the environment.
The environment responds by changing its state and by rewarding the agent with a scalar
reward signal. The learning occurs, as the agent tries to maximize the cumulative reward over
time. The simplicity of this model makes it possible to apply reinforcement learning to a wide
variety of situations. Examples of domains, where reinforcement learning has been applied
succesfully, include dynamic channel allocation for cellphones [SB97], elevator dispatching
[CB96] and backgammon [Tes95]. In the case of the backgammon domain, Gerald Tesauro
created the TDGammon player, which is based on a reinforcement learning technique called
temporal-di�erence learning. TDGammon eventually reached a playing strength that rivals
or perhaps even surpasses that of human world class backgammon master players, and some
of its tactics have even been adopted by these players. One of the surprising lessons learned
from TDGammon was, that it could achieve this high level of performance, even though it
had started out knowing nothing about the game, and had only learned through self-play, i.e.
playing both sides of the board.

As powerful as the reinforcement learning principle may be, there are still some drawbacks.
They are related to the fact that, starting from scratch, it can take a long time to reach an
acceptable level of performance. This can be annoying in learning from simulated experience,
where the amount of simulations required can prohibit extensive testing of variations - the ver-
sion of TDGammon, that reached master level, played 6.000,000 games against itself[Tes02]
- but the real problems arise when the actions are performed in a real environment. Here, it
may be very di�cult to obtain the required amount of experience, and the consequences of
not performing at an adequate level may be severe, depending on the domain.

What can be done to avoid these drawbacks? An answer may be found by considering, that
the reinforcement learning principle is not the only mode of learning. Humans can also learn
from teachers, either by mimicking them, or by receiving advice or evaluations from them. In
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the example of the ball-throwing boy, imagine the situation when a parent or teacher is nearby
to demonstrate the throw, or give praise, when the boy has the correct posture. In such a
situation, the boy might learn faster, and the �rst shots will likely not be as bad, since the
teacher will guide them. With such a setup, it is important, that the teacher at some time,
when the boy has become pro�cient, becomes less involved, leaving the boy to discover by
experience more advanced techniques and skills, that may even surpass those of his teacher.
Such a mode of learning could be called supervised reinforcement learning.

Fortunately, in many cases it is possible to formulate simple heuristics that may act as a
teacher to a computer program trying to learn by reinforcement. The purpose of this report
is to explore how supervised reinforcement learning can be applied to improve the results of
TDGammon. Chapter 2 describes the game of backgammon, while chapter 3 describes how
reinforcement learning can be treated mathematically. The classic reinforcement theoretical
corpus is concerned with state spaces, that can comfortably be represented in a table, but
real world problems, including that of learning to play backgammon, often operate in state
spaces that are much too large to practically �t in any table, so a later section of the chapter
adresses the practical problem of how to learn anything in a state space as vast as that of
backgammon. Chapter 4 describes the other work done, and the challenges faced in the �eld
of supervised reinforcement, as well as how the task of improving TDGammon compares to
other tasks that supervised reinforcement learning has been used to solve. This comparison
shows that there is a need for a custom testbed to measure the improvements achieved,
so chapter 5 provides one such measure. Since the measure is custom made, it cannot be
used for comparing with previous results in related work, but it can be used as a guide for
experiments within this report. Chapter 6 uses the previous knowledge to produce three
models of supervised reinforcement learning for the backgammon domain. These models only
di�er in the method by which the teacher gradually withdraws, as the learning agent becomes
more knowledgeable. The models are tested in chapter 7, and �nally chapter 8 sums up the
feasibility of using supervised reinforcement learning to improve the results of TDGammon.



Chapter 2

The Backgammon Domain

2.1 Introduction

This chapter introduces the rules of the game of backgammon. This is done in section 2.2
and provides the basic understanding required of the next two sections. Section 2.3 discusses
the complexity involved in playing well, and section 2.4 shows how the game mechanics can
be used to specify how the backgammon agents should interact. In the following, the terms
player and agent will be used interchangeably.

2.2 Backgammon

Backgammon is a boardgame for two players. Each player has 15 checkers, which start on
the board in prespeci�ed positions, and the goal for each player is to move all his checkers o�
the board. The �rst player to do so, wins the game. Figure 2.1 shows the initial placement of
checkers for each player. Each point has a number from 1 to 24. These numbers are relative
to the current player. The home table of the current player always contains the points 1-6,
while the opponent home table always contains 19-24. The players move their checkers in
opposite directions, trying to get all their checkers into their home table.

Figure 2.1: The backgammon board initial setup[Hei04]
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2.2.1 Moving

The players take turns to move their checkers. Each turn, a player throws 2 dice. Unless
a double is thrown, two moves are allowed, one for each die. If a double is thrown, then 4
moves are allowed, each move using the number of pips on one of the dice, e.g. if a double 5
is thrown, then the player has 4 moves of 5 points each. These moves can be combined freely,
i.e. the moves can be divided on di�erent checkers, or a single checker can use more than one
of the available moves. Multiple moves are carried out consecutively, e.g. using 3 moves of 5
doesn't count as making a single move of 15. A player is not allowed to pass on his moves,
as many moves as possible must be made each turn. If a point is occupied by two or more
checkers, then they are safe, and no move by the opposing player may land at that point. If a
point is occupied by a single checker, that is called a blot, and the checker is vulnerable to a
hit by the opposing player. Checkers are hit if the opposing player moves a checker onto the
blot checker point. Checkers, that are hit, are moved to the bar, that divides the outer table
from the home table, and from here they must enter the home table of the opposing player.
Entering the opposing players home table counts as a normal move, e.g. using a move of 1
lands the checker on the 24 point. While a player still has checkers on the bar, he may not
move any other checkers.

2.2.2 Bearing O�

Once a player has all his checkers in his own home table, he may start to remove them from
the game. This is known as bearing o�. Using a move of 1 will bear o� a checker from the 1
point, using a move of 2 will remove a checker from the 2 point and so on. A player doesn't
have to bear o�, he may also spend available moves moving checkers inside his home table.
If the player has an available move, that is higher than the highest point, at which the player
still has checkers, then he may use that move to bear o� a checker from the that point. If at
any time the opposing player captures a checker, then the player cannot continue to bear o�,
before all his checkers are again in his home table.

2.2.3 Winning

The �rst player to bear o� all his checkers wins the game and the current stake. The normal
stake to be won is 1 point. This stake can be modi�ed in two ways: By winning very
impressively or by using a special die called the doubling cube. If the opposing player has not
yet borne o� any of his checkers, then the player has won a "`gammon"', which doubles the
stake. If the opposing player still has checkers on the bar, or in the players home table, then
the player has won a "`backgammon"', which triples the stake instead. The doubling cube is
a die, whose side shows the numbers 2, 4, 8, 16, 32 and 64, representing the current value of
the stake. When it is his turn, a player may o�er to double the stake, before he throws the
dice. If this o�er is accepted by the opposing player, then current stake is doubled, and the
doubling cube is used to indicate this. If the opposing player rejects the o�er, then the player
wins the current stake before the doubling. Initially, any player can make the doubling o�er,
but once the stake has been doubled, only the opposing player is allowed the next doubling
o�er.



2.3 Complexity

Strategically, backgammon can be divided into two distinct phases: The contact phase and the
race phase. The game starts in the contact phase, and the race phase then occurs, when the
last checkers of each player have passed each other, removing any possibility for the players to
hit the opponent's checkers, or block their path. The strategy of the race phase thus reduces
to setting up the checkers in the home table, such that all moves can be fully utilized when
bearing o�. The contact phase on the other hand requires the weighing of several subgoals.
For instance, it is often desirable to hit an opponents checker, but if the player has many single
checkers in his home table, it may not be such a good idea, since the opponent in his next turn
may be able to hit those checkers in return. This could be a bad trade, since the player usually
has spent a number of moves on checkers in his home table. Another consideration is build-
ing blockades, or primes, which are consecutive positions, where the player has two or more
checkers. Long primes impedes the opponents checkers, since the prime must be traversed in
a single move. It is therefore important to have a �exible position, that allows using the future
dice rolls to build a prime. Obtaining this �exible position, however, can mean exposing single
checkers to being hit by the opponent, leading to a con�ict between the goals of building
primes and avoiding blots. To obtain good performance, such concerns must be addressed
appropriately for each of the board states, that are encountered during a game. The number
of possible states in backgammon is estimated to be in the order of 1020[Tes95]. A lot of these
states have an extremely small likelihood of occuring during a normal game, so in reality the
number of states, for which an agent needs to have good judgement is much smaller, but the
number of states, that can reasonably be expected to occur in a normal game is still very high.

Another source of complexity is the branching factor. One way to evaluate the consequences
of a given move is to imagine the possible scenarios that might occur after the move. This is
called searching the game tree. The nodes of a game tree are board states, and the children
of a node are all the states that might occur as the result of a player taking a turn from
that state. The feasibility of game tree search is bounded by the branching factor, which
is the average number of children of a node in the tree. The average number of moves in
backgammon, given a certain dice combination, is around 20 [Tes95], and since the number
of e�ectively di�erent dice combinations is 21, backgammon has a branching factor of around
400, which in practice limits the depth, to which the game tree can be searched, to 2 or 3.

2.4 A Framework for Backgammon Agents

Backgammon can be seen as a system with partial knowledge of the dynamics: The action
of making a move leads with certainty to a new state, called the afterstate, at which point
the opponent takes his turn by rolling the dice, and making his move. The opponents turn
can be seen as a probabilistic system response. The important thing to realize here is, that
this system response is dependent only on the afterstate. Stated another way, the expected
system response is the same for two board state/dice roll combinations, that lead to the same
afterstate. This means that the utility of an afterstate will be the same as that of all the
state/dice combinations that lead to such an afterstate. Therefore it makes sense to only
evaluate the afterstates, since that reduces the size of the total state space by a factor of 21.

A way to implement this would be to have a central backgammon playing framework, that
rolls the dice for each player, and generates the possible board states, that can be reached



from the current board with the new dice. The job of an agent is then only to evaluate the
board states that are presented to it. This is the way, that TDGammon was implemented
[SB98]. Using these evaluations, the framework can then decide which move to make for
the player. The obvious choice would be to choose the move with the highest evaluation,
but in some situations it may be advantageous to make another move. This is due to the
dilemma between exploitation and exploration. Exploitation refers to choosing the move,
that the player thinks is best, while exploration tries to expand the knowledge of the player
by choosing a move, that may lead to some states which the player is not familiar with.
Exploitation will maximize the expected reward in the short run, while a certain amount of
exploration will be bene�cial in the long run, since the player may discover that some moves
were better, than previously expected. However, too much exploitation will lead to the player
consistently choosing sub-optimal moves, leading to decreased long-term performance.

2.5 Conclusion

Backgammon is a game with simple rules, but with some game mechanics, that make it a
very complex game. This complexity arises from the task of managing con�icting goals such
as hitting an opponent and/or building a �exible position versus avoiding blots. The high
branching factor also contributes to the complexity by making it di�cult to consider all the
possible scenarios more than two or three steps into the future. Another factor is the di-
mensionality of the problem. A backgammon board can be fully characterized by an array of
24 integers, encoding the number of checker on each board location, plus information about
checkers on the bar. 24 is already a considerable number of dimensions, but this relatively
compact encoding is highly non-linear. For instance, there is a very large di�erence in the
tactical value between positions with a single checker, and positions with two checkers, while
the di�erence is much less between four checkers and �ve. As will be shown in chapter 5,
TDGammon overcomes this problem by speci�cally encoding, whether there is a blot, but this
only serves to increase the dimensionality of the problem.

The fact, that backgammon is a game with partial knowledge of the dynamics makes it possible
to reduce some of this complexity. Speci�cally, it is not necessary for the agent to have any
knowledge of dice rolls; by presenting only afterstates to the agents, move decisions can be
made without any loss of performance. Another decision, that can be made easier through
knowledge of the game mechanics, is that of exploration versus exploitation. Backgammon
already provides a sort of exploration mechanism through the dice rolls. The dice ensure, that
it is very unlikely for the same two players to experience the exact same sequence of board
states twice, even though their policies have not changed. Therefore, although the optimal
degree of exploration is di�cult to determine, a practical rule is for the framework to disregard
any further exploration, and just choose the exploiting move, i.e. the move that has received
the highest score from the agent.



Chapter 3

Reinforcement Learning

3.1 Introduction

Many machine learning techniques require examples of correct behaviour, that are to be
imitated and extrapolated. Reinforcement learning[SB98] is a set of learning methods, that
do not require such examples. Instead, the idea behind reinforcement learning is to learn
by interaction with an environment, using feedback to adjust the choice of actions. Section
3.2 will explain the basic reinforcement learning problem. Section 3.3 describes temporal
di�erence learning, which is a very succesful reinforcement learning method, and �nally section
3.4 describes how function approximators such as arti�cial neural networks can be used in
reinforcement learning to cope with large state spaces.

3.2 The reinforcement learning problem

In reinforcement learning, the focus is on learning through interaction. The learner and
decisionmaker is called the agent, and it interacts with the environment, which comprises
everything outside the agent. The interaction is cyclic: The environment is in a certain state,
leading the agent to take an action, which changes the state of the environment, leading to
new actions and so on. The environment also responds to the actions of an agent with a
scalar reward signal, according to the action taken. A full speci�cation of the environment
with reward and state transition functions is called a reinforcement learning task.

A natural formulation of the reward function in the domain of backgammon is to award zero
points for moves, that do not either win or lose, 1, 2 or 3 points for moves, that lead directly
to winning the game, and -1, -2 or -3 points for moves after which the opponent directly wins
the game. Once an opponent has been speci�ed, the state transitition function is also easily
de�ned: The opponent acts as the environment, making changes to the board according to
his own policy.

The agent and the environment can interact at each of a sequence of discrete time steps
t = 0, 1, 2, .... At each time step t, the agent receives some representation of the environment
state, st ∈ S, where S is the set of states of the environment. In response to the received state
representation, the agent takes an action at ∈ A, where A is the set of actions available to the
agent. At time t + 1 the agent then receives a scalar reward rt+1, and �nds itself in a new state
st+1. rt+1 and st+1 are both partially dependent on st and at. This interaction is shown on
�gure 3.1. At each time step t, the agent implements a function πt(a, s) = Pr(at = a|st = s).
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This function is called the agents policy.

Figure 3.1: The interaction between an agent and its environment[SB98]

3.2.1 The Return

Reinforcement learning is concerned with changing the policy, such that the expected value of
some aggregation of the reward sequence, starting at time t, is maximized. This aggregation
is called the return, and is denoted Rt. There are a number of ways to de�ne the return. A
natural way could be to de�ne the return as

Rt = rt+1 + rt+2 + · · ·+ rT =
T

∑
k=1

rt+k, (3.1)

where T is a �nal time step. This makes sense in tasks that have a natural notion of a �nal
time step, such as games, where winning or loosing the game causes a transition to a terminal
state sT. Such tasks are called episodic tasks. For tasks, that have no terminal state, such
as an ongoing control process, simply adding the received reward could cause the return to
grow unbounded. Therefore, the return for non-episodic tasks are often de�ned as

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞

∑
k=0

γkrt+k+1. (3.2)

This is called the discounted return, and the parameter γ ∈ [0, 1] is called the discounting
rate. Adjusting the γ parameter corresponds to adjusting how the agent weighs the di�erent
rewards in the sequence. If γ is 0, then the agent considers only the reward from the next
action. As γ increases, more weight is put on rewards farther in the future. When γ is 1,
the agent considers all rewards equally, but this requires, that the sum of rewards is bounded.
The return for the episodic task can also be represented as a special case of the return for the
non-episodic task, using a γ of 1, and with the convention, that terminal states transition to
themselves, yielding rewards of 0, as exempli�ed in �gure 3.2.

Figure 3.2: Episodic task with terminal state transitions[SB98]

The backgammon task is a good example of an episodic task. The game has a clear ending,
after which point no more rewards can be earned, and the reward is only non-zero just when



the game ends. Therefore the total reward is always bounded, and there is no need for a
discount. In fact, using a discount would not be good, since the �rst states encountered
would receive more reward from winning a short game, than a long game, although the only
goal is to win the game, no matter the lenght.

3.2.2 Markov Decision Processes

Reinforcement learning theory presupposes, that the environment has the markov property.
This property can be stated as the requirement that the probability of entering a state s and
receiving reward r at time t + 1 is only dependent on the state and action at time t, or

Pr(st+1 = s, rt+1 = r|st, at, rt, st−1, at−1, · · · , r1, s0, a0) = Pr(st+1 = s, rt+1 = r|st, at).
(3.3)

The markov property is required, since the policy is a function of only the current state. If the
environment does not have the markov property, then the policy can not be strictly trusted
upon as an instrument to achieve the maximum return. This means that the state signal must
include all the information necessary to reliably predict the next state and reward. An example
could be the case of a backgammon game, where a representation of the board would provide
all relevant information about the state of the game. A learning task, to which the markov
property applies is called a markov decision process, or MDP. If the set of states and the set
of actions are �nite, then the task is called a �nite MDP. Finite MDPs are de�ned by the
state and action sets, and the single step dynamics. These include the transition probability

Pa
ss′ = Pr(st+1 = s′|st = s, at = a), (3.4)

and the expected reward

<a
ss′ = E{rt+1|st+1 = s′, st = s, at = a}. (3.5)

3.2.3 Value Functions

Reinforcement learning algorithms changes the policy of an agent by estimating value func-
tions. There are two kinds of value functions of interest: The state-value function, and the
action-value function. The state-value function Vπ for policy π, indicates the expected return
when starting in a given state and following policy π

Vπ(s) = Eπ{Rt|st = s} = Eπ

∞

∑
k=0

γkrt+k+1|st = s, (3.6)

where Eπ is taken to mean the expected value when following policy π. The action-value
function for policy π, Qπ indicates the expected value when starting in a given state, taking
a given action and then following policy π

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

∞

∑
k=0

γkrt+k+1|st = s, at = a. (3.7)



Such value functions can be approximated through experience. As an example, in an episodic
task, the value of a state s for a given policy π can be approximated as the average return
gained from starting a number of times in s and following policy π. This form of reinforcement
learning is called a Monte Carlo method. For most tasks, it makes more sense to estimate
the action-value function, since that makes it easier to �nd the best action to take in a given
state. However, for the backgammon domain, it is possible to take advantage of the after-
states, discussed in chapter 2, to �nd the best move using only a state-value function. This
move can be de�ned as arg maxs∈SL Vπ(s), where SL is the set of all legal moves.

Value functions impose a partial ordering on the set of possible policies. A policy π is better
than another policy π′, if Vπ(s) > Vπ′(s) for all s ∈ S. There is always at least one policy
that is better than or equal to all other policies. This can be seen by considering that two
policies π′ and π′′, for which there is no ordering relation, can be combined to create a new
policy π′′′, that is better than both, by letting π(s, a)′′′ = arg maxπ∈{π′,π′′} Vπ, ∀s. A policy,
that is better than or equal to all other policies is called an optimal policy, and is denoted π∗.
Such an optimal policy in turn gives rise to an optimal state-value function V∗

V∗(s) = max
π

Vπ(s) (3.8)

and an optimal action-value function Q∗

Q∗(s, a) = max
π

Qπ(s, a) (3.9)

3.2.4 Generalized policy Iteration

As previously stated, the value function for a given policy can be estimated through expe-
rience. At the same time, each value function determines an optimal policy with regard to
that value function. This suggests, that reinforcement learning can be seen as two concurrent
processes. In the �rst process, the agent has a value function V, and a policy π, that is
optimal with regard to V. Through experience, V is updated towards the true value function
for policy π, Vπ. Updating the value function may lead to the policy π no longer being the
optimal policy with regard to V. Thus, the second process updates π towards the optimal
policy for the updated V. If the �rst process causes π to be suboptimal with regard to V,
then the second process will strictly improve π, bringing it closer to an optimal policy π∗.
If the second process causes π to improve, then the �rst process will drive V towards V∗.
Therefore, the only stable point for these processes are, when the value function is the optimal
value function, and the policy is the optimal policy. The situation is shown in �gure 3.3.

This concept is called the generalized policy iteration, and is used in almost every reinforce-
ment learning method. The methods can di�er in how long they allow each process to run,
before changing to the other process. In the reinforcement learning method known as dy-
namic programming, which requires knowledge of Pa

ss′ and of <a
ss′ , V is updated fully towards

V∗ before the policy is updated. In other methods, the two processes may be much more
intermingled, with each update of V being followed by an update of π.



Figure 3.3: Generalized policy iteration: policy and value function interact, until they are consis-
tent at the optimal value function and policy[SB98]

3.2.5 Action Selection

It is important to note, that generalized policy iteration can only converge to the optimal
policy and value functions, if every state/action pair is visited repeatedly, until the functions
reach optimality. This raises precisely the question of exploration versus exploitation, already
discussed in chapter 2. A natural choice in the backgammon domain would be to disregard
any exploration other than what is already imposed by the random dice rolls, but there are
other options, that make even more explorative moves. These are known as soft-max policy
functions. Such a function gives higher probability to the best actions, but gives a non-zero
probability to even the worst action. A common soft-max policy, that uses an action-value
function is the Boltzmann distribution:

πBoltzmann(s, a) =
eQ(s,a)/τ

∑a′∈A eQ(s,a)/τ
(3.10)

Here, τ is a positive constant called the temperature, which in�uences the amount of explo-
ration. As τ → ∞, the actions become almost equiprobable, causing greater exploration. As
τ → 0, the policy goes toward the greedy policy, causing greater exploitation. It can be di�-
cult to judge the amount of exploitation at a given temperature. Therefore, another soft-max
policy commonly used is the simpler ε-greedy policy, which almost always chooses the greedy
action, but with a small percentage ε chooses evenly among all the available actions. This
makes it simpler to control the amount of exploration being performed, but has the downside,
that exploration is just as likely to choose the worst action as the second-best action, which,
depending on the environment, can be undesirable.

3.3 Temporal Di�erence Learning

This section describes temporal di�erence learning methods, which is a subset of reinforcement
learning methods. Temporal di�erence methods also use the generalized policy iteration, and
rely on the fact that the value function Vπ of a policy π can be expressed recursively. Using
the de�nition of the state-value function given in equation 3.6 yields:



Vπ(s) = Eπ{Rt|st = s} (3.11)

= Eπ{
∞

∑
k=0

γkrt+k+1|st = s} (3.12)

= Eπ{rt+1 +
∞

∑
k=0

γkrt+k+2|st = s} (3.13)

= Eπ{rt+1 + γVπ(st+1)|st = s} (3.14)

Temporal di�erence methods use this recursive relationship to make updates to the value
function, according to the following update formula called the TD(0) algorithm

V(st) = V(st) + α(rt+1 + γV(st+1)−V(st)) (3.15)

where α ∈]0, 1] is called the stepsize, or the learning rate. The formula can be intuitively
understood by realizing that V(st) and rt+1 + γV(st+1) are actually both estimates of the
value function at time t. The only di�erence is, that while V(st) is based on an estimate of
all the future rewards, rt+1 + γV(st+1) includes knowledge of the �rst of these rewards. It
therefore makes sense to trust the latter estimate more than the �rst, since they are otherwise
the same. This trust is expressed by updating the value function by an amount (positively)
proportional to the di�erence (rt+1 + γV(st+1))−V(st), which is called the temporal di�er-
ence error. The value of V at s = st is adjusted in the direction of rt+1 + γV(st+1), which is
therefore called the target of the update.

Note however, that the target should not be trusted too much. After all, in general the reward
is only a probabilistic function of st, at and st+1, and st+1 itself is a probabilistic function
of st and at, so the reward just received could be very atypical. This is the reason, that the
stepsize should not be 1. In fact, updating according to this rule will cause V to converge
to vπ in the mean only if the stepsize is su�ciently small, and with probability 1 only if the
stepsize α decreases with time[SB98].

3.3.1 On-policy and O�-policy Algorithms

Using TD(0), it is possible to de�ne a complete reinforcement learning control algorithm,
based on temporal di�erence methods and action value functions:

• Initialize Q(s, a) arbitrarily

• Repeat for each episode

– Initialize s

– Choose a from s, using policy derived from Q (e.g. ε-greedy)

– Repeat for each step of episode

∗ take action a, observe reward r and next state s′

∗ Choose action a′ from s′, using policy derived from Q (e.g. ε-greedy)

∗ Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
∗ s← s′, a← a′



This algorithm is called sarsa, because it uses all the elements (st, at, rt+1, st+1, at+1) that
de�ne a transition from one state to the next. Sarsa will converge to the optimal value
function on two conditions. First, every state/action pair must be visited recurringly. This
can be achieved with a softmax policy such as ε-greedy. The second convergence criterium is
that the policy must converge in the limit to the greedy policy. This can be achieved for the ε-
greedy policy by letting ε = 1

t . Sarsa is an on-policy algorithm, because the action suggested
by the policy is used both to transition to another state and to update the action-value
function. This is in contrast to an o�-policy algorithm such as the Q-learning algorithm:

• Initialize Q(s, a) arbitrarily

• Repeat for each episode

– Initialize s

– Repeat for each step of episode

∗ Choose a from s, using policy derived from Q (e.g. ε-greedy)

∗ take action a, observe reward r and next state s′

∗ Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)]
∗ s← s′

Here, the policy is responsible for which state/action pairs are updated, but not for the value
with which they are updated. The only criterium for convergence of Q towards Q∗ is therefore
that every state/action pair is visited recurringly.

The di�erence between an on-policy and an o�-policy algorithm is best shown by example.
The example task is walking on the edge of a cli�, getting to the other end as fast as possible.
The task is episodic, stopping when the other end of the cli� has been reached. To encourage
getting to the end as fast as possible, the reward for each step is -1, while the reward for
falling o� the cli� is -100. The state set is a grid as shown in �gure 3.4, and the actions are
up, down, right and left. Every action leads deterministically to the next state in the indicated
direction, except for except for any action, that goes over the cli� edge, which leads back to
the start state S. The state set contains a single terminating state, marked with G. Figure
3.5 shows the performance of sarsa and Q-learning algorithms over the task, using ε-greedy
algorithms with a �xed ε of 0,1. The sarsa algorithm learns the safe path, yielding higher
results than the Q-learning algorithm, which actually learns the optimal path, but has lower
performance than sarsa due to the softmax policy. Of course, if ε converged towards 0, then
the performance of both algorithms would approach the optimum.

Figure 3.4: A cliff walking task[SB98]



Figure 3.5: Performance of sarsa and Q-learning on the cliff walking task[SB98]

When estimating a state-value function by using afterstates, instead of an action-value func-
tion, such as is the case in the backgammon domain, the reinforcement learning policy is
always on-policy, since there are no actions to maximize over, as in the Q-learning algorithm.
Instead, the algorithm for learning a state-value function is a variation of the sarsa algorithm:

• Initialize V(s) arbitrarily

• Repeat for each episode

– Initialize s

– Repeat for each step of episode

∗ Choose an afterstate sa f ter from s, using policy derived from V (e.g. ε-greedy)

∗ take any action leading to sa f ter, observe reward r and next state s′

∗ V(s)← V(s) + α[r + γV(s′)−V(s)]
∗ s← s′

3.3.2 The TD(λ) Algorithm

This section describes an abstraction of the update rule given in equation 3.15. In this update
rule, recall that the quantity rt+1 + γV(st+1) is called the target of the update, and in this
case it is called a 1-step target, denoted R1

t , since it is the expected return Rt evaluated at
time t + 1. However, it is possible to update according to other targets as well. The recursive
de�nition of Vπ given in equation 3.11 can be expanded as

Vπ(s) = Eπ{rt+1 + γVπ(st+1)|st = s} = Eπ{rt+1 + γrt+2 + γ2Vπ(st+2)|st = s} (3.16)

leading to another update formula

V(st) = V(st) + α(rt+1 + γrt+1γ2V(st+2 −V(st))) (3.17)

which uses the 2-step target R2
t = rt+1 + γrt+1γ2V(st+2). In general, update rules can use

any n-step target Rn
t , for n ∈ 1, 2, · · ·. It is also possible have a combined target, that is

the weighted sum of several di�erent targets. The only requirement is that the weights of
the di�erent targets must sum to 1. For instance, a target could be a combination of the



1-step and 2-step targets, such that the update rule would be V(st) = V(st) + α(Rcombined
t −

V(st))), where Rcombined
t = 1

2 R1
t + 1

2 R2
t . This idea of combining targets give rise to the TD(λ)

algorithm, for λ ∈ [0, 1], which updates according to the target Rλ
t which is a weighted mixture

of in�nitely many targets:

Rλ
t = (1− λ)

∞

∑
n=1

λn−1Rn
t (3.18)

The (1− λ) factor is prepended to the in�nite sum to make the weights sum to 1. Updates
made according to the Rλ

t target take into account a weighted sum of all the di�erent esti-
mates of the return received after time t. The function of the λ parameter is to control how
these estimated returns are weighted. The TD(0) method, shown in equation 3.15 only uses
the R1

t target, but for λ > 0 the other return estimates gain more weight, and as λ goes to
1, the returns are given almost equal weight.

The purpose of updating according to an in�nite mixture of targets is to learn more e�ciently.
In principle, the idea may have some merit. But in practice, it may seem quite ine�cient:
The target can only be fully evaluated in the context of an episodic task, only when the task
is �nished, and until then it is necessary to remember all the received rewards. However,
equation 3.18 can be transformed to an incremental update rule, using a mechanism known
as eligibility traces. The idea that visiting a state makes it eligible to receive updates from all
the future rewards. The weight of each of these rewards in the Rλ

t target can be calculated, so
when a reward is received, the value function can be incrementally updated. The important
thing is to remember how much reinforcement a state should receive from each new reward.
This weight can also be calculated incrementally, and is called the the eligibility trace of the
state. The full TD(λ) algorithm is as follows:

• Initialize V(s) arbitrarily

• Set e(s) = 0∀s

• Repeat for each episode:

– Initialize s

– Repeat for each step of episode:

∗ Choose an afterstate sa f ter from s, using policy derived from V (e.g. ε-greedy)

∗ take any action leading to sa f ter, observe reward r and next state s′

∗ δ← r + γV(s′)−V(s)
∗ e(s) = e(s) + 1
∗ For all s:
· V(s)← V(s) + αδe(s)
· e(s) = γλe(s)

∗ s← s′

The best value of λ is not known, and is probably di�erent for di�erent domains. In backgam-
mon, [Tes02] �nds that values between 0.0 and 0.7 yield roughly the same performance, while
values above 0.7 decrease the performance, and therefore chooses λ = 0, since that reduces
the TD(λ) algorithm to the simpler TD(0) algorithm of section 3.3.1.



3.4 Function Approximation

In many realistic settings the set of states is in�nite. Even in the case of a �nite state set,
the number of states may be very large, such as the set of possible con�gurations of chess
pieces on a chess board. This makes it impossible or impractical to update the value of
every state or state/action pair even once, which violates the assumption in the generalized
policy iteration. The only way to learn on these tasks is to generalize from previously ex-
perienced states to ones that have never been seen. Learning an unknown function, such
as a state-value function, using only examples of this function is called supervised learning,
and fortunately, there are already a number of supervised learning techniques that can be used.

The update rules so far have all been about adjusting an estimate of a value function towards
a given target. This target, together with the corresponding state or state/action pair can be
used as examples for the function approximator. The chosen function approximator must be
able to handle non-stationary target functions. This is because in generalized policy iteration
seeks to learn a value function Vπ for a policy π, while the policy changes. This also means,
that the function approximator must be able to handle non-static example sets. The rest of
this section presents three di�erent function approximation techniques: Neural networks, tile
coding and Kanerva coding, all of which are examples of gradient descent methods.

3.4.1 Gradient Descent Methods

The basic idea behind gradient descent methods is to represent the value function Vt as a
parameterized function V~θt

, where ~θt is the parameter vector at time t. The purpose of the
gradient descent is to adjust the parameter vector, so that the overall error between V~θt

and
Vπ, the true value function of the current policy, is made as small as possible. More concretely,
the purpose of gradient descent is to minimize an error function de�ned as mean squared error
between the true value function Vπ and the approximation Vt, over some distribution P of
the inputs

MSE(~θt) =
1
2 ∑

s∈S
P(s)(Vπ(s)−Vt(s))2 (3.19)

P is important, because function approximators are generally not �exible enough to reduce the
errors to 0 for all states. P speci�es a priority of error correction for the function approximator.
P is often also the distribution, from which the states of the training examples are drawn, since
that makes the function approximator train on the same distribution of examples as the one
for which it tries to minimize the error. If the distribution describes the frequency with which
states are encountered while the agent interacts with the environment, then it is called the
on-policy distribution. On-policy algorithms such as sarsa train on states from an on-policy
distribution, while o�-policy algorithms do not. The distinction is important, because some
environments can cause a function approximator, trained on an o�-policy distribution and
using gradient descent, to diverge, causing the error to grow without bound. Convergence
for function approximators is still largely unexplored, but it seems to be safer to use on-policy
algorithms in connection with function approximators.

Assuming that P is an on-policy distribution, a good strategy is to minimize the error over the
observed examples. The mean squared error is decreased by adjusting the parameter vector
in the direction of the steepest descent of the error. This leads to the following update rule
for the parameter vector



~θt+1 = ~θt − α∇~θt
MSE(~θt) (3.20)

= ~θt − α∇~θt
(

1
2
(Vπ(st)−Vt(st))2) (3.21)

= ~θt + α(Vπ(st)−Vt(st))∇~θt
Vt(st), (3.22)

where α ∈]0, 1] is the learning rate. Since the true value of Vπ is unknown, it is necessary to
use an approximation, e.g. the 1-step target described in section 3.3:

~θt+1 = ~θt − α∇~θt
(

1
2
(R1

t −Vt(st))2) (3.23)

= ~θt + α(rt+1 + V(st+1)−Vt(st))∇~θt
Vt(st). (3.24)

Generally, it is not a good idea to have a learning rate of 1. Although it would reduce the
error on the current example, it would increase the error on many other examples, since the
parameter space is in general not large enough to reduce the error to 0 for all examples.

3.4.1.1 Neural Networks

Arti�cial neural networks, or ANNs, are a type of parameterized functions, that can be trained
using gradient descent. A neural network is a kind of computational structure, where simple
computational units feed their results into other computational units. In neural networks, the
basic unit is called a neuron, or node. The neuron takes a vector x of inputs, and computes
a weighted sum net of these inputs, using a weight vector w, which is part of ~θ, and which
belongs to that neuron, so that net = x • w. The neuron then produces an output o by
applying an activation function to net. This is shown in �gure 3.6

Figure 3.6: The artificial neuron[Nie06]

The characteristics of the arti�cial neuron are very much dependent on the choice of activation
function. There are several options, but the most popular is the sigmoid function

o =
1

1 + e−net (3.25)

The graph for the sigmoid function is shown in �gure 3.7. This function has many desirable
properties such as being di�erentiable, being non-linear, mapping to a bounded range, mono-
tonicity and having an especially nice derivative.



Figure 3.7: The sigmoid function[Nie06]

The nodes of an ANN are arranged in a network. There are many ways to arrange nodes, but
a simple and widely used con�guration is to arrange them in a layered structure, such that a
node in a given layer only receives input from all the nodes in a previous layer, as shown in
�gure 3.8. Thus information �ows forward from the input layer to output layer. This is the
forward propagation of input in an ANN.

Figure 3.8: Typical structure of a neural network[Nie06]

It is common to include in the input to a node the output of an "`always-on"', or bias, node,
which always has the output 1. This e�ectively allows the node to shift the graph of its
activation right or left, according to the weight on the input of the bias node. In typical
networks, the nodes of the input layer do not apply the activation function, instead they
simply propagate the unchanged input values forward to the nodes in the hidden layer. In this
light, the network in �gure 3.8 shows a network with only two computing layers. This is not
uncommon, as neural networks are able to represent a large number of functions using a very
limited number of layers.

3.4.1.2 Error Backpropagation

In the case of neural networks, the error is taken over all the output units:

E(~θt) =
1
2 ∑

k∈outputs
(tk,d − ok,d)2 (3.26)

where outputs is the set of output nodes, and tk,d and ok,d are the target and actual outputs
of output layer node k respectively, for the input d. The weight updates are similar to those



just described, but for neural networks it makes sense to look closer at the update formula
for each individual component wi,t of ~θt:

wi = wi − α
∂E
∂wi

. (3.27)

The �rst thing to notice is that a weight can only a�ect the error through the output of the
corresponding node. Thus, using the chain rule:

∂Ed

∂wi,n
=

∂on,d

∂wi,n

∂Ed

∂on,d
(3.28)

where wi,n is the i'th parameter of node n, and on,d is the output of node n, using the input
of example d. The chain rule allows further decomposition, by noting that net can only a�ect
the output through the activation function:

∂on,d

∂wi,n
=

∂on,d

∂net
∂net
∂wi,n

=
∂on,d

∂net
xi,n,d (3.29)

where xi,n,d is the i'th input to node n, assuming example d. If the network uses the sigmoid

activation function σ, the
∂on,d
∂net becomes simple, since

∂σ(y)
∂y = y(1− σ(y)):

∂on,d

∂net
=

∂σ(net)
∂net

= on,d(1− on,d) (3.30)

Thus the
∂on,d
∂wi,n

term of equation 3.28 becomes:

∂on,d

∂wi,n
= xi,n,don,d(1− on,d) (3.31)

assuming sigmoid activation functions. The ∂Ed
∂on,d

part of equation 3.28 varies depending on

whether node n is in the output layer or not. If it is in the output layer, the calculation is
straightforward, using the de�nitions of the error:

∂Ed

∂on,d
==

∂ 1
2 ∑k∈outputs(tk,d − ok,d)2

∂on,d
=

∂ 1
2 (tn,d − on,d)2

∂on,d
= −(tn,d − on,d) (3.32)

which gives the following value of ∆wi,n for a parameter in a node in the output layer:

∆wi,n = −η
∂Ed

∂wi,n
= −η

∂on,d

∂wi,n

∂Ed

∂on,d
(3.33)

= ηxi,n,don,d(1− on,d)(tn,d − on,d) (3.34)

For a node that is not in the output layer, the output of the node can only a�ect the error
through the output of the nodes of the next layer, thus:



∂Ed

∂on,d
= ∑

k∈downstream(n)

∂ok,d

∂on,d

∂Ed

∂ok,d
= ∑

k∈downstream(n)

∂netk,d

∂on,d

∂ok,d

∂netk,d

∂Ed

∂ok,d

= ∑
k∈downstream(n)

wn,k
∂ok,d

∂netk,d

∂Ed

∂ok,d

(3.35)

where downstream(n) is the set of nodes that receive input directly from node n and wn,k is
the weight from node n to node k. This gives the following value of ∆wi,n for a parameter in
a node in a hidden layer:

∆wi,n = −η
∂Ed

∂wi,n
= −η

∂on,d

∂wi,n

∂Ed

∂on,d
(3.36)

= −ηxi,n,don,d(1− on,d) ∑
k∈downstream(n)

wn,k
∂ok,d

∂netk,d

∂Ed

∂ok,d
(3.37)

This recursive de�nition relies on the error gradients of the following layer, and is what gives
the backpropagation algorithm its name, since the error signal is propagated backwards from
the output layer.

3.4.2 Tile Coding

The neural networks described above are e�ective and widely used, partly because of their
�exibility: Neural networks are able to approximate any bounded continuous function to within
an arbitrarily small error margin, using only single hidden layer[Mit97]. But this �exibility
comes at a price. Although in practice they have worked very well, there is no general
convergence proof for sigmoidal neural networks. Linear methods, on the other hand, do
have convergence proofs, and can be very e�cient both in terms of data representation and
computation. These features make them very attractive. In linear methods, a state s is
represented using an n-dimensional feature vector ~φs. The value function is parameterized by

a n-dimensional weight vector ~θt, and the state value estimate is computed as

Vt(s) = ~θt~φs =
n

∑
i=1

~θt(i)~φs(i) (3.38)

where the arguments for the vectors denote their individual components. A central issue in
linear methods is how the features of the state should be encoded. It is of course impor-
tant, that the encoding capture all the features that are needed to generalize properly. This
requirement is the same as with neural networks. However, the linear nature of the com-
putation means that it is impossible to take into account interactions between the features,
such as feature a only being good in the absence of feature b. Therefore, for linear meth-
ods, it is necessary that the feature vector also represents all relevant combinations of features.

One very e�cient form of feature encoding is known as CMAC1 or tile coding[SB98]. In
tile coding, the input space is exhaustively partitioned into tiles. Each tile corresponds to a
feature of the state vector. As an example, take a state space, where each state is represented

1CMAC: Cerebellar model articulator controller. The model was originally used to model the human
brain[RB04]



by two bounded real numbers. Then the state space can be divided into the 16 tiles shown
on �gure 3.9.

Figure 3.9: A simple tiling of a bounded 2-dimensional state space[SB98]

The tiling de�nes a binary encoding, such that when a state falls within a tile, the component
of the feature vector is set to 1, while the other components are set to 0. One of the advan-
tages of tile encoding is its simplicity. Given the values of the two state dimensions, and a
rectangular tiling such as this, it is easy to �nd the single feature vector component, that is
set to 1, and the output of the the value function is just the corresponding component of the
weight vector. The resolution of the approximation can be improved by adding new tilings, as
shown on �gure 3.10. These tilings are o�set from each other and from the state space. The
feature vector is the combination of the feature vectors due to each of tilings, and the value
function output is just the sum of the weight the two relevant weight components. Broader
generalization can be achieved by adding new tilings with larger tiles.

Figure 3.10: Multiple tilings increase resolution[SB98]

Although tile coding is computationally inexpensive on a "`per tile"' basis, tile coding su�ers
from the requirement to encode every relevant feature combination. This means that in the
worst case, the number of tiles necessary for adequate performance grows exponentially with
the number of dimensions in the pure state signal. Tile codings have been used successfully
in experiments[RB04][Sut96], encoding up to 14 dimensions, but state signals with over a few
tens of dimensions are usually too large to be handled by tile coding.



3.4.3 Kanerva Coding

Kanerva coding[Kan93] is an attempt to expand some of the general ideas of linear methods
to very large state spaces. Consider a large state space, spanning hundreds of dimensions. In
the worst case, the complexity of the target function grows exponentially with the number
of dimensions, and no linear method will be able to represent the target function accurately.
However, the complexity of the target function does not necessarily grow exponentially. Con-
sider for instance a small state space, where the target function is modelled accurately. Adding
new sensors will increase the dimension of the state space, but it will not increase the com-
plexity of the problem. The problem with CMAC is, that the complexity of the tiling does
increase exponentially with the state space, while the complexity of the function remains the
same.

Kanerva coding solves the problem by considering features, that are una�ected by the dimen-
sionality of the state space. These binary features correspond to particular prototype states.
These prototype states are a set of states, randomly chosen from the entire state space. A
prototype state activates, when an observed state is in relative proximity of the state, using
some metric. For instance, in a binary state space, the metric could be hamming distance
between the states. The output of the value function is then the sum of the components of
the weight vector ~θt, corresponding to the active states.

Given the fact, that Kanerva coding uses random features, it is perhaps surprising that it has
worked quite well in a number of applications[KH01][SW93]. Kanerva coding does not reduce
the essential complexity of complex problems, but it can remove some accidental complexity
of simpler problems.

3.5 Conclusion

Reinforcement learning is a set of very general methods for learning from interaction with an
environment. Backgammon is a good candidate to learn using reinforcement learning, since
it is a Markov process. Learning backgammon can be stated as an episodic, undiscounted
reinforcement learning task, with rewards being awarded only when the game ends. Although it
is usually the best idea to estimate an action-value function, the backgammon game mechanics
makes it natural to estimate the state-value function instead, using a variation of the sarsa
algorithm. Another e�ect of the backgammon game mechanics, is that there arguably is
no need to induce any exploration by using a softmax policy, since the dice rolls themselves
already provide exploration. TD(0) algorithms update the value function based on the 1-step
target. The TD(λ) algorithm provides a generalization, but in the backgammon domain a
value of λ = 0 seems not to reduce performance. In many application, the set of states
is often so large, that the value functions must be implemented by function approximators,
using the update target as training example. Of these, neural networks provide the ability to
accurately model any continuous, bounded function, while linear methods such as CMAC and
Kanerva coding come with convergence guarantees for on-policy algorithms.



Chapter 4

Related Work

4.1 Introduction

At this point, the basic framework for the backgammon agent has been decided upon, and the
�eld of reinforcement learning has been introduced, but many questions still remain in the area
of supervised reinforcement learning: What should be the relationship between the learner and
the teacher, in what ways can the teacher in�uence the learner, are the two kinds of learning
even compatible, or will they work against each other? In order to answer such questions,
this chapter presents some of the previous work done in the �eld of supervised reinforcement
learning. Section 4.2 shows, that the two types of learning are indeed theoretically compatible,
and shows some measures that can be taken, for this still to be the case in practice. Section 4.3
presents the RATLE framework that allows composite advice to be given in a stylized, human-
readable language, while section 4.4 has a good overview of the ways in which the teacher
can in�uence the actions of the learner, and presents a �exible way to interpolate between
the actions of the learner and the supervisor. Section 4.5 shows how testing strategies di�er
between several previous papers on supervised Learning. Finally, section 4.6 describes how
the task of avoiding the initial period of bad performance in TDGammon by using supervised
reinforcement learning can be classi�ed in relation to the previous work.

4.2 Two Kinds of Training Information

The of supervised reinforcement learning has two separate roots, that have later joined. The
�rst root concerns the notion of a machine learner, that may change its behavior based on
advice given during execution. The idea of a program learning from external advice was �rst
proposed [MSK96] in 1959 by John McCarthy [McC59], the inventor of Lisp. The other root
concerns that of reinforcement learning, which originated [Sut88] with the Checker program
by Samuel [Sam95] also in 1959. However, the fusion between the two �elds is much younger.
It came about in 1991, when Utgo� and Clouse published "`Two Kinds of Training Information
for Evaluation Function Learning"'[UC91]1.

Utgo� and Clouse make the observation, that there exist two fundamental sources of training
information: Future payo� achieved by taking actions according to a given policy from a given
state, and the advice from an expert regarding which action to take next. Training methods
relying on the future payo� are called temporal di�erence methods, while methods relying on

1Benbrahim [Ben96] also combined the two ideas at the same time, independent of Utgoff and Clouse,
but Utgoff and Clouse provided a clearer exposition
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expert advice are called state preference methods. State preference methods are so called,
because it the goal of the learner is not necessarily to mimic the exact values assigned by
the expert to a state. Instead, the goal for the learner is to have the same preference as the
expert, when presented with a set of possible states. Thus, the only thing that matters, is
that the sign of the slope of the learners evaluation function between two states be the same
as that of the experts. This means, that there is generally in�nitely many functions, that
produce the same control decisions as the expert evaluation function, making state preference
methods very �exible with regard to incorporating other types of learning information.

Utgo� and Clouse also make the key observation is that temporal di�erence methods and
state preference methods are orthogonal. Using the general model of an evaluation function
as a parameterized function of the state, state preference methods attempt to change the
parameters of the evaluation function so as to obtain the same slope as the expert between
the values of the possible next states, while temporal di�erence methods are concerned with
obtaining the correct value for the sequence of actions experienced by following the current
policy. In other words, training information in state preference methods is horizontal in the
game tree, while it training information for temporal di�erence methods. And since the state
preference methods are so �exible, it is possible to change the parameters of the evaluation
function to incorporate both types of information.

In practice, however, the compatibility between the two classes of methods may be less than
perfect. A state preference and a temporal di�erence method will be in con�ict to the degree,
that the expert is fallible. There is therefore a need for a rule to determine how much to trust
the expert. Another concern could be, that the expert may not always be available. This
could be the case for instance with a human expert. Utgo� and Clouse therefore implement
a heuristic, after which the learner should only ask for teacher input, when the state is poorly
modeled, as indicated by a large update to the parameter of the utility function resulting from
the temporal di�erence method.

4.3 The RATLE Framework

In 1996, Maclin and Shawlik create the RATLE2 framework[MSK96]. The RATLE framework
is focused on having a human teacher, or supervisor. Such a teacher may not be available at
all times, and in any case, would probably not be able to answer questions about which actions
to take, at the same pace that these questions could be posed by the learner. One of the
design decisions of RATLE is therefore, that it is the teacher, and not the learner, that decides
when advice must be given. In addition, it is possible to give general tactical advice, instead of
suggestions of the right action to take in a speci�c situation. This maximizes the e�ectiveness
of the teacher, who will most probably think in terms of these tactics anyway. Finally, the
advice is given in a stylized, but human-readable language, which uses domain-speci�c terms,
logical connectives and vague quanti�ers such as "`big"' or "`near"' to capture the intent of
the teacher. Examples of such a piece of advice can be seen in �gure 4.1, which shows from
left to right the stylized advice, an english interpretation and a �gurative explanation of the
strategy implied.
RATLE uses neural networks3 to implement the state evaluation function, and implement the
new advice by �rst transforming the advice to a set of hidden nodes, and then integrating

2the Reinforcement and Advice Taking Learning Environment
3Neural networks will be explained in section 3.4



Figure 4.1: Composite advice in the RATLE framework[MSK96]

them into the already existing network, as shown in �gure 4.2.

Figure 4.2: Incorporating advice into the evaluation function[MSK96]

4.4 Supervised Actor-Critic Reinforcement Learning

In 2004, Rosenstein and Barto[RB04] adapted the actor-critic model[SB98] for supervised
reinforcement learning. Brie�y, the actor-critic model is a general model for reinforcement
learning, where an actor makes decisions about which actions to take, while the critic learns
a utility function of the states by reinforcement learning, and critizes the actor on the ac-
tions it chooses, based on this utility function, causing the actor to update its policy. One
of the advantages of the actor-critic model, is that it separates decisions of which action to
take, from the task of construction the correct utility function. Based on this separation,
Rosenstein and Barto identi�ed 3 ways, in which a supervisor can in�uence the actions of a
reinforcement learner. Figure 4.3 shows the 3 ways, which are value function shaping for the
critic, exploratory advice for the actor and direct control, in which the supervisor supremely
chooses the actions.

One of the contributions of Rosenstein and Barto is a framework, that �exibly interpolates
between the actor and the supervisor. The general structure is shown in �gure 4.4. The
output of both the actor and supervisor is assumed to be a one-dimensional scalar variable.
These are fed into the gain scheduler unit, which computes the �nal output of the composite
actor as a weighted average of the actor and supervisor outputs. The model does not specify,
how the weights are obtained. For instance, the interpolation can be controlled by the actor,
letting it seek explorative advice from the supervisor, or it can be controlled by the supervisor,
which can use it to ensure a minimum level of performance.



Figure 4.3: Supervised reinforcement learning using an actor-critic architecture[RB04]

Figure 4.4: Action interpolation between actor and supervisor[RB04]

4.5 Testing

Testing the e�ect of combining reinforcement learning with online supervision is obviously
important in determining its usefulness. The majority of the papers, that deal with super-
vised reinforcement learning have a section devoted to testing, and there are some important
similarities, as well as some distinct di�erences in the their testing approaches.

• Baseline presence: Most of the tests report their progress using a baseline result, that
must be improved upon, however some tests in [RB04] are reported as-is, without any
baseline, with the only measure of success being, that a task was accomplished at all.

• Type of baseline: For the tests, that use a baseline result, the baseline is typically an
agent trained by reinforcement learning without any supervision[Cet08][Cet06]. In other
cases, however, the supervisor acts as the baseline[RB04].

• Purpose: The purpose of some tests is to arrive at a higher level of performance, than
that achieved by the baseline[MSK96], while other tests aim to reduce the cumulative
error during the entire training period, compared to some perfect performance[RB04].

• Type of testbed: Most of the tests are done on a custom testbed, developed speci�-
cally for the method being presented. This is natural, since the many of the methods
are aimed at solving speci�c problems, which may not appear on a standard testbed.
However the lack of a standard testbed also prevents the comparison of many methods,
that could naturally be compared, and so there are some attempts at creating a stan-
dard testing environment. Most notably, the RoboCup environment[KAK+95], which
speci�es several tasks in connection with creating simulated soccer players, seems to be
used as a standard test reference for a number of papers[Cet08][KH01].



4.6 Conclusion

This chapter has presented several axes, along which a supervised reinforcement learning task
may vary, and it is now possible to place the task of improving TDGammon performance
along these axes.

• Presence of baseline: Since the purpose is to improve the results of TDGammon, it is
natural to use TDGammon as a baseline.

• Type of baseline: TDGammon was trained using pure reinforcement learning.

• Purpose: Since the initial problem is to improve upon the early period of bad results
in the training of TDGammon, the purpose of the test will be to maximize cumulative
improvement over the baseline, rather than to increase the �nal level of improvement.
Given that the �nal version of TDGammon reached a status, where it has become one
of the top players in the world, it is doubtful, that any known supervisory help could
increase the �nal level of performance by any signi�cant degree.

• Learner/supervisor relationship: The supervisor will be a computer program, that has a
reasonable level of performance. Since it is not a human, there is no practical restriction
on when the supervisor can provide advice.

• Supervisor in�uence: The supervisor can in�uence the learner through an action in-
terpolation mechanism similar to the one discussed in section 4.4. That model was
developed for actors and supervisors with an output range of the real numbers, while
the output of TDGammon is a move choice in the set of legal backgammon states,
which is discrete and unordered, so the model of section 4.4 will have to be adapted.
This adaptation is the subject of sections 6.2 and 6.3.

• Type of testbed: The test must be domain-speci�c, since the purpose is to test perfor-
mance improvement against the pure reinforcement learning of TDGammon.

In the domain of backgammon, there are some semistandard testbeds, that can be adapted
to the testing required in this report. This adaptation is the topic of the following chapter.





Chapter 5

Test De�nition

5.1 Introduction

In the last chapter it was established that there was a need for a custom testbed, using the
performance of TDGammon after various numbers of training episodes as the baseline. This
de�nition leaves the questions of what is the nature of the performance, and how much can
these performance measures be trusted. It is the purpose of this chapter is to answer these
questions. There are several versions of TDGammon, and so the �rst priority, addressed in
section 5.2, is to establish which version is to be used. A natural performance measure of
TDGammon can be as the rate of victories against a benchmark opponent. Chapter 5.3
discusses the choice of this benchmark opponent, chooses a mid-level backgammon player
called Pubeval, and shows the Pubeval evaluation strategy, which is very simple. Section 5.4
discusses, how many games should be played, before a reasonable degree of con�dence in the
performance is obtained.

5.2 TD-Gammon

TD-Gammon[Tes02] is a backgammon program created by Gerry Tesauro. There are several
versions, which were developed during the early to mid-nineties. The �rst version, TDGam-
mon version 1.0, was developed as an experiment to test the ability of reinforcement learning
to create a backgammon player of reasonable playing strength. Tesauro had previously created
the Neurogammon player, whose input included both raw information about the board, as
well as various handcrafted expert features, and it was implemented as a neural network using
backpropagation, trained on a set of recorded expert move decisions. Neurogammon had
previously won the 1989 computer olympiad [Tes92], but TDGammon 1.0 was able to achieve
roughly the same playing strength, using only a very basic encoding of the board as input. The
following versions of TDGammon had modi�cations such as a larger network, longer training
times, 3-ply1 search, and an input, that was expanded to include the handcrafted features of
Neurogammon. Using these modi�cations, TDGammon 3.1 achieved a playing strength that
makes it arguably the strongest backgammon player in the world.

Unfortunately, the handcrafted features of the later versions of TDGammon are not publicly
available, so these versions cannot be used for the testing baseline. This leaves only version
1.0. TDGammon 1.0 was implemented using a single neural network. The encoding used

1A ply is a single turn by one player
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players checkers on point encoding
0 0000
1 0001
2 0010
3 0100

4 or more 1000

Table 5.1: TDGammon input encoding

for the input mapped each of the 24 points of the board to 4 contiguous units for each
player[Tes92]. The encoding is shown in table 5.1.
Using this encoding, the checkers on each point for both players are encoded in 8 units. The
clear separation in the encoding between a blot and a blocking point makes it easier to take
into account the non-linear in�uence that the number of checkers on a point has on the
tactical assesment of that point, as discussed in section 2.5. I addition to the raw board
encoding, 2 units encode the number of checkers on the bar for each player, and 2 units units
encode the men o� board, for a total of 196 input units.
The output format of TDGammon is an array of 4 doubles, encoding the probability of a
normal win, a gammon win, a normal loss and a gammon loss respectively2. Due to the
rarity of the occurence, backgammon wins are not considered. The utility of a board is
then evaluated as the sum of the points received due to the di�erent outcomes, weighted
by the estimated probabilities of these outcomes. The network was trained using the TD(λ)
algorithm, using a λ of 0.7 and a constant learning rate of 0.1.

5.3 The Benchmark Opponent

This section describes the opponent that will be used to test the performance of both the
baseline player TDGammon, as well as the players trained using supervised reinforcement
learning. Some desirable traits of such a player are the following:

• availability: The player should be reasonably easy to come by, also for others, enabling
them to repeat the experiment.

• modi�ability: It should be easy to modify the player to �t into the testing framework.

• universality: The player should be a standard opponent used in other papers. This
allows for better comparison of results.

• speed: With higher speed more tests can be performed.

There are several open-source backgammon players, that are very available on the internet.
Of these, the Pubeval player[Tes08] is highly modi�able, very fast and has been used as a
benchmark opponent in [PB98], [SALL00] and [Hei04]. Therefore, the pubeval player is cho-
sen as the �xed test opponent.

Pubeval is a very simple backgammon program created by Gerry Tesauro. It plays at a
medium level, and takes as input a raw encoding of the board state, which is very similar to
TDGammon. Pubeval includes two weight vectors, both as long as the input vector, for the

2No attempt is made to make the estimated probabilities sum to 1.



contact and race phase. It computes the utility of a board by computing the dot product of
the input vector with the appropriate weight vector. Unfortunately, Pubeval does not include
the use of the doubling cube, so the test can only measure performance where none of the
players are able to double the stakes.

5.4 Measuring Performance

At this point, the baseline player and the test opponent has been found. The structure of
the test is to let Pubeval play a number of games against the baseline and the backgammon
players being tested, at various stages of their training. Such a number of games can be
called a trial, and the strength of a player at a given stage is indicated by the percentage of
games won in the trial at that stage. It still remains to be determined what these stages of
training are, and how many games should be played at each trial. Beginning at the end, there
are two con�icting goals that must be addressed. Having a lower number of games per trial
allows for �ner granularity of the test, and for more tests to be run. Having a higher number
of games per trial allows for greater con�dence in the performance of the player measured by
each trial.

The trial length used in other papers, that use pubeval as a benchmark, varies greatly, depend-
ing on the context. [PB98] use a trial length of 200 games in a hill-climbing strategy, where
several players are maintained simultaneously. [SALL00] uses a trial length of 5000 games
to track the performance of a single player during training, and [Tes98] uses 10000 games
to evaluate the �nal performance achieved by a player. So it seems, that a length of 5000
games is reasonable, but a length of 10000 should be chosen, if the performance of a single
player is particularly important. This seems to be consistent with �gure 5.1, which shows the
results of 30 di�erent trials of the baseline TDGammon implementation, each having a length
of 5000 games. As can be seen, the performance is reasonably stable, but nonetheless there
is a di�erence of about 3 points between the best and the worst measured performance.

Figure 5.1: Baseline performance measured in 30 trials

With the trial length decided, it was easier to decide the test granularity, and the length of
training. Measuring performance every 1000 games and stopping training after 100000 games
meant a total of 101 trials, which took an average of 15 hours. Using these parameters,
�gure 5.2 shows the performance of the baseline. Note, that TDGammon implementations
are usually trained for more than 100000 episodes, but in this case 100000 training episodes



were deemed to be enough for two reasons: The need to measure the performance at various
stages of training, and the fact that one of the primary purposes of this thesis is to improve
the initial performance of TDGammon. However, bear in mind that the performance has
likely not settled yet after 100000 training episodes. The shape of the performance graph
shows the problem clearly. There is an initial period of poor performance, which lasts for
approximately 3000 training episodes, at which point the performance starts to rise. Sharply
at �rst, but then with steadily decreasing slope. At certain points, the performance even
seems to decrease, for instance just around 90000 training episodes, although that could also
just be a particularly bad measurement, since the two measurements on either side are very
similar.

Figure 5.2: The baseline test result

5.5 Conclusion

This chapter has de�ned a testbed, that can be used to measure the performance of adding
supervision to the reinforcement learning process. The testbed has been de�ned by using
relatively common components, e.g. the baseline and the benchmark opponent, and by
setting parameters speci�c to the purpose, e.g. the relatively short training time.



Chapter 6

Adapting the Supervised Actor-Critic

Learning Model

6.1 Introduction

The time has �nally come to design and implement an agent that learns to play backgammon
using supervised reinforcement learning. During the course of the project, other things have
been implemented as well, most notably the backgammon framework outlined in chapter 2,
that makes it possible to train and test such a player, but these are only tangentially related
to the topic of supervised reinforcement learning. Appendix A details the implementation of
an n-ply-search functionality, but other than that, the framework will not be mentioned further.

Before going into the design, it is useful to sum up the knowledge gained over the previous
chapters. Supervised reinforcement learning requires a supervisor, and a supervisee. The
supervisee will be called the agent. Quite a lot is known about the agent:

• The agent will be trained using reinforcement learning as described in chapter 3

• In order to have the best comparison against the performance of TDGammon, which
is the test baseline, the agent will receive the same type of input, and must return the
same type of output, as TDGammon. The input and output format of TDGammon is
described in chapter 5.

• Basically, the agent will be a copy of TDGammon, and will therefore also be implemented
using neural networks.

Many details of the supervisor are as yet unknown. The supervisor should not learn anything
while the agent is being trained, only provide a reasonable level of play. This level must not
be too low, since then there would no point in having a supervisor, and not too high, because
then it might be better to just let the supervisor play, instead of learning anything. One
thing, that is known from chapter 4 about the supervisor, is that the interpolation between
the supervisor and agent actions, and later the learning arising from those actions, should
be similar to that presented in [RB04], and recapped in section 4.4, so section 6.2 takes a
closer look at that model. The model has to be adapted, in order to �t the backgammon
domain. This adaptation is the topic of section 6.3. One of most important points of [RB04]
is that the interpolation is decided by a state dependent variable k, and so, having de�ned the
supervisor in section 6.3, section 6.4 de�nes 3 models of supervised reinforcement learning for
backgammon, based on 3 di�erent ways to compute k.
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6.2 The Supervised Actor-Critic Reinforcement Learning

Model

The model of learning in [RB04] is called supervised actor-critic reinforcement learning, since
it uses an actor-critic model to implement the reinforcement learning. The structure was
presented in section 4.4, but for convenience the model is also presented here, in �gure 6.1.

Figure 6.1: The structure of the supervised actor-critic[RB04]

The critic implements an ordinary state-value function, using TD(0). The critic computes
the TD error δ = rt+1 + γV(st+1 − v(st), which it uses to update both its own state-value
estimates, as well as the actor policy.

The gain scheduler combines the actions of the actor and the supervisor according to an
interpolation parameter k. Since actions are assumed to be scalars, the composite action is
just a weighted sum of the two actions:

a = kaE + (1− k)aS (6.1)

Where aE is the actors exploratory action, and aS is the supervisor action, according to policies
πE and πS respectively. The actor also has a greedy policy πA, and the exploratory policy is
really just the greedy policy with an added gaussian noise with zero mean. Since the k value
plays an important role in choosing the action, it is only natural, that it also plays a similar
role in adjusting the policy of the actor according to the reward received. Assuming that πA

is a parameterized function with parameter vector w, the equations for updating the actor
policy are:

w← w + k∆wRL + (1− k)∆wSL (6.2)

∆wRL = αδ(aE − aA)∇wπA(s) (6.3)

∆wSL = α(aS − aA)∇wπA(s) (6.4)

Where α is a learning rate, and δ is the TD error from the critic. The e�ect of equation
6.3is to move πA(s) closer to πE(s), when the reward for the exploratory action was higher
than expected, leading to a positive TD error, and further away from it, when the TD error
is negative. Equation 6.4 is very similar to the supervised updates discussed in section 3.4.
The e�ect is to move πA(s) closer to πS(s), regardless of the reward received.



6.3 Adapting the Model to Backgammon

The model described in the following chapter is very nice, but there are some aspects of it,
that make it di�cult import the model into the backgammon domain. It all has to do with
the nature of actions in backgammon. Actions in backgammon are more or less just new
backgammon states, whereas the model assumes scalar actions. Backgammon states are dis-
crete and there is no natural ordering of the states. This makes it impossible for the combined
state of the gain scheduler to be a weighted sum of the supervisor and agent actions, and it
makes it impossible to subtract actions from each other or to create an exploratory policy,
that is a noisy version of the greedy policy.

Rather than try to copy the exact equations, it is useful to try to �nd action interpolation
and policy update rules, that capture the intentions of the model. The action interpolation
is the easiest, since a solution for discrete actions is suggested in [RB04]. That solution is
to interpret the k value as the probability for the gain scheduler to choose the agent action,
instead of the supervisor action. This is a reasonable discrete approximation of the smooth
mixing of the two actions. For the equations 6.3 and 6.4, their intent is to change the policy
according to experience and according to the advice from the supervisor. The policy of a
reinforcement learning backgammon agent is implemented by the state-value function, so the
above intent translates to moving the value function in the direction of the received reward,
and moving the value function in the direction of the supervisor value function.

This puts quite a restriction on the supervisor: Instead of just emitting actions based on an
unknown policy, implemented in an unknown way, the supervisor is now required to expose
a state evaluation format, that is the same as that of the agent - a vector of 4 doubles
representing the probabilities of the di�erent outcomes of the game. Under such strict re-
strictions, there are not many choices for a supervisor implementation. A �tting supervisor is
therefore a version of TDGammon, which stopped training early. The chosen supervisor was
trained for 34500 games, after which it won approximately 34% of the games against pubeval.

The agent implements the state-value function as a neural network, so the update rule of 6.2
is not the most natural form. Although the two forms are functionally the same, it is more
natural to de�ne a target output value for the state, and let the backpropagation take care of
the rest. By using the above interpretations of the intent of the supervised actor-critic model
updates, it is possible to specify a combined target for the value function update as

combinedtargett = k(st)(rt+1 + V(st+1)) + (1− k(st))(outputsupervisor(st)) (6.5)

= k(st)V(st+1) + (1− k(st))(outputsupervisor(st)) (6.6)

In the backgammon domain, the reward is zero for all state transitions except the last. This is
modeled by removing the reward term, and letting VT+1, where T is the time of the �nal state
seen by the agent, equal one of the four reward vectors 1000, 0100, 0010 or 0001, depending
on whether the agent won normally, won a gammon, lost normally or lost a gammon. For
faster learning, the training only started, when a game had been completed, and updates to
the estimate of the value of a state were done starting with the last state. In this way, some
of the reward for a game propagated down to the �rst state seen already during the training
immediately after that game.



6.4 K-values

The supervised actor-critic model was put through a number of di�erent tests[RB04]. These
tests required an implementation of a function that would provide a state-dependent value of
k, to be used for the actor policy update, and the gain scheduler action interpolation. This
function had two requirements:

• Visiting a state should raise the value of k for that state.

• Not visiting a state for some time, should cause the k-value for that state to slowly
drop.

The �rst requirement is due to the fact, that visiting a state will increase the knowledge of
the agent about that state, so it can be trusted more in its decisions regarding that state.
The second requirement is due to the fact, that the actor policy was implemented as a param-
eterized function. Since parameterized functions have to use the freedoms provided by the
parameter space to ensure good performance over the observed samples, not visiting a state
for some time will generally have the e�ect of increasing the expected error of the policy,
when compared to an optimal policy. Therefore, the supervisor should be trusted more in
these cases.

These requirements were ful�lled using a variation of tile encoding, which was presented in
section 3.4. The test used 25 tilings over a 2-dimensional input space, but the weights associ-
ated with each tile were not updated according to any gradient descent method. Instead, the
weights of visited tiles were increased by a small amount, and after each episode, all weights
were multiplied by a factor of 0.999.

Unfortunately, the state space of backgammon is so large, that tile coding schemes become
very impractical. The state signal for a backgammon board, used by both TDGammon and
the agent is a 196-dimensional vector. Although most of these dimensions are binary, the state
space simply too large. In addition, tile coding schemes do not work very well with binary
dimensions. They are better suited to dividing up continuous dimensions into a number of
smaller areas. Therefore, the tile coding scheme cannot be used for backgammon, and so
some other way of providing a state dependent k-value, which ful�lls the requirements must
be found.

6.4.1 Kanerva Coding

The reason, why tile coding of the k function worked well for the supervised actor-critic model
was, that there was a very simple relationship between the weights and the output. That made
it easy implement a gradually decreasing k-value for states, that had not been visited for some
time. As shown in section 3.4, the same simple relationship between weights and output is
also present in the Kanerva coding method, so a version of the agent was implemented, which
used a k function based on Kanerva coding.

Designing the Kanerva-based k-function required answering questions such as: What is the
nature of the prototype space, how should the prototypes be generated, and how many pro-
totypes are required. An obvious answer to the �rst question is to use a 196-dimensional
prototype space, corresponding to the input space for the agent, and using the hamming
distance as metric. However, the input for the agent was designed to make it easy for the



encoding interpretation
000 0 checkers
001 1 opponent checker
010 2 opponent checkers
011 3 or more opponent checkers
100 1 agent checker
101 2 agent checkers
110 3 agent checkers
111 4 or more agent checkers

Table 6.1: Kanerva prototype encoding

agent to recognize the non-linear e�ect of the input on the output. If the goal is simply to be
able to distinguish the di�erent states from each other, then a more compact representation
of the state, which encodes every point in only 3 bits, can be used. This is shown in table 6.1.
Since a lot of the work in a Kanerva coding scheme goes into �nding the distance between
state representions, a more compact encoding will result in a performance speedup.

Generating prototypes is easy, when the di�erent dimensions are independent: For each di-
mension in the prototype, generate a random value within the set of legal values for that
dimension. This approach cannot be used in backgammon, because the sets of legal values
are not independent of each other. For instance, within the 24 dimensions corresponding
to the points of the backgammon board, there cannot be 4 values of 111, since that would
indicate a board with 16 or more agent checkers, which would be illegal. To overcome this
problem, another method of generating the prototypes is used: A series of games is set up
with two players, that choose moves randomly. Any sample state from any one of these games
will be a legal board, that can be translated into a legal prototype. It is a desirable property
of the set of prototypes, that they cover a lot of di�erent states, i.e. the prototypes should
not be too similar. This means that the samples should not be from early parts of the game,
where the states will be similar for all games, samples from the same game should not come
from positions in the game sequence, that are too close, and since random games tend toward
the same type of positions, with most of the checkers in the opponents home table, samples
should not come from too late in the game. Under these guidelines, every eigth of the �rst
64 board states in a game were used to produce prototypes.

To answer the question of how many prototypes to generate, it is necessary to weigh the
increased resolution achieved by larger numbers of prototypes against the reduced compu-
tational load from smaller numbers of prototypes. The problem is, that the time spent
computing a k-value increases linearly with the number of prototypes, so a large number of
prototypes would make a single game take very long. In the end, samples were taken from
1000 games, since that resulted in a reasonable game speed. That yields a rather small
number of prototypes compared to the size of the prototype space, so each prototype must
generalize to many other states in order to be useful. In order to achieve a high degree
of generalization, the set of prototypes activated by a state s is assumed to be the top 5%
most similar prototypes, where similarity is the number of dimensions with the same encoding.



6.4.2 Neural Networks

Another way to implement the k function could be to use neural networks. After all, they
have proved to be valuable in TDGammon, which also computes a function over backgammon
boards, and a simple way to raise the value of visited states could be to provide a target of 1,
and then do backpropagation. The problem arises with the requirement, that the state value
should decrease for states, that have not been visited for a while. The naive way to implement
this would be to go over all non-visited states, training them with a target of 0. However, the
number of unvisited states in a simple game is extremely large, so that is not a feasible solution.

What is the e�ect of not doing any e�ort to ful�ll the requirement to gradually decrease
values? The frequently visited states will be trained to full autonomy for the agent, while the
e�ect on the unvisited states will be more di�cult to predict. This may not be a problem,
if none of the infrequently visited states are encountered during a normal game, which by
de�nition is unlikely to happen. Therefore, it seems reasonable to implement the k-value by
initializing a neural network to produce a value close to 0 for all inputs, and then training the
output for visited states on a target of 1. The network can be initialized to produce (close
to) 0 for all states by setting all connection weights to 0, and all neuron biases to -20.

6.4.3 State Independent Interpolation

When the requirement, that the k-value of infrequently visited states should decrease, is
dropped, the values for all states will rise toward 1 with varying speeds. For the set of states
frequently visited states during a normal game, those speeds may be roughly similar. This
suggests a further simpli�cation: To simply disregard the speci�c state, and only vary the
k-value as a non-decreasing function of the number of training episodes. A simple example
could be a trapezoid function, that is zero for all training episodes below some threshold,
rising linearly to 1 between that threshold and another, and 1 for training episodes above the
second threshold, as shown in �gure 6.2.

Figure 6.2: A trapezoid function

Such a function raises an interesting question: What should be the positions of the left and
right thresholds? Looking at the performance of the baseline shown in chapter 5, it seems
clear, that the agent should be in full control, when the performance of the agent trained
without supervision reaches that of the supervisor. Otherwise, the supervisor may actually
hurt the combined performance. In this case, the performance of the baseline, which is just
the agent trained without supervision, shows, that the right threshold should be at roughly
at 5000 training episodes. However, in some situations, there may not be an estimate of the
unsupervised agent performance. For the left threshold, it is not completely clear, whether it
is better to leave the supervisor in total control for a while, or whether control should start
to transfer to the agent immediately.



6.5 Conclusion

In summary of this chapter:

• The agent is implemented as a neural network structure.

• The combined action is either the agent or the supervisor action, partially dependent
on k.

• The network is trained on a weighted sum of the reinforcement target and the supervisor
target, with the weights dependent on k.

• 3 di�erent k function have been proposed: Kanerva based, neural network based and
trapezoid.

It remains to choose a few parameters:

• Value of λ in TD(λ): 0. [Tes92] states, that performance was similar for values in the
range [0.0 , 0.7], and a value of 0 is computationally simpler.

• Number of hidden units: 80. This is the same as some versions of TDGammon.

• Learning rate: 0.1. This is the same as in TDGammon[Tes92].

There are now 3 slightly di�erent designs of supervised reinforcement learning in backgammon
ready to be tested.





Chapter 7

Test

7.1 Introduction

The testing process was de�ned in chapter 5. Brie�y, each agent is to be trained for 100000
training episodes1. The performance of the agent is then to be measured every 1000 training
episodes, and compared to the baseline.

7.2 Test Results

The results for the 3 designs are shown in �gures 7.1, 7.2 and 7.3. It seems clear, that the
agents using interpolation based on either Kanerva coding or neural networks do not improve
upon the performance of the supervisor. In fact, the results seem to indicate, that the interpo-
lation for both these agents must be heavily favoring the supervisor throughout the training.
There are a couple of reasons, why this might be so. For the neural network interpolation, the
network was initialized to a value of nearly 0 for all states by setting all weights to 0, and the
bias to -20. It is not normal to initialize any weights or biases in a neural network with such
a numerically large value, since the gradient for the sigmoid activation function, evaluated
at -20 is very small, and thus during training, where the weight update is dependent on the
gradient, the weight increments were too small to have any e�ect during the course of the
100000 training episodes.

For the Kanerva-based interpolation, a could be a problem, that the number of prototypes,
which was approximately 8000, were not su�cient to capture the complexity of the state
space. Therefore, with the decision of always activating the closest 5% of the prototypes,
prototypes would be randomly activated. With the random activation, the weight increases
due to state visits would spread evenly among all the protypes. Since none of the prototypes
would consistently receive weight increases, the weight decreasing factor of 0.999, that was
applied to all weights, might have been enough to keep all of the prototype weights at a low
enough level, that the supervisor could dominate the interpolation.

In contrast to the both the Kanerva-based and neural network-based interpolation, the simple
trapezoid interpolation worked reasonably well. It was able to avoid the initial bad performance
of the baseline, although the performance did fall a bit before the learning really started to
work. Another problem is, that although the performance was initially better than the baseline,

1interpreted here as equivalent to 50000 self-play games, since the agent will be trained on both the
winning and losing board sequence.
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Figure 7.1: Performance of supervised reinforcement learning using Kanerva-based interpola-
tion

Figure 7.2: Performance of supervised reinforcement learning using neural network-based inter-
polation

Figure 7.3: Performance of supervised reinforcement learning using trapezoid interpolation, left
threshold 0, right threshold 5000



the baseline performance overtook the agent performance at around 45000 training episodes.
This is not easily explainable, since at that point the agent should be fully autonomous, and
therefore use the same learning mechanism as the baseline. A �nal problem with the state-
independent trapezoid interpolation is, that it is not clear how to choose the shape of the
interpolation function. The e�ect of choosing a very di�erent interpolation function is shown
on �gure 7.4, which also uses a trapezoid interpolation, but with the right threshold moved
to 50000 instead of 5000 training episodes. This interpolation ensures, that the initial drop
in performance seen in the shorter trapezoid interpolation does not occur. The price paid for
this is that the baseline overtakes the agent much earlier, and that the agent stays at the
supervisor performance much longer.

Figure 7.4: Performance of supervised reinforcement learning using trapezoid interpolation, left
threshold 0, right threshold 5000

7.3 Conclusion

This chapter has presented the results of testing the agents designed previously. It has shown,
that it is possible to apply supervision to the reinforcement learning process in order to avoid
the initial period of bad performance. In addition, it has shown the importance of increasing
agent autonomy at the right pace. If the agent has control too soon, the performance may
drop initially, since the supervisor has not had enough time to teach. If the supervisor remains
in control for too long, performance will su�er in the longer term, since the agent is not
allowed to learn from experience, and thereby surpass the performance of its supervisor.

Some possible improvements for the agents suggest themselves:

• The neural network interpolation could probably be improved by also setting the bias
to 0. That would initialize the interpolation to 0.5 for all states. Then output in the
range [0.5 - 1] could be mapped to [0 - 1]. In this way the network would be much
more responsive to training.

• If another supervisor was chosen, with higher performance, it may be that a trapezoid
interpolation function could be found, that allowed the agent enough time to train to
avoid the initial performance drop, and at the same time released control to the agent
quickly enough, that the baseline did not overtake it.





Chapter 8

Conclusion

The backgammon domain is very well suited to pure reinforcement learning: It has a natural
formulation as a reinforcement learning task, it has a built-in exploration mechanism, and can
take advantage of the presence of afterstates to estimate a state-value function instead of the
more complicated action-value function. As a result, several very good backgammon players,
such as TDGammon have been implemented using reinforcement learning.

Reinforcement learning has the drawback, that it may take a long time to reach an good level
of performance, and that when the training starts, the performance may be unacceptably low.
This report has developed a framework for supervised reinforcement learning in the backgam-
mon domain, based on an interpolation of the agent and supervisor, in order to reduce those
drawbacks.

The backgammon domain is not as perfect a �t for supervised reinforcement learning using
the interpolation model, as it is for pure reinforcement learning. This is primarily due to two
aspects of the domain:

1. The input has a high dimensionality. This has meant, that the interpolation function
needed to be adapted.

2. The actions are discrete and unordered. This has meant that the learning function
needed to be adapted.

Adapting the interpolation function was made easier by the realization, that in the domain
of backgammon, there is a relatively small part of the state space, that can reasonably be
expected to occur in a normal game. For these states, the agent should be steadily more
autonomous, since these are the states, that the agent gets to know well. Using a kind of
circular logic, since these are the states, that are likely to be seen in a normal game, the agent
should be granted more autonomy for all states it encounters. This simpli�cation allowed the
implementation of 3 di�erent interpolation functions. Both the function based on Kanerva
coding, and the function based on neural networks did not do so well. Their performance
remained at the level of the supervisor, and performed worse than the baseline for most of
the test. This is probably for di�erent reasons. The Kanerva function only had around 8000
prototypes, and given the complexity of the input space, this was probably not enough. The
neural network function may have been initialized so that it required more training than in-
cluded in the test to reach autonomy for the agent. In contrast, the trapezoid interpolation
function removed the initial period of bad performance, while still being able to improve as a
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result of the reinforcement learning. However, a negative e�ect of the supervision seems to
be a slower overall learning rate, and a bad choice of thresholds of the interpolation function
can reduce performance.

Adapting the learning function resulted in the requirement that the supervisor should have the
same type of output as the learner. This has also worked well, but is a quite harsh restriction
on the supervisor. The framework presented here would be much more useful, if an arbitrary
supervisor could be used.

Going forward from here, there are some simple modi�cations, that might increase perfor-
mance:

• Using a supervisor that plays at a higher level may yield a consistently better performance
than the baseline, until they both settle, instead of the baseline just catching up, when
it starts to improve.

• Using a constant learning rate, as TDGammon does is not recommended in the theory.
Using a diminishing learning rate might allow the performance to stabilize at a higher
level, although the performance might rise slower.

These modi�cations are aimed at increasing performance, which is very nice, but the most
bene�t would come from increasing the scope of the framework. To achieve this goal, it is
necessary to address one or both of the following challenges.

• Find some way to remove the supervisor output restriction.

• Find a heuristic to determine the best shape of the stateless interpolation function, or
implement a good state-based interpolation function.



Appendices
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Appendix A

N-ply Search

This chapter describes the n-ply search, that has been implemented in the backgammon
framework. N-ply search can be thought of as mentally playing ahead of the game, instead
of just looking at the current board. A ply is a single turn for one of the players, and the
'n' in n-ply refers to how many plies the search should look ahead. The branching factor for
backgammon is quite high, so it is usually not feasible to look ahead more than 2 or 3 plies.
The search gives rise to a tree of di�erent boards: A single board expands to more boards,
and each of these boards expand to even more boards. The 'n' of n-ply can therefore also be
thought of as the depth of this search tree.

As an example, consider the expansion to depth 1 associated with 1-ply search, in a game
between players A and B. In order for player A to obtain the score of one of the possible
moves, recall that such a move represents the state of the backgammon game, after it has
been player A has �nished his turn, if he chooses to make that move. So now it is player
B's turn to move. Since player A doesn't know, which dice B will roll, he has to try out all
combinations of them. There are 21 di�erent combinations (since permutations give rise to
the same possible moves for the opponent), and each of these combinations present B with
a choice of which move to make, using those dice. player A doesn't know how B chooses
moves, so he has to try to guess. The guess is, that B will choose the move, that A would
choose, without looking ahead, only with the sides reversed: A guesses that B chooses the
move, that A thinks is the worst move. So now A has for each dice combination a move, that
he thinks, that B will make using those dice, and has assigned a value to each of those moves.
Thus, the original move is associated with 21 di�erent scores, which can be aggregated into
the single 1-ply search score. However, these 21 boards are not all equally likely to occur.
Speci�cally, dice combinations (and their associated scores) that are not doubles, are twice
as likely to occur as dice combinations, that are doubles. Therefore, the 1-ply search score of
the original board is a weighted average of the expanded board scores.

Deeper expansion is easy. For instance, boards can be expanded to depth 2 by further expan-
sion of each of the 21 boards selected by the opponent, for a total of 441 weighted scores.
The weights are modi�ed, so that scores obtained from two successive double rolls are given
weight 1, scores obtained from a combination of double and non-double rolls are given weight
2, and scores obtained from two successive non-double rolls are given weight 4. It is worth
noting, that the value function used for choosing boards at each step of the expansion is
the same, regardless of search depth or current expansion step. This has the e�ect that the
original moves are evaluated using an n-depth search, but the expansion mechanism itself
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uses only zero-depth search, for each expansion step. . Obviously, it is not possible to use
n-depth search for all expansion steps, because then the search would never �nish (or at least
not until the end of the game had been reached, which would take an exceedingly long time,
considering that each ply adds a branching factor of 21), but it is conceivable that expansion
step 1 used (n-1)-ply search, expansion step 2 used (n-2)-ply search and so on. This is not
implemented for performance reasons.

Finally, once each of the possible original moves of A have a score, it is time to choose the
best move. This is dependent on the search depth. The score for each move represents the
probable value of choosing that move as the next move, as perceived by the player, who, at
the n'th expansion step, supplied the weighted scores, which have been aggregated to form
the �nal move score. Therefore, if the depth is even, the current player has supplied the
scores, and the best move is the move with the highest score, and if the score is odd, the
opponent has supplied the score, and therefore the best move is the move with the lowest score.

This n-ply search scheme was implemented after a design by Gerald Tesauro, outlined in
[Tes02]. Note, that the semantics of this report di�er from those of Tesauro, in that what
he describes as 1-ply search, is equivalent to 0-ply search in the context of this thesis. Using
n-ply search is a very good way to improve the performance of an agent, after it has been
trained. It is not good to evaluate states by any other search than 0-ply search, since using
just 1-ply search will cause an agent to spend roughly 400 times more time on choosing a
move. However, once an agent has been trained, its performance can be increased quite
dramatically by using 1-ply search. As an example, the test baseline evaluated after 100000
training episodes, using 0-ply search won 55.7 percent of the games in a 5000 game trial,
while the same baseline using 1-ply search won 65,8 percent of the games in a 400 game
trial. Using 2-ply search is usually only practical for games versus humans, since just making
a single move may take on the order of 10 seconds, according to [Tes02]. The tests in this
thesis were conducted using only 0-ply search.
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