
2009

Software

Aalborg University

Morten Christiansen

Christian Eske Hansen

CUDA DBMS
A study on the feasibility of GPU databases

The Department of Computer Science
Aalborg University

Software Engineering, 10th semester

Title:

CUDA DBMS

Project period:
February 2nd 2009 -
June 10th 2009

Theme:
GPGPU Programming

Group:
d626a

Authors:
Morten Christiansen
Christian E. Hansen

Supervisor:
Bent Thomsen

Circulation: 4

Pages: 71

Appendices: A - B

Abstract

In this report we document the develop-
ment of a GPU-based DBMS. It stores data
on the GPU and uses the high computa-
tion power of the GPU to perform efficient
parallel operations on it. The DBMS is
written in C# for the CPU code and CUDA
for the GPU code, and is accessed through
a custom LINQ query provider.
The main building block of the DBMS is
collections of data-parallel arrays which
represent tables and table columns. To
facilitate the standard database opera-
tions we have implemented CUDA ker-
nels which perform set operations on the
columns as well as various math opera-
tions. We have also implemented cache
sensitive search trees, an index type which
encodes a tree structure into an array for
efficient data retrieval on the GPU.
Tests show that inserting values into the
DBMS is in the order of a 100 times faster
than SQL Server, and math operations
were about 4 times faster. However, ap-
pending values to existing tables becomes
increasingly slow with more values, and
selecting an entire table also lags behind
the SQL Server. Unfortunately, we were
unable to perform filtered selections but
performing tests directly on the index in-
dicated it has a good performance.
While the implemented DBMS is only a
prototype, there is a lot of promising work
to continue with. This includes expanded
support for types and operations such as
strings and joins, as well as optimizations
such as query restructuring techniques
and more efficient memory management.

Preface

This report is written in the spring of 2009 by two software engineering students at the
department of computer science at Aalborg University. In order to understand the report,
a general understanding of programming and C# is required.
Source code presented in the report may differ from the original source code as some de-
tails may be left out to improve readability and/or to emphasize certain points. The source
code as well as a digital copy of the report can be found on the enclosed CD. It also includes
the necessary drivers and runtime components to execute the DBMS, given the presence
of a supported GPU. A summary of the report can be found in Appendix A and a brief
overview of the source code can be found in Appendix B.

Project group d626a

Morten Christiansen Christian E. Hansen

i

ii

Contents

1 Introduction 1
1.1 CUDA Overview . 2

2 Problem Statement 5
2.1 Main Problems . 5
2.2 Proposed Solution . 6
2.3 Exploring a Use Case . 7
2.4 Related Work . 9

3 DBMS Design 12
3.1 Design Goals . 12
3.2 Implications of the GPU Architecture . 13
3.3 DBMS Requirements . 14
3.4 DBMS Architecture . 16

3.4.1 Interface . 17
3.4.2 Query Processor . 17
3.4.3 Memory Manager . 18
3.4.4 Index Manager . 20
3.4.5 Kernel Library . 25

3.5 Design Decisions . 26

4 Implementation 27
4.1 LINQ Query Provider . 27
4.2 Table Lifecycle . 30

4.2.1 Create Table . 31
4.2.2 Insertion . 32
4.2.3 Selection . 32
4.2.4 Database Selection Functions . 34

iii

4.2.5 Where . 36
4.2.6 Deletions . 40

5 Performance Measuring 41
5.1 Method . 41
5.2 Insertion . 42
5.3 Selection . 45
5.4 Math Operations . 47

6 Future Work 48
6.1 Data Creation and Transfer . 48
6.2 Futures . 50
6.3 Strings . 51
6.4 Index . 52
6.5 Energy–Efficient Computing . 52
6.6 Optimizations . 53

6.6.1 LINQ Queries . 53
6.6.2 Query Restructuring . 53
6.6.3 Memory Allocation . 55
6.6.4 CUDA Code . 56
6.6.5 Indices . 58

7 Conclusion 59
7.1 Future Use and Adoption . 60

8 Alternative Directions 62

Bibliography 65

A Summary 68

B Code Overview 70

iv

Chapter 1

Introduction

While the increase in computation power of CPUs and GPUs has largely followed Moore’s
law, stating that the number of transistors in a CPU double every 18th month, it has become
apparent that the processing power of CPUs have been limited by scaling issues for a
single core, leading to the current shift toward multicore CPUs. The GPUs in contrast
are massively parallel and have thus been free to scale performance close to linear to the
amount of transistors [1].

To give an example of the difference in scaling, consider the Core i7 3.2GHz CPU and the
Radeon HD 4870 X2 GPU. Both devices are, currently, among some of the most powerful
of their respective processor types. While the CPU can perform a little over 51 GFLOPS it
is not in the same league as the GPU which can perform 2,400 GFLOPS [2, 3]. The compu-
tation power of the GPU is a theoretical maximum and the practical value depends highly
on the implementation and the type of computation but it is still a remarkable difference
in scale.

In the last couple of years, General Purpose GPU (GPGPU) programming has become possi-
ble with new programmable GPU architectures, making the computation power accessible
to programmers in general. This field has mostly been embraced for scientific computing
but is slowly seeping out to more general programming areas as the tools and technology
mature. The future of GPGPU programming is hard to tell, though, as there are several
competing technologies and rapidly evolving hardware platforms. As CPUs and GPUs
appear to be converging towards the same capabilities, a direction which is necessitated
by the scaling issues with CPUs, we might be facing a future where many of todays as-
sumptions and distinctions are no longer correct [4, 5].

When considering the difference in computation power, one has to keep in mind that CPUs
have spent their transistors on other types of hardware than ALUs such as large banks of

1

cache memory which makes them very suitable for general programming. The GPUs,
however, are focused on similar instructions issued across a large set of data using Single
Instruction Multiple Data (SIMD) operations, which makes it more difficult to take advan-
tage of the full processing power.

One area that might benefit from this emerging technology is database operation as the
analysis and operation of large sets of data is common in many fields such as scientific
computing and business analysis. Previous research into databases leveraging SIMD in-
structions indicate that certain kinds of operations are highly suited for parallel instruc-
tions. For example, in [6] SIMD instructions on four values in some cases yielded a super-
linear increase in performance.

1.1 CUDA Overview

This report discusses a technology which is not familiar to many programmers, so in this
section we give an overview of the terms and concepts from CUDA programming which
are used in the report. For a more detailed description of GPU architecture and CUDA we
refer the reader to [7, 1].

CUDA is a parallel computing architecture which allows programmers to write general
purpose programs that run on the GPU, thus taking advantage of the high computation
power of modern GPUs. GPUs are built using a massively parallel architecture using wide
SIMD instructions.

To program for the GPU architecture, the programmer has to distinguish between code
running on the GPU and code running on the CPU. These two areas of execution are also
referred to as the device and the host, respectively. On the device, small programs, or kernels,
are executed in parallel. These kernels are written in C for CUDA, which is an extension to
the C language, and the form of a kernel is to write the execution of a single light–weight
thread. In the host code you specify how many threads should run a given kernel. In
CUDA, threads are grouped in blocks arranged in grids. This gives a logical structure to
thinking about the threads but it also reflects the nature of the hardware where a block of
threads share a certain amount of resources. Figure 1.1 illustrates this structure and how
it maps to the GPU memory hierarchy. Similar to the memory hierarchy on the host, the
more local memory banks are faster though considerably smaller.

Listing 1.1 shows an example of a CUDA kernel along with the code invoking the kernel
from the host. In the kernel, the variable i is set as a unique value representing the exe-
cuting thread, based on the id of the executing thread and block. This means that thread
i accesses the ith value of the arrays x and y to calculate a new value for the same index
in y. When calling the kernel, the parameters in the angle brackets determine the amount
and size of thread–blocks to start.

2

Thread Block

Block (0,1) Block (1,1) Block (2,1)

Block (0,0) Block (1,0) Block (2,0)

Block (0,2) Block (1,2)

Block (0,1) Block (1,1)

Block (0,0) Block (1,0)

Grid 0

Grid 1

Thread

Per-thread
local memory

Per-block
shared memory

Global memory

Figure 1.1: The GPU thread hierarchy and how threads access the memory hierarchy.

1 //Kernel definition
2 __global__ void
3 saxpy_parallel(int n, float alpha, float *x, float *y)
4 {
5 int i = blockIdx.x * blockDim.X + threadIdx.x;
6 if (i < n) y[i] = alpha * x[i] + y[i];
7 }
8
9 //Invoke parallel SAXPY kernel (256 threads per block)

10 int nblocks = (n + 255) / 256;
11 saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Listing 1.1: Scalar Alpha X Plus Y algorithm example [8]

A block can contain up to 512 threads but it is executed in groups of threads called warps

3

which contain 32 threads. These threads are executed synchronously on a multiprocessor
which takes one instruction at a time and executes it for each thread on individual pieces
of data. If the program flow branches, however, the GPU can only execute the threads on
one branch at a time.

As the device works on large amounts of data, it becomes essential for performance to
retrieve enough data from memory to fill the multiprocessors. This is done by using a
couple of techniques for accessing data in parallel. To efficiently fetch data from global
memory, which is the equivalent to main memory on the host, you can use coalesced accesses.
If you obey certain rules for memory alignment and data sizes, a coalesced access allows
you to retrieve 32 values in a single memory fetch. For shared memory, which is local to
a given thread block and which can be considered as a small manually maintained cache,
a similar option exists. The shared memory is distributed across 32 physical banks which
can each service a single request at a time. Thus, to achieve optimal memory throughput
you must fetch 32 values which are adjacent in memory and aligned to the banks.

GPU memory is high bandwidth but also high latency, so in order to mask this latency, the
GPU switches between the execution of different blocks instead of blocking while waiting
for memory fetches to complete. While the thread inside a given block can be considered
to be executed in–order, this has the effect that different blocks are executed entirely inde-
pendently from each other and in an arbitrary order. It is possible to communicate between
blocks using global memory but this has all the normal dangers of concurrent program-
ming with shared state. To handle this, the GPU provides a mechanism for synchronizing
threads using a thread barrier.

4

Chapter 2

Problem Statement

In [7] we explored the possibilities for creating a GPGPU library which could provide
an interface to a number of CUDA operations from .NET languages. Having gained an
overview of the obstacles involved in building a GPGPU API, we take a step back and
consider the implications of our experiences and how to leverage them for a better API.
In this chapter we describe the most prominent issues we face and we present possible
solutions to them, in high–level terms.

2.1 Main Problems

One of the problems we had to deal with in our previous work was when performing
computations on the GPU, where data has to be transferred back and forth across the
PCI–Express bus. This is a bottleneck which dominates the performance benefits of sim-
ple operations for all but the largest input sizes [7]. This problem made it necessary to
either evaluate each request to the library to find the best place to perform the compu-
tations or simply rely on the users of the library to benchmark the performance of their
code. Concrete examples of the overhead associated with transferring the data are in im-
plementations of join, radix sort and hash search operations of which the cost of the total
execution time is 0–13%, 10–30% and 40–60% respectively [9, 10].

One of the purposes of the library we worked on was to create a mapping of programming
concepts between ordinary .NET programming and GPGPU programming. The way we
approached the problem was to create a wide range of computation providers for many
different problems and cases. This design makes it hard to use the library in a more general
and flexible way and it limits the use to the set of functions we, as library designers, could
think of to implement. The cause for this strategy was that we did not find a good way

5

to represent more complex data than the simple types. This limited us to general math
operations on simple data.

The nature of current GPU hardware poses one problem which we cannot avoid, but hope-
fully mitigate, and that is the data–parallel programming model required by the hardware.
To achieve anything near the potential performance of the GPU, the computations we per-
form must adhere to these hardware limitations.

2.2 Proposed Solution

One of the results of our previous work was the idea of having data living on the GPU for
most of its life cycle. The major motivation for this approach is the benefit in improved
locality between the processing resources and the data on which they operate. If it is
feasible to expect that most data can be stored effectively on the GPU we will have solved
one of the major bottlenecks in applying the potential of the GPUs. To determine whether
this is the case we must take into consideration the extra cost of storing and operating with
irregular data on the GPU.

The idea of having data reside long–term on the GPU also sparked ideas of extending this
to include a database–like data representation and operation interface. An issue which a
DBMS would address is the representation of complex data and relationships as well as
computations on them. The relational model of representing data and relationships be-
tween them is used in most DBMSs and is well documented and tested. Using this model
to represent data on the GPU provides a model that is not foreign to developers and which
allows them to describe more complex interactions than our previous approach. A ben-
efit of this representation of data is also that we can perform more complex operations
over the data. Instead of forcing the developer to think in terms of operations on arrays
of simple types, he can think on a higher level of abstraction, for example to define new
entities as a result of operations on other entities. This ability is especially useful if com-
bined with standard database operations for creating groups of entities and relations with
specific properties.

If we store data as entities and relations it is an obvious step to extend the functionality to
standard database operations such as SELECT, JOIN, DELETE, etc. In combination with
math operations these make it possible to perform very complex operations on data. This
flexibility is essential if the DBMS is to be useful in a general development context. One
issue these capabilities can introduce is operations on non–linearly allocated data which
reduces the memory bandwidth on the GPU. We must determine to what extent this is a
problem and provide an overview of which types of operations it is worth performing on
the GPU. While database operations are useful metaphors for performing complex oper-
ations on data, previous work also suggests that there is a lot of performance potential in
calculating certain database operations on the GPU such as joins, relational queries and

6

range queries [9, 11].

It is not enough to have complex data storage and computation capabilities in the DBMS
if taking advantage of them is not easy and well integrated with the host language. To
solve this problem we look at the possibility of using a custom LINQ provider as our main
interface to the DBMS. This provides type–safety and Intellisense help, thereby allowing
developers to maintain a high level of productivity. A LINQ provider already exists for
interacting with relational databases in LINQ–to–SQL and this model provides for a useful
source of inspiration as ours would solve essentially the same problem only in a different
representation.

An important factor with regards to the core DBMS design is the GPGPU platform it is built
on. In [7], we argued that the different languages are built with similar design philoso-
phies, as they are partly dictated by the current GPU hardware architectures. Based on this
observation and the fact that a defacto standard has yet to emerge in the field of GPGPU
programming, we focus on the general design and assume that CUDA can relatively easily
be exchanged for a different language should this prove necessary in the future. One of the
main results of this project is to find a solution which can work with the GPU architecture
and which is easy and intuitive to use – these aspects would be the same regardless of
which technology we would use and, therefore, we use CUDA which we have previous
experience with.

The above solutions proposed to solve the problem described in Section 2.1, leads to the
question we try to answer in this project:

Is it possible to develop a DBMS residing in GPU memory using CUDA to facilitate
a flexible data representation and computation model which can be accessed through a
LINQ query interface, and if so, how does its performance characteristics compare to
existing general purpose DBMSs for different types of tasks?

2.3 Exploring a Use Case

To illustrate how the DBMS could provide a simple and easy way to solve different com-
putation problems, we provide an example use case.

Consider a museum which tracks the position of its guests at a certain interval using RFID
tags, each with a unique identifier. At the end of each day, many thousands of positions
have been entered into their database. What the museum needs is an efficient way to
identify patterns in this data. For example, they might want to colorize a map of the

7

museum by the amount of time visitors spent in each area, so that areas which keep visitors
for long are marked with red colors while areas with less attraction are marked with cooler
nuances. This would provide the museum with a popularity map of their expositions
which they could use to determine when to retire expositions in favor of something more
interesting.

Lets consider the computational task the above scenario introduces. A simple way to map
the problem would be to organize the museum map into a grid of square cells and then
count the number of positions registered in that area and divide it with the number of
unique identifiers making up the positions. This will give a measure of the length of time
people on average spend in a given square. This is, of cause, not useful if we consider all
the data at once, so we need to separate the popularity measures by their time of occur-
rence such that you, for instance, can get a color map for each day or week.

Listing 2.1 shows how a LINQ query could be composed to calculate a popularity map
of the museum. It is completely transparent, from a syntax point–of–view, that you are
in fact interacting with a database and not just an ordinary object collection. There is
no guarantee, though, that you would not have to know something about the internal
implementation to get the most performance out of the DBMS.

1 public class Measurement
2 {
3 public float X { get; set; }
4 public float Y { get; set; }
5 public DateTime Time { get; set; }
6 public int UID { get; set; }
7 }
8
9 public IEnumerable<float> GetPopularityValues

10 (
11 Table<Measurement> measurements,
12 DateTime fromTime,
13 DateTime toTime,
14 float cellEdgeLength,
15 gridWidth
16)
17 {
18 return from m in measurements
19 where m.Time > fromTime && m.Time < toTime
20 let cellId = (int)(m.X / cellEdgeLength + gridWidth * m.Y /

cellEdgeLength)
21 group m by cellId into cells
22 let uniques = (from msr in cells
23 group msr by msr.UID into idGroups
24 select idGroups.Count()).FirstOrDefault()
25 select cells.Count() / uniques;
26 }

Listing 2.1: A LINQ statement querying an instance of our DBMS for positional data.

Using LINQ as the way to construct algorithms allows the developer to describe his prob-

8

lem in high–level declarative code without worrying about such issues as how to iterate
over collections of data, access indices, and which parts of the algorithm can be executed in
parallel. This simplicity also reduces the amount of work required to change or make vari-
ations of an algorithm. In the example above, the problem we addressed was just one out
of many potential issues so it is a desirable quality to be able to easily create a wide range
of queries and be able to get an output as fast as possible. Other examples which could
be relevant for the museum case would be to implement the algorithm for calculating the
trajectories of moving objects in tracking networks described in [12] or the algorithm for
optimized WLAN positioning described in [13]. Both of these problems revolve around
analyzing large amounts of numeric data, a task for which GPUs are highly suited.

We hope that combining the clear and high–level abstractions of the LINQ interface with
the computational power of the GPU allows us to achieve this.

2.4 Related Work

The subject of GPGPU programming is a new subject and the field is only just beginning
to establish its identity. As such, the amount of research and work put into derivative
technologies, such as GPU–resident DBMSs, is limited. We have thus been unable to lo-
cate any working solutions on this specific topic though an ongoing project addresses the
subject in a similar but slightly different way. The GPU Query Co–Processing (GPUQP)
[14] project is described as ‘a relational query engine that employs both CPUs and GPUs
for in–memory query co–processing’. Only a brief overview has been published on this
project but its purpose is described as an add–on to ordinary DBMSs for sending selected
database operations and the related data to the GPU where it is processed and then trans-
ferred back to the database. The people behind the project are working on implementing
several database operations efficiently on the GPU using a set of primitives such as map,
scatter, gather and sorting operations. They have currently published their work on im-
plementing join operations using these primitives [9]. Their experiences from this work
suggest that the primitives are a good basis for database operations and that they not only
apply for the join operation.

Figure 2.1 shows the topology of the major research areas as they relate to our work, which
is represented by the asterisk in the middle. Our work attempts to bridge the two fields
of databases and GPGPU programming and there are a number of technologies in the two
respective fields which are particularly related to our work. The figure also includes the
field of general programming as this is the context in which the DBMS is intended to be
used.

Figure 2.1 also serves to point out the major aspects of the DBMS we need to work on.
The overlap between the database and the GPGPU fields covers the representation of the
database on the GPU and the interaction between the high level, non–GPU code and the

9

General

Programming

GPGPU
Data‐

bases

*
MySQL

MS SQL Server

Perst MMDBCUDA

Brahma
Accelerator

RapidMind

Data mining

ODBC
NHibernate

C#
.NET

LINQ

Application development

OpenCL
CUDA.NET

*
*

*

*

*

*
*

*
*

*
* *

*

*
*

*

Figure 2.1: How the different fields of study overlap.

low–level CUDA code. This part is internal to the system as a whole and users of the
DBMS do not have to concern themselves with its details. The overlap between databases
and general programming covers the creation and querying of the database and as such
is the public interface to the database. The overlap between general programming and
GPGPU represents the limitations imposed by the GPU hardware on how computations
must be performed to achieve high efficiency. This is an important subject as it can make
the DBMS more difficult to use if not properly communicated through the API and our
goal is to minimize the level of awareness of the hardware platform required to use it.

From the field of databases there is a lot of work to draw on but a specific subject which
is particularly aligned with the design principles of a GPU DBMS would be Main Memory
Databases (MMDBs). These are also designed to work on data in a low latency, volatile
storage environment and can provide good insight into how to store and access data. It
can also provide us with an overview of problems and difficulties in taking this approach.
In chapter 3, we discuss this topic in greater depth.

From the field of GPGPU programming, several libraries exist which serve to make GPU
resources available for general programming by creating abstractions on top of the GPU
programming model and integrating with managed languages. They generally focus on
a single abstraction to interface with the underlying platform. Below is an overview of
some of these libraries and their principle abstractions as well as our impression of their
usefulness for our work:

10

“ Accelerator is a research project from Microsoft which provides a number of data–
parallel array structures in .NET [15]. The main concept is that you turn a normal
array into a parallel version, perform a number of operations on it, and turn it back to
a normal array when you need the data. The library analyzes the computation graph
of operations on the arrays, and performs a number of optimizations. Depending
on our implementation these optimizations could apply to our work as well and we
keep them in mind during the design of the DBMS.

“ Brahma is an open source library which works by translating LINQ queries on in-
stances of data–parallel arrays into shader code which can be executed on the GPU
[16]. It tightly integrates the operations on the CPU with those to be performed on
the GPU by providing a custom query provider. Not much documentation exists for
this project but by looking at the code we might be able to get inspiration on how the
LINQ programming model can be applied for different types of operations.

“ Like the Accelerator library, Rapidmind provides an array–abstraction as the way
to perform operations on data in C++. The strength of the Rapidmind platform is
that it has load balancing and distribution of work across heterogenous hardware
resources such as CPUs, GPUs and the Cell processors found in the PlayStation 3
[17]. Rapidmind is a closed, commercial platform which makes a deeper analysis
difficult, but its most interesting aspect would be the flexibility to use different hard-
ware. While this would be an interesting subject for a hybrid DBMS, the focus of this
project is a purely GPU–located DBMS and other hardware resources are not taken
into consideration.

The problem with these solutions is that they provide a simple model for interacting with
data. The data–parallel array model they use allows for many operations on simple data
types, but for complex operations you have to provide the necessary abstractions yourself.

The Brahma library provides a more flexible computation model as it uses the LINQ query
API to query the arrays but it requires creating unfamiliar scaffolding code to setup and
use the computations you define. Currently, there exists no documentation for Brahma,
which makes using it difficult, though a couple of example applications exist.

All of the libraries lack any sense of relationships between entities and still revolve around
performing a given operation across all members of an array of simple types.

11

Chapter 3

DBMS Design

This chapter describes the architecture and design of the DBMS, as well as the overall func-
tional requirements for it. The design is driven by the problems and proposed solutions
described in Chapter 2, drawing inspiration from existing DBMS designs.

3.1 Design Goals

The most obvious goal for the DBMS design is to solve the problems described in Sec-
tion 2.1 which are directly concerned with performing operations on data in an intuitive
and efficient way. As we are developing a DBMS it becomes interesting how it performs
compared to existing DBMSs in a more general context.

If we design for generality to compete with existing DBMSs we have to take a more holistic
view of the environment in which the DBMS runs including the ACID properties and
acceptable performance in all areas. While a desirable goal, these requirements do not
fit well with the GPU architecture as it is specialized hardware. Thus, the main goal of
our design is to develop a specialized DBMS which is good at certain use patterns. We
look at the use patterns which lie in the intersection of heavy computations and traditional
database tasks such as data–mining. In Section 3.3, we go into further detail of how the
GPU architecture influences the preferred use patterns for the DBMS.

We maintain the secondary goal of determining the applicability of the DBMS as a general
DBMS, although more from a theoretical viewpoint, and try to provide an overview of the
long–term prospects of this goal.

Focusing on a design philosophy of a more specialized DBMS, we design it to achieve a

12

high level of performance for the most suitable tasks. This means that the choice of indices
and how data is represented might result in very poor performance for certain operations
but instead of addressing this directly we provide an analysis of potential ways this could
be solved.

3.2 Implications of the GPU Architecture

This section describes how the GPU hardware affects the DBMS design. It is important to
carefully consider how you interact with the GPU as current GPU architectures are highly
optimized for certain types of operations. Because of this difference in architectures be-
tween CPUs and GPUs [18], we cannot apply an existing DBMS design and are forced to
reconsider conventional wisdom in the field. This is primarily due to the way data must
be fetched from GPU memory to achieve a high throughput.

Below is an overview of how the GPU architecture impacts how we design the DBMS.

Recomputations Over Fetching Values As the memory of GPUs have a high
latency[1] it can be considerably faster to recalculate a value than fetching it from global
memory.

Maximize Memory Throughput To achieve a high memory bandwidth to the GPU
arithmetic units from shared and, especially, global memory, we must take advantage of
coalesced access, i.e., the ability to retrieve values for an entire half–warp in a single in-
struction. In this aspect, the data access pattern of a GPU DBMS lies between those of
the disk–based and the memory–based DBMSs. This means that we can perform random
accesses to GPU memory but in blocks of data, as on a hard disk, only smaller.

Minimize Kernel Calls Each time you execute a CUDA kernel, you pay a little overhead
for initializing the code and starting the GPU pipeline. To avoid this cost we must keep the
amount of kernel invocations from the host to a minimum. Instead we can group together
several queries and encode a set of operations in a format which a single kernel can pro-
cess. An added benefit of performing fewer and larger operations is that the use of shared
memory can be optimized. As shared memory access times are about a factor 100 faster
than those of global memory this can result in a significant performance difference[1].

Limited Memory Compared to Disk Resident Databases (DRDBs) and even MMDBs, the
storage space available for a database on the average current GPU is limited. Currently,
the most memory available on a standard commercial graphics card is 4GB but the average

13

for a CUDA–enabled card is perhaps closer to 512MB if not lower. While this amount is
constantly increasing it does make for a problem if the data–set you work on is larger. This
makes it necessary to consider some means of swapping data between the GPU and main
memory.

Keeping Non–Data on the Host The GPU is geared towards data–parallel operations
and therefore it is wasteful to perform serial operations on the GPU. Managing indices,
queries and other parts of the DBMS can require a lot of serial operations which are best
suited for the CPU to process so we must keep as much as possible of these types of opera-
tions on the host. However, once a kernel has been invoked, it might be faster to recompute
some value rather than interrupting the work flow to get it from the host. It can, though, be
faster for some tasks to rethink their implementation and create parallel versions. Indices,
for example, could benefit from being accessed in parallel.

Floating Point Precision A potential problem with the current generation of GPUs is
their lack of support for floating point operations as specified by the IEEE 754 standard
[19]. This standard is a widely accepted standard and is, for example, used in Intel CPUs
[20]. For most floating point operations, CUDA deviates slightly from the standard [1], but
this lack of precision can be ignored in many cases, depending on the application area.

Another related issue is the lack of support for double precision numbers in GPUs with
a compute capability version lower than 1.3, which is a hardware specification describing
how well a given GPU supports CUDA[1]. On these GPUs, double precision values are
reduced to single precision.

As these issues are a result of the hardware implementation there is nothing we can do
to correct them but as GPGPU programming gains momentum and as older GPUs get
replaced, these problems will become less of an issue but they do impact the usefulness of
our DBMS for certain applications.

3.3 DBMS Requirements

In this project we explore how well the GPU architecture is suited to host a database and
how we can integrate it with .NET application development. As mentioned in Section 3.1,
our design goals are to create a specialized DBMS which leverages the benefits of the GPU
hardware to maximize performance for a set of use cases. We use the project to gain prac-
tical and detailed experience with this DBMS design, from which we then put the DBMS
in a greater perspective – comparing it with other types of DBMS and discussing how it
can be extended to embrace a more general use pattern.

14

The requirements put forth in this section reflect this core functionality which we believe
the DBMS is most suitable for. The main goal this functionality must achieve is to provide
a general representation of data and a flexible model for operating on it.

Based on the GPU hardware, the general use case for the DBMS has the following charac-
teristics:

“ Computation-intensive operations

“ Limited size of data-set

“ Large scale parallel operations

“ Volatile storage

These characteristics point toward a preferred environment with few but computationally
expensive transactions. This makes the DBMS less suitable for a multi-user environment
with lots of small updates and for serving static content. The high computation power and
volatile memory suggest a better use case would be just-in-time computations and analysis
on large amounts of data. Such cases include data-mining where users desire responsive
visualization of the data based on a large amount of parameters or a stream of data which
must be analyzed in real-time.

The focus for the DBMS described above leads to the following concrete limitations of the
scope of the DBMS, as implemented in this project:

Single-user DBMS To design the DBMS with a focus on few but large operations, we
make it a single-user DBMS. The DBMS provides a local in-process database which
works on the same thread as it is instantiated, providing a single connection to query
against.

Lack of ACID properties Durability is a problem for all MMDBs as the data lives in
volatile memory. While some DBMSs such as the Oracle TimesTen DBMS use logging
and checkpoints to create backups in non-volatile storage [21], we keep our focus on
use the use cases where data loss is less of a problem and performing computations
on more static data is prevalent.

As only a single connection to a database instance is possible at a time, atomicity and
particularly isolation become less relevant. While it is possible to introduce query op-
timizations which would make isolation and atomicity important, the inherent lack
of threading issues makes it possible to avoid most of the issues around accessing
inconsistent state. Atomicity is also useful for maintaining consistent data in the case
of a database failure but due to the lack of focus on durability, the inconsistent data
will be lost in any event.

15

Support for a subset of Database operations To explore the feasibility and perfor-
mance of a GPU DBMS, we focus on the key database operations and do not try to
implement the full complement of standard database operations. This focus is on the
basic operations in relational calculus[22] as well as some common math operations.

3.4 DBMS Architecture

This section describes the major components of the DBMS and how they are tied together.
To identify the main components of a DBMS we look at the architecture of the ALTIBASE
MMDB[23]. In the article they enumerate the standard components in a DBMS which in-
clude index, recovery, transaction and memory managers as well as a query processor and
a library of native stored procedures. As mentioned in Section 3.3, we do not focus on
multi-user support and data durability and, hence, the transaction and recovery modules
are not interesting for us. The remaining four components encapsulate the main func-
tionality of our DBMS, and how they communicate is illustrated in Figure 3.1. The query
provider module is the interface to the DBMS.

Host:

Query Processor Memory Manager

Device:

Kernel Library

Index Manager

Tables Indices

Query Provider

Application Code

Figure 3.1: The high level architecture of the GPU DBMS.

Our equivalent for the library of native stored procedures is a library of CUDA kernels
which can perform all the different database operations we need.

The modules shown in Figure 3.1 are described in detail in the following subsections, each
with a table describing their abstract interface. This interface enumerates their main re-
sponsibilities as well as the forms of data they consume.

16

3.4.1 Interface

Interface function Return value
CreateQuery(LINQ Query) void
OutputResult(data stream) objects

The public interface is the interaction point from which users of the DBMS can set up and
query a database instance. There are many standards for database connections such as
ODBC which would allow access to the database from different programming languages
and environments but for the scope of this project we focus on a single interface by im-
plementing a custom LINQ provider for a strong and type-safe integration with .NET lan-
guages.

Using a LINQ provider as the interface to the DBMS makes it possible for us to perform
lazy evaluations on queries. When a query is first made, the result is just a representation
of the query, such as SQL. It is only when you iterate over the resulting IQueryable
object that the query is executed. This makes it possible to compose complex queries by
making additional queries on the original IQueryable object. Depending on how the
query is performed, there are potential optimizations which we can use as knowledge of
the situation increases.

3.4.2 Query Processor

Interface function Return value
ExecuteQuery(query representation) data stream

It is the job of the query processor to manage the execution and optimization of database
queries and as such is closely connected to the implementation of the custom LINQ
provider. Through this provider it can be used to transform a LINQ query into a repre-
sentation which our DBMS can process on the GPU. As we are creating a DBMS it seems
natural to represent queries as SQL since it can describe all the common database opera-
tions by design. As such, we use SQL as the basis for representing queries but keep an open
mind for adding addition constructs if they make it easier to represent useful operations
suitable for GPU hardware.

There are two approaches to executing queries on the GPU; sending a representation of the
query to a kernel which orchestrates each of the sub-operations or managing each part of
the query from the host as a series of kernel invocations.

Making a single kernel invocation for a given query would appear to be the optimal so-
lution since this avoids the extra overhead associated with performing the invocations.

17

However, there are several issues which make this approach infeasible for many database
operations. One of the main problems is that current GPUs do not support dynamic alloca-
tion of memory during a kernel execution. This means that operations such as joins where
the output size is unknown must be performed in several passes or by pre-allocating the
worst-case output size. For joins, the latter option increases beyond the GPU memory size
for moderately large input sizes.

Several of the computation primitives used to implement database operations such as scat-
ter and gather operations can also be optimized using multi-pass algorithms for caching
[10].

3.4.3 Memory Manager

Interface function Return value
CreateTable(schema, size) void
DeleteTable(table) void
StoreData(data, table) void
RetrieveData(table) data stream

The memory manager handles the allocation and consumption of GPU memory resources.
It determines how data is structured as well as how meta-data, such as the database
schema, is represented and maintained. In this section, we describe database relations
from a C# view. This means that instead of using the terms relations and attributes, we use
types and members instead.

The way entities are represented in the DBMS is as a schema and number of data arrays.
The schema is a mapping from the name of a type and member(s) to a given array of values,
where members correspond to attributes in relational databases. As an example, we use a
type Person with the members Name and Age, there would be two arrays of data, one for
each member. An instance of the type Person is thus comprised of the array elements with
identical indices. Table 3.1 illustrates this mapping for Person.

Member name Data array
"Person.Name" char[] pointer
"Person.Age" int[] pointer

Table 3.1: Schema for mapping strings to data for a simple type.

The Person type described above is a simple relation; to illustrate a more complex type
consider that Person also has an Address member which, itself, is a type with the members
City and Street. The most simple way to represent this relationship would be to add the

18

members of Address as members of Person as illustrated in Table 3.2.

Member name Data array
"Person.Name" char[] pointer
"Person.Age" int[] pointer
"Person.Address.City" char[] pointer
"Person.Address.Street" char[] pointer

Table 3.2: Schema for mapping strings to data with relationships between types.

This representation of relationships fits well with one-to-one relationships but less so with
other relationships. For many-to-one relationships, for example if many people live on the
same address, this will result in wasted space as data is represented redundantly. A better
way to achieve this is to use a table describing the relationship in the same way ordinary
relational databases handles this. Thus, to represent this relationship we need three groups
of arrays, one group for each of the two types as well as a group with two arrays for the
association. The latter group contains two arrays with the indices of related Person and
Address entities.

Storing type members separately from its parent type impacts the database design in a
number of ways. When you access a member of a child member, for example the City
member from Table 3.2, the schema cannot map directly to a data array as the index of the
Person entity does not match the index in the Address member arrays. Instead it must first
look up the member in a translation table which translates the index if a relation is found
as illustrated in Table 3.3.

Member name Index Transformation Data instance
"Person.Name" i⇒ i char[i]
"Person.Age" i⇒ i int[i]
"Person.Address.City" relation[i]⇒ j char[j]
"Person.Address.Street" relation[i]⇒ j char[j]

Table 3.3: Schema for mapping strings to data by transforming the array index to match-
ing relation arrays using a translation table.

Another result of this storage scheme is that it becomes possible to sort each of the entities
on a member independently as a means to achieve a better data locality and, thereby, be
able to better take advantage of the GPUs parallel memory fetching techniques.

19

Alternative Data Storage Model

As described in Section 3.2, data must be stored linearly in memory to achieve the optimal
memory throughput, but only for the size of the data being accessed by a given warp. It
is possible to create a data structure which chains a number of linearly allocated blocks
together, using the same principles as for linked lists.

If all the data in a given database column is stored sequentially in an array, deletions can
fragment the data, which reduces memory throughput, and it is expensive to reclaim the
memory. However, if the chained data structure is used, the data can be compacted by
merging or deleting chain blocks. With the array structure it is necessary to scan the entire
array, reallocate space enough for the entire set of data, and copy the data to the new array.
An additional benefit with the chained structure is that it also becomes cheaper to maintain
sorted arrays, due to the reduced cost of performing deletions and insertions.

The drawback of the chained structure is that it introduces a performance overhead as it
has to follow references to find the proper blocks, an operation for which the GPU is not
able to use coalesced memory access. In other words, the array structure is ideal if the size
of the data set is static and the chained structure is better for more dynamic data sets.

Based on the use case described in Section 2.3, we focus on the simpler array structure, but
keep in mind the possibilities for users to specify the storage format they prefer.

3.4.4 Index Manager

Interface function Return value
CreateIndex(table, type) void
UpdateIndex(table) void
DeleteIndex(table) void

The index manager handles the creation and maintenance of indices on the database tables.

Much work has been done in the area of database indices, both for disk- and memory
resident databases. This includes arrays, B–trees, B+–trees, hashes, T–trees, CSS–trees [24,
25] and CSB+–trees [26]. For this project, the CSS–tree is of particular interest as it has
previously been used to implement a parallel index on the GPU [14].

In this section, we describe a selection of possible data structures to be used for indexing.
It is not a complete list of all alternatives, only including the ones likely to perform well.
Binary trees are omitted, for example, as the small node size would cause low performance
due to poor data locality.

20

Index Structures

A number of criteria are interesting when determining which data structure to use for
indexing.

Time Complexity According to our requirements specified in Section 3.3, the index struc-
ture should primarily facilitate fast searching, but should still handle insertions and
deletions reasonably well.

Space Utilization It is preferable to have as little space overhead as possible for two rea-
sons. The GPU has a limited amount of available memory compared to MMDBs and
DRDBs, so a smaller index means more room for data. Space overhead for pointers
also leads to a performance decrease as less actual data can be retrieved in a single
coalesced memory access.

GPU Mapping It is also important how well the index structure maps to the GPU hard-
ware. This means utilizing optimization techniques available on the GPU.

Resizing a data structure to accommodate inserts and deletes is problematic on the GPU as
memory cannot dynamically be allocated within a kernel. A way of dealing with this is to
assign much more memory than needed and free surplus memory. However, as compar-
atively little memory is available on GPUs, a better way is to assign more memory blocks
and distribute the data structure over these, using pointers as references. This works quite
well on structures such as trees and hashes, but less so on structures that rely on arrays
such as CSS–trees as this compromises the beneficial memory access pattern of arrays.

Arrays can be handled by maintaining a copy of the structure in main memory and copy
this to the GPU when it is modified.

Array An array is a very space–efficient data structure as there is no space overhead
for storing pointers. Deleting is quite expensive as the array must be rebuilt to prevent
fragmentation, so arrays are most useful in situations where the DBMS is primarily used
for querying existing data. Another problem is with searching the array. If the array is too
large to fit into one coalesced memory read and binary search is used, memory bandwidth
utilization is very low as only one value per coalesced read is used. Linear searching of the
array has better memory bandwidth utilization, but has poor time complexity.

Chained Hashing Many types of hashing exist beside Chained Hashing (CH), but it is
generally more efficient for indexing than, e.g., linear hashing [24]. One way of imple-
menting CH on a GPU is to adjust the bucket size so that it fits well with coalesced access.
While this requires a potentially large number of buckets, and thus some space overhead,

21

it provides a very fast way of searching. However, an uneven distribution of data across
buckets would decrease performance, and there is no efficient way of doing range queries
using a hash index. This requires a secondary index to be maintained.

T–Tree T–trees have been proposed as an improved index structure for MMDBs [24]. A
T–tree is a balanced, binary tree where each node contains a number of sorted elements
and two pointers to the node’s left and right child. Searching is done by starting in the
root node and checking if the value is within the node. If the value is less than the left–
most (smallest) element in the node, go to the left child, and vice versa for the right child,
and repeat until the value is found. The primary problem with T–trees is that it is a struc-
ture which maps quite poorly to GPU hardware as it is not a “linear” structure such as
arrays. Also, if the size of each node corresponds to a coalesced read, memory utilization
is quite poor as each node not containing the requested value only has two interesting
nodes; namely the left– and right–most nodes. Node utilization is naturally higher in case
of ranged queries.

B+–Tree B+–trees are of more interest to us than B–trees. There are two reasons for this.
Firstly, B+–trees perform better than B–trees when performing range queries due to the
pointers from leaf node to leaf node in B+–trees. As the GPU is massively parallel, search-
ing for single elements in the database is likely not the common use case. Secondly, a B–tree
has more space overhead than B+–trees as leaf nodes in B–trees contain null pointers. As
a high percentage of nodes in a B–tree are leaf nodes, the overhead becomes increasingly
substantial. Regarding mapping a B+–tree to GPU memory, the size of each node would
ideally correspond to a coalesced read.

CSS–Tree A CSS–tree is a modified, cache sensitive B+–tree, which is a two–part array
consisting of a directory structure and a sorted array. The directory is essentially a balanced
search tree stored as an array. One particular advantage of this is that the tree does not have
to store pointers to nodes. Traversal can be done by performing arithmetic operations on
array offsets, which makes CSS–trees very space efficient. The specifics on this is explained
later in this section.

Figure 3.2 shows an example of a 5–ary CSS–tree with four keys per node. The internal
nodes (i.e., nodes 0–15) contain keys for navigating to the correct leaf nodes. The leaf
nodes (i.e., nodes 16–80) contain the values of the original, sorted array a_data.

Figure 3.3 shows the array representation of the CSS–tree from Figure 3.2 and the array
a_data from which the tree is built. Each element in array a_data represents four index
values in order to make the mapping between a_data and the CSS–tree nodes easier to vi-
sualize, i.e., the 0th element in a_data contains index values 0–3. Notice that the elements
50–64 in a_data correspond to nodes 16–30 in the tree. This is necessary as CSS–trees store

22

1

6-10 11-15 26-3016-20 21-25

2 3 4 5

0

31-55 56-80

Figure 3.2: Example of a 5–ary CSS–tree. Each number represents a node.

8 03 11 6 3 01 51 40 1

I n t e r n a l n o d e s L e a f n o d e s

5 04 90 1 6 4

I I

I I

I

I

C S S t r e e

S o r t e d a r r a y a _ d a t a

Figure 3.3: A CSS–tree represented as an array.

nodes from left to right, level by level, meaning that nodes 31–80 are read before 16–30. To
preserve key order, a_data must be divided.

Every node in the CSS–tree contains m keys and has m+1 children. Therefore, the children
of a node b are numbered as the interval described in Equation 3.1.

b(m + 1) + 1 to b(m + 1) + (m + 1)

(3.1)

and the array element at the ith index position is located in node number b i
mc. As a re-

sult, the location of the keys in the children of the node containing key i are calculated by
Equation 3.2.

23

7

22

30

3

3 5 72 12 13 16 19

13 19 25 33

20 22 24 25 27 30 31 33 36 39

Figure 3.4: Example of a CSB+–Tree of order 1.

((m + 1) · b i
mc+ 1) ·m to ((m + 1) · b i

mc+ m + 1) ·m

(3.2)

As an example, we use the tree from Figure 3.2. We start in key eight which is located in
node two. Using Equation 3.2, the keys in the child nodes (11–15) are then the range from
((4 + 1) · 2 + 1) · 4 to ((4 + 1) · 2 + 4 + 1) · 4, i.e., 44 to 60. b44

4 c = 11 and b60
4 c = 15, which

verifies that the correct keys are found.

While CSS–trees facilitate quick searching, insertions and deletions pose a bigger issue as
described in the introduction to this section. However, while incrementally updating a
CSS–tree is not possible, it is relatively cheap to rebuild it [25].

CSB+–Tree CSB+–Trees are a mix of B+ and CSS trees, where the goal is to retain the
search speed of CSS-trees as much as possible, while better facilitating incremental updates
similar to B+ trees. This is done by introducing pointers, but the number of pointers is kept
to a minimum in order to achieve as good memory utilization as possible [26].

Figure 3.4 shows a CSB+–tree of order 1. Each dashed box represents a node group, and the
arrows represent pointers. Node groups ensure that sibling nodes are stored contiguously
in memory. In the example shown in Figure 3.4, a node group can contain at most three
nodes.

Insertion and searching is similar to B+–trees. If a leaf node cannot contain the new node to
be inserted, it is split in two and the tree is updated as with B+–trees. The major difference
is that the old node group of size s is deallocated and a new group of size s+1 is allocated,
where s is the number of nodes in the group.

CSB+–trees map quite well to GPU memory as sibling nodes are stored contiguously in
node groups. The extra space for nodes in the groups means that new memory does not
have to be allocated to the index as often as, e.g., B+–trees.

24

Choise of Index Structure The choice of index boils down to two primary candidates:
CSS– and CSB+–trees. CSS–trees have the advantage of faster searching and less space
overhead [26], while CSB+–trees facilitate better incremental updating. As the DBMS is
intended to be used in an environment dominated by searches and operations on existing
data, incremental updates is less of a concern compared to fast execution. Because of this,
we choose CSS–trees as the index structure for the DBMS.

3.4.5 Kernel Library

Interface function Return value
PerformOperation(operation, table, index, output table) void

The kernel library contains the CUDA kernels which are used to perform the database
operations supported by the DBMS.

As mentioned in Section 2.4, using a set of computation primitives for parallel operations
is a good basis for creating a flexible system capable of a wide range of operations on data
in parallel. We base our work on the primitives and their definitions presented in [9] which
are:

“ Map

“ Scatter

“ Gather

“ Prefix scan

“ Split

“ Sort

These can then be used to construct a set of operations covering standard database op-
erations as well as mathematical operations. As mentioned in Section 3.3, the database
operations should include the basic operations in relational calculus and the mathematical
operations should be based on the math functions in .NET. Implementing equivalent ver-
sions for all the common static functions defined on the Math type in .NET would allow
us to translate such function calls to our own version with our query provider.

25

3.5 Design Decisions

This section summarizes the design decisions made throughout Section 3.4. Most of the
choices provide specific requirements for the implementation though a couple of them
require more experience to make a final decision.

“ We use a custom LINQ provider as query provider for the DBMS.

“ SQL is used to represent queries internally in the DBMS. We can optionally choose
to expand the SQL representation if certain GPGPU operations can be better repre-
sented by an extended syntax.

“ The execution of queries are managed from the host, though if it is feasible for all
parts of a given query to be executed on the device, we do so.

“ We store the data of tables in a collection of arrays, where each field in each entity
matches an array. The relation between entities is described by pairs of arrays which
match indices from the related entities.

“ We use CSS-trees as indices to the tables, which are stored on the device.

“ We use computation primitives as the basis for database operations. The opera-
tions include the basic operations from relational calculus as well as a representative
amount of math operations.

Combined with the requirements from Section 3.3, these make up the high-level specifica-
tion for the DBMS implementation described in Chapter 4.

26

Chapter 4

Implementation

In this chapter we describe the implementation of the major components of the DBMS.
For how the DBMS is represented on the GPU, we provide an example of the life cycle of
a database table. This covers the major obstacles and details regarding each of the more
commonly used database operations.

The main purpose of this chapter is to cover the primary obstacles people would have to
solve when implementing a usable GPU DBMS and provide our suggestions for how this
can be achieved. The aim is for this to provide a solid base from which subsequent research
into GPU DBMSs can go.

This chapter reflects what we have actually implemented. For a discussion of the features
the DBMS lacks and other potential future improvements, see Chapter 6.

The DBMS is written in C# 3.0, using the CUDA.NET library version 2.1 for interfacing
with the GPU, and CUDA 2.1 has been used to implement the GPU code itself. In Ap-
pendix B, we give a brief overview of the source code of the DBMS which is located on the
enclosed CD.

4.1 LINQ Query Provider

Since the introduction of C# 3.0, LINQ, or Language Integrated Query, has provided a
generic, type–safe query model to retrieve data out of arbitrary sources. The benefit of
LINQ is that you can query sources from within your C# code without losing the benefits
of your development environment such as Intellisense and type checking. By default,
LINQ has implementations, or query providers, for a couple of sources including XML

27

documents and relational databases as well as ordinary object collections. To query other
sources it becomes necessary to implement custom query providers yourself, and this is
how we provide access to our DBMS.

The details of implementing a query provider can be quite technical and complex, but
the main principle is simple; as the query is evaluated, an internal representation of the
query is built in a format which can be used to extract data from the target source. The
most obvious example of this is, perhaps, the creation of a SQL command which can be
understood by a DBMS.

The act of creating the query does not result in its immediate evaluation, just a description
of the query to be executed, in the form of an IQueryable object. This means that the
query uses lazy evaluation and can thus be further modified before execution. Only when
you turn the result into an IEnumerable collection is the query executed, such as when
using a foreach loop on the query. Listing 4.1 shows an example of a LINQ query and its
usage.

1 // Query gets constructed
2 var query = from person in people
3 where person.Name == John
4 select person;
5
6 // The query is modified to a more narrow result-set
7 query = from person in query
8 where person.Age >= 18
9 select person.Name;

10
11 // The query is executed, yielding the resulting objects
12 foreach(var name in query)
13 {
14 Console.Out.Write(name);
15 }

Listing 4.1: LINQ query examples in C#.

To implement our own query provider we implement the IQueryable and
QueryProvider interfaces, of which the latter is where the main work is performed. The
main job of this class is to transform LINQ methods into the desired format. When a LINQ
query is evaluated, it is first turned into a number of ordinary method calls as the LINQ
syntax is merely syntactic sugar. It is not necessary to implement any specific interfaces
for a class to work with LINQ, the compiler just looks at the queried object and determines
if it has the proper methods defined. This means that if an object defines methods such as
Select, SelectMany and Where, it can participate in a LINQ query.

The series of method calls which the query gets turned into are represented as an expres-
sion tree describing its structure and components. For example, when you write where
person.Name == "John" in the LINQ statement, the resulting IQueryable object will
contain an Expression object with a BinaryExpression object inside.

28

When the query is executed, the Expression object is parsed and turned into the rep-
resentation which the data source can understand. This process is the complex part of
implementing a LINQ provider and it requires you to consider all the different ways your
data source can be queried, including any edge cases there might be. You can include as
little or as much intelligence in how this process is handled as needed, depending on how
powerful and complete a system you need.

Instead of starting from scratch, we adapt an existing solution to our specific needs. IQ-
toolkit is the result of a series of tutorials on the subject of implementing your own LINQ
provider and it is designed to be similar to LINQ–to–SQL[27]. While the toolkit is not pro-
duction quality, it is a good base for building a query provider for a database. The version
of the toolkit we use is from the 13th tutorial, so any subsequent updates to the tutorial are
not included in our version.

In essence, our query provider does three things for us. The primary function is that it
translates the expression into a string which our internal system can consume. This string
must include a full description of the work to be performed on the GPU. To this effect, the
second function is to capture method calls which we are able to perform on the GPU and
include them in this representation. Among the most obvious choices are the functions
defined on System.Math. The final feature, which the query provider must support, is to
create a projection expression which can be compiled into a function used for instantiating
the resulting objects and does all the work which is not supported by the DBMS, such as
unsupported method calls.

One of the most extensive modifications we have made to the toolkit was for transforming
compatible method calls into textual representations — a process we call internalizing. For
this purpose we created the class MethodInternalizer which adds a final pass to the
query representation produced by the toolkit. A lot of the work done by this class is com-
plicated by the fact that Expression objects are immutable and if you want to modify
one, you have to construct a whole new expression tree with the modification.

The job of turning an expression into a query string is done by a visitor class, but before this
step, the toolkit removes all parts of the expression not supported by the DBMS and adds
them to the projection expression. What the internalizer does is to reverse this process for
each function call supported by our DBMS by visiting each node of the projection expres-
sion, producing a new version without the method calls being internalized. These method
calls are then added to a new expression which replaces the database query expression.

Listing 4.2 shows how the expression visitor replaces an internalizable method with a col-
umn declaration. The ColumnDeclaration and TableAlias classes are used by the
toolkit to keep track of the names of tables and to which table a column is associated. If
the visited method is not internalizable each argument is visited and a new MethodCall-
Expression object is returned.

1 public Expression VisitMethodCall(MethodCallExpression methodCall)
2 {

29

3 if (IsMethodInternalizable(methodCall))
4 {
5 internalizedMembers = true;
6 var columnDeclaration = new ColumnDeclaration(currentName, methodCall);
7 columnDeclarations.Add(currentName, columnDeclaration);
8
9 TableAlias alias = TableAlias.Aliases[TableAlias.Aliases.Count - 1];

10 return new ColumnExpression(methodCall.Type, tableAlias, currentName);
11 }
12 else
13 {
14 List<Expression> args = new List<Expression>();
15 foreach (var arg in (methodCall).Arguments)
16 {
17 args.Add(Visit(arg));
18 }
19 return Expression.Call(methodCall.Method, args.ToArray());
20 }
21 }

Listing 4.2: Internalizing a method call.

Constructing an intermediary string representation of each query is obviously not the most
efficient way to execute a query as it requires the DBMS to re–parse the query. However,
there are a lot of different cases and conditions when parsing a LINQ query so for sim-
plicity we rely on IQtoolkit to produce SQL output modified to fit our needs. This also
provides an added benefit that in many cases it simply becomes a matter of checking the
correctness of the query string to debug a query.

4.2 Table Lifecycle

In this section we describe the implementation of common database use patterns through-
out the life cycle of a table. Each pattern is introduced by the LINQ query which invokes
the behavior from our DBMS. For people with a background in functional programming,
the concepts of select, aggregate and where are equivalent to the concepts of map, reduce and
filter, respectively.

Before describing the use patterns for the DBMS, we give a brief overview of how queries
are executed in general. In the following sections, we use this as a basis for explaining how
the different cases are executed.

The central module for handling queries is the QueryManager class. It handles the pars-
ing and execution of query strings as shown in Listing 4.3.

1 public QueryResult ExecuteQuery(string queryText)
2 {

30

3 IEnumerable<string> tokens = queryText.Split(new string[]{" ", Environment.
NewLine}, StringSplitOptions.RemoveEmptyEntries);

4 GpuQuery query = new GpuQuery();
5 ParseQueryString(tokens.ElementAt(0), tokens.Skip(1), query);
6 QueryResult result = ExecuteQuery(query);
7 memoryManager.ClearTemporaryTables();
8 return result;
9 }

Listing 4.3: The steps involved in executing a query.

The first step in the process of executing a query is to parse the string representation and
turn it into something the DBMS can work with. This is implemented in a functional style,
by parsing the command at the head of a stream of command tokens, such as SELECT
and WHERE. Parsing each command also removes the parameters for the command from
the stream, thereby leaving the next command at the head. During the process of parsing
the different commands, a GpuQuery object is passed around and annotated with all the
necessary information for executing the query. Listing 4.4 shows how this class is imple-
mented to give an idea of how a query is represented.

1 class GpuQuery
2 {
3 public Dictionary<string,ITable> From { get; set; }
4 public string Where { get; set; }
5 public List<string> Select { get; set; }
6 public GpuQuery ChainedQuery { get; set; }
7 public int Top { get; set; }
8 public int Skip { get; set; }
9 public bool IsDistinct { get; set; }

10
11 public GpuQuery()
12 {
13 From = new Dictionary<string, ITable>();
14 Select = new List<string>();
15 Top = 0;
16 }
17 }

Listing 4.4: The GpuQuery class.

4.2.1 Create Table

Listing 4.5 shows how to create a new database instance and how to create a table on it.
The Table<T> class implements the IQueryable interface and can therefore be queried
for data using LINQ. The type argument T is the type of objects which are stored in the
table as well as the type of objects which can be retrieved from it.

1 var GpgpuDatabase db = new GpgpuDatabase(Console.Out);
2 Table<Vector> vectorTable = db.CreateTable<Vector>("vectors");

Listing 4.5: How to create a new table in the GPU DBMS.

31

Once the table has been created, it is possible to add an index. This is done by calling the
CreateIndex method as shown in Listing 4.6, where "X" is the column to index.

1 vectorTable.CreateIndex("X");

Listing 4.6: Adding an index to the vectorTable table

The internal representation of the table is a collection of columns. Each column is essen-
tially a data–parallel array containing all values of a given member on the table type. In
isolation, the Column class is very similar to the array types in other GPU libraries such
as the Accelerator library mentioned in Section 2.4. They encapsulate the fact that data is
stored on the GPU and allows for a number of operations to be performed on the elements
in the array, examples of which are described in the following sections.

4.2.2 Insertion

Listing 4.7 shows the process of inserting values into a table, a process which mirrors lists
or similar collections. Adding new data to a table has been implemented naively, for sake
of simplicity, such that each call to the Insert method triggers an array allocation on the
GPU for each member in the type along with a set of data transfers.

1 vectorTable.Insert(new Vector[]
2 {
3 new Vector(){ X = 3, Y = 9, Z = 9 },
4 new Vector(){ X = 3, Y = 0, Z = 0 },
5 new Vector(){ X = 5, Y = 9, Z = 9 },
6 new Vector(){ X = 3, Y = 0, Z = 4 }
7 });

Listing 4.7: How to insert rows into a table.

4.2.3 Selection

Listing 4.8 shows the most simple way to retrieve data from a table, selecting each record.
Listing 4.9 shows the internal textual representation of the query. It illustrates how a selec-
tion is mapped to columns on tables.

1 var vectors = from v in vectorTable
2 select v;

Listing 4.8: How to perform a simple selection on a table.

1 SELECT t0.X, t0.Y, t0.Z
2 FROM vectors AS t0

Listing 4.9: The internal representation of a select query.

32

As described in Section 4.1, the resulting query object must, in addition to the query string,
contain the logic to be performed on the host after the query has been executed. In this case,
the logic is a function which instantiates a new Vector object with the values X, Y and Z.

By default, the IQtoolkit would try to apply a value to each property of the object, but
this was changed such that it only applies to properties which are not read–only. For
the Vector class, we added a Length property which can be derived from the vector
coordinates instead of being stored as a value. Other such changes can be made to give
a better control over how a type is treated in the DBMS such as custom attributes for
annotating members and properties.

For selections, the GpuQuery object is annotated with a number of strings, one for each
member in the output type. Listing 4.10 shows how such a string can look.

1 ADD(t0.X, POW(t0.X, 2))

Listing 4.10: A selection string.

As shown, each operation on the selection is represented by a function name. These func-
tions are recursively evaluated, with each evaluation resulting in a temporary column.
Taking the ADD function as an example, this would result in a binary function being per-
formed as shown in Listing 4.11.

1 case "ADD":
2 pair = GetBinaryParameters(parameters);
3 return BinaryOperation.ExecuteBinaryFunction(
4 BinaryFunction.Add,
5 ExecuteSelect(pair.A, from),
6 ExecuteSelect(pair.B, from)
7);

Listing 4.11: The addition of two columns,

The static method BinaryOperation.ExecuteBinaryFunction handles the job of in-
voking the proper kernel on the GPU as shown in Listing 4.12. The Execution class is
a helper method which wraps the process of invoking a kernel using CUDA.NET. Once
the kernel has been executed, the result is wrapped in a Column object and returned. If
either of the two input columns are temporary they are disposed which makes sure that
temporary data has as short a lifespan as possible but it still requires GPU memory of sev-
eral times the size of the original data. For large tables, this would necessitate a significant
amount of GPU memory reserved for temporary data.

1 public static Column ExecuteBinaryFunction(BinaryFunction function, Column a,
Column b)

2 {
3 //Select function name (op) based on function and column types
4
5 Execution exec = new Execution("math", op);
6 int size = Math.Max(a.Size, b.Size);
7 if (a.IsConstant) exec.AddParameterValue(float.Parse(a.ConstantValue));

33

8 else exec.AddParameterPointer(a.Pointer, size);
9 if (b.IsConstant) exec.AddParameterValue(float.Parse(b.ConstantValue));

10 else exec.AddParameterPointer(b.Pointer, size);
11
12 CUdeviceptr result = exec.AllocAndAddParameterPointer<float>(size);
13 exec.AddParameterValue((uint)size);
14
15 exec.Execute();
16
17 FreeTemporaryColumns(a, b);
18 return new Column(typeof(float), result, size);
19 }

Listing 4.12: The execution of a kernel from C#.

4.2.4 Database Selection Functions

In addition to the relational calculus which might be seen as the main way to interact with a
database, the DBMS is also designed to be able to perform a number of common functions
on the GPU. Listing 4.13 shows how math functions can be used in a query where these
functions are then executed on the GPU. Both ordinary math operators such as addition
and functions such as square root are turned into GPU versions. The math functions which
the DBMS currently support are the standard operators of addition, subtraction, multipli-
cation and division as well as the functions for square root and exponentiation. Adding
other functions where each value can be calculated on its own thread and for which the
CUDA library contains a matching function is trivial. For a complete list of such CUDA
functions, see [1].

1 var query = from v in vectorTable
2 let length = (float)Math.Sqrt(Math.Pow(v.X, 2) + Math.Pow(v.Y, 2) +

Math.Pow(v.Z, 2))
3 select new Vector() { X = v.X / 2, Y = (float)Math.Pow(2, v.Y), Z =

length };

Listing 4.13: A database query using on–device execution of math functions.

Listing 4.14 shows the textual representation of the query in Listing 4.13 after the math
functions have been internalized as described in Section 4.1.

1 SELECT DIV(t0.X,2), POWER(2,t0.Y), SQRT(ADD(ADD(POWER(t0.X,2), POWER(t0.Y,2)),
POWER(t0.Z,2)))

2 FROM vectors AS t0

Listing 4.14: The textual representation of a database query, including several math
operations.

Another type of function on collections is aggregations such as sum and average. These
operations already exist as extension methods for IEnumerable objects, and by extension,

34

IQueryable objects. They result in a single value and can be used as shown in Listing
4.15. The aggregations currently supported by the DBMS are min, max, average and sum.

1 var sumX = vectorTable.Sum(vec => vec.X);
2 var minX = vectorTable.Min(vec => vec.X);
3 var maxX = vectorTable.Max(vec => vec.X);
4 var avgX = vectorTable.Average(vec => vec.X);

Listing 4.15: Constructing a query using aggregates.

In contrast to many of the computations we perform on table columns, aggregate functions
do not have a single operation on each column element. Aggregate functions collect a
result from all the elements in the column, gathering the results using some combination
function such as addition for the summation aggregation. This pattern needs intermediary
results which must be read by different threads and as such has higher requirements for
synchronization and optimization.

Listing 4.16 shows the aggregation kernel. The parameter func signifies which aggrega-
tion function to combine the result with. The apply_func method switches on this value
and invokes the proper aggregation function. We have used this principle of developing
generic versions of different kernels to a high degree, in order to simplify the development
of CUDA code.

1 __device__ void
2 aggregate(float *g_idata, float *g_odata, unsigned int n, unsigned int func)
3 {
4 __shared__ float sdata[512];
5 unsigned int tid = blockIdx.y * gridDim.x * blockDim.x * blockDim.y;
6 tid += blockIdx.x * blockDim.x * blockDim.y + threadIdx.x + threadIdx.y *

blockDim.x;
7
8 if(tid < n)
9 sdata[tid] = g_idata[tid];

10 __syncthreads();
11
12 for (unsigned int s = blockDim.x; s > 32; s >>= 1)
13 {
14 if (tid < s && tid + s < n)
15 {
16 sdata[tid] = apply_func(sdata[tid], sdata[tid + s], func);
17 }
18 __syncthreads();
19 }
20
21 if (tid < 32)
22 {
23 sdata[tid] += sdata[tid + 32];
24 sdata[tid] += sdata[tid + 16];
25 sdata[tid] += sdata[tid + 8];
26 sdata[tid] += sdata[tid + 4];
27 sdata[tid] += sdata[tid + 2];
28 sdata[tid] += sdata[tid + 1];

35

29 }
30
31 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
32 }

Listing 4.16: Aggregation CUDA kernel.

Line 4 in Listing 4.16 shows the allocation of an array of per–block shared memory. This
provides a fast temporary storage in which to aggregate the values. For each iteration of
the for loop in the algorithm, the two halves of the remaining data set are aggregated into
the first half, each thread working on two values. Aggregations are not perfectly suited for
GPU execution as each iteration of the algorithm reduces the amount of active threads in
half. This illustrates a case where an algorithm differs particularly between CPU and GPU
implementations as the aggregation algorithm is linear on the CPU but has a complexity
of O(n log(N)) on the GPU.

Since more than one thread accesses the same indices in the shared memory, we have to
synchronize between each iteration. Synchronizing threads on a GPU is relatively cheap
compared to synchronizing on the CPU as the barrier is implemented in hardware.

Note that the implementation of the aggregation function in Listing 4.16 is not optimized
as much as possible. NVIDIA has used the sum reduction as a case study in how you can
optimize different aspects of CUDA programming through a series of seven steps[28]. As
we are not using C++, we cannot take advantage of the template–based optimizations as
they are resolved at compile time of the kernels but it illustrates the type of considerations
we would have to make for optimizing different types of kernels.

An optimization we have implemented is to take advantage of the fact that if no more than
a warp, or 32 threads, are executing in a block, they do so in lock–step. This means that
we do not have to synchronize between iterations in lines 21 to 29. Optimizations such
as these can be difficult to identify and reduce the readability of the code, and it is a good
illustration of why many developers would prefer working at a higher level of abstraction,
such as the one provided by our DBMS, even at the cost of some performance.

4.2.5 Where

Listing 4.17 shows how to construct a query which filters the results.
1 var vectors = from v in vectorTable
2 where v.X == 1 && v.Y < 6
3 select v;

Listing 4.17: Filtering the result of a query using a ‘where’ clause.

The principle when filtering the result is similar to selections in that a number of functions
are evaluated, only the values are now boolean instead of numeric. Listing 4.18 shows

36

how the query from Listing 4.17 looks to the DBMS.

1 SELECT t0.X, t0.Y, t0.Z
2 FROM vectors AS t0
3 WHERE AND(EQ(t0.X,1),LT(t0.Y,6))

Listing 4.18: Internal representation of a filtering query.

When evaluating the last line of the query, the same recursive function evaluator men-
tioned in Section 4.2.3 is used. The result of each step in the calculations is still a column,
only now containing boolean values. The final result of the filter clause is a column con-
taining 1’s for each record matching the filter and 0’s for the records which fell outside of
the filter.

If the X–column is indexed in the example in Listing 4.17, the column is searched using a
modified version of the search algorithm in [25] instead of applying a boolean function to
each element. This returns a list of 1’s and 0’s just as the non–indexed comparison of the
Y–values. Section 4.2.5 describes the index in greater detail.

The final step in applying the filter is to transform the source tables into a version only
containing the matched records. As all the table data is stored on the GPU, this is done
through a number of kernels. Listing 4.19 shows the pseudo code for this procedure.

1 columnOfIndices = Evaluate(filterExpression)
2 numberOfMatches = columnOfIndices.Sum()
3 condensedIndexArray = allocateGpuMemory(numberOfMatches)
4 condenseIndexArray(columnOfIndices, condensedIndexArray)
5 foreach column in query.From
6 {
7 columns.Add(column.Gather(condensedIndexArray))
8 }
9 query.From = new Table(columns)

Listing 4.19: Pseudo code for generating filtered tables.

The main work in this process is to construct an array containing the indices into a table
which matches the filter. To illustrate, we use the example column shown in Figure 4.1
(a) with the filter n > 2. After evaluating the filter expression in the first line of Listing
4.19, we have a column with 1’s and 0’s, representing matches as shown in column (b).
In line 2, we use the sum aggregate function on this column to determine the number of
matching rows, a value which is used to allocate space to hold an index array with the
affected indices and which is six for our example.

The purpose of line 4 is to populate the newly allocated array with the indices of the rows
matched by the predicate using a two–step process. First, the prefix sum of the result of the
filter operation, i.e. Figure 4.2 (a), is calculated, resulting in column (b). Second, a kernel is
invoked to turn this column (b) into a column of matching index values, filling the column
allocated in line 3. The resulting column, (c), is created by the kernel shown in Listing 4.20.

37

1

9

4

2

7

3

1

3

0

1

1

0

1

1

0

1

(a) (b)

Figure 4.1: The input column (a), filtered with the predicate n > 2 in (b).

2

3

5

6

0

1

2

3

3

4

5

5

1

(b) (c)

0

1

1

0

1

1

0

1

(a)

Figure 4.2: The filter result (a), with prefix sum applied in (b) and an index column in (c).

The kernel is executed with a number of threads equal to the original number of columns,
i.e. eight in this example, and each thread looks at one value and the value before it in
column (b). If the values are different it means that there was a match and the thread has
to write a value to the output column. The value in (b) minus one equals the index in
column (c) to write to and the thread id is the value to write.

1 extern "C"
2 __global__ void
3 definePredicateIndexArray(float *predicatesPS, float *g_o_indices, unsigned int

n)
4 {
5 unsigned int tid = blockIdx.y * gridDim.x * blockDim.x * blockDim.y;
6 tid += blockIdx.x * blockDim.x * blockDim.y + threadIdx.x + threadIdx.y *

blockDim.x;
7
8 if (tid < n)
9 {

10 int curr = (int)predicatesPS[tid];
11 int prev = (int)predicatesPS[tid - 1];
12 if (tid == 0) prev = 0;
13 if (curr > prev) g_o_indices[curr - 1] = tid;

38

1

9

4

2

7

3

1

3

2

3

5

6

0

9

4

7

3

3

(a) (b) (c)

Figure 4.3: Using an array of indices (b) to gather certain values from a large column (a)
into a smaller coulmn (c).

14 }
15 }

Listing 4.20: A kernel for finding the index values of filter matches from an prefix sum
column.

Given that we now have a list of the indices at which matches where found, all that is left
is to create a temporary table, where the matches are copied to. In lines 5 to 8 in Listing
4.19, a new column is created for the temporary table by applying the gather function to
the original column using the index column we have generated. Figure 4.3 shows how the
index values in column (b) are used to copy selected values from the original column (a)
into the new column (c). Listing 4.21 shows the kernel used to apply the gather operation.

1 extern "C"
2 __global__ void
3 gather(float *g_idata, float *g_indices, float *g_odata, unsigned int n)
4 {
5 unsigned int tid = blockIdx.y * gridDim.x * blockDim.x * blockDim.y;
6 tid += blockIdx.x * blockDim.x * blockDim.y + threadIdx.x + threadIdx.y *

blockDim.x;
7
8 if(tid < n)
9 {

10 int idx = (float)g_indices[tid];
11 g_odata[tid] = g_idata[idx];
12 }
13 }

Listing 4.21: The gather parallel primitive.

39

Index

The size of each node in the CSS–tree is set to 512 values, the same size os the block size
which searches the tree. This allows warps to optimize their memory throughput using
coalesced accesses and share data quickly with shared memory.

When a block searches a node, each thread looks at the element matching its id and the
adjacent one to determine where to navigate next in the tree. Using the shared memory,
the threads broadcasts the results and takes the left–most match. This process continues
until the leaf nodes are reached. Depending on the type of search, the algorithm moves
right or left searching for the bounds of the matches. The algorithm makes sure that the
left–most value is the one found and if the filter function is equals, the thread block shifts
to the right until the filter is no longer true. Similarly for the other comparison operators,
the block has to find the value which ends the range of matches.

The above process is performed by a single block which does not provide an optimal use
of the hardware. However, the implementation allows several blocks to be executed si-
multaneously by searching for different values. This allows the index to evaluate several
filter arguments at once.

4.2.6 Deletions

Methods for deleting tables and rows are not included in the LINQ interface and as such
are just ordinary functions on the Table object. Save for the deletion of a subset of table
rows, the operations are not complex. Deleting a table requires it to be unregistered from
the MemoryManager as well as emptying each of its columns. Deleting all the rows in a
table just requires the pointer to the GPU memory to be freed.

We have not implemented the deletion of individual rows but have provided the method
signature as shown in Listing 4.22 which illustrates how selective deletions would occur.
Implementing this function would be similar to evaluating a ‘where’ clause to identify the
indices of rows matching a predicate.

1 public void Remove(Predicate<T> where)
2 {
3 //Evaluate query
4 }

Listing 4.22: The signature for table row deletions.

40

Chapter 5

Performance
Measuring

In this chapter we describe the tests performed on the DBMS. We execute a series of oper-
ations on our DBMS as well as a Microsoft SQL Server 2008 database. We then compare
the results and briefly describe the outcome of the tests.

5.1 Method

We test the performance of our DBMS to provide an indication of how fast it is for per-
forming common tasks, with a focus on the its primary use cases. This includes inserting
large quantities of data in bulk, performing aggregate operations such as sum and aver-
age, as well as searches. Insertions and selections are performed on both indexed and
non–indexed columns to see how this affects performance. We perform the tests on data
of several different sizes to show how performance scales as the database grows. We also
test several complex math operations on the data, testing the different functions supported
by the DBMS. The main purpose of this test is to determine if the DBMS has introduced
overhead or other issues which prevents it from taking full advantage of the computation
power of the GPU.

All tests are performed on a computer with the following specifications.

“ Intel Pentium Dual–Core 2.5GHz with 800MHz FSB

“ 4GB DDR2 400MHz RAM

41

“ Abit I–G31 Motherboard

“ GeForce 8600GTS 256MB

“ Maxtor DiamondMax 500GB SATA 7200RPM Hard Disk Drive (HDD)

The operating system used is Microsoft Windows XP SP3 32bit, so only 3.25GB system
memory is available. The GPU uses the PCI–Express bus to transfer data, which means that
the theoretical bandwidth from system memory to GPU is 4GB/sec. The database is used
out–of–the–box with a single table named ‘Vectors’ which contains an auto–incremented,
unique integer identifier and three attributes of type float. No optimizations have been
made to the database to increase performance. The initial size of the database is set to be
large enough to avoid incremental resizing during the tests.

Each test is performed five times, of which the minimum and maximum results are ex-
cluded, to remove outliers, and the remaining three are used to calculate the average run
time of the test. Execution time of code on the GPU includes any time it takes to transfer
data between the GPU and main memory to provide a more realistic scenario.

Rather than using loops in the code to execute a given method several times, we use an au-
tomated script that runs the test executable a number of times with the proper parameters.
We do this to avoid issues with garbage collection and ensure homogeneous conditions for
each test. Also, after each test is completed, the databases are purged of all data.

5.2 Insertion

The first thing we test is the time it takes for inserting elements into the databases. To do
this, we insert arrays from 50,000 to 500,000 vectors in steps of 50,000. Each vector consists
of three float values. We do this for both our database and the SQL Server database and
compare the time spent. This is done both using indexed and non–indexed data in order
to determine the cost of maintaining the indices.

The results for insertions can be seen on Figures 5.1 and 5.2 for SQL Server and our DBMS
respectively. Timing on the y–axis is measured in milliseconds and the number of elements
on the x–axis is measured in thousands.

We observe that the time to insert a given number of elements into our database is roughly
a factor 100 faster than the SQL Server database. The insertion time scales linearly in both
cases, which matches our expectations as any overhead with a single bulk insertion is
constant or at most linear in the number of values.

It was also expected that insertions into the SQL Server database would be much slower as
the differences in bandwidth to GPU memory and the HDD is substantial. Also, the SQL

42

250000

300000

200000

250000

300000

100000

150000

200000

250000

300000

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

Figure 5.1: The insertion time (y–axis) of n–thousand values (x–axis) into SQL Server.

2000

2500

1500

2000

2500

1000

1500

2000

2500

Non‐Indexed

Indexed

0

500

1000

1500

2000

2500

Non‐Indexed

Indexed

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

Figure 5.2: The insertion time (y–axis) of n–thousand values (x–axis) into our DBMS.

Server database supports functionality such as logging and roll–backs of transactions. This
induces additional overhead compared to our DBMS which does not have similar features.
The reason we have not disabled these features on the SQL Server is that we wish to test
the systems in their most likely configuration rather than setting up some theoretical but
unrealistic scenario.

Included in the test is also insertion while maintaining an index on one of the Columns.
We observe that the cost of building the CSS–tree is indeed very low as suggested in [25].
Maintaining an index on the SQL Server database is also very low–cost, which is substan-
tiated by the tests which show almost no increase in execution time.

To test how expensive incremental insertions are, we insert a total of 250,000 vectors in
batches over 2, 5, and 10 iterations. Appending in the SQL Server database takes roughly
the same amount of time no matter how many times the table size increases. However, we
observe that incrementally appending data to tables using our database takes increasingly
more time as the number of iterations rises as shown in Figure 5.3. In the figure, the x–axis

43

is the number of milliseconds the total insertion took.

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

2 5 10

Figure 5.3: The time in milliseconds to append 250,000 vectors over 2, 5, and 10 iterations.

The reason for the decreasing insertion rate is the design described in Section 3.4.3. Each
time data is added to a table, the old table is copied to a new table with room for the new
data, which is then inserted. As the table grows, more and more data must be copied with
each insertion, which causes the slowdown.

For completeness, we have included the time it takes for SQL Server to delete rows, the
result of which can be seen in Figure 5.4. The figure shows that deletion times are even
longer than insertion times and that there remains a slight overhead in managing the index.
Deletion is near–instant on our DBMS as it involves little more than freeing a the pointers
referencing the GPU arrays with the data. As with insertions, this reflects the fact that the
SQL Server has to erase the data from disk and maintain certain integrity checks.

350000

400000

450000

250000

300000

350000

400000

450000

150000

200000

250000

300000

350000

400000

450000

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

50 100 150 200 250 300 350 400 450 500

Non‐Indexed

Indexed

Figure 5.4: The deletion time (y–axis) of n–thousand values (x–axis) from SQL Server.

Due to the very slow insertion and deletion rate of SQL Server, we expect that there are
ways in which this process can be sped up a great deal, based on the level of data integrity
required.

44

5.3 Selection

This test measures the time it takes for selecting all elements in the databases. To do this,
we select from 50,000 to 500,000 vectors in steps of 50,000. We do this for both our database
and the SQL Server database and compare the time spent.

The result of the test is shown in Figure 5.5 with time spent on the y–axis an the thousands
of values on the x–axis. Compared to SQL Server which scales perfectly linear, our DBMS
suggests a more exponential growth. This result did not match our expectations and could
prove very problematic for the performance of the DBMS.

250

300

350

400

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500

DRDB

GPUDB

Figure 5.5: The selection time in milliseconds (y–axis) of a complete table with n–
thousand values (x–axis).

It is difficult to see from the test whether growth is linear or exponential in our DBMS,
while the SQL Server database is decidedly linear. In order to determine how selections
on our DBMS scales, we perform a second test on larger data sizes. The results of this test
is shown in Figure 5.6.

As the figure shows, the revised test shows that our DBMS indeed grows linearly with the
data size.

Due to problems getting some of our kernels to scale beyond a single block, we have been
unable to perform meaningful tests on selections of specific values. This prevents us from
testing predicate filters properly, with and without indices. However, to get an idea of how
well our index works, we have tested it in isolation. The test measures the time it takes
to select 1,000 elements in the middle of a table containing from 50,000 to 500,000 vectors.
We compare this to the time it takes SQL Server to select 1,000 elements from an indexed
table. The result of the test is shown i Figure 5.7.

The test shows that our index performs well compared to the SQL Server database index,
although it must be repeated that it is not a fair comparison as less work is done by our
index. The main purpose is to determine how it scales. The SQL Server database results

45

2000

2500

1500

2000

2500

1000

1500

2000

2500

GPUDB

0

500

1000

1500

2000

2500

GPUDB

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

GPUDB

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

GPUDB

Figure 5.6: The selection time in milliseconds (y–axis) of a complete table with n–
thousand values (x–axis).

500

600

400

500

600

200

300

400

500

600

DRDB

GPUDB

0

100

200

300

400

500

600

DRDB

GPUDB

0

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

DRDB

GPUDB

0

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

DRDB

GPUDB

Figure 5.7: The selection time in milliseconds (y–axis) of 1,000 indexed elements with
n–thousand values (x–axis).

have a very high variance in time, from test to test. We have been unable to determine
what causes this behavior, but the results still indicate that it scales linearly.

It is more difficult to determine how our index scales as the results are dominated by over-
head from, e.g., kernel invocations. Therefore, we test our index on arrays of size 1,000,000
to 8,000,000 in one million increments. The results of this test are shown in Figure 5.8.

This test shows a linear increase in time as the number of elements increase. The previous
test does not indicate that a direct comparison with the SQL Server database would be
meaningful. Also, as mentioned, the workloads are very different, so any comparison
with this much data would not be realistic.

46

25

30

35

40

0

5

10

15

20

25

30

35

40

1000 2000 3000 4000 5000 6000 7000 8000

GPUDB Index

Figure 5.8: The selection time in milliseconds (y–axis) of 1,000 indexed elements with
n–thousand values (x–axis).

5.4 Math Operations

In this test we execute a complex math operation on arrays of between 50,000 and 500,000
vectors on both databases. The specific type of math operations should not be relevant as
they all reflect the computation power of the processor.

Figure 5.9 shows the result of the test and it is clearly visible that the GPU is highly suited
for this task. This test performs as expected though there could potentially be room for
much higher performance, as other parts of the DBMS might be providing a bottleneck.
The SQL Server generally performs about a factor 4 slower than our DBMS.

1000

1200

1400

800

1000

1200

1400

400

600

800

1000

1200

1400

GPUDB

DRDB

0

200

400

600

800

1000

1200

1400

GPUDB

DRDB

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

GPUDB

DRDB

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

GPUDB

DRDB

Figure 5.9: The calculation time in milliseconds (y–axis) to evaluate n–thousand (x–axis)
math operations.

47

Chapter 6

Future Work

In this chapter we cover a number of features which are important for a DBMS but which
we did not have time to implement. Based on our experiences with the rest of the DBMS,
we discuss how we would go about implementing them and what difficulties there might
be with making it work on the GPU.

6.1 Data Creation and Transfer

For the DBMS to be more useful there are a number of improvements one could make that
would improve the flexibility of interacting with the DBMS. One such case is when you
would like to store the result of a computation in a more permanent manner. Listing 6.1
shows how the generic method ToTable solidifies the result as a new table. Currently, the
only alternative is to store results in objects on the host and then possibly inserting them
into a new table.

1 var q = (from p in people
2 select p.Name).ToTable<string>();

Listing 6.1: Creating a new table from the result of a LINQ query.

Another similar case is that if you know you will no longer need the original input data
for some operation you can write the result of the operation to the source columns. Listing
6.2 shows an example where a table of people is overwritten with new Person instances
with double the age, saving the memory otherwise required for the temporary result.

1 var q = (from p in people
2 select new Person(){ Name = p.Name, Age = p.Age * 2 }).InPlace();

Listing 6.2: Change table in place.

48

The general pattern of the above solutions match existing methods such as ToArray and
ToList so should be familiar to developers. Both the solutions deal with inserting new
data into the database but only insofar as it already contains data. It would also be very
useful to generate data directly on the database to avoid the transfer overhead.

Listing 6.3 shows how we can define streams of numbers. Using these streams we can
construct a table which is instantiated with data from them. As an example, Listing 6.4
shows how we can create a table of integers containing the first 1000 even values. The
implementation of the number streams is not relevant for GPU execution as we simply
look for their presence when evaluating the LINQ query. If the Take method is not called,
the DBMS must throw an exception as it makes no sense creating a table from an infinite
stream of numbers.

1 public class Numbers
2 {
3 public IEnumerable<int> Even(IEnumerable<int> numbers)
4 {
5 foreach(var num in numbers)
6 if (i % 2 == 0) yield return num;
7 }
8
9 public IEnumerable<int> Odd(IEnumerable<int> numbers)

10 {
11 foreach(var num in numbers)
12 if (i % 2 == 1) yield return num;
13 }
14
15 public IEnumerable<int> Natural
16 {
17 get
18 {
19 for(int i = 0; ;i++)
20 yield return i;
21 }
22 }
23 }

Listing 6.3: Streams of numbers.

1 var numbers = (from n in Numbers.Even(Numbers.Natural)
2 select n).Take(1000).ToTable<int>();

Listing 6.4: Using number streams to initialize table data.

The resulting query string from performing the query in Listing 6.4 could look as shown
in Listing 6.5. The EVEN(NATURAL()) statement would be mapped to kernels for popu-
lating arrays and the SOLIDIFY statement would indicate that the result would be stored
in a permanent table similar to the AsTable<T> function.

1 SELECT t0.p0 TOP 1000
2 FROM EVEN(NATURAL()) AS t0

49

3 SOLIDIFY

Listing 6.5: Internal query string for table initialization.

These examples show a couple of ways to generate data on the GPU but are by no means
exhaustive as, e.g., other streams and types could be used.

So far this section has dealt with the insertion of data into the database but without ad-
dressing the source of the data. As the database lives in volatile storage it is important to
consider how to get data into the database and out of it again before closing it. There are
generally three scenarios to consider; inserting data through the host program as we have
been doing in our current implementation, serializing to and from files and transferring
data between different databases.

Serializing data to and from files would require us to write a textual representation of any
database meta–data, such as table structures, and just dump all the column data into the
file in a comma–separated format or something similar. More interesting, and perhaps
more useful, would be to transfer data between the GPU–based database and ordinary
databases. This would enable such scenarios as filling up the database with a lot of data
from an DRDB, perform a number of calculations on them, update the data with the new
information and transfer all the data back to the DRDB. To do this we could, for example,
use the FreeTDS library, which is an open source library for establishing native connec-
tions to Sybase and SQL Server databases using the Tabular Data Stream protocol [29].
This approach does require us to more or less handle each DBMS specifically, rather than
providing a single catch–all solution.

6.2 Futures

Lazy evaluation of queries has one drawback, though, as we are unable to take advantage
of the time between constructing the query and needing the results to begin executing the
query. As most of the query runs on the GPU, executing the query immediately has little
impact on the rest of the program. If the user knows that he is not going to do anything
with the query, later, which would facilitate any optimizations, he should be able to initiate
an asynchronous execution of the query. In [7] we implemented a feature similar to futures
where the result of an operation gets executed asynchronously and only blocks to perform
them when the result is needed.

There are several approaches to achieving this kind of functionality, one would be to create
an extension method on IQueryable objects which would start executing the query and
return an object representing the future. When you need the result, you would either be
able to just use it or the future would block until having completed its work. Listing 6.6
shows how this could look.

50

1 var future = (from p in people
2 select p.Age).Asynch();
3
4 //Some work
5
6 int[] ages = future.ToArray();

Listing 6.6: Asynchronous evaluation of queries.

Alternatively, you could provide a callback method which would handle the results. If
needed, you could also stream data to the callback method in bundles of a given size,
if immediate feedback was required. Listing 6.7 shows how these two features could be
used.

1 var future1 = (from p in people
2 select p.Age).Asynch(age => Console.WriteLine(age));
3
4 var future2 = (from p in people
5 select p.Age).Asynch(1000, age => Console.WriteLine(age));

Listing 6.7: Asynchronous evaluation of queries using callback methods.

6.3 Strings

Strings are an important part of almost any type of DBMS and would be a necessary ad-
dition to our DBMS. As strings in C are represented as arrays of chars, they pose a chal-
lenge to implement. Previous work shows that efficient representations of strings can be
achieved[30].

One way to represent the variable–length char arrays would be to define a fixed length as
a part of the table declaration, for example using attributes for annotating the table. This
would allow a column of strings to be allocated as a single, large array. The fixed lengths
would make it possible to calculate the offset to access a given string. Here, a good ac-
cess pattern is a single thread per sub–string. Alternatively, columns with longer pieces
of text could be represented as a jagged array. Here, a better access pattern would be for
all the threads to work on a single string at a time, each working on its own part of the
string. Having each thread working on its own string would result in an uneven distri-
bution of work unless each string was of the same length — a case that would favor the
first allocation model. Both models have their uses just as normal DBMSs have similar
representations, such as varchar and blob for fixed–length and dynamic sized text, re-
spectively. In order for strings to work with indexing, the best way to represent strings
would be as a jagged array, sorted by the ASCII value of the characters.

51

6.4 Index

The index is also a candidate for future improvements. While the CSS–tree functions well
for our use case, it would be beneficial to include the option to select other index structures
in order to improve DBMS versatility. One such structure could be a CSB+ tree mentioned
in Section 3.4.4. The improved functionality for handling incremental updates would be a
good way of augmenting the index. Other structures such as KD–trees could also be used
to include support for spatial data. The user of the DBMS could then select the appropriate
data structure based on the specific use case. This is already used in, e.g., the MySQL
DBMS which supports B–trees, R–trees, and hash indices [31].

In order for it to be indexed, a column must first be sorted ascending. Due to time con-
straints, we currently manually ensure that data is sorted accordingly before being in-
serted. In order to the sorting automatically on the GPU, a number of sorting algorithms
that run on the GPU have been implemented by others such as Bitonic Sort [9], Quick-
Sort [32] and MergeSort [33].

6.5 Energy–Efficient Computing

In 2005, the total power used by servers made up an estimated 1.2% of total U.S. electric-
ity consumption when including cooling and auxiliary infrastructure [34]. In these days
where energy efficiency is in focus, it is desirable to be able to reduce the power budget, as
well as the electricity bill.

Comparing the power consumption of CPUs and GPUs in relation to their computation
power, an Intel Core i7 3.2GHz produces 51 GFLOPS at a peak power consumption of
130W, whereas a GeForce 295GTX produces 1788 GLOPS at a peak of 289W [2, 35]. This
makes the GeForce more than 15 times as energy efficient as the CPU when considering
GFLOPS per watt at peak performance. As it is very difficult to create an application that
utilizes the GPU 100%, the difference is smaller in practice. Still, it shows that there is great
potential for creating a more energy–efficient DBMS or query processor using the GPU.

This concept of energy–efficient computing has also been used to create SPRAT, which is
a framework for runtime processor selection based on energy–efficiency [36]. The main
problem with this is that for it to work, it must be possible to predict the execution time
of an application on both the CPU and GPU. In SPRAT, they run the application a number
of times to record execution times in order to more effectively select the proper processor.
In the context of databases, a query processor using the GPU could use heuristics from
previous queries to predict when to perform queries on the CPU and when to use the GPU.
This could also include an option to select whether to use the GPU to achieve maximum
energy–efficiency or maximum performance.

52

6.6 Optimizations

Performance is an important aspect of DBMS design and in this section we discuss several
categories of optimizations which can be performed to improve the DBMS.

6.6.1 LINQ Queries

A lot of work goes on when evaluating a LINQ query — more so even, with the optimiza-
tions mentioned in Section 6.6.2 — so to decrease the amount of work when executing
the same query repeatedly, the database can maintain a cache of queries. To determine
the equality of two LINQ expressions we could apply the visitor pattern to traverse each
nested sub-expression while checking their individual equality. In addition to caching the
query itself, the database could also save the GpuQuery object which is created by the
QueryManager so that the query string representation does not have to be re-parsed.

As mentioned in Section 4.1, generating a string representation of the LINQ query and
then re-parsing it is not the most efficient way to execute database queries. The textual
query representation is useful for debugging but for a production level DBMS we should
develop a custom query provider implementation rather than using the IQtoolkit. The
toolkit, being the result of an evolving proof of concept, is not designed with performance
in mind. As such, it does a lot of generally redundant work, as well as a lot of work which
might not be applicable to our DBMS. Developing a new query provider from the bottom
up would both allow us to optimize its performance for our specific implementation and
directly create a representation of the query which the DBMS understands.

6.6.2 Query Restructuring

One type of optimizations deal with the restructuring of the work which is performed
during a query. The concept is to analyze the computation graph and determine if there is
any work you can avoid performing because it is either redundant or in other ways do not
add any new information to the result. This approach, and a number of the optimizations
described in this section are inspired by the optimizations performed on the Accelerator
framework described in [15]. The place these optimizations would be introduced is in the
LINQ query provider, when constructing the internal representation of the query.

One way to restructure expressions is to look for mathematical operations which can be
reordered, for example if one operation is distributive over another, as illustrated in Fig-
ure 6.1. Here, we reduce the number of reductions from three to two, by adding the two
columns X and Y before multiplying them by two. This both reduces the amount of math
operations required as well as the number of memory fetches required to fetch the opera-
tion arguments.

53

+

* *

2 2 YX

+

*
2

YX

Figure 6.1: Restructuring a mathematical expression to an equivalent version with 2
rather than 3 operations.

We can also restructure boolean expressions to, for example, exploit short circuiting se-
mantics. If we have the expression “X < 5 && Y == 4”, any row not satisfying the first
predicate could never satisfy the entire predicate. Currently, the database evaluates the
two partial expressions first, combining them in the end with the ‘&&’ operator. Instead,
we could evaluate the first partial expression, generate the resulting temporary table and
then evaluate the second partial expression against this. If there are few values matching
the first predicate we can effectively halve the number of operations. Taking this idea a
step further, we can exploit the commutative nature of the ‘&&’ operator and evaluate the
predicate least likely to result in a large result-set, first. As ‘equals’ is more restrictive than,
for example, ‘greater than’, we could rearrange the above expression to “Y == 4 && X <
5”. Due to the reliance on short circuiting, this does not work directly with the ‘||’ opera-
tor, though the method can be adapted using the inverse result of the first predicate as the
source table for the second predicate.

Another source of unnecessary work is if the same expressions appear several places in the
same query. To implement common sub–expression elimination we insert the sub elements
of the query into a dictionary instance and duplicate entries would then refer to the same
data. We could then restructure the query string such that the example in Listing 6.8 is
transformed into the query in Listing 6.9.

1 SELECT ADD(t0.X,2), ADD(t0.Y,ADD(t0.X,2)), t0.Z
2 FROM vectors AS t0

Listing 6.8: A database query with common sub–expressions.

1 SELECT xAdd, ADD(t0.Y,xAdd), t0.Z
2 LET xAdd = ADD(t0.X,2)
3 FROM vectors AS t0

Listing 6.9: The query resulting from performing common sub–expression elimination.

The principle is basically to introduce the concept of variables into our query system. In
LINQ, there is already a representation of this by using the ‘let’ keyword but ironically
enough, the IQtoolkit takes the resulting expression an replaces all instances of the vari-
able with the full expression. Thus, reversing this behavior would be the approach to
implementing this.

While performance is the main goal of the optimizations described here, restructuring
queries can also help reduce the problems with the lower floating point precision men-

54

tioned in Section 3.2. This is an issue which can be particularly problematic with scientific
computing where precision is highly relevant.

The precision of a floating point operation can suffer particularly when subtracting
operands with rounding errors such as the expression x2−y2 (the inaccuracy is introduced
by the multiplication). In such a case, the reduction can cause many of the significant dig-
its to disappear, leaving only the inaccurate digits. Some expressions affected by this issue
can be restructured to lessen or avoid the impact. With the above example, a better but
equivalent representation of the expression would be (x − y)(x + y) as this reduces the
significance of the inaccuracies. For more information on this phenomenon, we refer the
reader to the topic of cancellation in [37].

In addition to these concrete optimizations, any optimizations which applies for SQL
might also apply for our DBMS. As this is a known problem which has been the topic
of previous research, it should be possible to provide a solution which lends from this
theory [38]. It might be possible to base an implementation on the query optimizers from
existing DBMSs but it would be important to take into consideration the specific nature of
the GPU as such optimizations are intimately tied to the executing platform.

In [38], they separate the types of optimizations into automatic optimizations such as query
restructuring and manual optimizations based on suggestions for improvement. The latter
should not be ignored as it is difficult to determine which optimizations to make, especially
if the optimizer does not have all the information about the context of the query. Also, the
optimizer should be able to take into consideration the context in which the database runs,
as a system in development might have more lax requirements for computation overhead
whereas a production database might not be able to spend as many cycles determining the
best query plan. Query optimization is a complex topic and these issues just provide a few
samples of what should be taken into consideration when implementing it for the DBMS.

6.6.3 Memory Allocation

As mentioned in [15], allocating large sections of memory can be costly and when perform-
ing operations on the database, large amounts of temporary memory are sometimes used.
For example, performing a unary or binary operation will generally result in a temporary
array of the same size as the source columns. Having multiple operations in an expression
can cause this amount to increase even further. We do free up the used memory once an
intermediary result is no longer needed, but we still pay the cost of the allocation at every
step of the way.

One way we could reduce the amount of memory allocations would be to maintain a mem-
ory manager, much like the thread pool found in .NET. You would request an array of a
given size from this pool and it would search for an existing array of the same size or
larger. Performing several operations on the same table would result in temporary arrays

55

of the same size so there should often be a suitable candidate. If the GPU is running out
of memory, the memory manager can at any time free some of the unused data it holds
on to. One consequence of this approach would be, though, that reused arrays contain old
data and it would not be possible to assume an initial value of zero but this is more of a
practical concern when writing kernels.

For tables which see a lot of modifications, the DBMS could benefit from a better approach
to allocating memory rather than allocating a full new array on each new insertion. The test
in Section 5.2 on appending data to tables verifies that this scheme introduces a significant
performance penalty as inserting the same range of values becomes about 20% slower
when moving from two insertions to ten.

We could use an allocation scheme of quadratic growth and shrinkage, such that when you
need a bigger array you allocate double the memory and half the memory when shrinking
beneath a certain threshold. This approach would support large amounts of small inser-
tions or deletions to a table at the cost of some amount of wasted space, though at most
half the array at any given time.

6.6.4 CUDA Code

Since CUDA version 2.1, it has been possible to perform just-in-time compilation of CUDA
kernels using PTX code — a low–level assembler language for GPU kernels [39]. This
capability makes it possible to tailor the kernels specifically to the given query, making it
possible to merge kernels and avoid conditional statements in the code. For example, it
would be possible to take the expression tree shown in Figure 6.1 and reduce it to a single
kernel. The central part of the kernel would look similar to Listing 6.10.

1 int idx = //Current thread identifier
2 o_data[idx] = 2 * (i_data0[idx] + i_data1[idx]);

Listing 6.10: How several operations can be merged into a single kernel.

The main benefit from dynamically generating kernels in this way is that you have the re-
sult of intermediary operations directly where you need them avoiding the problem with
expensive memory fetches mentioned in Section 3.2. Also, no more than a single tempo-
rary column has to be allocated as the intermediary results will be stored directly in the
registers of the GPU rather than separate columns. It does not, however, allow us to dy-
namically allocate global memory inside a kernel so we still have to perform multi-pass
operations for kernels with unknown result sizes.

To evaluate the potential of generating kernels at runtime we have manually implemented
one which should yield a comparative performance. For this test, we execute a query with
a number of math operations as normal as well the hand crafted equivalent, as shown in
Listing 6.11. Figure 6.2 shows the execution times of the two queries with up to 4 million

56

1000

1200

800

1000

1200

400

600

800

1000

1200

Dynamic

Static

0

200

400

600

800

1000

1200

Dynamic

Static

0

200

400

600

800

1000

1200

50 100 200 400 800 1600 3200

Dynamic

Static

0

200

400

600

800

1000

1200

50 100 200 400 800 1600 3200

Dynamic

Static

Figure 6.2: The execution time of the static and dynamic kernels.

vectors. Only the time spent on the math operations themselves has been included in the
test. Note that the exponential growth is due to the quadratic scale of the x–axis.

1 var query = from v in vectorTable
2 select Math.Sqrt(Math.Pow(v.X, 2) + Math.Pow(v.Y, 2) + Math.Pow(v.Z,

2));

Listing 6.11: The LINQ query representing the database query executed as normal and
as a single kernel.

The test yields several interesting observations. With a lower number of values, there is a
clear performance increase when running a dynamically generated kernel. While it is not
readily visible in the chart, the dynamic kernel starts out with a runtime of less than half
that of the static kernels, a fact which stops being true at around 60,000 values. However,
the gap closes the more values we operate with and at around 3 million values, the dy-
namic kernel becomes slower than the static ones. This did not match our expectations as
we took the dynamic kernels for being faster in every regard.

We must highlight that this is just a preliminary survey of the potential for this technique
and different math expressions could yield entirely different results. With that being said,
what we believe has led to the unexpected results could be the order in which values are
read and operations executed.

In the dynamic kernel, each thread would likely complete the entire math expression be-
fore another block gets to run on the same processor. However, in the static kernels, each
operation is performed on all the values which would make the operation be cached in the
registers along with the constant values we use. This, along with the fact that with enough
values, the memory latency might be entirely masked could lead to a superior performance
of the static kernels. The true potential of this technique is not clear from these test results,
but we believe it shows significant promise.

Another aspect regarding optimization of kernels is the use of parallel computation prim-
itives. As mentioned in Section 3.4.5, our CUDA code has employed a number of such

57

primitives as building blocks to construct GPU algorithms. Some of the ones we found
use for are gather, scatter and prefix sum. The more we use such primitives, the greater the
benefit from optimizing them will be. Therefore, we suggest such optimizations to be of
high priority as a bottleneck in a single primitive could have an impact on many algo-
rithms. For reference, we mention in Section 3.4.2 how the gather and scatter operations
can be optimized.

6.6.5 Indices

The current implementation of the index has a number of areas in which it can be im-
proved. First and foremost, building the index on the GPU instead of the CPU would
likely be faster, but more importantly, it would save the data transport to and from main
memory. While the theoretical bandwidth of the PCI–Express bus is 4GB/sec, it is still far
from as fast as on–device memory or even main memory. For example, a GeForce 8800
GTX GPU has a peak memory bandwidth of 86.4GB/sec [40]. As shown in the tests in
Chapter 5.2, the overhead of creating an index is comparatively small, but on tables with
more rows or with a larger type being indexed, this would grow.

The index is currently designed such that each thread block searches for one value. This
was done as it is a fairly simple way of implementing the index which scales reasonably
well. As the number of thread blocks per grid is 655362, this poses no practical limit to
the number of values to search for. However, this design comes with some problems. As
each thread block executes exactly once and independently from the other blocks, it is not
possible to utilize shared memory which is faster to access by circa a factor 400 [1].

One way to use shared memory is to do searches in only one block, but store as much
as possible of the tree from the root and down in shared memory. This would mean fast
access to the nodes that are accessed the most. Currently, each thread block has access to
16KB of shared memory. With an index node size of 512, the first eight nodes would be
stored in memory. While it does not seem like much, eight directory nodes is enough for
over 2 million values to be indexed.

58

Chapter 7

Conclusion

In this project we have implemented a prototype GPU–based DBMS which supports some
of the basic database operations. The DBMS is built using .NET and CUDA and can be
accessed through any .NET language. Performing operations on the database is done using
LINQ through a custom provider, turning queries into representations which the DBMS
can understand.

In Section 2.2, we defined the following question as the basis for this project:

Is it possible to develop a DBMS residing in GPU memory using CUDA to facilitate
a flexible data representation and computation model which can be accessed through a
LINQ query interface, and if so, how does its performance characteristics compare to
existing general purpose DBMSs for different types of tasks?

The most fundamental part of the question we have asked is “Is it possible to develop a
DBMS residing in GPU memory using CUDA?”. To illustrate that it is possible, we give
and overview of the features supported by the current implementation of our DBMS –
mainly through the LINQ provider:

“ You can create new tables where each table stores objects of a specific type. When
creating a table, columns are automatically made for each public writable property
and only simple types are supported.

“ You can insert values into a table.

59

“ You can select values from a table to be moved to the host where the data is recon-
structed as objects. Selections can use the standard math operators or math functions
such as square root to create new results. The selected data can be mapped to arbi-
trary types as these are instantiated from the data, on the host.

“ You can apply aggregations on columns of a table such as summation or average.

“ You can filter results using comparison operators and boolean logic.

“ You can delete and empty tables but not delete individual rows.

As evident from the above listing, we have not implemented joins but refer the reader to
[9] for evidence that this works well on the GPU. We have only implemented a number
of the functions on the Math class, but given that these were implemented (most of them
would simply be wrappers over a similar CUDA function) the DBMS provides a very
flexible and powerful computation model which can be applied using the same functions
and operators developers are used to, only now integrated into a LINQ query.

Working only on members of simple types, we lack any sense of complex relationships but
in Section 3.4.3 we provide a discussion of how such relationships could be implemented.
Implementing nested complex types and join operations on different types of such objects,
we would have a query model which covers the standard database operations.

Using parallel primitives, such as prefix sum, gather and scatter, as a core part of the DBMS
has provided central places where optimization can be performed and affect many of the
GPU operations. As the DBMS code base would grow, these common building blocks
would also help make the code easier to understand and maintain.

7.1 Future Use and Adoption

As described in Chapter 6, there are many ways in which we can extend and improve
the DBMS. However, one of the main strengths of the DBMS could very well be its ease
of deployment and light–weight nature. While it could be beneficial to provide a more
customizable DBMS, you can currently introduce an instance of the DBMS into your code
in a single line of code – and the same applies for new tables. The reason it is so simple to
setup your database is that the data objects you want to represent are understood natively
by the DBMS and do not have to be translated into some other representation or, in other
words, the data is the model.

Further supporting the role of our DBMS as a lightweight system is the low cost of in-
serting chunks of data shown in Chapter 5, which is a result of the lack of logging and
‘administrative’ tasks performed by ordinary DBMSs.

60

Does the DBMS look to be a viable solution when it has reached a more complete stage
of development? To answer that question we look at the two main benefits of using our
DBMS: computational power and ease of use. The tests performed in Chapter 5 show
that, as expected, our DBMS provide superior computation capabilities compared to SQL
Server. Combined with the light-weight insertions and deletions of data, our DBMS pro-
vides a good platform for performing computationally heavy tasks. Other tests, though,
showed that we require optimization to be on par with traditional DBMSs, such as when
selecting all values in a table. Unfortunately, we were unable to complete the filtered se-
lection tests with an adequate amount of values, a severe problem, not only with regards
to performance but also to be a functional DBMS.

For some environments, even if our DBMS would perform worse in some areas, the ease
of deployment might prove the more important factor. To draw a parallel, dynamic lan-
guages have risen much in popularity in recent times, despite their comparatively poor
performance. This is largely because of their ease of use and the numerous powerful
frameworks which have appeared such as the popular Ruby on Rails.

While optimizations might change the picture somewhat, it is obvious that there are certain
application areas where the DBMS is not an ideal choice. Small, incremental updates to
the data stored in the DBMS are expensive which, as are selections in general. The index is
unproved but does appear promising. However, as long as the focus remains on relatively
expensive math on large sets of data without a need for high data integrity, it should be a
good choice.

One concern for the future of the DBMS would be the reliance on CUDA which limits
the use to NVIDIA GPUs. It is very likely that we would have to adopt a vendor neutral
platform such as OpenCL[41], but for servers custom built for housing a GPU database
this would not be a problem.

61

Chapter 8

Alternative Directions

All the work we have performed in this project has been directed toward developing a
DBMS. However, is this the best view to take on the product we have implemented or
could other abstractions benefit its future? The DBMS abstraction brings with it a lot of
assumptions and expectations with regards to features and usage. They both force us, as
the developers of the system, and the potential users of the system into a specific mind-
set which could make it harder to identify some of the more innovative features this new
technology could provide. If we abandoned the DBMS metaphor to use a more abstract
concept for representing the GPU as a co–processor, people would, perhaps, be less in-
clined to stick to well known patterns and find novel uses and improvements.

On the other hand, there could be a danger with moving away from the well known in
that many people might be hesitant to use it. Modern DBMSs are complex systems with
numerous features, but is a comparatively well know set of features compared to those
associated with GPGPU programming and have well established application areas.

In [7] we explored how to best make the GPU resources available to programmers in a
simple and intuitive manner by overcoming the impedance mismatch between the two
programming styles. One possible solution was to develop a DBMS as we have done in
this project, but another was to focus on powerful data–parallel array types along the lines
of those used in [15, 42], only with more extensive set operations. Without focusing on
this directly, we have ended up with an internal representation of data–parallel arrays in
the form of our table columns. Instead of going forward with the DBMS concept we could
further explore this route.

We could, for example, develop a DBMS which also applied principles for working with
data–parallel arrays such as map and filter functions, thereby creating a system which is
immediately familiar to developers, but also facilitates new and useful use–patterns. It

62

is not clear whether the grounding provided by such a well–known domain as databases
hampers the evolution of the system, or if it benefits from a better understanding of its
capabilities.

In the end, choosing one concept over the other might not have much influence on the
implementation and features of the system unless some entirely new and better model
were to be discovered. It would, however, shape the terminology we use for describing
the product and how people think about it.

Given that we would continue developing the DBMS, one can also argue whether it makes
sense to develop a DBMS rather than a query co–processor for an existing DBMS, the latter
of which is a possibility discussed in [14]. In use cases like the one mentioned in Section 2.3,
where data is always streamed to the GPU from, e.g., a DRDB, the co–processor model
might be the better choice. However, for use cases where data is stored and worked on for
longer periods, our DBMS would benefit from the lack of transportation between host and
device.

The major benefit from developing a query co–processor would be the tight integration
with the host DBMS, where it could supplement or add to its existing features. This inte-
gration comes at the cost of having to use it in the context of this particular DBMS, and this
specialization makes the query processor less flexible. Developing a stand–alone DBMS
allows freedom to provide a light–weight, flexible, and powerful way to perform compu-
tations. In principle, though, there is nothing preventing the co–development of two such
products as they share many design and implementation principles.

63

64

Bibliography

[1] NVIDIA. CUDA 2.0 Programming Guide, 2008. http://developer.download.
nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_
Guide_2.0.pdf.

[2] Intel. Processors, 2008. http://www.intel.com/support/processors/sb/
cs-023143.htm.

[3] Gpureview.com. ATI Radeon hd 4870 X2. http://www.gpureview.com/
Radeon-HD-4870-X2-card-572.html.

[4] Larry Seiler et al. Larrabee: A many-core x86 architecture for visual computing. ACM
Transactions on Graphics, 27(3), August 2008.

[5] Jon Stokes. Twilight of the gpu: an epic interview with tim sweeney,
September 2008. http://arstechnica.com/gaming/news/2008/09/
gpu-sweeney-interview.ars.

[6] Jingren Zhou and Kenneth A. Ross. Implementing database operations using simd
instructions. ACM SIGMOD, June 2002.

[7] Morten Christiansen and Christian Eske Hansen. GPGPU Programming - GPGPU for
the Masses. Technical report, Aalborg University, January 2009.

[8] J. Nickolls, I. Buck, M. Garland, , and K Skadron. Scalable parallel programming with
CUDA. ACM Queue 6, 2008.

[9] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. Relational Joins on Graphics Processors. SIGMOD, 2008.

[10] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient Gather
and Scatter Operations on Graphics Processors. ACM, (978-1-59593-764-3/07/0011),
2007.

[11] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
Computation of Database Operations using Graphics Processors. SIGMOD, 2004.

65

http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.gpureview.com/Radeon-HD-4870-X2-card-572.html
http://www.gpureview.com/Radeon-HD-4870-X2-card-572.html
http://arstechnica.com/gaming/news/2008/09/gpu-sweeney-interview.ars
http://arstechnica.com/gaming/news/2008/09/gpu-sweeney-interview.ars

[12] Christian S. Jensen, Hua Lu, and Bin Yang. Graph model base indoor tracking. 10th
International Conference on Mobile Data Management, 2009.

[13] René Hansen and Bent Thomsen. Using weighted graphs for computationally effi-
cient wlan location determination. The 4th Annual International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services.

[14] Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. GPUQP: Query co-processing using graphics processors. SIGMOD,
pages 11–14, June 2007.

[15] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Parallelism to
Program GPUs for General-Purpose Uses. ASPLOS, 2006.

[16] Ananth B. Brahma, 2008. http://brahma.ananthonline.net/.

[17] Stefanus Du Toit and Michael McCool. RapidMind: C++ meets multicore, 2007.
http://www.rapidmind.com/pdfs/DrDobbsJuly07-RapidMind.pdf.

[18] NVIDIA. NVIDIA GeForce 8800 GPU architecture overview, 2006. http://www.
nvidia.com/attach/941771?type=support&primitive=0.

[19] IEEE. IEEE standard for binary floating-point arithmetic, August 2008. http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4610935&isnumber=
4610934.

[20] Intel. Intel and Floating Point. http://www.intel.com/standards/
floatingpoint.pdf.

[21] TimesTen Team. In-Memory Data Management for Consumer Transactions, The
TimesTen Approach. SIGMOD 99, 1999.

[22] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, 5th edition, 2005.

[23] Kwang-Chul Jung and Kyu-Woong Lee. Design and Implementation of Storage Man-
ager in Main Memory Database System ALTIBASE.

[24] Tobin J. Lehman and Michael J. Carey. A Study of Index Structures for Main Memory
Database Management Systems. Proceedings of the Twelfth International Conference on
Very Large Data Bases, 1986.

[25] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for Decision-Support in
Main Memory. Technical report, Columbia University, December 1998.

[26] Jun Rao and Kenneth A. Ross. Making B+–Trees Cache Conscious in Main Memory.
ACM, (1-58113-218-2/00/051), 2000.

[27] Matt Warren. LINQ: Building an IQueryable provider series, April 2009. http:
//blogs.msdn.com/mattwar/pages/linq-links.aspx.

66

http://brahma.ananthonline.net/
http://www.rapidmind.com/pdfs/DrDobbsJuly07-RapidMind.pdf
http://www.nvidia.com/attach/941771?type=support&primitive=0
http://www.nvidia.com/attach/941771?type=support&primitive=0
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4610935&isnumber=4610934
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4610935&isnumber=4610934
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4610935&isnumber=4610934
http://www.intel.com/standards/floatingpoint.pdf
http://www.intel.com/standards/floatingpoint.pdf
http://blogs.msdn.com/mattwar/pages/linq-links.aspx
http://blogs.msdn.com/mattwar/pages/linq-links.aspx

[28] Mark Harris. Optimizing CUDA, 2007. http://www.gpgpu.org/sc2007/SC07_
CUDA_5_Optimization_Harris.pdf.

[29] FreeTDS - making the leap to SQL Server. http://www.freetds.org/.

[30] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang.
Mars: A MapReduce Framework on Graphics Processors. PACT 08, 2008.

[31] MySQL AB. How MySQL Uses Indexes, May 2009. http://dev.mysql.com/doc/
refman/5.0/en/mysql-indexes.html.

[32] Daniel Cederman and Philippas Tsigas. GPU Quicksort Library, November 2008.
http://www.cs.chalmers.se/~dcs/gpuqsortdcs.html.

[33] Matt Pharr and Randima Fernando. GPU Gems 2. Addison-Wesley Professional, 2005.

[34] Jonathan G. Koomey. Estimating total power consumption by servers in the u.s. and
the world. Technical report, Stanford University, February 2007.

[35] Gpureview.com. NVIDIA GeForce 8400M GT. http://www.gpureview.com/
GeForce-GTX-295-card-603.html.

[36] Hiroyuki Takizawa, Katuto Sato, and Hiroaki Kobayashi. SPRAT: Runtime Processor
Selection for Energy-aware Computing. Proceedings of IEEE Cluster 2008, 2008.

[37] David Goldberg. What every computer scientist should know about floating-point
arithmetic. Computing Surveys, March 1991.

[38] Oracle. Optimizing the optimizer: Essential sql tuning tips and techniques. 2005. An
Oracle White Paper.

[39] NVIDIA Corporation. Cuda directions, April 2009. http://www.cse.unsw.edu.
au/~pls/cuda-workshop09/slides/05_CUDADirections.pdf.

[40] NVIDIA. GeForce 8800, 2008. http://www.nvidia.com/page/geforce_8800.
html.

[41] Aaftab Munshi. OpenCL - Parallel computing on the GPU and CPU. SIGGRAPH,
2008.

[42] RapidMind Inc. RapidMind data sheet, 2007. http://www.rapidmind.net/
pdfs/RapidmindDatasheet.pdf.

67

http://www.gpgpu.org/sc2007/SC07_CUDA_5_Optimization_Harris.pdf
http://www.gpgpu.org/sc2007/SC07_CUDA_5_Optimization_Harris.pdf
http://www.freetds.org/
http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
http://www.cs.chalmers.se/~dcs/gpuqsortdcs.html
http://www.gpureview.com/GeForce-GTX-295-card-603.html
http://www.gpureview.com/GeForce-GTX-295-card-603.html
http://www.cse.unsw.edu.au/~pls/cuda-workshop09/slides/05_CUDADirections.pdf
http://www.cse.unsw.edu.au/~pls/cuda-workshop09/slides/05_CUDADirections.pdf
http://www.nvidia.com/page/geforce_8800.html
http://www.nvidia.com/page/geforce_8800.html
http://www.rapidmind.net/pdfs/RapidmindDatasheet.pdf
http://www.rapidmind.net/pdfs/RapidmindDatasheet.pdf

Appendix A

Summary

In this project we explore the possibilities for developing a DBMS which stores its data and
performs calculations on it, on the GPU. The project has been started as a result of the high
levels of computation power available on modern GPUs which is often used for little else
than graphics and games.

To maintain a high level of performance we design the DBMS not to a general purpose sys-
tem but rather one that is focused at certain types of jobs. GPUs excel at performing similar
instructions on large amounts of data but as soon as you begin to perform lots of different
types of operations and access your data in more random-access patterns, performance
can drop dramatically.

To leverage the particular hardware architecture of the GPU we develop a DBMS which
is best suited for working on large sets for generally static data. These operations could
typically be complex data mining and pattern detection tasks. As such, the DBMS would
often need to work in concert with a standard DBMS in which the data can incrementally
be deposited and modified.

Using the CUDA framework from NVIDIA as well as C# we have designed and imple-
mented an in-process DBMS which can be accessed from any .NET language. It is de-
signed to make it as easy as possible to use, such that the computation capabilities become
available to a broad range of programmers. The DBMS uses the .NET LINQ interface to
construct queries and is thus easily to integrate into other .NET code, taking full advantage
of type inference and Intellisense in Visual Studio.

The core of the implementation evolves around the representation of database columns
which are essentially data-parallel arrays. When executing a database query, the DBMS
then performs a number of parallel operations on this data to create temporary represen-

68

tations of the results. The execution of the operations happen on the GPU where the data
is also stored. An overview of the supported functionality of the DBMS can be seen below:

“ Creating new tables. This generates a column for each public, writable property on
the type.

“ Inserting values into tables.

“ Selecting values from a table. Selections can use the standard math operators or math
functions such as square root to create new results.

“ Applying aggregations on columns of a table such as summation or average.

“ Filtering results using comparison operators and boolean logic.

“ Deleting and emptying tables but not deletion of individual rows.

To meet the goal of an easy-to-use database, you do not have to spend time crafting a
database schema, instead the data is the model. This means that once you have defined
you .NET classes to store in your database, your database schema is already defined.

What we have created should be seen as a prototype for demonstrating the viability of
creating a GPU-resident DBMS. There are lots of features missing, but the most important
for a sense of completeness are strings and database joins – though these have been proved
to work well on the GPU by others. In addition to concrete features, the performance of
the DBMS is varied as some parts have been implemented naively due to time constraints
such as incremental insertions.

To aid with results filtering, we have implemented an index structure which is well suited
for the GPU architecture. Cache sensitive search trees are stored in a single array and do
not use pointers for navigation. Using an array structure makes it possible for the GPU to
maintain a high level of memory bandwidth as it can fetch blocks of data at a time.

We have run a number of performance tests on the DBMS and compared the results to
those of a Microsoft SQL Server 2008 database. The tests show that for insertions, our
database is faster by roughly a factor 100, and deletions are performed in constant time.
Selecting all elements in a table is 50%–60% slower than on the SQL Server database, but
performing relatively complex math operations on the same data set is around 4 times
faster using our DBMS. A problem caused by a naive implementation was verified to be a
problem when appending values to an existing set of data, which suffered from an expo-
nential growth in overhead.

The end product is a DBMS which is highly capable of analyzing large amounts of data but
which has modest performance in the less ideal use cases. It is a prototype implementation
and as such lacks certain important features, but with those implemented it is a flexible and
light–weight, yet powerful solution.

69

Appendix B

Code Overview

In this appendix we provide an overview of the source code for the DBMS. All the code is
contained in a Visual Studio 2008 solution containing the following three projects:

“ DatabaseDemo

“ GpgpuDatabase

“ IQtoolkit

DatabaseDemo This project contains a single .cs file which performs a number of stan-
dard tests on the DBMS. This file serves as a good illustration for how the DBMS can be
used in practice.

In addition, it contains all the CUDA code used by the DBMS and scripts for compiling
them into .cubin files.

GpgpuDatabase This is the main DBMS source code which handles everything else
than the LINQ query provider. The GpgpuDatabase class provides the way to interact
with the DBMS.

The class QueryManager handles all the work with executing the database queries. It
does not handle the concrete computations but it parses the incoming query string and
evaluates it to provide the result of the query.

The DataModel namespace handles the representation of tables and columns and thus
covers the storage aspects of the DBMS.

70

The Linq namespace provides all the custom versions of classes from the IQtoolkit which
helps localizing the changes to the original framework.

Classes for representing query data and meta–data can be found in the Query namespace.

The execution of operations on the GPU is handled in the Computation namespace which
provides wrappers over the CUDA.NET API, making GPU computations easy to invoke.

The Index namespace provides access to the implementation of the CSS tree index.

IQtoolkit This is the source code of the third part library which we have used as a basis
for our LINQ query provider. Our project contains classes which inherit from key parts of
the framework and most of the framework is unmodified.

The key modification to the toolkit is the class MethodInternalizer which captures
method calls from the query, that would otherwise be executed on the host, and adds
them to the internal database query representation, if supported by the DBMS.

71

	Introduction
	CUDA Overview

	Problem Statement
	Main Problems
	Proposed Solution
	Exploring a Use Case
	Related Work

	DBMS Design
	Design Goals
	Implications of the GPU Architecture
	DBMS Requirements
	DBMS Architecture
	Interface
	Query Processor
	Memory Manager
	Index Manager
	Kernel Library

	Design Decisions

	Implementation
	LINQ Query Provider
	Table Lifecycle
	Create Table
	Insertion
	Selection
	Database Selection Functions
	Where
	Deletions

	Performance Measuring
	Method
	Insertion
	Selection
	Math Operations

	Future Work
	Data Creation and Transfer
	Futures
	Strings
	Index
	Energy–Efficient Computing
	Optimizations
	LINQ Queries
	Query Restructuring
	Memory Allocation
	CUDA Code
	Indices

	Conclusion
	Future Use and Adoption

	Alternative Directions
	Bibliography
	Summary
	Code Overview

