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Abstract:

In recent years, information re-

trieval techniques have been aug-

mented in order to facilitate auto-

mated expert finding by searching

document collections for both que-

ry topics and associated experts.

Typical approaches presume that

information about expert candi-

dates exists within the document

collections. I argue that such

a presumption is not warranted

in some enterprise settings. In-

stead, I turn to structured corpo-

rate data—transactions of work-

ing hours—to form document-

candidate associations. Based on

this idea, I design and implement

a working expert finding system

for a software company. I conclude

that presuming the document col-

lection to contain candidate infor-

mation is not necessary in many

enterprise settings because opera-

tional systems may contain struc-

tured data that is more reliable.





Preface

This Master’s thesis documents my work on the DAT6 semester at Aalborg
University. The DAT6 semester is the second of two semesters in which I
have chosen to specialize in the field of database technology.

Within this broad field, I have chosen to focus on the challenges of uti-
lizing historical data in organizations. In my experience, there often is a
forward-looking tendency with a continuous focus on producing new things:
new functionality, new business processes, and new data. In contrast, I would
like to also look backward and increase the efforts of maximizing the use of
latent information assets that already exist in organizations. Such efforts
can transform raw data into useful information that can help improve future
decision making and resource management, as well as increase the overall
understanding of the implicit mechanisms underlying any organization and
its surrounding environment.

In the previous semester, I participated in a project whose aim was to
utilize historical numerical data using business intelligence technology such as
data warehousing and online analytical processing (OLAP). For the present
project, I take historical textual data into account in order to acquire a more
“complete toolbox” for utilizing historical data.

For this purpose, I have been granted access to historical data from the
Danish software company thy:data. I would like to thank them for their trust
and for taking an interest in my work.

Lars K. Schunk
June 2009
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Chapter 1

Introduction

During the past few decades, advances in storage and networking technology
have resulted in the accumulation of huge amounts of information, which
never needs to be deleted. The Web is the most obvious example of a data
repository with virtually endless storage capabilities.

But the Web is far from the only place where we find an abundance of
information. For companies, information is worth millions of dollars, and
so—since storage is cheap—data is rarely deleted. Data is collected over the
course of several years, but often it just sits there passively and is never used
for anything.

In the last decade, business intelligence projects have been organizing
and leveraging these huge amounts of historical data to create more tangible
and immediately useful information in the form of pattern and trend iden-
tification, which is then used to improve business decision making. Typical
examples of historical data that enters a business intelligence system include
measures such as retail sales, customer satisfaction, order quantities, and
inventory levels.

Common to these examples of historical data is the fact that this is nu-
merical data, and it is usually structured in database rows and columns for
easy access. This makes it ideal for all kinds of numerical analyses, including
online analytical processing (OLAP) and data mining.

However, according to [Gue03] and [Kon06], it is often the case that as
much as 80% of a company’s knowledge base is lurking inside unstructured
textual documents, which are not easily accessible, and may not be optimally
used for analysis purposes, if used at all.

Text mining is the activity of processing unstructured textual data in
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Introduction

order to “mine”—or uncover—nuggets of previously unknown information.
It is a relatively new field of study, but it has great commercial value. A few
examples of its use are in order:

• Customer relationship management (CRM). The objective of a
CRM system is to build a 360-degree view of a company’s customers in
order to identify and anticipate current and future needs. With effec-
tive use of a CRM system a company can build and maintain long-term
relationships with customers. Usually, this involves the integration of
different facets about the customer, such as age, education, occupa-
tion, income, spending habits, marital status, and children. With text
mining techniques we can add unstructured communications data (for
example, in the form of emails or telephone transcripts) to get a true
360-degree view of the customer, and thus have information about the
customer’s recent state of mind. Has the customer emailed a com-
plaint? Has the customer been especially pleased with his or her latest
purchase? Which products do most customers complain about? What
are the most frequently asked questions (FAQs) about a specific pro-
duct? [IN08, Kon06]

• Marketing research. Successful marketing strategies are often de-
pendent on the results of marketing research efforts, which are com-
prised of, among other things, questionnaire surveys, focus groups, and
depth interviews. The data gathered from such activities form the ba-
sis of analysis. When processing large amounts of survey responses,
marketing researchers typically prefer responses in the form of answers
to multiple-choice questions because they can be easily tabulated and
summarized for statistical analysis. However, using text mining tech-
niques, we can analyze open-ended questions and process thousands of
responses in natural language. As an example, sentiment analysis may
categorize responses into positive, negative, or neutral categories, and
in that way give a picture of public opinion. Text mining also pro-
vides better opportunities for analyzing text association questions in
surveys. Besides analyzing survey responses, we can also extract, for
example, vast amounts of product reviews directly from various Web
sites [Kon06].

• Knowledge management (KM). Employees and their knowledge
are the most valuable assets in many modern companies. It is not
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1.1 Routing Work Tasks to the Right Employees

possible for any individual to know everything, and therefore, the abi-
lity to locate the appropriate experts for any given information need is
essential. In small (and possibly some large) companies, locating an ex-
pert is a simple matter of asking around. However, in large companies
with several specialized departments, which may even be geographi-
cally scattered, this approach becomes infeasible. An obvious solution
is to maintain a database of employees and skills where each employee
fills in his or her experience, skills, and fields of specialization. How-
ever, such manually maintained databases are subject to imprecision,
partly due to employees’ over- or underrating of their skills, and partly
due to the fact that this kind of database often becomes outdated be-
cause employees are not motivated to update their entries. Using text
mining, the generation of such “knowledge maps” can be automated by
processing the information that is published within the organization,
such as task descriptions, reports, emails, and memos [Kon06].

1.1 Routing Work Tasks to the Right Em-

ployees

Continuing along the path of knowledge management and the ability to locate
experts, let us consider a common scenario. In many companies, some people
write documents describing tasks that require the work of other people. It is
the responsibility of managers to look at these task description documents,
determine what skills are needed based on the contents of the documents,
and then assign the appropriate people to the tasks.

This is not only a time-consuming process; it also requires extensive
knowledge of what skills are available and how those skills are distributed in
the organization. In large organizations, this process is prone to errors given
the inherent lack of knowledge capacity of a human manager.

In recent years, expert finding systems have emerged to assist with this
process. Such a system is provided with an enterprise corpus and a list of
people—expert candidates, often employees. Given a query topic or docu-
ment, the system will then estimate what candidates are most likely to be
experts on the query topic.

An important aspect of this scenario is the connection between docu-
ments and candidates. Most expert finding systems presume that candidate
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Introduction

information be available within the documents. For example, employees may
be document authors who have written their names and/or email addresses
in the documents, or they may in other ways be mentioned.

In this thesis, I investigate the problem of automating the process of
locating experts in an enterprise setting. However, I will disregard the pre-
sumption mentioned above. Instead, I look for other ways to establish the
connection between documents and candidates in the unstructured data that
is maintained in operational management systems. Many companies main-
tain information about their employees, including how many hours they have
spent working on different activities. If hours worked on activities can be al-
located to documents, then this would seem a good starting point for estab-
lishing the necessary document-candidate associations.

To summarize so far: I design and implement an expert finding system
assuming the following types of historical data are available:

• Documents describing tasks that require some kind of expertise.

• Employees who have been assigned to the documents.

• Measures that indicate how strongly the employees are associated with
the documents, that is, indicators of their level of expertise.

As more data is accumulated over time, one would expect the accuracy
of such a system to increase. This opposes the human variant, which is not
likely to improve—may in fact become less accurate—as the wealth of data
overwhelms the human managers.

1.2 thy:data

In this section, I introduce my industrial collaborator, thy:data, who has
provided me with access to data that meet the requirements dicussed above.
thy:data is a Danish software development and consulting company within
the area of business solutions primarily based on Microsoft’s enterprise re-
source planning (ERP) system Dynamics AX [ax]. They provide services for
several mid-sized companies throughout Denmark.

Until 2008, the company had headquarters in Thisted and subsidiary
companies in Aalborg, Copenhagen, and Kolding. In May 2008, the group
initiated a major restructuring of the entire organization, which involved
transforming the subsidiaries into departments (and the establishment of a
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1.3 Thesis Organization

new department in Århus), in order to streamline business processes and en-
sure the customers a sense of uniformity regardless of which local department
they interact with.

Other major reasons for the restructuring were to better exploit the indi-
vidual departments’ specialized resources across the whole organization, as
well as to optimize and centralize development of a common corporate image
and employer branding strategies.

These objectives call for, among other things, effective knowledge man-
agement, an area in which an expert finding system fits in as a useful tool
[thy].

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, I look
into thy:data’s operational task management system in order to identify the
required data, and I outline a basic model of the relationships between the
data entities. This chapter sums up the thesis thus far with a concise problem
statement that sets the focus of the project. In Chapter 3, I present and
discuss the theoretical foundation upon which my project draws. Then, in
Chapter 4, I briefly survey other people’s approaches to similar problems,
and I discuss how they can influence the solution to my problem statement.
In Chapter 5, I formalize my approach before describing the implementation
in Chapter 6. I conduct an evaluation of the system, discuss some evaluation
issues, and reflect on how to refine the system in Chapter 7. Finally, in
Chapter 8, I conclude on my work and point out some directions in which to
take the project in the future.
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Chapter 2

Problem Analysis

In Section 1.1, I identified the types of data that were necessary in order to
consider the problem of finding experts in an organization. In this chapter,
I take a look at thy:data’s operational management system and locate the
necessary data. Furthermore, I explain relationships between the data, and
present a basic model that can be used when working with the problem. Fi-
nally, I provide a succinct problem statement to summarize the introduction
and analysis chapters.

2.1 The Task Management System

At thy:data, they store a large repository of software development task de-
scriptions in an operational management system. These task description
documents contain specifications for desired software functionality. Typi-
cally, a document describes one well-defined function of a larger system and
represents a single unit of work that usually can be completed by one or
two employees. The task descriptions are written by consultants who agree
on the specifications with the customers. Afterwards, a software developer
must be assigned to the task. The employees who work on a task register
their work hours in the database system. This data is used for invoicing
and payroll purposes. Thus, the operational management system contains
both structured data (hours worked) and unstructured data (task description
documents).

15



Problem Analysis

Figure 2.1: The main project form.

2.1.1 Project Hierarchies and Tasks

All of thy:data’s activities are organized into a project hierarchy. There
is a number of top-level projects, and each project contains a number of
sub-projects, which in turn can contain sub-projects themselves, and so on
indefinitely. The main project form is shown in Figure 2.1 where the project
“iv-1230-04” is selected.

Each project can have associated with it a number of activities. An
activity usually represents a certain well-defined task such as a software de-
velopment task. The main activity form is shown in Figure 2.2 where the
activity “506895” is selected.

The activities have various textual data associated with them. This in-
cludes descriptions of the task that the activity represents, as well as notes
written by the people who have worked on the activity. The document form
associated with activity “506895” is shown in Figure 2.3. In this case, three
documents are associated with the activity. A file and two notes, as indicated
by their Type fields. The note records have textual fields stored directly in
the system’s database. The file record holds a reference to a Microsoft Word
file on the company’s file system.

Furthermore, activities have transactions associated with them. Such a
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2.1 The Task Management System

Figure 2.2: The main activity form.

Figure 2.3: The main document form.
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Problem Analysis

Figure 2.4: The main transaction form.

transaction represents a number of working hours that a certain employee has
spent on the activity. Figure 2.4 shows the main transaction form associated
with activity “506895.” We can see that a total of 23 hours have been spent
on this activity by the employees whose IDs are “lsc” and “mpo.”

2.1.2 A Model of the Data

We can view the activities as constituting a central entity that ties together
employees and documents, as illustrated in Figure 2.5. The employees are
connected to the activities via transactions, and the activities are directly
connected to the documents. We can view the hours worked measure on the
transactions as an indicator of how strongly a given employee is associated
with a given document.

These entities can be modeled as a weighted bipartite graph with two
disjoint sets of vertices: a set of documents and a set of employees. Weighted
edges between the two sets are derived from the activity and transaction en-
tities. An example of this is shown in Figure 2.6. Here we see that document
d1 is associated with employee e1 because e1 has “worked” 60 hours on d1,
that is, e1 has worked 60 hours on the activity to which d1 is attached. Sim-
ilarly, e2 has worked 5 hours on d1. Thus, d1 is associated with both e1 and
e2, but the association to e1 is stronger than the association to e2 because e1

has worked more (60 hours) on d1 than e2 (who has worked 5 hours).

18



2.1 The Task Management System

Figure 2.5: Activities as the central entity.

Figure 2.6: Modeling hours worked as a weighted bipartite graph that
connects documents and employees.

19



Problem Analysis

2.2 Problem Statement

Given the large number of customers and their varying business needs and
domain areas, the software developers and consultants often develop a know-
ledge of topics related to the tasks to which they are most often assigned.
These “clusters” of knowledge within the organization are to a large extent
implicit and geographically scattered across the company’s departments, so
task assignment often relies on the experience, organization knowledge, and
intuition of the managers.

However, as is evident in this chapter, the data required to automate
the process of assigning employees to tasks seems to be available, namely
documents, employees, and an association measure, hours worked. It would
be useful to design and implement such a system.

Therefore, in this thesis, I:

1. Present the fundamental techniques that apply to the field of processing
and querying unstructured textual data.

2. Investigate approaches to expert finding problems and extend them to
fit the problem presented in this thesis.

3. Design and implement Thy Expert Finder, an expert finding system
that requires three types of data: an enterprise corpus, a list of em-
ployees, and a collection of hours worked transactions. A user will
provide a query topic or task description document as input, and the
system will output a list of employees ranked by how likely they are
the appropriate person to handle the task.

4. Evaluate and reflect on the results.

With this problem statement I seek to address the organizational knowledge
management objectives outlined in Section 1.1 on page 11.

20



Chapter 3

Theoretical Foundation

The purpose of this chapter is to provide a theoretical background and present
the concepts upon which my design builds. I first elaborate on the distinction
between structured and unstructured data, and discuss some characteristics
of each. Afterwards, I focus on information retrieval and relevance ranking
techniques.

3.1 Structured and Unstructured Data

Traditionally, computer-aided analysis has been applied to structured and
transaction-based data, which can be neatly stored in rows and columns. The
analytical tools developed for these purposes take advantage of the repetitive
nature of structured data. The data is predictable in the sense that the tools
know what types of data to expect and where they occur—the only thing
that differs are the actual data values. An example of this predictability are
schema-based database systems where tables and their fields are defined in
detail. An analytical tool can easily add up or take averages across several
thousands of data rows because of the repetitive structure of a database
table.

In contrast to this is unstructured data, which has no repeatable patterns.
Unstructured textual data is just sequences of characters typically typed in by
humans with the intention to be later read by humans. Traditional analytical
tools cannot do much with unstructured data due to its unpredictable nature,
and therefore it is often ignored or stored “as is” as some kind of supplement
to the structured data. Figure 3.1 shows a (contrived) example of how the
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Theoretical Foundation

Team Members
Name Age Nationality
James 37 English
Linda 32 Swedish
Pablo 45 Spanish

Okay, so we have three members of our
team here. There is Pablo who is Spanish.
Then we have 32-year old Linda; she is from
Sweden. Finally, we have our Englishman,
James, thirty-seven. Oh, by the way, Pablo
is 45 years old.

Figure 3.1: Structured data vs. unstructured data.

exact same information can be exhibited in two completely different ways; a
structured one that lends itself to automatic processing, and an unstructured
one that certainly does not.

A first generation of textual analytical tools attempted to deal with un-
structured data in isolation. Information retrieval systems—also called search
engines—are the primary example of the early attempts to make better use of
unstructured data by providing capabilities to search for relevant documents
in large document collections.

Information retrieval systems are very useful. However, after retrieving
documents from an unstructured knowledge base, they do not process the
documents any further besides presenting them in a form readable to a hu-
man user. The second generation of textual analytical tools deal with un-
structured information in a more intelligent manner. Three characteristics
of second generation textual analytical tools can be identified [IN08]:

1. Integration of unstructured data. This involves “streamlining” text
prior to analysis. For example, this can include resolution of synonyms1

and homonyms,2 as well as dealing with alternate spellings and com-
mon misspellings.

2. Integration with structured data. Some unstructured data can be natu-
rally connected to the structured data. For example, unstructured cus-
tomer emails can be connected to structured customer records through
their common attribute, customer name. The same applies to company
employees.

1Two different words are synonymous when they have the same meaning. The words

“buy” and “purchase” are an example of synonyms.
2Two different words are homonyms if they are spelled the same way. An example is

“right,” which can mean “correct” or it can be the opposite of “left.”
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3.2 Information Retrieval and Relevance Ranking

3. Access to unstructured data in the structured environment. When the
unstructured data has been integrated and relations to structured data
have been identified, it can be placed in a structured storage environ-
ment such as a relational database. Then it can be processed and
analyzed by tools that typically deal with the structured environment.

In this project, I have identified a relation between employee data in
the structured environment and the task description documents in the un-
structured environment. Once integrated, these two types of data will be
placed together in a structured environment in order to leverage the implicit
connections that will be made explicit.

3.2 Information Retrieval and Relevance Rank-

ing

Querying unstructured data is known as information retrieval, a field that
has been the subject of research for many decades, but it has had a particu-
larly great deal of attention since the advent of the World Wide Web. In an
information retrieval system, a user wants to retrieve documents of interest
from a large body of unstructured documents by submitting a set of key-
words known as terms. The typical example of data is text documents where
the query terms are matched against the actual terms in the documents, but
information retrieval also applies to other types of data, such as video and au-
dio, which may have content-describing keywords associated with them. For
example, a query with terms “restaurant” and “Copenhagen” may retrieve
documents describing restaurants in Copenhagen [SKS06].

3.2.1 The TF-IDF Approach

When querying very large bodies of unstructured documents, a query may
retrieve hundreds or thousands of documents that match the query. There-
fore, the relevance of the retrieved documents should be estimated and only
the most relevant documents should be returned to the user. Thus, we need
a measure of how relevant a document d is to a given term t. With such
a measure we can rank documents by their relevance to a query term and
return the top k documents for some k of our choice. Relevance ranking
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Theoretical Foundation

approaches and their effectiveness are a major research topic in the field of
information retrieval.

One basic assumption is that the more frequently a term t occurs in a
document d, the more relevant d is to t. We call this measure the term
frequency, and denote it by TF (d, t). A simple approach for calculating the
term frequency would be to count the number of occurrences of t in d, that
is, to let TF (d, t) = n(d, t) where n(d, t) is the number of occurrences of
term t in document d. But a term is more likely to occur many times in long
documents than in short ones, and long documents are not necessarily more
relevant than short documents. Thus, a normalized measure would take the
document’s length into account. We can represent document length as n(d),
the total number of all terms in document d. Then we arrive at the following
measure of term frequency [SKS06, FS07]:

TF (d, t) =
n(d, t)

n(d)
(3.1)

Note that
∑

t∈d TF (d, t) = 1, so we can view TF (d, t) as the probability of
“drawing” term t from the “bag of terms,” document d.

Now consider a query Q that consists of more than one keyword, for
example, Q = {mammal , giraffe}. To determine the relevance of a document
d to Q, denoted by r(d, Q), we could simply add up the term frequency scores
for each term:

r(d, Q) =
∑

t∈Q

TF (d, t) (3.2)

However, there is a problem if we use this measure as it stands in Equation 3.2
for estimating the relevance of d to Q because the two terms, “mammal” and
“giraffe,” are not equally important. Suppose that the document collection
D in which we perform our search consists of articles describing all kinds of
mammals. Then chances are that documents containing “mammal” but not
“giraffe” will be less relevant than documents containing “giraffe” but not
“mammal.”

We assume that query terms that are rare across the entire document
collection D are more relevant than query terms that are common in D. To
take this assumption into account, we want to assign weights to each term
that will downgrade common terms and upgrade rare terms when calculating
relevance. For this purpose, we consider the document frequency of a term.
The document frequency DF (t) = |{d | t ∈ d}| is the total number of
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3.2 Information Retrieval and Relevance Ranking

documents in which term t occurs. A term with a low document frequency
is more specific than a term with a high document frequency, which is more
general. The more specific a term is, the more valuable it is when matched
in a query [Hie01].

We can now present the weight measure known as the inverse document
frequency (IDF), which we define as follows:

IDF (t) = log
2

(

|D|

DF (t)

)

(3.3)

Here, |D| is the total number of documents in the document collection.
Applying the IDF measure to the relevance measure in Equation 3.2 we

arrive at the following new relevance measure:

r(d, Q) =
∑

t∈Q

TF (d, t) · IDF (t) (3.4)

This is known as the TF-IDF measure, and it is a popular approach for
estimating the relevance of documents to queries [SKS06, FS07].

3.2.2 The Language Modeling Approach

An alternative to the classic TF-IDF approach for relevance ranking is the
language modeling approach, which was first introduced in [PC98] and has
garnered much attention in the past decade. Before being used for informa-
tion retrieval, the concept of a language model was primarily used in speech
recognition as a probability distribution that captured the statistical regu-
larities and use patterns of a language. A language model would then assign
probabilities to the possible next words to occur in a sequence of words,
denoted by P (w1, w2, . . . , wn) where each wi is a word in the language.

By analogy, a query can be treated as if it were a sequence of words gene-
rated by a language model. In this case, the language model would be based
on a document from the collection at hand. This document would thus act as
a language sample. If we infer such a language model Md for each document
d in a document collection, we can rank documents by their probabilities
of generating a given query Q = t1t2 . . . tn where ti are query terms. To
simplify, we say that the exact order of the terms is not important, so instead
of generation of a sequence of terms, we opt to deal with the generation of
a set of terms; then Q = {t1, t2, . . . , tn}. We speak of the probability of a
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query Q given a document d’s language model, denoted by P (Q|Md), or more
succintly, just P (Q|d), the probability of a query Q given a document d. The
document whose language model has the highest probability of generating
the given query is deemed the most relevant document.

A basic building block for estimating these probabilities is the probability
of generating a single term given a document, that is, P (t|d). With the given
document data at hand, we can obtain the maximum likelihood estimate
Pmle(t|d) of “drawing” term t from document d, or more precisely, generat-
ing term t given document d’s language model. The maximum likelihood
estimate is simply the term frequency, as defined in Equation 3.1. So P (t|d)
can be defined as follows:

P (t|d) = Pmle(t|d) = TF (d, t) =
n(d, t)

n(d)
(3.5)

Furthermore, we can assume the occurrence of the different query terms to
be independent, so we can now present the following ranking formula.

P (Q|d) =
∏

t∈Q

P (t|d) (3.6)

Now, what if some query term does not occur in a document? By Equa-
tion 3.6, such a document would be given a probability of zero, which is
clearly inappropriate. With the documents being language samples, it is not
unlikely that a query will contain terms not found in a document. How-
ever, intuitively, this does not mean that there is a zero probability of the
document being relevant to the query. This is known as the problem of data
sparseness, and the solution is to use a smoothing method that will assign
non-zero probabilities to the terms that do not occur in the given document.
In addition, it may improve the general accuracy of term probability estima-
tion in various ways.

A common starting point for a smoothed model is to provide a “fallback”
non-zero probability for non-occurring terms that would otherwise have a
zero probability. If a query term does not exist in the document, we can use
the probability of “drawing” the term from the entire document collection D

instead:

P (t|D) = Pmle(t|D) =
n(D, t)

n(D)
(3.7)
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We can now present a general form of a smoothed model:

P (t|d) =

{

Ps(t|d) if TF (d, t) > 0
Pb(t|D) otherwise

(3.8)

where Ps(t|d) is a smoothed probability of t when it occurs in d, and Pb(t|D) is
the probability of t as assigned by a background model based on the document
collection D when t does not occur in d.

The development and study of various smoothing methods are a major
field of research in the information retrieval community [PC98, SC99, ZL01].
One specific smoothing method is the Jelinek-Mercer method. The idea is to
interpolate the maximum likelihood estimate of P (t|d) with the background
collection model, thus taking both into account. It looks like this:

Pλ(t|d) = (1 − λ)Pmle(t|d) + λP (t|D) (3.9)

where 0 ≤ λ ≤ 1 controls the influence of each model. The Jelinek-Mercer
method is used in one of the expert finding models that will be presented in
Section 4.2 on page 30.

3.3 Summary

This chapter presented the theoretical background concepts of structured and
unstructured data, as well as information retrieval and relevance ranking. It
can be confusing as to how the field of information retrieval relates to text
mining. A question is whether information retrieval is a text mining activity.
In [Hea99], Marti A. Hearst notes that the activity of data mining is to
discover or derive new previously unknown information from collections of
existing data. By analogy, text mining activities should also provide new
information. Hearst then goes on to make the following observation:

The fact that an information retrieval system can return a docu-
ment that contains the information a user requested implies that
no new discovery is being made: the information had to have al-
ready been known to the author of the text; otherwise the author
could not have written it down [Hea99].

Thus, according to this argument, text mining is not about making existing
knowledge easier to find from a large knowledge base; rather, it is about
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extracting new, never-before encountered information from such a knowledge
base. However, information retrieval can play an important role in a text
mining system, and vice versa.

The project documented in this thesis makes use of information retrieval
techniques, but its main purpose is not to locate and present information
from the task description documents. The purpose is to discover who in the
organization is likely the most capable to work on new tasks by analyzing
the existing knowledge base. As such, this is new information and can be
termed a text mining activity. However, in this project, I rely not only on
unstructured textual task descriptions, but on a combination of unstructured
textual data and structured numerical data.
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Chapter 4

Approaches to Similar
Problems

Others have worked on expert finding problems similar to the one discussed in
this thesis. Before settling for a design for Thy Expert Finder, it is beneficial
to survey some of this work. In this section, I take a look at some of the
approaches that could influence my design choices.

4.1 P@NOPTIC Expert

P@NOPTIC Expert, described in [CHVW01], is a Web-based expert finding
solution whose starting point has much in common with the problem state-
ment presented in this thesis (Section 2.2 on page 20). The system works on
a collection of intranet documents in an organization and a list of current
employees. A user who needs to find, say, a Java programmer, enters “java”
as a search query, and the system then presents a list of employees who are
mentioned in documents that match the query. The top ranked employee is
presented with detailed contact information and the relevant documents as
evidence for that employee’s expertise.

The relation between employees and documents is established by building
an expert index, which consists of employee documents—one document is
created for each employee. If there are, say, 150 employees, there will be
150 employee documents. This creation process is very simple. For example,
the employee document representing Fred Nerk is simply the concatenated
text from all intranet documents in which Fred Nerk’s name appears. With
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the employee documents in place, the P@NOPTIC Expert can match queries
against the expert index using any standard information retrieval technique
(exactly which method they use is not specified), and retrieve in ranked order
the employee documents that match. With the one-to-one correspondence
between employee documents and employees, it is a simple matter to go from
matching employee document to relevant employee.

4.1.1 Discussion

One could imagine a similar approach for Thy Expert Finder. However, em-
ployees are rarely mentioned in the task description documents, so another
approach for linking employees with documents must be taken. A possible
solution is to look at the number of hours h that employee e worked on the
activity to which document d is attached. The text of d would then be ap-
pended ch times to the employee document de (for some constant factor c).
Some drawbacks to this approach are the extra repository of the employee
document index that must be maintained, and possibly the size of this in-
dex, as many employees may work many hours on many activities. The
concatenation of documents will generate much redundancy of the textual
data.

4.2 Document Language Models

Another approach to expert finding is presented in [BAdR06]. This is based
on the language modeling approach described in Section 3.2.2 on page 25.
Given a set of documents D, a set of candidates C, and a set of document-
candidate associations a(d, ca), we want to compute the probability P (Q|ca),
that is, the probability that candidate ca generates query Q. The candidate
with the highest probability of generating Q is deemed the most relevant
candidate.

In order to determine P (Q|ca), we consider the following process (as
stated in [BAdR06]):

1. Let a candidate ca be given.

2. Select a document d associated with ca with probability P (d|ca). (How
to determine such an association will be discussed shortly in Section
4.2.1.)
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3. From document d, generate query Q with probability P (Q|d).

By assuming conditional independence between P (Q|d) and P (d|ca), we
obtain the joint probability by taking their product. Summing these joint
probabilities for all documents d ∈ D yields P (Q|ca):

P (Q|ca) =
∑

d∈D

P (Q|d)P (d|ca) (4.1)

By plugging in Equation 3.6 from page 26 for P (Q|d), we get:

P (Q|ca) =
∑

d∈D

(

∏

t∈Q

P (t|d)

)

P (d|ca) (4.2)

Using the Jelinek-Mercer smoothing method, we now plug in Equation 3.9
from page 27 for P (t|d):

P (Q|ca) =
∑

d∈D

(

∏

t∈Q

((1 − λ)Pmle(t|d) + λP (t|D))

)

P (d|ca) (4.3)

Computing this for all documents d ∈ D is probably quite expensive. In
practice, we want to constrain this to a subset of D by taking only documents
that are relevant to the query at hand into account. We may also opt to
further constrain this by considering only the top k most relevant documents
for some appropriate choice of k.

Note that we still need to define how to compute P (d|ca), the probability
of document d given candidate ca. We deal with this in the next section.

4.2.1 Document-Candidate Associations

A central part of the document language model described above are the
document-candidate associations, which provide a measure of how strongly
a candidate is associated with a document. Given a collection of documents
D and a collection of candidates C, to each pair (d, ca), where d ∈ D and
ca ∈ C, a non-negative association score a(d, ca) must be assigned such
that a(d, ca1) > a(d, ca2) if candidate ca1 is more strongly associated with
document d than candidate ca2.
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With such a document-candidate association score, we can compute the
probability that a document is associated with a candidate like this:

P (d|ca) =
a(d, ca)

∑

d′∈D a(d′, ca)
(4.4)

Given a candidate ca, the document d with highest probability P (d|ca) will
be the document with which ca is most strongly associated.

We still need to find some way to calculate the actual document-association
scores a(d, ca). Balog et al. solve this in [BAdR06] by using four binary as-
sociation methods Ai (i = 0, . . . , 3) that return 0 or 1 depending on whether
document d is associated with candidate ca according to each rule. They as-
sume that each candidate is represented by a unique person id, one or more
names, and one or more e-mail addresses. The four rules are as follows (as
stated in [BAdR06]).

• A0: EXACT MATCH returns 1 if the name appears in the document
exactly as written.

• A1: NAME MATCH returns 1 if the last name and at least the initial of
the first name appears in the document.

• A2: LAST NAME MATCH returns 1 if the last name appears in the docu-
ment.

• A3: EMAIL MATCH returns 1 if the e-mail address appears in the docu-
ment.

Association scores are then assigned as follows.

a(d, ca) := Aπ(d, ca) =

k
∑

i=0

πiAi(d, ca) (4.5)

where π = {π1, . . . , πk}, πi is some weight on Ai, and
∑k

i=0
πi = 1. Note

that if A0 returns 1, then A1 also returns 1, and if A1 returns 1, then A2 also
returns 1. The result of A3 is independent from the others.
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4.2.2 Discussion

I will need a similar document-candidate association measure for the Thy
Expert Finder project. However, the rule-based approach with Ai methods
will probably not work well because, as also mentioned in the P@NOPTIC
discussion in Section 4.1, employee names are only rarely mentioned directly
in the task description documents. However, the hours worked measure that
is available seems to be a good foundation on which to design an a(d, ca)
measure.

Furthermore, it seems likely that the document model proposed by Balog
et al. for locating experts could be used for this project when their a(d, ca)
measure is replaced by a new one that considers hours worked instead of
relying on named entity extraction.

4.3 Summary

This chapter discussed two approaches to solving expert finding problems.
Both approaches presumed the existence of a collection of documents and
a list of candidates. They also presumed that the textual contents of the
documents would somehow contain candidate information, which would in-
dicate that a candidate to some degree is associated with, or has contributed
to, the corresponding document. Such assumptions seem unlikely to work
for my project, because looking at a few of the task description documents
reveals that employee names are only rarely mentioned. Therefore, another
approach must be taken to establish document-candidate associations.

This is where the hours worked measure comes in. Intuitively, it seems
likely that such a measure would provide a very accurate means of deter-
mining the degree to which a candidate is associated with a document. If
a candidate has worked many hours on tasks described by a certain class of
documents, it seems likely that the candidate has developed some degree of
expertise within the topics of those documents. Apparently, though, asso-
ciation indicators as explicit as hours worked do not seem to have been the
subject of much research in the expert finding community. Perhaps a reason
for this is that such approaches will be relatively tightly coupled with the
enterprise setting at hand, and consequently it may be difficult to generalize
the results.
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Chapter 5

Method Design

The fundamental theoretical concepts presented in Chapter 3 along with
the expert finding approaches discussed in Chapter 4 provide the foundation
for Thy Expert Finder. In this chapter, I take these building blocks and
modify them in order to take advantage of the structured data that is avail-
able, namely hours worked. First, the central part of many expert finding
solutions, the document-candidate associations, is modified. Then, in the fol-
lowing two sections, the necessary changes to the TF-IDF relevance ranking
approach and the document language model approach are discussed. Finally,
I briefly discuss some opportunities for extending the basic models.

5.1 Document-Candidate Associations

Let us formalize the model of the hours worked that was developed in an
intuitive manner in Section 2.1.2 on page 18. Let D be the set of documents,
and C the set of candidates. Let G = (V, E) be a bipartite graph where
V = D ∪ C is the set of vertices and E = {{d, ca} | d ∈ D and ca ∈ C} is
the set of edges. To each edge {d, ca} ∈ E we assign weight w(d, ca) = total
number of hours worked on d by ca.

Now we can introduce a simple document-candidate association measure
a(d, ca) in place of the one that was presented in Section 4.2.1 on page 31:

a(d, ca) =

{

w(d, ca) if {d, ca} ∈ E

0 otherwise
(5.1)
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5.2 Modifying the TF-IDF Approach

In this section, I propose a solution to the candidate ranking problem by
modifying the TF-IDF approach described in Section 3.2.1 on page 23. We
want to establish a measure r(ca, Q) of the relevance of a candidate ca to a
query Q, much like the measure r(d, Q) of the relevance of a document d to
a query Q.

Suppose we have found the one and only document d that is relevant to
the query Q. Then we can define the relevance of candidate ca to Q like this:

r(ca, Q) = a(d, ca) (5.2)

The candidate who has worked the most hours on document d will be the
top ranked candidate in terms of relevance to Q.

However, many documents may be relevant to Q, some more than others.
We consider the following:

• If a candidate is strongly associated with a highly relevant document,
then that candidate is likely to be highly relevant to the query.

• If a candidate is strongly associated with a moderately relevant docu-
ment, then that candidate is likely to be relevant.

• If a candidate is moderately associated with a highly relevant docu-
ment, then that candidate is likely to be relevant.

• If a candidate is moderately associated with a moderately relevant
document, then that candidate is moderately likely to be relevant.

• We need only consider candidates who are associated with documents
that are relevant to Q. If a document d is not relevant to Q, then
no a(d, ca) score for any ca will contribute to that ca’s relevance score
regarding Q.

With these considerations in mind, I propose the following definition of the
relevance r(ca, Q) of a candidate ca to a query Q:

r(ca, Q) =
∑

d∈DQ

a(d, ca) · r(d, Q) (5.3)

where DQ = {d | r(d, Q) > 0} is the set of documents that are deemed
relevant to Q. This way we use the relevance of documents as weights on the
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document-candidate associations. In addition, the more relevant documents
that a candidate has worked on, the more likely it is that he is a relevant
candidate; we take this into account by summing over all relevant documents.
Actually, we can sum over all documents, because the relevance scores for
irrelevant documents are 0, thus eliminating document-candidate association
scores for hours worked on irrelevant documents.

5.3 Modifying the Document Language Model

Approach

In Section 4.2.2 on page 33, I argued that the expert finding approach pre-
sented in [BAdR06] was likely to work well for my project. The only require-
ment was that the document-candidate association measure a(d, ca) was re-
placed by another one that relies on hours worked instead of the rule-based
method using named entity extraction. Having provided such a substitute in
Section 5.1 on page 35, it is straightforward to plug this into the document
language model.

5.4 Possible Extensions of the Basic Models

Now that the basic models are in place, it may be appropriate to take a
moment to consider possible future extensions. One could imagine some
adjustments to the document-candidate association measure presented in
Section 5.1. Consider the following scenario. Suppose that, given a query Q,
the set DQ are deemed relevant documents. Furthermore, candidates ca1 and
ca2 are deemed relevant candidates. ca1 has worked hundreds of hours on
just one relevant document while ca2 has worked moderate numbers of hours,
say 10–20, on several relevant documents. Which candidate is more relevant?
By Equation 5.3, ca1 is likely to score higher because the hundreds of hours
worked on one document will boost his score significantly. But the work on
this single document may represent an exception. In contrast, if someone
has worked moderate numbers of hours on several relevant documents, this
may reflect the fact that he actually is an expert on this topic who completes
his tasks quickly.

To take this into account, I introduce another measure, document count,
denoted by dc(ca, DQ), which is the number of relevant documents in DQ to
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which candidate ca is associated:

dc(ca, DQ) = |{d | d ∈ DQ and a(d, ca) > 0)}| (5.4)

We could extend Equation 5.3 with the document count measure:

r(ca, Q) = dc(ca, DQ)
∑

d∈DQ

a(d, ca) · r(d, Q) (5.5)

Applying this to the example scenario of this section would boost ca2’s rele-
vance score to reflect the fact that he has worked on several relevant tasks
even if the total hours worked are less than those of ca1.

The implementation of this and other possible extensions is left for future
work.

5.5 Summary

In this chapter, I modified the TF-IDF relevance ranking approach to rank
candidates instead of documents. I also modified the document language
model approach by replacing the document-candidate association measure
used in [BAdR06] by a new one.

Both of the modified approaches now take advantage of available struc-
tured data in order to better utilize the unstructured data. This is in contrast
to other candidate ranking approaches where document-candidate associa-
tions are established by analyzing only the unstructured data.

For this project, I rejected the rule-based named entity extraction tech-
nique for establishing document-candidate associations. However, as possible
future work, it could be interesting to combine both named entity extraction
and hours worked into a single document-candidate association approach.
Even though employee names and email addresses rarely occur in the docu-
ments, this does not mean that they never occur. For example, the hours
worked measure could be integrated into a rule-based approach as one or
more additional Ai rules.
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Implementation

In this chapter, I describe the design and implementation of Thy Expert
Finder, the application developed to solve the problem of suggesting employ-
ees given a query or another task description document. C# is the primary
programming language used for developing the program. First, I give an
architectural overview of the system and the environment from which it re-
ceives its basic data. This is followed by a description of the preprocessing
tasks that transform the raw data into a form useful for analytical process-
ing. The preprocessed data is placed in an SQL Server environment, which is
then described. Then I present some statistical summaries of the transformed
data to give an idea of what we are dealing with. Finally, I provide some
details of the implementation of the relevance ranking procedures, followed
by a demonstration of the running application.

6.1 Architectural Overview

Before delving into the design of the individual components, Figure 6.1 pro-
vides an architectural overview of all the components that constitute the
entire system. The upper-left (framed) part of the figure shows the compo-
nents of the existing system, that is, the task management system and the
unstructured task description documents.

The Dynamics AX component is in fact a complete enterprise resource
planning (ERP) system, but for the purpose of this project only the part
concerning task management is relevant; hence the label “Task Management
System.” A typical Dynamics AX installation is itself a highly complicated
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Figure 6.1: Architectural overview.

system with many layers of components. In this illustration, I have opted to
just show the fact that the Dynamics AX system provides business logic to
corporate data, which is stored in an underlying SQL Server database system.
This is where the structured data is stored—hours worked are the structured
data of our interest. The unstructured task description documents are stored
separately in directories on the company file system. The Dynamics AX
system provides links to the individual files.

The Thy Expert Finder component is a .NET application and the core
component of the system developed for this project. Notice that it accesses
the structured data through the Dynamics AX component, as indicated by
an arrow, instead of accessing the SQL Server database directly. Dynamics
AX provides development tools, business logic, and relational information to
ensure the integrity of the data. The unstructured documents, however, are
accessed directly via the file system, as there is no benefit in accessing them
through Dynamics AX. The documents are simply copied to the Intermediate
Document Storage data store (depicted in the lower-right corner of the figure)
so that they can be transformed into forms appropriate for analysis. These
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transformation processes are discussed in detail in Section 6.2.

The Thy Expert Finder component maintains two SQL Server database
tables: one containing a terms-documents index and one containing docu-
ment-candidate associations. These are used for the relevance ranking of
employees, and are described in Section 6.3 on page 48.

Finally, the arrows between system components and data stores in Figure
6.1 indicate data flow. A double arrow indicates that the system component
both accesses and manipulates the data store. Notice how the arrows that
cross the boundary between the existing system and Thy Expert Finder
are unidirectional. This indicates the fact that Thy Expert Finder only
accesses the existing data without manipulating it, so the application can be
independently added to or removed from the environment.

6.2 Preprocessing Tasks

In order to effectively manage and analyze text data, we need to do some
preprocessing on the documents to clean up the data and to represent them
in a form appropriate for analysis. This involves converting Microsoft Word
files to plain text, tokenizing the text, removing stopwords, stemming, and
designing a data structure to represent the documents. In the following
subsections I will describe the approaches taken for each preprocessing step.

Throughout, I illustrate the steps with a running example, 835.doc, a
Microsoft Word document retrieved from thy:data’s task management sys-
tem.

6.2.1 Conversion

The first preprocessing task is to convert the original file formats to a common
plain text format. Most of the documents are stored directly in plain text
fields in the database or as Microsoft Word files. In case of a Word file,
it is converted to text by using functionality of the Microsoft Word COM
component.

An extract from 835.txt after being converted from 835.doc is shown
in Figure 6.2.
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1 Objekt - budgettering

1.1 Objekt - budgettering

Det skal på et objekt være muligt at budgettere. Ved

budgettering sker dette direkte på det projekt som

objektet er tilknyttet.

Sti: Service og Vedligehold -> Objekter

Funktionalitet:

* Der tilføjes en ny knap mellem "Setup" og "Prices"

o Ledetekst - Standard AX label

* Dansk Budget

* Engelsk Forecast

o Hjælpetekst

Figure 6.2: Contents of 835.txt (extract).

6.2.2 Tokenization

The next preprocessing task is tokenization, which is the process of trans-
forming a document, represented as a long sequence of characters, into a
sequence of tokens. A token is a single unit of text. Generally, we say that
the smallest unit of text is a word, and so tokens are separated by white-
space characters. This is a simplification, though, because one may argue
that certain word sequences such as “bill of material” and “South America”
are single units of text.

Consider the following sequence of characters:

The cat saw a rat with a hat. Then all the cats started chasing
the rat’s hat.

Applying a simple tokenization process to this sequence would produce the
token sequence shown in Figure 6.3. Here whitespace separates tokens, and
punctuation characters are treated as separate tokens. Simple categories can
be assigned to the tokens. Categorization could be as simple as distinguishing
between “word” and “punctuation,” or it could be more sophisticated by
assigning the corresponding parts of speech to the tokens, such as “noun”
and “verb.” This is known as part-of-speech tagging [Kon06, IN08].
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Figure 6.3: Token sequence.

6.2.3 Stopword Removal

Many of the tokens in Figure 6.3 represent extraneous words that are not
useful for our analysis purposes. Words such as “the” and “a” are irrelevant
and very frequent words that will distort our document representations. For
our purpose, we are interested in the words that identify topics and distin-
guish documents from each other. In other words, we want to keep most
content words and eliminate most function words. Content words are com-
prised of nouns, verbs, adjectives, and adverbs, whereas function words are
comprised of prepositions, pronouns, conjunctions, and determiners. The un-
wanted words are known as stopwords, and we want to eliminate them from
our token sequences. Similarly, we do not need punctuation characters, and
we do not need to distinguish between upper and lower case [Kon06, IN08].

Continuing with the previous token example, after performing stopword
and punctuation character removal, the token sequence now looks like this:

cat saw rat hat all cats started chasing rat’s hat

Note how the number of occurrences of the word “the” has been reduced
from three in the original sentence to zero. If we had kept the three occur-
rences of “the,” then a typical text mining application might have considered
“the” to be the most important word in the sentence, which would clearly
be inappropriate.

In Thy Expert Finder, I have used the Lucene Information Retrieval Li-
brary [luc] to perform tokenization and stopword removal. For the stopwords,
I have used a list of Danish stopwords provided by the Snowball project [sno],
and added a few extra stopwords. In addition to the removal of stopwords
during preprocessing, I have also opted to remove all tokens that begin with
a number, as well as all tokens that consist of less than three characters.

6.2.4 Stemming

Even though we have removed stopwords and punctuation characters, there is
still some clean-up to do. Consider the two noun words “cat” and “cats.” As
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they stand, these will be treated as two separate words. However, they refer
to the same basic term, namely the term “cat.” Stemming is the process
of replacing words with their stems. The word “cats” should be replaced
with “cat,” thus conflating the two words into their common stem. Similar
principles apply to verbs. The words “started” and “chasing” should be
stemmed to “start” and “chase,” respectively.

After stemming our cat example, it looks as follows:

cat saw rat hat all cat start chase rat hat

Note how the term “saw” has not been stemmed to “see,” which would be
linguistically appropriate in this case. However, taking all such irregular
cases into account would require a fairly sophisticated stemmer. One could
also argue that “saw” belongs in the list of stopwords. But then, one should
keep in mind that “saw” need not be the past tense of “see,” it could just as
well be the noun “saw.” POS tagging could be used to resolve such issues.

The Porter stemming algorithm described in [Por80] is the classic stem-
ming algorithm used for stemming English text data for information retrieval
tasks. Now consider a new (nonsensical) example:

I will connect all the connected connections connecting this
connection.

After stopword removal and stemming, this becomes:

connect all connect connect connect connect

Here we see that this does not stem correctly in a strict linguistic sense, as
these words belong to different parts of speech. We have a verb (“connect”),
an adjective (“connected”), and a noun (“connection”). However, for text
mining purposes, it is probably appropriate to conflate all these different
words into one term, “connect,” which in this way ties this term very tightly
to the sentence [Kon06, IN08].

The Porter stemming algorithm was originally designed for the English
language. Thy Expert Finder will work mostly with Danish text, which
means it should use a Danish stemmer. Danish is grammatically complicated
with many inflectional irregularities, which makes stemming difficult. To give
an idea of some of the issues, consider the following English words with their
corresponding Danish translations italicized:
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a cat the cat some cats all the cats
en kat katten flere katte alle kattene

a duck the duck some ducks all the ducks
en and anden flere ænder alle ænderne

As can be seen, stemming Danish words is not just a simple matter of strip-
ping suffixes, a method that works relatively well for English. Still, Danish
stemmers are available, and for Thy Expert Finder, I have used the C++-
based Oleander Stemming Library [ole], which provides Porter stemmers for
several Western European languages.

After tokenization, stopword removal, and stemming, the original docu-
ment 835.txt shown in Figure 6.2 on page 42 now looks as shown in Figure
6.4. Note that the word “budget” from the original document has been er-
roneously stemmed to “budg.” This is because the suffix “-et” (along with
“-en”) is the Danish postfixed definite article. For example, “huset” (“the
house”) would be correctly stemmed to “hus.” Still, our preprocessing of this
small example has captured the fact that the terms “budgettering” (forecast-
ing) and “objekt” (object) are key terms in this piece of text data with three
and five occurrences, respectively.

6.2.5 Document Representation

In Thy Expert Finder, a document is represented by a C# class, Document,
which provides the intermediate interface for moving the documents from the
unstructured environment on the file system to the structured SQL Server
environment. Within the Document class, a document is transformed from

objek budgettering objek budgettering objek mul budget

ved budgettering sker direk projek objek tilknyt sti

servic vedligehold objek funktionalit tilføj knap

mellem setup pric ledetekst standard label dansk budg

engelsk forecast hjælpetekst

Figure 6.4: The document 835.txt after tokenization, stopword removal,
and stemming (extract).
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its initial plain-text representation to a vector representation, which is im-
plemented using a Dictionary<string, int> object. This is also known as
a “bag-of-terms” representation.

In this subsection, I give a description of most of the methods that con-
stitute the public interface of the Document class.

public Document(string docId, string docIdTxt)

This is the constructor. It takes two parameters, docId, which is the path
to the original document, and docIdTxt, which is a path to the equivalent
plain-text representation of the document. The system will work with the
plain-text representation. However, for presentation purposes, it will use the
original document.

public TokenStream Tokenize()

This method tokenizes the plain-text representation of the document. During
this process, it also performs stopword removal and stemming. It returns the
tokenized document as a TokenStream object. The TokenStream class is
provided by the Lucene Information Retrieval Library [luc]. It also saves the
tokens internally in the Document object as an array of bytes (byte[]) so
that it can reconstruct a new TokenStream object at any time.

public TokenStream GetTokenStream()

This returns a TokenStream object from the internal array of bytes created
by the Tokenize() method described above. It is necessary to recreate the
token stream because the TokenStream class does not provide a method to
reset a token stream.

public void SaveTokenStream()

This saves the token stream in plain-text format to disk in a separate direc-
tory. It is mostly intended for manual inspection and debugging purposes
during development of the system.
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public void BuildVector()

This method builds the vector representation of the token stream. The vector
is a Dictionary<string, int> object, which consists of a key/value pair for
each unique stemmed term in the token stream. The term is the key and the
number of times the term occurs in the token stream is the value.

public void InsertDocument()

Inserts the document vector values into the underlying database system.
Before insertion, this method also calculates the term frequency for each
term. The database table schemas are discussed in Section 6.3.

public int DeleteDocument()

This deletes the document vector values from the underlying database system
that correspond to the current document.

public void BuildDocument()

This is just a convenient shortcut method. It calls the following methods:
Tokenize(), BuildVector(), and InsertDocument().

public string GetTopKTerms(int k)

This returns a string containing the top k terms that are deemed “most
important” for the document. This is used for generating queries from a
document.

public static void UpdateMeasuresForAllDocs()

This is a static method that updates the corpus-wide term measures such
as document frequency and inverse document frequency. This is done by
calling a stored procedure to avoid a very large number of database calls.
This method must be called after all documents have been indexed.
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6.3 The Database

Two databases are maintained by the system. The terms-documents index
maintains an index of all terms that occur in the corpus along with informa-
tion about the documents in which they occur. This is called the unstructured
database, and it is described in Subsection 6.3.1. The structured database
maintains information about the employees and the number of hours worked
on documents. This is described in Subsection 6.3.2.

6.3.1 The Unstructured Database: The Terms-Docu-
ments Index

When we have preprocessed the documents and transformed them into vec-
tors, we want to place them in a structured environment so that we can use
traditional analytical tools, such as SQL, to analyze and query the unstruc-
tured data. “Unstructured database” is in a sense a self-contradicting term
because a “database” is a collection of structured data, thereby making it
“unstructured structured data” [IN08]. However, this is close to what we
are going to do; we have structured the unstructured data, and now we will
place it into a database, though maybe we should switch the terms and go
for “structured unstructured data.”

The document data is stored in a database table with the following
schema:

TermsDocuments schema =
(Term, DocId, Occurrences, DL, TF, DF, IDF, Relevance,
TFGlobal, OccurrencesGlobal)

A record represents the fact that a term occurs at least once in a document,
so Term is simply the (stemmed) text of the term, and DocId is a unique
identifier of the document in which the term occurs; I simply use the file-
name of the document as the DocId. Occurrences is the number of times the
term occurs in the document. DL is the document length, that is, the total
number of terms in the document. TF, DF, and IDF are the term frequency,
document frequency, and inverse document frequency, respectively, as de-
scribed in Section 3.2.1 on page 23. Relevance is the measure of how relevant
the document is to the term, and it is obtained by multiplying the term fre-
quency by the inverse document frequency. TFGlobal and OccurrencesGlobal
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Figure 6.5: Data from the TermsDocuments table (extract).

are the corpus counterparts to TF and Occurrences. For example, Occur-
rencesGlobal indicates how many times a term occurs in the entire corpus,
not just in one document.

An example of data in the table is shown in Figure 6.5, where the term
“styklist” has the highest relevance score. This makes good sense because
“stykliste” (bill of material) is a main topic of the document 504709 429.doc

with five occurrences, and the term appears in relatively few documents,
namely 21, as indicated by the document frequency score.

Querying the Terms-Documents Index

With the terms-documents index in place, we can query the index with a
set of query terms and retrieve a set of matching documents ranked by their
relevance to the query. For this purpose, Thy Expert Finder has the Query

class. I describe parts of its public interface in the following.

public string QueryTerms

A property used to get and set the basic terms to query.

public TokenStream Tokenize()

This method performs the same preprocessing tasks to the query string as
are applied to the documents, that is, tokenization, stopword removal, and
stemming. This ensures that the query terms and the document terms are
comparable. The method returns the token stream, which is primarily in-
tended to facilitate manual inspection during development.
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public TokenStream GetTokenStream()

As was the case with the Document class, the GetTokenStream() method re-
turns a new instance of the token stream created by the Tokenize() method.
This is necessary because a token stream cannot be reset.

public List<DocumentResult> RankDocuments()

This method connects to the SQL Server and executes the stored procedure
procDocumentsByRelevance shown in Listing 6.1. This procedure retrieves
a set of documents ranked by their relevance to the query. The method
returns this as a list of DocumentResult objects.

As an example, consider the query “styklister og underobjekter” (“bills
of material and sub-objects”). After tokenization, stopword removal, and
stemming, the string “styklist underobjek” is passed to the procedure. The
results of this query are shown in Figure 6.6.

There will be more to say about the Query class later in this chapter.

create procedure procDocumentsByRelevance

@QueryTerms nvarchar (max)

as

select top 10 DocId , sum(Relevance ) as Relevance from TermsDocuments

where Term in ( select * from stringList2Table( @QueryTerms ))

group by DocId

order by Relevance desc

Listing 6.1: Stored procedure procDocumentsByRelevance.

Figure 6.6: Hits to the query “styklister og underobjekter.”
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Figure 6.7: The extract-transform-load (ETL) process of document-
candidate association data.

6.3.2 The Structured Database: The Document-Can-

didate Associations

Now we turn our attention towards the structured database that is used for
the document-candidate association measure. The data must be extracted
from the Dynamics AX source system, transformed into a form appropriate
for Thy Expert Finder, and finally loaded into data stores where Thy Expert
Finder can easily get to it. This extract-transform-load (ETL) process is
illustrated in Figure 6.7.

The extract and transform parts of the ETL process are developed from
within the integrated Dynamics AX development environment using scripts
written in the Dynamics X++ programming language. The load part of the
process is developed using the C# programming language. The technical
details of this process have been omitted here, but the result are two SQL
Server tables with the following schemas:

Documents schema = (ActivityId, DocId)

HoursWorked schema = (ActivityId, EmployeeId, HoursWorked)

An example of data from the Documents table is shown in Figure 6.8.
Observe how activity 506895 has three records; one for each document with
which it is associated: one Microsoft Word document and two notes. Com-
pare this with the task management system’s main document form that was
shown for activity 506895 in Figure 2.3 on page 17. The Word document,
whose original filename was 835.doc, has been copied from its original data
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Figure 6.8: Data from the Documents table (extract).

Figure 6.9: Data from the HoursWorked table (extract).

store to the intermediate document storage, and its new filename has been
prefixed with the activity ID. The textual contents of the two notes were
stored directly in memo fields of the Dynamics AX database; they have been
written to text files and stored in the intermediate document storage with
filenames activityId notei.txt.

An example of data from the HoursWorked table is shown in Figure 6.9.
Here we see that two employees have been assigned to activity 506895 in the
past. Compare this to Figure 2.4 on page 18, which shows the individual
hours worked transactions. In the HoursWorked table, these transactions
have been summed and grouped by activity and employee. Employee “lsc”
has worked a total of 21 hours on activity 506895, and employee “mpo” has
worked a total of 2 hours on the same activity.

These two tables, Documents and HoursWorked, provide us with links
between activities and documents on the one hand, and links between acti-
vities and employees on the other. Thus, we can now see how activities tie
the unstructured data with the structured data, as was argued in Section
2.1 and illustrated in Figure 2.5 on page 19. We can obtain document-
candidate associations with an SQL view that joins the Documents table and
the HoursWorked table on their common ActivityId attribute. This view
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Figure 6.10: Querying the DocumentsCandidates view. Query: SELECT

* FROM DocumentsCandidates WHERE ActivityId = ’506895’

Figure 6.11: Modeling document-candidate associations for the documents
attached to activity 506895.

is defined in Listing 6.2.

The result of using this view in a query is shown in Figure 6.10, which
makes the relation between documents and employees explicit. We see that
both “lsc” and “mpo” are related to each of the three documents that were
assigned to activity 506895. In Figure 6.11, these relations are modeled using
the approach taken in Figure 2.6 on page 19.

create view DocumentsCandidates as

select Documents .DocId , HoursWorked .EmployeeId ,

HoursWorked .HoursWorked , Documents .ActivityId

from Documents

inner join HoursWorked

on Documents . ActivityId = HoursWorked .ActivityId

Listing 6.2: The DocumentsCandidates view.
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6.4 Data Exploration

Before we continue with the implementation details, it is worth taking a
closer look at the data, which has now been indexed by the system. This
section provides some statistical figures. Studying these figures is helpful
when trying to develop an understanding of the data we are dealing with.

6.4.1 Document Statistics

For this project, I have only used data from the Aalborg department of
thy:data. Documents with no associated employees are not indexed by the
system. A total of 1319 documents have been indexed; of these are 257
Microsoft Word files, and 1062 are textual notes. Document length statistics
are summarized in Table 6.1. Document length is the total number of tokens
in a document after stopword removal and stemming.

The first row in Table 6.1 summarizes the lengths of all 1319 documents.
However, a few extreme outliers (three documents of lengths 872, 2196, and
6827 tokens, respectively) distort the figures, so they have been removed from
the summary in the second row.1 Only 71 documents have more than 200
tokens, so in order to further reduce the skewness the third row removes these
as well. Here we have 1248 documents with a mean length of 41 tokens. This
distribution is shown graphically in Figure 6.12. This is still highly skewed to
the right, and we can see that a vast majority of the document lengths are in
the 1–50 range. The fourth row of Table 6.1 summarizes the 910 documents
in this range, which amount to almost 70% of the whole corpus. Figure 6.13
shows this distribution graphically.

6.4.2 Term Statistics

A total of 7585 unique stemmed terms have been indexed by the system.
Document frequency statistics are summarized in Table 6.2, whose bottom
row summarizes all 7585 terms. The stemmed term with maximum docu-
ment frequency is “opret” (“create”), which occurs in 377 documents. As
indicated by the first row in the table, 4086 (54%) terms occur in only one
document, and 1062 (14%) terms occur in two documents, as indicated by the

1Data is only removed from these statistical summaries in order to facilitate data

representation and interpretation. The data is still kept in the system.
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Std. Percentiles See
#Docs Min Max Mean Dev. 25th 50th 75th Skewness Figure

1319 1 6827 62 210 13 29 61 26.23 n/a
1316 1 571 55 74 13 29 61 3.02 n/a
1248 1 200 41 40 12 27 54 1.67 6.12
910 1 50 21 13 10 19 30 0.52 6.13

Table 6.1: Document length statistics.

Figure 6.12: A relative frequency histogram of documents consisting of at
most 200 tokens.

Figure 6.13: A relative frequency histogram of documents consisting of at
most 50 tokens.
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Std. Percentiles See
#Terms Min Max Mean Dev. 25th 50th 75th Skewness Figure

4086 1 1 - - - - - - -
1062 2 2 - - - - - - -
2015 3 20 6.84 4.43 3 5 9 1.29 6.14
354 21 100 42.35 21.08 26 35 52 1.2 6.15
68 101 377 152.34 60.08 113 123 181 1.89 n/a

7585 1 377 5.98 18.09 1 1 3 8.55 n/a

Table 6.2: Document frequency statistics.

Figure 6.14: The distribution of document frequencies in the 3–20 range.

Figure 6.15: The distribution of document frequencies in the 21–100 range.
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second row. At the opposite extreme, only 68 terms (0.9%) have document
frequencies greater than 100, as indicated in the fifth row of the table.

This leaves us with 2369 terms in the range 3–100, whose distribution is
highly skewed to the right, which is not really surprising for this kind of data.
Because of the skewness, this has been split up into two groups: one in the
3–20 range, which is summarized in the third row of Table 6.2 and shown
graphically in Figure 6.14; and one in the 21–100 range, which is summarized
in the fourth row of the table and shown graphically in Figure 6.15.

It could be worthwhile to consider some of the terms with very high
document frequencies and possibly include them in the list of stopwords.

6.4.3 Employee Statistics

There is a total of 28 employees who are associated with documents in the
Aalborg department. They have worked a total of 22754 hours on activities
to which there are associated documents. Hours worked on activities with
no associated documents do not provide us with useful information and are
not taken into account. No further details of employee statistics will be given
here, as this could be considered sensitive information.

6.5 Candidate Ranking

At this point, we are able to locate and rank documents relevant to a given
query. However, the documents are not our main concern, so now we take it
a step further in order to locate and rank candidates, that is, employees who
are most likely to be knowledgeable about the topic suggested by the query.

We pick up the Query class from where we left it in Section 6.3.1 to
present some more methods.

public static float DocumentCandidateAssociationScore

(string docId, string employeeId)

An important part of candidate ranking is the document-candidate associ-
ation scores a(d, ca) designed in Section 5.1 on page 35. A simple way to
implement a(d, ca) is this:

a(d, ca) = SELECT HoursWorked FROM DocumentsCandidates

WHERE DocId = d AND EmployeeId = ca
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create procedure procRankCandidates

@QueryTerms nvarchar (max),

@Lambda f loat

as

--- Get documents relevant to query terms

declare @RelevantDocs table (DocId nvarchar (max), Relevance f loat)

insert into @RelevantDocs

exec procDocumentsByRelevance @QueryTerms

--- Turn the list of query terms into a table with TFGlobal scores

declare @QueryTermsTable QueryTermsTableType

insert into @QueryTermsTable

select * from stringList2QueryTermsTable ( @QueryTerms )

--- Rank employees who have worked on the relevant documents

select EmployeeId , sum(dbo.ProbQGivenDProbDGivenCA (T.DocId ,

@QueryTermsTable , EmployeeId , @Lambda )) as Relevance

from DocumentsCandidates

inner join @RelevantDocs as T on DocumentsCandidates .DocId = T.DocId

group by EmployeeId

order by Relevance desc

Listing 6.3: Stored procedure procRankCandidates.

public List<CandidateResult> RankCandidates()

This method implements the modified TF-IDF approach for ranking candi-
dates, as designed in Section 5.2 on page 36. The relevance score is computed
for each candidate associated with at least one of the relevant documents.
The method returns a list of CandidateResult objects.

public List<CandidateResult> RankCandidatesLanguageModel

(double lambda)

As an alternative to the modified TF-IDF approach above, this method im-
plements the modified document language model approach as discussed in
Section 5.3 on page 37. This approach is more complicated and most of it is
implemented in SQL on the database server for efficiency. The method calls
the stored procedure procRankCandidates (see Listing 6.3) to do most of
the work. This makes use of the function probQGivenDProbDGivenCA (List-
ing 6.4) to calculate P (Q|d)P (d|ca), which in turn makes use of the function
jelinekMercer (Listing 6.5) to calculate (1 − λ)Pmle(t|d) + λP (t|D). Refer
back to Section 4.2 on page 30 to compare with the complete mathematical
details.

58



6.5 Candidate Ranking

create function probQGivenDProbDGivenCA

(@DocId nvarchar (max), @QueryTerms QueryTermsTableType readonly ,

@EmployeeId nvarchar (10), @Lambda f loat)

returns f loat

as

begin

declare @JelMerProduct f loat

declare @ProbDGivenCA f loat

--- Create a table holding the DocId

declare @DocTable table (DocId nvarchar (max))

insert into @DocTable values (@DocId )

--- Create a table of query terms , their TFGlobal scores , and the DocId

declare @TermsDocs table (Term nvarchar (max), TFGlobal f loat , DocId

nvarchar (max))

insert into @TermsDocs select * from @QueryTerms , @DocTable

--- Calculate the product of the Jelinek -Mercer scores , i.e., P(Q|d)

select @JelMerProduct = exp (sum(log(dbo .jelinekMercer(TF , T.TFGlobal ,

@Lambda ))))

from @TermsDocs as T

l e f t outer join TermsDocuments

on TermsDocuments.Term = T.Term and TermsDocuments.DocId = T.DocId

--- Multiply by P(d|ca) and return result

select @ProbDGivenCA = dbo. probDGivenCA(@DocId , @EmployeeId )

return @JelMerProduct * @ProbDGivenCA

end

Listing 6.4: SQL function probQGivenDProbDGivenCA.

create function jelinekMercer

(@TF f loat ,

@TFGlobal f loat ,

@Lambda f loat)

returns f loat

begin

declare @Result f loat

if @TF is null

select @TF = 0

select @Result = (1- @Lambda ) * @TF + @Lambda * @TFGlobal

--- Ensure we don ’t return a zero probability. Otherwise ,

--- we can ’t simulate Product aggregate with exp(sum(log(i)))

if @Result = 0

select @Result = 0.0000000001

return @Result

end

Listing 6.5: SQL function jelinekMercer.
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6.6 Demonstrating the System

A screenshot of the running system is shown in Figure 6.16. In the upper
part of the screen, you enter a query to search for, and you can specify which
candidate ranking approach is to be used. If you have a new document at
hand, you can have the system extract the top k terms that are deemed
relevant to the document. This is done by entering the document path in
the New Document text box and then clicking the Use Top k Terms button.
These k terms will then show up in the query text box where you can edit
them manually.

Click the Search button, and the employees deemed relevant to the query
are displayed in the middle left part of the screen, ranked by their relevance
with the top ranked employee at the top of the list. You can select an
employee and click the View Evidence button to see how many hours that
employee has worked on the documents that are deemed relevant to the query;
this is displayed in the middle right part of the screen. The documents are
ranked by their relevance.

You can then get more information about the relevant documents by
selecting one and then clicking the appropriate buttons. If you want to verify
the relevance of a document, clicking the Open Document button lets you
view the original document by executing an appropriate document viewer.
Clicking the Doc Stats button displays at the bottom of the screen the
document figures that were used for computing the relevance score.

6.7 Summary

This chapter provided implementation details of Thy Expert Finder. First,
it provided an important architectural overview. Second, preprocessing is-
sues were discussed. Preprocessing tasks such as conversion, tokenization,
stopword removal, and stemming are important in many text mining appli-
cations, and are thus of general interest. The preprocessing components may
be refined and reused for the present project as well as future text mining
projects. Third, the database stuctures were presented, which are more spe-
cific to this particular project. Fourth, the data indexed was examined to
get an idea of what we are dealing with. Fifth, the implementation of two
candidate ranking methods were presented, which included a few listings of
SQL code for some of the central parts. Finally, the user interface of the
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Figure 6.16: The main query form of Thy Expert Finder.

system was demonstrated.
As is often the case with software development, the most important part

of implementation documentation is the design of the data structures and
the representation of these. If the data structures are well designed and
documented, the required procedural logic will be much easier to write and
understand. This is also why I have used a considerable amount of space de-
scribing the data and data structures in this chapter, and less space describing
the processes that work with the data structures. The implementation is, of
course, subject to continuous efforts to make it more efficient, elegant, and
maintainable.
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Chapter 7

Evaluation

The previous chapter concluded with the presentation of a working expert
finding system. Thy Expert Finder takes a document or a query as input
and suggests employees that it deems relevant to the input. Some questions
remain: Are the suggested employees indeed relevant to the query? Is one
approach more effective than the other? In this chapter, I present some of the
standard techniques used for answering questions such as these in information
retrieval and expert finding research. I apply some of these to the present
project and discuss the possibilities of conducting further evaluation.

7.1 Measuring Retrieval Effectiveness

The perfect expert finding system would suggest only candidates that are
relevant to a query, and the highest ranked candidate would be the expert
on the given topic. However, as with the perfect information retrieval system,
the perfect expert finding system will never exist. This is because relevance
judgments of documents and candidates are inherently subjective—they de-
pend on the user posing the query. The exact same query could be posed by
different users, yet documents or experts that one user deems relevant may
seem irrelevant to another user [Hie01].

Nevertheless, some way of measuring the effectiveness of a retrieval system
is desirable. A typical starting point is a test collection of documents D and
a test collection of queries Q.1 For each query q ∈ Q, the documents have

1Throughout this section, I speak of documents when presenting measures of retrieval

effectiveness. The same principles apply when candidates are our main interest.
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Relevant Not Relevant Total

Retrieved A ∩ B A ∩ B B

Not Retrieved A ∩ B A ∩ B B

Total A A D

Table 7.1: Partitioning the document collection for a query.

been manually tagged as relevant or irrelevant. Then we can partition D

into two disjoint sets, the set A of documents that are relevant to q, and the
complement of A, that is, the set A of documents that are not relevant. After
having fed q to an information retrieval system and seeing the results, we can
likewise partition D into the set B of documents retrieved, and the set B of
documents not retrieved. These sets and their intersections are illustrated in
Table 7.1.

From these sets we can define various measures of retrieval effectiveness.
The precision of the results to a query is the percentage of the retrieved
documents that are actually relevant. It is defined as follows:

Precision =
|A ∩ B|

|B|
(7.1)

The recall measure is the percentage of how many of all relevant docu-
ments are retrieved from the collection. This is defined as follows:

Recall =
|A ∩ B|

|A|
(7.2)

Note that any retrieval system can easily obtain a recall score of 100%
simply by retrieving all documents from the collection, but this results in
very low precision. Conversely, by retrieving only the number one top ranked
document, there is a good chance for a precision of 100%, but then recall will
suffer. In general, aiming for a high precision requires a sacrifice in recall, and
vice versa. The challenge, of course, is to develop a system that provides high
precision while minimizing the drop in recall (or vice versa) [vR79, SKS06].

Precision and recall take all retrieved documents into account; they do
not distinguish between the rankings of the documents. However, it is im-
portant that relevant documents are ranked higher than irrelevant ones (false
positives). To take this into account, we can calculate precision at different
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cutoff points. We call these measures precision at N, or P@N for short, where
N is the cutoff point. This means that we only consider the top N ranked
documents returned.

A prerequisite for effective evaluation is to have a good test collection.
Furthermore, if different retrieval approaches for like scenarios are to be
compared, they should be tested with the same collection. For this purpose,
the Text REtrieval Conference (TREC) has provided test collections [tre]
that researchers can use to assess different methods for information retrieval,
expert finding, and other text mining tasks.

7.2 Evaluating Thy Expert Finder

For the present project, my test collection is the data from thy:data. In order
to apply the evaluation principles from above, a set of test queries is required
along with their relevant employees. Since I do not have the knowledge to
annotate employee relevance by myself, I did a few interviews with some
key employees at thy:data, asking them what keywords they think describe
some aspects of their expertise. Based on these interviews I then posed five
simple queries, fed them to Thy Expert Finder, and observed how well the
self-described experts ranked at different cutoff points. The results are shown
in Table 7.2 for P@1, P@3, and P@5. For the language model approach, I
set λ = 0.5.

Generally, these results indicate that the system is fairly accurate with
most results being above 60–70%. It may seem surprising that the TF-
IDF approach performs slightly better than the language model approach
because language modeling approaches are generally considered superior to
TF-IDF. Of course, this evaluation is not very extensive. To reach more
sound conclusions, a more extensive empirical study should be carried out,
but such studies consume much time and resources, and would ideally involve
the participation of thy:data people with intuitive knowledge of the data.

Approach P@1 P@3 P@5
TF-IDF 0.8 0.867 0.64
Lang. Model 0.4 0.733 0.6

Table 7.2: P@1, P@3, and P@5 for TF-IDF and document language model
approaches.
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However, the primary objective of the project was to facilitate expert
finding by utilizing structured and unstructured data. This objective has
been fulfilled. The approaches taken are based on previous results that have
performed well in empirical studies. This constitute the “subjective” aspect
of the project. By augmenting these approaches to take hours worked into
account, I have added an “objective” aspect. Given the assumption that
hours worked are correlated with level of expertise, we can safely incorporate
this measure when ranking the employees.

Nevertheless, I shall list some questions for which it might be useful to
carry out empirical assessments in future work:

• How is retrieval effectiveness affected by using hours worked for es-
tablishing document-candidate associations compared to using named
entity extraction?

• Would a combination of hours worked and named entity extraction
improve results?

• What is the optimum value of λ for the language modeling approach?

• Would it be beneficial to remove very short documents from the index?
What is the optimum cutoff document length?

7.3 Summary

This chapter introduced two of the most important measures for evaluating
retrieval effectiveness, namely precision and recall, as well as precision at
N for evaluating ranked retrieval. I conducted a simple evaluation of Thy
Expert Finder, which indicated fairly accurate rankings. As indicated by
the number of possible evaluation questions posed at the end of the previous
section, evaluation could make for an entire follow-up project itself. In-
terestingly, the TF-IDF approach seems to perform slightly better than the
language modeling approach. This is surprising because due to prior research
results the language modeling approach is generally considered to perform as
well as, or better than, the classic TF-IDF approach [PC98, Hie01]. Before
jumping to a conclusion about this, a more extensive empirical study may be
appropriate. However, the simplicity of the TF-IDF approach is attractive,
which could make it the future model of choice for a project like this.
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Chapter 8

Conclusion

In this chapter, I summarize and conclude on my results, and I point out
some directions in which the project can be taken in future work.

8.1 Results

I have documented the design and development of an expert finding system. I
introduced my industrial collaborator, thy:data, as well as their operational
task management system, which they use to keep track of, among other
things, employees, tasks, hours worked, task assignments, and unstructured
documents that describe tasks. I analyzed this environment in order to de-
termine relationships between structured data and unstructured data.

Furthermore, I analyzed previous approaches to expert finding in enter-
prise environments. These approaches typically consider only unstructured
enterprise corpora as well as lists of expert candidates. However, it is often
the case that companies maintain structured data that may indicate associ-
ations between documents and expert candidates. In this project, I utilized
one such type of structured data, namely hours worked. This way, it is
no longer necessary to rely on the assumption that candidate information
exists within the unstructured documents, an assumption that may not be
warranted in many situations.

My work has resulted in a fully functional stand-alone .NET application,
which given a document or a query suggests employees that have worked
on tasks described by similar documents. I conducted a simple evaluation,
which indicates that employees are ranked fairly accurately. However, a more
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extensive evaluation would be desirable. In any case, while a top ranked
employee for a query may not always be the one who will eventually be
assigned to a new task, the system provides enough information for managers
to explore historical data that is relevant to the query at hand. Thus, it is a
useful tool to help managers make qualified decisions when faced with new
tasks that need to be assigned to appropriate employees.

Currently, the system has only been fed with data from the Aalborg de-
partment of thy:data. As part of the restructuring process that was initiated
about a year ago in order to unify business processes across geographically
scattered departments, it would be interesting to feed data from all depart-
ments to the system. This way, managers in one department would become
aware of potential experts in other departments, and possibly consider rout-
ing new tasks to other geographical locations. This would further specializa-
tion and help maximize the use of expertise across the entire organization.

At this point in time, all indexed documents have, obviously, been written
without expert finders in mind. However, as people get used to the idea that
their documents will be indexed by an expert finder, certain conventions may
emerge. For example, it would be useful to include keyword sections in new
documents, which would readily make their way into the system. Besides
these possible changes in behavior, very little maintenance is required in
order to keep the system useful. Currently, the only maintenance job is to
periodically update the index, a process that could also be automated. This
is a significant improvement over a manually maintained expertise database.

8.2 Future Work

There are several opportunities for improving the components of the system
developed in this project. A list of evaluation questions was already pre-
sented in Section 7.2 on page 65, and other ideas were mentioned throughout
the thesis. In this final section, I summarize ideas for future work, both
previously mentioned ideas as well as new ones.

Modeling and evaluation considerations:

• Include named entity extraction into the document-candidate associa-
tions.

• Implement the document count measure (Section 5.4 on page 37).
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8.2 Future Work

• Conduct a more extensive evaluation. Ideally, this would involve know-
ledgeable key employees to assist with posing test queries and annotat-
ing the employees with relevance judgments.

Implementation considerations:

• Improve the Danish stemmer. Developing a good stemmer is a non-
trivial task. Even though the stemmer is just a single small compo-
nent of an overall system, the potential impact that the quality of the
stemmer has on the higher-level components should not be underrated.
Therefore, looking into algorithm designs specifically for Danish stem-
ming would be interesting and useful for this project and others dealing
with unstructured Danish content.

• Add more format filters such as PDF and Microsoft Excel files.

Organizational considerations:

• Currently, only the data from thy:data’s Aalbog department is indexed
by the system. As part of the organizational restructuring it would
be interesting to include data from all departments. This would help
coordinate human resources across the entire organization and route
tasks to the appropriate departments.

• Consider the fact that even though an employee may be the top ranked
expert to work on a given task, that employee may not have the time
required to take on the assignment. This calls for a solution that takes
into account not only the expertise level of employees, but also avail-
ability constraints.

User-interface considerations:

• Integrate Thy Expert Finder with the Dynamics AX task management
system so that the managers can fill out the assigned employee fields
of an activity by invoking Thy Expert Finder with a simple click on
a button on the activity form. This could be done through Dynamics
AX’s .NET connectivity capabilities. It could even be taken a step
further; it would be interesting to re-design the user interface of Thy
Expert Finder entirely within thy:data’s existing ERP system using
the Dynamics AX development environment. This way, it would be
easy to jump to basic information about the employees, departments,
activities, and documents that are related to the results of a query.
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• Consider the possibility of automatically feeding expertise information
back into the operational system, for example, into the Human Re-
sources module. One could imagine a knowledge map that for each
employee presents his top fields of expertise.

Other opportunities are related to business intelligence and the integra-
tion of structured and unstructured data through the use of data warehous-
ing, thereby linking topics to employees and number of hours worked. Such
an effort could provide us with analytical capabilities to answer questions
such as the following:

• On which topics do we spend most working hours?

• Given a topic, which department has the highest concentration of rele-
vant expertise?

• Do we have any lost skills? For example, maybe all employees who are
linked to a certain topic are no longer in the company.

70



Bibliography

[ax] Microsoft Dynamics AX Homepage. http://www.microsoft.com/
dynamics/ax/default.mspx.

[BAdR06] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for
expert finding in enterprise corpora. In Proceedings of ACM
SIGIR, pages 43–50, 2006.

[CHVW01] N. Craswell, D. Hawking, A.M. Vercoustre, and P. Wilkins.
P@noptic expert: Searching for experts not just for documents.
In Poster Proceedings of AusWeb, 2001.

[FS07] R. Feldman and J. Sanger. The Text Mining Handbook: Ad-
vanced Approaches in Analyzing Unstructured Data. Cambridge
University Press, 2007.

[Gue03] Lisa Guernsey. Digging for nuggets of wisdom. The New York
Times, October 16, 2003.

[Hea99] Marti A. Hearst. Untangling text data mining. In Proceedings
of ACL, 1999.

[Hie01] Djoerd Hiemstra. Using Language Models for Information Re-
trieval. PhD thesis, University of Twente, 2001.

[IN08] W.H. Inmon and A. Nesavich. Tapping into Unstructured Data:
Integrating Unstructured Data and Textual Analytics into Busi-
ness Intelligence. Prentice Hall, 2008.

[Kon06] Manu Konchady. Text Mining Application Programming. Char-
les River Media, 2006.

[luc] Lucene Information Retrieval Library. http://lucene.apache.org.

71



Bibliography

[ole] Oleander Stemming Library. http://www.oleandersolutions.com
/stemming/stemming.html.

[PC98] J.M. Ponte and W.B. Croft. A language modeling approach to
information retrieval. In Proceedings of ACM SIGIR, pages 275–
281, 1998.

[Por80] M.F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, July 1980.

[SC99] F. Song and W.B. Croft. A general language model for infor-
mation retrieval. In Proceedings of ACM CIKM, pages 316–321,
1999.

[SKS06] A. Silberschatz, H.F. Korth, and S. Sudarshan. Database System
Concepts, 5th Edition. McGraw-Hill, 2006.

[sno] Snowball Language for Stemming Algorithms. http://snowball.
tartarus.org.

[thy] thy:data Company Homepage. http://www.thydata.dk.

[tre] TREC Data. http://trec.nist.gov/data.html.

[vR79] C.J. van Rijsbergen. Information Retrieval, 2nd Edition. But-
terworths, 1979. http://www.dcs.gla.ac.uk/Keith/Preface.html.

[ZL01] C. Zhai and J. Lafferty. A study of smoothing methods for lan-
guage models applied to ad hoc information retrieval. In Pro-
ceedings of ACM SIGIR, pages 334–342, 2001.

72



Summary

Because of advances in storage technology, it is not uncommon that compa-
nies store very large amounts of historical organizational information. This
information consists of both structured data, such as repetitive numerical
data, and unstructured data, such as textual documents written in an ad
hoc manner.

In recent years, the accumulation of unstructured historical data has given
rise to expert finding systems, which are based on the idea that unstruc-
tured data represents the knowledge of the people who are associated with
it. Given a query topic, such a system suggests candidates ranked by how
likely they are to be experts on the topic. Expert finding systems usually
require a collection of documents and a list of candidates who are assumed
to be associated with the documents. Explicit associations are then formed
by analyzing the documents for occurrences of candidate information. For
example, if a name of a candidate appears in a document, then there is an
association between those two.

In this thesis, I document the design and implementation of such an expert
finding system. However, unlike most systems, I disregard the assumption
that associations can be derived from within a document collection itself.
Instead, I turn to structured historical data for associations between docu-
ments and candidates. More specifically, I consider the historical transactions
of working hours spent by employees on work tasks to which documents are
attached.

I introduce thy:data, a Danish software development company whose work
environment provides the three required types of data: documents, candi-
dates, and association measures. Their existing operational task manage-
ment system is analyzed, and the necessary data is identified. I also provide
the theoretical foundation upon which my design is built. This includes in-
formation retrieval techniques where I focus on the classic TF-IDF approach
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and the more recent language modeling approach. Then I present and discuss
how others have dealt with the problems of designing expert finding systems.
Common to these existing approaches is the assumption that associations can
be derived from within the document collections. Inspired by previous expert
finding approaches, I design two candidate ranking approaches: one based on
a modified TF-IDF ranking approach, and one based on a modified language
modeling approach.

An architectural overview of the system is provided. The structured data
resides in a Dynamics AX system, and the unstructured data resides partly
in this system and partly in Microsoft Word documents. The expert finding
system makes use of an extract-tranform-load (ETL) process to move the
data to an SQL Server environment where the documents are indexed. Pre-
processing tasks such as format conversion, tokenization, stopword removal,
and stemming are performed, all of which are described in some detail.

The database tables that store the indexed data are divided into two
main categories: the unstructured database, which stores a terms/documents
index derived from the unstructured document collection; and a structured
database, which stores information about which work tasks are attached to
which documents, as well as how many working hours the employees have
spent on the work tasks. From these two data sources, I derive document-
candidate associations, which are used to rank employees. Then I present
some statistical summaries of the indexed data in order to give an idea of
its characteristics. After the data structures have been presented in detail,
the implementation details of the candidate ranking processes are described
briefly, and an instance of the running system is demonstrated.

This project is pragmatic in nature; the purpose is to find an alterna-
tive to the occasionally unwarranted assumption that association data exists
within the unstructured documents. I perform an empirical assessment of
the retrieval effectiveness of my approach. The results show that my basic
approach is a promising alternative. Furthermore, I present some ideas of
what kind of future refinements might be worth evaluating.

To conclude, I point out that it is not always necessary to rely on the
assumption that document-candidate information exists within the unstruc-
tured document collection. In many organizations, there are advantages in
turning to the structured environment to find document-candidate associa-
tions in the form of, for example, hours worked.
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Resumé

Væsentlige forbedringer inden for lagringsteknologier har medført at virk-
somheder ofte opbevarer store mængder historisk information vedrørende
organisatoriske aspekter. Denne information best̊ar af b̊ade strukturerede
data, typisk i form af ensformige numeriske data, samt ustrukturerede data,
som for eksempel tekstdokumenter skrevet til forskellige form̊al.

I de senere år har denne ophobning af ustrukturerede historiske data
givet anledning til fremkomsten af ekspertlokaliseringssystemer. S̊adanne
systemer bygger p̊a idéen om at ustrukturerede data repræsenterer den viden
som mennesker tilknyttet dataene er i besiddelse af. Givet et emne vil et
s̊adant system foresl̊a kandidater rangeret efter deres sandsynlighed for at
de er eksperter inden for emnet. Ekspertlokaliseringssystemer forudsætter
typisk en samling af dokumenter og en liste over kandidater som formodes at
være tilknyttet dokumenterne. Herfra udledes eksplicitte forbindelser ved at
lokalisere information om kandidaterne i dokumenterne. Der er for eksempel
en forbindelse mellem et dokument og en kandidat hvis kandidatens navn
optræder i dokumentet.

I denne afhandling dokumenterer jeg design og implementation af et
s̊adant ekspertlokaliseringssystem, men i modsætning til de fleste andre syste-
mer, ser jeg bort fra formodningen om at sammenhænge kan udledes udeluk-
kende fra dokumentsamlingen. Jeg vender i stedet blikket mod ustruktu-
rerede data som udtrykker sammenhænge mellem dokumenter og kandidater.
Nærmere bestemt, s̊a inddrager jeg tidligere registrerede timetransaktioner.
Disse transaktioner angiver antallet af timer som medarbejdere har brugt p̊a
arbejdsopgaver der er tilknyttet dokumenter.

Jeg introducerer thy:data, et dansk softwareudviklingshus, hvis arbejds-
gange producerer de tre nødvendige typer data: dokumenter og kandidater
samt et m̊al for sammenhængen mellem dokumenter og kandidater. Jeg
analyserer thy:datas eksisterende administrationssystem og identificerer de
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nødvendige data. Yderligere præsenteres det teoretiske grundlag som mit
design bygger p̊a. Dette inkluderer informationssøgningsteknikker hvor jeg
fokuserer p̊a den klassiske TF-IDF-metode samt den nyere metode der an-
vender sprogmodellering. S̊a præsenteres og diskuteres hvordan andre har
grebet lignende problemstillinger an med udvikling af ekspertlokaliserings-
systemer. Fælles for disse fremgangsm̊ader er formodningen om at sammen-
hænge kan findes udelukkende fra dokumentsamlinger. Med inspiration fra
disse, designer jeg to metoder til rangering af ekspertkandidater: én baseret
p̊a TF-IDF og én baseret p̊a sprogmodellering.

Beskrivelsen af implementationen indledes med et overblik over systemets
arkitektur. De strukturerede data befinder sig i et Dynamics AX-system,
mens de ustrukturerede data befinder sig dels i AX-systemet og dels i filsys-
temet. Ekspertlokaliseringssystemet benytter sig af en udlæs-transformér-
indlæs-proces som overfører dataene til et SQL Server-miljø hvor dokument-
erne indekseres. Der foretages klargøring af de tekstuelle data ved hjælp af
formatkonvertering og opdeling i tegnenheder, stopord fjernes og resterende
ord reduceres til deres stamme.

De indekserede data lagres i databasetabeller som inddeles i to kategorier:
den ustrukturerede database opbevarer et ord/dokument-indeks; den struk-
turerede database gemmer information om tilknytning af arbejdsopgaver til
dokumenter samt tilknytning af arbejdsopgaver til medarbejdere. Fra de
to strukturerede datakilder udledes dokument-kandidat-sammenhænge som
bruges til rangering af medarbejdere. Herefter præsenteres nogle statistiske
sammendrag af de indekserede data for at give et indblik i dataenes sammen-
sætning. Implementeringsbeskrivelsen afsluttes med en demonstration af det
kørende system.

Projektet er overvejende pragmatisk. Form̊alet er at finde et alternativ
til den formodning som ikke altid er berettiget, nemlig formodningen om
at sammenhænge kan findes i de ustrukturerede dokumenter. Jeg udfører en
empirisk vurdering af systemets effektivitet, og resultatet viser at alternativet
er lovende.

Konklusionen er at man ikke nødvendigvis er afhængig af at dokument-
kandidat-sammenhænge kan findes i den ustrukturerede dokumentsamling. I
mange organisationer vil det ofte være muligt at finde brugbare alternativer
i det strukturerede miljø, som for eksempel registreret arbejdstid.
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