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The heart rate is modulated by the autonomic
nervous system. Heart rate variability is an ex-
pression of the amount of variation in heart rate.
A normal healthy atonomic nervous system, will
yield a continuous varying heart rate, hence analysis
of heart rate variability is a simple, noninvasive
method for the evaluation of the antonomic nervous
system. A major component of heart rate variability
is respiratory sinus arrhytmia, which is respiration
induced variation in heart rate. Therefore respiratory
information is needed in the analysis of heart rate
variability. Respiratory information can be obtained
using designated devices, but it can also be derived
from the electrocardiogram.

Several different methods for deriving respiratory
information from the electrocardiogram have been
published. In this thesis a selection of these methods
were implemented and evaluated. On three healthy
male subjects, a five mintue electrocardigraphic
signal was recorded simultaneously with a respi-
ratory air flow signal as a reference. Using each
method respiratory information was derived from
the electrocardigraphic signal. The duration of each
breath was identified in the surrogate signal and the
reference signal. The correlation between the series
of respiratory durations of the reference and the
derived signal was analysed.

For one of the methods for deriving respiratory
information from the electrocardiogram, it was
not possible to derive a feasible respiratory signal.
The rest of the methods all yielded signals that
significantly correlated with the reference signal
(p < 0.001, Pearson).

In conclusion the correlation between the majority

of the methods for deriving respiratory information

from the the correlation with the reference signal was

significant. This indicates, that further studies in the

use of electrocardigraphy derived respiration in the

context of heart rate variability studies are justified.
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Preface

This thesis has been prepared by Lasse Sohrt-Petersen in partially fulfilling the 4th
semester project of the master of Biomedical Engineering and Informatics at the
Department of Health Science and Technology at Aalborg University.

References in the thesis are stated according to the Vancouver-method, where the
boxed number e.g. [18] refers to the 18th article in the list of bibliography. Cita-
tions prior to a full stop only refers to the last sentence. However, if the citations
follow directly after a full stop it refers to the paragraph or section. Figures or
tables that are not originally created in context to this project are annotated with
the respective references to the source.

This thesis is organised as follows:

The initiating problem is presented in the Introduction. Part I of the thesis consists
of the analysis of the initiating problem, a synthesis of this analysis and finally the
Problem Statement.

Part II includes the problem solution. The requirements of the solution are formu-
lated based on the Problem Statement. Then the design and implementation of the
solution are described. Finally the results are presented.

Part III consists of a summary of the thesis. Here the results and the general pro-
cedures of the thesis are discussed and concluded upon. The thesis is accompanied
by a number of appendices.

This report was prepared by:

Lasse Sohrt-Petersen
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Chapter 1
Introduction

Respiration and heartbeat are physiological functions critical for life. They are both
modulated by fluctuations of the autonomic nervous system (ANS) and hence, they
both carry information which can be used to investigate the autonomic control of
the cardio-respiratory system. [15,37]

Allthough the heart is able to beat independently of any nervous or hormonal in-
fluences, the spontaneous rhythm of the heart, called intrinsic automaticity, can be
modulated by the ANS [33].

Over the last three decades studies have shown a significant relationship between
the ANS and cardiovascular mortality, including sudden cardiac death [41,45].

Various different methods are presently available to asses the status of the autonomic
modulation of the heart [45]. Among these methods, analysis of heart rate varibility
(HRV) has emerged as a simple, noninvasive method to evaluate the sympatho-vagal
balance [24,45].

HRV expresses the amount of variations of both RR intervals and instantaneous
heart rate. Generally a normal heart and a healthy ANS will yield a continuous
variation of the sinus cycle, thus reflecting a balanced sympatho-vagal state and a
normal HRV. A heart, that have suffered from myocardial necrosis will result in
sympatho-vagal imbalance, which will be reflected by a diminished HRV [45,46].

A major component of HRV is respiratory sinus arrhythmia (RSA). RSA is the
naturally occurring beat-to-beat fluctuation in heart rate that occurs during a res-
piratory cycle [27]. Therefore it appears to be important to determine at least the
average respiratory rate as a complementary information to heart rate in HRV ana-
lysis. The magnitude of RSA depends on respiratory rate. Hence, especially under
non-laboratory conditions, the magnitude of RSA cannot be used as a simple index
of vagal control. The respiratory rate is necessary for the correct interpretation of
the vagally mediated RSA and high frequency component of HRV. [15].

The respiratory signal can be recorded with techniques like spirometry, pneumogra-
phy, or plethysmography. These techniques require the use of cumbersome devices
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that may interfere with natural breathing, and which are unmanageable in certain
applications such as ambulatory monitoring, stress testing, and sleep studies. [7]

Another approach is to control respiration, by asking the subject to breath with
a specific pace, thus overruling the ANS by cortical inputs [27]. The key question
is now, how does controlled breathing affect RSA? It has been observed, that res-
piratory rate variability (RRV), the respiratory analogy to HRV, is present during
spontaneous breathing [27]. Evidence has shown, that while RSA is the modulation
of heart rate by respiration, spontanoues respiration is triggered by cardiac activity.
Thus the relationship between respiration and heart rate is bi-directional. [27]

Nonetheless, the joint study of the respiratory and cardiac systems is of great in-
terest and the use of methods for indirect extraction of respiratory information is
particularly attractive to pursue. Hence, it is most convenient to use a physiological
signal that does not alter respiration but is easily accessible and carries unambigu-
ous information about respiration.

ECG is one such signal.

Initiating Problem:

How can spontaneous respiration be derived from the ECG?

7



Part I

Problem Analysis
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Chapter 2
Overview of the Problem Analysis

In this part of the thesis, the initial problem will be analysed. The scope of the
thesis is to derive a surrogate respiratory signal from the ECG. Before this can be
done, some basic ideas and principles must be addressed.

In Chapter 3 the conducting system of the heart is introduced. The components of
the conducting system are presented and the path of an electrical impulse is traced
through the heart. It is this impulse, that forms the origin of the relevant biomedi-
cal signal, namely the ECG.

In Chapter 4 the ECG is presented. First an overview of the measurement of the
ECG and the appearance of the ECG is given. Another electromagnetic cardiac
signal, namely the vector cardiogram (VCG) is also introduced.

In order to extract respiratory information from the ECG, it is a prerequisite, that
respiration induces modulations of the ECG. The respiratory modulations of the
ECG are caused by a number of phenomena which are described in Chapter 5.

Chapter 6 introduces the concept of ECG derived respiration (EDR). The respi-
ratory induced modulations of the ECG, are exploited to produce a respiratory
surrogate. Various approaches have been presented in the literature. This chapter
will provide a literature review of the approaches, as well as the signal prepro-
cessing needed for their proper performance. Finally, the different approaches are
catagorised into groups of similar basic principle.

In Chapter 7, the problem analysis is synthesised and the problem statement of this
thesis is presented.
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Chapter 3
The Conducting System of the
Heart

In a normal heart beat, two types of cardiac muscle cells are activated. Contractile
cells provide the powerful contractions that propel the blood, while the specialised
muscle cells of the conducting system provide the coordination of the contractions.
Due to this coordination, the contractile cells pump blood in the right direction at
the right time [3].

Unlike skeletal muscle, the muscle cells of the cardiac conducting system contracts
spontaneous. This property is called automaticity or autorythmicity. The rate and
degree of contraction is controlled by the autonomic nerve system, ANS.

The conducting system consist of the:

• Sinoatrial node (SA node).

• Atrioventricular node (AV node).

• Atrioventricular bunde (AV bundle).

• Bundlebranches.

• Purkinje fibres.

In addition, conducting cells are found in the internodal pathways, which distribute
the contractile stimulus through the atrium from the SA node to the AV node. See
Figure 3.1.

Below the path of an impulse is traced through the conducting system of the
heart [3].

Each heart beat is initiated by an action potential generated by the SA node, also
called the cardiac pacemaker. The SA node is embedded in the posterior wall of
the right atrium. See 1 in Figure 3.2.
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Figure 3.1: Components of the conducting system [3, 37].

The SA node and the AV node is connected by the internodal pathways in the
atrial walls. The action potential travels through the internodal pathways in ap-
proximately 50 ms. Along the way the conducting cells stimulates the contracting
cells of both atria. The action potential then travel across the atrial surface by cell-
to-cell contact. This atrial stimulus is isolated from the ventricles by the cardiac
skeleton. See 2 in Figure 3.2.

The larger AV node is placed within the floor of the right atrium. The cells of the
AV node are smaller than the conducting cells of the atria. The causes the impulse
to slow down as it leaves the internodal path ways and enter the AV node. In ad-
dition to this, the conduction between nodal cells is less effecient than that of the
conducting cells. This delays of approximately 100 ms is important, as it allows the
atria to fully contract before the ventricles does. See 3 in Figure 3.2.

After the delay, the impulse is carried through the interventricular septum, along
the atrioventricular bundle and the bundle branches to the Purkinje fibres and the
moderator band. This process takes aproximately 25 ms. See 4 in Figure 3.2.

The moderator band stimulates the papillary muscles of the right ventricle. The
papillery muscles prevents backward flow of ventricular blood into the atrial cav-
ities by bracing the atrioventricular valves against prolapse. The Purkinje fibres
distrbutes the impulse to the ventricular myocardium and ventricular contraction
begins. Purkinje fibres conduct the impuls very rapidly. Within 50 ms, the impuls
has reached all ventricular cardiac muscle cells. See 5 in Figure 3.2.
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CHAPTER 3. THE CONDUCTING SYSTEM OF THE HEART

Figure 3.2: Impulse conduction through the heart. Yellow indicates activity in con-
duction components. Green indicates activity in contraction components. The figure
is modified from [3, 37].
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Chapter 4
The ECG Signal

The electrocardiogram (ECG) is a tool for evaluating the electrical conduction
through the heart. ECG is typically measured via electrodes on the surface of
the body. When the heart beats, a wave of depolarisation travels through the atria,
reaches the AV node, travels down the interventricular septum to the apex of the
heart, where it turns and spreads through the ventricular myocardium towards the
base of the heart. [37,48]

4.1 Placement of Electrodes and ECG Leads

A potential difference is measured between two points, so in order to measure a
ECG signal, a minimum of two electrodes must be placed on the subject. The
tracing of voltage between two electrodes is called a lead. Each lead produce a view
of the heart from a different angle. Most ECG configurations include the three limb
leads; lead I, lead II, lead III. The electrodes forming these leads are located on the
limbs. One on each arm and one on the left leg. [43].

• Lead I is the voltage difference (VI) between the left arm (LA) and the right
arm (RA).

• Lead II is the voltage difference (VII) between the left arm (LL) and the
right arm (RA).

• Lead III is the voltage difference (VIII) between the left leg (LA) and the
left arm (LA).

See Figure 4.1.

These leads form the basics of what is known as Einthoven’s lead system. According
to Kirchhoff’s voltage law, the limb leads have the following relationship:

VI + VIII = VII (4.1)

Conventionally, the lead vectors associated with Einthoven’s lead system are found
based on the assumption, that the heart, or more precisely the electrical center of
the heart, is placed in the center of a equilateral triangle known as Einthoven’s
triangle.The limb electrodes can be placed on the shoulders and umbilicus of the
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CHAPTER 4. THE ECG SIGNAL

Figure 4.1: The figure illustrates the three limb leads and the three augmented limb
leads. [39].

subject, thus producing the vertices of an equilateral triangle, having the heart lo-
cated at its center. [36]

Two types of leads exist; unipolar and bipolar. The limb leads (Lead I,II, and III)
are bipolar leads, as they have one positive and one negative pole. Unipolar leads
also have two poles, however, the negative pole is a composite pole. The composite
pole is called Wilson’s central terminal (WCT). WCT is composed by connecting
the limb electrodes RA, LA, and LL in a simple resistive network. This yields an
average potential, which approximates the potential at infinity. [37]

WCT =
1

3
(RA+ LA+ LL) (4.2)

Three additional limb leads called the augmented limb leads, utilises WCT to view
the heart from different angels, without adding physical electrodes to the body. The
three leads are called augmented vector right (aVR), augmented vector left (aVL),
and augmented vector right (aVF ). See Figure 4.1.

aV −R = RA− 1

2
(LA+ LL) =

3

2
(RA−WCT ) (4.3)

aV L = LA− 1

2
(RA+ LL) =

3

2
(LA−WCT ) (4.4)

aV F = LL− 1

2
(RA+ LA) =

3

2
(LL−WCT ) (4.5)

Leads I, II, and III, and augmented limb leads; aVR, aVL, and aVF, form the basis
of the hexaxial reference system, which is used to calculate the electrical axis of the
heart in the frontal plane. [43] See Figure 4.2.
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4.2. APPEARANCE OF THE ECG SIGNAL

Figure 4.2: Placement of the precordial electrodes across the chest. The limb leads
and augmented limb leads forms the electrical frontal plane of the heart. The pre-
cordial leads form the electrical horisontal plan of the heart. The figure is modified
after [43].

For measuring the potentials of the hearts electrical axis in the horisontal plane, six
electrodes can be placed directly across the chest. See Figure 4.2. These six elec-
trodes as positive references and WCT as negative reference, composes the leads
known as the precordial leads (V1, V2, V3, V4, V5 and V6). Due to the proximity to
the heart, the precordial leads do not need augmentation. [43]

The limb leads, the augmented limb leads and the precordial leads together form
the 12 lead system. Which is the most commonly used clinical ECG-system [36].

4.2 Appearance of the ECG signal

A typical ECG tracing of a normal cardiac cycle contains a P wave, a QRS complex,
and a T wave as seen on Figure 4.3. The small P wave indicates the depolarisation
of the atria. Contraction of the atria begin about 25 ms after the start of the P
wave. [37]

The P wave is followed by a delay mainly caused by the AV node. The QRS com-
plex appears as the ventricles depolarise. The magnitude of the QRS complex is
bigger than the P wave, because the ventricular myocardium is much bigger than
that of the atria. Ventricular depolarisation happens quickly because of the rapid
conduction of the action potential through the Purkinje fibers. The QRS complex is
a complex signal, mainly because the depolarisation spreads through relatively the
complex pathways. Ventricular contraction occurs shortly after the the R wave. [37]

The smaller T wave represents ventricular repolarisation. Atrial repolarisation is
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CHAPTER 4. THE ECG SIGNAL

concurent with ventricular depolarisation and does not appear in the ECG signal,
because it is masked by the QRS complex. After the T wave a smaller U wave
is some times apparent. It is hypothesised to be caused by the repolarization of
the papilaary muscles of the interventricular septum. U waves normally have a low
amplitude, and are most often completely absent. The baseline voltage of the ECG
is known as the isoelectric line. Typically the isoelectric line is measured as the
portion of the tracing from the end the T wave to the beginning of the next P wave
(in case of absent U wave). [37]

Figure 4.3: A sample of a normal ECG signal of a healthy subject. The most
common segments and intervals and the various waves are indicated. The figure is
modified from [37].

Assesment of the ECG signal include both the measurement of the magnitudes
of the voltage changes and the determination of the durations and temporal rela-
tionships of the various components. The durations between waves are generally
denoted segments or intervals. In general segments extend from the end of one wave
to the start of another; whereas intervals always include at least one entire wave.
Common intervals and segments are shown on Figure 4.3. For example:

The P-R interval is the duration from the start of atrial depolarisation to the start
of the QRS complex, rather than to R. This is because that in abnormal ECGs the
R peak can be difficult to determine. The Q-T interval indicates the duration of a
single cycle of ventricular depolarisation and repolarisation. Usually measured from
the end of the P-R interval, rather than from the bottom of the Q wave. [37]

4.2.1 Cardiac Electrical Vector

It can be assummed that the cardiac electrical generator of the heart is represented
by a dipole (the cardiac electrical vector) located at the center of a sphere represent-
ing the torso, thereby at the center of a equilateral triangle (Einthoven’s triangle).
Thus the voltages measured by the limb leads are proportional to the projections
of the cardiac electrical vector on the sides of the Einthoven’s triangle. See Figure
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4.2. APPEARANCE OF THE ECG SIGNAL

4.4. The assumption is that the origin of the electric cardiac vector is in the center
of the heart mass and remains there throughout the entire cardiac cycle and that
the magnitude and direction of the vector changes throughout the cycle. [36]

Figure 4.4: Einthoven’s triangle and the cardiac electrical vector.

4.2.2 Vectorcardiography

Since the electric generator of the heart can be described by the an dipole, the car-
diac electrical vector, it is natural to visually portray the electric generator of the
heart in vector form. The measurement and interpretation of the cardiac electrical
vector is called vectorcardiography. [36]

Basically the VCG is constructed by plotting the end point of the cardiac electrical
vector in a three-dimensional space over time. The cardiac vector is constructed
from three orthogonal leads, which are parallel to the axes of the three dimensional
space. These coordinate axes can be be either the body axes or the cardiac axes.
See Figure 4.5

Plotting the cardiac electrical vector forms loops in the three dimenstional space.
The VCG consist of three distinct loops, namely the P-loop, the QRS-loop and the
T-loop. Each loops respectively corresponds to the the p-wave, QRS-complex and
T-wave of the ECG.

When performing vectorcardiography, the main thing to consider is the distortions
that is caused by the boundary and internal inhomogeneities of the body. Simply
placing electrode pairs in the direction of a spatial line does not neccesarily yield an
equally oriented lead vector. To account for this corrected VCG lead systems have
been developed to perform an orthonormal measurement of the cardiac electric vec-
tor. Here orthonormal implies that the three measured components of the cardiac
electrical vector are orthogonal and parallel to the coordinate axes. Furthermore
the measured components are detected with the same sensitivty (the measurements
are normalised).

The most common corrected VCG lead system is the Frank lead system. The Frank
lead system utilises seven electrodes in a resistive network to construct the three
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CHAPTER 4. THE ECG SIGNAL

Figure 4.5: The basic principle of VCG. Three orthogonal axes (here the body axes)
are formed by three mutually orthogonal electrode pairs. The vector loop is projected
on the principle planes. [36]

orthogonal leads; X, Y, and Z, which is the components of the Back-to-front direc-
tion, right-to-left direction, and foot-to-head direction respectively [36].

Basically, the information content of the ECG and the VCG is the same. Roughly,
a uncorrected VCG can be formed of the leads V2, V6, and aV − F in the 12-lead
ECG system. More elaborate techniques to synthesise the VCG from the ECG and
vice versa have also been developed. In particular the inverse Dower transform
synthesise the Frank lead VCG from the 12 lead ECG [12]. See Appendix C.
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Chapter 5
Respiratory-Induced Modulations of
the ECG

When the aim is to derive or estimate a surrogate respiratory signal from the infor-
mation contained in the ECG signal, one have to observe the respiratory mechanisms
that induce modulations of the ECG. It is known that the respiratory activity in-
fluences the measurements of ECG in various ways [7].

It has been shown experimentally, that the filling and emptying of the lungs during
the respiratory cycle causes short term changes in thoracic impedance distribu-
tion [16]. The air that fills the lungs is a poor conducter compared to the different
types of tissue, that make up the thorax. It is therefor feasible, that the inspira-
tion of air increases the electrical impedance across the thorax. [17] A phenomenon
which forms the basis for impedance plethysmography (See section 12.1), which is
a method to measure respiratory activity [36].

Figure 5.1: Respiratory induced modulation of R-peak amplitude. The upper trace
is the ECG signal. The lower trace is a respiration signal measured by a pneumatic
respiration transducer [17].

The respiratory induced changes in thoracic impedance could lead one to conclude
that inspiration would always decrease ECG amplitude and expiration would in-
crease ECG amplitude. As can be seen in Figure 5.1. This is however not always
the case.
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CHAPTER 5. RESPIRATORY-INDUCED MODULATIONS OF THE ECG

ECGs recorded from the surface of the chest are also influenced by the relative
motion of the electrodes with respect to heart. The expansion and contraction of
the chest, which accompanies respiration, induces an apparant modulation in the
direction of the mean cardiac electrical axis which affects beat morphology. [17,29].

It has been experimentally shown that respiratory induced modulation of the electri-
cal axis is caused mainly by the motion of the electrodes relative to the heart, while
the thoracic impedance changes contribute to the electrical rotation as a second-
order effect [7].

These physical influences of respiration result in amplitude modulations of the ob-
served ECG [17]. Exemplified in Figure 5.1.

As described in the Introduction it is also well known that the ANS via RSA causes
heart rate to increase during inspiration and decrease during expiration [27]. How-
ever, by bypassing autonomic control with a pacemaker it has been shown, that the
mechanical action of respiration results in the same kind of frequency modulation
in the ECG spectrum as does RSA [29].

Figure 5.2 shows an ECG trace as well as the corresponding heart rate and respi-
ratory signal. It can be seen, that the heart rate and respiratory signal fluctuate at
a similar frequency.

Figure 5.2: Simultaneous ECG lead, heart rate, and respiration [7].

Figure 5.3 shows the magnitude squared coherence, |Γ(f)|2, between HR and respi-
ration. The magnitude squared coherence is a measure of the correlation between
two signals at a given frequency. It can be seen that signals are strongly correlated
at around 0.3 Hz [7].
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Figure 5.3: The Magnitude squared coherence, |Γ(f)|2, between the heart rate and
the respiratory signal corresponding to the signals of Figure 5.2 [7].
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Chapter 6
ECG Derived Respiration

Several methods for extraction of a respiratory signal from the ECG, ECG-Derived
Respiration (EDR), have been described in the literature. The EDR methods exploit
the respiratory induced changes of the ECG to provide a surrogate respiratory
signal, eg. a signal with varying amplitude corresponding to the different phases of
respiration. These surrogate signals should enable the estimation of the respiratory
rate and the temporal pattern of respiration. [28]

Some methods are based on respiration-induced variations in the beat-to-beat mor-
phology, others extract respiratory information from variations in instantaneous
heart rate. Also a combination of morphology and heart rate based methods have
been proposed. A literature review of different EDR methods is provided below.

6.1 Literature Review of EDR Methods

The earliest attempt to derive a respiratory signal from the beat morphology of the
ECG date back to 1974, when Wang et al. [47] proposed a technique for monitoring
the respiratory rate, using the respiratory induced varation of the angle of mean
electrical axis (AMEA) of the heart in relation to the body axes of the Frank-
lead VCG. Although this is not strictly an ECG derived respiration, the ECG can
be synthesised from the Frank-lead VCG and vice versa by means of the Dower
transformation matrix [12], see Appendix C.

In 1985 Moody et al. [17] presented a multi ECG lead approach that utilised the
AMEA. The AMEA was found as the arctangent of the ratio of the areas enclosed
by the QRS complex of two orthogonal ECG leads. After subtracting the baseline,
the areas was measured over a fixed windows in both ECG leads. The resulting
EDR was visually compared to a recording of chest circumference and similarities
between the two signals were reported.

Later Zhao et al. [23] quantified the correlation between the mean respiratory rate
derived from the AMEA EDR and a reference signal. The overall correlation co-
efficient was found to be 0.9977 and a paired t test indicated that there was no
difference between the mean respiratory rate derived from the EDR and the refer-
ence. In 1996 Caggiano and Reisman [8] investigated the effect of different QRS
area windows. Two windows with variable window width performed better than a
fixed width window, with correlation coefficents bewteen the resulting EDR and a
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6.1. LITERATURE REVIEW OF EDR METHODS

respiratory reference signal of 0.521 and 0.521 compared to 0.468. Measuring vari-
ations in AMEA have later been applied in sleep studies and HRV analysis [19,22].

In 2003 Leanderson et al. [30] presented a different method of exploiting the res-
piratory induced variation of the AMEA. Instead of measuring the ratio of QRS
areas in two ECG leads, estimation of the variation of AMEA was accomplished by
spatiotemporal alignment of succesive QRS-VCG loops with respect to a reference
loop. The alignment method was originally developed to cancel out respiratory
influence in the VCG signal, so that only morphologic variability of cardiac origin
remained [44]. The method provides three EDR signals, namely the three angles
constituting the rotation matrix that optimally describes the rotation needed to
align the current QRS loop with the reference loop. Later Bailón et al. [35] ex-
tended the method by introducing an exponentially updated reference loop. The
extended method proved to be more robust during stress testing [35].

Although the concept was previously mentioned [17,29], in 1992 Khaled and Farges
[34] was the first to exploit the simple principle of amplitude modulations of the
single lead ECG. They found a respiratory surrogate by plotting the amplitude of
the R wave with respect to baseline as a function of time. A qualitative comparison
between the EDR signal and a impedance rheography signal lead to the conclusion,
that the EDR signal was less sensitive to motion and cardiac artifacts.

In 1997 Felblinger et al. [31] used the same method to obtain a EDR signal, which
was compared with the position of the diaphragm in inferior-superior direction mea-
sured during breath-holding MRI. The correlation coefficients between the two sig-
nals was in the range r = 0.76 to r = 0.98. In a similar manner Dobrev et al.
98 [11] used single lead QRS complex peak-to-peak amplitude (the sum of the ab-
solut values of the R peak and the S peak) in apnea detection in infants. The
EDR signal was visually compared to a impedance respirogram from a commer-
cial cardiorespirograph. Again it was concluded that motion artefacts considerably
affected the impedance respirogram, while the EDR signal remained adequate for
apnea detection.

Mason and Tarassenko [38] compared the EDR signal from the R wave to baseline
and the R wave to S wave methods. A breath detection algorithm was used to
detect instances of respiratory onset in the two EDR signals. They found that the
R wave to S wave method was superior to the R wave to baseline method, with a
higher sensitivity (76.87% compared to 67.94%) and a higher positive predictivity
(56% compared to 48.59%).

In 2007 O’Brien et al. [40] modified the R-wave to baseline method. Instead of
interpolating the R-wave amplitudes at the occurence of the corresponding R-wave
in time, the amplitudes were interpolated evenly in time spacings corresponding to
the avereage heart rate of the given series. In a comparison with a simultanoues
inductance plethysmograph respiratory signal, the original and the modified met-
hods yielded similar correlation coefficients (r = 0.78 and r = 0.80 respectively).
The AMEA EDR of Behbani et al. [22] was also also compared, showing worse
correlation (r = 0.63). In 2007 O’Brien et al. [40] modified the R-wave to baseline
method. Instead of interpolating the R-wave amplitudes at the occurence of the cor-
responding R-wave in time, the amplitudes were interpolated evenly in time spacings
corresponding to the avereage heart rate of the given series. In a comparison with
a simultanoues inductance plethysmograph respiratory signal, the original and the
modified methods yielded similar correlation coefficients (r = 0.78 and r = 0.80 re-
spectively). The AMEA EDR of Behbani et al. [22] was also also compared, showing
worse correlation (r = 0.63).
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In 2003 de Chazal et al. [9], in an attempt to identify classifiers for the automatic
detection of obstructive sleep apnoea, produced an EDR signal from the area en-
closed by the baseline corrected ECG signal in a window of 100ms after the R wave.
In 2009 Arunachalam and Brown [6] used the ratio of the current R-wave amplitude
and the running average of the previous R-wave amplitudes to estimate a real-time
EDR signal.

Some EDR methods exploit the heart rate variability spectrum to derive respiratory
information. The underlying idea is that the component of the HR in the HF band
(above 0.15Hz) generally can be explained by respiratory sinus arrhytmia. Most
EDR algorithms based on HR information estimate the respiratory activity as the
HF component in the HRV signal and, therefore, the HRV signal itself can be used
as an EDR signal. To reduce HRV componets unrelated to respiration, the HRV
signal can be filtered. The signal of interest lies from 0.15 Hz to half the mean
HR expressed in Hz, which is the highest meaningful frequency since the intrinsic
sampling frequency of the HRV signal is given by the HR. [7]

The HRV signal is based on the series of beat occurrence times, obtained by detec-
tion of QRS complexes. A preprocessing step is needed in which QRS complexes are
detected. Several definitions of signals for representing HRV have been suggested,
for example, based on the interval tachogram, the interval function, the event series,
or the heart timing signal. [7].

The presence of ectopic beats, as well as missed or falsely detected beats, results
in fictitious frequency components in the HRV signal which must be avoided. Met-
hods for deriving the HRV signal in the presence of ectopic beats based on the heart
timing signal are available [20].

In 2002 Yi and Park [50] presented a method that did not rely on the detection of
the QRS complex or any other salient point in the ECG. The principle was to isolate
the components corresponding to the respiratory frequency band in the ECG signal.
A discrete wavelet transform was applied to a lead II ECG signal. The EDR was
found as the reconstruction of the detail signal of the 9th decomposition. The ECG
was sampled at 200Hz, which means, that the detail signal of the 9th decomposition
correspond to 0.2 − 0.4Hz. The instaneous respiratory rates were extracted from
the EDR and a respiratory airflow signal. The correlation between the two was
reported as high (r < 0.9).

Later Boyle et al. [21] compared different wavelet decomposition methods, band-
pass filtering methods, and HRV based methods. The mean respiratory rate was
detected in the resulting EDR signals and compared to the mean respiratory rate
detected in a reference signal. The methods that performed the best was filtering
in the passband to 0.2 − 0.8Hz (mean error < 20%) (no specific characteristics of
the filter was mentioned) and combination of the HRV method and the 0.2−0.8Hz
bandpass method (mean error < 20%). The EDR methods with the worst perfor-
mance yielded a mean error of around 50%.

Some methods derive respiration from the ECG by exploiting both beat morphology
and HR. This process is based on the construction of a multichannel EDR signal.
By crosscorrelating the power spectra of the EDR signals based on beat morphology
and the heart rate based spectrum, the components unrelated to respiration can be
reduced [30].

Another approach involves the use of adaptive filters which attenuates uncorrelated
noise in two input signals, while common components are enhanced. E.g. the res-
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piratory signal can be estimated by an adaptive filter applied to a series of RR
intervals and the corresponding series of R wave amplitudes. [26]

6.2 Categorisation of the EDR Methods

This section will attempt to group the various published EDR methods into six
distinct catagories. This is done to provide a common denominator to groups of
EDR methods based on similar principles. This will form a nomenclatur that will
be used through the remainder of this thesis.

The entries in each catagory are listed in chronological order according to publi-
cation date. Thus, the first publication of any given EDR principle is listed first,
together with a short summary of the principle. Later methods are listed subse-
quently, with a short summary of the modification of the original principle.

6.2.1 Multiple Lead Methods Based on Variations in Angle
of Mean Electrical Axis

Respiratory induced rotation of the mean electrical axis of the heart (AMEA) can
be used to derive respiratory information from the ECG by tracking the angle
between AMEA and a reference. The approach requires at least two approximately
orthogonal ECG leads.

• Moody 1985 [17] AMEA. The arctangent of the ratio of the QRS areas mea-
sured in a fixed window of two orthogonal, baseline subtracted ECG leads.

• Zhao 1994 [23] AMEA. Fixed QRS area window. Leads: lead I and lead III.

• Caggiano 1996 [8] AMEA. Three QRS area windows: 1) Window width in-
dependently fixed on each lead. 2) Window width independently variable on
each lead. 3) Window width variable on one lead, the area of the other lead
was measured in the same time interval.

6.2.2 Single Lead Methods Based on R-wave Amplitude or
QRS Area

One of the simplest approaches is the interpolation of R-wave amplitudes or area of
QRS complexes. This principle can be carried out on single lead ECG. The different
methods vary mostly in the preprocessing of the ECG signal and in the choice of
ECG-lead/electrode placement.

• Khaled 1992 [34] R-wave amplitude with respect to baseline. Electrode place-
ment: V2 and V3. Preprocessing: 8th order bandpass filter (Fc = 2.5 and
25Hz).

• Felblinger 1997 [31] R-wave amplitude with respect to baseline. Electrode
placement: V2 and V3. Preprocessing: Bandpass filter (Fc = 15 and 21Hz).

• Dobrev 1998 [11] R-wave amplitude with respect to S-wave. Preprocessing:
1st order highpass filter (Fc = 5Hz), 2nd order lowpass (Fc = 40Hz).
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• Mason 2001 [38] R-wave amplitude both with respect to baseline and S-wave.
The S-wave was defined as the minimum value in a window of 0.1 seconds
after the R-wave. Preprocessing: Highpass filtering.

• de Chazal 2003 [9] Area enclosed by baseline corrected ECG in the region
100ms following the the R-wave. Baseline correction: 200ms median filter
to remove QRS complexes and P-wave, followed by 600ms median filter to
remove T waves. The resulting signal was subtracted from the original ECG
signal.

• O’Brien 2007 [40] Two versions of R-wave amplitude with respect to baseline
and one AMEA method. One where the R-wave amplitude is interpolated
at the time instances of the R-wave and one were the R-wave amplitudes are
interpolated evenly in time spacings corresponding to the average heart rate.
Electrode placement: V5 for R-wave EDR and lead I and II for the AMEA
EDR. Preproccesing: 20th order, high pass, linear phase, FIR filter, with
Kaiser window (β = 4) (Fc = 0.05Hz).

• Park 2008 [42] Area enclosed by the QRS complex in a 60ms window. Prepro-
cessing: 50/60Hz notch filter. Baseline-wander was removed by subtracting
the output of a 0.556ms median filter from the notch filtered ECG signal.

• Arunachalam 2009 [6] Ratio of current R-wave amplitude and a running av-
erage of R-wave amplitudes. Preprocessing: 2nd order IIR notchfilter (60Hz
Q = 14) and 2nd order Butterworth lowpass filter (Fc = 60Hz Q = 14).
A baseline signal found using T-P knot interpolation is subtracted from the
lowpass filtered ECG signal.

6.2.3 Methods based on heart rate

The heart rate varies as a function of respiration. This can be exploited to extract
respiration.

• Womack 1971 [49] Estimation of the time of occurence of breaths by filtering
of the instantaous HR series.

• Correra 2008 [25] Respiration represented simply as the RR-tachogram.

6.2.4 Methods Based Discrete Wavelet Transform and Band-
pass Filtering

A simple and intuitive approach is to investigate the ECG signal content corre-
sponding to the respiratory frequency band. The methods is applicable to single
lead ECG recordings.

• Yi 2002 [50] Discrete wavelet transform and reconstruction of the detail signal
of the ninth decomposition, corresponding to the frequency band 0.2−0.4Hz.

• Boyle 2009 [21] Discrete wavelet transform and bandspass filtering. Biorthog-
onal spline wavelet decomposition: Reconstruction of detail signal of ninth
decomposition (corresponding to frequency band: 0.3 − 0.6Hz) and the sum
of reconstruction of approximation signal of eighth decomposition and recon-
struction of detail signal of ninth decomposition (corresponding to frequency
band: 0.0− 0.6Hz). Bandpass filtering: 0.2− 0.8Hz and 0.2− 0.4Hz.
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6.2.5 VCG Methods Based on Variations in Angle of Mean
Electrical Axis

The basic principle is to exploit a QRS-VCG loop alignment method to produce
EDR signals corresponding to the rotation matrix needed to align QRS loops with
a referenceloop. The method have proved superior to methods based on heart rate
and and two lead AMEA variation [35].

• Leanderson 2003 [30] QRC-VCG loop alignment with a predefined reference
loop. The EDR signals results from the angels of the rotation matrix that
optimally aligns the QRS loop with a reference loop.

• Bailón 2003 [35] QRC-VCG loop alignment with a exponentially updated
reference loop.

6.2.6 Combinative Methods

Methods deriving respiration from a combination of beat morphology and heart rate
variability.

• Varanini 1990 [26] Adaptive filtering of a R-wave EDR and a hear rate based
EDR.

• Orphanidou 2009 [14] Spectral fusion of EDR signals based on HRV and
baseline wander.

• Boyle 2009 [21] EDR signal formed by the average of EDR signals based on
HRV and baseline wander.
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Chapter 7
Problem Statement

7.1 Synthesis

HRV has been used extensively as a non-invasive tool to asses the influence of the
ANS on the cardiovascular system [41]. A component of HRV is RSA, the instanta-
neous modulation of the heart rate caused by respiration. However, the relationship
between respiration and heart rate is bidirectional [27]. Temporal variations in res-
piratory rate (RRV) is observed during spontaneous breathing. The RRV is caused
by feedback mechanisms in much the same way that beat-to-beat heart rate fluc-
tuations reflect different feedback mechanisms in cardiovascular control [15]. It has
been demonstrated, that cardiac timing can be a significant determinant of RRV,
altering breath-to-breath respiratory frequency. However, compared to HRV, RRV
has received far less attention. [15,27]

Attempts to uncouple these interrelationships in human experimental subjects have
relied on pharmacological intervention, physical interventions such as altering body
position, electrically stimulating the heart and the voluntary control of respiratory
activity. [27]

With respect to controlled respiratory activity, the key question that remains unre-
solved is what does this do to RSA? Since controlled respiration removes the possible
influence of cardiac activity on respiratory timing, we have disrupted the normal
bidirectional system of which RSA is only a component outward manifestation.

This yields the need for respiratory measurement. It is possible to derive a surrogate
respiratory signal from the ECG. Respiratory induced amplitude and frequency
modulations of the ECG is caused by a combination of three different phenomena
[28]:

• Respiratory induced modulation of the heart rate (RSA) leading to a frequency
modulation of the ECG.

• The filling and emptying of air in the lungs leads to changes in the transtho-
racic impedance which lead to an amplitude modulation of the ECG.

• The mean electrical axis of the cardiac vector changes its direction during
respiration, leading to both an amplitude modulation and a frequency modu-
lation of the ECG.
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The respiratory induced modulations of the ECG can be utilised to derive respira-
tory rates from the ECG, socalled ECG derived respiration (EDR). Several algo-
rithms to do so have been published. Generally the algorithms can be divided into
the following catagories [7]:

• EDR algorithms based on beat morphology, including:

– Single Lead Methods Based on R-wave Amplitude or QRS Area

– Multiple Lead Methods Based on Variations in Angle of Mean Electrical
Axis

– VCG Based Methods Based on Variations in Angle of Mean Electrical
Axis

– Methods Based Discrete Wavelet Transform and Bandpass Filtering

• EDR algorithms based on heart rate variabilty

• EDR algorithms based on a combination of beat morphology and heart rate
variability

The different EDR methods all have their advantages and disadvantages. In general,
EDR algorithms based on beat morphology are more accurate than EDR algorithms
based on HR information. Some of the algorithms can estimate respiration from
single lead ECG, while other require multiple leads. Some methods are a very ac-
curate during sleep studies, while others prove robust during stress testing. [7] In
conclusion; the choice of a particular EDR algorithm depends on the application.

This leads to following problem statement:

7.2 Problem Statement:

How can the performance of EDR methods in the estimation of spontaneous respi-
ration in relation to the study of HRV be evaluated?
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Part II

Problem Solution
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Chapter 8
Solution Strategy

Part II of the thesis will be the problem solution, which is based on the problem
stated in section 7.2. The problem solution will consist of five stages: ”Require-
ments”, ”Preprocessing”, ”Algorithms”, ”Evaluation”, and ”Results”,.

The ”Requirements”-stage consist of two sections, namely a generic description of
the solution and a specification of the requirements of the solution. The require-
ments are formulated based on the problem statement.

The ”Preprocessing”-, and ”Algorithms”-stage include the selection and description
of EDR algorithms that should meet the specified requirements and their required
preprocessing. The selections is based on papers published in journals and books.
The aim has been to apply several acknowledged and some newly published met-
hods to investigate their performance in this application. The articles are collected
from database searches mainly on: Pubmed and Google Scholar. [2, 5]

In the evaluation of data processing algorithms it is reasonable to choose a develop-
ment environment in which algorithms are easily implemented and results are easily
visualised. In this thesis, the implementation of the algorithms will be performed in
MatLab. MatLab is a high-level language and interactive environment for numerical
computation, visualisation, and programming [4].

The fourth and the fifth stage, Evaluation and Results, focuses on the evaluation of
the algorithms. This includes a reference signal and performance measures. Finally
the result of the evaluation is presented.

The problem solution will be aided by a of pilot study which can be found in Ap-
pendix B.

Two sets of ECG was used in this thesis. A database set from [13] was used in the
implementation face, while a ECG was collected as a part of the thesis to be used
in the evaluation of the algorithms. See Appendix A.
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Chapter 9
Requirements

In this chapter the outlines of the solution to be produced through this project is
described and the requirements to the solution are specified.

9.1 Solution Description

In chapter 7 it is stated that several methods for deriving a respiratory waveform
from the ECG exist. The scope of this thesis is to evaluate and compare the perfor-
mance of a number of these EDR algorithms. Generally the solution of this problem
consist of two stages. First the EDR algorithms have to be identified and imple-
mented. Secondly they have to be evaluated against some kind of ’gold standard’
respiratory signal.

The first phase of the solution deals with the implementation and tuning of the
EDR algorithms. This include the proper preprocessing of the ECG signal and the
selection of ECG signals that is ought to meet the requirements stated below. The
second stage, the evaluation stage, deals with the identification of a proper ’gold
standard’ reference signal and a number of performance measures. Finally the re-
sults are presented.

9.2 Specification of Requirements

The general objective of this thesis is to evaluate the performance of a number of
EDR algorithms in the context of heart rate variability studies. The requirements to
the solution is reflected by this. The EDR algorithms should be able to be perform
adequately on ECG data that could have been recorded during a typical HRV study.

In response to a growing recognition of HRV as a indicator for the relationship
between the autonomic nervous system and cardiac mortality, The Board of the
European Society of Cardiology and The North American Society of Pacing and
Electrophysiology established a Task Force with the responsibility of developing ap-
propriate standards of nomenclature and methods of measurements in the research
of HRV. The Task Force was established in 1994 and the were published in 1996 [41].
The recommendations of the standards will form the basis of the requirements to
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the problem solution in this project.

Generally two kinds of HRV analysis recordings are recommended: Long term re-
cordings and short term recordings. Short term recordings are carried out over 5
minutes and enables analysis of three distinguished spectral components: very low
frequency (VLF ≤ 0.04Hz), low frequency (LF: 0.04−0.15Hz), and high frequency
(HF: 0.15 − 0.4Hz). Long term recordings are carried out over 24 hours and in
addition it enables an ultra low frequency component (ULF ≤ 0.015Hz). The ULF
component reflects variability that can be assigned to circadian rythm, while the HF
component is the one affected by respiration. Therefor the short term recordings
will be the scope of this project. [41]

In order to localise the fiducial point in HRV analysis (commonly the QRS complex),
it is satisfactory that the ECG recording equiptment follow voluntary standards in
terms of SNR, common mode rejection, bandwidth etc. A low sample rate may
cause significant jitter in the localisation of the R wave, which alter the spectrum
significantly. The sample rate should optimally be in the range 250 − 500Hz. If
lower, the R wave should be refined by means of interpolation. In this case, even
sample rate of 100Hz could be sufficient. [41]

It is reported, that baseline and trend removal may effect the lower components in
the spectrum. The frequency response of any filter should be checked in order to
verify, that spectral components of interest are not significantly affected. Short term
recordings containing ectopic beats, arrhytmic events and missing data should be
not be used. How ever, such an discremination could introduce significant selection
bias of the data. [41]

Under short term recordings, the physical activity, emotional circumstances and
recording environment should be controlled and described. And the recording en-
vironment of individual subjects should be similar.

Finally, since the context of this thesis is the study of HRV, the EDR methods can-
not be based on the respiratory variability of heart rate. That is, the EDR should
be based on beat morphology alone.

System Requirements

In summary, the evaluation of the EDR algorithms should be performed on data
that satisfies the following:

• The ECG should be recorded on equiptment that satisfy voluntary standards.

• The sample rate should be ≥ 500Hz or the data should be interpolated to
enhance the fiducial points in the ECG.

• The recordings of should be of 5 minute duration.

• The environment of the recording should be controlled, physiological stable
and similar for all subjects.

And:

• The EDR algorithm cannot be based on hear rate information.
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Chapter 10
Preprocessing

Before a respiratory signal can be derived from the ECG, an array of preprocessing
procedures has to be performed on the signal. These procedures include filtering
the ECG, and for some EDR algorithms, detection of the QRS complexes.

10.1 Filtering the ECG Signal

A crucial task in ECG signal processing is to denoise the signal of interest. In
this thesis, the challenge is to filter out noise, while keeping variations in the ECG
caused by respiration. [40] Several sources of noise that can corrupt the ECG signal
exist. Common sources of noise include powerline interference, electrode contact
noise, EMG noise, motion noise, and baseline wander. [48]

In order to better understand the wanted and unwanted components of the ECG
signal, the composite amplitude, R(t), of a detected R-wave can be modelled as [6]:

R(t) = r · a(t) + nP (t) + nH(t) + nG(t) + b(t) (10.1)

where r is the true R-wave amplitude during the resting phase of a normal tidal
breath, a(t) is the amplitude modulation due to respiration, nP (t) is narrow band
noise due to power line interference, nH(t) is other high frequency noise due to EMG
etc., nG(t) is zero mean Gaussian white noise, and b(t) is baseline offset and -wander.

The challenge now lies in finding en estimate of a(t) in order to estimate the respi-
ration.

The baseline wander, b(t), is caused by respiration [14], but baseline drift can also be
assigned to temperature variations [18]. Due to the relation between baseline wander
and respiration, it is important not attenuate baseline wander too agressively. The
experimental ECG signal in this thesis was recorded with equiptment containing in-
ternal analouge filtering, with a passband from 0.05Hz to 120Hz [1](See Appendix
A). The high-pass cut off frequency of 0.05Hz was deemed sufficient to eliminate
unwanted baseline wander, while preserving respiratory information. This assumes
that the lowest breathing frequency is 3 breaths per minute (normal breathing fre-
quency in resting adults is 12 to 20 breaths per minute (0.2Hz to 0.33Hz). See
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appendix D).

Powerline interference, nP (t), can be caused by improper grounding of the ECG
recording equiptment or interference from surrounding electronic equipment. [18]
An example of powerline interference is clearly visible in Figure 10.1, which shows a
unfiltered ECG-sample and its corresponding single-sided amplitude spectrum. In
the amplitude spectrum a spike is clearly visible at 50Hz.

Figure 10.1: A sample of ECG contaminated with 50Hz powerline interference and
the corresponding single-sided power spectrum.

The powerline interference is reduced using a 50Hz 2.−order IIR notch filter. After
filtering in the forward direction, the filtered sequence is then reversed and run
back through the filter using the filtfilt-function in MatLab. The result of this
operation can be seen in Figure 10.2.

Figure 10.2: A sample of ECG after notch filtering. The powerline interference has
clearly been reduced and the single-sided power spectrum no longer show a spike at
50Hz. The reduction in powerline interference reveals a unwanted noisy event (just
after 101.5 seconds)

The remaining noise sources like EMG noise, nH(t), and zero mean Gaussian white
noise, nG(t), is reduced with a 2.−order Butterworth low-pass filter with a cut-
off frequency of 40 Hz. Like the notch filter, the low-pass filter is called with the
filtfilt-function in MatLab. The combined result from the notch filter and the
lowpass filter can be seen in Figure 10.3.
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Figure 10.3: A sample of ECG after the combined notch filtering and lowpass filter-
ing. The undetermined noise visible in Figure 10.2 has been reduced and the signal
has been smoothened

10.2 QRS Detection

The majority of the EDR algorithms require the detection of a salient point in the
ECG wave form, which can be found consistently on each beat. The feature most
easily identified in the ECG is the QRS complex. Several QRS detectiong algo-
rithms have been presented in the literature [18].

In this thesis, a modification of the Hamilton-Tompkins QRS detector will be imple-
mented. The Hamilton-Tompkins QRS detector has shown a sensitivity of 99.69%
and a positive predictivity of 99.77% [32], which makes it one of the most robust and
proven QRS detector algorithms. The original QRS Hamilton-Tompkins detector
consist of a two stages:

• Stage 1. A preprocessing stage including filtering, differentiating, squaring,
and time averaging. The role of this stage is to enhance the enhance and
isolate the QRS complex and is not to be confused with the preprocessing in
Section 10.1. Stage 1 is summarised in Figure 10.4.

• Stage 2. A series of heuristic decisions rules which operates on the output of
stage 1, in order to locate the QRS complexes in the original filtered ECG
data.

See Figure 10.5 for the relationship bewteen the two stages of the QRS detector
and the EDR preprocessing stage mentioned in Section 10.1.

Figure 10.4: Filter stages of the QRS detector. x(n) is the input signal, b(n) is the
signal normalised to ±1, f(n) is the band pass filtered signal, d(n) is the signal after
differentiation, s(n) is the signal after squaring, and y(n) is the signal after time
averaging.
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Figure 10.5: Overview of the combined filter and QRS detection stages. The noisy
ECG is preprocessed two times seperately. Firstly to reduce non respiratory informa-
tion (Preprocessing) and secondly to enhance the location of QRS complexes (QRS
detection Stage 1). The output of the QRS detection Stage 1 is a signal indicating
the proximity of a QRS complex. In QRS detection Stage 2 this proximty informa-
tion is used to perform a search back for peaks in the output of Preprocessing. This
yields a clean ECG signal and the location of the QRS complexes of said signal.

10.2.1 QRS Detection - Stage 1

In the following, the steps of stage 1 of the QRS detection is explained. Figure 10.6
show the output of each step. (a) is the raw ECG signal. The original Hamilton-
Tompkins QRS detector was developed for a sampling rate of 128Hz [32]. Many of
the filterprocesses has been modified to accomdate a sampling rate of 500Hz. Each
of the steps induce a delay.

Plot (b) show the output of the band pass filter. The band pass filtering is performed
by cascading a low pass FIR filter and a high pass FIR filter to the raw ECG signal.
The filter coefficients were generated in MatLab with the filter properties in Table
10.1. The combined filter impose a delay of 85 samples, which is corrected for later.
The phase response of the filters is linear in the range of interest (between 5Hz and
30Hz). See the phase response and magnitude response of the filters can be seen
in Appendix E.

Filter Fstop(Hz) Fpass(Hz) Astop Apass(Hz) Order
High Pass 1 5 40 1 140
Low Pass 30 15 40 1 29

Table 10.1: Filter properties of the band pass filter.

Plot (c) show the output of the differentiation. The differentiation emphasises the
higher frequency components of the ECG, such as the R wave. Differentiation is
performed with a 4-point difference equation.

d(nT ) =
1

8
(2f(nT ) + f(nT − T )− f(nT − 3T )− 2f(nT − 4T )) (10.2)

Where d(nT ) is the output of the filter at the nth sample. The difference equation
imposes another two sample delay which is corrected for later.

Plot (d) show the effect of point squaring, s(nT ) = (d(nT )2). The baseline is
aproaching zero, while the remaining spikes are at the proximity of the the R wave
(bare in mind the uncorrected delay).

Plot e show the effect of time averaging over a 31 point window:
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y(nT ) = 131

31∑
1

s(nT ) (10.3)

This step indicates the most likely location of the QRS complex. The step impose
a 15 sample delay, which is corrected immediately.

Figure 10.6: 5 seconds of ECG data at each step of stage 1 of the QRS detection.

10.2.2 QRS Detection - Stage 2

After correcting for the cummulative delay, the output of stage 1 of the QRS de-
tector, is now used as one of the two inputs of stage 2. The other input is the
ECG signal that has been filtered with regard to enhance respiratory information.
In stage 2 of the QRS detector, the R wave is first identified by searching for a
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maximum within a localised region of points whose amplitudes are greater than a
treshold, set to be the median value of the last 5 R-waves. The search is performed
in the clean ECG signal, and the region of the search is determined by the output
of stage 1. The Q and S points are found as the minimum values on each side of
the R point, within a region determined by the width of the approximately square
waves, that is the output of stage 1.

Figure 10.7: ECG signal with annotated Q, R, and S points.

In this thesis, the ECG sequences are of short duration (5 minutes). The perfor-
mance of the QRS-detector is evaluated visually by plotting the ECG signal and the
identified Q, R, and S points. See Figure 10.7. Any errors are manually corrected.
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Chapter 11
EDR Algorithms

The following chapter will focus on the selection of EDR algorithms chosen for
evaluation. All the EDR methods were presented in Chapter 6, but here the methods
chosen for evaluation are elaborated. The motivation for the choice of each EDR
method is elaborated in the section of that method. For the sake of convenience
each EDR method is now given a name of type EDR1 trough EDR4. Some of the
EDR methods have the same basic principles and are only distinguished by minor
differences. They are called EDR(number)A, EDR(number)B, etc.

• EDR1: Multi Lead Method based on Variations in Angle of Mean Electrical
Axis.

• EDR2A: R Wave Amplitude with Respect to Baseline on Lead II.

• EDR2B: R Wave Amplitude with Respect to Baseline on Lead V4.

• EDR3A: R Wave Amplitude with Respect S Wave on Lead II.

• EDR3B: R Wave Amplitude with Respect S Wave on Lead V4.

• EDR4A: QRS Area on Lead II.

• EDR4B: QRS Area on Lead V4.

• EDR5: Methods Based on Discrete Wavelet Decomposition and Bandpass
Filtering.

11.1 Multiple Lead Methods Based on Variations
in Angle of Mean Electrical Axis

11.1.1 EDR1: Multi Lead Method based on Variations in
Angle of Mean Electrical Axis

In this method, the projection of the mean electrical axis on the plane defined by
two leads is considered. The variation in angle between reference lead and this
projection is used as an estimate of the respiration [17]. The area of the ith QRS
complex, occurring at time instant ti, is computed over a time interval in each lead.
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11.1. MULTIPLE LEAD METHODS BASED ON VARIATIONS IN ANGLE OF
MEAN ELECTRICAL AXIS

The area is proportional to the projection of the mean electrical axis on that lead.

Consider the projection of the mean electrical axis on the plane jk, defined by
orthogonal leads j and k, at time instant ti, denoted as the vector m̄(ti

m̄(ti) =

[
1

δ2+δ1

∫ ti+δ2
ti+δ2

‖m(t)‖2 cos(θjk(t))dt
1

δ2+δ1

∫ ti+δ2
ti+δ2

‖m(t)‖2 sin(θjk(t))dt

]
=

1

δ2 + δ1

[
Aj(ti)
Ak(ti)

]
(11.1)

where mt is the instantaneuos projection of the electrical axis on the jk -plane, θjk(t)
is the angle between m(t) and the reference lead j, Aj(ti) and Ak(ti) represents the
QRS area in lead j and k respectively. The integration interval over which the
mean is computed is defined by δ1 and δ2. ‖.‖2 denotes the Euclidean distance.
The term ‖m(t)‖2 cos(θjk(t)) is representing the projection of m(t) on lead j and
‖m(t)‖2 sin(θjk(t)) is the projection lead k. [7]

The angle of projection of the mean electrical axis on the jk -plane with respect to
lead j is estimated as:

¯θjk(ti) = arctan(Ak(ti)/Aj(ti)) (11.2)

The fluctuations of this angle can now be used as an EDR signal. See Figure 11.1

Figure 11.1: Projection of the hearts mean electrical axis on th jk-plane [7].

This EDR algorithm was chosen because it is one of the widest known methods,
the method comply with the requirements of this project and a multi lead approach
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CHAPTER 11. EDR ALGORITHMS

might prove more robust than single lead algorithms.

The integration boundaries δ1 and δ2, might be fixed or variable. A previous study
have shown, that variable boundaries defined as the Q and S waves of the QRS
complex, faired better that fixed boundaries (0.522 compared to 0.468) [8]. This
approach is therefor adopted in this evaluation.

Lead I and II, while not strictly orthogonal, are the most common selection of leads
for this method. In addition Lead I and Lead II are readily available in most ECG
set ups and seem to respond well to inter-thoracic volume changes (see the pilot
study in Appendix B). On this basis Lead I and Lead II are chosen in this evaluation.

11.2 Single Lead Methods Based on R-wave Am-
plitude or QRS Area

These methods single lead methods. In this evaluation, the choise of leads is based
on the pilotstudy in Appendix B. The leads most affected by the presence or air
in the lungs are Lead II and Lead V4, which are chosen for this evaluation for all
single lead methods.

11.2.1 EDR2A & EDR2B: R Wave Amplitude with Respect
to Baseline

Amplitude modulations of the ECG has been used to derive the respiratory signal
when only single-lead ECGs are available. Typically, the amplitude of the R-wave
is measured with respect to the baseline. This is a simple and widely used method,
and the amplitude of the R wave is readily available in many applications.

11.2.2 EDR3A & EDR3B: R Wave Amplitude with Respect
to S Wave

Studies have shown, that the EDR signal based on the measure of the R-wave
amplitude with respect to the S wave amplitude obtained higher sensitivity and
positive predictivity compared to the EDR signal based on the R-wave with respect
to baseline [38]. For this reason this method will also be evaluated.

11.2.3 EDR4A & EDR4B: QRS Area

Another single lead approach is to obtain a EDR signal by calculating the area
enclosed by the baseline and the QRS complex in a certain interval. The QRS area
approach is less affected by noise compared to pure amplitude EDR methods. [17].
The boundaries of the area can be either fixed or variable. In this evaluation vari-
able boundaries corresponding to the Q- and S wave of the QRS complex are chosen.
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11.3. METHODS BASED WAVELET TRANSFORM OR BANDPASS
FILTERING

11.3 Methods Based Wavelet Transform or Band-
pass Filtering

11.3.1 EDR5: Wavelet Transform

Af different approach to EDR is to bandpass filter the single-lead ECG with a
frequency band corresponding to that of the respiratory frequency. The discrete
wavelet transform has been applied to the single-lead ECG and the scale corre-
sponding to the frequency band 0.2 to 0.4 Hz can be selected as an EDR signal [50].

The Fourier transform provide information about which frequency components are
contained in a given signal. It does not, however, provide information about when
those frequency components are present in time. This is overcome with the wavelet
transform. The wavelet transform decomposes the signal two subsignals, namely
an approximation signal and a detailsignal. The upper half of the frequency com-
ponents, that is from half the Nyquist-frequency, Fn, to Fn/2, is contained in the
detail signal, while the approximation signal contain the lower half of the frequen-
cies. This decomposition can be repeatet on the approximation signal, to produce
the second level of the decomposition. The proces can be repeated until the ap-
proximation signal consist of only one sample. [50].

The respiratory surrogate is produced by reconstructing the detail signal at a proper
level. The ECG in this thesis is sampled at 500Hz, which means that a level 10
decomposition would produce a detail signal in the frequency range of 0.24Hz to
0.49Hz which is acceptable in the context of respiration.

During the implementation of the wavelet decomposition based methods it was
apparent that the method did not produce respiratory wave forms that would enable
the detection of specific breaths. Several wavelets have been tried all with the same
result. In Figure 11.2 the waveform produced by this method is compared to the
reference waveform and the waveform produced by another EDR method.
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CHAPTER 11. EDR ALGORITHMS

Figure 11.2: The top trace show the output of a Wavelet EDR. The middle trace is
the output from an AMEA EDR and the bottom output is the trace of the reference
signal.
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Chapter 12
Evaluation

This chapter will describe the various stages of the evaluation of the EDR algo-
rithms.

12.1 Reference Signal

When evaluating surrogate respiratory waveforms derived fromm the ECG, it is
necessary to have a true respiratory signal, recorded simulatenous with the ECG.
Various approaches exist for monitoring respiration. Generally they can be divided
into two catagories; direct and indirect methods. [17]. In direct methods a sensor
is connected to the airways where the flow, pressure, temperature or chemical com-
position of the air is measured as it passes into and out of the lungs.

Indirect methods the body volume or the movement of the thorax is recorded.
Transthoracic impedance and inductance plethysmography are the indirect methods
most commonly employed. In inductance plethysmography, compliant inductance
loops are placed around the chest and abdomen. During inspiration and expiration
the volumes of the thorax change, and this changes the area of the coils and thereby
their inductance. [11,17] Direct measurements can interfere with normal respiration,
but are generally more accurate. Indirect measurements can be highly accurate and
does not interfere with respiration. [38]

The method available in this project is an thermistor based air flow meter. The
reference signal was recorded simulatanously with a 12 lead ECG signal on four
subjects as a part of this thesis. The data collection protocol can be seen in Ap-
pendix A. In compliance with the requirements, the recordings were of five minute
duration. Recordings were performed on the subjects while the were lying supine
on an examination bench and while they were sitting. However, only the recordings
from the supine position is used in this evaluation. One of the subject were excluded
from the evaluation due to a very noisy ECG recording.

12.2 Respiratory Period Estimation

The output of the EDR algorithms is a series of points, one point for each QRS
complex. In order to produce af smooth respiratory surrogate, the points are in-
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CHAPTER 12. EVALUATION

terpolated. This is done with cubic spline interpolation in MatLab. Now the mean
of the EDR signal is subtracted from the signal. This is done in order to be able
to use zero crossings as a salient point in the detection of individual breaths. The
reference signal is also mean-substracted for the same reason. Individual breaths
can now be detected as zero crossings in the positive direction.

The detected breaths are now manually controlled. If a breath is only detected in
one of the signals, the breath is excluded in both signals. The number of excluded
breaths are mentioned in the results. Often it is necessary to exclude a breath
in either end of the recording. This is the case when the recording end just after
the occurence of a breath in one signal and just prier to the occurence of a breath
in the other signal. These exclusions of end breaths are not mentioned in the results.

When the occurence of all the breaths are detected, the duration of each breath is
calculated in both signals, and the further evaluation is performed

12.3 Performance Measures

in the evaluation of the EDR methods, it is critical to have performance mea-
sures that can be compared between the EDr methods. Previous works, that has
attempted to derive a respiratory signal from the ECG, have relied on visual com-
parisment between the EDR signal and a reference signal. Visual assesment is
inherently subjective and not comparable. This section introduces the performance
measures to be used in this evaluation.

12.3.1 Mean Square Error

The mean squared error of an estimate is way to quantify the difference between the
values of the estimate and the true values. Mean square error measure the mean
of the squares of the ”errors”. The error is difference between the estimate and the
true value.

If Y is a series of n true values, and Ŷ is a series of estimates, then the mean square
error (MSE) of the estimate is:

MSE =
1

n

n∑
i=1

(
Ŷi − Yi

)2
(12.1)

The results are presented as the root square mean error (RMSE). Which square
root of the MSE.

RMSE =
√
MSE (12.2)

12.3.2 Correlation Coefficient

The linear association between two variables can be expressed by Pearson’s product-
moment correlation coefficient, also known as Pearson’s r. Pearson’s r measures the
correlation between two samples, X and Y , (in this case the respiratory periods from
the EDR signal and from the reference air flow signal) giving a coefficient from -
1 (perfect negative correlation) through 0 (no correlation) to +1 (perfect positive
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12.3. PERFORMANCE MEASURES

correlation).

Pearsons r is defined as the covariance of the two variables divided by the product
of their standard deviations [51]:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

(12.3)

In this thesis the correlation coefficient will be used to investigate the association
between the series of respiratory periods derived from the reference respiratory sig-
nal and the ECG derived respiratory surrogate.

The significance of the correlations is also tested.

12.3.3 Scatter Plots

Scatterplots are used in the results to visualise the correlation. Different markers
are used for different subjects. In the scatter plot a linear regression line is plottet
for each subject and for the total population, while the corresponding coefficent of
determination, R2, is noted in the legend of each scatterplot.
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Chapter 13
Results

This chapter contains the results from the evaluation of the EDR methods.

EDR1 Scatter Plot

As seen in Figure 13.1, the coefficient of determination for EDR1 method was 0.465.

Figure 13.1: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR1.

EDR2A Scatter Plot

As seen in Figure 13.2, the coefficient of determination for EDR2A method was
0.774.
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Figure 13.2: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR2A.

EDR2B Scatter Plot

As seen in Figure 13.3, the coefficient of determination for EDR2B method was
0.875.

Figure 13.3: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR2B.
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EDR3A Scatter Plot

As seen in Figure 13.4, the coefficient of determination for EDR3A method was
0.831.

Figure 13.4: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR3A.

EDR3B Scatter Plot

As seen in Figure 13.5, the coefficient of determination for EDR3B method was
0.850.

Figure 13.5: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR3B.
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EDR4A Scatter Plot

As seen in Figure 13.6, the coefficient of determination for EDR4A method was
0.870.

Figure 13.6: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR4A.

EDR4B Scatter Plot

As seen in Figure 13.7, the coefficient of determination for EDR4B method was
0.879.

Figure 13.7: Scatterplot that visualises the correlation between the true respiratory
periods and the respiratory periods derived by EDR4B.

51



CHAPTER 13. RESULTS

Summary of Results

The results from the evaluation are summarised in Table 13.1. The mean respiratory
duration for the reference signal is 3.190, hence the relative error ranges from 7.3%
to 16.6%.

EDR Method RMSE [s] r p n Excluded
EDR1 0.528 0.682* 0.000 250 2

EDR2A 0.339 0.880* 0.000 249 3
EDR2B 0.265 0.936* 0.000 249 2
EDR3A 0.267 0.912* 0.000 252 1
EDR3B 0.270 0.922* 0.000 250 3
EDR4A 0.233 0.933* 0.000 252 0
EDR4B 0.234 0.938* 0.000 250 3

Table 13.1: Results from all EDR evaluations. RMS is the root mean square error
of the ECG derived respiratory periods in seconds. r refers to Pearson product-
moment correlation. (p) indicates the two-tailed significance of the correlation. n
is the number of respiratory periods evaluated and Excluded indicates the number
of respiratory periods that were excluded prior to evaluation.
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Part III

Summary
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Chapter 14
Discussion

Results of the Evaluation

The aim of this thesis was to evaluate a number of EDR algorithms. The main
finding of the thesis was that there was a significant correlation between the breath
durations extracted from the ECG derived respiratory waveforms and the breath
durations extracted from the reference signal. Surprisingly the multi lead EDR,
EDR1, performed poorer with a correlation coefficient of 0.682 while the correla-
tion coefficients of the other EDR methods are in the 0.88 to 0.94 range. This is
in agreement of a study by O’Brien et al. were an identical multi lead method is
compared to a method very similar to EDR2A/B. In the study by O’Brien et al.
the EECG derived signals of are compared directly to af reference signal, yielding
a correlation coefficient of 0.63 for the multi lead EDR and 0.78 for the single lead.

Among the EDR methods were different ECG leads were evaluated it seem that
the only considerable difference is in EDR2A/B, were lead V4 out perform lead II.
In all other cases, the performance of the two leads similar, although with a trend
going towards lead V4.

Although not analyzed there appears to be a relatively large inter subject variabil-
ity in the results, at least for the single lead EDR methods (EDR2A/B through
EDR4A/B). The coefficients of determination indicate that the results of subject B
is more highly correlated to the reference. It is also apparant, that the variability
of the breath durations of Subject B is higher than Subject A and Subject C, who
are more clustered.

EDR based on Wavelet Decomposition

One of the EDR methods, namely the on basen on the concept of wavelet decompo-
sition, proved unsuitable to be evaluated in the context of this thesis. This disagrees
with the findings of other studies. Yi and Park used wavelet decomposition to derive
af respiratory signal in which breath durations were identified in a manner similar
to the one described in this thesis. The correlation between the series of breath
durations extracted from the ECG derived signal and a reference signal was above
0.9 [50].
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In the case of Yi and Park the ECG signal was sampled at 200Hz and the result-
ing EDR signal was the reconstruction of the 9th decomposition. This results in
frequency range of 0.2Hz and 0.4Hz. The wavelet decomposition implemented in
this thesis recontructs the signal components from the frequency range from 0.24Hz
and 0.49Hz, which does not entirely include the normal respiratory frequency range,
which lie between 0.2Hz and 0.33Hz.

Reference Signal

The reference signal chosen in the evaluation was a respiratory airflow signal. The
air flow meter measures the exchange of air in the lungs, while the EDR methods are
more likely to measure the state of which the thorax is in at any given time. This
can be corrected for by integrating the air flow signal. However, one have to take
great care in doings so, as even a small error in the measurement will accumulate,
causing a drift in the signal.

Another challenge with the choice of the airflow meter is that it obstructs the air-
ways, and thus inhibits normal spontanous breathing. Considering these challenges,
indirect respiration measurements might be preferable in future studies.

Performance Measures

This thesis applies two performance measures; the root mean square error (RMSE)
to investigate the error bewteen the true breath duration and the estimate, and
Pearson’s Product-Moment Correlation to investigate for correlation. Both perfor-
mance measures have been widely used in the context of EDR studies [14,21,28]
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Chapter 15
Conclusion

In this thesis a literature review of the concept ECG derived respiration was con-
ducted. Five of the EDR methods were selected for implementation. One of the
methods required two ECG leads, while the other four were single lead methods.
Four of the EDR methods required preprocessing of the ECG. The preprocessing
consisted of filtering stage, in which the ECG was denoised and the respiratory in-
formation was enhanced. The preprocessing also included the detection of the QRS
complexes of the ECG.

In order to evaluate and compare the performance of the EDR methods, a 12-lead
ECG and a respiratory air flow signal were recorded simultaneously. The signal
recordings were of five minute duration and were conducted on four healthy male
subjects. The subjects lay supine for the duration of the recording and were asked
to breath spontaneously. The recordings of one of the subjects were excluded from
the evaluation, due to a noisy ECG recording.

One of the implemented EDR methods is based on the partial reconstruction of
wavelet decomposition, the output of which is a smooth waveform. However, this
EDR method did not produce feasible waveforms, when directly compared to the
reference airflow signal. It was therefor excluded from the evaluation. The output
of the remaining EDR algorithms is a series of points, which were interpolated to
create a surrogate respiratory waveform.

In both the surrogate respiratory signals and in the reference respiratory signal,
salient points were detected in order to identify individual breaths. The performance
of the EDR methods were now evaluated by comparing the duration of the individ-
ual breaths identified in the derived signals with the duration of the corresponding
breaths identied in the reference signal. For the evaluation two performance mea-
sures were chosen, namely RMSE and correlation in the form of Pearson’s r.

With the exception of the wavelet transform based EDR, all the methods faired
well. Correlation coeffiecents ranged from 0.682 to 0.938 and all correlations were
significant. The RMSE ranged from 0.233 seconds to 0.528 seconds.
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Appendix A
Data Collection Protocol

The signals for the evaluation of the EDR algorithms were recorded in the C labo-
ratory at the Department of Health Science and Technology at Aalborg University.
This protocol describes the procedure for the data collection.

Objective

The objective of this protocol is to simultaneous record an ECG signal and a respi-
ratory flow signal in a number of subjects.

Instruments and Materials

• General Electrics SEER 12. A 12 channel digital holter ECG Recorder.

• Disposable ECG electrodes.

• Sensiron SFM 3000 Mass Flowmeter. A thermistor based flow meter.

• Laptop installed with Evaluation Kit EK-F3X data acquisition software.

• Inflatable face mask and HME filter.

• Examination bed.

• Metronome app on smartphone.

• Stop watch.

Subjects

The data acquissition was conducted on four male volunteers. The age of the sub-
jects ranged from 28 to 42. All subjects were considered normal, that is, they were
not known to suffer from any cardiac, or respiratory disorders, etc.
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ECG

The ECG electrodes were placed in the standard 12-lead configuration. The ECG
signal was obtained at 128Hz and resampled to 500Hz.

Figure A.1: From left to right: The face mask, the HME filter, and the flow meter.

Airflow

The flowmeter was connected to the HME filter which in turn is connected to the
face mask (See figure A.1). Using elastic straps, the face mask was strapped to the
face of the subject (See figure A.2). The subject was able to breath freely from both
the nose and the mouth, while there was an airtight seal between the face of the
subject and the mask. The airflow signal was sampled at 128Hz.

Figure A.2: The face mask, filter, and flowmeter strapped to the face of a subject.
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APPENDIX A. DATA COLLECTION PROTOCOL

Procedure

For each subject the procedure was as follows:

• The face mask was cleaned with alcohol.

• The ECG electrodes was placed on the subject and the ECG recording was
initiated.

• The face mask and EMH filter was strapped to the face of the subject.

• The subject was asked to lie in a supine position on the examination bed.

• The flowmeter recording was initated.

• The the flowmeter was tapped five times in rapid succession on the V2 elec-
trode. This induced simultaneous fiducial points in both the ECG signal and
the flow signal, to be used later for synchronisation.

• The flowmeter was placed in the facemask of the subject, who was asked to
breath normally for a 6 minute epoch, ensuring at least 5 minutes of undis-
turbed recording.

• After the 6 minute epoche, the subject was asked to sit on the edge of the
examination bed, while breathing normally for another 6 minute epoch.

• After the sitting epoch, the flow meter was removed from the face mask.

• The flowmeter was agian tapped 5 i rapid succession on the V2 electrode,
inducing another set of fiducial points in both signals, indicating that the
recording has ended.

• Both recordings (ECG and flow) were stopped and stored.

Additional Data

In addition to the protocol, one of the subjects performed a more elaborate res-
piratory regime. A number of different respiratory frequencies and depths were
performed. The regime was as follows:

• 120 seconds of paced respiration (paced to 12 breaths per minute).

• 30 seconds of breath hold after normal inspiration.

• 120 seconds of paced respiration (paced to 20 breaths per minute).

• 30 seconds of breath hold after normal expiration.

• 120 seconds of deep/heavy respiration.

• 30 seconds of breath hold after deep inspiration.

• 120 seconds of shallow respiration.

• 30 seconds of breath hold after full expiration.
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The subject was asked to breath at a paced rate of 12 and 20 breaths per minute
(0.2Hz and 0.33Hz respectively), which forms the extremes of normal resting res-
piration in adults (See D). The breathing rate of the subject was paced using a
metronome application on a smartphone, with a visual pendulum-swing. The sub-
ject was asked to match his inspiration and expiration to the rate at which the
pendulum swung. For example, when the pendulum swung to the right, the subject
was asked to pace himself so that his inspiration would be of the same duration as
the right swing. s
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Appendix B
Pilot Study

Objective

The objective of this pilot experiment is to determine how the different ECG leads
are affected by the amount of air the lungs are filled with.

Procedure

As described in the data collection protocol, see Appendix A, one subject performed
a series of breath holds. Four breath holds was performed under four different
conditions:

• Breath hold after normal inspiration.

• Breath hold after normal expiration.

• Breath hold after deep inspiration.

• Breath hold after full expiration.

All breath hold epochs endures for 30 seconds. During the breath holds the 12
lead ECG was collected. The ECG was filtered with the pre processing procedure
described in section 10.1. The maximum QRS amplitude of each ECG signal was
chosen as the comparison measure.

Results

Comparison of Breath Hold after Normal Inspiration and after
Normal Expiration

Table B.1 show the maximum QRS amplitudes of each ECG lead during breath hold
after normal inspiration and after normal expiration, and the absolute and relative
difference between the two conditions.
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Lead VExpired [µV ] VInspired [µV ] difference [µV ] ([%])
LeadI 764 651 -113 (-15)
LeadII 1454 1776 322 (22)

V1 1935 1840 -95 (-5)
V2 2737 2211 -526 (-19)
V3 1501 1563 62 (4)
V4 1835 2249 414 (23)
V5 2348 2644 296 (13)
V6 2425 2391 -34 (-1)

Table B.1: Maximum QRS amplitudes of each ECG lead during breath hold af-
ter normal inspiration and after normal expiration, and the absolute and relative
difference between the two conditions.

Figure B.1 show a section of the ECG signal for each lead during breath hold after
normal expiration (red trace) and after normal inspiration (blue trace).

Comparison of Breath Hold after Deep Inspiration and after
Full Expiration

Table B.2 show the maximum QRS amplitudes of each ECG lead during breath
hold after deep inspiration and after full expiration, and the absolute and relative
difference between the two conditions.

Lead VExpired [µV ] VInspired [µV ] difference [µV ] ([%])
LeadI 1133 406 -727 (-64)
LeadII 1356 1753 397 (29)

V1 1999 1547 -452 (-22)
V2 2854 1734 -1120 (-39)
V3 1464 1473 9 (1)
V4 1634 2072 438 (26)
V5 2050 2084 34 (2)
V6 2067 1630 -437 (-21)

Table B.2: Maximum QRS amplitudes of each ECG lead during breath hold after
deep inspiration and after full expiration, and the absolute and relative difference
between the two conditions.

Figure B.2 show a section of the ECG signal for each lead during breath hold after
deep expiration (red trace) and after full inspiration (blue trace).
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Figure B.1: ECG signal for each lead during breath hold after normal expiration
(red trace) and after normal inspiration (blue trace).
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Figure B.2: ECG signal for each lead during breath hold after deep expiration (red
trace) and after full inspiration (blue trace).
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APPENDIX B. PILOT STUDY

Discussion and Conclusion

Figure B.1 shows a section of ECG during breath hold after normal inspiration
(red) and after normal expiration (blue). It can be seen, that most of the ECG
leads are somewhat affected. In addition it can be seen, that the amplitude of the
QRS complex of might be attenuated or amplified depending on the ECG lead.

The same pattern, however enhanced, can be seen in Figure B.2, which show a
section of ECG during breath hold after deep inspiration (red) and after normal
expiration (blue).

The scope of this thesis is normal breathing. The leads most affected by normally
airfilled lungs are lead II and lead V4#.
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Appendix C
Synthesis of the VCG

Several methods have been proposed for the synthesis of the VCG from the 12-lead
ECG. However the inverse transformation transform of Dower is the most commonly
used. In 1980 Dower et al. proposed a method for deriving the 12-lead ECG lead
by lead as the weighted sum of the VCG-leads X, Y, and Z of the Frank lead
VCG [12]. This transform uses coeficients based on the on the image surface data
from the original torso studies by Frank.

The transformation operation to give the the leads V to V6, lead I and lead II (the
eight independent ECG-leads of the 12 lead ECG) is given by: [7]

s(n) = Dv(n) (C.1)

where s(n) = [V 1(n) V 2(n) V 3(n) V 4(n) V 5(n) V 6(n) I(n) II(n)]
T

and v(n) =

[X(n) Y (n) Z(n)]
T

contain the voltage level of the corresponding leads, n is the
sample index, and D is the Dower tranformation matrix: [7]

D =



−0.515 0.157 −0.917
0.044 0.164 −1.387
0.882 0.098 −1.277
1.213 0.127 −0.601
1.125 0.127 −0.086
0.831 0.076 0.230
0.632 −0.235 0.059
0.235 1.066 −0.132


(C.2)

From C.1 and C.2 it follows that the VCG leads can be synthesised from the eight
independent leads of the 12-lead ECG by: [7]

v(n) = Ts(n) (C.3)

where T = (DTD)−1DT is the inverse Dower transformation matrix given by: [7]
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APPENDIX C. SYNTHESIS OF THE VCG

T =

−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887
−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102


(C.4)
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Appendix D
Respiration

The aim of this appendix is to give a short introduction to the respiration system.
The primary function of the respiratory system is to meet the respiratory demands
of cells. That is, to deliver a steady supply of oxygen to the cells of the body and
to remove the carbon dioxide released by the cells.

In this appendix, the emphasis will be on external respiration, or breathing, which
is the physical movement of air into or out of the lungs. This appendix will cover
the mechanics of ventilation and the different respiratory volumes and capacities.
The appendix is written on the background of the following references [10,37].

Mechanics of Ventilation

Respiration is an involuntary act controlled the autonomic nervous system via the
medulla oblongata of the brain. The medulla oblongata senses blood levels of car-
bon dioxid and triggers respiration at increased carbon dioxid levels. To a certain
degree, it is possible to temporarily voluntarily override the autonomic control of
respiration.

During respiration, air is moved into and out of by changing the volume of the
lungs. The volume changes in the lungs are facilitated by contractions of skeletal
muscles, namely, the intercostal muscles and the diaphragm.

At inspiration the intercostal muscles and the diaphragm contract to expands the
chest cavity. Specifically; the intercostal muscles move the rib cage out and upwards,
while the diaphragm flattens and moves downwards. This facilitates a decrease in
internal air pressure, which forces air from outside the thorax into the lungs to
equalize the pressure difference.

At normal expiration, intercostal muscles and the diaphragm relax and return to
their resting positions. This in turns reduce the size of the thoracic cavity, thereby
increasing the pressure, forcing air out of the lungs. In normal individuals no muscle
contraction involved in expiration. This process is simply driven by the elastic recoil
of the lungs. However, during periods of higher metabolic rate, e.g. during exercise
and during voluntary deep expiration, the abdominal and the internal intercostal
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muscles assist the expiration.

Respiratory Rates, Volumes, and Capacities

The respiratory system is able to adapt to meet different levels of metabolic need
by increasing or decreasing the respiratory rate and volume.

Respiratory rate is the number of breaths takend within a set amount of time,
usually one minute. Normal respiratory rate, called eupnea, ranges from 12 to 20
breaths per minute in resting adults.

Figure D.1: The respiratory volumes and capacities [37].

The respiratory volumes and capacities are the amount of air inspired, expired and
stored within the lungs. See figure D.1.

• Tidal volume: The amount of air which is shifted in the lungs during normal
resting respiration. The average tidal volume is 500ml.

• Residual volume: The amount of air left in the lungs following a maximal
expiration. The residual volume of a prevents the lungs from collapsing. The
average residual volume is 1200ml.

• Minimal volume: Should the of the lungs fall below this volume, the lungs
will collapse. The average minimal volume is 30− 120ml.

• Expiratory reserve volume: The amount of extra air expired, above tidal
volume, during a forced full expiration. The average expiratory reserve volume
volume is 1300ml.
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• Inspiratory reserve volume: The amount of extra air inspired, above tidal
volume, during a full forced inspiration. The average inspiratory reserve vol-
ume is 3000ml.

• Total lung capacity: The total volume of the lungs, including the residual
volume. The average total lung capacity is 6000ml.

• Inspiratory capacity: The sum of the tidal volume and the inspiratory
reserve volume. The average inspiratory capacity is 3500ml.

• Vital capacity: The total volume of usable of the lungs which is under
voluntary control. The average vital capacity is 4800ml.

• Functional residual capacity: The total volume of air left in the lungs
after a normal resting expiration. The average functional residual capacity is
2500ml.

The respiratory minute volume is the volume of air inspired or expired from an
individuals lungs per minute. Thus it is not volume as its name implies, but a
flow. Under normal resting circumstances the respiratory minute volume equals the
respiratory rate times the tidal volume. A normal minute volume during rest is
about 6-10 liters per minute in adults.
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Appendix E
Characteristics of QRS Detection
Filters

This appendix contains the frequency and phase response of the filters of stage 1 of
the QRS detector. See section 10.2.

Figure E.1: High pass filter frequency and phase response (dB/HZ and deg/Hz)

76



Figure E.2: Low pass filter frequency and phase response (dB/HZ and deg/Hz)
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