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Abstract:

Hand-specifying trajectories for control tasks can
be very time-consuming, and often near impossi-
ble as good target trajectories for control should
satisfy the system dynamics.
This project has concerned with the problem of
planning arbitrary trajectories by stitching to-
gether small pieces of di�erent parameterized ma-
neuvers. The maneuvers are found by using
interpolation-based algorithms and probabilistic
model-based algorithms.
An algorithm is presented which uses a few way-
points with partial state information and a large
corpus of random demonstrations. It then plans
a larger trajectory by looking up good demon-
strations in the data set based on the waypoints,
and then interpolating between the demonstra-
tions picked.
This makes is possible to automatically generate
target trajectories for control by learning param-
eterized maneuvers from multiple demonstrations
of the maneuvers.
As test platform a Drift-R Sedan 4WD 1/10 RC
car has been used. A Di�erential Dynamic Pro-
gramming controller have been used for success-
fully controlling the car around the planned tra-
jectory.
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CHAPTER 1. INTRODUCTION

Chapter 1
Introduction

Trajectory following is a fundamental building block for many robotics tasks. By reducing the
control problem to trajectory following, one can often su�er less from the curse of dimensionality
as it becomes su�cient to consider a relatively small part of the state space during control policy
design. Unfortunately, specifying the desired trajectory and building an appropriate model for
the robot dynamics along that trajectory are often non-trivial tasks which are tightly coupled.
Indeed, for the control design to bene�t from being reduced to a trajectory following task,
it typically requires that the target trajectory is physically feasible. Specifying a physically
feasible target trajectory can be highly challenging. For example, what would be the correct
state sequence (position, heading and its derivatives) for a car performing an aggressive sliding
turn?

Therefore, the apprenticeship learning setting is often used, where an expert is used to provide
expert demonstrations, where is natural to request a demonstration of the desired trajectory
as speci�cations of the target trajectory.

However, rarely will an expert be able to demonstrate exactly the desired trajectory to ex-
ecute autonomously. Repeated expert demonstrations together often do capture a desired
maneuver, as di�erent demonstrations deviate from the intent in di�erent ways. Indeed, in
[Coates et al., 2008], the authors described a generative probabilistic model that enabled them
to extract an expert helicopter pilot's intended aerobatic trajectory from multiple suboptimal
demonstrations. They also show how the multiple demonstrations can be leveraged to obtain
a high accuracy dynamics model, which is speci�cally tuned to the particular maneuver in
consideration.

Building a maneuver library directly based upon [Coates et al., 2008] would require collecting a
set of demonstrations for each maneuver. For example, one might have a set of demonstrations
of 90 degree left turns, a set of demonstrations of 90 degree right turns, a set of demonstrations
of 80 degree left turn, a set of demonstrations of 80 degree right turn, etc.

This report presents interpolation-based algorithms and probabilistic model-based algorithms
(which build upon [Coates et al., 2008]) which, rather than learning a discrete set of maneuvers,
make more e�cient use of expert demonstrations by learning parameterized maneuvers, which
continuously index into a certain maneuver (for example a right turn) based upon a set of
demonstrations spanning the range of executions of that maneuver, see Figure 1.1.

While the parameterization can be along any quantitative property of the maneuver, in practical
settings it is of particular interest to consider parameterizations by start and end state of the
maneuver, as this enables sequencing several maneuvers. In Chapter 7 on page 63 an algorithm

Aalborg University and UC Berkeley Page 7



1.1. RELATED WORK

Demo 1

Demo 2

Parameterized 

trajectory

Figure 1.1: Illustration of planning a parameterized maneuver from two demonstrations. The parameterization of the
planned trajectory is done based on the start and end state indicated by the circles

is describe for sequencing the learned parameterized trajectories.

The algorithm is applied to learn trajectories for high-precision, aggressive driving of a remotely
controlled car. The experimental results show that our algorithms reliably generate good pa-
rameterized maneuvers from a relatively small number of training examples: (i) The generated
trajectories closely match hold-out trajectories. (ii) Our approach allows the car to reliably
perform sequences of learned parameterized maneuvers.

1.1 Related Work

The work by [Coates et al., 2008] is the most closely related. They consider the setting of learn-
ing a single intended trajectory and a high-precision dynamics model along that trajectory from
several demonstrations. Our probabilistic approach extracts such a single intended trajectory
as a side product. The approach presented here also leverage their observation that, for a
speci�c maneuver, it is possible to obtain a very high �delity dynamics model by combining
a crude low-order dynamics model with corrections speci�c to that trajectory. Our approach
extends this towards learning parameterized biases, corresponding to the parameterized trajec-
tories. A minor di�erence is the handling of time warping: [Coates et al., 2008] use dynamic
time warping, a discrete time approach for aligning trajectories. In our setting, the parameter-
ized trajectories are considered of shorter duration (which can be sequenced together to build
longer trajectories). Over the shorter durations, uniform time warping (uniformly shrinking or
stretching) has been su�cient.

The computer graphics literature has a long history of algorithms that leverage motion cap-
ture data in various ways to generate realistic looking animations. While their approaches
have enabled signi�cant simpli�cation of the animation generation process, their �nal ob-
jective is not high precision control. (See, e.g., [Lee et al., 2002, Arikan and Forsyth, 2002,
Fang and Pollard, 2003, Rose et al., 1996, Unuma et al., 1995, Wiley and Hahn, 1997].)

[Atkeson and Schaal, 1997] use multiple demonstrations to learn a model for a robot arm, and
then �nd an optimal controller in their simulator, initializing their optimal control algorithm
with one of the demonstrations.

The work of [Calinon et al., 2007] considered learning trajectories and constraints from demon-
strations for robotic tasks. They do not consider the system's dynamics or provide a clear
mechanism for the inclusion of prior knowledge.

Page 8 Martin Møller Sørensen



CHAPTER 1. INTRODUCTION

Among others, [An et al., 1988] and, more recently, [Abbeel et al., 2006a, Coates et al., 2008]
have exploited the idea of trajectory-indexed model learning for control.

Our work also has some similarities with recent work on inverse reinforcement learning, which
extracts a reward function (rather than a trajectory) from the expert demonstrations. See, e.g.,
[Ng and Russell, 2000, Abbeel and Ng, 2004, Ratli� et al., 2006, Neu and Szepesvari, 2007]
[Ramachandran and Amir, 2007, Syed and Schapire, 2008].
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CHAPTER 2. SYSTEM DESCRIPTION

Chapter 2
System Description

This chapter will outline the development platform used in the project. This includes a overview
of the system setup, the speci�cations of the Drift-R Sedan RTR car, the Phasespace motion
tracking system and the take-over box for sending and receiving control signals. For each of the
sections a short description will be made about the appertaining software which all has been
developed as a part of this project. In Chapter 6 on page 59 all the software will be summarized
to describe how the di�erent programs work together.

2.1 System Overview

An overview of the overall system setup is illustrated in Figure 2.1.

Phasespace 

Server

Spektrum

Transmitter

Take-over 

box

Control PC

Control signals

Positions and orientation

RS232

Ethernet

ppm signal

Figure 2.1: An overview of the system setup which include the platform, Phasespace motion capture system and the
takeover box for sending and receiving radio signals. The arrows indicates the direction of communication. The yellow
lightning indicates wireless transmission, and the red lightnings indicates wireless reception

The car is controlled within the �eld of the motion tracking system enabling the Phasespace
server to �nd the position and orientation of the system and sends it back to the control
PC over a Ethernet connection. A DX6i Spektrum radio transmitter shown in Figure 2.2, is
used to transmit signals to the system. For control and modeling purposes the control signals
are also received by the take-over box, which sends them to the control PC over a RS232
line. As illustrated the take-over box also makes it possible to send out control signals from
the control computer to the system through the Spektrum transmitter, hereby controlling the
system autonomously.
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2.2. DRIFT-R SEDAN 4WD CAR

Figure 2.2: Spektrum DXi6 transmitter used to transmit control signals [Spektrum, 2008]

2.2 Drift-R Sedan 4WD Car

The Drift-R Sedan RTR is a 1/10 small scale 4WD radio controlled car which is build speci�c
for drifting, and in Figure 2.3 the various main parts is highlighted.

7: Governor 

1: Phasespace LED’s 2: LED Controller 3: Battery

4: Servo 5: RC Receiver 6: Main Engine

Figure 2.3: System overview of the Drift-R car without shield
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CHAPTER 2. SYSTEM DESCRIPTION

Unless otherwise noted all the parts listed below, including the car itself, are from [Losi, 2008]

1. Phasespace LEDs: Active tracking LED's [Phasespace, 2008]

2. LED Controller: Controller which communicates with the Phasespace server and activate
the LED's [Phasespace, 2008]

3. Battery: Venom 7.2V 6 cell 5000mAh NiMH battery [Venom, 2008]

4. Servo: Z-590 high torque steering servo for controlling the angle of the front wheels

5. Receiver: Spektrum AR6200 Pulse Position Modulation (PPM) receiver used to receive
the signal from the radio transmitter [Spektrum, 2008]

6. Main Engine: High performance DC-motor for the propulsion of the car

7. Governor: Novak-engineered Losi ESC speed controller for the main engine

The position and heading of the Drift-R car is tracked by the using the Phasespace motion
tracking system, which will be described in the following section.

2.3 Phasespace Motion Tracking System

To track the car the motion tracking system Phasespace is used. Opposite to e.g. the Vicon
motion capture system the Phasespace system works by using active LED's which are driven
by a wireless controller connected via a basestation to the Phasespace server as illustrated in
Figure 2.4. The LED's are then tracked by the Phasespace cameras which allows the Phasespace
server to triangulate the position of the LED markers. The system can be used to either
return the position of each marker or de�ne a rigid body using three or more markers and
output the position and orientation of the speci�ed rigid body, both with rates up to 480 Hz.
[Phasespace, 2008]

Figure 2.4: Overview of the Phasespace motion tracking system [Phasespace, 2008]
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2.4. TAKE-OVER OF RADIO CONTROL SIGNALS

To ease the use of the Phasespace system a C++ class has been developed as part of this project
along with the nine public functions listed in Table 2.1

Function Description

PhaseSpace_api Constructor of the class which sets up the connection to the
Phasespace server either for tracking a speci�ed rigid body
or individual markers.

~PhaseSpace_api De-constructor of the class which closes down the connection
to the Phasespace server and free the allocated memory

GetSetOfMarkersNonBlocking Gets a speci�ed set of markers as a non-blocking call
GetSetOfMarkersBlocking Gets a speci�ed set of markers as a blocking call

GetAllMarkersNonBlocking Gets all 32 markers as a non-blocking call, even though not
all of them are active

GetAllMarkersBlocking Gets all 32 markers as a blocking call, even though not all
of them are active

GetMarkerINonBlocking Gets a single speci�ed marker as a non-blocking call
GetMarkerIBlocking Gets a single speci�ed marker as a blocking call

GetAllMarkersMeanBlocking Gets the mean value of all markers over a speci�ed
number of samples

GetRigidBodyNonBlocking Gets the position and orientation of a speci�ed rigid body
as a non-blocking

GetRigidBodyBlocking Gets the position and orientation of a speci�ed rigid body
as a blocking call

Table 2.1: The C++ class PhaseSpace_api and the nine public functions associated with it

When the constructor of the class is called, unless otherwise speci�ed in a input, it scales and
rotates the coordinates to match a speci�ed inertial frame in the lab. This extrinsic calibration
data consist of a scaling factor, a 3D o�set and a rotation quaternion. To ease the usage
and to improve the accuracy, the extrinsic calibration pose is automatically found by using a
homemade calibration tool formed as a triangle with three LED's placed in known positions. A
program, extrinsic_calibration, has then been programmed which �nds the mean position
of the three LED's and then calculates the extrinsic calibration data which is saved in a �le the
constructor loads in when called. A more through description of the extrinsic calibration can
be found in appendix A.

2.4 Take-over of Radio Control Signals

To send and receive Pulse Position Modulated (PPM) radio signals to and from the application
a take-over box has been build. The control signals are received for modeling and logging
purposes. The take-over box consists of two ATmega128 microcontrollers [Atmel, 2008] and a
AR6200 radio receiver similar to the one on the car, see Figure 2.6. As illustrated in Figure 2.5
the control PC communicates with both microcontrollers through a RS232 connection.

The data consists of a channel number and a value for that channel which is send over the
RS232 connection, in both directions, as two consecutive bytes. The format of the two bytes is
illustrated in Figure 2.7. The two microcontrollers then takes care of either converting the two
bytes to a PPM signal or to convert the received PPM signal to two bytes.

Page 14 Martin Møller Sørensen



CHAPTER 2. SYSTEM DESCRIPTION

Spektrum  

Receiver
serial2ppm

ppm2serial

ppm signal

RS232

ppm signals for channels

Figure 2.5: Illustration of the take-over box used by the control PC to send
and receive signals to and from the transmitter

Figure 2.6: Spektrum AR6200 re-
ceiver used to receive the transmit-
ted signals

3 bits channel First 4 bits of value0 Last 7 bits of value1

Byte 0 Byte 1

Synchronizations bits

Figure 2.7: Illustration of communication protocol for RS232 connection between the control PC and the take-over box

To ease the use of the takeover system a C++ class has been made with the functions listed in
Table 2.2

Function Description

ControlsRxTx Constructor of the class which sets up the RS232 connection, as inputs
it takes in the min, max and default value for each channel used

~ControlsRxTx De-constructor of the class which sends out the default values
before it closes down the connection

RxControls Receives control signals from the transmitter

TxControls Sends control signals to the transmitter
TxControlsWithAck Sends control signals to the transmitter and waits until the

send signal has been received which makes it a blocking call

Table 2.2: The C++ class ControlsRxTx and the three public functions associated with it

2.4.1 Mapping of I/O Signals

When doing control it is important to make sure that the mapping of the I/O control signals
are as precise as possible to minimize the feedback due to a mismatch in the signals. I.e. if the
system works well in open loop the feedback is minimized. To simplify the modeling a mapping
is done so that the signals send out are as close to those received. Therefore a test has been
made where all possible control values in the range of 500-1500 [µs] are send out through the
takeover box and the Spektrum transmitter and received again by the take-over box. Both the
send and the corresponding received values are then logged in a �le which is plotted in Figure
2.8.

Aalborg University and UC Berkeley Page 15



2.4. TAKE-OVER OF RADIO CONTROL SIGNALS

Transmission number

Figure 2.8: The values send out and the corresponding values received. Due to the mismatch in the signals the two
curves do not coincident well enough especially at the higher values

To match the I/O control signals the function in Equation (2.1) has been found using linear
regression on the collected data.

S2 = 1.0101069 · S1 − 0.9482705 (2.1)

where:
S1 is the control signal intended to be received
S2 is the corrected control signal

By �rst look at the fudge factor it could seem that it is almost insigni�cant. However, due to
a non-linearity in the range of the ppm signals it has a signi�cant in�uence. This can be seen
in Figure 2.9 where the same inputs are plotted with and without the fudge factor along with
the corresponding values for the translatory velocity in Figure 2.10
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Figure 2.9: Plot of input signals with and without the
fudge factor. The values sent out are steer = 1400 and
throttle = 1100
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Figure 2.10: Plot of the translatory velocities u and v for
the corresponding input signals
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CHAPTER 3. MODELING

Chapter 3
Modeling

For this project two di�erent models have been explored for the car. The �rst model used where
based on system identi�cation from recorded data where the car where driven around to try
and explore as much of the state space as possible. From the data a locally weighted model
where trained and used in the simulations. The model where based on the k-nearest neighbors
from a current state, which where used to estimate the translatory and angular accelerations.
However, due to problems with the removals of outliers the model never really became good
enough. And due to the time limitations of the project the model where never improved enough
to be used even though it where showing promising results.

Instead a more simple model have been developed based on the steady state values of the car.
But before the modeling of the car some basic de�nitions are �rst de�ned to ease the modeling.
These de�nitions includes the velocities of the car and the di�erent frames which will be used
throughout the rest of the report.

3.1 Frames

To ease the description and modeling three di�erent frames are de�ned in Table 3.1.

Name Notation
Earth inertial frame {E}
Phasespace frame {P}
Body frame {B}

Table 3.1: The three Cartesian frames used throughout this report

When wanting to specify which frame a coordinate or vector is de�ned in, a frame designation
will be used as a superscript before the coordinate or vector. Hence, the vector v de�ned in
frame {E} will be denoted by Ev

Earth Inertial Frame {E}
In order to make use of Newton's laws of dynamics, an Newtonian reference or earth inertial
frame {E} needs to be de�ned [Bak, 2002, p. 8]. An inertial frame is a non-accelerated co-
ordinate system, and all motion, position and attitude of the system will from this point be
described relative to this earth inertial frame.

Aalborg University and UC Berkeley Page 17



3.2. DEFINITION OF VELOCITIES IN THE CARS BODY FRAME

Body Frame {B}
The body frame has its origin in the point of rotation of the system used. For helicopters and
other systems without ground contact it is the Center of Mass (CM), but for the car the body
frame is placed in the middle between the back wheels, since these can not turn.

Phasespace Frame {P}
This frame is de�ned from the �rst camera connected to the Phasespace system. Therefore, the
transformation from {P} to {E} has to be found, which is done in appendix A

3.2 De�nition of Velocities in the Cars Body Frame

The velocities of the car captured with the Phasespace motion tracking system are, due to the
extrinsic calibration found in appendix A, returned as velocities in the inertial frame {E}. To
simplify the modeling the translatory velocities are often transformed to the velocities u and v
de�ned in the body frame {B} as depicted in Figure 3.1.

As can be seen the point of rotation is placed between the two back wheels. This might seem
wrong but imagine the extreme case where the front wheels are steered orthogonal to the side.
In this case (given the car is front wheel driven) the car would drive in circles around the point
of rotation.

u

v

Point of rotation

_µ

Figure 3.1: Illustration of car where the directions of the translatory velocities u and v are de�ned along with the
angular rate θ̇ around the point between the back wheels

This transformation is done by a simple rotating the velocities around the point of rotation
based on the cars heading θ as described by Equation (3.1),

B [
u
v

]
= RBE(θ)

E [
ṅ
ė

]
(3.1)

where:
u is the translatory forward velocity in {B} [m/s]
v is the translatory sideways velocity in {B} [m/s]
n is the north position in {E} [m]
e is the east position in {E} [m]
RBE(θ) is the rotation matrix from {E} to frame {B} [-]
θ is the orientation in {E} [rad]

Page 18 Martin Møller Sørensen



CHAPTER 3. MODELING

where,

RBE(θ) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3.2)

3.3 Model Based on Steady State Values

In this Section a simulation model, f , is estimated which can predict the next state based on
the current state and the inputs,

xt+1 = f(xt, u) (3.3)

where:
x is the state of the system [-]
u is the control signals applied to the system [-]

Since the simulation model later will be used to �nd di�erent trajectories it has been chosen to
include the controls in the state,

x =


uv
ne

θ̇
θ
u

 (3.4)

Where uv = [u v]T is a simpli�ed notation which at times will be used throughout this report
for the forward and sideways velocity. And ne = [n e]T is the simpli�ed notation for the position
in north. Since the controls are included in the state Equation (3.3) becomes,

xt+1 = f(xt) (3.5)

The idea of the model is to estimate the steady state velocities of the car for di�erent values of
the inputs steering and throttle. The accelerations are then estimated based on the di�erence
in the current velocity and the steady state. The model consists of three 2D lookup tables
containing the steady state values of the translatory velocities, u and v, and the angular rate,
θ̇, along with a time constant, τ , for each table. The steady state values are found by applying
di�erent combinations of constant inputs and then estimate the velocities using the Phasespace
motion tracking system and the Kalman �lter described in Chapter 4.1 on page 27. In Table
3.2 the lookup table with the steady state values of the forward velocity are shown. Notice the
deadzone when the throttle is between 970 and 1070.
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Throttle
Steer

596 1020 1420

596 -13 -20 -13
920 -1.44 -2.16 -1.44
946 -1.07 -1.6 -1.07
964 -0.76 -1.14 -0.76
970 0 0 0
1000 0 0 0
1070 0 0 0
1080 0.92 1.32 1.03
1100 1.62 2.1 1.67
1116 1.96 2.47 1.96
1256 1.05 6 1.05
1420 0.8 13 0.8

Table 3.2: 2D lookup table for the steady state values of the forward velocity u [m/s] based on the inputs
throttle and steer

An 2D interpolation is then used to �nd the steady state values for arbitrary inputs. After
having found the steady state values for the current inputs they are used to �nd the accelerations
of the car,

ax =
xss − x
τx

(3.6)

where:
x is a variable exchangeable with the velocities u, v or the angular rate θ [m/s], [rad/s]
ax are the translatory or the angular acceleration [m/s2], [rad/s2]
τx are the time constants of the system [s]

After having found the translatory and angular accelerations, Euler integration is performed to
�nd the next state,  ut+1

vt+1

θ̇t+1

 =

 ut
vt
θ̇t

+ dt

 u̇t
v̇t
θ̈t

 (3.7)

where:
dt is the time interval [s]

The position and orientation is then found using Euler integration on the velocities and angular
rate. However, since the translatory velocities, u, v, are given relative to the body frame they
are �rst transformed into velocities in the inertial frame, before Euler integration is applied to
�nd the next position of the car.[

nt+1

et+1

]
=
[
nt
et

]
+ dt · REB(θ)

[
u
v

]
(3.8)

where,

REB(θ) = RBE(θ)T (3.9)
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3.3.1 Validation of Steady State Values

To give a visualization of the steady state values reached, a validation is done for all combina-
tions of the inputs to make sure that the interpolation of the lookup tables works. In Figure
3.2 and 3.3 the steady state values for u and v are plotted, respectively, as a function of the
two inputs with a granularity of one in the inputs.

Figure 3.2: 3D plot of u as a function of the di�erent
combinations of controls

Figure 3.3: 3D plot of v as a function of the di�erent
combinations of controls

Notice in Figure 3.2 how the steady state value of the forward velocity, uss, goes close to zero
when the car starts to drift, and the sideways velocity goes up or down depending on which side
the car is drifting. In Figure 3.4 the same 3D plot are shown for the angular rate, θ̇. The very
high/low values for the angular rate for maximum throttle and minimum/maximum steering
are caused by the car drifting around it self causing the forward velocity to be close to zero.

Figure 3.4: 3D plot of θ̈ as a function of the di�erent combinations of controls

The time constants in Equation (3.6) are in next subsection estimated and then optimized.

3.3.2 Estimation and Optimization of Time Constants, τ

Since the car has di�erent dynamics for the three accelerations and depending on if the car is
accelerating or de-accelerating, six di�erent time constants are de�ned for the car. The time
constants are found by recording the response of the car to a step input, and the time it takes to
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reach 63% of the steady state value are found by visual inspection. The di�erent time constants
used can be seen in Table 3.3.

τ [s] u v θ
Acceleration 2.8 0.5 0.2
De-acceleration 1.1 0.5 0.2

Table 3.3: Initial time constants for the car

The time constants found are then evaluated by recording a log with a lot of stops and steering.
A simulation is then performed using the time constants, to compare the simulated state with
the real state. Since the model is not perfect the simulation state is reset to the target state
every 5 seconds, illustrated with the yellow dashed vertical lines.
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Figure 3.5: Plot of the real uv from a demonstration and a
open loop simulation using the controls from the demon-
stration, before the optimization of τ . The dashed yellow
lines indicates that the state is reset to the actual state
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Figure 3.6: Plot of the real θ̇ from a demonstration and a
open loop simulation using the controls from the demon-
stration, before the optimization of τ . The dashed yellow
lines indicates that the state is reset to the actual state

As it is clear from Figure 3.5 and 3.6 the time constants, τ , can be improved, especially the
acceleration of the forward velocity, u. Therefore, a line search has been performed to optimize
the time constants. The optimization is done by simulating using the controls from the target
and then compare the simulated state with the target state. A score is then computed to tell if
the model is improved as the time constants are changed. The score is computed by the norm
of the squared di�erence between the state and the target. To keep a good basis for comparing
the state with the target throughout the simulation, the simulation state is again reset to the
target state every 5 seconds. In Table 3.4 the time constants can be seen after the optimization.
As expected the time constant for the forward velocity has been lowered signi�cantly.

τ [s] u v θ
Acceleration 1.0259 0.4798 0.1762
De-acceleration 0.5834 0.3211 0.1818

Table 3.4: Estimated time constants for the car found by performing a line search for each constant

In Figure 3.7 and 3.8 the same simulation is done using the new optimized time constants. It
is clear that the optimization has improved the model signi�cantly.

In Figure 3.8 is can be seen that there are some overshoot which is more clear in Figure 3.9
where it can be seen that the angular rate follows the measurement very nice except that the
model fails to capture the clear second order dynamics with a overshoot. This 2. order dynamic
is assumed to be caused mainly by the Kalman �lter and are discarded in the model.
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Figure 3.7: Plot of the real uv from a demonstration and a
open loop simulation using the controls from the demon-
stration, after the optimization of τ . The dashed yellow
lines indicates that the state is reset to the actual state
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Figure 3.8: Plot of the real θ̇ from a demonstration and a
open loop simulation using the controls from the demon-
stration, after the optimization of τ . The dashed yellow
lines indicates that the state is reset to the actual state
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Figure 3.9: Plot of simulated and recored values of u, v for steer = 972 and throttle = 1100 where a steep is applied
for the steering to the maximal value of 1420 and then back to 972 after having reached steady state

3.3.3 Implementation

The model is implemented in Matlab and works as an online simulation model which can be
used to perform open or closed loop simulation or to be used by the Di�erential Dynamic Pro-
gramming algorithm to compute a controller as described in chapter 5 on page 41. However, the
2D interpolation in Matlab are relatively time consuming, and therefore the model is discretized
to speed up the simulation. This is done by precomputing all combinations of the inputs to
avoid the 2D interpolation at runtime. The inputs could then be rounded o� to the nearest
precomputed value, however, this would result in problems later when the model is linearized
by numerically computing the Jacobian, since a small change in the input then won't result in
a change in the steady state value. Therefore, the inputs are rounded up and down and a linear
regression is performed to �nd a more precise representation of the steady state value for that
speci�c combination of controls, see Figure 3.10.

A linear regression are then found by solving Equation (3.10)
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Figure 3.10: Illustration of discretized model with a query point and the four closest states in the model


1 xA yA
1 xB yB
1 xC yC
1 xD yD

φ =


zA
zB
zC
zD

 (3.10)

where:
A,B,C,D are the discretized states of the model for di�erent combinations of controls [-]
x is the steering value for a given state [-]
y is the throttle value for a given state [-]
z is the steady state value for a given state [m/s2], [rad/s2]
φ is a vector that solves the equation [-]

Given a query point linear regression is performed and the solution, φ, are used to compute the
steady state value. This is done for each of the three tables, one for each velocity/angular rate.

zquery = [1 xquery yquery]φ (3.11)

where:
zquery is the steady state value for the query point [m/s], [rad/s]

To verify that the discretized model is working a series of di�erent open loop simulation has been
performed with both models running for 50 time steps. When running the discretized model
the computation time where 10-11 times faster, and the maximum di�erence in the estimated
states where only 8.88e-6 which is acceptable.
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3.4 Model Veri�cation

To verify the model the car is driven around with a lot of stops and go and steering to make sure
the dynamics of the car are used, while the cars state is then logged along with the controls sent
to the car. Since it is the veri�cation none of the parameters in the model has been optimized
using this log. An open loop simulation is then performed using the discretized model with the
control signals recorded. In Figure 3.11 and 3.12 the translatory velocities, uv, and the angular
rate, θ̇, are plotted respectively. Since the model is not perfect the state of the simulation is
reset to the actual state every 10 seconds indicated by the vertical yellow dashed lines in the
Figures.
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Figure 3.11: Veri�cation of uv by comparing the state
of a demonstration with a open loop simulation using
the demonstrations controls. The dashed yellow lines
indicates that the state is reset to the actual state
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Figure 3.12: Veri�cation of θ̇ by comparing the state
of a demonstration with a open loop simulation using
the demonstrations controls. The dashed yellow lines
indicates that the state is reset to the actual state

As can be seen in Figure 3.11 and 3.12 the model captures the velocities and angular rate of
the car are very good. A model of the car based on steady state values, has now been presented
and veri�ed. Before a controller can be designed the cars state has to be estimated which is
the subject of the next chapter.
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Chapter 4
Estimation of States

Even though the Phasespace system is capable of outputting the position and orientation of
a de�ned rigid body, it has been chosen to implement the Kalman �lter to track the state,
since this gives the possibility of tuning the �lter depending of the applications. Also the log
likelihood is implemented to evaluate how well the Kalman �lter estimates the state. And
since the model is non-linear the linear Kalman �lter is modi�ed to an Extended Kalman
Filter (EKF). A smoother is presented which can estimate the state better since it runs an
extra pass over all the data. An Exploitation Maximization (EM) algorithm is then presented
for estimating the covariance matrices used in the Kalman �lter and smoother. Lastly in the
Chapter there is a Section about the implementation of the Kalman �lter, and a Section about
how to modify the EKF such that it works with the marker positions, found by the Phasespace
system, as observations.

4.1 Kalman Filter

The Kalman �lter gives a way to calculate an estimate of the state xt based on a partial output
sequence (y0, y1, ..., yt). This is done by calculating or predicting the probability distribution
of xt given all past measurements of y up to and including the time t, denoted P (xt|y0:t). The
probability distribution can then be used to estimate the state at time t. This means that the
�lter can be used to estimate or track the states in real time. Equation (4.1) and (4.2) are the
state space representation of a linear system with process noise wt and observation noise vt. It
is assumed that both the process and observation noise are Gaussian.

xt+1 =Axt +But + wt (4.1)

yt =Cxt + vt (4.2)

where:
wt is a Gaussian noise term independent of xt, wt ∼ N (0,Σw)
vt is a Gaussian noise term independent of yt, vt ∼ N (0,Σv)

As derived in Appendix B the states of a linear system can be estimated using a Kalman �lter
consisting of the Equations (B.22) to (B.26),
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x̂t+1|t = Ax̂t|t +But (4.3)

Pt+1|t = APt|tA
T + Σw (4.4)

Kt+1 , Pt+1|tC
T (CPt+1|tC

T + Σv)−1 (4.5)

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − Cx̂t+1|t) (4.6)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t (4.7)

Equation (4.6) is used to estimate the state xt+1. The power of the Kalman �lter is that it
operates on-line, by updating the state and uncertainty with every new measurement. And as
can be seen from the equations only the last state is needed for computing the optimal estimate,
due to the Markov property. It can be seen that the predicted estimate, x̂t+1|t, is corrected by
a term proportional to the error between the observed output and the prediction of the output,
(yt+1 − Cx̂t+1|t).

4.1.1 Extended Kalman Filter (EKF)

Since the system is non-linear an Extended Kalman Filter (EKF) is used instead. The EKF
can be implemented in di�erent ways but the method described in this section allows the use
of the equations from the linear case. When the system is non-linear the system equation and
output equation becomes,

xt+1 =f(xt) + wt (4.8)

yt =h(xt) + vt (4.9)

The goal is to linearize the functions f and h such that,

f(xt) ≈Atxt (4.10)

h(xt) ≈Ctct (4.11)

For each time index the non-linear functions f and h can be linearized by calculation the
Jacobian of f and h.

Df(xt) =
δf

δx

∣∣∣∣
x̂t|t

(4.12)

Dh(xt) =
δh

δx

∣∣∣∣
x̂t|t

(4.13)

where:
D is the Jacobian of a function

The Jacobian can numerically be computed by performing a forward or backward step or by
central di�erence. For precision the central di�erence method is chosen and are computed by
Formula (4.14)
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Df(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
(4.14)

where:
f is the non-linear function
∆x is the step size

4.1.2 Test by Simulation

To test the Kalman �lter a trajectory with two states has been generated using the linear system
dynamics,

A =
[

1.1 0.1
−0.2 1.03

]
(4.15)

However, even though the system dynamics used in the example are linear they are implemented
as a function such that the EKF can be tested including the computation of the Jacobian.
Process noise, wt, and measurement noise, vt, are then added as described in Equations (4.1)
and (4.2) respectively. The process and observation noise are randomly generated from a zero
mean Gausian distribution with the following covariances,

Σw =
[

0.1 0.05
0.05 0.3

]
Σv =

[
1 1.5

1.5 3

]
(4.16)

Figure 4.1 shows one of the states in the trajectory without noise and with process and ob-
servation noise added along with the �ltered state. As can be seen the �ltered state are more
smooth than the observations, and follows the real state better except in the beginning where
the �ltered state are bad due to a bad initialization of the state, x0, and covariance matrix, P0.
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Figure 4.1: Simulation of Extended Kalman Filter where the �ltered state are closer to the real state than the obser-
vations which the EKF are given
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4.2 Log Likelihood of State Estimation

To evaluate the state estimation the likelihood of the estimations are calculated of the observable
sequence y0:T . This is done based on the observations and the prior knowledge.

P(y0, y1, . . . , yT ) =P(y0)P(y1|y0)P(y2|y0:1) . . .P(yT |y0:T−1)

=
T∏
t=0

1

(2π)d/2 |S|1/2
e−

1
2 (yt+1−ŷt+1|t)T (S)−1(yt+1−ŷt+1|t) (4.17)

where:
d is the dimension of y
S = CPt+1|tC

T + Σv is the innovation or residual covariance

The log likelihood is a good indication, as a single number, of how well the Kalman �lter is
tracking, or how well a series of states match some observations. The log likelihood is also
used in section 4.4 on the facing page where an Expectation Maximization (EM) algorithm is
presented to estimate the covariance matrices from data. There the log likelihood is used as to
insure that the estimation is improved for each iteration of the EM algorithm as the covariance
matrices gets estimated better.

4.2.1 Implementation

To simplify the implementation of Equation (4.17) the logarithm is taken which yields,

P(y0, y1, . . . , yT ) =
T∑
t=0

{
log

(
1

(2π)d/2 |S|1/2

)
− 1

2
(yt+1 − ŷt+1|t)TS−1(yt+1 − ŷt+1|t)

}

=
T∑
t=0

{
−d

2
log(2π)− 1

2
log (|S|)− 1

2
(yt+1 − ŷt+1|t)TS−1(yt+1 − ŷt+1|t)

}
(4.18)

4.3 Rauch-Tung-Striebel (RTS) Smoother

Using the Kalman �lter allows to estimate the states based on observations up to and including
the time t. This section will concern the issue of obtaining estimates of the states based on all
observations up to the time T, which is called a smoother. The Rauch-Tung-Striebel (RTS)
smoother works by �rst forward �ltering as described in section 4.1, followed by a backward
pass through all the samples, which is the smoother. All measurements therefore have to be
available to be able to run the smoother. And the smoother can therefore not be used in real
time applications. The Equations, (4.19)-(4.21), for the Rauch-Tung-Striebel (RTS) smoother
are derived in appendix C

Lt =Pt|tATP−1
t+1|t (4.19)

x̂t|T =x̂t|t + Lt(xt+1|T − x̂t+1|t) (4.20)

Pt|T =Pt|t + Lt(Pt+1|T − Pt+1|t)LTt (4.21)
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Before running the backward pass the algorithm is initialized using the last values, x̂T |T and
PT |T from the forward �ltering pass.

4.3.1 Test by Simulation

In Figure 4.2 the test simulation from the EKF are shown along with the smoothed state. As
it is evident the smoothed state is much closer to the real trajectory compared to the �ltered
state. Also it can be seen that the initialization is improved allot compared to the �ltered state,
since the smoother is run as a backward pass based on all the data.
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Figure 4.2: Simulation of Extended Kalman Filter where the �ltered state are closer to the real state than the obser-
vations which the EKF are given

4.4 EM Algorithm for Estimating the Covariance Matrices

Using a Kalman �lter to track an object proves to be very e�cient if it is setup correct. However,
if the Kalman �lter is tuned wrong the estimation of the state will be bad. Therefore, the tuning
of the Kalman �lter is a very important task for getting a good state estimate. The tuning of
the Kalman �lter is depending on the following things:

• Initial state, x0

• Initial covariance matrix, P0

• Covariance matrix for system noise, Σw

• Covariance matrix for observation noise, Σv

Of course the performance of the �lter also depends on the system and output equations, but
since the model where veri�ed in Section 3.4, the only thing left is the covariance matrices and
the initialization. The initial state is simple since it for most cases will be some position and
heading where the car starts, with all velocities and accelerations set equal to zero. And since
both the initial state and covariance matrix will be updated in the �lter, the initialization of
them is not that signi�cant. The covariance matrices Σw and Σv on the other hand is not
being updated and therefore has a very signi�cance in�uence on how well the Kalman �lter is
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tracking. It is therefore these two matrices there is referred to when saying that the Kalman
need to be tuned, which is the subject of the this section.

Hand tuning the covariance matrices can prove to be a very calling task. Therefore, this section
will present an Expectation Maximization (EM) algorithm from [Coates et al., 2008] which
estimate the covariances matrices from recorded data by maximizing the following expression,

(Σw,Σv) = arg max
Σw,Σv

log P (y0, . . . , yT |Σw,Σv, A,B,C) (4.22)

In Equations (4.23)-(4.27) the EM algorithm equations are listed,

δxt =x̂t+1|T−1 − f(x̂t|T−1) (4.23)

St =Pt+1|T−1 − Pt+1|T−1L
T
t A

T
t −AtLtPt+1|T−1 (4.24)

Σ̂w =
1
T

T−1∑
t=0

δµtδµ
T
t +AtPt|T−1A

T
t + St (4.25)

δyt =yt − h(x̂t|T−1) (4.26)

Σ̂v =
1
T

T−1∑
t=0

δytδy
T
t + CtPt|T−1C

T
t (4.27)

where:
Σ̂w is the estimated process covariance matrix [-]

Σ̂v is the estimated observation covariance matrix [-]

As can be seen from Equations (4.23)-(4.27) the EM algorithm is depending on both the �ltered
and the smoothed states. Therefore the algorithm are implemented together with the smoother
during the backward pass.

4.4.1 Test by Simulation

Since there is no guarantee that the EM-Algorithm will converge to an globally optimum, it is
run multiple times with di�erent initializations each time. This should give an indication of if
the optimum found is globally. In �gure 4.3 the log likelihood of the estimation is plotted as a
function of the iterations of the EM algorithm. The EM-Algorithm has been run 10 times with
di�erent initializations but each of them converges to almost the same log likelihood, indicating
a globally optimum. For the initialization random numbers between 0 and 1 are generated from
a uniform distribution.

From Figure 4.3 it can be seen that for each of the 10 times the EM algorithm are run, the
log likelihood is improved for each iteration and that they converges to the same point. Also
it can be seen that a few iterations of the algorithm is enough to improves the log likelihood
signi�cantly.

Real values of covariance matrices,

Σw =
[

0.1 0.05
0.05 0.3

]
Σv =

[
1 1.5

1.5 3

]
(4.28)
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Figure 4.3: Plot showing the development of the log likelihood as 50 iterations of the EM algorithm is run. The di�erent
curves is the 10 di�erent initializations of the EM algorithm

Mean values of covariance matrices after running the EM algorithm 10 times,

Σ̄w =
[

0.0532 0.0183
0.0183 0.0489

]
Σ̄v =

[
0.9172 1.3438
1.3438 2.9673

]
(4.29)

Standard deviation of covariance matrices after running the EM algorithm 10 times,

Σw_std =
[

0.0201 0.0157
0.0157 0.0304

]
Σv_std =

[
0.0228 0.0278
0.0278 0.0513

]
(4.30)

As can be seen the EM algorithm estimates the measurement covariance matrix, Σv, very well
with a small standard deviation. When estimating the process covariance, Σw, the values are
underestimated which could be explained by the low values it is trying to estimate and due to
the limited amount of data used.

In �gure 4.4 the state from the previous test example are estimated with the Kalman �lter and
smoother, using the estimated covariance matrices from Equation (4.29). As can be seen the
smoothed state is very close to the real state even when the covariance matrices are estimated.

Aalborg University and UC Berkeley Page 33



4.5. IMPLEMENTATION

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Samples

 

 
Real trajectory
Real traj + noise
Observations
After Kalman
After smooth

Figure 4.4: Simulation of Extended Kalman Filter using the covariance matrices Σw and Σv estimates using the
EM-algorithm

4.5 Implementation

The Extended Kalman Filter is implemented in Matlab using the dynamics model based
on steady state values described in Chapter 3.3. However, to be able to track the system
in real time the EKF is also implemented in C++. This implementation uses the marker
positions from the Phasespace motion tracking system as observations using the function
GetSetOfMarkersNonBlocking() from table 2.1 in the system description. This means that
the measurement vector contains the position of a marker in {E}.

Ymarker ID =
E [

xID
yID

]
(4.31)

where:
Y is the observation vector for the KF, (Y = Cx) [m]
ID is the marker identi�cation [ID = A,B,C,D]

In Table 4.1 the implementation of the C++ Kalman �lter are summarize by listing the C++
class along with the four public functions associated with it.

Function Description

KalmanFilter Constructor of the class which loads the initial state, x0,
and the covariance matrices, Σw and P0 from �les
along with the position and variance for each marker

~KalmanFilter De-constructor of the class which closes frees the allocated memory

dynamicsUpdate Do a dynamics update using the function SystemDynamics()

measurementUpdateMarker Updates the state, xt, and the covariance matrix, Pt based
on measurements from the Phasespace system

SystemDynamics Simple dynamics model described in Section 4.6
convergence_check Function to check if the state, xt, and the covariance matrix,

Pt, has converged

Table 4.1: The C++ class KalmanFilter and the four public functions associated with it

Both versions of the Kalman �ler can be found on the enclosed CD.
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4.6 Simple Dynamics Model used in C++ Kalman Filter

For the Kalman �lter implemented in C++ a more simple dynamics model are used which
do not require the control inputs. The model is implemented such that it keeps the velocities
constant in {B} instead of propagating them forward by Euler integration in {E}. The state of
the car is shown in Equation (4.32),

x =



u̇v
ṅe
ne

θ̈

θ̇
θ

 (4.32)

where:
u̇v is the translatory acceleration in {B} [m/s2]
ṅe is the translatory velocity in {E} [m/s]
ne is the position in {E} [m]

θ̈ is the angular acceleration in {E} [rad/s2]

θ̇ is the angular rate in {E} [rad/s]
θ is the orientation in {E} [rad]

First the translatory velocities, ṅe, are transformed to {B} to perform the Euler integration in
that frame,

uvt = REB(θt)ṅet (4.33)

Euler integration is then performed,

uvt+1 =uvt + dt · u̇vt (4.34)

net+1 =net + dt · ṅet (4.35)

θ̇t+1 =θ̇t + dt · θ̈t (4.36)

θt+1 =θt + dt · θ̇t (4.37)

where:
dt is the time interval since last update [s]

After having updated the heading the translatory velocities are then transformed back to {E},

ṅet+1 = RBE(θt+1)uvt (4.38)

The translatory and angular accelerations are then dampened to ensure that it is the measure-
ments from the Phasespace system which are updating the state. This way the accelerations
and velocities go to zero over a short period of time if no measurements are provided.

u̇vt+1 =u̇vt · e−dt (4.39)

θ̈t+1 =θ̈t · e−dt (4.40)
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4.7 Estimation of Rigid Body State from Marker Observa-
tions

As described in Section 2.3 on page 13 about the Phasespace motion tracking system, the state
of the car is estimated using active led markers which are places on the car as shown in Figure
4.5.

Figure 4.5: Overview of car where the four Phasespace LED markers can be seen

Since the observations from the Phasespace motion tracking system are for the markers the
Kalman �lter has to be changed a to incorporate these observations. This is done by changing
the observation function, h, to the function state2markers(), which maps the state to the
di�erent marker positions. This way the state, xt, and uncertainty covariance, Pt, can be
updated by �rstly changing the state into the di�erent marker positions, and secondly using
the Kalman �lter equations with the marker observations. To do this transformation from the
state to each of the marker positions the markers are de�ned in the rigid body frame relative
to the point of rotation (center of the back wheels), along with the variance of each marker in
the Ex and Ey direction, see Figure 4.6. The position of each marker can be seen in Table 4.2.

Marker ID Bx By

A 0.23409 -0.0563754
B 0.23653 0.0514787
C 0.00641 -0.0649576
D 0.00809 0.0594779

Table 4.2: Position of markers in the cars rigid body frame

The observation function, h =state2markers(xt), is de�ned as,

EneMarker ID = RBE(θ) BxyMarker ID + Ene; (4.41)

where,

RBE(θ) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.42)
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Enorth [m]
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Markers
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Bx [m]

By [m]

Figure 4.6: Illustration of how the cars state (position and orientation) are transformed to the four marker positions.
Since the car is located in {E} with the four markers placed in the cars body frame {B}

Algorithm

1. Compute the Jacobian linearization of the system,
xt+1 = Atxt

2. Predict the state and covariance,
x̂t+1|t = Ax̂t|t +But
Pt+1|t = APt|tA

T + Σw

3. Compute the Jacobian linearization of the observation function h =state2markers(xt),
y = Ctxt

4. For all active markers

5. Kt+1 = Pt+1|tC
T (CPt+1|tC

T + Σv)−1

6. x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − Cx̂t+1|t)
Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t

As can be seen from Equations (4.20) - (4.21) no changes has to be made to the smoother when
used to estimate the state of a rigid body using multiple marker observations. In Figure 4.7 the
position of the markers are plotted along with the �ltered and smoothed position of the rigid
body.

Since the dynamics model, f , are used in the Kalman �lter then the rest of the elements in
state are also estimated. In Figure 4.8 the orientation of the car is depicted which corresponds
to the position of the markers and the dynamics model. And in Figures 4.9-4.12 the translatory
velocity, angular rate and velocities are depicted, respectively.
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Figure 4.7: Position of the four markers which are triangulated by the Phasespace system, along with the �ltered
position of the cars rigid body
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Figure 4.8: Orientation, θ, of the cars rigid body estimated using the Kalman �lter
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Figure 4.9: Translatory velocities, uv, of the cars rigid
body estimated using the Kalman �lter
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Figure 4.10: Angular rate, θ̇, of the cars rigid body es-
timated using the Kalman �lter
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Figure 4.11: Translatory accelerations, u̇v, of the cars
rigid body estimated using the Kalman �lter
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Figure 4.12: Angular accelerations, θ̈, of the cars rigid
body estimated using the Kalman �lter

4.7.1 EM Algorithm when using Marker Observations

Since Equation (4.25) from the EM algorithm is independent of the marker observations and
hereby also the output matrix C this equation does not change. However, since Equation (4.27)
is dependent of the output this equation has to be iterated for each active marker. And a
counter has to be introduced to keep track of the total number of active observations used in
the EM-algorithm, in order to �nd the mean. I.e. there is divided with the total number of
observations used instead of just T .

For the EM algorithm to estimate good covariance matrices it is important that the data
collected contain a lot of aggressive moves, since this will bring out the dynamics. If for
example the car in all the data is driven around with a constant speed then the corresponding
entries in the covariance matrix will be very small compared to reality when the car moves
more aggressively. Therefore, about 3 min of data is recorded with a lot of stops and as much
steering as possible, and in about one minute of the data the car is driven very aggressively
such that it is drifting around.

To avoid over �tting the data only the main diagonal of Σv and the accelerations of Σw are
updated through each iteration of the EM algorithm. In Table 4.3 and 4.4 the mean values of
the main diagonal of Σw and Σv are shown respectively along with the standard deviation. The
values are found by running the EM algorithm with 5 iterations run 10 times with di�erent
initializations of the covariance matrices.

State Mean value Standard deviation

u̇ 10 XXX
v̇ 10 XXX
u 1e-2 0
v 1e-2 0
n 1.5e-5 0
e 1.5e-5 0

θ̈ 170 XXX

θ̇ 1e-3 0
θ 1e-4 0

Table 4.3: Mean values and standard deviation of the main diagonal in Σw
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State Mean value Standard deviation
Ex 2.4e-3 1.769e-6
Ey 3.6e-3 3.481e-6

Table 4.4: Mean values and standard deviation of the main diagonal in Σv

XXX COMMENT VARIABLES

An Extended Kalman Filter and smoother has now been presented along with an EM-algorithm
to estimate the covariance matrices. In the following Chapter a controller will be found for
making the system follow a trajectory based on the estimated state.

EM don't know the meaning of the variables
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Chapter 5
Controller

This chapter describes the controller used in the project for trajectory following. First the
theory behind the Linear Quadratic Regulator (LQR) is described, where a feedback controller
is computed based on the dynamics of the system and a cost function, speci�ed as two weighting
matrices. After having found the equations used to compute the optimal controller for a Linear
Time Varying (LTV) system the LQR is extended to an Di�erential Dynamic Programming
(DDP) algorithm which will be used for trajectory following, since it computes a resulting
trajectory which is feasible given the dynamics model. In order to improve the performance of
the controller, feedforward inputs are in Section 5.6 added to the controller. And in Section 5.7
model biases is computed and added to correct for model inaccuracies. The chapter will conclude
with simulations performed in order to clarify the performance of the developed controller, and
a test on the real system. Throughout the chapter the state space and action space are assumed
continuous.

5.1 Linear Quadratic Regulator (LQR) for a Linear Time
Varying (LTV) System

The Linear Quadratic Regulator (LQR) control problem is a special class of Markov Decision
Processes (MDPs), for which the optimal policy can be computed e�ciently. The LQR is an
optimal controller which are described in more detail in [Anderson and Moore, 1989]. Consider
the following discrete Linear Time Varying (LTV) dynamics,

xt+1 = Atxt +Btut (5.1)

where:
xt ∈ Rn denotes the state at time t [-]
ut ∈ Rp denotes the input at time t [-]
At ∈ Rn×n is describing the system dynamics [-]
Bt ∈ Rn×p is the input matrix [-]

The control law of the system is described such that the feedback is a linear function of the
states x and the feedback matrices K

ut = Ktxt (5.2)
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where:
Kt ∈ Rp×n is the feedback matrix at time t [-]

It is supposed that all states can be measured without error and that the input signal, ut is
unlimited. An illustration of the linear state space system with the feedback matrices K is
shown in �gure 5.1

+

+

System

uk ykxkxk+1
Ct

At

Bt Z
1−

Kt

Figure 5.1: Block diagram of the closed loop system

The objective of controller design is to keep the output as close as possible to a reference
using a small control signal. By use of the LQR method, the design goals are speci�ed using
a performance function. The purpose of using this method is to determine an input signal, ut,
such that the �nite horizon performance function in Equation (5.3) is minimized. The discrete
performance function is a sum over time of weighted squared states and weighted square inputs.

J =
H−1∑
t=0

(xTt Qtxt + uTt Rtut) + xTHPHxH (5.3)

where:
H is the �nite time-horizon [-]
Qt ∈ Rn×n is the weighting matrices for the states and has to be positive semide�nite [-]
Rt ∈ Rp×p is the weighting matrix for the inputs and has to be positive de�nite [-]
Pt is the cost-to-go which is the cost incurred in all future steps if the agent acts optimal [-]

The cost-to-go, Pt, is the total cost, meaning all the penalty which will be accumulated from
the time, t, until the horizon, H. Hence, the total cost of being in state x0 at time t = 0 and
following the optimal policy is given by J(x0) = xT0 P0x0. More generally, the optimal cost-to-go
for being in state xt at time t is given by xTt Ptxt. Where the cost-to-go is the cost incurred in
all future steps, which means that the cost-to-go will decrease to zero as the times go to the
horizon H.

Qt has to be positive semide�nite and Rt has to be positive de�nite to ensure that all nonzero
control signals will give a positive contribution to the performance function. The minimization
of the performance function will lead to the optimal controller, by calculating the feedback
matrices Kt such that the control law in equation (5.2) minimizes the performance function.
The controller that minimizes the performance function is called a Linear Quadratic Regulator
(LQR).

min
u0...uH−1

J

= min
u0...uH−1

H−1∑
t=0

(xTt Qtxt + uTt Rtut) + xTHPHxH (5.4)
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= min
u0...uH−2

H−2∑
t=0

(xTt Qtxt + uTt Rtut) + xTH−1QH−1xH−1 + min
uH−1

uTH−1RH−1uH−1 + xTHPHxH

(5.5)

First the minimization is done over uH−1 which is the last two expressions of Equation (5.5)
and by utilizing Equation (5.1) yields,

uTH−1RH−1uH−1 + xTHPHxH =

uTH−1RH−1uH−1 + (AH−1xH−1 +BH−1uH−1)TPH(AH−1xH−1 +BH−1uH−1) (5.6)

This expression is convex quadratic in uH−1, and the minimum can be found by setting the
gradient equal to zero,

∇uH−1(·) = 0 = 2RH−1uH−1 + 2BTH−1PHAH−1xH−1 + 2BTH−1PHBH−1uH−1 (5.7)

This gives the following expression for uH−1,

uH−1 = −(RH−1 +BTH−1PHBH−1)−1BTH−1PHAH−1xH−1

= KH−1xH−1 (5.8)

where,

KH−1 = −(RH−1 +BTH−1PHBH−1)−1BTH−1PHAH−1 (5.9)

Inserting this and Equation (5.2) back into Equation (5.5) yields,

min
u0...uH−1

J

= min
u0...uH−1

H−1∑
t=0

(xTt Qtxt + uTt Rtut) + xTHPHxH (5.10)

= min
u0...uH−2

H−2∑
t=0

(xTt Qtxt + uTt Rtut) + xTH−1PH−1xH−1 (5.11)

where,

PH−1 = QH−1 +KT
H−1RH−1KH−1 + (AH−1 +BH−1KH−1)TPH(AH−1 +BH−1KH−1)

(5.12)

As can be see Equation (5.11) is exactly of the same format as the original problem from
Equation (5.4), which is written out again in Equation (5.10). Hence, this procedure can be
repeated for each time step. This gives the following dynamic programming algorithm to �nd
the optimal controllers for a LTV system with quadratic costs,

for t = H − 1, H − 2, ..., 0

Kt =− (BtPtBt +Rt)−1BTt Pt+1At (5.13)

Pt =Qt +KT
t RtKt + (At +BtKt)TPt+1(At +BtKt) (5.14)
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5.2 Di�erential Dynamic Programing (DDP)

As mentioned the Di�erential Dynamic Programming (DDP) is an extension of the LQR and
where �rst presented in [Jacobson and Mayne, 1970]. The DDP is a time varying controller
which consist of a series of feedback matrices, one for each time instance. It approximately
solves general continuous state space MDPs by iterating the following forward and a backward
pass.

1. Backward pass: Compute a linear approximation to the dynamics and a quadratic ap-
proximation to the reward function around the trajectory obtained when using the current
policy (controller). Then compute the optimal policy for the LQR problem using Equations
(5.13) and (5.14)

2. Forward pass: Simulate by setting the current policy equal to the optimal policy found
in the LQR problem to obtain the new resulting trajectory. This means that a closed
loop simulation are done using the non-linear simulation model in the length of the target
trajectory

The linear approximation of the dynamics are found by computing the Jacobian linearization of
the non-linear dynamics. More speci�c this is done by linearizing around the current resulting
trajectory, such that for each time instance in the resulting trajectory are used as an equilibrium
to compute a linear representation of the system dynamics for that speci�c time index. In the
�rst iteration the system is linearized around the target trajectory. Since the DDP in this
project is used for trajectory following, a small change has to be made to the algorithm.

5.2.1 DDP for Trajectory Following

Since the algorithm is needed for trajectory following the standard formulation presented in
Equation (5.3) need to be extended such that the it is a function of the di�erence between the
state and the desired trajectory x∗0, . . . , x

∗
H . This is archived by rewriting the reward function

to a function of the error state et = xt − x∗t rather than the actual state xt. This way the
algorithm can be used to track some desired state reference sequence.

J =
H−1∑
t=0

(
−(xt − x∗t )TQt(xt − x∗t )− u(t)TRu(t) + (xH − x∗H)TPH(xH − x∗H)

)
(5.15)

When the DDP computes a controller it uses the simulation model which means that the target
trajectory has to be feasible with the given dynamics model. Hence, if a slightly non-feasible
target trajectory is given, the DDP algorithm will change the target trajectory in the forward
pass, to a trajectory which is feasible with the simulation model. And if the target trajectory
and simulation model are not consistent then the algorithm will not converge.

Since the controller is precomputed by linearizing the system around the resulting trajectory it
is important that the car follows the trajectory. Because if the system start deviating to much
from the target then the controller is no longer optimal and the deviation from the linearization
point may result in very poor performance.
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5.3 Implementation

The DDP has been implemented in Matlab where the feedback matrices are precomputed and
saved in a �le. The main C++ program then computes the control signals using these pre-
computed feedback matrices and the current state. The DDP controller has been implemented
such that the control law from Equation (5.2) have been modi�ed to give the change in controls
instead of the control signals,

∆ut = Kt(xt − x∗t ) (5.16)

where:
∆ut = ut − ut−1 is the change in controls from the previous time [-]

Therefore, it has been chosen to have the previous controls, ut−1, in the the DDP state since
this means that the actual controls can be computed as the previous controls added with the
feedback. The state vector used in the DDP is therefore de�ned as,

xddp =


uv
ne

θ̇
θ

ut−1

∆ut−1

 (5.17)

As can be seen in the state vector a term has been added to the reward function that penalizes
the change in inputs over consecutive time steps,

∆ut−1 = ut−1 − ut−2 (5.18)

In particular, this term will penalize the controller for changing the controls from the controls at
the previous time step. This is an implementation choice and means that the weighting matrix
R for the inputs is set to zero since a cost for change in inputs are added in the state. In Figure
5.2 a �owchart is illustrating how the precomputed DDP controller is used. As illustrated the
controller is read from a �le along with the target states, x∗.

File with pre-computed 

controller,     , and target,    .

Transmit controls      .

KF state

Map KF state to DDP state

Transform state,     , based on   .

Compute            controls

xt x0

¢ut

+ut¡1

Clip           controls¢ut

Clip controls      .ut

ut

.    feedback matrix,       targetx
¤

tKt

x
¤

K

Figure 5.2: Flowchart of the DDP controller
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After the Extended Kalman Filter has estimated the state it is mapped into the DDP state.
The state is then transformed relative to the initial state, x0, and the initial target, x∗0, such
that the controller works independent of where the car starts or is orientation, see Figure 5.3.
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Figure 5.3: Illustration of how the state, xt, is transformed based on the initial state, x0, and the initial target, x∗0

The transformation from the state, xt, to the transformed state, x̄t, which is comparable with
the target independent of the start state and initial target, is described by Equations (5.19)
and (5.20). Normally the translatory velocities would also need to be transformed, however
since the velocities in the DDP state are given in the cars body frame they do not need to be
transformed.

¯[
nt
et

]
=RE∗0E0(∆θ0)

([
nt
et

]
−
[
n0

e0

])
+
[
n∗0
e∗0

]
(5.19)

θ̄t =θ −∆θ0 (5.20)

where:
∆θ0 = θ0 − θ∗0 is the di�erence in heading between the initial state and the initial target [rad]
RE∗0E0 is the rotation matrix from the initial frame {E0} to the targets initial frame {E∗0} [-]
n̄et is the transformed position at time t [m]
θ̄t is the transformed orientation at time t [rad]

This means that the control law from Equation (5.16) is changed to use the transformed state,
x̄t,

∆ut = Kt(x̄t − x∗t ) (5.21)
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The rotation matrix RE∗0E0 is de�ned as,

RE∗0E0 =
[
cos(∆θ0) −sin(∆θ0)
sin(∆θ0) cos(∆θ0)

]
(5.22)

Likewise the inverse of this transformation is performed on the target, see Equations (5.23)
and (5.24), such that the target visually can be compared to the state, when displayed in a 3D
graphics frontend as described further in Chapter 6 on page 59 about the software.

¯[
n∗t
e∗t

]
=RE0E∗0 (∆θ0)

([
n∗t
e∗t

]
−
[
n∗0
e∗0

])
+
[
n0

e0

]
(5.23)

θ̄t =θ + ∆θ0 (5.24)

where,

RE0E∗0 = RTE∗0E0
(5.25)

After the transformation of the state the feedback controls are computed using Equation (5.21).
As illustrated in Figure 5.2 the computation of the feedback controls are done based on the
current target and the feedback matrices which are saved in a �le. The feedback change in
controls, ∆ut, are then clipped at some de�ned limits. The previous controls are then added
to give the current feedback controls which also are clipped. The feedback controls are then
send out to the system using the function TxControls() from the C++ class RxTxControls()
which where described in Table 2.2 in the system description.

In Table 5.1 the implementation of the controller are summarize by listing the C++ class along
with the its �ve public functions associated with it.

Function Description

Controller Constructor of the class which loads the target and feedback
matrices to memory, and takes in the initial state, x0, used
for transforming the state

~Controller De-constructor of the class which closes the �les and frees
the allocated memory

ComputeControls Computes the controls based on the current time and state
GetInitialControls Gets the initial controls of the target
GetTarget Gets the target at the current time
GetFeedforwardControls If used it gets the feedforward controls at the current time
TransformeState Rotate and translate the current state, xt, based on the

initial state, x0, into the frame of the controller. Also
it transforms the target into the frame of the initial state

Table 5.1: The C++ class Controller and the �ve public functions associated with it

When running the DDP algorithm the feedback matrices are computed for a speci�c time
interval which is 50 milliseconds corresponding to 20 Hz. Therefore, it is important that the
main loop runs with the same time interval which will be described further in Chapter 6 on
page 59 about the overall software setup.
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5.4 Simulation using a Circle

To test the DDP a simple trajectory has been de�ned, where the car in simulation is driving
around in a counter clockwise circle. The DDP algorithm are then used to compute an optimal
controller, and the performance of the controller are tested in a closed loop simulation. In
�gures 5.4 - 5.9 the position (n, e), translatory velocity (u, v), heading (θ), angular rate (θ̇),
and the controls (steer and throttle) are illustrated along with a Matlab Quiver plot which plots
the position and heading in one plot to give a better illustration of the maneuver. In all the
plots the target trajectories are plotted along with the resulting trajectories after having run
the DDP algorithm.
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Figure 5.4: Position: north and east given in the earth
initial frame
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Figure 5.5: Forward velocity, u, and sideways velocity,
v, given in the body frame
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Figure 5.6: Heading θ
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Figure 5.7: Angular rate θ̇

As can be seen from the plots the speci�ed trajectory comply with the dynamic model since the
resulting trajectory is lying on top of the speci�ed trajectory in most of the states. However,
as can be seen there is a inconsistencies in the sideways velocity since the target is set to zero
sideways velocity, and that the DDP have found that to complete the target with the given
dynamics model the resulting target has to have a small sideways velocity for it to be feasible.
This also results in the change in the angular rate to correct for this sideways velocity.
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Figure 5.8: Control inputs steer and throttle
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Figure 5.9: Matlab Quiver plot of position and heading

To test the computed controller an closed loop simulation is done where the car is started with
a small o�set to the trajectory, see Figures 5.10-5.15.

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

po
si

tio
n 

[m
]

 

 
north cl−loop
east cl−loop
north target
east target

Figure 5.10: Position: north and east given in the earth
initial frame in closed loop simulation
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Figure 5.11: Forward velocity, u, and sideways velocity,
v, given in the body frame in closed loop simulation
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Figure 5.12: Heading θ in closed loop simulation
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Figure 5.13: Angular rate θ̇ in closed loop simulation
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5.5. SIMULATION USING AN 8-TRAJECTORY FROM A DEMONSTRATION
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Figure 5.14: Control inputs steer and throttle in closed
loop simulation
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Figure 5.15: Matlab Quiver plot of position and head-
ing in closed loop simulation

As can be seen from Figures 5.10-5.15 the controller is capable of controlling the car around in
the speci�ed trajectory, and also corrects the mismatch in the starting state as intended.

5.5 Simulation using an 8-Trajectory from a Demonstra-
tion

To test the performance of the DDP controller a more di�cult trajectory is used. The trajec-
tory is a 8-trajectory which is obtained from a single demonstration. The target trajectory is
obtained by driving the car around in a 8-trajectory while the Kalman �lter is tracking the
state which is saved to a �le. The Kalman �lter state is then transformed into the DDP state
which is subsampled by interpolation to 20 Hz. In Figures 5.16 - 5.21 the target and resulting
trajectories from the DDP are plotted.
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Figure 5.16: Position: north and east given in the earth
initial frame
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Figure 5.17: Forward velocity, u, and sideways velocity,
v, given in the body frame
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Figure 5.18: Heading θ
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Figure 5.19: Angular rate θ̇
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Figure 5.20: Control inputs steer and throttle
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Figure 5.21: Matlab Quiver plot of position and heading

As can be seen from the plots the performance is not that good and in �gure 5.22 where the
feedback matrices are plotted over time it can be seen that there are some very large spikes
which is a problem if the car deviates from the target trajectory in time. The large feedback
values appear because the steering in the trajectory is changing very dramatically as can be
seen from �gure 5.20. This means that no matter how large a penalty there are used for
changing in controls the large spikes in the feedback matrices will always be there. Therefore,
feedforward controls are introduced such that the controls only are penalized for deviating from
the feedforward controls.
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5.6. INTRODUCING FEED-FORWARD CONTROLS
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Figure 5.22: Plot of all values of feedback matrices over time

5.6 Introducing Feed-forward Controls

The feedforward controls are introduced by adding them to in the simulation model. In Figure
5.23 the DDP �owchart is updated with the feedforward controls, ũt.

Transmit controls      .

+ut¡1

Clip feedback,      , controlsut

+ .     feedforward controls~ut

Clip controls      .ut

ut

File with pre-computed 

controller,     , target,    , and 

feedforward controls   ,

Compute            controls¢ut

Clip           controls¢ut

.    feedback matrix,       targetx
¤

tKt

x
¤

K

Transformed state    ,¹xt

~ut

Figure 5.23: Flowchart of the DDP controller with feedforward controls

The e�ect of adding the feedforward controls can be seen in Figures 5.24 - 5.29. Since the
feedforward controls are added in the simulation model the DDP algorithm do not know of
them, which means that the target for the controls is all zeros as can be seen in Figure 5.28.
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Figure 5.24: Position: north and east given in the earth
initial frame
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Figure 5.25: Forward velocity, u, and sideways velocity,
v, given in the body frame
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Figure 5.26: Heading θ
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Figure 5.27: Angular rate θ̇
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Figure 5.28: Control inputs steer and throttle
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Figure 5.29: Matlab Quiver plot of position and heading
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5.7. INTRODUCING MODEL BIASES TO CORRECT FOR MODEL INACCURATE

As can be seen in Figure 5.30 the spikes in the feedback matrices are now gone since the
controller now only penalizes for changing of controls compared to the feedforward controls.
Notice that all the values in the feedback matrices near the end are going to zero. This is
called the end-e�ect and are caused by the cost to go, Pt, being close to the horizon H, which
means that it is small and therefore the algorithm will allow small errors in the state resulting
in the feedback values going to zero. Therefore, it is important not to use the last few feedback
matrices computed.
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Figure 5.30: Plot of all values of feedback matrices over time

However, as it is evident from the rest of the plots and very clear in the Quiver plot in Figure
5.29 the performance is still poor. This is due to inaccuracies between the simulation model
and the real system. To help improve the simulation model bias terms are introduced for each
time instance.

5.7 Introducing Model Biases to Correct for Model Inac-
curate

Since the states are found by Euler integration of the accelerations it is the accelerations which
are the most important terms. Therefore, time dependent model biases is computed and added
to the simulation model for the three accelerations. This then works as a feed forward loop
which �lls in the di�erence between the demonstration and the open loop simulation,

As shown in Equation (5.26) the bias term, β∗t , is computed for each time instance by taking
the di�erence in accelerations between the actual next state and the simulated next state.

β∗t =

 u̇t+1

v̇t+1

θ̈t+1

∗ − f
 u̇t

v̇t
θ̈t

∗  (5.26)

This way a bias term is computed for each time instance. Since the accelerations are not a
part of the DDP state they are computed from the velocities by inverse Euler integration. Due
to noise in the observations the model biases are smoothed by running a moving average over
the computed biases. The model biases for the 8-trajectory are plotted in Figures 5.31 and
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5.32 along with the smoothed values. The idea of adding model biases where �rst presented in
[Abbeel et al., 2006b].
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Figure 5.31: Model biases for u̇ and v̇ along width the
mean of the model biases computed by a moving average
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Figure 5.32: Model bias for θ̈ along width the mean of
the model bias computed by a moving average

In Figure 5.33 - 5.38 the new resulting trajectory can be seen compared to the target trajectory.
As it is clear the performance of the controller has improved signi�cantly since the di�erence
between the simulation model and the real system has been corrected by adding the model
biases. Though the resulting trajectory are still a dampened version of the target which is clear
in �gure 5.36. This is due to the fact that the model biases are smoothed by meaning out the
noise.
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Figure 5.33: Position: north and east given in the earth
initial frame
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Figure 5.34: Forward velocity, u, and sideways velocity,
v, given in the body frame
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Figure 5.35: Heading θ
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Figure 5.36: Angular rate θ̇
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Figure 5.37: Control inputs steer and throttle
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Figure 5.38: Matlab Quiver plot of position and heading

Using the model biases to correct for model accuracies is a very powerful and simple way
to improve a model. However, it only works when a demonstration is available, and it only
works when the system stays relative close to the target trajectory especially in time. Also it
adds on any noise from the demonstration, so it is important that the demonstration is good.
Therefore it can be necessary to estimate the target trajectory and model biases from multiple
demonstrations, as done in [Coates et al., 2008], to get a target and model biases with less
noise.

5.8 Test on Real System

The computed controller are then tested on the real system using the 8-trajectory from the
simulations as the target. In Figure 5.39 - 5.44 the real state can be seen compared to the target
trajectory. As it is clear especially from the Quiver plot in Figure 5.44 the car is following the
target very nicely. And as can be seen in Figure 5.43 where the feedback controls are plotted,
the controller is performing feedback and especially changing the steering very aggressively.
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Figure 5.39: Position: north and east given in the earth
initial frame
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Figure 5.40: Forward velocity, u, and sideways velocity,
v, given in the body frame
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Figure 5.41: Heading θ

0 50 100 150 200 250 300 350 400
−4

−3

−2

−1

0

1

2

3

4

time [s]

an
gu

la
r 

ra
te

 [r
ad

/s
]

 

 
theta

dot
 result

theta
dot

 target

Figure 5.42: Angular rate θ̇
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Figure 5.43: Feedback control inputs steer and throt-
tle, where zero feedback correspond to the feedforward
controls
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Figure 5.44: Matlab Quiver plot of position and heading
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5.8. TEST ON REAL SYSTEM

A trajectory following controller has now been presented and tested in simulations. Feedforward
controls and model biases have been introduced which improved the performance signi�cantly.
Lastly the controller has been tested on the real system which performed very well. In the next
Chapter an overview is given of all the software.
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Chapter 6
Software

Throughout this report some of the software has been mentioned such as the C++ classes
Phasespace(), RxTxControls(), KalmanFilter() and Controller(). This Chapter will de-
scribe the rest of the software and how all the software interacts. Later in this Chapter the
�ow of the di�erent functions and classes will be described, but �rst an overview of the primary
functions and classes used in this project are illustrated in Figure 6.1.

Controller, target and 

feedforward file

Command line

Sensors 

log file

State + controls 

log file

Controller

log file

main_ddp()

Phasespace()

RxTxControls()

Clock()

Soft_real_time_sleep()

Parse_command_line()

IO_handler() Controller()

FrontendClient() FrontendServer()
Socket

Class

Class

Class Class

Class

          ,          and          files§w
§0 x0

Position and variance of 

markers in rigid body fileKF_state_2_DDP_state()

KalmanFilter()

Class

Figure 6.1: Overview of the primary functions and objects of the C++ software. The arrows indicates that a function
is called and which directions the communication occur

As can be seen in the bottom of Figure 6.1 there are three �les used for logging of the sensor
data, controller data and the state and controls. Gathering of new data is done through the
IO-handler which provides a way of performing centralized logging of all the raw sensor data
from the Phasespace() and RxTxControls(). This way all the code can be run o� line by
using an existing sensor �le as inputs. This gives the possibility of rerunning an experiment
o�ine, and to change the settings of the Kalman �lter before rerunning the code.

As illustrated the Kalman �lter reads the settings from four di�erent �les, when constructed,
such that the �lter can be tuned without recompiling the code. And as already described the
controller reads the precomputed target and feedback matrices from another �le.

The main parts, IO-handler(), KalmanFilter(), FrontendClient(), RxTxControls(), Phasespace()
and Controller() are implemented as C++ classes. All the classes are then located in its own
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folder and each of the class have a simple example �le associated with it which shows how that
speci�c class works in the most simple version. This is a good setup since it is possible to test
each of the classes alone. In Figure 6.2 a simpli�ed �owchart is illustrated of the main program.

Get data through the Phasespace 

and ControlsRxTx class and log data

run

Log time, states and controls

mod(time,20Hz)

true

false

true

false

IO-handler

KalmanFilter

Dynamics Update using the function 

SystemDynamics()

Construct Phasespace, ControlsRxTx, 

IO-handler, FrontendClient and 

KalmanFilter

Start program

Parse command line

KalmanFilter 

converged

Construct Controller

Get data and estimate 

state

Measurement update of state and 

covariance matrix based on the marker 

observations

Compute controls

Controller

Send controls

RxTxControls

Send data

FrondendClient

false

true

Exit program

Deconstruct all 

classes and close 

all files

Figure 6.2: Simpli�ed �owchart of main loop

When the program is started any command line arguments are parsed and saved in a struct
for easy further use. The Phasespace(), ControlsRxTx(), IO-handler(), FrontendClient()
and KalmanFilter() classes are then initialized. The Kalman Filter is then run until the state,
xt, and covariance matrix, Pt, have converged. Where the converged state is what throughout
this report have been denoted, x0. The Controller() class are then constructed with the �le
containing the precomputed controller and the initial state, x0, which is used to transform the
state and target.

Any new data are then collected and logged by the IO-handler using the ControlsRxTx() and
Phasespace() class. The KalmanKilter() is then used to estimate the state which is also
logged to a separate �le along with the time and the controls. To detect when the buddy switch
is pulled (autonomous) the gear is added as an extra channel for the transmitter. This way
depending of the gear switch the value of that channel will be 500 or 1500. Therefore by sending
out 1000 it is possible to detect when the buddy switch gets pulled indicating autonomous mode.

As described in Chapter 5 about the controller it is important that the feedback controls are
computed at the same frequency which the controller are computed for. Therefore, the function
soft_real_time_sleep() has been implemented to ensure that that control algorithm runs
with a speci�ed time interval T . The timer is implemented using the function usleep() and is
described in detail and tested in Appendix D.
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At 20Hz the controls are then computed and sent out to the car using the RxTxControls()

class. The cars current state and controls are then sent to the FrontendServer() through the
FrontendClient() to give a 3D visualization of the maneuver, see Figure 6.3. Also the controls
and the number of active markers are sent to the frontend server along with a �ag indicating
if the system runs autonomous. To see how well the car follows the target, the target is also
sent to the frontend server along with the feedforward controls. The frontend server has been
developed as a separate program functioning as a client/server setup over the socket. The server
has been written such that it listens for new connections from clients. And if a client connects
the server then forks a new thread to handle that client, and the main program returns to listen
for new clients. This way the server can handle multiple clients simultaneously. The program
are also written in C++ by using the open source OpenGL utility toolkit Glut.

Figure 6.3: Still image of the frontend illustrating a helicopter (blue) and its target (yellow). In the bottom left corner
the attitude of the helicopter is illustrated in a subwindow and in the bottom right window the pin positions of the
helicopter are illustrated. In the graph on top of the controls subwindow the number of active markers are illustrated
over time. If two or less markers are active the space above the graph gets �lled out to indicate that the Kalman �lter
needs more active markers to do an state estimation update.

As described before any command line arguments are parsed through the function parse_command_line()
function. This gives the following syntax options which are printed with the help argument -h
or any unrecognized arguments.
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Syntax is: ./car_ddp [-option]

options:

I/O handler:

-f <FILENAME> uses sensor data loaded from FILENAME

-r read data real time from sensor file

-b get data from Phasespace as blocking calls

-br <BREAK_COUNTER> break main loop when counter reaches BREAK_COUNTER

KalmanFilter:

-i do NOT init Kalman filter

-dt <VALUE> run Kalman filter with timeinterval VALUE in seconds

-x0 <FILENAME> init state vector, x_0, from FILENAME

-s0 <FILENAME> init covariance matrix, P_0, from FILENAME

-sw <FILENAME> init sigma_w from FILENAME

-m <FILENAME> read info about markers in rigid body from FILENAME

Controller:

-tr Do NOT transform state and target accordingly to init of KF

FrontEnd:

-v use front end to visualize on Heli2 through port 9000

-v_s <IP> <PORT> use front end to visualize on IP through PORT

-v_id <ID> initialize the model to ID

-v_ty <TYPE> draw the object as a TYPE ('c'=car, 'h'=gaui, 'q'=quad)

-v_c <COLOR> draw the object in the COLOR (Matlab char, 'b'=blue, etc.)

-v_tr <NUM_TRAILS> leave NUM_TRAILS trails behind object

-v_i <INIT_VIEW> init the camera view to INIT_VIEW (0=not, 1=2d, 2=3d)

-v_1 <PRIMARY_ID> track the PRIMARY_ID in the subwindows

-v_2 <SECONDARY_ID> track the SECONDARY_ID in the subwindows

-v_a activate the attitude subwindow

-v_m activate the number of active markers subwindow

-v_c activate the controls subwindow

Using the command line to set di�erent options is a very robust way of using the software since
a recompilation can be avoided.
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Chapter 7
Learning Parameterized Maneuvers

In Chapter 5 a controller where presented which allowed for controlling the car to follow a single
demonstration. But building a maneuver library directly based upon expert demonstrations
would require collecting a set of demonstrations for each maneuver. Instead an interpolation-
based algorithm and probabilistic model-based algorithm (which build upon [Coates et al., 2008])
which, rather than learning a discrete set of maneuvers, make more e�cient use of expert
demonstrations by learning parameterized maneuvers, which continuously index into a certain
maneuver (for example a right turn) based upon a set of demonstrations spanning the range of
executions of that maneuver. The approach presented here consists of three main steps,

1. Learning parameterized maneuvers:
Given a set of similar trajectories, learn to generate parameterized maneuvers. The param-
eterization could but need not be the start and end states

2. Sequencing parameterized maneuvers:
Given a set of way-points or other partial speci�cation of a long trajectory, generate the
complete state trajectory sequence by sequencing together (shorter) parameterized maneu-
vers

3. Automatic extraction of demonstrations
Rather than collecting demonstrations for each parameterized maneuver, collect a large set
of �random� demonstrations and automatically picks out similar stretches and then uses
them when learning a parameterized maneuver

7.1 Learning Parameterized Maneuvers

It is assumed that M demonstration trajectories of length T are provided. Since the demon-
stration trajectories are considered relatively short, each demonstration are �rst uniformly time
warped to have a normalized length of T . Each trajectory is a sequence of states, skt , control
inputs, ukt , and model biases βkt composed into a single state vector:

ykt =

 skt
ukt
βkt

 , for t = 1..T, k = 1..M. (7.1)
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The goal is to estimate a target trajectory of length T , denoted similarly:

zt =

 s?t
u?t
β?t

 , for t = 1..T. (7.2)

For simplicity the following notation will often be used: Y = {ykt | t = 1..T, k = 1..M},
Z = {zt | t = 1..T}, and similarly for other indexed variables.

To do the parameterization some property of the target trajectory is given, this could be the
start and end state or a partial speci�cation thereof. The target trajectory's start and end state
will be denoted by z∗1 and z∗T respectively.

7.1.1 Approach 1: Convex Weighting

Since it is interested to �nd interpolated versions of the demonstrations, a natural approach is
to use a convex weighting of the demos such that this convex combination hits both target start
and end states. The convex weights could change throughout the trajectory, and the following
convex formulation is proposed,

minx1,xT
(z∗1 − z1)>Λ1(z∗1 − z1) + (z∗T − zT )>ΛT (z∗T − zT )

+
M∑
k=1

(x1)k log(x1)k +
M∑
k=1

(xT )k log(xT )k

s.t. z1 = [y1 . . . yM ]x1

zT = [y1 . . . yM ]xT
0 ≤ x1 ≤ 1
0 ≤ xT ≤ 1
M∑
k=1

(x1)k = 1

M∑
k=1

(xT )k = 1

The solution x1 provides the convex weighting for time 1, and xT provides the convex weighting
for the end state. To obtain the intermediate convex weightings a linearly interpolate between
x1 and xT is performed.

The negative entropy terms
∑
i(x1)i log(x1)i+

∑
i(xT )i log(xT )i in the objective function ensure

that the optimization does not put too much weight on a very small number of trajectories.
Without the entropy regularization this happens easily and especially the model bias terms
learned for the planned trajectory tend to be too noisy.

If the trajectories are kept short enough, this linear combination can be a good approximation
to a true, dynamically feasible trajectory.
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7.1.2 Approach 2: A Probabilistic Graphical Model Approach

While for very short trajectories the convex weighting approach can work quite well, it com-
pletely ignores the dynamics of the system and might generate trajectories which are not phys-
ically feasible.

To incorporate the dynamics model into the planning procedure, the probabilistic model pro-
posed in [Coates et al., 2008] is adapted to being able to plan a new trajectory, rather than
simply generating a planned target trajectory which best captures the demonstrator's intent
under the assumption all demonstration were executed with the same intent.

The generative model is a standard Hidden Markov Model (HMM) and uses the following
dynamics model,

zt+1 = f(zt) + ω
(z)
t , ω

(z)
t ∼ N (0,Σ(z)). (7.3)

The generative model represents each demonstration as a set of independent �observations� of
a hidden, to-be-planned trajectory Z. Speci�cally, the model assumes,

ykt = zt + ω
(y)
t , ω

(y)
t ∼ N (0,Σ(y)). (7.4)

In addition, there are added additional observations characterizing the target trajectory: the
start and end state. The graphical model described are illustrated in Figure 7.1

...z1 z2 z3 zT

yk
3 yk

Tyk
2yk

1

yM
3 yM

Ty
(2)
2y

(1)
1

yM
3 yM

T
y2yM

1

y¤1 y¤T

Figure 7.1: Illustration of probabilistic graphical model used to plan a parameterized trajectory. The gray circles
represent observations and the arrows represent correlations between the states

In a typical setting between �ve to ten demonstrations are used. Some of these will more closely
match the target start and end states and hence they get assigned a noise model which assumes
they deviate less from the planned target trajectory, and hence the inference for the planned
target trajectory will more heavily rely on these closer demonstrations.

To �nd the planned trajectory, an extended Kalman �lter/smoother are run over the above
described probabilistic model while the EM algorithm described in Section 4.4 are used to
estimate the entires in the covariance matrices corresponding to the system dynamics and
controls.

Di�erent demonstrations of a parameterized maneuver do not merely di�er in independent
Gaussian noise, but will often drift around unintentionally. Since these position errors are
highly correlated, they are not explained well by the Gaussian noise term in the observation
model. To capture such slow drift in the demonstrated trajectories, the latent trajectory's state
are augment with a �drift� vector δkt for each time t and each demonstrated trajectory k. The
drift is modeled as a zero-mean random walk with a (relatively) small variance. The state
observations are now noisy measurements of zt + δkt rather than merely zt. In Figure 7.1 the
graphical model described are illustrated with the drift added.
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Figure 7.2: Illustration of probabilistic graphical model used to plan a parameterized trajectory, with drift terms added
to each demonstration

7.1.3 Tests

To test the di�erent approaches for planning parameterized maneuvers, 10 di�erent demonstra-
tions of a right turn are demonstrated and one of the demonstrations are hold out and tried
reconstructed by using its start and end state. The methods used for planning the trajectory
are the convex combinations with and without the entropy terms and the probabilistic graphi-
cal model. In Figure 7.3 nine demonstrations are plotted along with the leave one out and the
planned trajectories from the three di�erent methods.

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

East [m]

N
or

th
 [m

]

 

 
Demonstrations
Leave one out
ConvexComb
ConvexComb Entropy
Kalman Filter

Figure 7.3: Plot of the nine demonstrations along with the leave one out and the planned trajectories from the three
di�erent methods

The leave one out veri�cation have been performed on �ve di�erent trajectories. Each of the
planned trajectories have then been executed by using the DDP controller from Chapter 5.
The di�erence between the leave one out trajectory and the executed trajectory have then been
calculated as the sum of the squared error of all elements in the state vector (without biases
and controls). In Table 7.1 the score of the leave one out validation is listed for 5 di�erent
trajectories each executed three times.
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Methods Error when reconstructing 5 demonstrations
ConvexComb 0.3412 1.5339 3.2470 0.7686 7.4471

0.4415 1.4566 1.0475 0.7493 5.6761
0.2567 1.9831 2.0045 1.0429 5.5806

ConvexComb w/ entropy 0.3764 2.8193 0.6015 0.4248 6.0913
0.3128 1.6912 1.2005 0.4990 7.1451
0.4601 1.8638 0.8719 0.4057 5.6616

Kalman Filter 1.2561 1.1619 2.1600 1.3862 1.7706
1.5104 0.9827 2.0753 2.6001 1.7803
1.2385 1.6371 1.5666 0.8090 1.2209

Table 7.1: Sum of squared error for �ve di�erent trajectories compared to the planned trajectories executed
three times. The planned trajectories are reconstructed from their start and end states

As can be seen in Table 7.1 it is di�cult to draw a clear conclusion about the three methods.

7.2 Sequencing Parameterized Maneuvers

Given a set of way-points or other partial speci�cation of a long trajectory, the goal is to
generate the complete state trajectory sequence by sequencing together (shorter) parameterized
maneuvers. Waypoints are often much easier to specify than entire trajectories, especially so
when only being requested to specify a few of the state variables for each of the way-points,
such as position and heading. This is illustrated in Figure 7.4(a) where the waypoints used
are generated from a synthetic target �gure 8 trajectory. The red squares mark the waypoints
supplied to the sequencing algorithm.

If the stitches are computed in chronological order, additional state information from the end
of the last stitch can be used to give a more smooth transition of the part of the state which
are not de�ned. Therefore, to ensure a smooth transition over the stitch boundaries, the start
state z∗1 of a stitch are augmented with a overlap from the previous stitch. Both in the convex
combination approach and in the probabilistic model approach, these are readily incorporated.

For each of the intervals between two waypoints, there are a collection of trajectories which are
used to interpolate between those two waypoints (call this interval and the associated trajectory
a stitch). Stitching makes use of the interpolation methods from the previous section to create
a single uni�ed trajectory. In Figure 7.4(b) the 7 nearest demonstrations which are interpolate
from for each stitch are plotted along with the �nal stitched trajectory.

In Figure 7.4(c) an open loop simulation is performed using the dynamics model from Chapter
3.3 and the entire stitched trajectory. And in Figure 7.4(c) an closed loop simulation is done
using a the DDP controller where it can be seen that the car can drive the planned trajectory.
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(a) (b)

(c) (d)

Figure 7.4: (a) The synthetic target �gure 8 trajectory. Red squares mark the waypoints supplied to the stitching
algorithm. (b) Stitched target �gure 8 from demonstrations, using n=7 nearest neighbor trajectories. The blue lines
represent the nearest neighbor demonstration trajectories which are interpolate from; the green line is the �nal stitched
trajectory. (c) Open loop simulation of target trajectory, using the naive car dynamics model. The green line is the
target, while the red is the simulation (d) Closed loop simulation of target trajectory using learned DDP controller.
The blue line is the target trajectory, while the red is the closed loop simulation

In Figures 7.5 - 7.9 the entire state are plotted over time for the 7 demonstrations used to
plan the 8 trajectory from eight stitches. The borders between the stitches are illustrated with
yellow dashed vertical lines. In the plots the demonstrations used for each stitch are plotted
along with the planned trajectory using the convex combination method with entropy.

Page 68 Martin Møller Sørensen



CHAPTER 7. LEARNING PARAMETERIZED MANEUVERS

0 20 40 60 80 100 120 140 160 180
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

samples

P
os

iti
on

 [m
]

 

 
Demonstrations north
Demonstrations east
Planned stitches north
Planned stitches east
Borders between stitches

Figure 7.5: Position ne for each of the demonstrations
and planned trajectory put together from eight stitches
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Figure 7.6: Heading θ for each of the demonstrations
and planned trajectory put together from eight stitches
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Figure 7.7: Translatory velocity uv for each of the
demonstrations and planned trajectory put together
from eight stitches
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Figure 7.8: Angular rate θ̇ for each of the demonstra-
tions and planned trajectory put together from eight
stitches

0 20 40 60 80 100 120 140 160 180
500

600

700

800

900

1000

1100

1200

1300

1400

1500

samples

C
on

tr
ol

s

 

 
Demonstrations steer
Demonstrations throttle
Planned stitches steer
Planned stitches throttle
Borders between stitches

Figure 7.9: Controls, steer and throttle, for each of the demonstrations and planned trajectory put together from eight
stitches
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As can be seen there is a good match in the overlap between the stitches for the position and
heading. But for the velocities and controls the match are not always that good, which can be
seen in the open and closed loop performance.

This is because the optimization problem does not account for what happens in the demonstra-
tions after the way-point. As a waypoint typically only contains partial state information, the
non-speci�ed state variables and, indeed, possibly unmodeled (hidden) state variables do not
match up closely at the end waypoint.

In Figure 7.10 and 7.11 the biases are plotted for the demonstrations and the planned 8-
trajectory. As it is evident the overlap of the biases are very smooth as intended.
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Figure 7.10: Bias terms for the accelerations u̇v for each
of the demonstrations and planned trajectory put to-
gether from eight stitches
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Figure 7.11: Bias terms for the accelerations θ̈ for each of
the demonstrations and planned trajectory put together
from eight stitches

7.3 Automatic Extraction of Demonstrations

Thus far the details of obtaining good demonstration trajectories have been glossed over. To
simplify the data collection the car is driven around to collect a large dataset. The large corpus
of data where gathered by driving the of generic turns, circles, and loops by driving the car for
an extended period of time (around 10 minutes). Notably, we do not explicitly produce any
�gure 8's in this training data.

An algorithm is then presented which can extract stretches from the large dataset which are
good demonstrations based on the start and end state. Again the stitches are computed in
chronological order, to give additional state information from the end of the last stitch.

When �nding good demonstrations for a stitch all the data is searched through and a score is
computed for the start state with the augmented overlap and for the end state. To compute this
score the data in the large data corpus are transformed to match the start state as described
in Section 4.6 on page 35.

The �rst crude solution where to use weighted least squares to compute the distance between
the waypoints and the trajectories seen in the data. I.e., the score of a demonstration trajectory
seen in the data corresponds to the result of the optimization problem if that demonstration
trajectory were the only demonstration.

In Figure 7.12 the position of the large data set used are plotted, along with the 7 best demon-
strations for a speci�c stitch. In Figure 7.13 the same 7 demonstrations are extracted from the
data and transformed to match the starting state.
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Figure 7.12: Large corpus of data with the 7 stretches
that had the best score for a speci�c stitch

−0.2 0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

East [m]

N
or

th
 [m

]

 

 
Demonstrations
Overlap from previous stitch
start state
end state

Figure 7.13: Same 7 demonstrations as plotted in Figure
7.12 here plotted after they have been transformed based
on the starting state

7.3.1 Time Search

Because the stitches focus on short trajectories, the time scales at which maneuvers occur should
be relatively stable across trajectories. Thus one can simply stretch or shrink demonstration
trajectories to the proper length (the time distance between waypoints). We run a simple
brute-force search over time indexes, allowing each time index to vary by ±4 ticks either way,
and take the indices which minimize the weighted least-squares error between the current stitch
with overlap and the desired time indices for the end state.

7.4 Summary

It is perhaps somewhat surprising that the convex combination methods, while crude, perform
reasonably when compared against the Kalman-�ltering-based approaches. Simple interpolation
methods do not respect the dynamics of the problem. However, when interpolating locally be-
tween past demonstrations the result cannot deviate too far from dynamically feasible regimes.
Short trajectories have the bene�t that simple stretching and shrinking are su�cient to obtain
a satisfactory alignment between demonstrations.

The highest return techniques are those related to demonstration selection. Adding the max-
imum entropy weighting condition improves the interpolation. It is important to smooth out
the noise in each demonstration trajectory using the entropy criterion, but one must be sure
that the trajectories used to are similar enough that it makes sense to do such interpolation.
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Chapter 8
Conclusion

This project has concerned with the problem of planning arbitrary trajectories, by stitching
together smaller pieces of di�erent parameterized maneuvers found by using interpolation-based
algorithms and probabilistic model-based algorithms.

As a test platform a Drift-R Sedan 4WD 1/10 RC car has been used. The car has been
modeled based on the cars steady state values and time constants. After having optimized the
time constants from recorded data, it have been veri�ed that the model captures the dynamics
of the car. To optimize for speed the simulation model have been discretized which reduced the
computation time by 10-11 times without a signi�cant loss in precision. Even though a good
dynamics model have been presented, model inaccuracies will still occur. To correct for this
time dependent model biases have been added to the model which signi�cantly improves the
performance when used together with the controller.

A Kalman �lter has been designed and implemented for real-time estimation of the cars state.
Also a smoother and an EM algorithm have been presented which are used to tune the Kalman
�lter and in the probabilistic model-based algorithm for planning parameterized maneuvers.

A controller has been implemented using Di�erential Dynamic Programming (DDP) which are
an extension to the (LQR). This controller is used together with the model and a given target
trajectory to precompute a series of feedback matrices. Simulations and tests showed that the
DDP where capable of making the car follow a speci�ed target trajectory.

To plan the parameterized maneuvers three di�erent approaches have been presented. The �rst
two are to calculate the hidden planned states based on a convex weighting of the start and end
state, and then to do a linear interpolate between the solution for the start and end state. This
method have been presented with and without an additional entropy term to penalize for picking
the same trajectory. The last method presented is a probabilistic model-based algorithm based
on a Kalman �lter/smoother and an EM algorithm. All methods where capable of planning
a trajectory from a start state to a end state. And using the DDP controller the planned
trajectories where executed.

An algorithm where then presented for planning longer trajectories by stitching together smaller
parameterized maneuvers. To get good data for planning the individual stitches an algorithm
where used to searching through a large corpus of data and extracting good demonstrations.
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Chapter 9
Future Perspectives

A model based on steady state values has been presented which proved to model the dynamics
of the car very well. But for di�erent driving styles the model might have to be updated which
takes some time since steady state values have to be recorded for di�erent combinations of the
inputs. This is especially a problem for steering straight and full throttle since a very long
stretch is needed for the car to reach steady state. Therefore, it would be useful to develop an
algorithm which could switch between exploration and exploitation to make the system explore
the relevant parts of the state space autonomously in a safe way, and estimate the steady state
values used in the table. This could be done by giving a very simple model of the system and
then have the algorithm explore states close by and exploit the new data collected to improve
the model. The improved model would then be valid in a slightly larger state space allowing
the algorithm to explore more states.

Also a di�erent model based on recorded data could be used. This could be a locally weighted
nearest neighbor model which would use recorded data to estimate the next state.

As described in the in Chapter 5 the DDP controller only works well when the speci�ed trajec-
tory is followed closely, since it is a series of linear feedback matrices which are precomputed.
Hence, if the car at some point deviates to much from the speci�ed trajectory the performance
of the DDP might not be su�cient to get the car back on track. Therefore, the DDP could be
extended with a DDP controller with receding horizon, which at every time instance performs
a forward simulate by solving the DDP into the future from the speci�c state. By doing so the
controller would be able to e�ciently correct errors even though the car deviates allot from the
speci�ed trajectory.

One problem observed when stitching together a larger trajectory where that while the velocities
and control inputs wher bound to be reasonable near the beginning of a stitch, they tended to
�uctuate as they get closer to the endpoint. To address this issue �lookahead waypoints� could
be added when performing the least-squares match for selecting trajectories. The idea would
be to look ahead and add penalty terms for the squared error between the future waypoint and
the state of the demonstration trajectory at that future waypoint.

In addition to incorporating a longer state sequence for the start state constraint/observation,
the probabilistic model approach can automatically provide a dynamically reasonable interpo-
lation for individual stitches. I.e., the Kalman �lter/smoother could be run over the entire
trajectory rather than over individual stitches.

Aalborg University and UC Berkeley Page 75



When searching for good demonstrations for a speci�c start and end point a time search is
performed on the data demonstrations. However, shrinking or stretching the data will a�ect
the correlation in the states since the velocity then will no longer correspond to the position,
making the trajectory non-feasible. Instead the time search could be done over the waypoint
in time.

Since only a small subset of the state-space are used at each waypoint (i.e. position and ori-
entation information), the demonstration trajectories which are selected from the data may
correspond to very di�erent maneuvers. For example, imagine a maneuver that attempts to
avoid an obstacle directly in front of the car. One might avoid the obstacle either to the
left or to the right, ending up on the other side. Such demonstrations may have excellent
least-squares properties, yet interpolating between them would result in a highly non-optimal
collision. Therefore, it is wanted that the demonstration trajectories used in the stitching be-
long to the same class of maneuver, i.e. either all turn-left paths or turn-right paths but not
both.
This problem could be dealt with by clustering the demonstration trajectories after the weighted-
least-squares time search. Hierarchical agglomerative clustering could be used for this weighting.

When starting this project the ultimate goal where to perform parameterized drifting maneu-
vers, where both the front and back wheels are sliding sideways. A lot of time where spend
by putting tape on the wheels to minimize the friction and update the dynamics model by
recording new steady state values. The initial idea for drifting where to have the car drift
around in a circle continuously. But it where noticed that it where very di�cult to get the
car into the drifting state in closed loop, since the car has to go faster before it starts to slide
resulting in the forward velocity to drop signi�cantly. But the model do not know that it need
to increase the forward velocity in order to later make it drop. The idea used where to have
a small initial trajectory which in open loop drove the car into a state of steady state drifting
(steady state forward and sideways velocities), and then have the controller take over and keep
the car drifting around in the speci�ed trajectory. However, this where never fully achieved
even though it came close.
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APPENDIX A. EXTRINSIC CALIBRATION OF PHASESPACE SYSTEM

Appendix A
Extrinsic Calibration of Phasespace
System

When using the Phasespace system the coordinates of the markers are given in the Phasespace
frame, {P}, de�ned by camera 1. However, to ease the use of these coordinates they are
transformed into coordinates in the inertial frame, {E}, de�ned in the lab. The transformation
between these two frames consists of three things: a scaler, a rotation and an o�set. The scaling
factor is to ensure that the coordinates in {E} is in metrics. When setting up the Phasespace
system two API's are available for the transformation, one which sets the scaling, and another
which sets a pose consisting of a 3D-o�set and a quaternion.

A.1 Initialization of Parameters

To de�ne the position and orientation of the inertial frame relative to the Phasespace frame,
three LED's are placed in the three known positions in the earth inertial frame {E} which is
E[0, 0, 0]T , E[1, 0, 0]T and E[0, 1, 0]T , corresponding to the three points Porigin, Pxyz1 and

Pxyz2

respectively in the Phasespace frame.

The scaling factor between the two frames is found by dividing 1 with the mean distance from the
origin to the two other coordinates, since this is suppose to be one meter. All three coordinates
in the Phasespace frame is then scaled using this factor, and the scaled origin is subtracted
from all coordinates in the Phasespace frame. The scaled origin is then the translatory o�set
which is the �rst three values of the transformation pose, though they �rst have to be rotated.
The rotation matrix R̂ between the two frames can be found by Equation (A.1)

E  x
y
z

 = R̂

P  x
y
z

 (A.1)

Given the two coordinates which is used to calculate the rotation matrix Equation (A.1) be-
comes,
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E  1 0
0 1
0 0

 = R̂

P  x1 x1

y1 y2

z1 z2

 (A.2)

R̂ is then estimated using Equation (A.2). However, the elements in R̂ might satisfy Equation
(A.2) but for it to be a rotation matrix it has to be an orthogonal matrix meaning that R̂R̂T = I
[wikipedia, 2008]. Therefore, R̂ is projected onto the nearest rotation matrix R, which is done
in Equation (A.3), by using the singular value decomposition of R̂ = UΣV T , and the fact that
both U and V are orthogonal matrices.

min
R : RTR = I

∥∥∥R− R̂∥∥∥2

2
=
∥∥R− UΣV T

∥∥2

2

=
∥∥UTRV − Σ

∥∥2

2
(A.3)

This means that for R̂ to be a rotation matrix, Σ has to be the identity matrix, which means
that the nearest rotation matrix R can be found by,

R =UIV T

=UV T (A.4)

This rotation matrix could be used to �rst rotate the scaled o�set and then converted into a
quaternion which completes the transformation pose needed to setup the Phasespace system.
However, to optimize it a line search is �rst performed on the rotation matrix to minimize the
error.

A.2 Line Search to Optimize Rotation Matrix

The purpose is to �nd the orthogonal rotation matrix R that minimize the the squared error,

min
R : RTR = I

2∑
i=1

∥∥Exyzi −R · Pxyzi
∥∥2

2
(A.5)

To optimize the rotation matrix R by doing a line search means to calculate the squared error
denoted the score, and then change one of the elements in R and evaluate if the new matrix
R has improved the score. However, to avoid having to evaluating each of the nine elements
in the rotation matrix, it is �rst transformed to the axis of rotation since this describes the
rotation matrix using only three elements. It could also have been transformed to a quaternion,
but that would have given four elements to evaluate on. To do this transformation some basic
theory about skew symmetric matrix is needed.
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A.2.1 Skew Symmetric Matrices

Given the two vectors a = [a1, a2, a3]T and b = [b1, b2, b3]T then the vector product is de�ned
as,

a× b =

 a2b3 − b2a3

−a1b3 − b3a1

a1b2 − a2b1

 (A.6)

Since this is a linear transformation in a and b, it can be rewritten as,

a× b =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 b1
b2
b3

 (A.7)

=A · b
=â · b (A.8)

where:
â = (a1, a2, a3) is a simpli�ed notation for the skew symmetric matrix A, (AT = −A)

This means that the vector product of two vectors can be written as the product of a skew-
symmetric matrix (AT = −A) and a vector. This can be utilized when the position of a rotating
object is de�ned by the following deferential equation,

q̇(t) =ω × q(t)
q̇(t) =ω̂ · q(t)
q(t) =eω̂ · q(0) (A.9)

From Equation (A.9) it is evident that eω̂ is a rotation matrix. This means that the rotation
matrix R found in Equation (A.4) can be transformed to the skew symmetric matrix represented
by n̂ and back again using Equation (A.10) and (A.9) respectively.

n̂ =log(R) (A.10)

R =en̂ (A.11)

A.2.2 Algorithm for Line Search

The algorithm used for the line search is as follows. Initialize three variables containing the step
size for each of the elements in n̂ and run the following steps, for each of the three elements,
until convergence.

1. Step in one direction with the size of that speci�c step variable

2. Calculate new score and evaluate

3. If step improved score then update score and double that speci�c step direction and jump
to 1
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4. Else step in opposite direction

5. Calculate new score and evaluate

6. If step improved score then update score and change sign for that speci�c step variable and
jump to 1

7. Else multiply that speci�c step variable with .5 and jump to 1

By implementing a varying step size the algorithm is improved for both speed and precision.
The algorithm is then run until it has convergence, which is when the norm of the step size is
less than some speci�ed value, or until a maximum number of iterations. Figure A.1 shows how
the score is improved as the algorithm is run.
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0.0098

0.0099

0.01
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0.0102

0.0103

0.0104

0.0105
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S
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Figure A.1: Improvements of score as the line search algorithm is run. In this speci�c case the algorithm converged
after 17 iterations, which means that the score was improved in every iteration

The evaluation of the score is done in Equation (A.12) by �rst converting n̂ to the rotation
matrix R.

score =
2∑
i=1

∥∥Exyzi −R · Pxyzi
∥∥2

2
(A.12)
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Matlab Code for Line Search

In the following code ned and xyz corresponds to Exyz and Pxyz respectively.

1 dns = [.01 ; .01 ; .01];

2 max_dn = .1;

3 min_dn = .0001;

4

5 curr_score = squared_rotation_error(ned , xyz , n);

6

7 num_iters = 1000;

8 for iter = 1: num_iters

9 if(sum(abs(dns)) <= 3* min_dn)

10 'exit b/c converged '

11 break;

12 end

13 for i=1:3

14 test_n = n;

15 test_n(i) = n(i) + dns(i);

16 test_score = squared_rotation_error(ned ,xyz ,test_n);

17 if( test_score < curr_score)

18 n = test_n;

19 curr_score = test_score;

20 dns(i) = dns(i) * 2;

21 if(abs(dns(i)) > max_dn)

22 dns(i) = sign(dns(i))*max_dn;

23 end

24 else

25 test_n(i) = n(i) - dns(i);

26 test_score = squared_rotation_error(ned ,xyz ,test_n);

27 if(test_score < curr_score)

28 n = test_n;

29 curr_score = test_score;

30 dns(i) = -dns(i);

31 else

32 dns(i) = .5* dns(i);

33 if(abs(dns(i)) < min_dn)

34 dns(i) = sign(dns(i))*min_dn;

35 end

36 end

37 end

38 end

39 end
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A.3 Implementation

To make the calibration of the Phasespace system more e�cient and automated, all the software
has been implemented in C++ using the matrix library Eigen2 [Guennebaud and Jacob, 2008].

To ease the use and to improve the precision of the marker position a calibration tool has been
produced consisting of a orthogonal triangle where each cathetus is 1 m, and a LED marker
placed in each corner of the triangle. Each LED marker is then sampled 2000 times and the
mean coordinates is found to mean out the noise. Since the matrix exponential and logarithm
does not exist in Eigen2, the four functions in Table A.1 have been implemented. Hence the
axis of rotation can be found from a rotation matrix by �rst calculating the quaternion by
means of matrix2q and then using the function axis_rotation_from_quaternion to �nd the
axis of rotation.

Function Description
matrix2q converts a rotation matrix to a quaternion
q2matrix converts a quaternion to a rotation matrix
quaternion_from_axis_rotation converts the axis of rotation to a quaternion
axis_rotation_from_quaternion converts a quaternion to a the axis of rotation
pinv calculates the pseudo inverse of a matrix using the

singular value decomposition

Table A.1: Five functions implemented in C++

To solve Equation (A.2) (b = A · r) both the LU method and the pseudo inverse can be used
since A is not a n×n matrix. However since the pseudo inverse is needed in the Kalman update,
described in section 4.1 on page 27, the Moore-Penrose Pseudo-Inverse has been implemented
in C++.
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Appendix B
Kalman Filter

The Kalman �lter gives a way to calculate an estimate of the state xt based on a partial output
sequence (y0, y1, ..., yt). This is done by calculate or prediction the probability distribution of
xt given all past measurements of y up to and including the time t, denoted P (xt|y0:t). The
probability distribution can then be used to estimate the state at time t. This means that the
�lter can be used to estimate or track the states in real time. Equation (B.1) and (B.2) are the
state space representation of a linear system with process noise wt and observation noise vt.
Unless other is mentioned the following section is inspired by [Jordan, 2003, Chap. 15]

xt+1 =Axt +But + wt (B.1)

yt =Cxt + vt (B.2)

where:
wt is a Gaussian noise term independent of xt, wt ∼ N (0,Σw)
vt is a Gaussian noise term independent of yt, vt ∼ N (0,Σv)

Since the Kalman �lter is used for systems assumed to have Gaussian noise, the de�nition of a
Gaussian signal is �rst de�ned.

x ∼N (µ,Σ)⇔

P (x) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)T Σ(x−µ) (B.3)

where:
µ is the mean of x
Σ is the covariance of x
n is the dimension of x

The de�nition of the mean and covariance matrix is given in Equation (B.4) and (B.5) respec-
tively.

µx =x̂ = E[x] (B.4)

Σxx =E[(x− µx)(x− µx)T ] (B.5)

Aalborg University and UC Berkeley Page 87



To describe the conditional means and covariance matrix, a simpli�ed notation will be used to
emphasize the particular output sequence which it is being conditioned on, thus,

x̂t|t ,E[xt|yo:t] (B.6)

Pt|t ,E[(xt − x̂t|t)(xt − x̂t|t)T |y0:t] (B.7)

where:
y0:t is the observations y0, y1, ..., yt

First the probability distribution for the next time index is predicted as shown in the prediction
step. It is assumed that P(xt|y0:t) is already calculated, that is, x̂t|t and Pt|t is known which are
usefully since xt|t ∼ N (x̂t|t, Pt|t). After the measurement t+ 1 becomes available the predicted
distribution is corrected in the correction step.

time update (�Prediction step�): P (xt|y0:t)→ P (xt+1|y0:t)
measurement update (�Correction step�): P (xt+1|y0:t)→ P (xt+1|y0:t+1)

Prediction Step
The equations used for the prediction step is now derived, starting with the prediction of the
state,

x̂t+1|t =E[xt+1|yo:t]
=E[Axt +But + wt|yo:t]
=AE[xt|yo:t] +But + 0
=Ax̂t|t +But (B.8)

Similar the prediction of the covariance matrix can be found.

Pt+1|t =E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)T |y0:t]

=E[(Axt +But + wt −Ax̂t|t +But)(Axt +But + wt −Ax̂t|t −But)T |y0:t]

=E[A(xt − x̂t|t)(xt − x̂t|t)TAT + 2wTt (xt − x̂t|t)AT + wtw
T
t |y0:t]

=AE[(xt − x̂t|t)(xt − x̂t|t)T |y0:t]︸ ︷︷ ︸
Pt|t

AT + 0 + Σw

=APt|tAT + Σw (B.9)

Correction Step
The conditional distribution of xt+1 is now known and next the conditional distribution of yt+1

and the cross correlation between xt+1 and yt+1 are found. First the mean of yt+1 is found,

ŷt+1|t ,E[yt+1|y0:t]
=E[Cxt+1 + vt+1|y0:t]
=Cx̂t+1|t (B.10)
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Secondly the covariance is found,

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)T |y0:t]

= E[(Cxt+1 + vt+1 − Cx̂t+1|t)(Cxt+1 + vt+1 − Cx̂t+1|t)T |y0:t]

= E[C(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)TCT |y0:t] + 2E[vt+1(xt+1 − x̂t+1|t)TCT |y0:t] + 2E[vt+1v
T
t+1|y0:t]

= CPt+1|tC
T + Σv (B.11)

And lastly the cross correlation between xt+1 and yt+1,

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)T |y0:t]

= E[(Cxt+1 + vt+1 − Cx̂t+1|t)(xt+1 + wt+1 − x̂t+1|t)T |y0:t]
= CPt+1|t (B.12)

Summarizing, the variables xt+1 and yt+1 has a Gaussian distribution described by Equation
(B.13)

(
xt+1|t
yt+1|t

)
∼ N

([
x̂t+1|t
Cx̂t+1|t

]
,

[
Pt+1|t Pt+1|tC

T

CPt+1|t CPt+1|tC
T + Σv

])
(B.13)

To �nd the conditional distribution of Equation (B.13) a simpli�ed example is made,(
x
y

)
∼ N

([
µx
µy

]
,

[
Σxx Σxy
Σyx Σyy

])
(B.14)

This can then be written as the joint distribution,

p(x, y) =
1

2π(n+d)/2 |Σ|1/2
e

− 1
2

 x− µx
y − µy

T


Σxx Σxy
Σyx Σyy︸ ︷︷ ︸

Σ


−1 x− µx

y − µy


(B.15)

[Jordan, 2003, chap 13 p.7] where:
n is the dimension of x
d is the dimension of y

The joint distribution can then be split up into a marginal probability for y and a conditional
probability for x,

p(x, y) = p(x|y)p(y) (B.16)

Applying this property to Equation (B.15) it is possible to split up the joint distribution into
the product of a marginal distribution and the following conditional distribution [Jordan, 2003,
chap 13 p.7],

p(x|y) =
1

2πn/2
∣∣Σx|y∣∣1/2 e−

1
2 (x−µx−ΣxyΣ−1

yy (y−µy))T (Σ/Σyy)−1(x−µx−ΣxyΣ−1
yy (y−µy)) (B.17)
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where:
Σ/Σyy is the Schur complement of Σ with respect to Σyy [Lay, 2003, p. 139]

From this the following two equations for the conditional mean and covariance can be extracted,

µx|y =µx + ΣxyΣ−1
yy (y − µy) (B.18)

Σx|y =Σxx − ΣxyΣ−1
yy Σyx (B.19)

By utilizing equations (B.18) and (B.19) on Equation (B.13) yields,

x̂t+1|t+1 =x̂t+1|t + Pt+1|tC
T (CPt+1|tC

T + Σv)−1(yt+1 − Cx̂t+1|t) (B.20)

Pt+1|t+1 =Pt+1|t − Pt+1|tC
T (CPt+1|tC

T + Σv)−1CPt+1|t (B.21)

Summarize
To summarize the two prediction equations (B.8) and (B.9) and the two update equations (B.20)
and (B.21) are listed below, where the two update equations are simpli�ed by introducing the
Kalman gain matrix K,

x̂t+1|t = Ax̂t|t +But (B.22)

Pt+1|t = APt|tA
T + Σw (B.23)

Kt+1 , Pt+1|tC
T (CPt+1|tC

T + Σv)−1 (B.24)

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − Cx̂t+1|t) (B.25)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t (B.26)
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Appendix C
The Rauch-Tung-Striebel (RTS)
Smoother

Using the Kalman �lter allows to estimate the states based on observations up to and including
the time t. This section will concern the issue of obtaining estimates of the states based on all
observations up to the time T, which is called a smoother. The Rauch-Tung-Striebel (RTS)
smoother works by �rst forward �ltering as described in section 4.1, followed by a backward
pass through all the samples which is the smoother. All measurements therefore have to be
available to be able to run the smoother. The smoother can therefore not be used in real time
applications. Unless other is mentioned the following section is inspired by [Jordan, 2003, Chap.
15]

The joint distribution of xt and xt+1 conditional on y0:t

E
[
(xt − x̂t|t)(xt+1 − x̂t+1|t)T |y0:T

]
= E

[
(xt − x̂t|t)(Axt −Ax̂t|t)T |y0:T

]
= Pt|tA

T (C.1)

Thus the following distribution,(
xt
xt+1

)
∼ N

([
x̂t|t
x̂t+1|t

]
,

[
Pt|t Pt|tA

T

APt|t Pt+1|t

])
(C.2)

The backward computation is then introduced by calculation the probability of xt conditioned
on xt+1 and Pt conditioned on Pt+1, both still conditioned on y0:t. By using the condition rule
from Equation (B.18) on (C.2) it is possible to obtain,

E [xt|xt+1, y0:t] =x̂t|t + Pt|tA
TP−1

t+1|t(xt+1 − x̂t+1|t)

=x̂t|t + Lt(xt+1 − x̂t+1|t) (C.3)

where:
Lt , Pt|tA

TP−1
t+1|t is the smoother gain matrix introduced to simplify the notation.

Note that the smoother gain only depends of matrices calculated during the forward pass. Using
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the condition rule from Equation (B.19) on (C.2) yields,

V ar [xt|xt+1, y0:t] =Pt|t − Pt|tATP−1
t+1|tAPt|t)

=Pt|t − LtPt+1|tL
T
t (C.4)

Since the purpose is to estimate xt conditioned on xt+1 it is independent of the future obser-
vations yt+1:T . Conditional independence can therefore be used to write,

E [xt|xt+1, y0:T ] =E [xt|xt+1, y0:t]
=x̂t|t + Lt(xt+1 − x̂t+1|t) (C.5)

V ar [xt|xt+1, y0:T ] =V ar [xt|xt+1, y0:t]

=Pt|t − LtPt+1|tL
T
t (C.6)

Equation (C.5) and (C.6) are almost what is wanted. The only thing left is to remove the
xt+1 from the conditions on the left hand side. This can be archived by using the following
properties of conditional expectation [Ross, 1996, p. 33,51],

E [X|Y ] =E [E [X|Y,Z] |Z] (C.7)

V ar[X|Y ] =V ar[E [X|Y,Z] |Z] + E [V ar[X|Y,Z]|Z] (C.8)

First the conditional expectation in Equation (C.7) are used to rewrite Equation (C.5),

x̂t|T ,E [xt|, y0:T ]
=E [E [xt|xt+1, y0:T ] |y0:T ]

=E
[
x̂t|t + Lt(xt+1 − x̂t+1|t)|y0:T

]
=x̂t|t + Lt(xt+1|T − x̂t+1|t) (C.9)

Where the last step in Equation (C.9) uses the fact that all quantities other than xt+1 are
constants when conditioned on y0:T . From Equation (C.9) it is evident that the estimate of xt
based on all data can be obtained by correcting with the smoother gain, Lt, multiplied with
the di�erence between the smoothed and �ltered state xt+1. Secondly utilizing the conditional
expectation in Equation (C.8) on Equation (C.6) yields,

Pt|T ,V ar[xt|y0:T ]
=V ar[E [xt|xt+1, y0:T ] |y0:T ] + E [V ar[xt|xt+1, y0:T ]|y0:T ]

=V ar[x̂t|t + Lt(xt+1 − x̂t+1|t)|y0:T ] + E
[
Pt|t − LtPt+1|tL

T
t |y0:T

]
=LtV ar[xt+1 − x̂t+1|t|y0:T ]LTt + Pt|t − LtPt+1|tL

T
t

=LtV ar[xt+1|y0:T ]LTt + Pt|t − LtPt+1|tL
T
t

=LtPt+1|TL
T
t + Pt|t − LtPt+1|tL

T
t

=Pt|t + Lt(Pt+1|T − Pt+1|t)LTt (C.10)

Where the fact that expectations taken with respect to y0:t are constants when conditioning
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on the larger conditioning set y0:T . To summarize the RTS smoothing algorithm in Equation
(C.9) and (C.10) along with the smoother gain are listed below.

Lt =Pt|tATP−1
t+1|t (C.11)

x̂t|T =x̂t|t + Lt(xt+1|T − x̂t+1|t) (C.12)

Pt|T =Pt|t + Lt(Pt+1|T − Pt+1|t)LTt (C.13)
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APPENDIX D. SOFT TIME TIMING OF CONTROL ALGORITHM IN C/C++

Appendix D
Soft Time Timing of Control Algorithm
in C/C++

To control the timing of the control loop the function soft_real_time_sleep() has been
implemented to ensure that that control algorithm runs with a speci�ed time interval T . The
timer is implemented using the function usleep(). The function takes in three arguments, start
time, end time and the time interval T . In Figure D.1 the principal of the timer is illustrated.

1 2

Time of process 1

Calculated sleep tim
e 1

Oversleept tim
e 1

Start time 1 End time 1 Start time 2 End time 2

3

Start time 3

Oversleept tim
e 2

Time

Time interval T

Figure D.1: Illustrated of a time axis slotted with the constant time period T

Before the control process is started, the start time in microseconds is found, using the function
gettimeofday(), and after the process is done, the end time is found. By taking the di�erence,
the duration of the process can be calculated and hereby how long the timer has to sleep.
However, since the function usleep() can sleep more than the speci�ed time, this will in time
grow to an unacceptable error. Therefore the oversleep time is calculated,

oversleep[n] = start[n+ 1]− start[n] + oversleep[n− 1]− T (D.1)

The oversleep time can then be calculated taking into account when calculating the next sleep
time,

sleep[t+ 1] = T − (end[t+ 1]− start[t+ 1])− oversleep[t] (D.2)

This means that the error caused by the function usleep() over sleeping is corrected. However,
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some jitter can occur in the start times since the oversleep times can vary over time.

D.1 Testing

The test is done by running the main control loop run 10,000 times with 20 Hz. The oversleep
times is then logged for each loop which are plotted in Figure D.2. From this it can be concluded
that the usleep() function sleeps an extra 18 micro seconds in average with a maximum of
180 microseconds which is acceptable since the control loop only runs at 20 Hz.
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Figure D.2: Time the main loop has overslept at each iteration

The total time spend running the 10,000 loops where 500 seconds and 60 microseconds which
is consistent with the expected time since each time interval is supposed to be .05 seconds. The
fact that the test took 60 microseconds longer, is only expected since the usleep() function,
will end up by sleeping over without it being corrected.

It can therefore be concluded that this function makes it possible to run processes at speci�ed
time intervals, but with jitter up to 180 microseconds.
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