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Introduction:

Spike sorting is the process of isolating neural signal
and assigning each recorded waveform to the neuron

origin. Many spike sorting methods rely on interaction
from an expert operator, which can be time consuming
arbitrary, and inaccurate.

Method:

The focus in this study is a novel unsupervised spik
sorting algorithm, based on unsupervised Bayesia
decomposition (UBD). The Bayesian statistical mode
and a maximum a posterior (MAP) estimator arg
originally designed for intra-muscular EMG signals,
but are in this present work tuned and used to solv|
the problem of spike sorting from intra-cortical record-
ings in a fully automatic way. The UBD method is
validated with both simulated and human intra-cortica
recordings, and compared with a classical unsupervise
spike sorting method (Wave_Clus) for performance
evaluation.

Results:

The UBD method showed almost similar perfor-
mance as Wave_Clus with both simulated and huma
intra-cortical recordings, and reached an averag
performance of 80.9 % and 83.2 % with simulated
and human signals respectivily. Low performance
at approximately 39 % was seen in certain case
with simulated signals with a short refractory period,
whearas the UBD method showed high performance i
detecting and classifying overlapping spikes, compare|
to Wave_Clus.

Discussion:

Further development must be done, to increase th
performance of the UBD method with intra-cortical
recordings. Among these, a re-tuning of the TABU
algorithm to enable the detection and classificatio
of more than three spikes per segment, and a mult
channel extension to the UBD method will improve the
performance by exploiting the inter-channel inference.
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Reading instructions:

This report consists of four major parts, which is intenaele read chronologically. The structure are shown in figure

.
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Figure 1: The structure of this report.
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Introduction

Recent technological developments have made it possikienidtaneously record the spiking activity of increasing|
large populations of cortical neurons using extracelloi@ro-electrodes. These spike trains may create a folordati
for a variety of different applications, that utilise theseordings, including the development of neuroprostkehiat

rely on control signals derived from the spike patterns oftiple neurons [Vargas-Irwin & Donoghue 2007], and the
analysis of response profiles of single neurons/large eblesnof neurons, with the aim of understanding the princi-
ples by which a stimulus such as an odour, an image, or souaprissented within the brain [Horton, Nicol, Kendrick

& Feng 2007]. Another example of an application is the usepidespatterns from extracellular recordings as a guide
to localizing optimal sites for deep brain stimulation [&k®va, Chibirova, Dryga, Tetko, Benabid & Villa 2003]. In
general, spike trains are central to the analysis of neatal #Vood & Black 2008].

Recordings obtained with extracellular electrodes craat@nge of signal processing challenges, as each recording
may contain signals from several neurons. In many scendhiesdentification of the unique spiking patterns of each
single neuron is highly desirable [Vargas-Irwin & Donog2@97]. This introduces the time-consuming and non-
trivial term "spike sorting", which is the process of isatgt neural signals and assigning each recorded waveform to
the neuron of origin [Lewicki 1998].

Action potentials recorded from a single neuron tend to regtereotypical spike shape determined by the cell's
structure and biophysical properties, but also by its pmsitelative to the recording electrode. This spike shape is
often used to verify that a set of waveforms are attributadbbesingle neuron, however, also other features, such as the
firing history of the cell can introduce variation in wavefoshape and amplitude [Vargas-Irwin & Donoghue 2007]
[Fee, Mitra & Kleinfeld 199®]. Moreover, waveform variation is also increased by infagrsignals such as back-
ground activity from other neurons, or from other noise searsuch as electrode drift in non-stationary recordings
[Fee et al. 1996] [Lewicki 1998] [Aksenova et al. 2003]. Another significaitallenge in spike sorting is the complex
sums of spike waveforms, due to recordings of multiple nesiom a given electrode. The decomposition of these over-
lapping spikes into their single-neuron components, gersgreat computational burden on spike sorting algosthm
[Vargas-Irwin & Donoghue 2007]. Very few algorithms haveehalesigned to handle spike overlaps, and ordinary
spike sorting algorithms (i.e. based on wavelets [Quirdigdasdy & Ben-Shaul 2004]) can only perform clustering
with partially overlapping spikes [Herbst, Gammeter, Eeasr& Hahnloser 2008]. Many spike sorting algorithms
dealing with the overlap-problem, suffer from the intrdlity of exhaustive searching [Herbst et al. 2008]. Other
methods tries to overcome this intractability by limitifgetnumber of spikes used to explain an overlap [Atiya 1992]
[Lewicki 1994]. Zhang, Wu, Zhou, Liang & Yuan [2004] suggestonly to search for overlapping spikes in those
cases, where a fit by single spikes fails.

Many spike sorting methods rely in manual sorting by an expEne usage of an experienced and knowledgeable
human operator, who tries to provide a preliminary clasgsiion of the waveforms, can be time consuming, arbitrary,
and inaccurate [Aksenova et al. 2003] [Bar-Hillel, Spiro &k 2006]. The optimal case is a spike sorting algorithm,
that is both unsupervised and accurate [Harris, Henzes@aic Hirase & Buzsaki 2000]. Wood, Fellows, Donoghue
& Black [2004] have reported an average of 23 % false positared 30 % false negatives for manual spike sorting of
synthetic signals performed by experts, and Harris et 802 reports similar results. The accuracy of spike sorting
critically affects the accuracy of all subsequent analyBeswn, Kass & Mitra 2004]. Many different algorithms
are used for spike sorting, but there is however no consasts which are best [Brown et al. 2004]. [Bar-Hillel
et al. 2006] presents a fully automatic spike sorting methexkd on Bayesian clustering, which tries to mimic human
experts in the clustering process.

The focus in this study is a novel unsupervised spike somiggrithm, based on unsupervised Bayesian decom-
position (UBD), developed by Ge, Carpentier & Farina [2009BD is originally designed for the decomposition of
intra-muscular EMG signals, but is in this project appliedite automatic identification and classification of spikes
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from intra-cortical recordings. The UBD method also apptess the overlap-problem in spike sorting with a TABU
search implementation. The UBD method is validated witthisinulated and human intra-cortical recordings, to
examine whether the UBD method can be applied to intragaintecordings, and compared with other selected un-

supervised spike sorting algorithms for performance atan. The aim of the study is summarized in the following
problem statement.



Problem statement

Based on the different problems related to spike sortintgdta the introduction, the point of departure of this reépor
is defined in the following problem statement.

At what performance level can the UBD method perform spike sding
with simulated and human intra-cortical signals?
How is that performance level compared with other classicaspike sorting methods?

The aim of this report is to produce a review of spike sortingluding a selection of already developed spike sorting
methods, with the purpose of selecting the methods for cosga Furthermore, it is to tune and validate the UBD
method with both simulated and human intra-cortical sighahd make a comparison of spike sorting performance
using the UBD method and the selected classical spike gartgthods.

Figure[2.1 summarizes the following aims of the report.

Problem statement

\ \

Spike sorting
review : i
Spike sorting method
in focus
‘ UBD method

Spike sorting method
for comparison

Wave_Clus
Results Results
Test data Test data
Simulated/human Simulated/human

f

Comparison

Figure 2.1: Summary of the aims of the report, with focus at the UBD spdatisg method and its performance using
intra-cortical recordings.
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Review of spike sorting
methods

The following chapter describes the principle of spikeisgrt The objective is to produce a review of methods used
for spike sorting, independent of the specific applicatiothis study (the UBD), with the focus on methods applied to
intra-cortical recordings. Moreover, it is to clarify whienethods that have been studied previously in the litegatur
The review should constitute the basis or point of depafithe comparison study with the UBD method, such that
a more classical spike sorting method can be identified sactmparison.

The following section will introduce the basic problem inkgpsorting, and go through several well known meth-
ods and key issues.

3.1 Introduction

Spike sorting can be explained by the grouping of spikesrespective clusters based on their unique shapes. Each
single neuron tends to fire spikes of specific shape, whidhiteeg clusters corresponding to the activity of each
different neuron. The aim of spike sorting is to determinaltéch spike that corresponds to which of these neurons
[Shoham, Fellows & Normann 2003] [Lewicki 1998]. FiglrelBldstrates the basic problem in spike sorting, with the
extracellular waveform. Parts of neuroscience researbsfes on the study of neuron activity recorded extracellula

msec

Figure 3.1: This example of an extracellular waveform shows severé&tidint action potentials generated by an un-
known number of neurons. This illustrates the basic prolitespike sorting. Inspired by [Lewicki 1998]

with different types of electrodes [Brown et al. 2004] [Aks®a et al. 2003] [Vargas-Irwin & Donoghue 2007]. These
electrodes record the activity of the most close-by neutioatsfires action potentials or so-called spikes. An impurta
property is that each neuron has spikes of characteristjweshirhe uniqueness is determined by the morphology of the
dendrite trees, and the distance/orientation relativeeaé¢cording electrode. [Gold, Henze, Koch & Buzséaki 2006]
Spike sorting has been called a very challenging problehmtiterature [Brown et al. 2004]. Complex brain processes
are reflected in the activity of large neural populationgydifiore the study of single-cells in isolation gives only a
limited view of the whole context [Horton et al. 2007].

The overall aim here is to record from a large population efroas, to ensure this whole picture view. Spike sorting
and the development of spike sorting algorithms are an itapbstep towards that aim, so that it can allow the analysis
of the activity of close-by neurons from each single reaugdilectrode [Horton et al. 2007]. In figure 8.2 the basic
principles in spike sorting are shown. The following willzgian introduction to the basic steps in spike sorting.

3.2 Recordings

According to [Lewicki 1998], the first link between neuralnemunication and electrical signals was found by Luige
Galvani in 1791. He showed that frog muscles could be stitadlay electricity. In the 1920s it became possible
to measure nerve impulses directly with amplified signaafmicroelectrodes. Usually the measured potentials are
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raw data spike detection spike sorting

Figure 3.2: The basic principles in spike sorting. Extracellular rettogs are normally done with electrodes in the
brain. The signals from the electrodes are typically anggifand band-pass filtered, and the neuronal
firing appears as spikes on top of background activity.

recorded between ground (a wire under the scalp) and thé tigganicroelectrode. The potential changes measured
reflects current flow in the extracellular medium, and thgdat component of this current is typically generated by
the action potential of the neuron [Schmidt 1984]. But onpantant issue in spike sorting is the noisy components.
Lewicki [1998] states that signals that looks like celludation potentials can be recorded from axonal fiber bundles,
and that these signals are smaller than cellular actiompate. Another signal source is the field potential, foumd i
layered structures and results from current flow into a pelraét of dendrites. The field potentials are typically of
relatively low bandwidth, so they can be filtered out from tieeiral action potentials. [Lewicki 1998]

The shape of the recording electrode has effect on the dyafitheurons recorded. Roughly speaking, the larger
the tip of the electrode, the greater the number of signalsrded.

3.2.1 Multiple electrodes

To increase the accuracy of spike sorting, and to increaseumber of classified single neurons, multiple electrodes
can be applied. In many situations, two different neuromegate action potentials having very similar shapes in the
recorded waveform, especially in cases where neuronsmaikasin morphology and have the same distance to the
recording electrode. [Lewicki 1998] One approach to sohie problem is to record from multiple electrodes in the
same local area. An advantage is that having multiple réicgstf the same neuron from different physical locations
allows additional information to be considered for acoeisgiike sorting. This aspect may also reduce the problem of
overlapping spikes [Lewicki 1998].

[Gray, Maldonado, Wilson & McNaughton 1995] reported us¢etfodes in cat visual cortex to compare the perfor-
mance of tetrodes with the best electrode pair and bestesalgttrode, with the best results using tetrodes. Quiroga
et al. [2004] has developed a spike sorting software calladé\MClus, which is capable of performing spike sorting
from both single electrodes and polytrodes using both veaselnd principal component analysis (PCA) for feature
extraction.

3.2.2 Electrode drift

During the recordings, the electrodes may drift slowly teeaviposition because of the settlement of neural tissue in
response to pressure from the advancement of the elecWdttetime, this will result in shape change of the action
potentials, due to non-stationarity in the recordings §&rIrwin & Donoghue 2007]. Ideally, this problem should
by approached with the same method as with bursting (seiesBcB pagé€17), and it must be possible to update the
features and templates over time. [Lewicki 1998]

3.3 Basic spike sorting steps
This section will go through some basic spike sorting stepsitroduce the point of departure of the understanding of

the fully automatic UBD spike sorting algorithm, considene this present work. The following are primarily based
on [Quiroga et al. 2004] and [Lewicki 1998].
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The first and easiest aspect in separating spikes correisygoteddifferent neurons is to use an amplitude discrim-
inator. The use of this classification is usually very fastl aglative simple to implement. One problem with this
simple approach can be that spikes from different neuronspraduce the same peak amplitude, but may differ in
shapes.

Many neurons can be successfully characterized by its &ndplias a feature of spike shape, also called the height of
the spike. This feature can be measured with a voltage thietsiigger that generates a pulse whenever the measured
voltage crosses the threshold. By optimal positioning efrécording electrode, the spikes can be maximally sepa-
rated from the background activity or noise. [Lewicki 1998]

Figure[3.3 illustrates an example of the quality of spikdation, with a well isolated neuron and a poorly isolated
neuron. In (a), the background spikes or noise have smaittedn the quality of the isolation. In (b), two distinct
spikes shapes can be seen, and it is not possible to set és@dld so that one spike is isolated.

Figure 3.3: (a) An example of a well isolated neuron. Each trace is plottben the voltage crosses the threshold.
(b) An example of a bad isolated neuron, where two distinttesphapes can be seen. Inspired from
[Lewicki 1998]

3.3.1 Detection errors

Often it is not possible to separate the spikes totally fromliackground noise [Brown et al. 2004]. The voltage

threshold determines the trade-off between missed sptigpse (I error, false negatives) and false spikes detected
(type | error, false positives) [Quiroga et al. 2004]. In figi8.4, this trade-off is illustrated. The aim is to set the

threshold to the desired ratio between type | and Il errdrewjcki 1998] Spike overlaps can in some cases result in
misclassifications. The spike amplitude can vary if theeeaher firings neurons in the local region. A spike can be
missed if the firing of the desired neuron and the backgrouitdineup.

Another potential detection error is when two backgrounkiespin combination crosses the threshold. [Lewicki 1998]

3.3.2 Other basic spike sorting methods

An example of a relatively straightforward improvementasuse windows discriminators [Lewicki 1998]. The aim
here is to assign the spikes that cross one or several winothie same neuron. Window discriminators are able to
be implemented online, but have the disadvantage that uinegymanual adjustment of the windows by the expert.
This may require readjustment during the sorting procebis fact limits the spike sorting in practice with more than
a few channels simultaneously using this method. [Lewi&i€g]

Another drawback with this approach is that spike shapesawagiap and it is very difficult to set up windows that
will discriminate correctly in this case. This will introda a lot of subjectivity in the clustering procedure, whish i
undesirable. Furthermore it might happen that sparsehgfineurons may be overlooked, especially if the particular
input that elicits the firing of the neuron is not present while windows are adjusted. [Lewicki 1998]
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Figure 3.4: lllustrates an example of distributions of amplitudeshbiobm background noise and from spikes from
two neurons. A and B illustrates the trade-off in choosingshold. A results in many spikes from neuron
1, and B results in many missed spikes. Inspired from [Leini&i08]

Another introducing strategy in spike sorting is to selectharacteristic spike shape for each cluster and then as-
sign the remaining spikes using template matching. Butrttéthod has the same drawbacks as previous mentioned.
[Quiroga et al. 2004]

Acquisition systems allow the simultaneous recording gésa channels simultaneously [Vargas-Irwin & Donoghue
2007]. The reliability of these data depends on accuratiggtifying the activity of the individual neurons with spik
sorting. When processing large number of channels, sugeivnethods can be highly time consuming, subjective,
and nearly impossible to use in an experiment. It is theesdesirable to develop new methods to deal with recordings
from multiple electrodes [Lewicki 1998].

In general spike sorting has four main steps, and each oé thieps has great influence on the results. For the
same reason, their implementation should be carefullyidensd.

The following contains selected introductory examples ésatibe the four major steps in spike sorting, shown in

figure[3.5.

Main steps in spike sorting

Step 1 Step 2 Step 3 Step 4

Filtering -t Detection — Feature extraction —— Clustering

Figure 3.5: lllustrates the four main steps in classical spike sortirghads.

3.3.3 Filtering

The initial step when processing continuously recorded,dhtit demands spike sorting, is to apply a band pass filter
[Quiroga et al. 2004]. This is done to avoid low frequencyaiytand to better visualize the spikes. The continuously
recorded data could e.g. be EMG, intra-cortical recordifigsus in this present work), or intra-fascicular nerve
recordings.

In [Quiroga et al. 2004] the continuous data was filtered witho causal band pass filter between 300 and 3000
Hz. The upper cut-off frequency is to diminish the noisy apace of the spike shapes. As always with filtering, a
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compromise has to be taken. It is desirable to have a narr@wfibnd to better visualize the spikes, but on the other
hand, if the band is too narrow, the filter may hide differexdtlires of the spike shapes. An important issue is that
the filter should preferably be no causal. Causal filtersctvlaire any recursive or IIR filter, usually produce phase
distortions which may really change the spike shapes. figaiet al. 2004] [Quiroga 2009]

3.3.4 Spike detection

Spike detection is the next step in spike sorting after filger The following describes general considerations and
examples of spike detection from [Quiroga et al. 2004].

In many cases, spikes are detected using an amplitude thdesh the filtered data. Setting the threshold is a com-
promise between:

e A high threshold may cause spikes to be missed (type 2 error)
e A low threshold may cause false positives due to noise arggype 1 error).

In several online spike sorting systems the threshold caetrmanually, but in cases with multiple channels, autamati
threshold is preferable. In [Pouzat, Mazor & Laurent 200% automatic threshold is a multiple of the standard
deviation of the signal. This could lead to very high thrddh@lues, especially in cases with high firing rates and
large spike amplitudes. Quiroga et al. [2004] proposes aonaatic threshold setting, to overcome this limitation,
shown in equation 31.

0.6745

wherex is the bandpass filtered signal anglis an estimate of the standard deviation of the backgroursgntlsing
the median in the estimation of the threshold diminishesrttegference of the spikes, because of the assumption that
spikes amount to a small fraction of all samples.

Th:50n,where0:median( X ) (3.2)

When spikes are detected, they have to be stored for clogteand the first problem is how many data points to
store. This depends on the sampling frequency and idealwtiole spike shape should be stored; i.e. about 2 ms of
data [Quiroga et al. 2004]. With a sampling frequency of 30zKthis corresponds to 60 samples.

3.3.5 Feature extraction

The next step for spike sorting is to extract features of flilkkesshapes. This step can give a dimensionality reduction,
reducing from a space of dimensiomto a low dimensional space of fewer features. Ideally it igttract those
features that most optimal separates the different claistespikes and remove all the dimensions dominated by noise.
This step makes the process more computational efficient &whandatory for some clustering algorithms. Further-
more, eliminating inputs contaminated by noise can cdgtaimprove clustering results. [Quiroga et al. 2004]

The first idea for feature extraction could be to take basaratteristics of the spikes, such as their peak, ampli-
tude, width and energy. However, it has been shown that sathrfes are not always optimal for differentiating spike
shapes. [Quiroga et al. 2004]

As in figure[3.3B, the two spikes have almost the same amplituateare different in shape. The aim is here to char-
acterize the shape, and use this information to classifis spike. Figuré 316 shows an example of classic features
to express the difference between the two clusters of splleesed on minimum/maximum spike amplitude in (a), or
spike width/heightin (b). (a) shows that the spikes has atriiee same maximum amplitudes, but differentiates in two
regions with minimum amplitudes. The large cluster nearotfigin also reflects noise and background spiking neu-
rons. (b) shows clustering with spike height and width, vehttie two clusters are marked in boxes. [Lewicki 1998]
One of the most used method for feature extraction is pral@pmponent analysis (PCA), and to take the first 2
or 3 principal components that contains more than 80% of tteggy of the signal [Horton et al. 2007] [Adamos,
Kosmidis & Theophilidis 2008] [Quiroga et al. 2004]. HoweyECA selects the directions of max variance of the
data, which may not be the directions of best separationonmescases, it may be that the information for separating
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Figure 3.6: Example of different features that expresses spike shdfezatice. Every dot represents a spike. (a)
Maximum versus minimum spike amplitude. (b) Spike widthsusrspike height. Inspired from [Lewicki
1998]

the clusters is represented in one or a combination of gpr&components with low eigenvalues. [Quiroga et al. 2004]

It has also been proposed to use wavelets for feature ermac{Hulata, Segev & Ben Jacob 2002] [Quiroga
et al. 2004] The wavelet transform provides a time-freqyedecomposition of the signal with optimal resolution
in time and frequency domains [Mallat 1989]. One of the atlvges of using wavelets for feature extraction is that
very localized shape features can be detected becausestveoefficients are localized in time. [Quiroga et al. 2004]

3.3.6 Clustering

The final step of spike sorting is to group spikes with ideaitfeatures into clusters, corresponding to the different
neurons.

The previous step was to reveal clusters that are relevadssifying spike shapes. This step, cluster analysibgis t
finding of clusters in multidimensional data sets and cfgisgj data based on these clusters.

A basic assumption in clustering is that the data results fseveral independent classes, each of which can be de-
scribed by a model. This assumption fits spike sorting, bezaach action potential arises from a different neuron.
The first task in clustering is to describe the cluster laratind the variability of the data around that location.
[Lewicki 1998]

One very intuitive method is to delimit clusters manuallydnawing polygons in 2-dimensional projections of the
spike features, also seen in figlirel3.6. [Gray et al. 1995 Wiethod can be a very time consuming task and fur-
thermore manual clustering may introduce errors becaumiéd dimensionality of the cluster cutting space and
because of human biases. In many cases clusters overlapeam@hual setting of a boundary has the great disadvan-
tage of being very subjective. [Harris et al. 2000]

[Lewicki 1994] have proposed a more refined solution thasBayesian classification. This approach assume a
Gaussian distribution of the clusters, and is based on theagstion that in any given cluster the spike variability is
determined only by additive and Gaussian stationary backgt noise.

This assumption may be valid in some conditions, but it hanhl@gued by [Fee et al. 19§jghat the background
noise cannot be represented as a stationary Gaussian randoess. There are several aspects that can lead to clusters
with non-Gaussian shapes.

1. Electrode drifts during the recordings
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2. Variation in the spike shape due to bursting

3. Presence of overlapping spikes

4. Correlations between spikes and local field potentials
5. Non-stationary background noise

[Fee, Mitra & Kleinfeld 199@] has developed a hierarchical clustering algorithm to cwmre the assumption of
Gaussian clusters, which first sorts the data into an ovartyel number of clusters and then merges these clusters
according to spike shape similarities and statistics.

The use of clustering algorithms based on nearest neigsbot&actions is another approach to avoid the assump-
tion of Gaussian distributions. Quiroga et al. [2004] usgs principle, which basically group together contiguous
set of points given that the local density is larger than sagewvalue. The method is more specifically called super-
paramagnetic clustering (SPC), and has been used for spitiegs

SPC is a stochastic algorithm with no assumption of any @aéi distribution of the data. SPC groups the spikes into
clusters as a function of a single parameter, which is th@ésature. For low temperatures, all the data are grouped
into a single cluster and for high temperatures the datag@iteisto many clusters. The optimal case is the middle
range of temperatures corresponding to the super-paratiagagime, where the data are split into relatively large
size clusters. [Quiroga et al. 2004]

Another approach is the nearest-neighbor or k-means cdlugtéHere the cluster locations are defines as the mean of
the data within that cluster. A spike is classified to whigvesluster has the closest mean using Euclidean distance.
Hereby a set of implicit decision boundaries are defined,dbparates each cluster. Figlrd 3.7 shows an example of
these boundaries for the dataset also shown in sedction JLe&wicki 1998] These relatively simple approaches are
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Figure 3.7: lllustrates the decision boundaries for nearest-neigblistering. Inspired from [Lewicki 1998]

adequate when the clusters are well separated, but fail thieeciusters overlap.

Clustering in higher dimension and template matching aesmgtes of more refined clustering methods. It can be
convenient for display purposes only to use 2 features,tbutiy be desirable to extend the cluster space to higher
dimensions. In template matching the waveform are the of@sss and correspond to the average spike waveform for
each class. The idea is to obtain a more accurate classificaly adding more dimensions to the clustering. The aim
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is to have clustering procedures where the spike templagashasen automatically, and in case of Euclidean metric is
used to measure the distance to the template, then thisspords to nearest-neighbor clustering. Template matching
with Bayesian integration classifies spikes with the acages that the classification takes into account the vanmiatio
around the mean spike shape. [Lewicki 1998]

Figure[3.8 shows an example of three waveforms, or spikeltgagthat defines the cluster means. [Lewicki 1998]
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Figure 3.8: An example of three waveforms, or spike templates, that defime cluster means. Inspired from [Lewicki
1998]

3.4 Overlapping spikes

A lot of the traditional spike sorting algorithms descrilzixes not deal with overlapping spikes [Lewicki 1998]. Over-
lapping spikes occurs if two close-by neurons fire in synolirar with a small time delay. Overlapping spikes can be
i.e. a spike shape generated by the sum of the spikes froméwmns. In a simple case when double peaks appear
(small time delay is present), it is relatively easy to idigraverlapping spikes. Overlapping spikes can look like th
firing of a third neuron when there is no time delay. This is aclmmore difficult situation to solve. According to
[Quiroga et al. 2004], overlapping spikes is one of the mbatlenging issues in spike sorting.

If two spikes are sufficiently separated in time, it is poksithat the traditional spike sorting algorithms can clas-
sify the spikes correctly. Serious problems will though egapif two or more spikes fires simultaneously. Spikes
sorting approaches with cluster cutting (secfion 3.3.@ayesian approaches (section 41.0.1) to classificationayjt m
be possible to identify some overlaps as outliers. [Lewld&98]

A simple approach to deal with overlaps is to subtract a spiik@ the waveform after classification. This is done
with the aim of improving the classification of subsequeliteg, and requires a template or model of the spike shape.
This method though has some drawbacks when spikes comes tclgether, and it may introduce unwanted noise
in the waveform if the spike model is not accurate. Anotheeaswith subtraction-based approaches is that the spike
occurrence time may not be accurately estimated, whichiafsaduces spurious spike shapes, because of artifacts in
the residual waveform due to misalignment. [Lewicki 1998]

In Lewicki [1998] different methods are presented to dedhwiverlapping spikes. Among other an approach based
on neural networks, a method that compares the overlap Wigfossible combinations of two spike models, and a
overlap decomposition algorithm using k-dimensional searees.

3.5 Bursting cells

The definition of a burst is the firing of a fast sequence ofepiy one neuron. Bursts can have a variable number of
spikes, and they may appear as concatenated, and in sonsengdsdecreasing amplitude. It is possible to identify
bursts visually, and with the help of inter-spike-interfi@tograms. [Quiroga et al. 2004]
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In relation to spike sorting, it is critical that spikes in arbt are not taken as separate clusters, due to different
amplitudes of the individual spikes. A lot of the traditidspike sorting methods assumes that the spike shapes are
stationary, meaning that their shape do not change with tira@icki [1998] states however, that many neurons gen-
erate action potentials that can have varying shape. F@i@rshows an example of three cases of bursting neurons.
(a) in figure[3:D shows a scenario where the action poterii@demes progressively smaller. This may result in an
elongated cluster in clustering procedures, but for exartim@ technique using multivariate Gaussian clustering can
still classify bursts correctly, given that the attenuatie not too large, and that individual spikes can be detected
[Lewicki 1998]

Most traditional method fails though, when several neuriong local group of neurons burst simultaneously. An
example of such a burst are shown in (b) in figure 3.9.

(@ (b)

amplitude
amplitude

0 5 10 15 0 5 10 15
time [msec] time [msec]
Figure 3.9: (a) Neuron burst where the action potential change shapgrgssively. (b) Complex burst from many
neurons, with no individual visual spikes. Inspired froneylicki 1998]

3.6 Methods for spike sorting

This section presents different basic methods used in swkigng, followed by a list of candidate spike sorting
methods for comparison with the method in focus in this pres@rk (the UBD method).

3.6.1 Principal component analysis

The principle behind principal component analysis (PCApisompute a sorted set of orthogonal basis vectors that
contains information about the directions in the data afdat variation. The input is the spike data from the recorded
waveform.

Figure[3.10 shows a sample set of spikes centeret in the s@kenum, which are used in the following description
of PCA. [Lewicki 1998] When using PCA for spike sorting, théngipal components are scaled and added together to
represent the given spike. The principal component veat@rfound by computing the eigen-vectors of the covariance
matrix of the waveform data.

Another parameter found using PCA is the scale factor foh @amponent, also called the score. Titlescore is
calculated with equatidn 3.2. [Lewicki 1998]

s = Y 6(x (32)

wherex(t) is the spike data and(t) is theith principal component. The principal components are @dér terms

of how much variance they describe from the input signal.rdasing the number of components added together,
increases the amount of variance accounted for, or in otbedtsyadding additional components yields progressively
smaller corrections until the spike is described exactiyfigure[3.11 the first three principal components, computed
from the data in figure-3.10, are showed. [Lewicki 1998] Egbcthe first component has a spike-like shape, and is
the direction of largest variation in the data. The secortithind component is more and more contamined by noise.
To interpret the results from PCA and determine the numbeaiponents used for classification of spikes, it is
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Figure 3.10: Example of a sample set of spikes Figure 3.11: The first three principal compo-
used in the description of PCA. nents, describing the spike data
Inspired from [Lewicki 1998] from figure[3.10. [Lewicki 1998]

helpful to plot the standard deviation of the scores in thedlion of each component, as shown in figure 13.12.
[Lewicki 1998]

As an example, it is seen that the first three components atstar 76% of the variance in the data. If the background
noise level is determined, it is possible to choose the numibeomponents that are significantly above the noise.

If the first two components are chosen, they can serve asiésdior classifying different spikes. Figure 3.13 shows
an example of a scatter plot of the first two components, amtbdively clear separation of the two spike shapes are
seen. [Lewicki 1998]

3.6.2 Independent component analysis

A technique that is applicable for multichannel spike saytis the independent component analysis (ICA). ICA
approaches the blind source separation problem, whichtehdeiin spike sorting. The basic concept is to uniix
independent signals that have been linearly mixed dhtthannels with priorily unknown mixing weights. This is
illustrated in figuré_3.74. The method assumes that the umkrsources are independent, and the signal separation is
performed sample by sample, so that no prior informatioruaibpike shape are necessary.

There might be different limitations for this method, inding the assumption about linearly mixing of the sources,
and that the number of channels must equal the number ofemteewicki 1998]

3.6.3 Overview of spike sorting methods

The following tries to give examples of different spike sagtmethods, both supervised and unsupervised, to make a
selection of a comparable method for the UBD method possible

Supervised spike sorting methods

A variety of supervised spike sorting methods are desciibttk literature. In this section, a selection of spikeisgrt
methods is listed.

Delescluse & Pouzat [2005] have developed a spike sortintpadeusing inter-spike intervals information. The

algorithm is based on a Markov chain Monte Carlo algorithmicly is capable of estimating and use the firing statis-
tics and spike amplitude dynamics of the neurons. Hulatd. §2@02] presents a spike sorting method based on
wavelet packets and ShannonSs mutual information. Thefitbe avavelet packets decomposition to analyze neural
spikes and extract their main features, is according to tdwga al. [2002] both efficient in separating spikes from
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Figure 3.12: The standard deviation of the Figure 3.13:A scatter plot of the features us-

scores in the direction of each ing the first two principal compo-
component. Used to determine nents. A relatively clear sepera-
the number of components used tion of the spike shapes are seen.
for classification. [Lewicki 1998] Inspired from [Lewicki 1998]
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Figure 3.14: lllustration of the basic concept in using ICA for spike sogt N unknown sources are mixed linearly
with unknown mixing weights, to formN observed mixtures. ICA then finds the unmixing weights to
transform the mixtures into independent signals. Inspirech [Lewicki 1998]
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noise and sorting overlapping spikes. Song & Wang [2006§qmts a spike sorting framework using nonparametric
detection and incremental clustering. The method det@ikes based on a nonparametric shape distribution, and
spike clustering is performed using second-order stegistbvariance matrix. Horton et al. [2007] have developed a
spike sorting method based on machine learning algoritiirhis method, together with Adamos et al. [2008], uses
principal component analysis for feature extraction. tdedh al. [2008] presents a spike sorting method using hidden
Markov models. The method blindly performs source sepamati a combination of both spike detection and classifi-
cation. The first part of the algorithm learns spike temlafieing probabilities, and Gaussian noise parameters. The
second part performs spike sorting based on the learnedmat®n.

Unsupervised spike sorting methods

The following shows examples of unsupervised spike sortiethods from the literature.

Aksenova et al. [2003] presents an unsupervised methodofting neuronal waveforms, based on inverse meth-
ods of nonlinear oscillation theory. The method is an unstiped iteration-learning algorithm that estimates the
number of classes and their centers according to the destagtoveen spike trajectories in phase space. Vargas-lrwin
& Donoghue [2007] presents an automated spike sorting ndetbimg density grid contour clustering and subtractive
waveform decomposition. The method uses, besides densitycgntour clustering, principal component analysis
(described in sectioh_3.6.1) and template matching usihgractive waveform decomposition. The spike sorting
algorithm deals with the influence of noise, spurious tho&skerossing and spike overlapping. Zhang et al. [2004]
have developed a spike sorting method based on automatmatnreconstruction with a partial solution to the
overlapping problem. The method also includes principatjgonent analysis, subtractive clustering techniques, and
template matching in the spike sorting process, which alee to deal with the spike overlapping problem. Quiroga
et al. [2004] have developed a spike sorting method namedVWzlus, based on unsupervised spike detection and
sorting using wavelets or principal component analysisféature extraction. The method uses superparamagnetic
clustering for clustering purposes, for automatic clasaifon of spikes without assumptions such as low variance
or Gaussian distributions. Wave_Clus deals with partiaifgrlapping spikes, with highly localized features such
as wavelet coefficients. Madany, Sharp, Menne, Hofmann &tilteiz [2005] presents an unsupervised spike sort-
ing algorithm using ICA (described in sectibn 316.2). At[{l®92] uses the Isodata clustering algorithm to estimate
typical spike shapes in the spike sorting process. To deal evierlapping spikes, the method compares all possi-
ble combinations of the templates to find the combinatiom hie highest likelihood, with the drawback of being
very computationally expensive. Pouzat et al. [2002] dgved a spike sorting procedure for the classification and
validation of extracellular data based on a probabilistadel of data generation. The method uses the same spike
classification method as Atiya [1992]. Lewicki [1994] aguliBayesian probability theory to define a probabilistic
model of the waveform and to quantify the probability of btith form and the number of spike shapes. This method
was also designed to deal with overlapping spikes. BaeHdt al. [2006] have developed a spike sorting method,
based on Bayesian clustering of non-stationary data. Tktbod is fully automatic, with a clustering procedure in
a Bayesian framework, with the source neurons modeled ag-stationary mixture of Gaussians. Wood & Black
[2008] suggests similar approaches. Shoham et al. [20@@jesis handling the non-stationary clusters by modeling
clusters using a t-distribution in a automatic spike sgrtimethod. This method, though, does not partition the data
into time frames, which may complicate the classificatiosiofilar spikes in distant time frames.

3.7 Selection of spike sorting method for comparison

Based on the description of spike sorting methods in se@i6:13, the method chosen for comparison in this present
study is the Wave_Clus method by Quiroga et al. [2004]. Theshmd is, like the UBD method, fully automatic and
unsupervised through all phases of the spike sorting psoéasthermore, it has the option of using both wavelets and
PCA for feature extraction, and both methods are used indh®parison. A more detailed description of the method
can be found in sectidd 6 pagel 31.
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The method in focus in this present work, the UBD method, aseayesian framework for conducting spike sorting.
This yields a probabilistic foundation in the classificatmf neuronal waveforms, which substitutes the need of a hu-
man operator, and makes the spike sorting algorithm unsigeer, and fully automatic. Only a few already developed
spike sorting methods using probabilistic Bayesian apgrdave been documented in the literature (see secfion 3.6.3
pagd1B). Lewicki [1994], Lewicki [1998], and Bar-Hillel at. [2006] have presented spike sorting methods with a
Bayesian probabilistic foundation, and will in the follawg section give a basic understanding of Bayesian clusferin
and classification.

4.0.1 Bayesian clustering and classification

Clustering related to spike sorting can also be seen as almidthe statistical distribution of the data. Such a method
primarily has the advantage of quantifying the certaintthwihich spikes are classified. [Lewicki 1998]
One method, or probabilistic approach to clustering is gmesd by [Lewicki 1998]. It models each cluster with a
multivariate Gaussian, which is centered on the clustee liKelihood of the data given a particular clagss given
by equatiof 411. [Lewicki 1998]

p(X|Ck, bk, Zk) (4.1)

wherex is the spike data vectopy is the mean, andy is the covariance matrix for clagg. The clustering model
assumes that the data are selected independently from tleelying classes. The marginal likelihood, which is not
conditioned on the classes, is computed by summing overikbBkhbod of theK classes, shown in equatibn 4.2.
[Lewicki 1998]

K
P(x|61x) = 3 p(X|ck, i) p(c) 4.2)
s

wheref;x defines the parameters for all of the clas€eg, = {1, 21, ..., ik, 2k }- p(ck) is the prior probability of the
kth class, with the total probability equalgp(ck) = 1.

Classification is performed by calculating the probabititst a recorded sample belongs to each of the classes, which
can be described with equatibnl4.3 using Bayes rule. [LevigR8]

_ p(Xlck, Bk) p(ck)
P(GIx,Bx) = 2 p(x|cx, Bk) p(ck) (43)

In this expression, the Bayesian decision boundaries tontbdel are defined. To define each cluster boundary, the
confidence levels can be computed because each cluster mehiplie probabilistic. This basis gives a classification
with a minimum of misclassifications. [Lewicki 1998]

To optimize the class parameters for each class, the lixadilof the data are maximized in equafion 4.4.

=z

p(x1n|B1k) = [] P(Xn|Ck,B1:x) (4.4)
n=1

[Lewicki 1998] refers to a free software package, AutoClagisich uses the Bayesian methods described above to
determine the means, covariance matrices, and class plibesb

Figure[4.1 shows an example of a Gaussian model for eacleclugth a three standard deviation error contour. In
the Bayesian classification, an advantage is that the Bayé&simework offers a quantification of the certainty of the
classification. This is an important property, when decisiabout the isolation of spikes in different clusters are to
be made. The probability of a spike being classified to a@al&r cluster, is given by equatibn¥.3, which generates a
probability for each cluster.

To estimate how well a particular class is separated fronersthit is possible to consider the distribution of the
probabilities for a class. Hereby, the quality of the isolatcan be monitored. Figute 4.2 shows a histogram of the
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Figure 4.1: An example of Gaussian clustering for spike sorting. Thips#ls show the three standard deviation error
contours of the clusters, and the lines show the Bayesiaisidedoundaries that seperates the large
clusters. Inspired by [Lewicki 1998]
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Figure 4.2: A histogram of the distribution of probabilities in the terelasses. Class 1 shows diverging certainty,
with not all points having a probability equal 1. In class 2&)nearly all points have probabilities equal
1. Inspired by [Lewicki 1998]
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distribution of the probabilities in the three classes alsown in figuré Zl1. Class 1 shows diverging certainty, with n
all points having a probability equal 1. In class 2 and 3, lyedt points have probabilities equal 1, which indicates
that all points are assigned to their respective clustetis wary high certainty. A decrease in isolation quality can
indicate background noise or electrode drift. [Lewicki 89






Unsupervised Bayesian
decomposition - UBD

Spike sorting is usually done with semi-automatic procedufhese procedures often involve interaction from an ex-
pert operator, doctor or scientist, and the idea in thisgaresork is that a fully automatic method will be more optimal

The method in focus in this present work is a spike sortingheetased on unsupervised Bayesian decomposition
(UBD) using TABU search, developed by Ge et al. [2009]. Qradlly, this method was developed for the decomposi-
tion of multi-unit EMG recordings, but in this present wotle aim is to test the method with simulated intra-cortical
recordings.

The problem of spike sorting is solved with a Bayesian dtatismodel and a maximum a posterior estimator (MAP),
which makes the spike sorting method fully automatic. ThePMéstimation includes several parameters as prior
information integrated in the Bayesian framework, suchtasiplogical constraints (discharge pattern regulanitg a
neuronal refractory period) and the likelihood of the restauncted signal.

The TABU search is included in the algorithm to deal with dapping spikes, which is a NP-hard optimization prob-
lem. This is done to avoid exhaustive analysis where alliptessverlaps are tested.

Both intra-cortical recordings and intramuscular EMG sigrare the sum of series of action potentials discharged
by the neurons detected by the recordings electrodes. Thieunit recorded signal can be decomposed or spike
sorted into constituent action potentials or spikes, toaetthe discharge patterns of the neurons.

This method performs spike sorting like classical appreacthen it comes to spike identification from the inter-
ference signal with a threshold. One complicated issueignsiike sorting is the separation of spikes that overlap in
time. This problem can be characterized as an NP-hard pmlblecause of the complete search space of overlapped
spikes. [Ge et al. 2009]

The following describes an overview of the method based aupervised Bayesian decomposition in focus in this
report.

5.1 Description of the model

This section describes the theory behind the UBD method.dEseription should be valid for the neural recordings
relevant in this project (simulated and human intra-cattiecordings).

5.1.1 Forward model

The neural signal can be mathematically described with théahshown in equatidn 3.1. The neural signal contains
the contributions fronh neurons or sources.[Ge et al. 2009]

z:_lzlhi*s +¢€ (5.1)

wherezis the recorded neural signal (i.e. intra-cortical recogd) with lengthN. This signal is modelled as a mixture
of convolutions of the impulsive trairs,i = 1,...,1 and the linear filterd;,i = 1,...,1. The impulsive trains can be
interpreted as the discharge patterns for the neuronsharlhear filters can be interpreted as the spikes.

The mixture of sources in equatibnb.1 result in the follayvitatistical assumptions: [Ge et al. 2009]

1. Allimpulsive trains (discharge patterrs)= 1,,i = 1,...,| is modeled as an independent process with uniform
amplitudes.x; is a vector that contains the coordinates of all impulseeémh sourcen; = lengthx;) is the
number of discharges.

2. The discharge patterii$,, ); for each neuron are assumed mutually independent.
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3. The spike shapési,i =1, ...,1) change slowly during the neural recording (variation ingghaccurs not faster
than time intervals of seconds).

4. The recorded neural sigreis corrupted by additive white Gaussian noise with unknoamianceo?.

One vital assumption in this UBD method, is that the data taitey process that generatesbeys the Gaussian law
shown in equation 52, given the source paraméterk;);,o2. [Ge et al. 2009]

N
1 z— 31y +hi||?
P<z|<xi,hi>i,o§>=< 2n02> exp( 12— 0 ) 52)
€ €

The following assumptions apply to the discharge pattefeach neuron: [Ge et al. 2009]

1. The inter-spike interval (IST}i; = xi j+1 — Xi,j between two consecutive spikes for a given source (neuys)
larger than a threshold valig. Tr denotes the neuronal refractory period, which is a phygiold constraint
on the ISI.

2. The ISI {lij — Tr) follows a Gaussian shaped distributioi; — Tr) ~ N(m, oiz).

3. The ISl variability is smaller than a thresh(%d< Thg,. This constraint expresses the regularity in the discharge
patterns and the threshold Jtcontrols the variability of the ISI. This constraint may legulated dependent
on the type of neural signal.

According to (3) in the above enumeration, the ISI followsuntated Gaussian distribution expressed in equation
B.3. [Ge et al. 2009]
{ P(Tj) =0 Tij <Tr (5.3)

This approximated Gaussian distributed ISl is experimnt@served in the simulated test signals used in this study
(see figur€ 913 pade b8).

On a discrete grid, the ISI probability described in equaf©3 is well-defined up to a normalization factor
63 \/1_e*<k*mi>2/2"i2 — 1, whenmy — o andaoj/my < Thg,). [Ge et al. 2009]

2no?

The probability ofx; given the parameters for the Gaussian shaped distribubiolsf, also called the source gen-
erating process, is shown in equation 5.4. [Ge et al. 2009]

1 Xi1—Tr—Mm N—Xin —TR—m
P(x: 2y — Zerfe| 222 1) erf Ll 5.4
(Xi|mi,07) 4erc( NG >erc< 5o > (5.4)

n—1
(Zm?)(nil)/zeXP{—E D> (Xijra—Xij—m —TR)Z}
i j=1

valid for a given configuration of a neuron or sousge= 1,,. The first two terms in equatidm.z%eérfc(o)erfc(.))
evaluate the firstimpulse 1SI with probabili(T; 1 > x; 1) and the(n; + 1) impulse IS with probabilityP(Ti n, 1 >
N — X n,) respectively.

The expression in equatibn 5.4 can be simplified to equaiBn&e et al. 2009]

n—1
P(xilm,of) ~ (2m0f) "™V %expd — == 5 (Xiji1—Xij—m —Tr)? (5.5)
207 &

Because of the independence of all discharge pattesis the prior law for the discharge patterR§(x;)i) can be

expressed as in equationls.6.
|

P((x)i|(my,0?)i) = rlP(xwm,o?) (5.6)
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5.1.2 Posterior probability law

In this spike sorting method, based on a Bayesian estimé&tionework, a posterior distribution for the unknown
variables{(xi, m, qf, hi)i,0§|z} is established. Equatidn.7 express the probability ahake variables based on the
recorded neural signal. [Ge et al. 2009]

|
P((xi,m, ¢, hi)i,0Z|z) O P(z|(xi,hi)i, 07) I_!(P(Xi|maGiZ)P(M)P(GiZ)P(hi))P(OE) (5.7)

Equatior{ 5.V is the core of the spike sorting algorithm. Tpikessorting task is conducted by maximizing equation
w.r.t. the discharge patteriis);, the statistics of the discharge patte(ns,o?);, the spike shapeg);, and

the background noise variancg. The two first terms after( in equation[5.Y are computed from equatlon] 5.2
and[5%. The remaining four terms are expressed as conjpgats with the non-informative hyper-parameters

discharge rate and spike shape to the spike sorting algur[tBe et al. 2009]
Discharge rate:  P(m) ~ N(lo, 03) P(0?) ~ 1G(ai, Bi) (5.8)

Spike shape:  P(hj) ~ N(h{? a?) P(02) ~ IG(as, Bs) (5.9)
where |G denotes the inverse Gaussian distribution.

5.2 Description of the spike sorting algorithm

Description of the two-phase spike sorting algorithm basedx maximum a posterior estimator (MAP) which is
applied to the forward model described in the above seEfiin 5

5.2.1 Maximization algorithm

The key equation in the spike sorting algorithm (the joingteoior distribution in equatidn3.7) is maximized w.Ittet
unknown parameters shown in equafion 5.10.

© = arg ma®(0|z) (5.10)
where® = {(Xi,hi,maoiz)iaog}'

The main structure of this spike sorting method is divide ia preprocessing phase and a complete spike sepa-
ration phase. The spike separation phase iteratively magmequation 517.

In the case wheréx;); are fixed, the remaining parametdi$i, m,0?2)i,02} can be estimated and leads to a closed
form solution. But the most significant problem in spike suaytis exactly the determination of the discharge pattern
(xi)i, which cannot be solved by exhaustive exploration. Thet®&wius to determine the spike shapes and firing
patterns that maximizes the posterior distribution in ¢igné&. 1. The TABU search algorithm is applied to deal with
the maximization w.r.t the discharge pattéx);. [Ge et al. 2009]

5.2.2 Overview

Figure[5.1 provides an overview of the UBD spike sorting rodthThe first phase of the two-phase spike sorting
method is the preprocessing part. The recorded signal mesaigd and representatives of the detected smh@gi

are extracted to initialize spike shapes. This is done fhitibfically as shown in equatidn 3.9. The aim for this
phase in the spike sorting process is to indentify activenseds, and at least isolate one spike for each active neuron.
The preprocessing phase is implemented as a classicaleagbpiar spike detection, including band-pass filtering and
amplitude thresholding [Lewicki 1998]. The level of thre#this set proportional to the background noise variance
estimated;.
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1. Preprocessing 2. Spike separation phase (spike sorting) 3. Sorted spikes
Filtering cCj.omhplete Spike shape Baskground
Ea=e |stct arge estimates noise iNe
atterns ;
Spike detection P variance
Segmentation applied to each segment V !

Figure 5.1: Overview of the two-phase UBD spike sorting algorithm.

When an isolated spike or overlapping spikes are detectegictive segment{Segq}) is assigned. In the first phase
of the preprocessing (segmentation phase), false pasitiype | error) are preferred rather than false negatiyge(t

Il 'error). This is because the inclusion of segments ®&gure background noise gives a null solutigr= @, that still
belongs to the solution space of the MAP estimation, whi¢héssecond phase of the preprocessing. [Ge et al. 2009]

The maximization-decomposition phase is applied aftemsegation in the second phase of the spike sorting al-
gorithm. This is done serially to each segment to computéaifh@ving:

1. Discharge pattern;); for all neurons

2. Spike shapes estimat@s); for all neurons

3. Background noise variancg, with a MAP criterion

One key feature for this spike sorting method is the fullyoauatic mode of operation. For each segment, the joint
posterior distribution in equatidn 3.7 is maximized oves ttomplete search space of the discharge patterns in the
automatic algorithm. Spike overlapping is solved with agoaithm, the TABU search. [Ge et al. 2009]

The TABU search is originally designed for other problemsjirerational research, but can be adapted to solve the
combinatorial problem of spike overlapping.

The MAP optimization steps executed in the second phaseehstéd as follows: [Ge et al. 2009]

1. Initialize spike shape(ﬁfo))i using the segmentation results from the first phase

2. Initialize discharge rate statisti¢ey,0?); by their conjugate prior laws, and the noise parameteby the
estimateds.

3. Set the discharge pattems= @(1y, = 0) for all i

4. Iterate the following:
a. Optimize the combinatorial problem using TABU searchefach segment Sgg

which entails maximization W.I’.(.Xi(k))i
P((x")ix hi,m,02);, 02, 2) (5.11)

b. Compute the closed form solutions for the shape and digelpattern parameters
(hi,m;,02)i)i,02 until convergence

In equatiori_j:ﬂlek) =Xx;NSegq,i =1,...,1 describe the discharge vector of each neuron within thengsegment.
The subscripf—k) denotes the variables belonging to segmenisSeq.

The maximization algorithm for step 4a using the TABU sealgforithm is not further explained in this work, and
the maximization algorithm for step 4b is explained in sat®.2.3.
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5.2.3 Maximization on continuous parameters

This section describe the maximization of the statisteahtinuous parametefsy, o2. [Ge et al. 2009] The remaining
parameters and the maximization on combinatorial sets (TA8arch) are not considered in this work.

Maximization w.r.t. m

The maximization ofn is shown in equation 5.12.

m = mmaXP(@|Z):mmaXP(Xi|m70i2)P(m)

n—1
— m&x(exp{—% Zl(Sj —m)z} P(m)) (5.12)
i =

whereS; = x; j+1 — Xi,j — Tr is the set of Gaussian samples (discharge rate minus refyguériod). Equation 515
describes the Gaussian teRtxj|my,a?). The prior lawP(m;) and the product i 5.12 is also Gaussian. The maximum
is found as in equatidn 5.1.3.

n—1
Ho  2je1 Sj (1 ni—l)
== —+— 5.13
" <o%+ o7 ) \&" e -
Maximization w.r.t. o2
The maximization ob? is shown in equation 5.14.
of = maxP(0|z) = maxP(xi|m,o?)P(c?)
o? o?
= max| o " Vexp —iniil(sj—m)z P(0?) (5.14)
Giz i 20i2 4 i
The maximum is found in equatién 5]15.
2 niil 2 n| — 1
of =B+ 3 (Sj—m)7/2)/{ai+1+— (5.15)
=1

Because of the regularity constraint for the Bym < Th,, the following is valid fora? « min{a?, (Ths,m)?},
which can be tuned depending of the type of neural signalaelegor spike sorting.






Spike sorting method chosen
for comparison

This chapter describes the methods that are chosen for cmmpavith the method in focus in this present work,
based on unsupervised Bayesian decomposition.

For comparison, the methatfave_Clusare used, based on the work from Quiroga et al. [2004]. Wals i an
unsupervised spike detection and sorting method, thatwaeslets and superparamagnetic clustering.

6.1 Wave Clus

The Wave_Clus program is a method for detecting and sorfilkgs from multiunit recordings. As a short summary,
the method uses the wavelet transform for feature extnaetml superparamagnetic clustering (SPC) for automatic
spike classification. SPC does the classification withostiaptions such as low variance or Gaussian distributions
(in contrast to the UBD method in focus in this present woee shaptdr]5 pageP5).

Throughout this report, Wave_Clus is chosen for compangitinthe UBD method, using several simulated data sets
with characteristics that closely resemble those of realdruintra-cortical recordings, including one human data se
For a description of the test data, see chdptér 7.1[pdge 8itofa et al. 2004]

The graphical user interface of the Wave_Clus program isvehio figure[6.1. After loading the data, the unsuper-
vised method automatically performs the spike sorting,@ots the different clusters, the distributions of intpike
intervals for each cluster, the two-dimensional featu@ggamtion (the wavelet coefficients), and the cluster siza as
function of temperature (see section 611.1 below). It issilda for the user to change the cluster size and temperature
at any time, after which a new clustering process and plpti® executed.
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Figure 6.1: Screenshot of the graphical user interface of Wave _Clusex@mple of simulated intra-cortical data is
loaded, and the spike sorting results are shown. The ravalsidifferent clusters, the inter-spike interval
distributions, and the two-dimensional feature projaettoe plotted. [Quiroga et al. 2004]
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Spike sorting method chosen for comparison

6.1.1 Spike sorting method

The algorithm behind Wave_Clus is a unsupervised clugiegigorithm, that uses the wavelet transform for feature
extraction. This method gives a time-frequency decomjowsit the neural recording with optimal resolution in both
time and frequency domains. With the clustering procedased on superparamagnetic clustering, the Wave_Clus
program encompasses three very principle stages of spitieggsee sectioin 3.3 pagel10:

1. Spike detection with thresholding
2. Extraction and selection of spike features using wavedesform
3. Clustering of the selected spike features

Figure[6.2 summarizes the Wave_Clus spike sorting alguarith

a b C d e

raw data spike detection feature extraction clustering sorted spikes

M T At = [T = [T

simulated intra-cortical automatic amplitude automatic selection of superparamagnetic clustering result
recordings thresholding wavelet coefficients automatic selection of temp.

Figure 6.2: Overview of the basic steps in the Wave_Clus spike sortiggrahm. Inspired from [Quiroga et al. 2004]

Spike detection

Wave_Clus performs spike detection by amplitude threshgldfter band pass filtering the signal with a four-pole
Butterworth filter (300-6000 Hz). The threshold was autdoadly set in equation 6l1.

Thr = 40, whereo, = median{ %7&5} (6.1)
wherex is the filtered signal, and, is an estimate of the standard deviation of the backgroumgen®uiroga

et al. 2004].

One potential problem by taking the standard deviation efsiignal (with spikes) could be that a very high threshold
was determined, especially in case of high spike firing ratekigh spike amplitudes. The reason of using the median
is to diminish the interference of spikes, under the assiomphat spikes amount to a small fraction of all samples.
[Quiroga et al. 2004]

Feature extraction and selection

The wavelet transform used for feature extraction is a firaquency representation of the neural recording. The
transform has two main features. The firstis that it provateeptimal resolution in both time and frequency domains,
the second are that it does not require signal stationafihe wavelet transform is defined in equation] 6.2 as the
convolution between the sign&(t) and the wavelet functionp, p(t) [Mallat 1989].

WX (a,b) = (x(t)[Wan(t)) (6.2)

wherey,(t) are dilated and shifted versions of the unique wavelet fanap(t), which is defined in equatidn 6.3.
t—b

Wap(t) = i (T) (6.3)

wherea andb are the scale and translation parameters respectivelyWele Clus method uses a four-level decom-
position using Haar wavelets, which are rescaled squawitins. Haar wavelets allow the discriminative features of
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the spikes to be described with a few wavelet coefficientd,vaithout a priori assumptions about the spike shapes.
[Quiroga et al. 2004]

The wavelet transform maps the neural recording (repreddnyt the independent variakileonto a function of two
independent variables b. Contracted versions of the wavelet function match the Hiigquency components, and
dilated versions match the low-frequency components. Deetation between the recorded signal and the wavelet
functions of different sizes provides details of the sigataleveral scales. These correlations with the differeuélea
functions are arranged in the hierarchical scheme muttinen decomposition [Mallat 1989].

After spike detection and computation of the wavelet trarmaf 64 wavelet coefficients are obtained for each spike.
The aim is to select a few coefficients that best describephe shapes, and is multimodal distributed (more than
one spike class). The algorithm selects the 10 best coeificaitomatically with a Kolmogorov-Smirnov (KS) test
(not described in this work) for normality, without assugiany particular distribution of the data. KS provides an
expression for the deviation from normality as a sign of atimddal distribution. The 10 coefficients with the largest
deviation from normality where used as input to the clustgélgorithm. [Quiroga et al. 2004]

The Wave_Clus method does not deliberately take the probfawerlapping spikes into consideration. Overlapping
spikes may introduce outliers in the distribution of waveleefficients that result in high deviation from normality,
which result in more clusters. In order to minimize this eff@nly coefficients with values withi#3 standard devi-
ations are considered [Quiroga et al. 2004].

The Wave_Clus method is also capable of using principal corapt analysis (PCA) for feature extraction. PCA
is also explained in sectidn 3.6.1 pagé 17.

Clustering

Superparamagnetic clustering (SPC) is based on simulatethctions between each data point and its K-nearest
neighbors [Blatt, Wiseman & Domany 1996]. The following libt be an exhaustive description of the models
behind the superparamagnetic clustering, but will solelytgough the important principles relevant to spike sgrtin
The clustering method is based on a Potts model [Blatt et26]L The initial step is to represent theselected
features of each spikeby a pointx; in anm-dimensional phase space. The interaction strength batpeatsx; is
defined in equation 8.4 [Quiroga et al. 2004].

3 :{ %eXp(—%) if x;is a nearest neighbor)_z)}c (6.4)

otherwise

whereais the average nearest-neighbors distancekasdhe number of nearest neighbors. The strength of interact
between the nearest-neighbor spilgsiecreases exponentially with increasing Euclidean distei = ||x; — ;] |2.

This can be interpreted as similarity of the selected festumeaning that similar spikes that belongs to the same
clusters will have a strong interaction.

The second step in the clustering procedure is to assigrital random state from 1 toq to each poink;. The main
idea is to iteratively change the initially configuratedst for a randomly selectexi, to a new stat@neyw, randomly
chosen between 1 ard Now, the probability that a the nearest neighbors; afill also change their state ®ey is
given by equatiof 615 [Quiroga et al. 2004].

J..
pij=1— exp(—% ,sj) (6.5)

whereT is the temperature. Only nearest neighbors;ahat were in the same previous statare candidates to
change their states &ew XS that change state create a so-called "frontier", and ¢aamge again during the same
iteration. For each point of the frontier, equation 6.5 impaited, to calculate the probability of changing the state
to shew for their respective neighbors. The frontier is updatedl itndoes not change any more. This entire proce-
dure is repeated for every point to get representativestitati The consequence is that points that are close tagethe
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(corresponding to the same cluster), will change theiedtagether. This is quantified by measuring the point-point
correlation(ds s;), and then assigr;,x; to the same cluster ifd ;) > 6, wheref is a given threshold [Quiroga
et al. 2004].

Quiroga et al. [2004] uses= 20 statesk = 11 nearest neighborls, = 500 iterations, ané = 0.5.

The clustering results is highly dependent on the temperdtyBlatt et al. 1996]. From equatidn 6.5 it is seen
that a high temperature result in a low probability of chaggtihe state of neighboring points together, and a low
temperature corresponds to a higher probability. AccgrttirBlatt et al. [1996], at a certain medium range of temper-
atures between high and low, the system reaches a so-callpdrparamagnetic" phase in which neighboring points
will change their phase simultaneously. In relation to thies clustering issue, a low temperature will results in all
points being considered as a single cluster, whereas aéngpdrature will partitioning the data into several cluster
with a few members each. Though, the temperatures corrdsppto the superparamagnetic phase, only those points
that are grouped together will change their state simudtasly. [Quiroga et al. 2004]

To illustrate the clustering procedure, figlirel 6.3 showsamgple of 2400 points distributed in three distinct cluster
(A) in figure[6.3: The challenge in this specific example ig tha clusters partially overlap, have large variance, and

Cluster 1
Cluster 2
Cluster3
Non clustered

®+O0X

2500

Cluster 1
= = = Cluster2
........ Cluster 3

2000

cluster size
v
(=]
=]

1000

500! v

0.01 0.05 0.12
temperature

Figure 6.3: Example of superparamagnetic clustering of 2400 pointisrieet clusters. (A) shows the two dimensional
data distributed in three clusters. (B) shows the clusger as a function of temperature. At a temperature
of 0.05, the transition to the superparamagnetic phasa®cand the correct three classes are separated.
Inspired by [Quiroga et al. 2004]

their centers fall outside the clusters. Furthermore, ikadce between random chosen points of the same cluster,
may in some cases be significantly larger than the distartweeba points from different clusters, which may result
in misclassifications from traditionally clustering algbms. (B) shows the performance of the SPC, and plots the
number of points assigned to each cluster as a function dkthperature. At low temperature, all 2400 points are
gathered in one single cluster. At temperatures betwetarf 05 the clusters breaks down into three clusters, in the
superparamagnetic transition. The clusters in (A) weréopaed with a temperature of®.
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Test data

For testing the method in focus in this report, the UBD metlaod the method chosen for comparison, the Wave_Clus
method, different test data are used. The UBD method isr@llyi designed for intra-muscular EMG signal decom-
position, but is in this present work tested with other typéseural recordings, including simulated intra-cortical
recordings and real human intra-cortical recordings. Tlaeé&\VClus method is testes with the exact same data, to
make a comparison possible.

Figure 7.1 shows an overview of the three collections ofdasa.

Test data
Simulated intra-cortical recordings Human intra-cortical recordings
Collection 1 Collection 2 Collection 3
16 signals 16 signals 1 signal

Figure 7.1: Overview of the three collections of test data used.

7.1 Simulated intra-cortical recordings

The testing of the two methods is done with two different sésmulated intra-cortical recordings. The first collecti
(collection 1) of simulated intra-cortical signals are esiplly created for this project, and are described in sacti
[Z.113. Collection 1 is simulated in this project to able tatrol the setting of signal parameters (neuronal refractio
period, maximal overlap, signal-to-noise ratio, etc.).

The second collection (collection 2) of signals are crebiefQuiroga et al. 2004], and a description follows below in

sectior_Z.1P.



Test data

7.1.1 Collection1

The following describes the collection (collection 1) ahsilated intra-cortical recordings build for this project.
For testing the two methods in a controllable setting, tigjga collection is created with a variety of controlledrsid
parameters, described in the following.

The simulated signals were build using a database of 12reliffespike shapes from actual recordings in the neo-
cortex and basal ganglia [Quiroga et al. 2004], also desdrfbr collection 2 in subsectidn 7.1.2. The 12 spike shapes
are subdivided into four sets of three spike shapes, whete €&t consists of four signals with varying noise level.

This results in a total of 16 test signals. Figlirel 7.2 showsfolir sets (12 spikes total) of spike shapes used in the
simulations. Every signal was build 60 seconds long, sitedlat a sampling rate of 24 kHz, and the generation of
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Figure 7.2: Overview of the four sets of spike shapes used in collectioftdch set is represented by three spike
shapes from [Quiroga et al. 2004]. A total of 16 signals areegated.

background noise was made with a white Gaussian noise &mictiMatlab, to imitate the noise from distant neurons
in real recordings. The amplitude level of the backgroundewas adjusted according to its standard deviation, and
was in each set of signals set to [0.05, 0.10, 0.15, 0.20fvelto the amplitude of the spike classes. The four sets of
spike classes (train of three distinct spikes with 4 ms lengis superimposed on the noise signals at random times,
however with the constraint, that spikes from a given clagddsa neuronal refractory period of 10 ms. The peak
amplitude of the distinct spikes was normalized to 1, andiallulations have a Gaussian distribution of inter-spike
intervals, and a mean firing rate of 15 Hz. Because of the maimba firing of the three spikes, a number of spike
overlaps are present in all simulated signals, and totalapevas allowed.

Spike timing and correct spike class identities were savgdther with the signal for evaluation.
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Signal overview

An overview of collection 1 of simulated signals are shownahle[7.1. An overlapping spike is defined as a spike
pair within 64 data points (approx. 2.7 ms).

Collection 1

Simulated signal # Noise level Number of spikes Number of overlapping spikes

Set 1 1 0.05 2700 248
2 0.10 2700 275
3 0.15 2700 286
4 0.20 2700 279

Set2 5 0.05 2700 268
6 0.10 2700 251
7 0.15 2700 250
8 0.20 2700 256

Set 3 9 0.05 2700 281
10 0.10 2700 300
11 0.15 2700 291
12 0.20 2700 265

Set4 13 0.05 2700 298
14 0.10 2700 262
15 0.15 2700 262
16 0.20 2700 290

Table 7.1: Overview ofcollection 1 of simulated intra-cortical signals generated in this @ctj Four different data
sets are provided, with four signals in each with varyingsadevel. For each 60 seconds signal, the noise
level, number of spikes and the number of overlapping spakepresented.

Figure[ 7.8 shows four examples of 1 seconds fragments ofitndated signals generated for this project, one frag-
ment for each of the four noise levels, all from the first sigred (signal 1-4).

normalized amplitude

normalized amplitude

Signal 1 [noise level 0.05]

0 0.2 0.4 0.6 08 1
time [sec]

Signal 3 [noise level 0.15]

0 0.2 0.4 0.6 0.8 1
time [sec]

normalized amplitude

normalized amplitude

Signal 2 [noise level 0.10]

0.2 0.4 0.6 0.8 1
time [sec]

Signal 4 [noise level 0.20]

0.2 0.4 0.6 0.8 1
time [sec]

Figure 7.3: Four examples of 1 second fragments of the simulated sigealsrated for this project, one fragment for
each of the four noise levels, all from the first signal segr{al 1-4)
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7.1.2 Collection 2

The second collection of test data used is different siredlaitra-cortical signals created by [Quiroga et al. 2004].
The simulated signals were formed using a database of 5&fFefit average spike shapes from recordings in the
neocortex and basal ganglia. The generation of backgrooisd was created with randomly selected spikes from the
database, superimposed at random times and with randonitaaesl The superimposition was conducted for half
the times of samples, to imitate the background noise ofrezalrdings, which is generated by the action potentials
from distant neurons. Finally, superimposition of a trafritwee distinct spike shapes was done on the noise signal
at random times. These three spike shapes was also selsmtethke database, and their amplitudes was normalized
to a peak value of 1. The amplitude level of the noise was &sfjusccording to its standard deviation, and was set
to [0.05, 0.10, 0.15, 0.20] relative to the amplitude of this classes in three signals. An advantage of constructing
noise from spikes is that the noise shares a similar powetgpe with the spikes themselves. The aim was to make
the procedure of spike sorting more challenging than seenarith white noise distribution of background activity.
Spike timing and correct spike class identities was savgeétteer with the signal for evaluation. [Quiroga et al. 2004]

Initially, the signals was simulated at a sampling rate ok8&, and subsequently down sampled to 24 kHz, and
all signals are 60 seconds long. The down sampling was coedtc imitate actual recording conditions in which
samples do not necessarily fall on the same features witkjsikee. The consequence may be that the peak of the
signal does not necessarily match with a discrete samplérg@a et al. 2004]

The three clear spikes in all simulations have a Poissonildision of inter-spike intervals, and a mean firing rate
of 20 Hz. Furthermore, a 2 ms refractory period constraitwben spikes of the same class was ensured. Because
of the randomized firing of the three spikes, a number of spielaps are present in all simulated signals. [Quiroga
et al. 2004] This complication also improves the imitatidmeml recordings, and is considered in the results section

[0 pagéTh.

Signal overview

An overview of collection 2 of simulated signals are shownahle[7.2. An overlapping spike is defined as a spike
pair within 64 data points (approx. 2.7 ms).

Collection 2
Simulated signal # Noise level Number of spikes Number of overlapping spikes ‘

1_easy 1 0.05 3514 785
2 0.10 3522 769

3 0.15 3477 784

4 0.20 3474 796

5 0.25 3298 N/A

6 0.30 3475 N/A

7 0.35 3534 N/A

8 0.40 3386 N/A

2_easy 9 0.05 3410 791
10 0.10 3520 826

11 0.15 3411 763

12 0.20 3526 811

3_diff 13 0.05 3383 767
14 0.10 3448 810

15 0.15 3472 812

16 0.20 3414 790

4_diff 17 0.05 3364 829
18 0.10 3462 720

19 0.15 3440 809

20 0.20 3493 777

Table 7.2: Overview of collection 2 of simulated intra-cortical signals from [Quiroga et al. 02D, Four different
data sets are provided (two relatively easy to spike sod,rélatively difficult to spike sort). For each 60
seconds signal, the noise level, number of spikes and théauofh overlapping spikes are presented.
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Figure[Z.% shows an example of a fragment from two differentilated signals in collection 2. In each example, a
fragment of the raw signal (B), the three disclosed spikpsb#@A), and a small section data with classification results
from Wave_Clus (C) is shown. The example with noise leved@Ielatively easy to spike sort, because of the noise
level and relatively diverse spike shapes. The examplemdgtbe level 0.15 is more difficult to spike sort, because of
approximately similar peak amplitudes and very identip#te shapes.

7.2 Human intra-cortical recordings

The testing of the two methods are also conducted with realmintra-cortical recordings (collection 3).

Collection 3 consists of a single 30 minutes signal, recdrfdem the medial temporal lobe of a human subject with
a sampling rate of 32.258 kHz. The data are provided fromdgairet al. [2004] and are described in both Quiroga
[2009] and Fried, MacDonald & Wilson [1997].

The subject had pharmacologically intractable epilepsy was implanted with intracranial electrodes for clinical
reasons, in order to identify the seizure focus for potéstiegical resection [Fried et al. 1997].

The electrodes were placed based on clinical criteria, alfmfing patients informed consent. The electrodes costai
micro wires, were implanted using MRI guidance, and coadisif a flexible polyurethane probe containing 9 40 mm
platinum-iridium micro wires protruding approx. 4 mm intwettissue beyond the tip of the probe [Fried et al. 1997].
Throughout the recording session, the subject was presemteictures of faces and objects in 1 s stimuli, followed
by 3-5 s delay before the next stimulus. The recordings witaelzed to a preamplifier module with a gain of 5000,
and a pass band of 0.3 Hz - 6 kHz. [Fried et al. 1997]

Figure[Z5 shows an example of a one second segment of theuaarhintra-cortical signal. Figufe T.6 shows

an example of a band pass filtered (300-3000 Hz), one secgmiese of the human intra-cortical signal. Several

spikes are clearly seen above background noise. Accordi@uiroga et al. [2004], the signal contains spikes from
three distinct neurons, and the spike shape results fromo@ui2009] are used as reference in the following tests
using this signal. Figure_4.7 shows the average spike shemuidts for the three neurons, including the inter-spike
interval distributions.
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Figure 7.4: Example of a fragment from two different simulated signatsif collection 2 In each example, a frag-
ment of the raw signal (B), the three disclosed spike shaeafd a small section data with classification
results from Wave_Clus (C) is shown. Inspired by [Quirogale2004]
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Figure 7.5: Example of a one second segment Figure 7.6: Example of a one second segment
of the raw human intra-cortical of the filtered human intra-cortical
signal. signal.
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Figure 7.7: The average spike shape results for the three distinct neimdhe human intra-cortical signal, including
the inter-spike interval distributions. The number of gsikn each cluster in the 30 minutes signal is
given in Quiroga [2009]






Results using UBD

This chapter presents the results in the validation of th®WiBethod. The results from the performance test of the
UBD method presented in the following sections are subdiyiohto spike detection results, and clustering results.
Any comparison with results from the Wave_Clus method as¢ firesented in chapfer]10, pagé 63.

The tuning of the UBD method for intra-cortical signals,dngorates the refractory period and the limit of regularity
in the inter-spike intervals, described in the method seff pagé 25. Both parameters are tuned for the processing
of these results, and the refractory period was set to 10 ot®rding to the properties of the simulated signals in
collection 1. The limit of regularityg; /mi, was set to< 0.8, which in practice means that the constraint was very
weak for intra-cortical recordings.

8.1 Simulated intra-cortical recordings

8.1.1 Collection1

These results are produced using simulated data collettia®escribed in section 7.1.1 paigg 38. All results are
produced with 60 seconds signals, with a processing timpmfoximately 3 hours per signal.

Spike detection performance

The detection results from UBD using collection 1 are presegin tablé 811. Both reference data and detection results
are presented, and to express detection performancetidetetsses and false positives are listed.

To evaluate the overall performance of the method, the numibilse positives is not considered in the clustering
performance section.

Collection 1 - UBD Reference Detection results
Simulated signal Noise level No. spikes WISYH False positives
spikes (overlaps) total / %

Set 1 1 0.05 2700 (248) 12[ 0.4 %] 53
2 0.10 2700 (275) 28 [ 1.0 %] 86
3 0.15 2700 (286) 309 [11.4 %] 284
4 0.20 2700 (279) 372 [13.8 %] 531

Set 2 5 0.05 2700 (268) 22[ 0.8 %] 41
6 0.10 2700 (251) 62[ 2.3%] 107
7 0.15 2700 (250) 254 [ 9.4 %] 356
8 0.20 2700 (256) 389 [14.4 %] 402

Set 3 9 0.05 2700 (281) 27 [ 1.0%] 31
10 0.10 2700 (300) 52[ 1.9 %] 70
11 0.15 2700 (291) 245[ 9.1 %] 210
12 0.20 2700 (265) 402 [14.9 %] 387

Set4 13 0.05 2700 (298) 64 2.4 %] 87
14 0.10 2700 (262) 101[ 3.7 %] 191
15 0.15 2700 (262) 251[ 9.3 %] 344
16 0.20 2700 (290) 418 [15.5 %] 577

Table 8.1: Results from spike detections using the UBD method anddigie 1. The two uppermost columns sepa-
rate the reference data and the detection results. In thesésil column, the total number of misses is listed
together with the number of ordinary "single-spike" misaad missed overlapped spikes. In the "False
positives" column, the total number of false positives issgnted.

A spike identified by the UBD method was considered a corretgation if it was detected within a window of 2 ms
centered at the time of the occurrence of the true spike.
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According to tabl& 8]1, the amount of detection misses ikljtigependent of the noise level in the 16 signals, and is
very low (below 4%) in the two cases with low noise, in all f@ats. The number of false positives shows the same
pattern, with high amount of errors in the high noise signBlginspecting the results, it is seen that a large fraction
of the false positives is "false overlaps" detected by théhork

Figure[8.1 shows an example of a detection miss, where theinge marks the miss, which is a consequence of spike
overlap from spike class 1 and 3.

0.8 1

o6l B 3 -

-0.8 - 1

1 1
25.64 25.66 25.68 25.7 25.72 25.74

Figure 8.1: Examples of detection misses in signal 1, from collectioifie miss is marked with the red circle, and
is a consequence of spike overlap from spike class 1 and 3.
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Clustering performance

The clustering results from UBD using collection 1 are pnésé in tablé 812.

Collection 1 - UBD Reference Detection results Clustering results (Classification errors)
Simulated signal # Noise level No. spikes No. spikes Total success
spikes (overlaps) No. errors / %
Set 1 1 0.05 2700 (248) 2688 80 [ 3.0 %] 96.6 %
2 0.10 2700 (275) 2672 121[ 4.5 %] 94.4%
3 0.15 2700 (286) 2391 290 [12.1 %] 77.8%
4 0.20 2700 (279) 2328 654 [28.1 %] 62.0 %
Set 2 5 0.05 2700 (268) 2678 108 [ 4.0 %] 95.2%
6 0.10 2700 (251) 2638 162 [ 6.1 %] 91.7%
7 0.15 2700 (250) 2446 356 [14.6 %] 73.4%
8 0.20 2700 (256) 2311 696 [30.1 %] 59.8 %
Set 3 9 0.05 2700 (281) 2673 75[ 2.8 %] 96.2 %
10 0.10 2700 (300) 2648 202 [ 7.3 %] 90.6 %
11 0.15 2700 (291) 2455 265 [10.8 %] 81.1%
12 0.20 2700 (265) 2298 627 [27.3 %] 61.9%
Set4 13 0.05 2700 (298) 2636 228 8.7 %] 89.2%
14 0.10 2700 (262) 2599 255[ 9.8 %] 86.8 %
15 0.15 2700 (262) 2449 411 [16.8 %] 75.5%
16 0.20 2700 (290) 2282 716 [31.4 %] 58.0 %
2512 328[13.1%] 80.9 %

Table 8.2: Results from spike clustering using the UBD method and ctile 1. Together with the detection results,
the number of classification errors and total success amgrshthe bottom part of the table presents the
average values across all 16 signals.

Itis seen that an average of 2512 spikes are detected ou00f &/hich corresponds to 93%. The number of classifi-
cation errors is dependent of the noise level in each sigriahdich has an average of 13.1%. Especially signal set 4
has high classification errors, which could be related toensomilar and complex spike shapes (see figure 7.2).

The total success is computed with equaliioh 8.1.

Nref — Nmiss— Nclass>'< 100 (8.1)

total success
Nref

whereNet is the number of true spikeblyissis the number of spike misses, aNglassis the number of classification
errors.

The UBD method performs above 90% in the two cases with loweiste in the first three signal sets, and close
to 90% in the last set. The average success was 80.9%.

Figure[8:2 shows examples of clustering results in shor fimervals, using signal 1 in collection 1. (A) shows an
example of five correct classified spikes in three segmernjtsi{Bws five correct classified spikes in four segments,
with a correct classified overlap between spike 2 and 3 in teesfegment. (C) shows five correct classified spikes in
four segments, but with a "false positive" classified oyeitathe second segment (class 1). Fiduré 8.3 shows the four
sets of spike shapes, both original and the resulting estospike shapes by the UBD method, for signal 1,5,9, and
13. Some distortion is seen, especially for signal 9 (C).

8.1.2 Collection 2

These results are produced using collection 2, describeddtiol 7,12 pade #0. All results are produced with 60
seconds signals, with a processing time of approximatelyBsper signal.
Collection 2 (used in this section) differs from collectibrn several signal simulation parameters, among these the
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Figure 8.2: Examples of clustering results in short time intervalspgsignal 1 in collection 1. (A) shows an example
of five correct classified spikes in three segments (B) shaxe<tirrect classified spikes in four segments,
with a correct classified overlap between spike 2 and 3 inthiesiegment. (C) shows five correct classified
spikes in four segments, but with a "false positive" clasdifiverlap in the second segment (class 1).
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Figure 8.3: Examples of the original spike shapes compared with thdtiegestimated spike shapes for signal 1,5,9,
and 13 in collection 1.
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refractory period, and the noise characteristics. As aemusnce, the results may also differ using the two signal
collections, which contributes to a thorough test of the $pike sorting methods.

Spike detection performance

The detection results from UBD using collection 2 are préseim tablé 8.3. Both reference data and detection results
are presented, and to express detection performancetidatetisses and false positives are listed.

To evaluate the overall performance of the method, the numiialse positives is not considered in the clustering
performance section.

Collection 2 - UBD Reference Detection results
Simulated signal Noise level No. spikes Misses False positives
spikes (overlaps) total / %

1_easy 1 0.05 3514 (785) 1374 [39.1 %] 432
2 0.10 3522 (769) 1296 [36.8 %] 381
3 0.15 3477 (784) 1631 [46.9 %) 539
4 0.20 3474 (796) 2178 [62.7 %] 581

2_easy 5 0.05 3410 (791) 1395 [40.9 %] 233
6 0.10 3520 (826) 1176 [33.4 %] 634
7 0.15 3411 (763) 1310 [38.4 %] 672
8 0.20 3526 (811) 2035 [57.7 %] 599

3_diff 9 0.05 3383 (767) 1397 [41.3 %] 482
10 0.10 3448 (810) 1490 [43.2 %] 492
11 0.15 3472 (812) 1739 [50.1 %] 528
12 0.20 3414 (790) 2124 [62.2 %] 603

4_diff 13 0.05 3364 (829) 1403 [41.7 %] 781
14 0.10 3462 (720) 1385 [40.0 %] 488
15 0.15 3440 (809) 1944 [56.5 %] 584
16 0.20 3493 (777) 2089 [59.8 %] 631

Table 8.3: Results from spike detections using the UBD method and ctidle 2. The two uppermost columns sepa-
rate the reference data and the detection results. In tresésil column, the total number of misses is listed
together with the number of ordinary "single-spike" misaad missed overlapped spikes. In the "False
positives" column, the total number of false positives issgnted.

A spike identified by the UBD method was considered a corretgation if it was detected within a window of 2 ms
centered at the time of the occurrence of the true spike.

According to tabl€ 8]3, the number of missed spikes in allifads in collection 2 is extremely high, varying from
approximately 40 % - 60 % across the signals. The number ddasigicreases dependent of the noise level, and
shows the same pattern as with collection 1. The number & fabsitives is also relatively high, with an average of
541 spikes.

Figure[8.4 shows an example from signal 1 in collection 2, netee high number of detection misses is present.
In both (A) and (B), more than three spikes are present in sagiment, which are symptomatic in each of the 16 sig-
nals in collection 2. In (A), three spikes are correct detéend classified, but five spikes are missed in the segment.
In (B), two spikes are correct detected and classified, bettspikes are missed, and one false positive are present
at the last spike in the segment. The refractory period foheaingle simulated neuron in collection 2 is only 2 ms,
which causes more than three spikes in each segment. Foerfudnsiderations on this topic, see the discussion in
chaptef Il pade 69.
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Figure 8.4: Examples from signal 1 in collection 2, where a high numbefatéction misses are present. In (A), three
spikes are correct detected and classified, but five spikasi@sed in the segment. In (B), two spikes are
correct detected and classified, but three spikes are miaesedone false positive are present at the last
spike in the segment.
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Clustering performance

The clustering results from UBD using collection 2 are pnésé in tablé 84.

Collection 2 - UBD Reference Detection results Clustering results (Classification errors)
Simulated signal # Noise level No. spikes No. spikes Total success
spikes (overlaps) No. errors / %
1_easy 1 0.05 3514 (785) 2140 566 [16.1 %) 44.8%
2 0.10 3522 (769) 2226 736 [20.9 %] 423 %
3 0.15 3477 (784) 1846 532 [15.3 %] 37.8%
4 0.20 3474 (796) 1296 316 [ 9.1 %] 28.2 %
2_easy 5 0.05 3410 (791) 2015 477 [14.0 %] 45.1%
6 0.10 3520 (826) 2344 725 [20.6 %] 46.0 %
7 0.15 3411 (763) 2101 720[21.1 %) 40.5%
8 0.20 3526 (811) 1491 331 9.4 %] 32.9%
3_diff 9 0.05 3383 (767) 1986 423 [12.5 %) 46.2%
10 0.10 3448 (810) 1958 369 [10.7 %] 46.1%
11 0.15 3472 (812) 1733 417 [12.0 %] 37.9%
12 0.20 3414 (790) 1290 256 [ 7.5 %] 30.4 %
4_diff 13 0.05 3364 (829) 1961 495 [14.7 %] 43.6 %
14 0.10 3462 (720) 2077 672 [19.4 %] 40.6 %
15 0.15 3440 (809) 1496 485 [14.1 %] 294 %
16 0.20 3493 (777) 1404 489 [14.0 %] 26.2 %
1835 501 [14.5 %] 38.6 %

Table 8.4: Results from spike clustering using the UBD method and ctile 2. Together with the detection results,
the number of classification errors and total success amgrshdhe bottom part of the table presents the
average values across all 16 signals.

The average number of correct detected spikes from calle@iis 1835. The number of classification errors is

relatively high, with an average of 14.5 %. The high numbemafses and classification errors results in a very low
total success, which shows dependence of noise level, aadesage of only 38.6 %. The total success is computed
with equatiod 811.

8.2 Human intra-cortical recordings

The results in this section are based on the human intrécabmtcordings (collection 3) described in secfiod 7.2epag
[41. Because of the absence of knowledge about the "truey firatern of each of the distinct neuron in the signal,
the results using Wave_Clus are used as reference datadortiarison.

Due to "out-of-memory" issues and a lack of processing tiordy 120 seconds of the signal in collection 3 are
used in the following results.
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Spike detection performance

The results from the UBD method using collection 3 are prieskim tabld 8.6. The neuronal refractory period was
set to 2 ms in the detection of spikes from human intra-calrtecordings.

Collection 3 - UBD Reference Detection results

Human signal No. spikes Misses False positives

spikes total/ %
Signal 1 1 740 52 [7.0 %] 678

Table 8.5: Results from spike detections and classification using BB thethod with collection 3.

Out of the 740 detected spikes in the reference, 52 (7.0%gspias missed by the UBD method. A large number
of false positives was observed (678 spikes), but some falsitives can be overlapping spikes, which is ignored by
Wave_Clus.

Clustering performance

The clustering results from UBD using collection 3 are pnéséd in tablé 816.

Collection 3 - UBD Reference Detection results Clustering results (Classification errors)

Human signal No. spikes No. spikes Total success

spikes spikes No. errors / %

Signal 1 1 740 688 72 [10.5 %] 83.2%

Table 8.6: Results from spike clustering using the UBD method and ctite 3.

The UBD method detected and classified the same two neuramshasreference, with 72 classification errors, and a
total success of 83.2 % compared to the performance of Wdus. C

Figure[8.5 shows examples of clustering results in shore fimervals, using collection 3. Both the classification
results from UBD (black) and from Wave_Clus (red) are shof@) shows an example of four segments, seven spikes
detected and classified by the UBD method, including onelapping spike in the second segment. Wave_Clus
agrees, except the detected overlap. The overlapping gjlidee seen as a false positive, even though it is correctly
detected. (B) shows six segments, nine spikes detectedassified by the UBD method. Compared to the reference
from Wave_Clus, the UBD method makes one false positive énfitlst segment and one missing spike in the fifth
segment.
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Figure 8.5: Examples of clustering results in short time intervalsngsiollection 3. (A) shows an example of four
segments, seven spikes detected and classified by the UBBbdhahcluding one overlapping spike
in the second segment. Wave_Clus agrees, except the deta@dap. (B) shows six segments, nine
spikes detected and classified by the UBD method. Compatéd teference from Wave_Clus, the UBD
method makes one false positive in the first segment, and @sénm spike in the fifth segment.
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This chapter presents the results for the Wave_Clus meithoglation to the validation of the UBD method. Through-
out the spike sorting process with Wave_Clus, no operateragtion (i.e. changing the temperature for better clus-
tering) was performed, which made the process fully autanzettd unsupervised (similar to the UBD method), for
comparison reasons.

9.1 Simulated intra-cortical recordings

9.1.1 Collection1

The following results in this section are based on the sitedléntra-cortical recordings (collection 1) described in
sectiof 7,111, listed in table 7.1. The results are produsaty the Wave_Clus method, with 60 seconds signals, and
with a processing time of approximately 5 minutes per signal

Spike detection performance

The detection results from Wave_Clus using collection lpaesented in tab[e 9.1. Both reference data and detection
results are presented, and to express detection perfoepdetection misses and false positives are listed.

Collection 1 - WC Reference Detection results
Simulated signal Noise level No. spikes Misses False positives
spikes (overlaps) total / %

Set1 1 0.05 2700 (248) 246 [ 9.1 %] 32
2 0.10 2700 (275) 278 [10.3 %] 31
3 0.15 2700 (286) 303 [11.2 %] 3
4 0.20 2700 (279) 307 [11.4 %] 0

Set 2 5 0.05 2700 (268) 344 [12.7 %] 27
6 0.10 2700 (251) 253 [ 9.4 %] 14
7 0.15 2700 (250) 270 [10.0 %] 11
8 0.20 2700 (256) 273 [10.1 %] 5

Set3 9 0.05 2700 (281) 349 [12.9 %] 28
10 0.10 2700 (300) 299 [11.1 %] 7
11 0.15 2700 (291) 300 [11.1 %] 9
12 0.20 2700 (265) 287 [10.6 %] 13

Set4 13 0.05 2700 (298) 383 [14.2 %] 45
14 0.10 2700 (262) 266 [ 9.9 %] 17
15 0.15 2700 (262) 264 [ 9.8 %] 5
16 0.20 2700 (290) 303 [11.2 %] 9

Table 9.1: Results from spike detections using the Wave_Clus methddalection 1. The two uppermost columns
separate the reference data and the detection resulte Tmthses" column, the total number of misses is
listed. In the "False positives" column, the total numbefiatde positives is presented.

A spike identified by the Wave_Clus method was consideredraciodetection if it was detected within a window of
2 ms centered at the time of the occurrence of the true spike.

According to tabld 9]1, the amount of detection misses isoatmonstant across all signals (not above 14%), in-
dependent of noise level and spike shape similarity. Thebaurof false positives is very low in all cases, which
expresses that the threshold is not too low.
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Clustering performance

The clustering results from Wave_Clus using collectionel @esented in table 9.2.

Collection 1 - WC Reference Detection results Clustering results (Classification errors)
Simulated signal # Noise level No. spikes No. spikes Wavelets PCA Total success
spikes (overlaps) No. errors / % No. errors / % Wavelets / PCA
Set1 1 0.05 2700 (248) 2454 206 [8.4 %) 498 [20.3 %] 833%/724%
2 0.10 2700 (275) 2422 166 [6.9 %] 795 [32.8 %] 83.6%/60.3%
3 0.15 2700 (286) 2397 186 [7.8 %] 548 [22.9 %] 81.9%/68.5%
4 0.20 2700 (279) 2393 178 [7.4 %] 660 [27.6 %] 82.1%/64.2%
Set 2 5 0.05 2700 (268) 2356 137 [5.8 %] 502 [21.3 %] 82.2%/68.7%
6 0.10 2700 (251) 2447 185 [7.6 %] 756 [30.9 %] 83.8%/62.6%
7 0.15 2700 (250) 2430 176 [7.2 %] 1544 [63.5 %] 83.5%/32.8%
8 0.20 2700 (256) 2427 209 [8.6 %] 1513 [62.3 %] 82.2%/33.9%
Set3 9 0.05 2700 (281) 2351 80 [3.4 %] 706 [30.0 %] 84.1%/60.9%
10 0.10 2700 (300) 2401 165 [6.9 %] 954 [39.7 %] 829%/53.6%
11 0.15 2700 (291) 2400 154 [6.4 %) 1253 [52.2 %] 83.2%/425%
12 0.20 2700 (265) 2413 170 [7.0 %] 1749 [72.5 %] 83.1%/24.6%
Set4 13 0.05 2700 (298) 2317 163 [7.0 %] 385[16.6 %] 79.8%/71.6%
14 0.10 2700 (262) 2434 217 [8.9 %] 1036 [42.6 %] 82.1%/51.8%
15 0.15 2700 (262) 2436 192 [7.9 %] 1500 [61.6 %] 83.1%/34.7%
16 0.20 2700 (290) 2397 13 [0.5 %] 1702 [71.0 %] 883 %/25.7%
2405 162 (6.7 % 1006 [41.8 %] 83.1%/51.8%

Table 9.2: Results from spike clustering using the Wave_Clus methaldcatiection 1, with both wavelets and PCA
for feature extraction.

It is seen that an average of 2405 spikes are detected ou006f &hich corresponds to 89%. The number of classifi-
cation errors using wavelets is almost constant acrosgyalhls, and independent of the noise level, with the average
of 6.7%. The number of classification errors using PCA isificantly higher, and dependent of the noise level, with
very high number of errors in the high noise cases. The aedsafl.8%. The total success using wavelets is 83.1%,
and 51.8% using PCA. The total success is computed usindieni@al.

Figure[9.1 shows the results from four (A-D) simulated sigrfasing noise level 0.1) in collection 1. The first three
columns show the three clusters. Spike pairs appearingandtver time separation than 0.5 ms (overlapping spikes)
are not considered by Wave_Clus. The fourth column showstiginal spike shapes in each signal for reference.
Figure[8.2 shows an example of the temperature setting irlttstering process of four simulated signals (signal
2,6,10,14 in tablE912) using noise level 0.1 in collectiofit s seen that the algorithm automatically sets the temper
ature to a level corresponding the superparamagnetic eggvith clustering of three spike shapes into relativelgéar
clusters. Figure9l3 shows the distributions of inter-spikervals in the three clusters for the four simulated align
(signal 2,6,10,14 in tab[e'9.2) using noise level 0.1 inaxtlbn 1. The distribution of I1SI can be assumed to have a
Gaussian shape, which also is an assumption for the UBD metho

9.1.2 Collection 2

The following results in this section are based on the sitedléntra-cortical recordings (collection 2) described in
section[Z.112, listed in table 7.2. The results are produstdg the Wave Clus method. Many results are also
presented in [Quiroga et al. 2004], and selected are repeatin this present work, to ensure thorough comparison
with the UBD method.

Collection 2 (used in this section) differs from collectibrin several signal simulation parameters, among these the
refractory period, and the noise characteristics. As aemqumnce, the results may also differ using the two signal
collections, which contributes to a thorough test of the $pike sorting methods.
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Figure 9.1: Results from four (A-D) simulated signals (using noise lé&) in collection 1 The first three columns
shows the three different clusters, and the fourth colunawsithe original spike shapes in each signal
for reference.
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Figure 9.3: The distributions of inter-spike intervals in the threestérs for the four simulated signals (signal
2,6,10,14 in table9]2) using noise level 0.1 in collection 1
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Spike detection performance

The detection results from Wave_ Clus using collection 2oaesented in tab[e'3.3. Both reference data and detection
results are presented, and to express detection perfoepadeiection misses and false positives are listed (inogudi

the number of single spikes and overlapping spikes).

Collection 2 - WC

Reference

Detection results

Simulated signal Noise level No. spikes Misses False positives
spikes (overlaps) total / % single / overlap

1_easy 1 0.05 3514 (785) 210 [6.0 %] 17/193 711
2 0.10 3522 (769) 179 [5.0 %] 2/177 57
3 0.15 3477 (784) 360 [10.4 %] 145/215 15
4 0.20 3474 (796) 989 [28.5 %] 714/275 10

2_easy 9 0.05 3410 (791) 174 [5.1 %] 0/174 0
10 0.10 3520 (826) 191 [5.4 %] 0/191 2
11 0.15 3411 (763) 183 [5.3 %] 10/173 1
12 0.20 3526 (811) 632 [17.9 %] 376/256 5

3_diff 13 0.05 3383 (767) 211[6.2 %] 1/210 63
14 0.10 3448 (810) 191 [5.5 %] 0/191 10
15 0.15 3472 (812) 211 [6.0 %] 8/203 6
16 0.20 3414 (790) 403 [11.8 %] 184/219 2

4_diff 17 0.05 3364 (829) 182 [5.4 %] 0/182 1
18 0.10 3462 (720) 152 [4.4 %] 0/152 5
19 0.15 3440 (809) 189 [5.5 %] 3/186 4
20 0.20 3493 (777) 490 [14.0 %] 262/228 2

Table 9.3: Results from spike detections using the Wave_Clus methddalhection 2. The two uppermost columns
separate the reference data and the detection resultse I'mikses" column, the total number of misses
is listed together with the number of ordinary "single-gliknisses and missed overlapped spikes. In the
"False positives" column, the total number of false posgiis presented, due to a low threshold.

In general, the detection performance for Wave_Clus are, lsigd the percentage of misses are low, except the cases
(3,4,12,16,20 in table 9.3) with high noise levels. On theothand, the number of false positives is high in the case

(1 in table[9.8) of low noise (low detection threshold). Tradmce between misses and false positives is a trade-
off in threshold level, but a majority of false positives ieferable, because a cluster of "double detections" can be

disregarded in the later clustering procedure.
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Clustering performance

The clustering results from Wave_Clus using collectionemesented in table 9.4.

Collection 2 - WC Reference Detection results Clustering results (Classification errors)
Simulated signal Noise level No. spikes No. spikes Wavelets PCA Total success
spikes (overlaps) No. errors / % No. errors / % Wavelets / PCA
1_easy 1 0.05 3514 (785) 3304 2[0.1%] 3[0.1%] 94.0%/93.9%
2 0.10 3522 (769) 3343 6[0.2 %] 21[0.6 %] 94.7%/943%
3 0.15 3477 (784) 3117 7[0.2%] 23[0.7 %] 89.4%/89.0%
4 0.20 3474 (796) 2485 16 [0.6 %] 156 [6.3 %] 71.1%/67.0%
2_easy 9 0.05 3410 (791) 3236 5[0.2 %] 6[0.2 %] 94.8%/94.7%
10 0.10 3520 (826) 3329 12 [0.4 %) 845 [25.4 %] 94.2%/70.6 %
11 0.15 3411 (763) 3228 54 [1.7 %) 2078 [64.4 %) 93.1%/33.7%
12 0.20 3526 (811) 2894 368 [12.7 %] 2149 [74.3 %] 71.6%/21.2%
3_diff 13 0.05 3383 (767) 3172 2[0.1%] 10[0.3 %] 93.7%/93.5%
14 0.10 3448 (810) 3257 49 [1.5 %] 2137 [65.6 %] 93.0%/32.5%
15 0.15 3472 (812) 3261 97 [3.0 %] 2098 [64.3 %] 91.1%/33.5%
16 0.20 3414 (790) 3011 781 [25.9 %] 2055 [68.2 %] 65.3% /28.0%
4_diff 17 0.05 3364 (829) 3182 3[0.1%] 1572 [49.4 %) 94.5%/47.9%
18 0.10 3462 (720) 3310 11[0.3 %] 1135 [34.3 %) 95.3%/62.8%
19 0.15 3440 (809) 3251 531[16.3 %] 2060 [63.4 %] 79.1%/34.6%
20 0.20 3493 (777) 3003 1754 [58.4 %) 2078 [69.2 %] 35.8%/26.5%
3149 231 (7.3 %] 1152 [36.6 %] 84.4%/57.7%

Table 9.4: Results from spike clustering using the Wave_Clus methaldcatiection 2, with both wavelets and PCA
for feature extraction. The classification errors are vaghlin almost all cases using PCA, and signifi-
cantly lower using wavelets. The classification error ig/dngh in cases using wavelets with highest noise
levels.

The clustering process was performed with both waveletdP@W for feature extraction, and the classification errors
are shown for each simulated signal for wavelets and PCAersgely. The classification errors are very high in
almost all cases using PCA, and significantly lower usingeketé. The classification error is only high in cases using
wavelets with highest noise levels (12,16,20 in t&blé 9.4).

Figure[9.4 shows the results from the four (A-D) simulatephals (using noise level 0.1) in collection 2. The classi-
fication errors is very low in these cases, according to @EleThe first three columns show the three clusters. Spike
pairs appearing with a lower time separation than 0.5 msri@peing spikes) are not considered by Wave_Clus. The
fourth column shows the original spike shapes in each signaéference.

9.2 Human intra-cortical recordings

The results in this section are based on the human intrécabmtcordings (collection 3) described in secfiod 7.2epag
[41. Because of the absence of knowledge about the "truey firatern of each of the distinct neuron in the signal,
these results using Wave_Clus are used as reference datadarhparison with the UBD method.

Due to "out-of-memory" issues and a lack of processing tiordy 120 seconds of the signal in collection 3 are
used in the following results.
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Figure 9.4: Results from the four (A-D) simulated signals (using noiseel 0.1) incollection 2 The first three
columns shows the three different clusters, and the fouttimen shows the original spike shapes in each
signal for reference.



62 Results using Wave_Clus

The results from Wave_Clus (wavelets) using collectione8mesented in table 9.5.

Collection 3 - WC Reference

Human signal No. spikes Neuron 1 Neuron 2

spikes spikes spikes

Signal 1 1 740 609 131

Table 9.5: Results from spike detections and classification using Walies (wavelets) with collection 3. The firing
patterns for the two neurons are used as reference in theaz@wop with the UBD method.

Only two spike classes was classified in the first 120 secohti® @0 minutes signal, which corresponds to the first
two clusters in figure 717 pa@gel43. Figlirel 9.5 shows the aingteesults from Wave_Clus together with the inter-spike
intervals for each cluster.
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Figure 9.5: The clustering results from Wave_Clus together with therispike intervals for each cluster.



Comparison of UBD and
Wave Clus

In this chapter, the results of the UBD method in focus usingupervised Bayesian decomposition are compared
with the Wave_Clus method described in chapier 6.

10.1 Collection 1

Table[10.1 summarizes the results for comparison usingah 1.

Comparison — Collection 1

# Missed False positives Classification errors Total succes
UBD UBD we we-w WC - PCA We-W
1 0.4% 9.1% 53 32 3.0% 8.4% 203 % 96.6 % 83.3% 724 %
2 1.0% 103 % 86 31 45% 6.9% 32.8% 94.4 % 83.6 % 60.3 %
3 114 % 11.2% 284 3 121% 7.8% 22.9% 77.8% 81.9% 68.5 %
4 13.8% 11.4% 531 0 28.1% 7.4% 27.6 % 62.0 % 82.1% 64.2 %
5 0.8% 12.7% 41 27 4.0% 5.8% 21.3% 95.2 % 82.2% 68.7 %
6 23% 9.4% 107 14 6.1% 7.6% 30.9% 91.7 % 83.8% 62.6 %
7 9.4% 10.0% 356 11 14.6 % 7.2% 63.5 % 73.4% 83.5% 32.8%
8 14.4 % 10.1% 402 5 30.1% 8.6 % 62.3 % 59.8 % 82.2% 33.9%
9 1.0% 12.9% 31 28 2.8% 34% 30.0% 96.2 % 84.1% 60.9 %
10 19% 11.1% 70 7 73% 6.9 % 39.7% 90.2 % 82.9% 53.6 %
11 9.1% 11.1% 210 9 10.8% 6.4% 52.2% 81.1% 83.2% 42.5%
12 149% 10.6 % 387 13 27.3% 7.0% 72.5% 61.9 % 83.1% 24.6 %
13 24% 142 % 87 45 8.7% 7.0% 16.6 % 89.2 % 79.8 % 71.6 %
14 3.7% 9.9% 191 17 9.8% 8.9% 426 % 86.8 % 82.1% 51.8%
15 9.3% 9.8% 344 5 16.8% 7.9% 61.6 % 75.5% 83.1% 34.7%
16 15.5% 11.2% 577 9 31.4% 0.5% 71.0 % 58.0 % 88.3 % 25.7%
7.0% 10.9 % 235 16 13.1% 6.7 % 41.8% 80.9 % 83.1% 51.8 %

Table 10.1: Comparison of results from UBD and Wave_Clus using colecfi.

As seen, the UBD method has very few misses in the low noisscasgth an average of 7.0%. In contrast, Wave_Clus
has relatively constant and high number of misses in alls;asgh an average of 10.9%. This could be due to an
amplitude threshold which is too high, or because of missedapping spikes.

The UBD method shows a low number (below 100) of false paesstin low noise signals, and significantly more false
positives than Wave_Clus in high noise cases. A high podfahe UBD false positives is false overlapping spikes
detected and classified.

The UBD method shows a very low number (below 10%) of clasdificn errors in most low noise cases, but a
relatively high number of classification errors in high rogases, with an average of 13.1%. In contrast, Wave_Clus
using wavelets performs with a relatively high number osification errors in all cases, but below the level of the
high noise cases using UBD, with an average of 6.7%. Waves @ing PCA performs with a very high number of
classification errors, especially in the high noise caséh,am average of 41.8%.

The total success was highest for the UBD method (with anaaxeof 80.9%) in the two low noise cases for each
signal set, whereas Wave_Clus using wavelets performssbestfrom all 16 signals in general, with an average of
83.1%. The performance of Wave_Clus using PCA is signiflgdotver than the other two methods, with a mean of
51.8%.

An overview of the total success for all three methods arevatin figure[10.1.
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Figure 10.1: Summary of the total succes of each of the three methods, UW&be Clus (using wavelets and PCA)
using collection 1.

10.2 Collection 2

Table[I0.2 summarizes the results for comparison usingaih 2.

Comparison — Collection 2

# Missed False positives Classification errors Total success
UBD UBD we-w WC - PCA WC-W
1 39.1% 6.0% 432 711 16.1% 0.1% 0.1% 44.8 % 94.0 % 93.9%
2 36.8% 5.0% 381 57 209 % 0.2% 0.6 % 42.3% 94.7 % 94.3 %
3 46.9% 10.4 % 539 15 153 % 0.2% 0.7% 37.8% 89.4 % 89.0 %
4 62.7 % 28.5% 581 10 9.1% 0.6 % 6.3% 28.2% 71.1% 67.0%
5 40.9 % 5.1% 233 0 14.0% 0.2% 0.2% 45.1% 94.8 % 94.7 %
6 33.4% 5.4% 634 2 20.6 % 0.4% 25.4% 46.0 % 94.2 % 70.6 %
7 38.4% 53% 672 1 21.1% 1.7% 64.4% 40.5% 93.1% 33.7%
8 57.7 % 17.9% 599 5 9.4 % 12.7% 743 % 329% 71.6 % 21.2%
9 413 % 6.2% 482 63 125% 0.1% 0.3% 46.2 % 93.7% 93.5%
10 432 % 55% 492 10 10.7 % 1.5% 65.6 % 46.1% 93.0% 325%
11 50.1 % 6.0% 528 6 12.0% 3.0% 64.3 % 37.9% 91.1% 335%
12 62.2 % 11.8% 603 2 7.5% 259% 68.2 % 30.4 % 65.3 % 28.0 %
13 41.7 % 5.4% 781 1 14.7 % 0.1% 49.4 % 43.6 % 94.5 % 47.9 %
14 40.0% 4.4% 488 5 19.4% 0.3% 343 % 40.6 % 95.3% 62.8%
15 56.5% 55% 584 4 14.1% 16.3 % 63.4% 29.4% 79.1% 34.6 %
16 59.8 % 14.0% 631 2 14.0% 58.4 % 69.2 % 26.2 % 35.8% 26.5%
46.9% 8.9% 541 56 14.5% 73% 36.6% | 386%  84.4% 57.7%

Table 10.2: Comparison of results from UBD and Wave_Clus using coldect.
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The UBD method shows a very high number of missed spikes,amittverage of 46.9% compared to Wave_Clus with
an average of 8.9%. Both methods shows a noise dependefmeerinmber of missed spikes.

The same pattern is seen for the number of false positivdseinvio methods, except for signal 1. The number of
classification errors for the UBD method, is twice as high @k Wave_Clus using wavelets, with an average of 14.5%
compared to 7.3%. Wave_Clus using PCA still shows the higha@siber of classification errors with an average of
36.6%.

The total success was highest for Wave_Clus using waveléts an average of 84.4%. The UBD method shows a
very low total success using collection 2, with an averag@8o6%.

In general, the UBD method shows significantly lower perfance than Wave Clus using collection 2, which is dis-
cussed in chapt€rill pagd 69.

An overview of the total success for all three methods arevship figure[10.2.
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Figure 10.2: Summary of the total succes of each of the three methods, W&be Clus (using wavelets and PCA)
using collection 2.

10.3 Collection 3

Because the results from Wave_Clus using collection 3 id aseeference data for the UBD method, the comparison
is seen together with the results in secfiod 8.2 ppage 52.
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Discussion

Spike sorting is an important part of electrophysiologeahlysis of neural activity at the level of a single neuron.
In this present work, the UBD method, which provides fullysupervised spike sorting of intra-cortical recordings,
has been described and validated with both simulated aridhueaan intra-cortical recordings. Furthermore, the
performance of the UBD method has been compared with th@meaihce of another unsupervised spike sorting
method, Wave_Clus, using classical spike sorting appesach

Test data

For the validation of the two methods, different intra-teat test data has been used. To obtain a quantitative neasur
of the performance of both UBD and Wave_Clus, the testing iwiislly performed with simulated signals with
different noise levels and spike shapes.

In collection 1, designed and simulated especially for gresent work, 16 synthetic intra-cortical recordings were
generated. The number of distinct spike shapes, noise atkasdics, and refractory period was designed to mimic
real intra-cortical signals, and fully overlapping spikeas allowed. Further realistic details, such as varyingespi
amplitude, bursting neurons, more neurons, could be aduéuetsignals in future work, to complicate the spike
sorting process. The inter-spike interval distributionscollection 1 had a Gaussian-like shape, which suited the
assumptions in the UBD method. It can be discussed whetkeG#ussian shape approximation are valid in real
intra-cortical recordings.

In collection 2, 16 synthetic intra-cortical recordingsimed by Quiroga et al. [2004], was applied. The interspik
interval distribution of these signals had a Poisson distion and a short refractory period of 2 ms. This results
in more than three spikes per segment for the UBD method, wbézises a high number of missed spikes, and
classification errors. These aspects of the UBD method neuistproved in future work, and a re-tuning of the TABU
algorithm is required to allow more than three spikes pemsag. These issues are also stated in Ge et al. [2009]. The
noise was generated by superposition of a large number df-amalitude spikes, resembling characteristics of real
recordings, which made further spike sorting complicatiosing collection 2.

In collection 3, one human intra-cortical recording wasdfes testing. This allowed the methods to be validated with
a real data set, as a contrast to high amount of synthetialsigiihe inter-spike interval distribution for the human
intra-cortical signal appeared approximately as a trigtt&aussian distribution, which fitted the assumptionster t
UBD method.

The results

The UBD method allowed spike sorting with intra-corticatoedings, because of a parameter tuning of the mini-
mum refractory period and the regularity in the spike disghaatterns. The UBD method performed spike sorting
without manual interaction, and reached an accuracy ofcqpiately 80.9 % using collection 1 with different spike
shapes and noise levels. That is, however, with a relativiglf number of spike misses and false positives in high
noise signals, but with a peak performance of 96.6 % low nsigeal 1. Wave_Clus showed a slightly better per-
formance with collection 1 using wavelets, with an averad30l %, but with low performance of 51.8 % using PCA.

The UBD method reached an average accuracy of 38.6 % usitegttoh 2, compared with 84.4 % for Wave_Clus
using wavelets, and 57.7 % for Wave_Clus using PCA. The wmwnyperformance for the UBD method using collec-
tion 2, was primarily because of the high number of spike esissaused by a low refractory period of only 2 ms. The
number of classification errors for the UBD method was anayenf 14.5 %, compared to Wave_Clus with an aver-
age of 7.3 % using wavelets. Furthermore, another reasdhddow performance using collection 2 could be because
of the way in which the discharge statistics was generatedllaction 2. The Poisson distributed inter-spike intésva
did not resemble the real situation, nor the dischargessitagifor both collection 1 and 3, which both provided high
performance using the UBD method.



Discussion

The UBD method reached an accuracy of 83.2 % using humandntiecal recordings in collection 3. Wave_Clus
provided reference information, which was problematicwdiuld have been better with a human expert providing
the "true" information about spike shape and firing pattewisch would imply that a comparison with Wave_Clus
was possible. This important point must be considered imréutvork, so that the comparison shows which method
performs best in real conditions. A very important differerbetween the UBD method and Wave_Clus using col-
lection 3, was the fact that Wave_Clus ignores the fully aming spikes, which caused a lot of missed spikes in
the UBD results for collection 3, and subsequent analyssveld that the UBD method made correct detection and
classification of the overlapping spikes in several casggjusiman intra-cortical recordings.

An example of the discharge statistics for human intraicalrtecordings are seen in figure 71.1. It is seen that the
discharge statistics for collection 2 is very differentrfréhe statistics for collection 1 and 3, which can explain the
low performance from the UBD method using collection 2. Thfedence makes the results from collection 2 not
very representative.
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Figure 11.1: Example of inter-spike interval distributions from coflien 1,2 and 3.

The comparison between UBD and Wave_Clus

The UBD method, using the MAP estimator, provided an efficégml automatically algorithm to solve the spike sort-
ing problem using intra-cortical recordings. Originalhetmethod was designed with a Bayesian statistical model on
the EMG data generation process, but showed high perforengsicg the same probabilistic model with intra-cortical
recordings. The model allowed the inclusion of availabieminformation, including the Gaussian-like distributio

of the inter-spike intervals, the refractory period, anel thgularity in the spike firing patterns.

The inter-spike intervals for the intra-cortical recomgin showed also Gaussian-like distributions, which jestithe

use of the model. This was shown for the simulated data @ale 1) in figurd 9.B page 58, and for the human intra-
cortical recordings (collection 3) in figure 9.5 pdge 62, ebhshowed only approximated truncated Gaussian shaped
distributions.

The refractory period was tuned for intra-cortical recog#, and was set to 10 ms for collection 1, and to 2 ms for
collection 2 and 3. The regularity in the spike firing pattewas, due to the use of intra-cortical recordings, set tp 0.8
which made this prior assumption very weak. This weaknesshaee decreased the spike sorting performance of the
UBD method.

In comparison, Wave_Clus does not assume any specifichdistn of the data, which makes this approach more
robust to alternations in inter-spike intervals. In almestry case, Wave_Clus using PCA performed at a significantly
lower level than both the UBD method and Wave_Clus using \eéseThe main drawback with PCA is that eigen-
vectors accounting for the largest variance of the dataaeeted, but these directions do not necessarily provigle th
best separation of the spike classes.
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A large difference in the processing time was observed batviee UBD method and Wave_Clus. The decompo-
sition of each 60 seconds signal with the UBD method took @xprately 3 hours, compared with 5 minutes for
Wave_Clus. In contrary, the prolonged processing timetfeldBD method was caused by the resolving of superim-
positioned spikes, which is a significant advantage of th®Wi:thod compared to Wave_Clus.

Furthermore, the UBD method is based on the modeling of desicigannel intra-cortical recording, and a multi-

channel extension may improve the spike sorting performdycexploiting the inter-channel interference. In com-
parison, Wave_Clus has the ability of using polytrodes.






Conclusion

Throughout this report, the spike sorting performancelleffthe UBD method has been investigated with both simu-
lated and human intra-cortical recordings. A literaturelgtin form of a spike sorting review was conducted, and the
classical spike sorting method Wave_Clus was chosen fopaason with the UBD method.

The UBD method in focus in the present work, provided spikeirsg of intra-cortical recordings in a fully auto-
matic way using a Bayesian framework, without making anyiaggtions on the particular spike shape of the action
potential, and can be applied to intra-cortical recordiagsvell as intra-muscular EMG signals, because of proper
tuning as done in this report.

Throughout the validation and testing of the UBD methodfedént test data was used. Simulated intra-cortical
recordings (collection 1 and collection 2) and human iiatical recordings (collection 3) was used as input to the
UBD method and to Wave_Clus. Collection 1 was designed andlated for this present work, collection 2 and 3
was provided from Quiroga et al. [2004].

Using collection 1, the UBD method reached a performanc®df &, compared 83.1 % using Wave_Clus (wavelets)
and 51.8 % using Wave_Clus (PCA). Using collection 2, the UB&hod only reached a performance of 38.6 %,
compared to 84.4 % using Wave_Clus (wavelets) and 57.7 % Wigave_Clus (PCA). A short neuronal refractory pe-
riod of 2 ms in the simulated signals in collection 2, and astjoeable representative discharge statistics in catlect

2 causes the detection problems. Using collection 3, the Wiithod reached a performance of 83.2 % compared
directly to Wave_Clus as reference, but the UBD method vesbh high amount of overlapping spikes compared to
Wave_ Clus with human data, which was a clear advantage.

In general, the UBD method is capable of performing spikérsgusing both simulated and real human intra-cortical
recordings, and showed strong capabilities in resolvingrlapping spikes, but with some weaknesses as shown.
Further development must be done, to increase the perfaenafinthe UBD method with intra-cortical recordings.
Among these, a re-tuning of the TABU algorithm to enable th&edtion and classification of more than three spikes
per segment. Furthermore, a multi-channel extension tJBi2@ method will improve the performance by exploiting
the inter-channel inference.
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