
Modeling and Estimation of

Wireless Multipath Channels
-

An Application within Pilot-assisted Channel Estimation
for Downlink OFDM

Morten Lomholt Jakobsen

MSc Thesis

September 1st 2008 - June 2nd 2009

Department of Mathematical Sciences

Aalborg University, Denmark





Department of Mathematical Sciences

Fredrik Bajers Vej 7 G

9220 Aalborg Ø

http://www.math.aau.dk

Title:

Modeling and Estimation of Wireless Multipath Channels

- An Application within Pilot-assisted Channel

Estimation for Downlink OFDM

Project period:

September 1st 2008 - June 2nd 2009

Semesters:

MAT5-MAT6

Author:

Morten Lomholt Jakobsen

Supervisors:

Kasper K. Berthelsen

Bernard H. Fleury

Number of copies: 10

Report - number of pages: 121

Deadline: June 2nd 2009

Morten Lomholt Jakobsen





Abstract

This thesis investigates estimation of time-vaying multipath propagation delay parameters
in a channel estimation framework for communication systems using orthogonal frequency-
division multiplexing. When using state-of-the-art channel estimation algorithms which are
robust to lack of a priori channel knowledge, an expensive overhead of pilot symbol data
must be introduced. In order to decrease this overhead, an approach is to use a channel
estimation algorithm exploiting (or presupposing) a priori knowledge on time-varying mul-
tipath channel model parameters. That is, a parametric model of the wireless multipath
channel is invoked. The key-parameters required/presupposed by the channel estimation
algorithm are the time-varying propagation delays of the parametric channel model. Hence,
the practical applicability of this algorithm approach depends critically on whether a low
complexity and su�ciently accurate delay estimation module can be successfully included
in the receiver. The objective of this thesis is to achieve insight on whether this particular
algorithm approach is realistic or not.

In recent literature, a number of methods for multipath propagation delay estimation have
been proposed. A particular method proposed in literature, known as the ESPRIT algo-
rithm, is investigated in this thesis. It is subsequently demonstrated, that the particular
performance of this method depends critically on the channel model assumed.
Speci�cally, a parametric channel model may or may not take into account the time-varying
behavior of the multipath propagation delays. If not, the channel model re�ects a static
mobile receiver in an equally static environment. This is clearly not a very realistic scenario.
Anyway, assuming a static channel model allows for satisfactory estimation accuracy of
the propagation delays, and hence, satisfactory system performance. Assuming on the
contrary, a channel model taking more reasonably into account the dynamic behavior of
the multipath propagation delays, the conclusions are refashioned indeed. The method
investigated, i.e the ESPRIT algorithm, completely fails to supply satisfactory delay
estimation accuracy. Accordingly, we propose to use (or develop) algorithms which are
applicable in the more realistic scenario, where the multipath propagation delays exhibit
dynamic behavior.

Inspired by the above conclusion, propagation delay estimation methods other than the

ESPRIT algorithm have been investigated in this thesis - namely in a survey alike algo-

rithm study. Preliminary results indicate a promising applicability of a particular method,

however, further investigation is needed since only incipient knowledge and super�cial im-

plementations have been attained during the project work leading to the present thesis.

The method is referred to as the sequential beamforming algorithm (SBA) and indeed it

shows promising results in terms of performance, robustness and computational complexity.
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Dansk Resumé (kort version)

Den forhåndenværende rapport omhandler estimation af tidsvarierende signal for-
sinkelser indenfor kommunikations systemer, som kræver estimation af det aktuelle
udbredelsesmedie, også kaldet den trådløse kanel. Algoritmer anbefalet i litte-
raturen, som er robuste overfor manglende viden om den trådløse kanal, kræver
imidlertid overførsel af uhensigtsmæssigt store mængder redundant data - såkaldte
pilotsymboler. En mulig måde at undgå dette problem, er ved at benytte algoritmer
som antager forhåndsviden om visse parametre i en såkaldt kanalmodel. Netop
signal forsinkelserne spiller en helt afgørende rolle. Den praktiske anvendelighed
af en sådan algoritme afhænger direkte af om et tilpas simpelt og tilpas præcist
estimations modul kan implementeres i de trådløse modtagere. Formålet med denne
rapport er at opnå indsigt i om den påtænkte algoritmeløsning er realistisk eller ej.
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Notations and Symbols

This page provides the reader with a quick insight to the notational conventions and
symbols used throughout the report.

Functions

A function f which maps from the set V to the set W is written commonly as
f : V → W . By f(x1, . . . , xn; c1, . . . , cm) we refer to a function in n variables and
with m parameters, e.g.

f
(
x;µ, σ2

)
=

1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)

is the Gaussian probability density function in the single real variable x and with
two parameters: the mean µ ∈ R and the variance σ2 > 0.

Vectors and Matrices

Vectors are recognized as boldface lowercase letters, e.g. x, w or s. Vectors are
always considered as columns by default. Matrices are recognized as boldface capi-
talized letters, e.g. X, A or R.
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CONTENTS

List of symbols and abbreviations

cdf Abbreviation for cumulative distribution function

pdf Abbreviation for probability density function

i.i.d. Abbreviation for independent and identically distributed

N The set of natural number {1, 2, 3, . . .}
Z The set of integer number {. . . ,−2,−1, 0, 1, 2, . . .}
R The set of real numbers
C The set of complex numbers
1[·] Indicator function
i The imaginary unit, i.e. i =

√
−1

:= Left hand side de�ned as right hand side, e.g. f(t) := t2 + 1
≡ Constantly equal to, e.g. f(t) ≡ 1
∗ Convolution operator
E[·] Expected value operator
Var[·] Variance operator
Cov[·, ·] Co-variance operator
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

Nd
(
µ,Σ

)
Gaussian distribution of dimension d

U(a, b) Uniform distribution with pdf f(·) = 1[a ≤ · ≤ b](b− a)−1

Pois(µ) Poisson distribution with mean parameter µ
Expo(λ) Exponential distribution with rate parameter λ
∼ Distributed as, e.g. X ∼ N (µ, σ2)
(·)> Matrix or vector transpose
(·)∗ Complex conjugation of all entries in matrix or vector
(·)H Hermitian (conjugate transpose) of matrix or vector
tr(A) Trace of square matrix A
det(A) Determinant of square matrix A
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Chapter 1

Introduction

The need and desire for communication systems to support even more features, and
still at even higher data rates, are truly notable today. Cell phones are capable of
accessing the internet and thereby used to obtain or download speci�c web contents,
e.g. music, video streams or documents. Cell phones also hold the ability to function
as localization (GPS) devices and laptops can work as service providers for other
laptops and cell phones through (wireless) local area networking.
The number of mobile users has increased rapidly during the last decade, and most
people are carrying multiple devices, e.g. phones, laptops, and personal digital
assistants (PDA's). In fact, cellular systems have experienced exponential growth
over the last decade [1], and the mobile devices involved are used in several distinct
matters - including personal, business and pure entertainment. The principle of a
cellular system is grounded on a centrally located non-mobile device (often referred
to as the base station) providing services to a number of mobile users within its
range of operation (the cell). In urban areas, cellular systems are densely deployed
and during cell phone conversations, one or more cellular systems are utilized to
exchange information. In general, exchange of information may be performed in
terms of mobile unit to base station communication, mobile unit to mobile unit
or perhaps base station to all mobile units within the cell. The latter version of
communication is referred to as broadcast transmission. Reception of television and
radio signals are typical examples of one-way communication schemes using base
station broadcast.

With a cellular system in mind, consider more generally a situation where certain
entities desire to exchange information. A schematic illustration is given in terms of
a transmitter, a communication or transmission medium and a receiver, see Figure
1.1. The transmitter may for instance be a person talking in a cell phone, a lap-
top transferring data �les or an antenna array broadcasting television signals. The
communication medium may be a copper wire, �bre optics, a digital versatile disc
(DVD) or the wireless medium1. The receiver may be a cell phone, a television, a

1The wireless medium is essentially the entire physical environment, including the atmosphere,
buildings, trees, cars and everything that impact the propagation conditions and propagation pat-
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laptop or any device intended to obtain the signals provided by the transmitter. In
Figure 1.1, the input signal is denoted by x and the output signal is denoted by y.
For any given system, the relationship between the received y and the transmitted
x depends on the communication medium. From this point and on we will refer
to any medium applicable for communication as a channel and in general we may
think of a channel as a `black box ' that we can only adapt to - not control. Di�erent
channels inherit di�erent properties depending on materials, physical lengths and
so on. Since we cannot control the channel, it is challenging to build and adapt
systems such that two entities are able to communicate across a given channel. The
challenge becomes even more demanding when certain requirements are imposed on
the system, for instance in terms of high data rates and with a large number of users
operating simultaneously. These challenges illustrate just a few parts of the very
essentials of communication systems engineering, see for instance [3, Chapter 1] for
further introduction.

Transmitter Receiver

Input signal
x

Output signal
y

Communication medium

?

Figure 1.1: Communication system with a transmitter, a medium that information is sent
through and a receiver. The communication medium is the physical tool that
allows for information to be exchanged.

Now, consider a wireless channel connecting a transmitter with a mobile receiver.
At time t1 , the transmitter launches a signal x into the wireless channel and at time
t1 + τ1 , the receiver observes the signal y. How to describe the relationship between
y and x? At time t2 the transmitter launches the exact same signal x, and at time
t2 +τ2 the receiver observes a signal, however, now the signal is di�erent from y. This
phenomenon may occur because the mobile receiver has moved since the previous
transmission and the properties of the wireless channel have changed. How can we
describe such changes?
As mentioned in [3, Section 1.4], it is convenient to construct mathematical mod-

els which re�ect the most important characteristics of the channel. Some models
are more appropriate than others, but all models are limited in their capabilities,
and essentially, all models are wrong ! It is important to realize that any model is
constructed with a speci�c purpose. Thus, a model may describe one physical phe-
nomenon quite well, while completely failing to even imitate another. However, if
the model is not intended to describe the second phenomenon, then it should not be
put into the context of this phenomenon either. Two di�erent models intended to
describe the same phenomenon are perfectly comparable, and which to make use of
depends on individual simplicity, accuracy, computational complexity, etc.

terns of electromagnetic waves. Communication performed across the wireless medium is referred
to as unguided transmission and when performed across wires or �bres, the transmission is called
guided [2, Chapter 2].

2



1.1. Long Term Evolution

In Chapter 3, we investigate mathematical models of wireless channels, in particu-
lar, models of so-called multipath channels. Today, such channels and their modeling
are of growing interest since even higher data rates are required in modern communi-
cation systems. In order to obtain the data rates demanded, consecutive information
symbols are transmitted closely spaced in time and the symbols can therefore eas-
ily happen to interfere with one another. This interference emerges from delayed
(scattered) signal components associated with di�erent symbols arriving on top of
each other. When the duration of each information symbol is very short even tiny
delays introduced at earlier transmitted symbols can cause such symbol interference.
Several techniques exist for mitigation of deteriorating e�ects such as inter-symbol
interference (ISI), which is the common name for the phenomenon just brie�y de-
scribed. Primarily, ISI is introduced when communication is performed across mul-
tipath channels, because these channels will to some degree spread or smear the
transmitted signals in time. At the receiver side this causes the incoming infor-
mation symbols to superimpose in time and may introduce severe signal distortion.
Orthogonal frequency-division multiplexing (OFDM) is a digital discrete-time imple-
mentation of multicarrier modulation (ISI circumventing technique treated in detail
in Chapter 4) and has recently been applied in several applications and standards2

[1, 4]. The basic ideas of this multicarrier modulation technique have been known
for half a century, however, at the time of its invention it was too complex for actual
system implementations.

1.1 Long Term Evolution

The third generation partnership project (3GPP) is a global standards-developing or-
ganization for mobile technologies. Today's most widely deployed cellular standards
are speci�ed by the 3GPP [5, Chapter 1]. One of the ongoing developments by 3GPP
is an evolution of the current, third generation mobile communication system (3G).
Partly, the development is concerned with evolved radio access - referred to as the
long-term evolution (LTE). Evolved packet access is concerned in the development
too, however, this subject is non-essential for the scope of this project. LTE is
presumed to initiate deployment by 2009-2010, and the objective is to provide a
long term technology, competitive for a decade and possibly beyond. Citing [5]:
`The 3GPP Long-Term Evolution is intended to be a mobile-communication system

that can take the telecom industry into the 2020s'.

To meet and accomplish this long term competitiveness the standardization is not
restricted by previous work in the 3GPP, i.e. LTE need not be backward compatible.
This is highly advantageous since radio interfaces can be designed from scratch with-
out restrictions from designs and implementations of the late 1990s. However, sev-
eral other requirements are present, including spectrum �exibility due to ascending
saturation of the electromagnetic spectrum (frequency band allocation for new ap-
plications and increased number of operators). Rigorous demands on data rates are
imposed too, especially at the cell edges, and in the ability to apply multi-antenna

2Including for instance, European digital audio broadcasting (DAB) and IEEE 802.11a WLAN.
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1.2. OFDM in Brief

technologies (spatial multiplexing). A communication system using multiple anten-
nas at both transmitter and receiver side is referred to as a multiple-input multiple-
output (MIMO) system. Much research attention is payed to MIMO systems today,
since the use of multiple antennas can increase system coverage, received signal-to-

noise ratio (SNR) and channel capacity [5, Section 12.1, 14.4], [1, Chapter 10].

1.1.1 LTE with Downlink OFDM

The OFDM multicarrier modulation technique holds a number of key features, in-
cluding robustness against multipath signal distortion, high achievable peak data
rates and �exibility in usage of bandwidth. For these reasons, OFDM has been cho-
sen as the LTE downlink (base station to mobile terminal) transmission scheme. In
order to recover the transmitted information at the receiver side, channel estimation
is needed to be able to undo3 the e�ects introduced by the wireless medium. Esti-
mation of the channel (treated in Chapter 5) is performed by transmitting so-called
pilot symbols, which are symbols known to both transmitter and receiver. The pilot
symbols are distributed in both time and frequency according to certain patterns and
this technique is commonly referred to as pilot-assisted channel estimation (PACE).
In [4], a variety of existing state-of-the-art channel estimation algorithms for OFDM
are studied. Conclusions are that estimators of optimal performance exist, however,
the computational complexity is relatively excessive and furthermore the correlation
properties of the channel and the noise statistics need to be known. Suggestions are
to put more investigation on channel and noise statistic estimators and investigate
their robustness against estimation errors and the corresponding impact on overall
system performance.
In [6], several existing channel estimation algorithms are presented in a uni�ed
framework, including a number of performance comparisons from simulation stud-
ies. Conclusions from [6] partly constitute the motivation for the project work
leading to the present thesis. In [7], two particular channel estimation algorithms
are proposed for LTE. The conclusions together with future work suggestions of [7]
constitute the main motivation for this project. In the following, we introduce the
background material needed to present the problem statement for this project.

1.2 OFDM in Brief

The basic idea of OFDM, and multicarrier modulation in general, is to modulate the
information symbols intended for transmission onto a large set of subchannels (in
frequency). On each subchannel, only a small amount of bandwidth is available, thus
prolonging the symbol duration. Hence, in contrast of transmitting symbols consec-
utively in time across a single channel of large bandwidth (i.e. symbol duration is
small), the concept is to transmit the symbols simultaneously in time across sepa-
rate frequency channels of narrow bandwidth. Think of having ten 1Mbps internet
connections instead of a single 10Mbps connection. Even though the transmission
rate on each subchannel (1Mbps connection) is low, the overall transmission rate

3The process of undoing or removing adverse channel e�ects is called channel equalization.
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1.2. OFDM in Brief

(10Mbps) is maintained since there are ten connections working in parallel.
Introducing this prolonged symbol duration on each subchannel causes enhanced
robustness against multipath signal distortion, i.e. inter-symbol interference (ISI).
In fact, ISI can be completely eliminated in OFDM through the use of a so-called
cyclic pre�x (explained in Section 4.1.1). The process of modulating the informa-
tion symbols onto the di�erent subchannels is swift and digitally performed by use
of discrete-time fast Fourier transform (DFT) operations. Half a century ago when
multicarrier modulation was invented there was no cheap and fast hardware imple-
mentations of the DFT. Hence, to build or realize a multicarrier system at that time
required a separate modulator (transmitter side oscillator) and a separate demodula-
tor (receiver side oscillator) for every single subchannel to be used. With N being the
number of subchannels for the system, both transmitter and receiver would therefore
have to physically comprise N independent oscillators - implying huge devices and
massive amounts of power consumption.

1.2.1 Overlapping Subchannel Spectrum

In the frequency domain, one can choose to distribute the center frequencies of
the N subchannels su�ciently distant, thereby ensuring the bandwidth (range of
frequencies4) of any two adjacent subchannels to be practically non-overlapping. In
this way no interference between the subchannels will occur (which is preferable of
course), however, it will make the system occupy a relatively wide spectrum or large
bandwidth. The spectral e�ciency can be improved by allowing the spectrum of
adjacent subchannels to overlap. By doing so, in order to demodulate the signal
at the receiver side, the subchannels must be orthogonal in a certain sense (de�ned
in Section 4.1.2). In Figure 1.2 the principle of non-overlapping spectrum versus
overlapping spectrum is illustrated.

f  [Hz]

Subchannel 1 

.  .  .

Subchannel 2 Subchannel N 

f  [Hz]

Subchannel 1 

.  .  .

Subchannel 2 Subchannel N 

Figure 1.2: Frequency domain view of non-overlapping subchannels (top) and when the spec-
trum of adjacent subchannels are overlapping (bottom).

Since a multipath channel is dispersive in delay (i.e. it smears the transmitted signals
in time), the channel is said to be delay-dispersive. A signal being spread in delay is

4See [8] for a splendid discussion on the connection between reality and models. Furthermore,
a lucid de�nition of the concept of bandwidth is provided.
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1.3. State-of-the-art Channel Estimation

a time domain phenomenon. When translating or recasting delay dispersiveness in
the frequency domain it corresponds to so-called frequency-selectivity of the channel.
That is, the response of the channel to signal components on di�erent frequencies is
non-constant and the channel may strongly attenuate some frequency components
while passing other frequency components practically una�ected. In Figure 1.3, a
�ctitious channel frequency response is jointly illustrated with a set of overlapping
subchannels in an OFDM system. In the �gure we have denoted the center frequen-
cies of the N subchannels by f1 , f2 , . . . , fN , and these are referred to as subcarrier
frequencies or simply as subcarriers for short. With a slight abuse of terminology
the terms `subchannel' and `subcarrier' are often used interchangeably.

f  [Hz]
f1 f2 fN  fN -1 

.  .  .

Channel frequency response
             (magnitude)

Magnitude

Figure 1.3: Frequency domain view of overlapping OFDM subchannels (solid lines) with the
dotted line representing a �ctitious frequency response of a multipath (delay-
dispersive/frequency-selective) channel.

By choosing the number N of subcarriers su�ciently large, the frequency response
of the multipath channel can be considered approximately constant (�at) on each
individual subchannel. When transmitting information symbols across one of the N
subchannels, the symbol distortion introduced on this particular subchannel there-
fore amounts to a single multiplication by a complex attenuation coe�cient. This
complex attenuation is the channel frequency response at the corresponding sub-
carrier frequency. Since there are N subchannels there are N of such channel at-
tenuation coe�cients and these need to be estimated to recover all the transmitted
information symbols. This is the earlier mentioned channel estimation task that
needs to be performed and since the number N is required to be large (to ensure
a �at response on every subchannel) the estimation problem is high-dimensional in
nature.

1.3 State-of-the-art Channel Estimation

In [9, 10, 11] several techniques for channel estimation in OFDM systems are sug-
gested. All methods are based on pilot symbol transmissions with di�erent one and
two-dimensional (frequency and time domain) �ltering techniques included. The ba-
sic approach is to impose a certain parametric structure on the multipath channel
in order to lower the dimensionality of the estimation problem. Some existing chan-
nel estimation algorithms require knowledge of certain system parameters which are
unknown in general, e.g. channel correlation properties or signal-to-noise ratio. In
such cases, these parameters can be substituted by �xed nominal values ensuring

6



1.4. Problem Statement

robustness against correlation mismatch and ensuring optimized performance within
situations of high signal-to-noise. Other algorithms assume exact knowledge of the
time-varying parameters describing the channel model. With such knowledge excel-
lent estimation performance can by achieved, however, these time-varying channel
parameters are in general unknown as well. The channel model parameters needed
can be estimated from pilot symbol obtained data but such estimations are typically
computationally demanding since high estimation accuracy is needed. In [6, 7], it is
shown how even small estimation errors in the channel model parameters can notably
decrease performance of the channel estimation algorithms.

1.4 Problem Statement

A relatively simple and intuitively appealing parametric channel model re�ecting
a multipath channel scenario may seek to imitate phenomenons well-known from
acoustics. With such a model the di�erent signal copies arriving at the receiver
(each copy individually delayed and attenuated), are to a certain extent, modeled as
peaks located on a time axis, where the time represents delay. Figure 1.4 illustrates
a delay axis with �ve echoes corresponding to a multipath channel with a �ve-fold
peak response when exposed to an impulse launched by the transmitting entity.
To illustrate this, think of a person shouting out loud in a large and empty hall.
A certain number of dominant and distinguishable re�ections of the shout will be
captured by the human ear. This phenomena is directly inherited in the multipath
channel model.

τ (delay)
τ1 τ2 τ4 τ5 

Power 

τ3 0

Figure 1.4: Schematic presentation of a �ve-fold response in a multipath channel. In acous-
tics, such a scheme is referred to as an echogram.

Each of the �ve arrows in Figure 1.4 represents an individually delayed and atten-
uated signal copy, where the value of τ

l
for l = 1, 2, 3, 4, 5, represents the delay at

which the l'th copy arrives. The length of each arrow represents the power contents
in each signal copy, i.e. the shorter the arrow the more attenuated the signal copy
is. As mentioned in the beginning of this chapter, transmitting the signal x at
two di�erent points in time will typically not result in the same received signal
y. The properties of a multipath channel are time-varying due to mobility of the
entities involved. This means that the echoes in Figure 1.4 will constantly move to
new positions on the delay axis and also the magnitude of the arrows will change
- all as a function of time. The number of echoes may change too, for instance
if a signal propagation path is suddenly blocked by an obstructing object, again
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1.5. Thesis Outline

induced by dynamics in the environment. Speci�cally, since the delay parameters
are time-varying we should write τ

l
(t) to emphasize this fact.

When a model as above is assumed for a speci�c multipath channel scenario, it
turns out to be of major importance to locate the exact delays τ

l
(t), at which the

di�erent signal copies arrive [6, 7]. The frequency response of the channel depends
on the delay parameters and if these are not located with su�cient accuracy, the
e�ects of the channel cannot be compensated in a satisfactory manner and system
performance will degrade. Existing state-of-the-art channel estimation algorithms
supplied with exact knowledge of the delays hold excellent performance and on
acceptable computational complexity. However, when the delays are not perfectly
known, which they are not in practice, the performance degrades. Robust channel
estimation algorithms exist which do not require knowledge of the delays, however,
these algorithms su�er from an irreversible performance degradation due to the
robust setup. Hence, when considering a trade o� between performance and com-
plexity it is suggested in [7], to investigate if su�ciently accurate and low complexity
algorithms can be developed for estimation of the time-varying multipath delay
parameters. If so, such an algorithm could be utilized to feed the existing channel
estimation algorithms with the information and time-varying parameters required.
The aim of this project is to clarify whether an algorithm, able to outperform the

robust channel estimation solutions, can be developed.

In [12], a large amount of inspiration can be obtained since a more or less complete
proposal of such a delay detection and estimation algorithm is provided. However,
several aspects considered in the paper rely on purely theoretical backbones and
do not seem to be realizable. For instance, a minimum description length criteria
[13] is utilized to detect the number of channel echoes, however, this method is not
appropriate in practice. Also, the simulation results presented in the paper are not
concerning the actual performance of the proposed algorithm. It is justi�ed that
the proposed algorithm (in some cases) is able to detect and track the signal echoes
but for the performance evaluation, exact parameter knowledge is feeded to the
algorithm instead of the estimated values. Despite these issues the paper presents an
approachable and lucid algorithm proposal that will be used for inspiration purposes
during the forthcoming chapters.

1.5 Thesis Outline

The remaining part of the thesis is organized in three parts.

Part I

The �rst part deals with multipath channel modeling, multicarrier modulation
(OFDM in particular) and the closing section concerns pilot assisted channel es-
timation in communication systems using OFDM. Basically, the entire �rst part
introduces a wide range of background knowledge. This knowledge is useful to keep
in mind when engaging the main objective of this project - detection and estimation
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1.5. Thesis Outline

of the time-varying delay parameters in the multipath channel model assumed.
That is, in order to fully understand and analyze the project objective in its very
particularities, it is considered crucial to be comfortable with the concepts described
in the three chapters comprising the �rst part of this thesis.

Part II

The second part encompasses speci�cally the main objective of this project con-
cerning delay detection and estimation. Initially, a state-of-the-art alike survey is
conducted in order to initiate the problem investigation with a perspective as broad
as possible. Simulation studies are included to support the primary investigations
carried out and both reference scenarios and self-imposed con�gurations are consid-
ered. Part II is closed after discussion, conclusion and future work sections.

Part III

The third and �nal part of this thesis contains a number of appendices that may have
already been consulted during the reading of the two primary parts of the thesis. All
relevant references introduced during the di�erent chapters are listed in the end.
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OFDM and Pilot-assisted

Channel Estimation
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Chapter 2

Basic Concepts

This chapter provides the reader with a variety of fundamental concepts used ex-
tensively throughout the entire report. Most concepts introduced in the following
could easily (and would typically) have been assumed known in advance or maybe
reported in appendices. However, we present the material at this point to allow for
improved readability later on and also in order to settle notational conventions.

2.1 Discrete-time Signals

Discrete-time signals (deterministic or random) are often represented mathematically
as sequences. A real or complex-valued sequence is as mapping whose domain is the
set of integer numbers Z, or equivalently, the set of natural numbers N. A discrete-
time signal (i.e. a sequence) is denoted by

x =
{
xn : n ∈ Z

}
,

where each element xn is complex or real. In some cases it may be convenient to think
of a discrete-time signal as a vector of in�nite length, but in practice we consider
signals where only a �nite number of elements are non-zero. Accordingly, we will
refer to the following N -dimensional vector

x =
[
x1 , x2 , . . . , xN

]>
, (2.1)

as a discrete-time signal of length N . That is, instead of representing (2.1) as the
sequence

x =
{
. . . , 0, 0, x1 , x2 , . . . , xN , 0, 0, . . .

}
,

we represent it as a vector x ∈ CN . Our formal de�nition of a discrete-time signal

therefore refers to a mapping

f : D → Ck, D ⊆ Zm, k,m ∈ N.

Most commonly [14, Section 1.2], [15, Section 13.1], a discrete-time signal x is obtained
by regular sampling of a continuous-time signal, i.e. the signal x with entries x

n
is
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2.1. Discrete-time Signals

obtained from the continuous-time signal x(t), t ∈ R, according to

xn := x
(
nT

s

)
, n ∈ Z, T

s
> 0,

where T
s
is the sampling time. Figure 2.1 illustrates the procedure of obtaining a

discrete-time signal from regular sampling of a real-valued continuous-time signal.
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Figure 2.1: A �ctitious continuous-time signal x(t) sampled at regularly spaced points in
time.

2.1.1 Signal Power

Most signals encountered in practical applications are random in nature (noise cor-
rupted), e.g. future values cannot be determined exactly from present observations
or repeating an experiment several times may produce di�erent results. The mathe-
matical tool to describe such signals is grounded on probabilistic statements in terms
of random sequences (a formal de�nition is given in Appendix A). Typically, a re-

alization {y1 , y2 , . . . , yK} of a random signal, viewed as a discrete-time sequence, is
not of �nite energy, i.e.

lim
K→∞

K∑

k=1

|y
k
|2 =∞,

where we utilize a limit statement to describe the procedure of observing more and
more data (in practice we cannot observe, store or handle an in�nite amount of
data points). A discrete-time sequence of in�nite energy does not possess a Fourier

transform, i.e.

∞∑

k=1

y
k

exp(−i2πkf) = lim
K→∞

K∑

k=1

y
k

exp(−i2πkf), f ∈ R,

does not converge in general. However, the average power of a random signal is
usually �nite [14, 16], where the (probabilistic) average is taken with respect to all
possible realizations of the random signal. Thus, the properties of random signals
are often summarized in terms of averages, e.g. autocorrelation or auto-covariance
sequences, since these often possess a Fourier transform.
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2.2. The N -point Discrete-time Fourier Transform

2.2 The N-point Discrete-time Fourier Transform

Let x =
[
x1 , x2 , . . . , xN

]>
be a real or complex-valued signal of length N . The

N -point discrete-time Fourier transform (DFT) of x is de�ned as

x̂
k

:=
1√
N

N∑

n=1

x
n

exp
(
−i2π(k − 1)n−1

N

)
, k = 1, 2, . . . , N, (2.2)

i.e. the N -point DFT produces a new signal x̂ =
[
x̂1 , x̂2 , . . . , x̂N

]>
of length N . The

x̂
k
's characterize the frequency contents of the signal x, and given x̂ the original

signal can be reconstructed. The N -point DFT is a linear mapping and thus the
transform can be represented by a matrix. To verify the linearity of the DFT one
can simply carry out the matrix-vector multiplication in (2.3) and compare with the
de�nition in (2.2). To ease notation we introduce

ω := exp
(
−i2π 1

N

)
,

and the N -point DFT of the signal x is then performed according to




x̂1

x̂2

...

...
x̂
N




=
1√
N




1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2







x1

x2

...

...
x
N



. (2.3)

We denote the N ×N matrix in (2.3) by F and refer to its elements as F(n,m). By
indexing rows and columns from 1 to N as usual, we identify that

F(n,m) =
1√
N

exp
(
−i2π (n−1)(m−1)

N

)
, n,m ∈ {1, 2, . . . N}.

Note that F> = F, and therefore the Hermitian of F, denoted FH , is simply obtained
by complex conjugation of all entries. De�ning A := FFH we calculate the entry

A(n,m) =
N∑

k=1

F(n, k)F∗(k,m) =
1
N

N∑

k=1

exp
(
−i2π

(
(n− 1)− (m− 1)

)k−1

N

)
.

By rearranging the latter expression we see that the sum involved equals

N∑

k=1

exp
(
−i2π(n−m)k−1

N

)
=
{
N, n = m
0, n 6= m.

These calculations show that A = I
N
and hence F−1 = FH . Thus, we obtain the

original signal x from its N -point DFT x̂ by
[
x0 , x1 , . . . , xN−1

]> = FH
[
x̂1 , x̂2 , . . . , x̂N

]>
.

The matrices F and FH are used extensively throughout the forthcoming chapters.
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2.3 Digital Modulation

This section gives a brief introduction to a few selected digital modulation techniques
that are commonly applied in communication systems today. For numerous reasons,
systems currently being built or proposed for wireless applications are all digital
[1, Chapter 5]. Cost, size, power and spectral e�ciency, error correction coding,
multiple access and security are just a few issues inheriting bene�cial properties from
digital implementations compared to analog equivalents. With digital modulation

and detection, information in the form of bits (0's and 1's) is exchanged across a
communication medium. Modulation consists of mapping the information bits into
an analog signal intended for transmission over the channel. Detection consists of
estimating the original information bits from the signal observed at the receiver side.
A variety of modulation schemes exist and selection of a scheme for a particular
application relies on a trade-o� between con�icting desires such as high data rates,
low bandwidth occupancy, low power consumptions and robustness against noise
and channel e�ects. In the following we describe two modulation schemes that are
both included in the 3GPP speci�cations for LTE. This section is brief and targeted,
holding few details only, however, see [1, Chapter 5] and [3] for further insight on
digital modulation and detection.

Two main categories of digital modulation exist:

- Amplitude/phase modulation (referred to as linear modulation), and

- frequency modulation (referred to as non-linear modulation).

We consider the former technique only, where information is encoded in the ampli-
tude and/or phase of the analog signal intended for transmission. Three evident
variants of amplitude/phase modulation exist:

- Pulse amplitude modulation (PAM) - information embedded in amplitude only,

- phase-shift keying (PSK) - information embedded in phase only, and

- quadrature amplitude modulation (QAM) - information encoded in both am-
plitude and phase.

Initially, when applying any of the above modulation techniques, the information
bits are divided into blocks of length K := log2M , where M (an integer power
of 2) is the size of the so-called symbol constellation. The symbol constellation
is a set of complex numbers

{
S1 , S2 , . . . , SM

}
such that each of the symbols Sm ,

m = 1, 2, . . . ,M , uniquely corresponds to one of the 2K possible blocks of information
bits. Thus, we decide the number M ∈ {2, 4, 8, 16, 32, 64, . . .} of symbols in the
constellation and create an invertible (constellation) mapping from the set {0, 1}K
to the set

{
S1 , S2 , . . . , SM

}
.

2.3.1 Phase-Shift Keying

With PSK the bit information is encoded solely in the phase of the analog signal
intended for transmission. This means that each constellation symbol S

m
is located
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2.3. Digital Modulation

on a common circle in the complex plane, i.e.

S
m

:= r exp
(
i2πm−1

M

)
, m = 1, 2, . . . ,M, r > 0.

Thus, the symbols in the constellation are of equal modulus r (same power content)
and equidistantly located on the circle. The constellation mapping is usually done by
Gray encoding, meaning that two adjacent symbols in the constellation correspond to
bit blocks only di�ering by a single bit (Hamming distance equal to one). Mistaking
a constellation symbol for an adjacent one at the receiver side causes only a single
bit error when Gray encoding is utilized. Gray encoded M -PSK constellations with
M = 4 and M = 8 are shown in Figure 2.2.
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M = 4, K = 2 M = 8, K = 3 

Figure 2.2: Phase-shift keying with Gray encoded constellation mappings.

When M = 2 the modulation scheme is referred to as binary phase-shift keying

(BPSK) and when M = 4 the term quadrature phase-shift keying (QPSK) is used.
Choosing a symbol constellation with a larger M allows for higher data rates but at
the same time it makes the constellation more sensitive to deteriorating transmission
e�ects.

2.3.2 Quadrature Amplitude Modulation

With QAM the information is embedded in both amplitude and phase of the trans-
mitted signal. Much freedom in choosing the constellation symbols Sm is present
with QAM, and the di�erent symbols can hold di�erent amounts of power (with
PSK all symbols hold identical power content). `Good' constellation mappings can
be di�cult to �nd for QAM, in particular, it is non-trivial to construct Gray code
mappings. Constellations of square shape is often considered, and Figure 2.3 depicts
square shaped M -QAM constellations with M = 16 and M = 64.
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Re 

Im 

Re 

Im 

Figure 2.3: QAM square constellations with M = 16, K = 4 (left) and M = 64, K = 6
(right).

When the signal constellation is determined, the analog signal intended for trans-
mission is constructed from pulse shaping of the symbols. That is, each symbol is
shaped by a pulse Ψ(t) of duration T

s
(called the symbol time) implying a rate of

K
Ts

bits/s. Consider a stream of information bits being appropriately mapped to
constellation symbols and then pulse shaped to obtain the analog signal (referred to
as a pulse train)

x(t) =
∞∑

n=−∞
S
m(n)Ψ

(
t− nT

s

)
,

where S
m(n) ∈

{
S1 , S2 , . . . , SM

}
for each discrete time index n ∈ Z. The number

of bits/symbol, the symbol constellation and the choice of a shaping pulse Ψ(t)
determine the digital modulation scheme. We will not address the issue of choosing
a particular shaping pulse. Such a discussion is too involved at this place, however,
Figure 2.4 provides an informative view of two simple pulses - a rectangular pulse
and a slightly smoother version (smooth pulses hold better spectral properties).

Ts 0 0 

Ψ(t) Ψ(t) 

t [s] t [s]
Ts 

Figure 2.4: Informative examples of shaping pulses, both of duration Ts .

2.3.3 Coherent Detection

Certain applications require high data rates and symbol constellations of small sizes
are not appropriate in such cases. Larger symbol constellations are more susceptible
to noise and sometimes also require more advanced receiver structures. The phase of
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2.4. Dirac's Delta

both QAM and PSK modulated signals carry information of the original bit stream.
At the receiver side it is therefore crucial to be able to recover and synchronize to
the phase of the transmitted signal. Increased complexity in the receiver results
from phase recovery procedures, nonetheless, such alignments are needed within
scenarios and applications requiring high data rates. When only low data rates are
needed, symbol encoding techniques such as di�erential modulation [1, Section 5.3.4]

(modulation with memory of prior symbols) is appropriate since no phase recovery is
needed - implying simpler receiver structures and in particular no need for channel
estimation. We will not elaborate further on the issues concerned with coherent
demodulation and detection, only we stress the fact that coherent detection is often
necessary and therefore channel estimation must be performed at the receiver side.

2.4 Dirac's Delta

In this section we present a number of details concerning the Dirac delta, commonly
denoted δ(t). The Dirac delta is the continuous analog to the Kronecker delta,
often (similarly) denoted by δ(k) with the variable k implicitly spelling that time
is measured at discrete points and not continuously. The Kronecker delta is an
indicator function located a zero, i.e.

δ(k) := 1[k = 0].

Informally, the Dirac delta represents an in�nitely narrow, in�nitely high peak cen-
tered at zero and bounding unit area. Thus, the Dirac delta is a `function' that is
zero everywhere, except at t = 0 where it is in�nitely large and

∫ ∞

−∞
δ(t)dt = 1.

No such function exists but formally the Dirac delta can be de�ned as a distribution
or generalized function. Such a treatment is out of scope of this thesis, however,
insight on the theory of distributions can be obtained from [17, Appendix B]. This
appendix provides interesting aspects concerned with important operators too, e.g.
the Fourier transformation on Rd.

Alternatively, the Dirac delta may be de�ned as a measure. If so, for every E ⊆ R
we de�ne

δ(E) :=
{

1, if 0 ∈ E
0, if 0 6∈ E.

Then, for any function g : R→ C the following relationship holds
∫ ∞

−∞
g(t)δ(t)dt = g(0),

which is commonly referred to as the sampling property of the Dirac delta. In Section

5.4 we shall see explicitly how this property can be appropriately utilized to mimic a
sampling procedure in the frequency domain in order to facilitate certain analytical
inspections.

17



2.4. Dirac's Delta

2.4.1 Dirac's Delta as a Limit

A variety of well-known functions behave in the limit as the Dirac delta when letting
certain parameters tend towards `extreme' values. Consider for instance the pdf
corresponding to a standard Gaussian distribution, and consider the behavior when
letting the variance tend towards zero. Heuristically, we may de�ne

δ(t) := lim
σ→0

1√
2πσ2

exp
(
− t2

2σ2

)
,

and a few examples with selected values of σ are shown in Figure 2.5.
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Figure 2.5: Approximations to the Dirac delta δ(t) from a Gaussian pdf with standard de-

viation σ = 2−8, 2−9, 2−10 for the dotted, dashed and solid curve, respectively.
Notice the narrow span on the time-axis and the wide span on the magnitude-
axis.

The Dirac delta is introduced during the forthcoming chapter to facilitate the math-
ematical modeling of time-variant multipath channels.
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Chapter 3

Multipath Channel Modeling

Consider a narrow pulse being transmitted through a multipath channel. Induced
by a set of scatterers, the transmitted pulse will traverse multiple paths from trans-
mitter to receiver. The received signal will therefore appear as a pulse train where
each individual term in the train corresponds to di�erent propagation paths. The
�rst pulse received corresponds to the line-of-sight (LOS) component, provided that
this direct path exists, and the �nal incoming pulse corresponds to the longest path
traversed by the signal. Intermediate pulses correspond to distinct multipath com-
ponents (signal echoes) associated with distinct scatterers or clusters of scatterers.
A simple multipath scenario is shown in Figure 3.1.

Transmitter Receiver

Figure 3.1: Multipath propagation scenario with a line-of-sight component (solid line) and
three multipath components. Two of the multipath components arrive with equal
delay (dashed lines) and the third component (tiny-dashed) arrive with a larger
delay.

The properties of a multipath channel often vary with time since either the trans-
mitter, receiver or the environment is moving. Hence, the location of re�ectors and
scatterers change over time and the impulse response of the channel is therefore
time-variant. Consequently, if a moving device repeatedly transmits the exact same
pulse every ∆t seconds the receiver will typically experience non-identical incoming
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3.1. Multipath Signal Propagation

pulse trains. The number of multipath echoes is changing from train to train and
the associated delays and amplitudes varies too.
Our argument on modeling the incoming signal as a pulse train, is fundamentally
grounded on approximations. During transmission of a single narrow pulse, the
signal may be slightly smeared in time due to a massive amount of in�nitesimal
interactions from scattering, re�ection and di�raction phenomenons. Hence, the
incoming signal does not necessarily consists of discrete electromagnetic components
but may as well constitute a continuum of contributions from the original transmit-
ted pulse. However, we do not model this continuum - we approximate it by a set
of discrete components in order to keep the model simple, while still inheriting a
reasonable level of accuracy (recall the discussion about mathematical models and
their purposes from Chapter 1).

In this chapter, we model and characterize the properties of a multipath channel
based on the underlying time-varying channel impulse response. Often in literature
(e.g. in [1]), both narrowband and wideband systems are considered since the fad-
ing models for each of them are important to distinguish. Due to the signi�cant
di�erence in bandwidth (time resolution), the wideband system will pick up fast-
varying e�ects which are changing too fast for the narrowband system to capture.
Note however, that there is no general rule spelling whether a system is wideband or
narrowband and often the systems of interest are classi�ed relative to each other. In
OFDM, it is common to classify the overall system as wideband with each subchan-
nel being narrowband (regardless whether the overall system bandwidth is 200kHz
or 20MHz). Therefore, we do not seek to de�ne what to be understood by wideband
and narrowband systems since this distinction is often a relative matter. Neither
will we make use of any conceptual di�erences between two such systems.

3.1 Multipath Signal Propagation

Consider a real bandpass signal s(t) on carrier frequency fc with equivalent lowpass
signal x(t), i.e. consider

s(t) = Re
{
x(t)ei2πfc t

}
.

In Appendix B, we brie�y describe common representations of lowpass and band-
pass systems. Readers who are not already familiar with these di�erent represen-
tations may want to consult this appendix before continuing. The signal s(t) is
transmitted through a multipath channel and due to the inherent nature and time-
varying property of the channel, the received signal is given by

r(t) = Re





(
L(t)∑

l=0

α
l
(t)x

(
t− τ

l
(t)
)
e−i2πfcτl (t)

)
ei2πfc t



+ n(t). (3.1)

The additive term n(t) is a stochastic noise process which is not of primary concern
at the moment, i.e. we disregard this term in the following. Instead, consider
carefully the structure of the received signal r(t), where t is the observation time at
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3.1. Multipath Signal Propagation

the receiver side. The received signal at time t is a superposition of L(t)+1 incoming
train terms, where the l'th term

- is delayed τ
l
(t) time units relative to the observation time,

- has envelope
∣∣α

l
(t)x

(
t− τ

l
(t)
)∣∣, and

- experience a phase shift of −2πfcτl(t) due to the delay τ
l
(t).

Hence, at each time instance the received signal depends on the following unknown
entities:

- L(t) ∈ N, the number of multipath components (l = 0 is the LOS component),

-
{
α
l
(t)
}L(t)

l=0
, the associated set of complex amplitudes, and

-
{
τ
l
(t)
}L(t)

l=0
, the set of multipath delays.

The magnitude and phase of each complex-valued coe�cient α
l
(t) depend on trans-

mitter and receiver antennas and the directions of departure and arrival of the l'th
signal component. Also, all interactions taking place during propagation across the
wireless medium will impact the phase terms. Hence, the received signal also wit-
nesses a phase shift contribution from the set of complex-valued coe�cients

{
α
l
(t)
}
.

However, in most cases this particular phase contribution is not dominant, since in
(3.1) the phase shift induced from the delay τ

l
(t) can be recast as

− 2πfcτl(t) = −2π
`
l
(t)
λ

, (3.2)

where `
l
(t) denotes the length of the propagation path traversed by the l'th signal

component, i.e. τ
l
(t) equals `

l
(t) divided by the speed of light. Hence, if the receiver

moves from the center of a sphere with radius λ (the wavelength corresponding to
fc) toward the boundary of the sphere, the l'th signal component may experience
as much as an entire phase rotation. For instance with fc = 2GHz the associated
wavelength is λ ≈ 0.15m and therefore the phase can rotate 2π if the receiver moves
just 15cm. When receiver, transmitter and the environment are all moving during
transmission the incoming signals will thus appear1 as shifted in frequency. This
phenomena is called a Doppler frequency shift. If we assume any motion in the
system to happen such that the length of the l'th path can be approximated from a
�rst order Taylor series expansion, i.e.

`
l
(t) ≈ `

l
+ γ

l
t, (3.3)

for some constant `
l
and some speed γ

l
, then by (3.2) we may write

− 2πfcτl(t) = −2π
`
l
(t)
λ
≈ −2π

(
`
l

λ
+
γ
l

λ
t

)
. (3.4)

1This is true for su�ciently narrowband signals only, since otherwise the e�ect of a moving trans-
mitter or receiver (or scatters) will not be recognized as a frequency shift but as time compression
or expansion.
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3.1. Multipath Signal Propagation

The frequency
γ
l

λ at which the phase changes as a function of time is exactly the
Doppler frequency. When only the receiver is moving and assuming it to be located
far from all scatterers, indeed the approximation (3.3) is valid, and we can directly
interpret the Doppler shift as follows. From the geometry in Figure 3.2, we see
that each received signal component will appear shifted (compressed or expanded in
time) by the Doppler frequency

γ
l

λ
=
v

λ
cos(θ

l
). (3.5)

The receiver speed in direction of the impinging wavefront is γ
l

= v cos(θ
l
), where

- v is the receiver speed in its own direction of motion, and

- θ
l
is the angle of arrival of the signal component relative to the receiver direction

of motion.

Transmitter

Receiver Direction of motion

v

θl

.  .  .

l'th signal component

.  .  .

.  . 
 .

.  .  .

Figure 3.2: The receiver travels at speed v in a certain direction of motion. The incom-
ing signal components appear shifted in frequency. This phenomena is called a
Doppler frequency shift.

For a �xed receiver speed v, the Doppler frequency shift reaches its maximum
when the receiver is moving directly toward the impinging wave. Relate this to the
phenomena experienced when an ambulance is approaching fast from behind and
passing straight by. The siren appears as shifted in frequency and with reference to
an acoustic equivalent of the approximation in (3.3), this frequency shift is explained
by the movement of the vehicle. Doppler frequency shifts of larger magnitude can
appear when transmitter, receiver and the environment are all moving simultane-
ously. These Doppler shift considerations are crucial to keep in mind when the
e�ects of a multipath channel are to be mimicked and interpreted from simulation
studies (Chapter 7 and 8).

Returning our focus to the expression in (3.1) we �nd that each term in the sum
corresponds to either a single scatter or a cluster of scatterers. Some propagation
delays may appear so close that these cannot be distinguished at the receiver side due
to insu�cient time resolution (bandwidth). Commonly, we say that two multipath
components with associated delays τ and τ̃ are resolvable if

Bx �
1

|τ̃ − τ | ,
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3.1. Multipath Signal Propagation

i.e. if the bandwidth Bx of the lowpass signal x(t) signi�cantly2 exceeds the inverse
of the delay di�erence. With linear modulation (e.g. PSK or QAM) the signal
bandwidth is inversely proportional to the symbol duration T

s
, i.e. Bx ≈ 1/T

s
.

Multipath components with delays τ and τ̃ being too close cannot be distinguished
at the receiver side since x(t − τ) ≈ x(t − τ̃), and hence, such components are
called non-resolvable. Obviously, if τ = τ̃ it is no longer a question of bandwidth
- two such components cannot be separated in delay. For example, in Figure 3.1

the multipath components marked with dashed lines are non-resolvable since they
arrive with equal delay. Therefore, these two multipath components will contribute
with a single term to the sum in (3.1), only. The multipath component marked
with a tiny-dashed line will contribute with a term of its own since this compo-
nent arrives with a delay of relatively larger magnitude and therefore can be resolved.

The above discussion on whether multipath components are resolvable or not is in-
conclusive and shallow. One fact concerns what actually happens in the channel and
another fact concerns what can be observed by a given communication system de-
pending on its sampling rate. These issues are recast and discussed from a frequency
domain point of view in Section 5.4. From this perspective we are able to analyze
in detail the resolution issues and we introduce the concept of system response.

3.1.1 Maximum Excess Delay and Channel Delay Spread

At time t, consider the integer L(t) and the set of L(t) + 1 delays
{
τ
l
(t)
}
. Without

loss of generality, we assume that these delays are indexed in increasing order, i.e.

τ0(t) < τ1(t) < . . . < τ
L(t)(t).

Here, τ0(t) corresponds to the propagation delay associated with the LOS component
at time t. Consider the di�erence between the largest delay and the smallest delay
- which is a measure of the degree of multipath distortion of the signal transmitted,
i.e. of how much the signal is being spread in time. Since the delays change over
time (as does the number of delays), the di�erence

τ
max

(t) := τ
L(t)(t)− τ0(t)

is a non-negative random variable for each t and is called the maximum excess

delay of the channel. However, some multipath components hold signi�cantly lower
power than others, and in particular, some hold powers below the noise �oor.
Also, the demodulator at the receiver side may synchronize to a speci�c multipath
component, e.g. the �rst incoming component or the average delay component.
Thus, the maximum excess delay is not necessarily the most appropriate measure
of how much the channel spreads the signal in time. In general, it depends on the
speci�c application. Another measure is the so-called channel delay spread, de�ned
from the power delay pro�le of the channel. Intuitively, the power delay pro�le
explains the average signal power content as a function of multipath delay and it
can be measured empirically for actual channels [1]. We elaborate further, and more

2This de�nition is quite vague due to our use of the symbol � (or the phrase signi�cantly).
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3.2. Time-varying Channel Impulse Response

speci�cally, on the power delay pro�le later in this chapter.

The impact of multipath distortion on the transmitted signal depends on whether
the channel delay spread is large or small relative to the inverse of the signal band-
width Bx. With a large delay spread the duration of a received signal may be sig-
ni�cantly increased compared to the duration of the transmitted pulse. This means
that delayed multipath components arriving from one pulse will interfere with subse-
quently transmitted pulses, and this deteriorating e�ect is called inter-symbol inter-

ference (ISI). Multipath distortion e�ects (such as ISI) can seriously degrade system
performance and various techniques for mitigation of these e�ects exist. These tech-
niques include for instance equalization, multicarrier modulation and spread spec-

trum transmission.
On the other hand, when the delay spread is small relative to the inverse of the signal
bandwidth, most of the multipath signal components are non-resolvable. Thus, with
the delay spread small compared to 1/Bx ≈ Ts , all the delayed signal echoes roughly
correspond to the same transmitted symbol, i.e.

x
(
t− τ0(t)

)
≈ x

(
t− τ

L(t)(t)
)
. (3.6)

Therefore, only a small amount of interference with subsequently transmitted pulses
will be present. Thus, the distinction often emphasized in the literature between
wideband fading models and narrowband fading models is re�ected in the fact that the
signal bandwidth and the channel delay spread determine whether the approximation
in (3.6) is valid or not. In both cases, however, the received signal is a sum of copies
of the original signal - with each copy individually attenuated and delayed in time
as phrased by (3.1).

3.2 Time-varying Channel Impulse Response

Consider a linear time-varying bandpass channel with the real channel impulse re-
sponse

c(τ, t) = Re
{
g(τ, t)ei2πfc t

}
.

For time-invariant channels, the equivalent lowpass channel impulse response would
for an arbitrary time lag ∆t satisfy

g(τ, t) = g
(
τ, t+ ∆t

)
.

That is, the channel response at time t to an impulse launched at time t−τ coincides
with the channel response at time t+ ∆t to an impulse launched at time t+ ∆t− τ .
Speci�cally, this holds for ∆t = −t and hence

g(τ, t) = g(τ, t− t) = g(τ, 0) := g̃(τ),

which is the impulse response associated with a time-invariant channel, i.e. it
depends only on the delay argument τ and not on time.
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3.3. Multipath Channel Fading Model

When transmitting the bandpass signal s(t) with equivalent lowpass signal x(t), we
know that the received bandpass signal r(t) is given as (still, we neglect the additive
noise process)

r(t) = Re

{(∫ ∞

−∞
g(τ, t)x(t− τ)dτ

)
ei2πfc t

}
,

i.e. by `convolving' g(τ, t) with x(t) and then upconverting to the carrier frequency
fc. Recall from (3.1), that in the absence of noise we also have

r(t) = Re





( L(t)∑

l=0

α
l
(t)x

(
t− τ

l
(t)
)
e−i2πfcτl (t)

)
ei2πfc t



 .

Comparing the two above expressions for r(t), we realize that the equivalent lowpass
channel impulse response must be given as

g(τ, t) =
L(t)∑

l=0

α
l
(t)δ

(
τ − τ

l
(t)
)
e−i2πfcτl (t), (3.7)

where δ(t) is the Dirac delta and from its sampling property we get

∫ ∞

−∞
x(t− τ)δ

(
τ − τ

l
(t)
)
dτ = x

(
t− τ

l
(t)
)
, l = 0, 1, . . . , L(t).

The expression (3.7) exploits the structure of the time-varying multipath channel
impulse response g(τ, t) and similar or appropriately simpli�ed equivalents are often
encountered in literature [1, 3].

3.3 Multipath Channel Fading Model

Due to transmitter or receiver mobility, the number of multipath components L(t)
is a random variable and the associated sets of amplitudes, phases and delays are
considered random too. We assume that the receiver is located far from both
transmitter and all scatterers. We also assume that no dominant LOS component
is present, i.e. no term for l = 0 in (3.7). In general, these receiver assumptions are

imposed throughout the thesis. In the following we introduce a number of simplifying
assumptions on g(τ, t) in order to facilitate further characterization of the multipath
channel.

Initially, we simplify the expression (3.7) by `hiding' all the complex exponentials.
We do this by rede�ning each of the complex amplitudes according to

α
l
(t) := α

l
(t)e−i2πfcτl (t), l = 1, 2, . . . , L(t),

and we model the initial phases of these rede�ned multipath components as i.i.d.,
uniformly on the interval [−π, π). This assumption is reasonable, since the phases
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3.3. Multipath Channel Fading Model

can change rapidly when the carrier frequency fc is large, recall (3.2). The simpli�ed
version of the multipath channel impulse response reads

g(τ, t) =
L(t)∑

l=1

α
l
(t)δ

(
τ − τ

l
(t)
)
. (3.8)

It is commonly suggested by several authors, e.g. [11, 12, 18], to model each com-
plex amplitude α

l
(t), as a zero mean circular-symmetric complex Gaussian process

with a variance depending on the associated delay τ
l
(t). In [1, Section 3.3] and [3,

Section 10.1.1], the authors justify the Gaussian modeling from arguments grounded
on the Central Limit Theorem [19, Theorem 4.3.1]. When no LOS component is
present, the zero mean assumption for each echo is reasonable. However, with a
dominant LOS component the corresponding complex amplitude will in general hold
a non-zero mean. In this thesis, we consider only the non-LOS scenario where all
complex amplitudes are of zero mean. Furthermore, it is always assumed that only
the receiver is moving, i.e. the approximation in (3.3) is valid.

Even though the expression (3.8) involves a number of Dirac deltas (in�nitely high
and narrow spikes), the way to physically interpret its mathematical formulation is
illustrated in Figure 3.3. We cannot depict dirac spikes and therefore we plot the
squared magnitude of each complex amplitude as a function of time. The associated
delays are also varying as time passes and by �xing a time instance, say t = t0 , we
�nd a 2D illustration similar to the one provided in Figure 1.4 on page 7, i.e. an
echogram.

t

|αl(t)| 
2

τl(t)

l=1

l=2

l=3

Figure 3.3: Three signal echoes illustrated as realizations of stochastic processes. At �rst
only two echoes are present but as time passes yet another echo arises.
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3.3. Multipath Channel Fading Model

3.3.1 Correlation Properties

Our further investigation of the multipath channel is grounded on assumptions and
properties that are commonly observed/imposed for a variety of actual channels [1,
Section 3.3]. These particular assumptions were initially introduced by Bello [20, Sec-
tion IV. D] and often serve as default assumptions today. In literature, this particular
channel property is sometimes referred to as the WSSUS assumption [1], which is
an abbreviation for wide-sense stationary (WSS) and uncorrelated scattering (US).
As mentioned above the complex amplitudes α

l
(t), l = 1, 2, . . . , L(t), are modeled as

zero mean complex Gaussian processes and now each of these processes are further-
more assumed to be WSS - explaining the �rst part of the abbreviation. The second
part re�ects that any two distinct multipath signal echoes are considered to have
interacted with non-identical scattering objects while propagating from transmitter
to receiver. Therefore, any pair of distinct complex amplitudes α

l
(t) and α

k
(t) cor-

responding to di�erent signal echoes are assumed to comprise a pair of uncorrelated
processes. In short, our assumptions so far reads:

- The time-variant amplitude α
l
(t) comprise a zero mean circular symmetric

complex Gaussian process for l = 1, 2, . . . , L(t).

- The autocorrelation function E
[
α
l
(t)α∗

l
(t+ ∆t)

]
depends only on the time lag

∆t, while not on the particular time instance t (WSS assumption).

- The product moment E
[
α
l
(t1)α∗

k
(t2)
]
is identically zero for arbitrary time in-

stances t1 and t2 whenever l 6= k (US assumption).

Typically, in mobile communication links the multipath delay parameters τ
l
(t),

l = 1, 2, . . . , L(t), are slowly time-varying compared to the corresponding am-
plitude and phase terms [12]. If the receiver moves just a few centimeters the
phases and amplitudes will change notably while the delay parameters remain
practically unchanged since the electromagnetic waves travel at the speed of light.
Hence, when considering only time windows of short duration we may consider
L(t) ≡ L and τ

l
(t) ≡ τ

l
as static, deterministic terms. Paramount, we furthermore

assume that all amplitude processes α
l
(t) share the same normalized autocorre-

lation function Rt(∆t). This key assumption allows us to follow the approach in [18].

From appropriate Fourier transforms we can characterize the multipath channel in
the frequency domain as well. Initially, we consider the time-varying channel transfer
function (CTF) de�ned as

h(f, t) :=
∫ ∞

−∞
g(τ, t)e−i2πfτdτ =

L∑

l=1

α
l
(t)e−i2πfτl ,

i.e. the Fourier transform of g(τ, t) with respect to the delay variable τ . Since
E
[
h(f, t)

]
= 0, we directly calculate the autocorrelation function
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3.3. Multipath Channel Fading Model

R
hh

(
f1 , f2 ,∆t

)
:= E

[
h
(
f1 , t

)
h∗
(
f2 , t+ ∆t

)]

=
L∑

l=1

E
[
α
l
(t)α∗

l
(t+ ∆t)

]
e−i2π(f1−f2 )τ

l (3.9)

=
L∑

l=1

Q(τ
l
)R

t
(∆t)e−i2π∆fτ

l , (3.10)

where Q(τ
l
) denotes the average power of the l'th signal component with associated

delay τ
l
. More speci�cally, we have introduced the quantity

Q(τ
l
) := E

[
|α
l
(t)|2

∣∣τ
l

]
,

which partly speci�es the so-called power delay pro�le of the multipath channel. No-
tice how (3.9) is obtained using the uncorrelated scattering property. We realize from
(3.10) that the US property in the delay domain is equivalent to a WSS property
when recast in the frequency domian, i.e. (3.10) depends only on the frequency sep-
aration ∆f := f1 − f2 . Speci�cally, this means that we can rearrange the expression
(3.10) and with a slight abuse of notation we reuse the name R

hh
and write

R
hh

(
∆f,∆t

)
= Q̃R

t
(∆t)

L∑

l=1

Q(τ
l
)

Q̃
e−i2π∆fτ

l

︸ ︷︷ ︸
R
f

(∆f)

, (3.11)

where Q̃ :=
∑
Q(τ

l
) denotes the overall average power in the channel. Hence, the

autocorrelation function associated with the time-varying channel transfer function
h(f, t) factorizes into two separate and normalized autocorrelation functions R

t
(∆t)

and R
f
(∆f). The authors of [18] refer to this fact as the separation property of the

mobile wireless channel.

3.3.2 Coherence Time and Coherence Bandwidth

The time domain autocorrelation function Rt(∆t) depends on the speed of the
receiver, transmitter and the environment, or equivalently, Rt(∆t) depends on the
Doppler frequency. Intuitively, if the receiver travels at high speed, e.g. highway or
high-speed train, the multipath channel will change rapidly and the magnitude of
R
t
(∆t) will decay fast as ∆t increases. On the other hand, when the environment is

more or less static and no movement occurs the multipath channel does not change
notable over time and the magnitude of Rt(∆t) will slowly tend towards zero as
∆t increases. In Chapter 7, we introduce a modeling setup for a time-varying
multipath channel and use the model for simulation purposes. We model each
amplitude process α

l
(t) and subsequently derive an analytical expression of the

associated autocorrelation function R
t
(∆t).
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3.3. Multipath Channel Fading Model

The decay behavior of the frequency domain autocorrelation function R
f
(∆f)

depends on the delay dispersiveness of the channel. The more dispersion introduced
by the multipath channel, the more frequency selective the channel will be. Hence,
when the maximum excess delay of the channel is small, the frequency response
of the channel decorrelates slowly with increasing frequency separations ∆f . Con-
versely, when the maximum excess delay of the channel is large, i.e. massive
dispersion in delay, the channel transfer function will decorrelate rapidly as ∆f
increases.

Reconsidering the expression forR
hh

(
∆f,∆t

)
in (3.11) we may by turns equate either

∆t or ∆f to zero and consider the approximate time or frequency separations needed
for the channel to be `practically' uncorrelated. That is, we de�ne the coherence time
of the channel to be

T
C

:= arg min
∆t>0

∣∣Rt

(
∆t)
∣∣ = C, 0 ≤ C < 1,

and similarly we de�ne the coherence bandwidth of the channel to be

B
C

:= arg min
∆f>0

∣∣R
f

(
∆f)

∣∣ = C, 0 ≤ C < 1,

where the constant C will typically be chosen di�erent from application to application
(explaining our use of the phrase `practically' uncorrelated and renders visible too,
that these de�nitions are not very strict). Heuristically, T

C
is a measure of the width

of the main lobe of |Rt

(
∆t)
∣∣ and a similar interpretation is valid for B

C
.

3.3.3 Doppler Power Spectrum

Another useful and equivalent characterization of the multipath channel is available
in terms of the so-called Doppler power spectrum. As mentioned above, the behavior
of R

t
(∆t) depends on the dynamics in the communication environment, i.e. on

the Doppler frequencies. If we assume that only the receiver is moving we have
previously in this chapter interpreted the Doppler frequency shift from a geometrical
perspective. A more general interpretation can be obtained from

R
D

(∆f, ν) :=
∫ ∞

−∞
R
hh

(
∆f,∆t

)
e−i2πν∆td∆t,

i.e. the Fourier transform of R
hh

with respect to the time lag ∆t. The function
R
D

(0, ν) is called the Doppler power spectrum of the channel and it characterizes
how the power of the transmitted signal is distributed relative to Doppler frequency.
With reference to (3.5) and assuming that only the receiver is moving (at speed
v), the maximum possible Doppler frequency shift is f

D
:= v

λ , where λ denotes the
signal wavelength. Hence, from our mobility assumptions we �nd that

R
D

(0, ν) = 0, whenever |ν| > f
D
,

since no multipath signal components can hold larger Doppler frequency shifts when
only the receiver is moving. Concrete examples of a few Doppler power spectrums
are given in Chapter 7.
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3.4. Distribution of Envelope and Power

3.4 Distribution of Envelope and Power

Consider the random process

β(t) :=
L(t)∑

l=1

α
l
(t),

which is a sum of L(t) uncorrelated zero-mean complex Gaussian processes. It is
easily seen that E

[
β(t)

]
= 0 and using the uncorrelated scattering (US) assumption

we �nd

Var
[
β(t)

]
= E

[
β(t)β∗(t)

]
= E



L(t)∑

l=1

∣∣α
l
(t)
∣∣2

 .

Since a sum of Gaussian processes is again a Gaussian process we realize that

β(t) ∼ CN
(
0, σ2

)
,

where, for notational convenience, we have de�ned the total average power in the
channel as

σ2 := E



L(t)∑

l=1

∣∣α
l
(t)
∣∣2

 .

We write β(t) = X(t) + iY (t) where X(t) and Y (t) are uncorrelated zero-mean real-
valued Gaussian processes, both with variance σ2/2. Since X(t) and Y (t) are uncor-
related and Gaussian distributed they are furthermore independent, and therefore

2
σ2

(
X2(t) + Y 2(t)

)
=
(

X(t)√
σ2/2

)2

+
(

Y (t)√
σ2/2

)2

,

follows a chi-square distribution with two degrees of freedom, or equivalently, an
exponential distribution with rate-parameter equal to one half. It is well-known that
the square-root of an exponentially distributed random variable follows a Rayleigh
distribution.

In particular, if the total channel power is normalized to unity, i.e. σ2 = 1, then the
envelope ∣∣β(t)

∣∣ =
√
X2(t) + Y 2(t) ∼ Rayl

(
1/
√

2
)

and the power ∣∣β(t)
∣∣2 = X2(t) + Y 2(t) ∼ Expo

(
1
)
.

These theoretical distributions are used inChapter 7 to verify channel modelings and
implementations for simulation purposes. The particular channel model described
with the set of assumptions imposed in this chapter in commonly referred to as a
Rayleigh fading multipath channel.
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Chapter 4

Multicarrier Modulation

Multipath channels are often to be considered with today's communication systems
since consecutive information symbols are transmitted closely spaced in time.
The delay dispersiveness of multipath channels cause the transmitted symbols to
superimpose in time at the receiver side. Multicarrier modulation is a technique
to circumvent/reduce the adverse overlapping of consecutive symbols and was �rst
used in the late 1950s, however, the technique was far too complex for most system
implementations at that time. Twenty years later the use of multicarrier modulation
was ignited when fast and cheap (hardware) implementations of the discrete-time
Fourier transform (DFT) were developed. The main part of this chapter is inspired
by [1, Chapter 12], and deals with OFDM and some of the aspects to be considered
with communication systems utilizing this multicarrier modulation technique.

As mentioned shortly in the beginning of Section 1.2, the basic idea of multicarrier
modulation is to transmit the information symbols over a relatively large set of
narrowband subchannels (frequency domain). The number of subchannels is chosen
large such that the symbol duration on each narrowband subchannel becomes larger
than the delay spread of the channel. With the symbol duration prolonged the
inter-symbol interference (ISI) is small, and in fact, ISI can be completely eliminated
through the use of a cyclic pre�x.

4.1 Orthogonal Frequency-division Multiplexing

One way to implement multicarrier modulation is by orthogonal frequency-division

multiplexing (OFDM). Another multicarrier technique is vector coding [1, Section

12.4.5], however, we consider only the former technique and the phrase `orthogonal'
will be explained later in this section. OFDM is implemented partly by use of DFT
operations and this transform is e�ciently implemented (low complexity) through the
fast Fourier transform (FFT), see e.g. [15, Section 8.2] for details on this important1

transform used extensively in a wide range of practical applications.

1Citing [15]: `The FFT is possibly the second most nontrivial algorithm in practice.'
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4.1. Orthogonal Frequency-division Multiplexing

Consider a communication system where phase/amplitude modulated symbols {x̂
k
}

are transmitted with symbol duration T
s
, thus occupying a bandwidth of 1/T

s
.

Transmission of N consecutive symbols x̂1 , x̂2 , . . . , x̂N will occupy a time slot of
duration NT

s
at the transmitting entity, since symbols are sent one by one in a

pulse train. To avoid time overlapping symbols at the receiver side, the transmitter
will apply an OFDM scheme. The overall bandwidth of 1/T

s
is divided into N

slots, each of bandwidth 1/(NT
s
). The symbols x̂1 , x̂2 , . . . , x̂N are then modulated

(by an inverse DFT) to new symbols x1 , x2 , . . . , xN such that each symbol xn
carries information about all x̂

k
's. Consecutive transmission of the N symbols

x1 , x2 , . . . , xN will likewise occupy a time slot of duration NT
s
, however, the original

symbols x̂1 , x̂2 , . . . , x̂N are now individually distributed across the N narrowband
slots in frequency. This entire procedure is illustrated in Figure 4.1, spelling the
di�erence between whether multicarrier modulation is utilized or not.
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Figure 4.1: Distinction between a system where symbols are not modulated onto multiple
carriers (left) and a system where multicarrier modulation is utilized (right). In
both cases a time span of NTs is used to transmit N symbols and both systems
occupy a total bandwidth of 1/Ts .

With multicarrier modulation, time overlapping of the symbols x1 , x2 , . . . , xN will
only deteriorate the information about the original symbols x̂1 , x̂2 , . . . , x̂N when oc-
curring at the edges of the block. Consider for instance the transmission of three
consecutive blocks of symbols

x1 , x2 , . . . , xN︸ ︷︷ ︸
block 1

, x
N+1 , xN+2 , . . . , x2N︸ ︷︷ ︸

block 2

, x2N+1 , x2N+2 , . . . , x3N︸ ︷︷ ︸
block 3

.

The symbols transmitted at the end of the �rst block may interfere with the earliest
symbols from the second block. Similarly, the last symbols from the second block
may interfere with the earliest symbols form the third block. Hence, ISI will occur at
the edges of the blocks but this distortion can be removed by appending a so-called
cyclic pre�x at the beginning of each block.
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4.1. Orthogonal Frequency-division Multiplexing

4.1.1 Mitigation of ISI by a Cyclic Pre�x

Consider a discrete-time signal x =
[
x1 , x2 , . . . , xN

]>
of length N as input to a

linear discrete-time delay dispersive channel. We assume that the channel is time-
invariant with a �nite impulse response (FIR) of length L+1 samples, and we denote
these responses by g0 , g1 , . . . , gL ∈ C. If we denote the symbol time by T

s
and the

maximum excess delay of the channel by τ
max

, we see from our FIR-assumption, that

τ
max

= LT
s
.

The cyclic pre�x for the signal x is de�ned from the last µ+ 1 samples of x, where
µ should be selected such that µ+ 1 ≥ L. These last µ+ 1 samples are appended at
the beginning of x to form a new discrete-time signal of length µ + 1 + N denoted
by

x
cp

:=
[
x−µ , . . . , x−1 , x0 ,x

>
]>
,

where the subscripts less that one are nicely related to the original subscripts ac-
cording to

x0 := x
N

x−1 := x
N−1

...

x−µ := x
N−µ .

The cyclic pre�x de�ned above is introduced with two main objectives:

- Like x
cp
, the received signal y

cp
will be of length µ + 1 + N , however, the

�rst µ+ 1 samples are discarded at the receiver side since these samples have
possibly su�ered from severe ISI due to the delay dispersion in the multipath
channel.

- The cyclic pre�x turns the linear convolution between the input signal x
cp
and

the channel into a circular convolution of period N with the original signal x
(applying a DFT on a circular convolution in time leads to multiplication in
frequency).

Thus, the cyclic pre�x serves to eliminate ISI but comes with a cost since the µ+ 1
pre�xed samples cause an overhead of (µ+ 1)/N . If µ+ 1 is chosen strictly smaller
than L, then some degree of ISI will remain and if µ is chosen too large, a dispensable
overhead is introduced.

4.1.2 Overlapping Subchannels and Orthogonality

Recall Section 1.2.1 where we brie�y elaborated on the frequency domain properties
of the N narrowband subchannels. In OFDM the center frequencies of two adjacent
subchannels are located with a spacing of ∆f := 1/(NT

s
) and, as depicted in Figure

4.2, the range of frequencies occupied by adjacent subchannels are overlapping.
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f  [Hz]

Magnitude 

f1 f2 fN  

.  .  .

Δ f = 1/(NTs )

fN -1 

Δ f = 1/(NTs )

...

Figure 4.2: Frequency-domain view of multicarrier modulation with overlapping subchan-
nels.

The spectrum of adjacent subchannels are overlapping since the overall system should
seek to occupy no more bandwidth than needed. Obviously, the amount of frequency
overlap must be con�ned, and this fact is partly expressed in the phrase orthogonal
in `OFDM'. It is common to say that the subchannels/subcarriers are orthogonal to
each other, and the following lemma provides the formal meaning of this saying.

Lemma 4.1.1. (Subcarrier Orthogonality)

Let f denote a reference frequency such that 2fNT
s
∈ N, where N denotes the

number of subchannels and T
s
is the sampling time. Then for any set of phase

o�sets
{
φ
k

}
, the subcarriers

{
ψ
k
(t) := cos

(
2π
(
f + k

NTs

)
t+ φ

k

)
: k = 0, 1, . . . , N − 1

}

form a set of mutually orthogonal functions on the interval [0, NT
s
].

Proof. From the formula

2 cosα cosβ = cos(α− β) + cos(α+ β),

with n,m ∈
{

0, 1, . . . , N − 1
}
, we obtain

2
∫ NTs

0

ψ
n
(t)ψ

m
(t)dt =

∫ NTs

0

cos
(

2π(n−m) t

NTs
+φ

n
−φ

m

)
dt

+
∫ NTs

0

cos
(

2π
(
2fNT

s
+n+m

) t

NTs
+φ

n
+φ

m

)
dt

︸ ︷︷ ︸
(?)

.

For simplicity, introduce p := 2fNT
s
+n+m and θ := φn+φm

p and notice that p ∈ N.
By the variable change τ = 2π t

NTs
+ θ the integral in (?) becomes

∫ NTs

0

cos
(

2πp t

NTs
+ pθ

)
dt =

NT
s

2π

∫ 2π+θ

θ

cos(pτ)dτ = 0,
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4.2. Linear Algebra Representation of OFDM

and hence we obtain that

2
NT

s

∫ NTs

0

ψn(t)ψm(t)dt = 1[n = m].

�

A few remarks concerned with Lemma 4.1.1 are important to keep on mind. The
assumption on 2fNT

s
being integer-valued can be relaxed. If instead we require only

that 2fNT
s
is large the lemma can be reformulated as an approximation, i.e.

2
NT

s

∫ NTs

0

ψn(t)ψm(t)dt = 1[n = m] + ε,

with ε → 0 as 2fNT
s
→ ∞. That is, when the reference frequency f is large

the subcarriers
{
ψ
k
(t)
}
form a set of approximately orthogonal functions on the

interval [0, NT
s
]. Also, with frequency separations smaller than ∆f = 1

NTs
, no set of

subcarriers with arbitrary phase o�sets can constitute a set of orthogonal functions
on [0, NT

s
]. Thus, to maintain orthogonality between subcarriers the minimum

frequency separation required is 1
NTs

.

4.2 Linear Algebra Representation of OFDM

In this section we present a discrete-time baseband formulation of an OFDM system.
First, consider a sequence of PSK or QAM modulated information symbols, which
we divide into blocks of length N . For now, the transmission of a single of these
blocks is considered, and thus we arrange an arbitrary block as a column vector and
denote it by

x̂ :=
[
x̂1 , x̂2 , . . . , x̂N

]>
.

Recall the N -point IDFT matrix FH from Section 2.2 and apply it on x̂ to obtain

x :=
[
x1 , x2 , . . . , xN

]> = FH x̂.

The signal x is appended by a cyclic pre�x and x
cp

is transmitted across a linear
discrete-time channel in presence of additive white noise, assumed to be circular

symmetric2 complex Gaussian distributed. We analyze the equivalent lowpass
channel input-output relationship, and we impose a number of assumptions on the
system. A discussion of these assumptions are presented later in this chapter when
we consider continuous-time transmission.

Assumptions:

- The channel is time-invariant during the (µ + 1 + N) samples when x
cp

is
transmitted.

2Mutually uncorrelated real and imaginary parts, all having the same variance. See Appendix
C.
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4.2. Linear Algebra Representation of OFDM

- The equivalent lowpass channel is causal and has a �nite impulse response of
length L+ 1, such that L ≤ µ+ 1� N .

- The L + 1 channel responses g0 , g1 , . . . , gL ∈ C are aligned with the sampling
grid.

- Perfect time and frequency synchronization between transmitter and receiver.

Assume for simplicity, that our cyclic pre�x is of length µ+ 1 = L, i.e the minimum
overhead required to eliminate ISI between consecutive blocks. The pre�xed signal
x
cp
is transmitted across the linear discrete-time channel and the received signal y

cp
,

of length µ+ 1 +N , is given by the linear convolution of x
cp

with the channel and
corrupted by additive noise. We immediately discard the �rst µ + 1 samples of y

cp

and the remaining N samples of interest are given by




y1

y2

...

y
N




=




g
L
· · · g1 g0 O

g
L
· · · g1 g0 O
.. .

. . . O

O
.. .

. . .

O g
L
· · · g1 g0

O g
L
· · · g1 g0







x−µ
...
x−1

x0

x1

...
x
N




+




w1

w2

...

w
N



,

and this linear system of equations is compactly expressed as

y = G̃x
cp

+w, (4.1)

where G̃ is of size N × (µ+ 1 +N) and w is the noise sequence. Notice how we have
simply discarded the �rst µ+ 1 rows of the linear convolution matrix to obtain the
N output samples of interest. Since the µ+ 1 components de�ning the cyclic pre�x
in x

cp
are chosen such that

x−k = x
N−k , k = 0, 1, . . . , µ,

we can reformulate the system (4.1) and express it in terms of a square matrix G
and the non-pre�xed vector x (rather than x

cp
). This reformulated system is given

by




y1

y2

...

y
N




=




g0 g
L
· · · g1

g1 g0 O
.. .

...
...

. . . O g
L

g
L

. . . O
. . .

. . .

O g
L
· · · g1 g0







x1

x2

...

x
N




+




w1

w2

...

w
N



, (4.2)

and we can likewise express this linear system of equations compactly as

y = Gx+w. (4.3)
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4.2. Linear Algebra Representation of OFDM

The following result is crucial for the continuation of our channel input-output char-
acterization and allows for straightforward argumentation and simpler derivations
later on.

Lemma 4.2.1.

The cyclic convolution matrix G in (4.3) is normal, i.e.

GGH = GHG.

Proof. De�ne the matrices A := GGH and B := GHG and we now verify that
each entry A(n,m) is equal to B(n,m) for all (n,m) ∈ {1, 2, . . . , N}×{1, 2, . . . , N}.
From the cyclic convolution structure of G it follows that its second column is simply
a one-step cyclic shift of its �rst column. The third column is a one-step cyclic shift
of the second and so on (G is a so-called circulant matrix ). Denote by q the �rst
column of G, i.e. let

q :=
[
q1 , q2 , . . . , qN

]> =
[
g0 , g1 , . . . , gL , 0, 0, . . . , 0

]>
,

where in our particular case the last N−L−1 values are assumed to be zero, however,
this fact is not needed to complete the proof. Thus, we may consider an arbitrary
q ∈ CN . Consider the N ×N one-step cyclic shift matrix D given by

D :=




0 O 1
1 0 O

1 0 O

O
.. .

. . .

O 1 0
O 1 0



,

and notice that D is easily obtained from the identity matrix I
N
(with its bottom

row inserted as the �rst row).
With Dk being the k-fold matrix multiplication of D with itself and with the appro-
priate convention D0 := I

N
, we can write

G =
[
D0q Dq D2q · · · DN−1q

]
,

since the k'th column of G is a (k− 1)-step cyclic shift of q for k = 2, 3, . . . N . Note
that

Dk+N = Dk and
(
Dk
)> = DN−k, k = 0, 1, . . . , N − 1.

We de�ne a reversal matrix J to be the N × N matrix with 1's on its entire anti-
diagonal and zeroes elsewhere. The transform Jq simply gives the vector q in re-
versed order. Now we can express, for instance

GH =
[
DJq∗ D2Jq∗ · · · DN−1Jq∗ D0Jq∗

]
,
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4.2. Linear Algebra Representation of OFDM

but also we can express both G and GH by their rows instead of their columns,

again from appropriate transforms involving D, J and q. Note that JDkJ =
(
Dk
)>

and �nally we are able to obtain the two complex entries

A(n,m) =
(
DnJq

)>(
DmJq∗

)
= q>JDN−n+mJq∗ = q>

(
DN−n+m

)>
q∗

B(n,m) =
(
Dn−1q

)H(
Dm−1q

)
= qHDN−n+mq.

Since a scalar equals its own transpose we can simply transpose the �nal expression
for A(n,m) and thereby complete the proof, since

A(n,m) =
(
q>
(
DN−n+m

)>
q∗
)>

= qHDN−n+mq = B(n,m).

�

Immediately, Lemma 4.2.1 allows for the complex spectral theorem [21, Theorem

7.9] to be applied, and hence, the circulant square matrix G has an eigenvalue

decomposition

G = MΛMH , (4.4)

where Λ is a diagonal matrix of the eigenvalues of G and M is a matrix whose
columns constitute a set of N orthonormal3 eigenvectors of G. Consider the trans-
pose of G and recall the DFT matrix F from Section 2.2, i.e. consider the two
N ×N matrices

G>=




g0 g1 · · · g
L

O

g0

. . .

O
. . . g

L

g
L

O
.. .

...
...

. . . O
. . . g1

g1 · · · g
L

g0




, F =
1√
N




1 1 · · · 1

1 ω · · · ωN−1

...
...

. . .
...

1 ωN−1 · · · ω(N−1)2




Now we can readily verify by calculations that each column n = 1, 2, . . . , N , of the
DFT matrix F, is an eigenvector of G> with corresponding eigenvalue

λ
n

=
L+1∑

k=1

g
k−1ω

(k−1)(n−1) =
N∑

k=1

q
k

exp
(
−i2π(n− 1)k−1

N

)
, (4.5)

3A list of vectors is called orthonormal if the vectors are mutually orthogonal and each vector
has Euclidian norm equal to one. The columns of M constitute a basis for CN , and it fact, the
rows hold the same property. Hence, MHM = IN = MMH and a matrix M with this property is
called unitary.
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4.2. Linear Algebra Representation of OFDM

with q as introduced in Lemma 4.2.1, and where one needs to utilize the fact that

ω = exp
(
−i2π 1

N

)
⇒ ωk+N = ωk, k ∈ Z.

Hence, we have established the relationship

G>F = FΛ, (4.6)

where Λ = diag
(
λ1 , . . . , λN

)
. Multiply both sides of (4.6) with F−1 from the right

(recall that F−1 = FH), and transpose the result to obtain

G = FHΛF.

From the decomposition (4.4) it now follows that MH = F and therefore M = FH .
Thus, the frequency domain channel input-output relationship reads

ŷ := Fy = F
(
Gx+w

)

= F
(
MΛMHFH x̂+w

)

= Λx̂+ Fw,

and the above calculations show that OFDM, by the use of IDFT/DFT operations
combined with the cyclic pre�x, decomposes a multipath ISI channel into N orthog-
onal subchannels. Since the additive noise w is assumed to be white and complex
Gaussian distributed, its properties are unchanged when exposed to a DFT since
still the mean is zero and

Var
[
Fw
]

= FVar
[
w
]
FH = F

(
σ2I

N

)
FH = σ2I

N
.

The distribution remains Gaussian too, since a linear combination of Gaussians is
again Gaussian. Accordingly, and with a slight abuse of notation, we propound the
coordinate-wise OFDM input-output relationship as

ŷ
n

= λ
n
x̂
n

+ w
n
, n = 1, 2, . . . , N, (4.7)

and from (4.5) we directly obtain the eigenvalue λ
n
, which we (up to normalization)

recognize as the channel transfer function evaluated at the corresponding subcarrier
frequency. That is, the complete set of eigenvalues are obtained from the N -point
DFT of the �rst column q of G, according to

[
λ1 , λ2 , . . . , λN

]> =
√
NFq.

Remark that Lemma 4.2.1 and the subsequent calculations show that the columns
of the N -point DFT matrix constitute the complex eigenvector basis needed to di-
agonalize any circulant N ×N matrix.

39



4.3. Continuous-time OFDM Transmission

4.3 Continuous-time OFDM Transmission

In Figure 4.3 a block diagram of a complete OFDM system is shown. In practice
there is no transmission across a discrete-time channel as described in the previous
section - instead the transmission is analog with continuous-time signals. This fact is
re�ected in the block diagram where the pre�xed discrete-time signal x

cp
is digital-

to-analog (D/A) converted with a pulse shaping �lter. The analog signal is then
up-converted to a certain carrier frequency fc before continuous-time transmission
across the wireless channel. During transmission the signal is subject to multipath
channel distortion and is further corrupted by additive noise, assumed to be white
and Gaussian. At the receiver side the distorted signal is initially carrier demodulated
(down-converted) and lowpass �ltered. A �lter matched to the shaping pulse is then
applied to the signal and �nally the resulting signal is sampled. This entire procedure
and further details are shown in the block diagram of Figure 4.3.
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Figure 4.3: Block diagram of an OFDM system. All representations inside the tiny-dashed
box are bandpass whereas all terms outside the box are complex baseband enti-
ties.

The discrete-time matrix-vector formulation presented in the previous section im-
plied the basic ideas of OFDM and indicated how the discrete-time channel was
decomposed into N orthogonal subchannels by the IDFT/DFT operations. In this
section we investigate the OFDM system with continuous-time transmission on a
wireless multipath channel, thus re�ecting a more realistic setup compared to the
simpli�ed discrete-time system.

At this point it is worth to speci�cally emphasize that only a few of the blocks in
Figure 4.3 are concerned within the scope of this thesis. The �gure serves to pro-
vide an overall and (to some extend) realistic picture of an OFDM system, from
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4.3. Continuous-time OFDM Transmission

transmitter to receiver. In particular, what is important for the remaining parts of
this thesis is the frequency domain input-output relationship obtained in (4.7). Ac-
cordingly, we now derive a similar channel input-output relationship for the scenario
with continuous-time transmission.

4.3.1 Pulse Shaping and Transmission

We now consider the procedure of converting the pre�xed discrete-time signal x
cp

into an analog complex baseband signal. The µ+1+N samples of x
cp
are converted

to an analog signal x(t) by pulse shaping. Speci�cally, with a pulse Ψ(t) con�ned to
the interval [0, T

s
], recall Figure 2.4 on page 16, the continuous-time pulse shaped

signal is de�ned as

x(t) :=
N∑

n=−µ
x
n
Ψ(t− nT

s
), t ∈

[
− (µ+ 1)T

s
, NT

s

]
. (4.8)

Expressing x(t) in terms of the original symbols x̂1 , x̂2 , . . . , x̂N , yields

x(t) =
N∑

m=1

x̂
m

1√
N

N∑

n=−µ
Ψ(t− nT

s
) exp

(
i2π(m− 1)n−1

N

)

︸ ︷︷ ︸
Φm (t)

, (4.9)

i.e. the complex baseband signal x(t) is a superposition of N carrier waveforms
Φm(t), m = 1, 2, . . . , N , each scaled by the corresponding complex symbol x̂m , and
all de�ned on the same time interval of length (µ + 1 + N)T

s
. The distinction

between the two di�erent interpretations of x(t) given in (4.8) and (4.9) is obtained
by recalling Figure 4.1. The expression in (4.8) clari�es the transmitted signal
as a pulse train while the expression in (4.9) clari�es the transmitted signal as a
multicarrier waveform.

As depicted in Figure 4.3 we only consider the equivalent lowpass representations
of the entire system, i.e. the real bandpass representations inside the tiny-dashed
box in the �gure are not of primary concern (only their complex baseband repre-
sentations). Hence, for the multipath channel we consider the equivalent lowpass
time-varying channel impulse response g(τ, t), which was introduced and described
in detail in the previous chapter.

Assumptions:

- The channel is linear.

- g(τ, t) = g(τ, 0) for all t ∈
[
− (µ+1)T

s
, NT

s

]
, i.e. the channel is time-invariant

over the period of duration (µ+1+N)T
s
when x(t) is transmitted. Makeshift,

and with a slight abuse of notation we let g(τ) := g(τ, 0).

- The impulse response is non-zero for at most a period of duration (µ + 1)T
s

and more speci�cally, g(τ) = 0 whenever τ < 0 or τ > (µ+ 1)T
s
.
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4.3. Continuous-time OFDM Transmission

- Perfect time and frequency synchronization between transmitter and receiver.

The above assumptions are similar to those imposed on the discrete-time system in
the previous section. We assume a linear channel such that the output signal, in the
absence of noise, equals the convolution of the input signal with the `temporally'
time-invariant channel impulse response. Furthermore, we assume to have selected
a cyclic pre�x of su�cient duration such that no ISI is present. Finally, synchro-
nization issues are not within the scope of this thesis.

The tiny-dashed box in Figure 4.3 re�ects the procedure of transmitting signals in
practice, i.e. transmission of real signals on carrier frequency fc (and not complex
baseband signals). However, we skip this entire part and investigate the received
signal after carrier demodulation and lowpass �ltering, i.e. we consider

z(t) := {x ∗ g}(t) + w(t),

where all terms are in accordance with those given in Figure 4.3. The transmit-
ted baseband signal x(t) is convolved with the equivalent lowpass channel impulse
response g(τ) and complex circular symmetric white Gaussian noise is added.

4.3.2 Matched Filtering and Sampling

To maximize the signal-to-noise ratio (SNR) before sampling of the received base-
band signal, yet another �lter is applied.

De�nition 4.3.1. (Matched �lter)

Let Ψ(t) be a signal con�ned to the interval [0, T
s
]. A �lter with impulse response

f(τ) = Ψ
(
T
s
− τ
)
is called a matched �lter to the signal Ψ(t).

De�ne the mirrored pulse Ψ
mf

(t) := Ψ
(
T
s
− t
)
and consider the convolution

{
Ψ ∗Ψ

mf

}
(τ) =

∫ ∞

−∞
Ψ(t)Ψ

mf
(τ − t)dt =

∫ ∞

−∞
Ψ(t)Ψ

(
t+ T

s
− τ
)
dt

︸ ︷︷ ︸
(?)

.

We may consider the integral (?) as an autocorrelation of the pulse Ψ(t) evaluated
at lag T

s
− τ . Although no stochastic terms are involved we still refer to (?) as an

autocorrelation, and we de�ne

RΨΨ(τ) :=
∫ ∞

−∞
Ψ(t)Ψ

(
t+ τ

)
dt.

Notice that RΨΨ(0) reports the power content of the pulse Ψ(t) and furthermore,
since Ψ(t) is con�ned to the interval [0, T

s
], it follows that RΨΨ(τ) = 0 whenever

|τ | ≥ T
s
.
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4.3. Continuous-time OFDM Transmission

A �lter with impulse response Ψ
mf

(t), i.e. a �lter matched to the shaping pulse Ψ(t),
is applied to the baseband signal z(t) and the output signal is

y(t) :=
{
x ∗ g ∗Ψ

mf

}
(t) + v(t), v(t) := {w ∗Ψ

mf
}(t)

=
N∑

n=−µ
x
n
·
{
g ∗RΨΨ

}(
t− nT

s

)
+ v(t).

Finally, the signal y(t) is sampled at integer multiples of the sampling time T
s
. The

�rst µ+1 samples corresponding to the cyclic pre�x are discarded and the remaining
samples of interest are for k = 1, 2, . . . , N , given by

y
k

:= y(kT
s
) =

N∑

n=−µ
x
n
·
{
g ∗RΨΨ

}(
(k − n)T

s

)
+ v(kT

s
). (4.10)

A structural exploration of (4.10) reveals (not surprisingly) that we are dealing with
a convolution. Hence, by assigning the function g̃(t) :=

{
g∗RΨΨ

}
(t) we may similarly

to (4.1) in the previous section, express the sample-wise input-output relationship
(4.10) in matrix-vector form according to

y = G̃x
cp

+ v. (4.11)

The concatenated response g̃(t) =
{
g∗RΨΨ

}
(t) is a slightly stretched and altered ver-

sion of the `true' channel impulse response. Heuristically, the `true' channel has been
`convolutional shaped' by the autocorrelation function RΨΨ(τ) associated with the
pulse used to shape the symbols intended for transmission. An illustrative example
of this channel shaping phenomena is provided by Figure 4.4.

τ
τ5 

Power 

0 τ6 τ1 τ2 τ3 τ4 

Figure 4.4: Signal echoes of a multipath channel (arrows) being shaped by an autocorrelation
pulse (dashed function).

Applying exact similar arguments as in the previous section allow us to manipulate
the matrix-vector relationship (4.11) and reshape the linear convolution matrix G̃
into a circulant square matrix GΨ . The reformulated linear system of equations
reads

y = GΨx+ v, (4.12)
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and conceptually there is no di�erence between (4.12) and the expression (4.3) ob-
tained in the previous section. Only, we have emphasized by the subscript attached
on GΨ , that the channel we `observe' has been altered by certain properties of the
shaping pulse employed in the communication system. In particular, the frequency
domain properties of RΨΨ(τ) turns out to be crucial - a fact that we elaborate on in
the forthcoming chapter. Lemma 4.2.1 applies directly to GΨ as well, and we can
essentially repeat all arguments from previous section (explaining the amount of at-
tention payed to this discrete-time scenario). Speci�cally, we can write GΨ in terms
of its eigenvalue decomposition and since the matrix is circulant, the N -point DFT
matrix F plays the exact same role in this case. Hence, applying F to the observed
y at the receiver side yields, equivalent to (4.7), the frequency domain input-output
relationship

ŷn = λn x̂n + vn , n = 1, 2, . . . , N. (4.13)

Each eigenvalue λ
n
can be calculated from a Fourier transform relationship to the

�rst column of GΨ , as was shown in the previous section. Therefore, letting

q =
[
g̃(0), g̃(T

s
), g̃(2T

s
), . . . , g̃

(
(N − 1)T

s

)]>

denote the �rst column of GΨ , it follows that

[
λ1 , λ2 , . . . , λN

]> =
√
NFq,

and recall that we de�ned g̃(t) =
{
g ∗ RΨΨ

}
(t), i.e. a convolution of two functions.

Hence, each eigenvalue λ
n
, is given as the product between the frequency response

of the channel and the frequency response of the autocorrelation pulse, since the
sampled version of the convolution in q will turn into a product when exposed to
the N -point DFT.

4.4 OFDM Drawbacks

We close this chapter by pointing out a few selected drawbacks of OFDM. This
is merely to emphasize in brief manners that a variety of technical issues need to
be managed in practice. Recall the time domain OFDM signal x(t) given in (4.9).
Since this signal is a superposition of complex-valued symbols modulated onto
orthogonal carrier waves, the signal envelope |x(t)| is subject to strong and notable
variations [4, Section 2.1.2]. Consider, for instance, a time instant where all terms
in the superposition add constructively in phase. Compared to the average signal
power level during transmission, this constructive adding will cause a signi�cant
peak in the instant transmission power. Such sudden and extreme �uctuations
in the signal power may cause severe signal distortion due to saturation of the
ampli�er in the transmitter. If the ampli�er is saturated, signal power may be
introduced at frequencies outside the bandwidth where the system was supposed to
operate. The above mentioned issue is commonly referred to as the problem of high
peak-to-average power ratio. Pre-coding the sequences of data symbols may be used
to deal with the problem. The coding allows only sequences of symbols known to

44
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have a relatively low peak-to-average power ratio, however, the cost of this power
controlling is a redundant overhead introduced by the coding.

Another important issue, that in particular has to be considered for OFDM, is syn-
chronization. Misalignments between transmitter and receiver may degrade notably
the transmission quality [4, Section 2.3.3], implying an unacceptable bit-error-rate

(BER) at the receiver side. Consider, for instance, a misalignment in the overall
carrier frequency fc of the system. In such a case the subcarrier orthogonality (re-
call Lemma 4.1.1) is no longer maintained and the information transmitted across
the di�erent subchannels will interfere. This e�ect is commonly referred to as inter-
carrier interference (ICI). Time domain synchronization and phase noise e�ects are
important aspects too (see [4]), however, we do not consider such issues in this the-
sis. Overall, we always assume no presence of ISI and ICI, i.e. the input-output
relationship in (4.13) is valid.
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Chapter 5

Channel Estimation

In this chapter we describe a number of state-of-the-art channel estimation methods
and algorithms for communication systems using OFDM. All methods presented are
based on pilot symbol transmissions, i.e. systematic transmission of symbols known
to both transmitter and receiver. From the pilot symbol data the channel can be
estimated and such approaches are referred to as pilot assisted channel estimation

(PACE). Critical issues concerned with the channel estimation emerge from so-called
power leakage e�ects and special attention is therefore payed to this subject. Simu-
lation results concerning performance evaluation of a few selected PACE algorithms
constitute the closing part of this chapter.
In general, channel estimation techniques can employ both frequency domain and
time domain properties of the channel. Solely, we point our emphasis towards esti-
mation of the channel in the frequency domain and we make no use of time direction
interpolation or �ltering. Channel estimation techniques which are not based on
pilot symbol transmissions exist, however, such approaches are not within the scope
of this thesis. The interested reader may consult [7, Section 5.1] and the references
therein for further insight on methods which do not employ pilot symbols.

5.1 Unused Subchannels

As mentioned earlier, multicarrier modulation schemes are bene�cial due to their
�exibility in usage of bandwidth. Even though an OFDM system is designed with a
total of N subchannels evenly spaced in frequency, not all subchannels need to be
employed simultaneously. Any set of subchannels can be made `inactive' whenever
required, hereby adjusting the e�ective usage of electromagnetic spectrum. This
�exibility is advantageous since spectral allocations may di�er from country to
country and also it allows for operators to squeeze new systems into frequency bands
already appointed or �nancially acquired.

Consider an OFDM system designed with a total of N subchannels where only a
subset of Nu ≤ N subchannels are used for actual transmissions. The remaining
N −Nu subchannels are `shut down', simply by not transmitting on these frequency
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5.2. LTE System Setup

bands, i.e. in (4.9), the corresponding symbols from the digital constellation are
replaced by zeroes (no power). Often, a number of subchannels at each edge of
the system bandwidth are shut down by default to serve as guard bands [12, 18].
The pulse shaping �lter Ψ(t) in (4.8) will typically introduce some attenuation at
the edges of the bandwidth, and this attenuation depends on the frequency domain
`cut o�' properties of RΨΨ(τ). For a given system, speci�c choices of R̂ΨΨ(f) are
numerous, however, this autocorrelation pulse must satisfy the Nyquist criterion to
avoid ISI prior to sampling of the received signal. Raised cosine pulses or root-raised
cosine pulses are often used in practice but this fact is relatively non-essential for our
objective. Hence, we will not elaborate further on this subject, only we stress the
fact that an appropriate number of subchannels are kept inactive at both edges of
the overall system bandwidth. The consequences of this are revealed later on when
the channel transfer function is to be estimated from pilot symbol data.
In the following we explain in detail how pilot symbols are transmitted and sub-
sequently used for channel estimation at the receiver. Although the setup is pre-
sentable in its full generality, we speci�cally mind our exposition towards the 3GPP
setup proposed for LTE. This choice is made to improve readability, insight and in-
terpretations, especially for readers somewhat unfamiliar with OFDM and channel
estimation in general.

5.2 LTE System Setup

The system parameters presented in the following are based on the 3GPP technical
speci�cations [22] and [23]. In order to get a feeling of the possible dimensionality of
the estimation task, we consider the LTE setup proposed with parameters as given
in Table 5.1 below. We do not discuss the selections and the associated justi�cations
for the actual parameter values since indeed, such a discussion is out of scope of this
thesis.

Sampling System DFT Subcarrier Active Cyclic pre�x
time bandwidth size spacing subchannels duration

Ts B N ∆f Nu (µ+ 1)Ts
32.55ns 30.72MHz 2048 15kHz 1200 144Ts

Table 5.1: Common set of system parameters for downlink OFDM in LTE.

As can be seen from the above table, only 58.6% of the N = 2048 subchannels are
active, i.e. the e�ective number of subchannels used is Nu = 1200. A frequency
domain view of the entire system is provided by Figure 5.1, and notice how the
bandwidth is centered around f = 0 (baseband). Hence, when upconverting to the
carrier frequency f

c
for actual transmission, f

c
corresponds to the center frequency

of the spectrum occupied by the OFDM system in practice.
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f  [Hz]
0

|RΨΨ ( f )| ^

-1/(2Ts )

. . . . . .... ...

1/(2Ts )

Figure 5.1: Frequency domain view of the overall system with Nu/2 = 600 active subchan-
nels on each side of the zero frequency (grey-shaded areas). An example showing
the `cut o�' properties of a shaping �lter autocorrelation pulse is given too.

As revealed in [22], the subchannel with baseband center frequency equal to zero is
preserved inactive for technical reasons. Hence, 600 active subchannels are present
to the left of zero, and similarly, 600 active subchannels to the right. This means
that the e�ective bandwidth of the system is B̃ ≈ 18MHz. More subchannels can
be shut down if needed, e.g. to �t a 5MHz or 10MHz band set aside for a given
application. Furthermore, as already apparent from above, the e�ective spectrum
used need not be coherent/contiguous. Hence, multicarrier systems are quite �exible
in usage of bandwidth.

5.2.1 Baseband Reference Frequency

As mentioned in the previous section, the baseband reference frequency f = 0 informs
the midpoint of the frequency band in use. According to our de�nition of the DFT
in (2.2) on page 13, the reference frequency f = 0 corresponds to the leftmost point
of the band. Hence, when upconverting to the carrier frequency f

c
in this case, the

particular value f
c
does not correspond to the midpoint of the frequency band used

in practice. Adapting to the LTE setup we now identify the frequency shift (phase
rotation) needed in order to make the two references coincide.

Consider the discrete-time signal x =
[
x1 , x2 , . . . , xN

]>
and our previous de�nition

of the DFT in (2.2). From a straightforward change of summation indices we notice
that

x̂
k

=
1√
N

N∑

n=1

x
n

exp
(
−i2π(k − 1)n−1

N

)
, k = 1, 2, . . . , N

=
1√
N

N
2 −1∑

m=−N2

x
m+N

2 +1
exp

(
−i2π(k − 1)m

N

)
e−iπ(k−1)
︸ ︷︷ ︸

(?)

,

where the complex exponential term (?) can be seen as k − 1 concatenated phase
rotations of π, i.e. the term simply alternates between 1 and −1 as a function of
k. In general, a shift in frequency results in a phase rotation and in our particular
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case the phase rotation is quite simple since the shift in frequency is by half the
bandwidth. Alternatively, we may apply the DFT from (2.2) on the shifted signal[
x
N/2+1 , . . . , xN , x1 , . . . , xN/2

]>
instead of applying

x̂
k

:=
1√
N

N
2 −1∑

m=−N2

x
m+N

2 +1
exp

(
−i2π(k − 1)m

N

)
, k = 1, 2, . . . , N. (5.1)

The rede�ned DFT in (5.1) is forthright implemented in matrix form according to

F :=
1√
N




1 ω−N/2 ω−2N/2 · · · ω−(N−1)N/2

...
...

...
...

1 ω−1 ω−2 · · · ω−(N−1)

1 1 1 · · · 1

1 ω1 ω2 · · · ω(N−1)

...
...

...
...

1 ωN/2−1 ω2(N/2−1) · · · ω(N−1)(N/2−1)




, (5.2)

and notice how this `new' DFT matrix is nothing but a row-shifted version of the
matrix originally de�ned in (2.3). One can argue that we could as well have intro-
duced the DFT as above from the very beginning, and this is true indeed. However,
to our opinion the commonly used de�nition (2.2) is easier to interpret at �rst glance
and the rede�ning made in this section should be straightforward to comprehend at
this point.

5.2.2 Pilot Symbol Pattern

In LTE a certain number M of the Nu active subchannels are utilized for pilot
symbol transmissions. The pilot symbols are distributed in both time and frequency
with a con�guration depending on the speci�c application. If the multipath channel
is highly frequency selective, the pilot symbols need to be closely spaced in the
frequency domain in order to capture the rapid variations of the channel transfer
function. Similarly, if the receiver is highly mobile and the environment is changing
fast, the pilot symbols need to be closely spaced in time. Obviously, there are
numerous ways to distribute the pilot symbols simultaneously in these two domains.
Many con�gurations have been investigated and the 3GPP proposal for LTE is a
diamond alike pattern which we elaborate on later in this section.

Consecutive transmissions of OFDM symbols are arranged in so-called radio frames.
The duration of one radio frame is ten milliseconds. Each radio frame consists of
ten sub frames and each sub frame consists of two slots. Every slot contains seven
OFDM symbols including cyclic pre�xes. The entire structure of a radio frame is
depicted in Figure 5.2.
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10ms

One radio frame

Sub frame #0

.  .  .Slot #0

Slot #2

.  .  .

CP #1 OFDM symbol #1

0.5ms

Sub frame #1 Sub frame #9

Slot #1 Slot #2 Slot #19

CP #7 OFDM symbol #7.  .  .

Figure 5.2: The structure of a radio frame.

The duration of a sub frame is one millisecond and the duration of a slot is therefore
half a millisecond. The �rst OFDM symbol in every slot holds a cyclic pre�x of
slightly prolonged duration (160T

s
), while the remaining six OFDM symbols all hold

a cyclic pre�x of duration 144T
s
as stated in Table 5.1. This prolonging is merely

a matter of making the durations sum up to �t the radio frame structure. We may
verify that indeed the duration of each slot is half a millisecond since

(
160 + 2048 + 6 · (144 + 2048)

)
· 32.55ns︸ ︷︷ ︸

Ts

= 0.000499968s ≈ 0.5ms.

Hence, a transfer of 14000 OFDM symbols per second is possible with the system
con�guration presented here. With Nu = 1200 active subchannels and for instance
M = 200 of these used for pilot symbols, we are left with 1000 subchannels carrying
non-redundant data. Assume for simplicity this pilot symbol con�guration for every
single OFDM symbol. Use of QPSK modulation, i.e. two bits per constellation
symbol, then yields a theoretical data rate of 28Mbits/s and if 64-QAM is utilized,
the theoretical rate is 84Mbits/s. The reason for stating these numbers is simply to
suggest the aims and rigorous demands of LTE. Employing additional subchannels
and usage of multiple-input-multiple-output (MIMO) techniques imply even higher
data rates.

The diamond alike pilot symbol pattern suggested for LTE is shown in the time-
frequency plot in Figure 5.3. Partly, the �gure illustrates the joint con�guration
of the pilot symbols in time and frequency, and furthermore the �gure suggests the
con�guration when both transmitter and receiver are equipped with two antennas
(i.e. MIMO). The left-hand side depicts the pilot symbol con�guration at the �rst
transmit antenna port. The right-hand side depicts the pilot symbol con�guration
at the second transmit antenna port. Notice carefully how the second antenna port
is not allowed to utilize the time-frequency allocations occupied by pilot symbols
from the �rst antenna port and vice versa [23].
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f  [Hz]

t [s]
Even numbered slots

f  [Hz]

Odd numbered slots Even numbered slots Odd numbered slots

ANTENNA PORT #1 ANTENNA PORT #2

. . .
. . .

. . .
. . .

. . .

. . .

. . .

. . .

Figure 5.3: Pilot symbol patterns. Black and grey boxes indicate pilot symbols while the
white boxes indicate non-redundant data symbols. Crossed boxes indicate time-
frequency allocations which are not allowed to be occupied by the current an-
tenna port.

When at most two antenna ports are used, the temporal gaps between OFDM
symbols containing pilot symbols are �xed as shown in Figure 5.3. That is, for
both even numbered and odd numbered slots, pilot symbols are contained only in
the �rst and the �fth OFDM symbol. When three or four antenna ports are used,
the temporal con�guration is slightly altered at these additional ports, however, we
do not exemplify more than two antenna ports in this thesis. The spacing between
adjacent pilot symbols in the frequency direction is six subchannels by default. Since
Nu = 1200 subchannels are active it means thatM = 200 of these are equipped with
pilot symbols if the considered OFDM symbol is supposed to carry pilot symbols
(�rst or �fth in every slot).

Recall from Figure 5.1 that the baseband center frequencies of the Nu active sub-
channels are

−Nu
2

∆f, . . . ,−2∆f,−∆f , ∆f, 2∆f, . . . , Nu
2

∆f,

with the subcarrier spacing ∆f = 1/(NT
s
) = 15kHz. We de�ne the following ordered

set of indices
I :=

(
− Nu

2
, . . . ,−2,−1 , 1, 2, . . . , Nu

2

)
,

and refer to its elements as I(1), I(2), . . . , I
(
Nu
)
. In practical accordance with [23],

we de�ne the pilot symbol indices

p(m) := I
([
η + η

shift
mod 6

]
+ 6 · (m− 1) + 1

)
, m = 1, 2, . . . ,M, (5.3)

where in (5.3) the term
[
η+η

shift
mod 6

]
∈ {0, 1, 2, 3, 4, 5} is a technical displacement

mechanism de�ned such that

η :=





0, at the �rst OFDM symbol in any slot at antenna port #1
3, at the �fth OFDM symbol in any slot at antenna port #1
3, at the �rst OFDM symbol in any slot at antenna port #2
0, at the �fth OFDM symbol in any slot at antenna port #2,
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and where η
shift

:=
[
`Cell ID' mod 6

]
depends speci�cally on the current cell iden-

ti�cation and the base station from where the signal originated. Hence, from (5.3)
it can be seen that the grid of pilot symbols is systematically exposed to a cell-
dependent o�set such that, in practice, the pilot symbols from two adjacent cells
do not employ the same frequency bands. For simplicity we assume that η

shift
stay

�xed, say η
shift

= 2, i.e. we assume that the receiver does not leave the current cell
during transmission. With η = 0 and η

shift
= 2 we collect the indices from (5.3) in

the set
P :=

{
p(m)

∣∣ m = 1, 2, . . . ,M
}
,

which speci�cally reads

P =
{
−598,−592,−586, . . . ,−10,−4
︸ ︷︷ ︸

100 negative indices

, 3, 9, 15, . . . , 585, 591, 597
︸ ︷︷ ︸

100 positive indices

}
.

Also, we should consider the above set with the number 3 added to all elements,
corresponding to η = 3 and η

shift
= 2. At the location in P where the sign changes

it is crucial to remark the aberrant index gap of seven (and not the common spacing
of six). This occurrence is a result of the inactive subchannel with baseband center
frequency equal to zero. In [23] this irregular pilot symbol gap is seemingly not
speci�ed/selected for any particular reason, however, we shall see later on that its
presence comes to pose technical di�culties. Nonetheless, we are now through with
the technical LTE parameter descriptions, i.e we are well-prepared to consult the
task of pilot assisted channel estimation (PACE) for OFDM.

5.3 PACE Framework

The remaining sections of this chapter are based on the approaches and modeling
suggestions in [9, 10, 11, 12, 18]. Common for these state-of-the-art references con-
cerned with PACE for OFDM is a similar and comparative framework. In particular,
their baseband multipath channel model coincide, with only a few variations in indi-
vidual designs. Overall, the primary channel model is the same and we have chosen
to compare with a reference channel model speci�ed by 3GPP [22, Annex B.2]. The
objective with the following sections is to provide a throughout insight on state-of-
the-art PACE for OFDM. In particular, we have aimed towards replication of the
results reported in [7].

5.3.1 Baseband Models

In Chapter 3 we considered a Rayleigh fading multipath channel with an associated
model of the channel impulse response reading

g(τ, t) =
L(t)∑

l=1

α
l
(t)δ

(
τ − τ

l
(t)
)
, α

l
(t) ∈ C.
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For each echo the associated time-varying coe�cient α
l
(t) comprise a WSS zero-mean

complex Gaussian process and the L(t) di�erent processes are mutually uncorrelated
(the US property). We now adapt to the state-of-the-art references given above and
consider the slightly more static model

g(τ, t) =
L∑

l=1

α
l
(t)δ

(
τ − τ

l
T
s

)
.

Here, the number L of channel echoes is considered �xed and known a priori and
the delay parameters τ1Ts , τ2Ts , . . . , τLTs are static too1. The complex amplitudes
α
l
(t) are still considered time-variant and some of the above mentioned authors

impose no correlation structure in the time direction while others do. The latest
incoming signal echo with associated delay τ

L
T
s
is assumed to always arrive no later

than (µ + 1)T
s
, i.e. the duration of the cyclic pre�x. Hereby, no ISI will occur

between adjacent OFDM symbols. The time-varying channel transfer function of
the multipath channel is given as the Fourier transform of g(τ, t) with respect to the
delay variable τ , i.e.

h(f, t) =
∫ ∞

−∞
g(τ, t)e−i2πfτdτ =

L∑

l=1

α
l
(t)e−i2πfτlTs , f ∈ R.

When data symbols are transmitted across the N
u
active subchannels of the OFDM

system, we know from Chapter 4, that each individual data symbol is distorted by
the channel frequency response evaluated at the corresponding subcarrier frequency.
Hence, the N

u
coe�cients

h
n
(t) := h(f, t)

∣∣∣
f=I(n)∆f

=
L∑

l=1

α
l
(t)e−i2π

I(n)
N τ

l , n = 1, 2, . . . , N
u
, (5.4)

are the complex numbers that need to be estimated in order to recover the trans-
mitted data symbols. Recall the frequency domain input-output relationship (4.13),
and from this equation we state the corresponding relationship for our LTE system
under consideration as

ŷn = x̂nhn(t) + wn , n = 1, 2, . . . , Nu .

Notice that only Nu symbols are involved since N −Nu subchannels serve as guard
bands as explained in the beginning of this chapter. We assume that all Nu active
subcarriers are in the `�at region' of the shaping �lter frequency response as depicted
in Figure 5.1. Without loss of generality, we assume this �at response to hold unit
gain and therefore it has been omitted above. The point is that the shaping �lters
comprise a design issue of the communication system, and hence their �at gain in
the frequency domain will be known.

1Notice how the delay parameters are now modeled in terms of the sampling time Ts , as also
suggested in [9, 11]. This modeling turns out to be appropriate later on.
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Since the channel is assumed to be time-invariant during the transmission time of
each OFDM symbol, we omit the time-dependency on the channel coe�cients from
this point and on. The subchannel-wise relationship above then allows for the overall
matrix-vector formulation

ŷ = X̂h+w, (5.5)

where the input symbols (the information symbols) have been appropriately collected

in the matrix X̂ := diag
(
x̂1 , x̂2 , . . . , x̂Nu

)
. Notice carefully, that for each OFDM

symbol transmitted we use the same model (5.5) over and over again.

5.3.2 Pilot Symbol Observations

The model spelling the input-output relationship at the pilot symbol positions P,
consists of an appropriate subset of the complete signal model (5.5) and is given by

ŷ
p

= X̂
p
Tα+w

p
.

The subscript `p' is present as abbreviation for `pilots' and furthermore

- ŷ
p

=
[
ŷ
p(1) , ŷp(2) , . . . , ŷp(M)

]>
is a vector containing all observations from the

M pilot symbol positions.

- X̂
p

= diag
(
x̂
p(1) , x̂p(2) , . . . , x̂p(M)

)
, i.e. a diagonal matrix of the transmitted

pilot symbols. Notice that this matrix is known to the receiver.

- T is an M × L matrix depending on the delays τ = [τ1 , τ2 , . . . , τL ]> and the
pilot symbol positions P in such a way that its (m, l)'th entry reads

T(m, l) := exp
(
− i2π p(m)

N
τ
l

)
. (5.6)

- α =
[
α1 , α2 , . . . , αL

]>
is a vector of the complex channel amplitudes.

- w
p

=
[
w
p(1) , wp(2) , . . . , wp(M)

]>
contains as components the complex AWGN

contributions at the pilot symbol positions.

Initially, the observed vector ŷ
p
is multiplied by the inverse of X̂

p
, thereby obtaining

initial estimates of the channel transfer function at the M subcarriers where pilot
symbols have been transmitted. These initial estimates, sometimes referred to as
zero-forcing estimates [9], yields the `true values' additively embedded in zero mean
complex Gaussian noise, i.e.

h
zf

:=
(
X̂

p

)−1

ŷ
p

= Tα+
(
X̂

p

)−1

w
p
.

The power (variance) of each noise component is scaled by the inverse power of
the corresponding pilot symbol - suggesting that the noise power can be forced
toward zero by boosting the power content of the pilot symbols. However, we assume
throughout the thesis that all pilot symbols hold unit power, and therefore the noise

statistics remain unchanged. Finally, we end up with the crucial observation model
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h
zf

= Tα+w, (5.7)

where a slight abuse of notation is introduced by omitting the subscript `p' at the
noise vector. This is merely to make the system of linear equations appear as simple
and familiar as possible - namely a vector of observations expressed in terms of a
matrix-vector product embedded in noise. The left-hand side of (5.7) is known to
the receiver and from these M complex numbers the PACE task is essentially to
estimate the Nu − M remaining complex numbers associated with the subcarrier
positions of the non-redundant data symbols.
The PACE framework has now been presented and with the observation model (5.7)
at hand, we proceed by elaborating on the amount of channel knowledge that can
actually be extracted from observing the frequency response at selected positions.

5.4 Power Leakage E�ects

Any communication system applied in practice is operating with some �nite reso-
lution in the time-domain, or equivalently, with limited bandwidth. No system can
realize the theoretical tool in use when applying, for instance, a continuous-time
Fourier transform. That is, no system can operate with in�nite bandwidth since it
would require continuous resolution in the time direction.
For the OFDM system considered in this chapter, with LTE parameters as given in
Table 5.1, the time resolution appear in terms of the sampling time T

s
. Initially at

the receiver side, a continuous-time signal is sampled into N time-domain samples
(represented on a T

s
-sample aligned grid). An N -point DFT is then applied to

this discrete-time signal and due to the guard band subcarriers, only Nu useful
samples are produced. In this section we elaborate on the e�ects introduced from
the fact that the sampled signal is represented on the discrete-time T

s
-spaced grid.

In Chapter 4 we obtained a minor interpretation of these e�ects in terms of Figure
4.4 where we depicted how the multipath channel is inevitably being altered by the
shaping pulses employed in the communication system. We now investigate in detail
the nature of these so-called leakage e�ects [9].

Still, denote by h(f, t) the frequency response of the multipath channel. Consider
the normalized `sampling function' de�ned by

q̂
(
f ;A

)
:=

1√
N |A|

∑

n∈A
δ
(
f − n∆f

)
=

1√
N |A|

∑

n∈A
δ
(
f − n

NTs

)
,

where the set A represents some speci�c subcarriers in use and |A| denotes the
number of elements in A. For instance, we may select A = P or perhaps A ={
I(1), I(2), . . . , I(N

u
)
}
, but for now it just represents an arbitrary subset of the

N potential subcarriers (the guard bands and the zero-subcarrier stay unused
by choice). To imitate a noise free sampling procedure of h(f, t) at the selected
subcarrier frequencies speci�ed in A, we consider

ŝ
(
f, t;A

)
:= h(f, t) q̂

(
f ;A

)
.
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Analyzing the behavior of the Fourier inverse of ŝ(f, t;A) reveals the time-domain
multipath channel the receiver is ideally able to `see' on the T

s
-spaced sampling grid.

5.4.1 System Response

In Section 2.4 we mentioned the sampling property of the Dirac delta, and the
approach taken here illustrates an application of this property. Applying the Fourier
inverse transform on ŝ(f, t;A) we obtain

s
(
τ, t;A

)
=
{
g(·, t) ∗ q( · ;A)

}
(τ)

=
1√
N |A|

L∑

l=1

α
l
(t)
∑

n∈A
exp

(
i2π n

NTs

(
τ − τ

l
T
s

))
.

The crucial part is to analyze the time-domain function s
(
τ, t;A

)
sampled at integer

multiples of the sampling time T
s
. More speci�cally, we consider the N samples

s
(
0, t;A

)
, s
(
T
s
, t;A

)
, s
(
2T

s
, t;A

)
, . . . , s

(
(N − 1)T

s
, t;A

)
, (5.8)

and we refer to this sampled version of s
(
τ, t;A

)
as the system response. We

illustrate only a few special cases with di�erent choices of the set A. Each choice is
deliberately selected to emphasize a crucial fact.

Recall Section 4.2 where we assumed a discrete-time multipath channel2 with all
responses perfectly aligned on the T

s
-spaced sampling grid. In such a case, all multi-

path delay parameters τ
l
, l = 1, 2, . . . , L, are assumed integer-valued and the latest

delay τ
L
, is assumed inside the cyclic pre�x duration. Now consider the system

response in the extreme case where all N subcarriers are employed, i.e. with

A =
{
− 1024,−1023, . . . . . . , 1022, 1023

}
, |A| = N.

In this case, with all L delays being integer-valued, the receiver will observe

s
(
kT

s
, t;A

)
=

1
N

L∑

l=1

α
l
(t)

1023∑

n=−1024

exp
(
i2π n

N

(
k − τ

l

))
=
{

0 , k 6= τ
l

α
l
(t), k = τ

l
.

Hence, the receiver observes perfectly all L channel amplitudes at their respective
delay positions (recall that we consider no additive noise e�ects). If no channel
component is present at the grid point kT

s
, the receiver will simply observe a zero.

Consider then the case where just one single delay, e.g. τ2 , is not integer-valued. For
any of the grid points the sum of complex exponentials

1023∑

n=−1024

exp
(
i2π n

N

(
k − τ2

))
6= 0,

2See [1, Section 3.4] and [3, Section 10.1.1] for other examples of discrete-time channels.
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since k − τ2 is not integer-valued. Hence, the system response (5.8) is non-zero
at all N samples. Among the state-of-the-art references given in the beginning of
Section 5.3, [9] was the �rst to consider this phenomena, commonly referred to as
the leakage e�ect. In practice the channel is of course not nicely aligned with the
T
s
-spaced sampling grid. Hence, the leakage e�ect will always be present and the

extent of the leakage depends critically on the set A.

By shutting down subcarriers (starting from both edges of the overall system band-
width) the e�ective bandwidth of the OFDM system is reduced, e.g. when A ={
I(1), I(2), . . . , I(N

u
)
}
. Hereby, the leakage e�ect becomes more conspicuous in

the neighborhood of any true channel echo. In fact, channel components of larger
power may easily mask channel components of lower power if two such echoes are
closely spaced in delay.
The leakage e�ect becomes even more conspicuous when the e�ective bandwidth of
the OFDM system is not just reduced, but also the samples are taken more distant.
This corresponds to the case when A = P. In this case a peaky, periodic behavior
can be observed in the system response.

5.5 Channel Estimation Algorithms

With the leakage e�ect in mind and given a zero-forcing estimate h
zf
from (5.7), we

now describe three selected state-of-the-art PACE algorithms suggested for OFDM
systems. A uni�ed algorithm framework is given in [7, Section 6.2-6.4], and we there-
fore omit a variety of details since a full overview can be obtained by consulting
this reference. The �rst algorithm presented is included only to illustrate that the
leakage e�ect has to be compensated or circumvented in practice. The remaining
two algorithms constitute the methods, recommended in [7], to be used within LTE.

5.5.1 Sample-aligned DFT-based Method

A crude, but very simple channel estimation approach is to ignore the leakage e�ect
and carry out a least-squares estimation procedure of a carefully chosen subset of the
system response. More precisely, the particular subset of grid points corresponding
to the duration of the cyclic pre�x is selected. Provided that the extent of the
leakage has not been `too massive', this subset of the system response still explains a
decent amount of the overall channel behavior. Hence, ignoring (5.7) involving only
L complex-valued channel amplitudes and L delay parameters (L, α and τ unknown
of course), the observation model is summarily replaced by

h
zf

= FPαsr
+w, (5.9)

where FP denotes an appropriateM×(µ+1) sub-matrix extracted from the N -point
DFT matrix in (5.2). Furthermore, α

sr
∈ Cµ+1 represents the system response (`sr')

at the �rst µ+1 grid points, corresponding to the cyclic pre�x duration. The matrix
FP consists, more precisely, of an un-normalized row-column subset of the N × N
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DFT matrix F, such that

FP (m, k) := exp
(
− i2π p(m)

N
k
)
,

m = 1, 2, . . . ,M
k = 0, 1, . . . , µ.

From the new, purposely ignorant observation model (5.9), a least squares estimate
of α

sr
is calculated. Usually, such a least squares estimate would be expressed by

α̂
sr

=
(
FHP FP

)−1
FHP hzf

,

however, the square matrix FHP FP is subject to numerical instability issues (even
though its invertibility can be guaranteed by theoretical means, due to the Van-

dermonde-alike structure of FP ). To reduce the numerical issues, the least squares
estimate is therefore obtained indirectly from solving3 the linear system of equations

FHP FPαsr
= FHP hzf

.

From the least squares estimate α̂
sr
, the frequency response at all subcarrier positions

employed in the system is estimated from

ĥ
DFT

:= FI α̂sr
, (5.10)

where FI denotes the Nu × (µ + 1) sub-matrix straightforwardly obtained by
extracting the N

u
rows of the complete DFT matrix F, corresponding to the active

subcarrier positions. Of course, only the �rst µ+ 1 columns of F are extracted.

In [7, Section 6.3], an estimator corresponding to (5.10) is described. However, in this
reference the underlying channel is assumed to be nicely aligned with the sampling
grid. Our approach is somewhat di�erent, since we purposely and falsely assume
the system response to be non-zero only at the �rst µ + 1 grid points. Indeed,
the interested reader should consult [7, Section 6.3] and the original references given
therein, while also an interesting numerical study is conducted in [7, Appendix C.3]

concerning the ill-conditioning behavior of the matrix FHP FP .

5.5.2 Enhanced Noise Reduction Algorithm

The following channel estimator was proposed in [12] and in [7, Section 6.3.2] it is
referred to as the Enhanced Noise Reduction Algorithm (ENRA). Indeed it can be
discussed whether this calling is appropriate or not, however, we will reuse the name
anyway. We follow the lines of [12] in the description below.

The ENRA is based on the observation model (5.7), which we recast for clarity

h
zf

= Tα+w.

In particular, the assumptions for the ENRA are critical. The number L of chan-
nel components is assumed to be known, and also perfect knowledge of the delay

3When carried out, for instance in Matlab, the Gaussian elimination algorithms still produce
warning messages, reporting a badly scaled linear system.
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parameters τ = [τ1 , τ2 , . . . , τL ]> is assumed. Hence, only the comlex-valued channel
amplitudes α and the noise w are unknown terms. The channel amplitudes are
assumed to comprise a zero-mean complex Gaussian vector with covariance matrix

P := E
[
ααH

]
= diag

(
σ2

1
, σ2

2
, . . . , σ2

L

)
.

The individual power terms σ2
l
are considered unknown, and notice that the uncor-

related scattering (US) assumption is implicitly invoked. The assumptions for the
noise term reads

w ∼ CN
(
0, σ2

w
I
M

)
.

The channel amplitude vector α and the noise vector w are assumed to be indepen-
dent. By taking all our assumptions into account we easily �nd

R := E
[
h
zf
hH
zf

]
= TPTH + σ2

w
I
M
,

and
C := E

[
αhH

zf

]
= PTH .

Applying the theory of linear minimum mean squared error estimation, we obtain
the following estimator of the channel amplitude vector

α̂ := CR−1h
zf

=
(
THT + σ2

w
P−1

)−1

THh
zf
.

From this estimate of the channel amplitude vector, the frequency response at all
subcarrier positions employed in the system is estimated from

ĥ
ENRA

:= TI α̂ = TI
(
THT + σ2

w
P−1

)−1

THh
zf
, (5.11)

where we have introduced the Nu × L matrix TI , with entries given by

TI (n, l) = exp
(
− i2π I(n)

N
τ
l

)
,

n = 1, 2, . . . , N
u

l = 1, 2, . . . , L.

As mention above, the channel power terms in P = diag
(
σ2

1
, σ2

2
, . . . , σ2

L

)
are not

known, and in general the noise variance σ2
w
is unknown as well. The authors of [12]

refer to the results obtained by [11] and [18], suggesting that a uniformly distributed
power-delay pro�le and a value of the noise variance corresponding to a high SNR
level, should be substituted. These choices comprise a robust design and the esti-
mation performance of (5.11) degrades only slightly with deviations from the true
parameters.

5.5.3 Robust Wiener Filter

As mentioned in [7, Section 6.3], the linear minimum mean squared error estimator
given in terms of a `classical' Wiener Filter (WF), would straightforwardly read

ĥ
WF

:= E
[
hIh

H
P

](
E
[
hPh

H
P

]
+ σ2

w
I
M

)−1

h
zf
. (5.12)
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In (5.12), hI denotes the `true' channel transfer function at the Nu active subcarrier
positions, similar for hP but only at the M pilot symbol positions and σ2

w
I
M
reports

the noise covariance matrix. Implicitly, the channel transfer function is assumed to
comprise a zero-mean complex Gaussian process with certain correlation properties
and the assumptions for the noise statistics are `as usual'.

The two matrices in (5.12) which are expressed only in terms of their de�nitions,
are typically not known in practice. Imposing a robust choice or design for these
correlation matrices may therefore seem evident. To this end, we follow closely
the lines of [11]. The sampled version of the channel transfer function arranged in
the vector hI is modeled as earlier in (5.4). For the sake of clarity we recast the
expression as

hn =
L∑

l=1

α
l
e−i2π

I(n)
N τ

l , n = 1, 2, . . . , N
u
.

In [11], it is suggested to model the L delay parameters as

τ
l

i.i.d.∼ U(0, µ+ 1), l = 1, 2, . . . , L,

i.e. mutually independent and uniformly distributed along the duration of the cyclic
pre�x. It is furthermore suggested to let the total power in the channel be uniformly
distributed among the L amplitude components in α. This choice was shown to
be robust to mismatches in [18] (also used with the ENRA). Hence, considering a
channel with total average power normalized to unity, the power assumptions for the
complex-valued channel amplitudes are

E
[∣∣α

l

∣∣2
]

=
1
L
, l = 1, 2, . . . , L.

With these di�erent design choices/assumptions, the entries of the two correlation
matrices in (5.12) can be calculated. Speci�cally, using the uncorrelated scattering
assumption, we calculate

E
[
h
n
h∗
k

]
=

1
L

L∑

l=1

E
[

exp
(
− i2π I(n)−I(k)

N
τ
l

)]
, 1 ≤ n, k ≤ N

n
,

=
1

µ+ 1

∫ µ+1

0

exp
(
− i2π I(n)−I(k)

N
τ
)
dτ

=





1−exp

(
−i2π I(n)−I(k)

N (µ+1)

)

i2π
I(n)−I(k)

N (µ+1)
, n 6= k

1 , n = k.

It is interesting to observe that the number L of channel components, does not
appear in the above expression. Plugging this particular correlation structure into
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the classical Wiener Filter expression (5.12), we obtain the third and �nal channel
estimator to be considered in this thesis. In [7, Section 6.3.2], this type of estimator
is referred to as the Robust Wiener Filter (RWF). A value of the noise variance σ2

w

corresponding to a high SNR level may be substituted if not known a priori, just as
was suggested for the ENRA in the previous section.

5.5.4 Performance Evaluation

In this section, we compare the performance of the three PACE algorithms just
described. The comparison is not fair since the individual assumptions for the three
algorithms di�er. However, the objective is merely to reproduce the results reported
in [7, Section 6.4]. The following results are therefore presented in terms of bit-error-
rate (BER) performance as a function of signal-to-noise ratio (SNR). Throughout
this thesis, the SNR will be expressed as signal-to-noise ratio per bit and always
the modulation scheme to be used, is a unit symbol power QPSK constellation
with Gray encoding (recall Section 2.3). Furthermore, the channel considered is a
Rayleigh fading multipath channel with average power normalized to unity. Hence,
both transmit symbol power and average channel power are normalized to unity. As
explained in [7, Section 6.4], the signal-to-noise ratio per bit is then given according
to

SNR (dB) = 10 log
10

(
1

2σ2
w

)
,

where σ2
w
denotes the variance of the complex-valued, additive white Gaussian noise.

Recall the left-hand side of Figure 5.3, where the pilot symbol pattern for a single
transmit antenna is shown. In the following we simulate transmission only of
OFDM symbols carrying pilot symbols, i.e. OFDM symbols in the �rst and �fth
time allocations of every slot. We draw channel realizations from a highly unrealistic
multipath channel, more speci�cally, the realizations are uncorrelated from OFDM
symbol to OFDM symbol. The channel chosen for this veri�cation study constantly
includes nine echoes with static delay parameters. Overall, the particular channel
is not of primary concern at the moment, however in Chapter 7 the situation is
completely refashioned. The simulations are carried out directly in the frequency
domain according to (5.5), i.e. we assume that all ISI have been consumed by the
(discarded) samples in the cyclic pre�x.

The performance of the three di�erent PACE algorithms are reported in Figure 5.4.
The ENRA algorithm is fed with exact knowledge of the multipath delay parameters
and also the noise variance is known to it. The noise variance is likewise fed to the
Robust Wiener Filter. Overall, all three algorithm perform under ideal conditions
in terms of their individual assumptions. As the SNR increases, the performance of
the sample-aligned DFT-based method drifts even more away from the theoretical
BER-curve. The Robust Wiener Filter associates a constant and irreducible BER
degradation in the entire SNR-range due to its robust design. The ENRA performs
very close to the theoretical limit, but notice that this algorithm is also provided
with perfect a priori channel information.
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Figure 5.4: Performance of the ENRA when feeded with true delay parameters. Robust
Wiener Filter performance and the sample-aligned DFT-based method are shown
too. Theoretical BER-curve shown for comparison reasons. For each SNR point,
the curves are generated from simulation of 14000 OFDM symbols - correspond-
ing to one second of real-time transmission.

The multipath delay parameters being directly provided to the ENRA are not
known in practice. Therefore, these have to be estimated if the ENRA comprise the
channel estimation algorithm selected for use. The ENRA performance degrades
notably with only slightly erroneous delay parameters provided [7, Section 6.4.3].
This fact is critical, in particular at high SNR-levels.

We now point our attention towards the main objective in this thesis - estimation of
the multipath propagation delay parameters.
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Chapter 6

Array Signal Processing Survey

Given the zero-forcing estimates h
zf
we seek to estimate the delay vector τ . With

the particular observation model (5.7) at hand, this estimation task is similar to
that of direction of arrival estimation within the �eld of array signal processing.
Accordingly, we set o� this second part of the thesis by investigating a variety of
estimation methods directly adopted from well-established literature on array signal
processing.

6.1 Framework

A variety of techniques for direction of arrival estimation from array signal pro-
cessing exist, including for instance beamforming and subspace �tting approaches.
Another approach is maximum likelihood (ML) estimation and two such methods
have been proposed in the literature [24], stated as deterministic and stochastic

ML estimation. Both ML methods are grounded on a parametric signal model
identical to (5.7), however, the fundamental di�erence between the two methods
rely on whether the underlying `signal source' is considered deterministic or random.
The subspace �tting methods are parametric approaches relying on the observation
model (5.7) with the underlying signal source considered random. The structure of
the theoretical covariance matrix associated with the observations is then utilized to
separate the observation space into a so-called signal subspace and a noise subspace.
The beamforming approaches are fundamentally simple, non-parametric methods
assuming no particular model for the underlying signal. Spatially white noise is the
only assumption for the di�erent beamformers.

With the parametric approach we consider the observation model (5.7), which we
recast as

h
zf

(k) = T
(
τ (k)

)
α(k) +w(k), k = 1, 2, . . . ,K.

The index k is used to emphasize the temporal sampling procedure performed at
the pilot symbol positions (twice every slot, four times every sub-frame or forty
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times every radio frame). The receiver makes generic use of a memory of maximum
K zero-forcing estimates denoted by h

zf
(1),h

zf
(2), . . . ,h

zf
(K). In a generic fashion

these K vector observations are appropriately collected in the M ×K matrix

H
zf

:=




| | |
h
zf

(1) h
zf

(2) · · · h
zf

(K)

| | |


 .

Throughout the following sections we impose a crucial assumption which does not
allow the number L(t) of attending channel echoes to vary at all. That is, we assume
L(t) ≡ L stay �xed during the entire time span under consideration. The reason for
this is easily seen when the di�erent methods are presented (simply, the dimension
of the estimation problem must stay �xed). However, the individual delays may of
course vary over time, i.e. in-between the times of observation of the data in H

zf
.

This fact turns out to be very critical, since some methods su�ers greatly when
the parameters we aim to estimate may happen to slightly �uctuate during the
estimation procedure.

As mentioned above, two overall cases (deterministic/stochastic) are considered and
the assumption for these are as follows:

- Deterministic case: the underlying `signal source', i.e. the channel amplitude
vector α(k), is considered unknown but �xed/deterministic.

- Stochastic case: the channel amplitude vector α(k) is considered random.

With the deterministic approach, the statistics of the vector observations read

h
zf

(k) ∼ CN
(

T
(
τ (k)

)
α(k), σ2I

M

)
, k = 1, 2, . . . ,K,

i.e. the only random contribution encompasses the complex Gaussian noise, assumed
to be spatially and temporally uncorrelated.

With the stochastic approach the source signals α(k), k = 1, 2, . . . ,K, are considered
random too - more speci�cally being complex Gaussian distributed with zero mean
and with unknown but time-invariant covariance structure

E
[
α(k)αH(n)

]
= 1[k = n]P, 1 ≤ k, n ≤ K.

From the uncorrelated scattering (US) assumption we see that P is a full rank
diagonal matrix. Notice carefully how it is assumed that the temporal lags between
consecutive sampling points are of su�cient extent such that all channel components
have decorrelated during the time in-between. Hence, with the above assumptions
on α(k) the statistical model in the stochastic case reads

h
zf

(k) ∼ CN
(

0, T
(
τ (k)

)
PTH

(
τ (k)

)
+ σ2I

M

)
, k = 1, 2, . . . ,K.

With both approaches the snapshots observed over time h
zf

(1),h
zf

(2), . . . ,h
zf

(K) are
mutually independent, which is seen as a consequence of the random terms involved
being assumed Gaussian distributed and temporally uncorrelated.
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6.1.1 Analogy to Direction of Arrival Estimation

Recasting the above introduced delay estimation framework into its `usual' array
signal processing setup we explicitly come to realize the striking similarities as

h
zf

(k)
↑
x(k)

= T
(
τ (k)

)

↑
A(θ)

α(k)
↑
s(k)

+ w(k)
↑

n(k)

, k = 1, 2, . . . ,K,

where the notation used for the lower mentioned terms are adopted directly from [24].
In this notation, A(θ) is a M ×L matrix depending on an unknown parameter θ =[
θ1 , θ2 , . . . , θL

]>
. The columns of A(θ) are so-called steering vectors and structured

such that

A(θ) =




| | |
a(θ1) a(θ2) · · · a(θ

L
)

| | |


 ,

where it is assumed that whenever the L components of θ are mutually di�erent,
the columns of A(θ) are linearly independent (ambiguity condition). The unknown
parameter θ contains the L directions of arrival to be estimated from the snapshot
vectors x(k), observed at times k = 1, 2, . . . ,K by the M sensors comprising the
array. Hence, each individual component of x(k) corresponds to an individual sensor
in the array. Typically, the M sensors are identical and arranged uniformly on
a common straight line with �xed inter-sensor distance d < λ/2, where λ is the
wavelength of the incoming signal. Such a construction is called an uniform linear

array, see Figure 6.1.

1

d

θ

Source

θ

dsin(
θ)

2 3 M

Wavefronts.  .  .

Figure 6.1: Uniform linear array of M sensors.

The steering vector associated with an uniform linear array construction is given by

a(θ) =
[

1 e−i2πd sin(θ)/λ . . . e−i2π(M−1)d sin(θ)/λ
]>
, θ ∈

[
− π

2
,
π

2

)
.

The constraints d < λ/2 and −π/2 ≤ θ < π/2 are ambiguity conditions and
comprise the limitations of the uniform linear array (interpreted as a spatial variant
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of the Nyquist criterion).

In (5.6) the entries of T
(
τ (k)

)
are de�ned and from these we immediately �nd the

`steering vector' associated within our delay estimation framework to be

t(τ) :=
[
e−i2πp(1)τ/N e−i2πp(2)τ/N . . . e−i2πp(M)τ/N

]>
, τ ≥ 0.

From this de�nition we may appropriately write

T
(
τ (k)

)
=




| | |
t
(
τ1(k)

)
t
(
τ2(k)

)
· · · t

(
τ
L

(k)
)

| | |


 .

Later on, we shall see how we may divide the matrix T
(
τ (k)

)
into smaller sub-

matrices and relate these by rotational transformations. Lowering the matrix dimen-
sions gives rise to reduced amounts of computations, while consequently we sacri�ce
on the level of estimation accuracy.

6.2 Maximum Likelihood Approaches

In the following we describe two ML estimation approaches and for notational con-
venience we omit the delay dependency with T

(
τ (k)

)
and write T, only. However,

remember that the delays may �uctuate over time.

6.2.1 Deterministic ML Estimation

The joint pdf of the complex M -variate snapshots h
zf

(1),h
zf

(2), . . . ,h
zf

(K) is given
by

p
(
h
zf

(1), . . . ,h
zf

(K)
)

=
K∏

k=1

(
πσ2

)−M exp
(
− 1
σ2

∥∥h
zf

(k)−Tα(k)
∥∥2
)
.

The negative log-likelihood function, normalized by K, is therefore

− 1

K
`
(
τ , σ2,α(1), . . . ,α(K)

)
= C +M log σ2 +

1

σ2K

K∑

k=1

∥∥h
zf

(k)−Tα(k)
∥∥2
, (6.1)

where C is a constant not depending on the unknown parameters to estimate. This
negative log-likelihood function is to be minimized with respect to the unknown
parameters, in particular we seek the ML estimate of τ . The joint estimation task
of all unknown parameters allows for some degree of separability, i.e. for τ and σ2

�xed, the minima of the non-negative quantities
∥∥h

zf
(k)−Tα(k)

∥∥2
are attained at

α̂(k) := arg min
α(k)

∥∥h
zf

(k)−Tα(k)
∥∥2 =

(
THT

)−1
THh

zf
(k), (6.2)
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i.e. the unique linear combinations yielding the orthogonal projections of the snap-
shots h

zf
(k) onto the L-dimensional subspace spanned by the linearly independent

columns of T. To ease notation we de�ne the orthogonal projection operators

Π
T

:= T
(
THT

)−1
TH and Π⊥

T
:= I

M
−Π

T
,

where Π⊥
T
is the projection mapping onto the null space of TH . Notice that any

orthogonal projection operator is idempotent and self-adjoint, e.g. Π
T
Π

T
= Π

T
and

ΠH
T

= Π
T
which can be readily veri�ed. Furthermore, the trace of an orthogonal

projection operator equals the dimension of the subspace it projects onto, and its
eigenvalues are members of the set {0, 1}, only.

With τ and α̂(1), α̂(2), . . . , α̂(K) �xed, the minimum of the negative log-likelihood
function (6.1) with respect to the noise variance σ2 is obtained from the derivative

− 1
K

∂

∂σ2
`
(
τ , σ2, α̂(1), . . . , α̂(K)

)
=
M

σ2
− 1
σ4K

K∑

k=1

∥∥Π⊥
T
h
zf

(k)
∥∥2
. (6.3)

Equating the right-hand side of (6.3) to zero and solving for σ2 yields

σ̂2 =
1

MK

K∑

k=1

∥∥Π⊥
T
h
zf

(k)
∥∥2 =

1
M

tr
(
Π⊥

T
S
)
, (6.4)

where we have introduced the sample covariance matrix

S :=
1
K

K∑

k=1

h
zf

(k)hH
zf

(k) =
1
K

H
zf
HH

zf
, (6.5)

and used that tr(z) = z for any scalar z ∈ C, and also that tr(AB) = tr(BA)
provided conformable matrix dimensions. Substituting (6.2) and (6.4) back into the
negative log-likelihood (6.1) yields the ML estimate

τ̂ = arg min
τ

tr
(
Π⊥

T
S
)
. (6.6)

In (6.6), the scalar expression to be minimized is a non-linear function of its L-
dimensional argument τ . Analytical optimization is unfeasible but a variety of nu-
merical search procedures have been suggested and examined in the literature [24].

6.2.2 Stochastic ML Estimation

With the stochastic approach the likelihood function now depends on the parameters
τ , P and σ2. We denote by R := TPTH + σ2I

M
the true covariance matrix and

still S denotes the sample covariance matrix. The negative log-likelihood function,
normalized by K, now takes the form

− 1
K
`
(
τ ,P, σ2

)
= C + log det(R) + tr

(
R−1S

)
. (6.7)

68



6.2. Maximum Likelihood Approaches

For τ and σ2 �xed, minimization of (6.7) with respect to P calls for the matrix
equation

TH
(
S−R

)
T =

[
0
]
L×L

to hold, see [25] for details. Plugging in R = TPTH +σ2I
M
and solving for P yields

P̂ =
(
THT

)−1
TH
(
S− σ2I

M

)
T
(
THT

)−1
. (6.8)

Immediately, from the estimate (6.8) of the L× L source covariance matrix we let

R̂ := TP̂TH + σ2I
M

(6.9)

= Π
T
SΠ

T
+ σ2Π⊥

T
. (6.10)

A common matrix inversion formula applied to (6.9) yields

R̂
−1

=
1
σ2

I
M
− 1
σ2

T
(
P̂THT + σ2I

L

)−1
P̂TH ,

and using this expression1 and a few matrix manipulations, one can show (yet, see
[25] for details) that

tr
(
R̂
−1

S
)

=
1
σ2

tr
(
Π⊥

T
S
)

+ L.

With τ �xed and with R̂ as given by (6.10), we calculate the derivative

− 1
K

∂

∂σ2
`
(
τ , P̂, σ2

)
=

∂

∂σ2

(
C + log det(R̂) +

1
σ2

tr
(
Π⊥

T
S
)

+ L
)

= tr
(
R̂
−1

Π⊥
T

)
− 1
σ4

tr
(
Π⊥

T
S
)

=
1
σ2

tr
(
Π⊥

T

)
− 1
σ4

tr
(
Π⊥

T
S
)
.

Equating to zero and solving for σ2 implies

σ̂2 =
1

M − L tr
(
Π⊥

T
S
)
. (6.11)

Substitution of (6.10) and (6.11) back into the negative and normalized log-likelihood
function (6.7) implies

τ̂ = arg min
τ

log det
(
Π

T
SΠ

T
+ σ̂2Π⊥

T

)
. (6.12)

As with the deterministic ML case, the functional relationship in (6.12) is `highly'
non-linear in the L-dimensional argument τ . To summarize this section we have

1The matrix P̂THT + σ2IL =
(
THT

)−1
THST is non-singular whenever S is of full rank.
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now derived the two useful expressions (6.6) and (6.12), which under their individual
assumptions are optimal in ML sense.

As mentioned in the beginning of this section, the whole theory and the two ML
estimation methods just described originate from the �eld of array signal process-
ing. Nonetheless, the striking similarities with our multipath delay estimation task
allows for straightforward handing-over of the principles. We now describe a method
belonging to the category of subspace �tting approaches.

6.3 ESPRIT

The method presented in this section is commonly referred to as the ESPRIT method,
which is an abbreviation for estimation of signal parameters by rotational invariance

techniques [14, Section 4.7]. In [12], the ESPRIT method is proposed to serve as
an acquisition tool when estimating multipath delay parameters for OFDM systems.
Initially, some matrix manipulations are required and we simply reuse our previously
introduced notation for the true covariance matrix and write

R = TPTH + σ2I
M
. (6.13)

In this section, we assume that P has always full rank equal to L. Notice �rst, that
any vector v ∈ Null

(
TH
)
is an eigenvector of R with associated eigenvalue σ2. The

dimension of the eigenspace associated with the eigenvalue σ2 is M − L, i.e. the
null space of TH is spanned by M − L linearly independent vectors. Secondly, any
eigenvector u 6∈ Null

(
TH
)
will hold an associated eigenvalue strictly greater than

σ2. This eigenspace partitioning comprise the very core of the following derivation
and since R is Hermitian and positive de�nite we can write

R = UΛUH = U
s
Λ

s
UH

s
+ σ2U

n
UH

n
,

where the M overall eigenvectors have been partitioned in two sets according to
the eigenvalue discussion above. That is, U

s
is an M × L matrix containing the

eigenvectors associated with the L eigenvalues strictly greater than σ2 and U
n
is

an M × (M − L) matrix of the remaining eigenvectors. The subscripts `s' and `n'
serve as abbreviation for signal and noise, respectively. Since the eigenvector basis is
orthonormal it follows that U

s
UH

s
+ U

n
UH

n
= I

M
, which can be used to manipulate

the relationship

TPTH + σ2
(
U

s
UH

s
+ U

n
UH

n

)
= U

s
Λ

s
UH

s
+ σ2U

n
UH

n
.

From a few calculations and rearrangements we obtain

U
s

= T PTHU
s

(
Λ

s
− σ2I

L

)−1

︸ ︷︷ ︸
Q

= TQ, (6.14)

where the diagonal matrix Λ
s
− σ2I

L
is non-singular indeed, and the L× L matrix

Q is therefore well-de�ned and of full rank.
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The ESPRIT method is now based on a paramount structural requirement of the
sensor array (the set P of pilot symbol subcarriers in our framework) - it must
contain two identical sub-arrays that are shifted by a known displacement factor.
To illustrate this requirement, we de�ne two sub-matrices T1(τ ) and T2(τ ), both of
dimension M/2× L, according to

T(τ ) =




| |
t(τ1) · · · t(τ

L
)

| |


 =




T1(τ )
−−−
T2(τ )


 . (6.15)

When the shift or displacement between the sub-arrays T1(τ ) and T2(τ ) is known,
e.g. by construction, we can relate these according to the rotational transformation

T2(τ ) = T1(τ )D. (6.16)

In our framework one can readily verify that the unitary matrix D, is given by

D = diag
(
e−i2π

(6·M/2+1)
N τ1 , . . . , e−i2π

(6·M/2+1)
N τ

L

)
,

i.e., a displacement of 6 · M/2 + 1 = 601 subcarrier positions is needed in order
to shift/rotate the sub-array T1(τ ) into the sub-array comprised by the matrix
T2(τ ). Notice how the matrix D actually depends on time, since indeed, if the
delay parameters change over time the rotational transform changes too.

Now, estimation of the delay parameters τ1 , τ2 , . . . , τL can be done from knowing the
eigenvalues of the matrix D. Denote by U

s,1 and U
s,2 the associated sub-matrices

obtained from (6.14) when invoking the sub-array relationship in (6.15). By de�ni-
tion we have

U
s,1 = T1Q implying T1 = U

s,1Q
−1,

and using the relationship in (6.16) we also �nd

U
s,2 = T2Q = T1DQ = U

s,1Q
−1DQ.

De�ning the matrix Φ := Q−1DQ, we immediately see that the eigenvalues of Φ
and D coincide. Implicitly, the matrix Φ is obtained as the solution to the matrix
equation

U
s,1Φ = U

s,2 .

Of course, the true covariance matrix R is not available but rather an estimate of
it, e.g. the sample covariance matrix S. Hence, only estimates of the eigenvectors
can be made available and straightforwardly, we denote the relevant estimates by
Û

s,1 and Û
s,2 .

To summarize, the ESPRIT algorithm takes as input an estimate R̂ of the true
covariance matrix and the number L of signal dimensions to collect. An eigenvalue
decomposition of R̂ is performed and the eigenvectors associated with the L largest
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eigenvalues are then used to build the two sub-matrices Û
s,1 and Û

s,2 . The matrix
equation

Û
s,1Φ = Û

s,2 ,

is solved yielding a solution which we denote by Φ̂. Finally, the eigenvalues of Φ̂ are
calculated and we denote these by λ̂1 , λ̂2 , . . . , λ̂L . The known sub-array displacement
factor is utilized to recover/obtain estimates of the delay parameters according to

τ̂
l

=
arg
(
λ̂∗
l

)
N

2π(6 ·M/2 + 1)
, l = 1, 2, . . . , L,

where arg(·) ∈ [0, 2π) returns the phase angle of its complex argument.

6.3.1 Assumptions and Limitations of ESPRIT

We consider it crucial to be fully aware of the limitations of the ESPRIT method
and therefore we emphasize the assumptions in more compact form. The ESPRIT
algorithm was derived using the fact that

- the theoretical covariance matrix has the particular form (6.13).

- P must be non-singular and the noise must be white and of identical power
among all sensors.

- the number L of signal sources has to be known in order to properly collect
the eigenvectors needed.

- the array considered must contain two identical sub-arrays and their displace-
ment factor is required known too.

When ESPRIT is used for estimation of delay parameters in our framework, yet
another requirement is present - and this requirement has been deliberately violated
during the above derivation (in order to speci�cally emphasize the limitation). Re-
call the ambiguity conditions for the uniform linear array, stated slightly below Fig-

ure 6.1. Then, consider again the particular eigenvalues of the rotation matrix D.
Emphasizing their dependency on time, these read

exp
(
− i2π 601

N
τ
l
(t)
)
, l = 1, 2, . . . , L,

and since the complex exponential is periodic in nature, we cannot distinguish
whether the phase have already rotated 2π or not. That is, whenever a true
delay parameter appears such that 601τ

l
(t) > N , we face an ambiguity. The

point is that ambiguity constraints are present on the displacement factor as well.
Simply, the product between the displacement factor and the largest possible
delay parameter must be less than N . Hence, the particular way we split up the
matrix T(τ ) in (6.15) cannot be used directly. However, due to the property of
wide-sense-stationarity (WSS) in the frequency-domain (inherited from the uncorre-
lated scattering (US) assumption in the delay-domain), the observations associated
with the two sub-matrices T1(τ ) and T2(τ ) can be averaged. That is, instead of
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6.4. Beamforming

building the usual M × M sample covariance matrix S in (6.5), we can spilt up
the zero-forcing estimates h

zf
(k) in halves (obtaining twice as many observations)

and build a M/2 ×M/2 sample covariance matrix instead. This matrix of lowered
dimension inherits the exact same properties as if only M/2 pilot symbol positions
had been employed in the system (still with an inter-pilot spacing of six subcarriers).

Essentially, this means that only the sub-matrix T1(τ ) is involved now. However,
this matrix holds identical sub-arrays too, e.g. the �rst M/2 − 1 rows can be dis-
placed, by one single row position, directly into the last M/2− 1 rows of the matrix
(displacement factor of six subcarrier positions). This is the common formulation
of the ESPRIT algorithm when encountered in literature [14, 24]. At this point,
recall the aberrant pilot symbol subcarrier shift of seven positions induced by the
zero-subcarrier being preserved inactive in LTE (Section 5.2). One may notice that
this shift actually forces us to spilt up the zero-forcing estimates h

zf
(k) in halves.

We simply cannot displace any sub-array across this point.

In literature, a variety of other subspace �tting methods can be encountered, includ-
ing for instance the MUSIC algorithm, again see [14, 24]. For numerous reasons, we
focus only at the ESPRIT algorithm. A majority of the subspace �tting methods
are all eigenvalue decomposition based, and hence, they basically su�er in equally
manners given the circumstances in a particular scenario.

6.4 Beamforming

Historically, beamforming techniques comprised the �rst attempts of automatic sig-
nal source localization by use of antenna/sensor arrays [24]. With M sensors de-
ployed, the procedure is to `steer' the array into one direction at a time while mea-
suring the output power. The L locations returning the L largest power levels are
selected to yield the direction of arrival estimates. The array responses are calculated
from linear combinations of the M sensor outputs and within our delay estimation
framework this procedure reads

cHh
zf

(k), k = 1, 2, . . . ,K,

where c ∈ CM is a vector of coe�cients to be selected. The empirical average output
power is then calculated as

1
K

K∑

k=1

∣∣cHh
zf

(k)
∣∣2 = cHSc =

1
K

∥∥cHH
zf

∥∥2
. (6.17)

Di�erent beamforming approaches correspond to di�erent choices of the weighting
vector c. We describe two such choices in the following.

73



6.4. Beamforming

6.4.1 Conventional Beamformer

From the set of pilot symbol positions P, i.e. by construction of the array, we know
that the associated steering vector reads

t(τ) =
[
e−i2πp(1)τ/N e−i2πp(2)τ/N . . . e−i2πp(M)τ/N

]>
, τ ≥ 0.

Fixing a particular value of the delay variable τ , we desire to maximize the output
power in terms of this single delay, only. If indeed a single-echo channel with complex-
valued amplitude α̃ holds associated delay τ̃ , the zero-forcing output at the M pilot
symbol positions is

h
zf

= t(τ̃)α̃+w,

where the assumptions for the noise term w are `as usual', i.e. w ∼ CN
(
0, σ2I

M

)
.

Generally, the power maximization criterion is formulated as

max
c:‖c‖=1

E
[∣∣cHh

zf

∣∣2
]

= max
c:‖c‖=1

cH
(
E
[
|α|2

]
t(τ)tH(τ) + E

[
wwH

])
c

= max
c:‖c‖=1

∣∣cHt(τ)
∣∣2.

The maximizing choice of c is therefore found to be

c
bf

:= arg max
c:‖c‖=1

∣∣cHt(τ)
∣∣2 =

t(τ)
‖t‖ =

t(τ)√
M

Plugging the particular choice c
bf
into (6.17), we obtain the expression for the con-

ventional beamformer

BF(τ) :=
tH(τ)St(τ)

M
=

∥∥tH(τ)H
zf

∥∥2

MK
.

As can be seen above, the choice of weights only depends on the sensor array and
not on the actual observations.

6.4.2 Capon Beamformer

Other choices for the weighting vector c can be obtained by enforcement of di�erent
optimization criterions. In this section we describe a choice resulting in a technique
commonly referred to as the Capon beamformer [14, 24]. Recall the empirical average
output power expression (6.17) and consider the minimization criterion

min
c
cHSc subject to cHt(τ) = 1 (6.18)

which has a rather intuitive interpretation. The minimization criterion (6.18) dic-
tates that a �xed gain should be maintained for the particular delay τ , while simul-
taneously, the average output power should be minimized for all other delay values.
The weighting vector c

capon
ful�lling the requirement (6.18) can be found using, for
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instance, the technique of Lagrange multipliers [26, Theorem 11.63], [27, Section 13.9].
It is given by

c
capon

:=
S−1t(τ)

tH(τ)S−1t(τ)
,

and when inserted into (6.17) the expression for the Capon beamformer reads

CAPON(τ) :=
1

tH(τ)S−1t(τ)
.

The weights associated with the Capon beamformer depends on the sensor array but
also on the actual observations (in contrast to the conventional beamformer). The
additional gain obtained from this fact is present in terms of very `peaky' behavior
around the true delay parameters. Hence, the ability to separate the L largest power
levels is notably improved when using CAPON(τ) compared to BF(τ). However, a
major drawback of the Capon Beamformer is that it requires a matrix inverse and
we have quietly assumed its existence. In Appendix C.1 we discuss the criteria for
the sample covariance matrix S being non-singular.

6.5 Sequential Beamforming Algorithm

The non-linear L-dimensional optimization procedures inherited from either of the
two ML approaches are computationally exhaustive to carry out. Matrix inversions
are required to build up the projection operators and the optimization steps are
potentially subject to numerical instability issues unless appropriate constraints are
assigned to the unknown parameter τ . More speci�cally, one needs to ensure that
the absolute di�erence between any two individual components of τ are not getting
`too small' during the optimization process (recall the ambiguity condition imposed
on the steering vectors building up the matrix T).

In the following we describe a `deterministic ML and beamforming'-merged approach
inspired by [28, 29]. Basically, a projection operator is recursively constructed
one subspace dimension at a time from consecutive beamforming searches. No
L-dimensional optimization procedure is needed since instead L consecutive one-
dimensional searches are performed. Also, no matrix inversions are required. With
this approach the computational complexity is notably reduced but consequently
we cannot guarantee ML optimality. Recall the deterministic case ML optimization
criterion (6.6) which we recast as

τ̂ = arg min
τ

tr
(
Π⊥

T
S
)

= arg max
τ

tr
(
Π

T
S
)

= arg max
τ

1
K

K∑

k=1

∥∥Π
T
h
zf

(k)
∥∥2
.

The latter expression holds a rather intuitive interpretation - namely that we seek the
L-dimensional subspace (spanned by steering vectors) explaining the largest amount
of average power contained in the signals h

zf
(1),h

zf
(2), . . . ,h

zf
(K). De�ne the initial

projection operator

Π1(τ) :=
t(τ)tH(τ)
‖t(τ)‖2 , 0 ≤ τ ≤ µ+ 1,
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and consider the search

max
τ

tr
{
Π1(τ)S

}
= max

τ

{
tH(τ)St(τ)

M

}
= max

τ

{∥∥tH(τ)H
zf

∥∥2

KM

}
. (6.19)

Hence, in (6.19) we seek a single delay τ which in terms of the subspace spanned by
the steering vector t(τ) explains the largest amount of average power in the signals
at hand. The maximizing argument in (6.19) is non-trivial to determine analytically
and therefore the delay may be approximated from direct numerical examination,
e.g. a high-resolution grid search. From the output of the search we let

τ̂1 := arg max
τ

{
tH(τ)St(τ)

M

}
.

This value stay �xed while the following steps are performed in a recursive manner.
For notational convenience we let

t̃(τ) := t(τ)−Π1(τ̂1)t(τ),

i.e. t̃(τ) is the projection of the steering vector t(τ), onto the orthogonal complement
of the current and �xed projection operator Π1(τ̂1). De�ne a new projection operator
by

Π2

(
τ ; τ̂1

)
:= Π1(τ̂1) +

t̃(τ) t̃H(τ)∥∥ t̃(τ)
∥∥2 , 0 ≤ τ ≤ µ+ 1,

and similarly, we search for yet another delay explaining as much additional average
power as possible, i.e. we let

τ̂2 := arg max
τ

tr
{
Π2(τ ; τ̂1)S

}
= arg max

τ

{∥∥t̃H(τ)H
zf

∥∥2

K
∥∥ t̃(τ)

∥∥2

}
.

This procedure is repeated in an obvious manner, until L delay estimates have been
collected. As in [29], we refer to the above method as the sequential beamforming

algorithm (SBA).

6.5.1 Potential Improvements

The recursive structure of the SBA allows (heuristically, but potentially) for a variety
of re�nements. We list two ideas that immediately seems evident:

- Instead of running the recursive procedure for a �xed and predetermined num-
ber of iterations, it may be possible to de�ne an `on-the-�y' stopping criteria.

- Possibly more than one delay estimate can be extracted during each iteration,
in particular if the candidates appear signi�cantly separated (subspaces ap-
proximatively orthogonal).
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The suggested stopping criteria could possibly be implemented from concurrent noise
power estimation. More speci�cally, suppose that τ̂j has just been �xed such that
Π
j

:= Π
j

(
τ̂
j
; τ̂
j−1 , . . . , τ̂1

)
is the current projection operator in the recursion. In-

spired by the noise variance estimator in (6.11) we may, additional to the sequence
of delay estimates τ̂1 , τ̂2 , . . . , τ̂j , also calculate a sequence of estimated noise powers

σ̂2
1
, σ̂2

2
, . . . , σ̂2

j
. Hence, at each recursion depth we calculate

σ̂2
j

:=
1

M − j tr
(
Π⊥
j

S
)
, j = 1, 2, 3, . . . .

Obviously, a decreasing sequence of noise powers is obtained, since as j increases,
more and more average signal power is explained in terms of the projection operator
Πj . If the SNR is known a priori to the SBA, this information could possibly be
utilized to determine a proper stopping criteria of the recursion. Indeed, the current
noise power estimate σ̂2

j
should not go below the magnitude anticipated from the

SNR level.

The options mentioned in this brief section have not been investigated further. Only,
they serve to point out the �exible structure and behavior of the SBA and we �nd
it evident to keep these suggestions in mind for future work (Chapter 9).

6.6 Chapter Summary

The algorithms investigated during this chapter are summarized in Table 6.1.

Method Computations

Deterministic ML L-dimensional optimization, matrix inversions
Stochastic ML L-dimensional optimization, matrix inversions, determinant

ESPRIT Eigenvalue decomposition
Beamformer One grid search

Capon Matrix inverse, one grid search
SBA L grid searches

Table 6.1: Algorithm overview

In the remaining part of this thesis, we consider only the ESPRIT algorithm and the
SBA. The two ML methods are considered too computationally demanding, and in
particular, the assumptions for the stochastic ML method will obviously be violated
in practice. That is, the zero-forcing observations are not temporally uncorrelated.
The Capon method requires the sample covariance matrix to be invertible. Hence,
an unrealistic amount of observations need to be stored and the delay parameters
may have changed notably while collecting all this data at the receiver.
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Chapter 7

Channel Selection and

Comparison

In this chapter we elaborate on details concerning two selected Rayleigh fading multi-
path channel models, in particular, their individual construction and implementation
for simulation purposes. These channel models are included in the simulation studies
conducted in Chapter 8 and for comparison reasons, we include as the �rst model
a reference channel con�guration proposed by the 3GPP. Typically, the multipath
channel models proposed for simulation and performance evaluations are too sim-
pli�ed and do not re�ect a satisfactory degree of behavior and properties observable
in practice. The number of channel echoes is usually proposed �xed and also the
multipath delay parameters are static, i.e. no changes over time. Only the complex
amplitudes are changing over time, however, the physical interpretation of the pro-
posed modelings are di�cult to accept. Therefore we investigate and propose a more
dynamic, time-varying multipath channel model in order to capture channel e�ects
that will be present indeed, when utilizing the wireless channel in dynamic environ-
ments in practice. Details in Chapter 8 then reveal how performance evaluations
may critically depend on the particular channel model in use.

7.1 LTE Reference Channel

In [22, Annex B.2], three di�erent multipath channel pro�les are given and these
serve as reference models for performance evaluations. The �rst one called Extended

Pedestrian A is a short channel with a maximum excess delay of 410ns, the second
one has a maximum excess delay of 2510ns and is called Extended Vehicular A and
the last pro�le called Extended Typical Urban, is a long channel with a maximum
excess delay of 5000ns. The latter pro�le is deliberately chosen longer than the
duration of the cyclic pre�x in order to mimic scenarios where some degree of ISI is
present.
We point our attention only at the second pro�le mentioned, i.e. the Extended
Vehicular A is the only reference channel pro�le considered in this thesis. It consists
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of nine multipath echoes together with corresponding relative average power terms,
see Table 7.1.

τlTs [ns] 0 30 150 310 370 710 1090 1730 2510

Q(τl) [dB] 0.0 −1.5 −1.4 −3.6 −0.6 −9.1 −7.0 −12.0 −16.9

Table 7.1: 3GPP reference pro�le: Extended Vehicular A.

The above channel consists of L(t) ≡ 9 multipath echoes and the delay parameters
are all static. The pro�le corresponds to a multipath channel model as speci�ed in
Chapter 3. The �rst delay parameter (excess delay of 0ns) re�ects the synchro-
nization procedure carried out at the receiver, i.e. the receiver will synchronize to
the �rst dominant multipath signal echo and perfect synchronization is assumed. In
practice, a guard interval of a certain span is enforced during the synchronization
procedure. Speci�cally, the entire excess delay pro�le in Table 7.1 is displaced a cer-
tain amount to right of zero in order for the synchronization mechanism to react on
sudden, distinctive changes in the channel. To imitate this guard interval we choose
to shift the entire Extended Vehicular A pro�le by an amount of ten T

s
-samples

to the right. The relative power contributions remain unchanged and this altered
channel pro�le is summarized in Table 7.2.

τlTs [Ts ] 10.00 10.92 14.61 19.52 21.37 31.81 43.49 63.15 87.11

Q(τl) [dB] 0.0 −1.5 −1.4 −3.6 −0.6 −9.1 −7.0 −12.0 −16.9

Table 7.2: Extended Vehicular A pro�le shifted ten samples to the right of zero. Delay
parameter accuracies given to two decimal places only.

Since the entire pro�le is shifted evenly to the right, the maximum excess delay of
the channel remains unchanged. Hence, no loss of generality and no actual change
in the channel is inherited from imitating this synchronization guard interval.

7.1.1 Correlation Properties

As mentioned in [22, Annex B.2], all nine multipath echoes hold the same normalized
Doppler power spectrum (recall Section 3.3.3) such that

R
D

(
0, ν; f

D

)
=

1
πf

D

1
[
|ν| ≤ f

D

]
√

1− (ν/f
D

)2
, (7.1)

and this Doppler power spectrum is commonly referred to as the Jakes' spectrum.
Its underlying assumption was �rst introduced by Clarke, further developed by Jakes
and has the advantage of being mathematically tractable but at the same time it
has a major drawback in being physically unrealistic. The particular Doppler power
spectrum (7.1) is derived based on the so-called uniform scattering environment as-
sumption, which is explained in detail in [1, Section 3.2.1] including the original ref-
erences to the work of Clarke and Jakes. Basically, a multipath echo with associated
delay τ

l
is assumed to consist of a large amount of equally powered sub-components
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7.1. LTE Reference Channel

arriving uniformly on a circle centered around the mobile receiver. Hence, it is as-
sumed that a huge number of signal components arrive from all directions, all equally
delayed relative to transmission time, all of equal power, and together they form a
single echo in the multipath channel. From a physical point of view this modeling is
very hard to accept, since indeed it is impossible for signal re�ections to arrive from
all directions but still at equal delay relative to the time the signal was launched
into the wireless channel. Nonetheless, with the uniform scattering assumption im-
posed on every of the complex-valued channel amplitude processes, their common
and normalized time-domain autocorrelation function R

t
(∆t) can be derived with

little di�culty. Referring again to the details in [1, Section 3.2.1], one can show that
the normalized autocorrelation function reads

R
t

(
∆t; f

D

)
=

1
2π

∫ 2π

0

cos
(
2πf

D
∆t cos θ

)
dθ = J0

(
2πf

D
∆t
)
, (7.2)

where J0(·) denotes the zeroth-order Bessel function of the �rst kind. From the
Fourier transform relationships explained in Section 3.3 one may identify that (7.2)
is indeed the Fourier inverse of (7.1) and vice versa. Figure 7.1 illustrates the Bessel
function and the associated Doppler power spectrum.
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(b) Jakes' Doppler spectrum

Figure 7.1: Fourier transform pairs with maximum Doppler frequency f
D

= 10Hz. Notice
how the Doppler power spectrum is symmetric around zero due to the fact that
the Bessel function is real (not complex-valued).

The peaky behavior at ±f
D

in Figure 7.1(b) clari�es the Doppler properties in-
herited from the non-linear cosine transformation `acting' on the uniform scattering
environment (only the receiver is assumed to move - recall Figure 3.2 if necessary).

7.1.2 Simulation Aspects

To approximate/mimic the uniform scattering environment assumed for every single
channel echo, we introduce a �xed number R of individual sub-components for each of
the nine dominant echoes. That is, to capture the time-domain correlation properties

80



7.2. Dynamic Multipath Channel

imposed in the previous section, we model each complex-valued channel amplitude
process according to

α
l
(t) =

√
Q(τ

l
)

R

R∑

r=1

exp
(
i2πf

D
cos(θ

l,r
)t+ iϕ

l,r

)
, l = 1, 2, . . . , 9,

where the statistics of the sub-component angle of arrivals θ
l,r

and initial phases

φ
l,r
, respectively, are given as

θ
l,r

i.i.d.∼ U(−π, π), ϕ
l,r

i.i.d.∼ U(−π, π), r = 1, 2, . . . , R,

The associated channel impulse response reads

g(τ, t) =
9∑

l=1

α
l
(t)δ

(
τ − τ

l
T
s

)
,

where the average power term Q(τ
l
) and delay parameter τ

l
T
s
can be extracted

from Table 7.2 for l = 1, 2, . . . , 9. Moreover, the average power terms Q(τ
l
) may be

normalized such that the overall channel holds unit average power (appropriate when
running simulations). The integer R can be chosen somewhat arbitrarily, however,
it should not be `too small' since the uniform scattering environment is implicitly
mimicked through this parameter.

7.2 Dynamic Multipath Channel

The reference channel model presented in the previous section, Extended Vehicular
A, is too unrealistic and does not re�ect a satisfactory degree of behavior and prop-
erties observable in practice. The delay parameters are static, the number of channel
echoes is �xed and the time direction correlation properties of the complex-valued
amplitude processes are di�cult to accept from a physical point of view. Therefore
we propose the following more dynamic multipath channel model where inspiration
has been gained through the modeling suggestions in [30, 31].

7.2.1 Amplitude Processes and Correlation Properties

From the framework of Chapter 3 we propose a time-varying multipath channel
impulse response of the form

g(τ, t) =
L(t)∑

l=1

α
l
(t)δ

(
τ − τ

l
(t)T

s

)
,

where each complex-valued amplitude process is now modeled as

α
l
(t) =

√
Q
(
τ
l
(t)
)

R

R∑

r=1

exp
(
i2πf

D
cos(θ

l,r
)t+ iϕ

l,r

)
, l = 1, 2, . . . , L(t).
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7.2. Dynamic Multipath Channel

The overall structure of each channel amplitude is similar to the one presented in
the previous section, however, some statistical properties and the average power
con�guration have been re�ned. Setting aside the uniform scattering environment
we model instead each channel echo from azimuth excited sub-components centered
around a nominal angle of arrival (wavefront incidence direction). More speci�cally,
we model the nominal angle of arrivals as hyper parameters according to

θ̄
l

i.i.d.∼ U(−π, π), l = 1, 2, . . . , L(t),

and given these, we model

θ
l,r
|θ̄
l

i.i.d.∼ vM
(
θ̄
l
, κ
)
, r = 1, 2, . . . , R,

where vM
(
θ̄
l
, κ
)
denotes the von Mises distribution with location parameter θ̄

l
and

concentration parameter κ. The von Mises distribution is sometimes referred to as
the circular normal distribution and when X ∼ vM

(
θ̄
l
, κ
)
the associated probability

density function reads

f
X

(x) =
eκ cos(x−θ̄

l
)

2πI0(κ)
, θ̄

l
∈ [−π, π), κ ≥ 0,

where I0(·) denotes the zeroth order modi�ed Bessel function. Choosing κ = 0
simply gives the uniform distribution on the interval [−π, π) while choosing κ large
the von Mises distribution becomes highly concentrated about the angle θ̄

l
(it

approximates a Gaussian distribution with variance 1/κ). From an analytical point
of view the von Mises distribution is easier to handle compared to the Gaussian
distribution, as we shall soon come to realize. The hyper parameter θ̄

l
is considered

�xed/deterministic but any angular value is as likely as another since indeed, a
signal wavefront may arrive from any direction in a non-line-of-sight scenario (but
notice the crucial di�erence compared to the assumptions of the uniform scattering
environment). The initial phases ϕ

l,r
are modeled as i.i.d. U(−π, π) as in the

previous section. In order to carry out the forthcoming calculations, this is a
paramount assumption indeed.

From the assumptions made until this point we are straightforwardly able to calculate
the normalized time-direction autocorrelation function Rt

(
∆t; f

D
, κ, θ̄

l

)
. Assume for

simplicity that the average power term Q
(
τ
l
(t)
)
≡ 1 and consider

R
t

(
∆t; f

D
, κ, θ̄

l

)
:= E

[
α
l
(t)α∗

l

(
t+ ∆t

)]

=
1
R

R∑

r=1

E
[

exp
(
− i2πf

D
cos(θ

l,r
)∆t
)]

+ 0

=
1

2πI0(κ)

∫ π

−π
exp

(
− i2πf

D
cos(x)∆t+ κ cos(x− θ̄

l
)
)
dx,

and the latter expression clari�es why the von Mises distribution is convenient com-
pared to a Gaussian equivalent. Applying a few trigonometric identities and invoking
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the formula

1
2π

∫ π

−π
exp

(
z cos(x) + w sin(x)

)
dx = I0

(√
z2 + w2

)
, z, w ∈ C,

we end up with the closed-form expression

R
t

(
∆t; f

D
, κ, θ̄

l

)
=
I0

(√
κ2 −

(
2πf

D
∆t
)2 − i4πκ cos(θ̄

l
)f
D

∆t
)

I0(κ)
(7.3)

which is also obtained from similar calculations in [31]. Opposite to the real-valued
autocorrelation function obtained in the previous section, the expression (7.3) is
complex-valued in general - except when θ̄

l
= ±π2 . Figure 7.2 depicts the shape of∣∣R

t
(∆t)

∣∣ for two selected values of the concentration parameter κ.
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Figure 7.2: Decorrelation properties for di�erent nominal angle of arrivals θ̄
l
. Azimuth

spreads of 5◦ and 10◦ correspond to κ = 131 and κ = 33, respectively. Maximum
Doppler frequency f

D
= 10Hz.

Interesting observations can be made from studying the behavior of the curves in
Figure 7.2(a) - Figure 7.2(f). For a �xed azimuth (wavefront incidence direction)
spread, we observe that the magnitude-wise greatest decorrelation occur when wave-
fronts impinge perpendicular upon the direction of motion of the receiver. This is
also an intuitively appealing conclusion since the non-linear cosine transformation
will assign Doppler shifts of the largest possible span exactly when θ̄

l
= ±π2 . Hence,

due to the assumed azimuth spreading, both negative and positive Doppler shifts
will be assigned in this case (compare with the case when θ̄

l
= 0 or θ̄

l
= π). In [31]
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7.2. Dynamic Multipath Channel

an analytical expression of the Doppler power spectrum R
D

(0, ν) is given, i.e. the
Fourier transform of (7.3) with respect to the time-lag variable ∆t. We omit the
details and state only the ruling formula which reads

R
D

(
0, ν; f

D
, κ, θ̄

l

)
=

exp
(
κ cos(θ̄

l
)ν/f

D

)
cosh

(
κ sin(θ̄

l
)
√

1− (ν/f
D

)2
)

I0(κ)πf
D

√
1− (ν/f

D
)2

(7.4)

where due to the common receiver mobility assumption, the Doppler frequency ν
satis�es −f

D
≤ ν ≤ f

D
. It is interesting to note that when choosing κ = 0 the

expression (7.4) reduces to Jakes' Doppler power spectrum in (7.1). The general
Doppler behavior intuitively justi�ed from the study of Figure 7.2 is directly inter-
pretable from Figure 7.3 showing two particularly interesting special cases of inci-
dence direction.
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Figure 7.3: Normalized Doppler power spectra - maximum Doppler frequency f
D

= 10Hz.

In the above derivations we assumed for simplicity the average power term Q
(
τ
l
(t)
)

to be constantly equal to one. We remain to elaborate on these power terms but
�rst we introduce a dynamic model for the delay parameters τ1(t), τ2(t), . . . , τ

L(t)(t).

7.2.2 Poisson Line Processes

When a mobile receiver is traveling, e.g. through an urban area, it is likely that the
number of multipath channel echoes changes over time. Transitions occur where
echoes arise and disappear, the propagation delay parameters drift or �uctuate
over time and the incidence directions of the signal wavefronts varies too [30]. All
e�ects occur due to mobility and we have already accounted for the �uctuations
in incidence directions by the azimuth spread modeling in the previous section. In
order to incorporate the remaining mentioned behavior of the multipath channel we
follow the lines of [30] and incorporate a mathematically tractable Poisson process
approach.
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7.2. Dynamic Multipath Channel

Consider a receiver traveling along a regular trajectory. Assume the transitions of
echoes arising in the channel to occur according to a homogeneous Poisson process

with occurrence rate λ
B
. Assume furthermore that the time until disappearance

of any echo (its lifetime basically) is exponentially distributed with rate parameter
λ
S
. If the initial number of echoes in the channel is Poisson distributed with mean

λ
B
/λ

S
, then at any given time t, the number L(t) of attending echoes in the channel

is a Poisson distributed random variable with mean L̄ := λ
B
/λ

S
. That is, at any

time instant the integer L(t) ∼ Pois
(
L̄
)
, see [32, Section 6.10.2].

When the l'th echo arises in the channel at time t
l,0 , say, it holds an initial propa-

gation delay τ
l,0 with associated Doppler shift

ν
l

:= f
D

cos(θ̄
l
).

This nominal Doppler shift cause the propagation delay to vary over time. For
simplicity and due to our receiver mobility assumption, it is convenient to model
this variation from straight line advancement1, i.e.

τ
l
(t) = τ

l,0 +
ν
l

f
c

(t− t
l,0), t ≥ t

l,0 ,

where f
c
denotes the carrier frequency (recall (3.4) on page 21). For the sake of

simplicity we furthermore let the initial delay parameters τ1,0 , τ2,0 , . . . , τL(t),0 be i.i.d.,
uniformly on some appropriate interval [a, b], in principle from zero to the end of
the cyclic pre�x duration. Hence, the pairs (t

l,0 , τl,0) of arise times and initial delays
form a two-dimensional homogeneous Poisson process on R × [a, b]. Appropriately,
we may think of the associated echo lifetimes and Doppler shifts as marks attached
to the points, i.e. a marked Poisson point process [33, Section 3.3].

7.2.3 Average Channel Power

Typically, the power delay pro�le is modeled according to an exponentially decay-
ing function [1, Section 3.3.1], see also [11, Appendix A]. Hence, the average power
contribution of each channel echo explained as a function of its associated multipath
delay reads

Q
(
τ
l
(t);C, ρ

)
:= E

[
|α
l
(t)|2

∣∣τ
l
(t)
]

= C exp
(
− τ

l
(t)/ρ

)
, l = 1, 2, . . . , L(t),

where C > 0 is a scaling factor and ρ > 0 speci�es the decay rate of the exponential
term. The functional form of Q does not depend on the index l and for notational
convenience we therefore write

Q
(
τ ;C, ρ

)
= E

[
|α|2

∣∣τ
]

= C exp
(
− τ/ρ

)
.

In order to carry out the following average channel power calculations, we assume

that all Doppler shifts ν
l
are zero. Hereby no delays are drifting over time - they

1In practice, when both the receiver and the scatterers are moving simultaneously, the drift of
each propagation delay is more likely to follow an elliptic curve.
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all stay �xed at their assigned initial delay τ
l,0 . Then, at any given time t, the

delays τ1(t), τ2(t), . . . , τ
L(t)(t) are mutually independent and identically distributed

according to the uniform distribution on [a, b], where 0 ≤ a < b ≤ µ + 1 and µ + 1
is the length of the cyclix pre�x (measured in T

s
-samples). Notice carefully that the

delays τ1(t), τ2(t), . . . , τ
L(t)(t) would not be uniformly distributed if the straight line

advancement slopes were non-zero. Since the channel amplitude processes are mutu-
ally uncorrelated and the associated propagation delays are mutually independent,
the joint distribution of α

l
(t) and τ

l
(t) does not depend on the index l and neither

on L(t). One should carefully notice the variety of assumptions invoked in order to
obtain this crucial fact.
The point is that we desire a channel with average power normalized to unity and
therefore we need to tune the scaling parameter C such that

E
α,τ,L(t)



L(t)∑

l=1

|α
l
(t)|2


 = 1.

Obviously, the required value of C depends on the average number of channel com-
ponents L̄ and the decay rate ρ. Furthermore, C depends critically on the joint
distribution of the delay parameters, in this case (due to our simplifying assump-
tions) on the edge points a and b. To determine the required value of C we calculate

E
α,τ,L(t)



L(t)∑

l=1

|α
l
(t)|2


 = E

L(t)



L(t)∑

l=1

E
α,τ

[
|α
l
(t)|2

] ∣∣∣∣ L(t)




= E
L(t)



L(t)∑

l=1

E
τ

[
E
α|τ

[
|α
l
(t)|2

∣∣τ
l
(t)
]] ∣∣∣∣ L(t)




= E
L(t)

[
L(t) · Eτ

[
Q
(
τ ;C, ρ

)]]
. (7.5)

Due to our simplifying assumption, any delay τ ∼ U [a, b] and the innermost expec-
tation in (7.5) reads

E
τ|L(t)

[
Q
(
τ ;C, ρ

)]
=

C

b− a

∫ b

a

exp(−τ/ρ)dτ,

and therefore we end up with the overall expression

E
α,τ,L(t)



L(t)∑

l=1

|α
l
(t)|2


 = L̄ · Cρ

b− a
(

exp(−a/ρ)− exp(−b/ρ)
)
.

Equating to unity and solving for C yields

C
(
L̄, ρ, a, b

)
=

b− a
ρL̄
(

exp(−a/ρ)− exp(−b/ρ)
) , (7.6)
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and remark carefully how this outcome depends critically on our assumptions made
and also on di�erent parameter selections. First of all, the two event rates λ

B
and

λ
S
must be speci�ed, or equivalently L̄ together with one of the two rates. We model

the initial multipath delays as i.i.d. uniformly on [a, b] and the �nal parameter to
specify is therefore the decay rate ρ. The scaling factor C can then be calculated
from (7.6). If in practice the slopes of the straight line delay advancements are of
notable magnitudes (i.e. high Doppler shifts), the above average power calculation
will not comprise an acceptable approximation anymore.

7.2.4 Simulation Aspects

The von Mises distribution was introduced in Section 7.2.1 for analytical con-
venience, speci�cally in order for us to evaluate a certain integral. However, for
simulation purposes the Gaussian equivalent approximated by the von Mises distri-
bution is much more convenient to apply. Also, the cosine transformation applied
to the angular values will do the job of wrapping the Gaussian realizations around
the circle (due to its 2π-periodicity), and therefore no modi�cations need to be made.

Another interesting and challenging aspect concerned with the proposed dynamic
channel model is present in terms of its overall implementation. To this end it
should come as no surprise why Poisson and exponential assumptions have been
invoked to model the time evolution of the attending channel echoes. In fact,
the dynamic channel can be updated `on the �y' according to certain Markov
properties inherited from the memoryless property of the exponential distribution.
From a simulation technical point of view this turns out to be notably advantageous.

Consider the channel state being observed at time t′ and suppose the current number
of attending echoes in the channel is L′ := L(t′). At future discrete-point times

t′ + ∆t, t′ + 2∆t, t′ + 3∆t, . . . . . . ,

the channel is likewise to be observed/simulated while in-between (continuous time)
the channel has changed, i.e. phases have rotated, delays have drifted and so on.
The current channel state is identi�ed in terms of

(i) the delay parameters τ1(t′), τ2(t′), . . . , τ
L′ (t

′)

(ii) the nominal incidence directions θ̄1 , θ̄2 , . . . , θ̄L′

(iii) the L′ ·R azimuth excited angle of arrivals
{
θ
l,r

}
, and �nally

(iv) the L′ ·R complex exponentials (all current amplitude sub-components)

{
exp

(
i2πf

D
cos(θ

l,r
)t′ + iϕ

l,r

)}
,

l = 1, 2, . . . , L′

r = 1, 2, . . . , R.

If no transitions in the channel occur during the time period from t′ to t′ + ∆t, the
present channel state can be directly updated. Using the information in (i) and (ii),
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the delay parameters are updated according to

τ
l

(
t′ + ∆t

)
= τ

l
(t′) +

f
D

fc
cos(θ̄

l
)∆t, l = 1, 2, . . . , L′,

while each of the L′ · R amplitude sub-components in (iv) are updated using the
information in (iii), simply from multiplication with exp

(
i2πf

D
cos(θ

l,r
)∆t
)
, i.e.

phase rotations.

At any point in continuous time, new echoes may arise in the channel or current ones
may disappear. Due to the memoryless property of the exponential distribution the
future channel states become independent of the previous states when given the cur-
rent channel state. Therefore, to simulate `on the �y' realizations of the channel we
just have to locate the points in continuous time where transitions occur. Since all
time evolution terms involved are assumed mutually independent and exponentially
distributed, the actual transition points can be located from realizations of a single
exponential variable. Figure 7.4 depicts the scenario considered, showing how mu-
tually independent, exponentially distributed clocks E1 , E2 , . . . , EL′ are being set at
time t′. If some of these L′ clocks sound before the next observation time t′ + ∆t, it
means immediate disappearance of the corresponding channel echoes.

t [s]
t' 

τ [Ts]

t'-Δt t'+Δt

Set clock EL' ~ Expo( λS )

.  .  . 

.  .  . 

.  .  . 

Set clock E2 ~ Expo( λS )

Set clock E1 ~ Expo( λS )

Figure 7.4: At observation time t′, an exponential clock is set/reset for each of the currently
attending channel echoes.

An additional independent clock E
B
∼ Expo(λ

B
) is furthermore set at time t′. If

this particular clock sounds before time t′ + ∆t, it means that a new echo arises in
the channel. Instead of keeping track of all these exponential clocks simultaneously,
we can simply do by keeping track of

X := min
{
E
B
, E1 , E2 , . . . , EL′

}
.

When the �rst clock sounds the remaining ones can be reset since they are all mem-
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oryless. We easily realize that

X ∼ Expo
(
λ
B

+ L′λ
S

)
,

since

F
X

(x) := P (X ≤ x) = 1− P
(

min
{
E
B
, E1 , E2 , . . . , EL′

}
> x

)

= 1− exp
(
− λ

B
x
) L′∏

l=1

exp
(
− λ

S
x
)

= 1− exp
(
− (λ

B
+ L′λ

S
)x
)
,

which is recognized as the cdf of an exponential distribution with rate-parameter
λ
B

+ L′λ
S
. Hence, the realizations of X determine the inter-transition times in the

channel and since X inherits a memoryless property too, this `combined clock' may
similarly be reset every time no events have occurred. When a transition occurs, its
underlying purpose is determined according to the probability distribution

(
p
arise

, p
disappear

)
=
(

λ
B

λ
B

+ L′λ
S

,
L′λ

S

λ
B

+ L′λ
S

)
,

and when disappearance is the outcome, a single of the currently attending echoes is
removed according to the uniform probability distribution among the L′ candidates.

7.3 Channel Veri�cation

In this section we verify by simulations that the dynamic channel introduced in
Section 7.2 is indeed a Rayleigh fading multipath channel. To this end our choice
of implementation is partly veri�ed too. For later on comparison reasons, we desire
to imitate (to the extent possible) the power delay pro�le con�guration of the LTE
reference channel introduced in Section 7.1. Speci�cally this means that we choose
the edge points a and b and the decay rate ρ in such a way that the power delay
pro�le from Table 7.2 is re�ected in an appropriate manner.

From the numbers in Table 7.2 we choose a = 10 and b = 88. In this way the
dynamic channel holds approximately the same maximum excess delay as the LTE
channel. Furthermore, we choose the decay rate ρ such that the relative power re-
lationship between the earliest echo (0.0dB) and the latest echo (−16.9dB) is main-
tained. Solving for ρ in the following equation of ratios

C exp
(
− 88/ρ

)

C exp
(
− 10/ρ

) =
exp

10

(
− 16.9/10

)

exp
10

(
0.0/10

)

yields a particular value of ρ = 20. Figure 7.5 shows the pro�le from Table 7.2 to-
gether with the �tted exponential curve (average power terms have been normalized
such that the �rst echo in the �xed LTE pro�le is unit-reference).
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Figure 7.5: Shifted LTE pro�le and the �tted, exponentially decaying power delay pro�le.

Beside the parameters a, b and ρ we have to select the values of λ
B
and λ

S
such

that the average number of echoes in the channel is speci�ed. To this end we face
a crucial drawback of the dynamic behavior introduced in the channel model. Since
at any given time the number L(t) follows a Poisson distribution, inevitably, the
event of L(t) being equal to zero is associated with strictly positive probability.
Of course, all signal re�ections may happen to be blocked in practice (connection
loss), however, this fact is not very appreciated from a simulation practical point of
view. A straightforward choice for the average number of channel echoes would be
L̄ = λ

B
/λ

S
= 9, since the LTE channel constantly includes nine echoes. However,

the probability of the zero-echo event would then be exp(−9) ≈ 0.1234·10−3, which is
too large to be considered negligible for simulation purposes. Somewhat heuristically,
we therefore choose the average lifespan of each channel echo to be one second, i.e.
λ
S

= 1, and from this value we choose λ
B

= 15 such that the average number of
channel echoes becomes L̄ = 15. The probability of the zero-echo event then reads
exp(−15) ≈ 0.3·10−6 and therefore the channel has to be observed (on average) more
than three million times before its recurrence. The remaining parameters selected
for the following simulation study are given in Table 7.3.

Carrier Maximum Doppler Number of Azimuth
frequency frequency sub-components spread

fc fD R κ
2GHz 10Hz 100 131

Table 7.3: Parameter selections.

A 2GHz carrier frequency is a midpoint compromise of the range where LTE systems
are likely to be deployed. On this carrier frequency the wavelength is approximately
15cm and a maximum Doppler shift of 10Hz corresponds to a receiver moving at
about �ve kilometers per hour (walking speed of human beings). The choice of
R = 100 is rather heuristical, as is the choice of κ = 131 which corresponds to a
standard deviation of 5◦ in the approximative Gaussian distribution.
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7.3. Channel Veri�cation

In the following, two di�erent realizations of the dynamic channel are considered -
partly for implementation veri�cation and partly for comparison evaluation. First we
simulate a single, long-lasting (contiguous) realization of the channel. Afterwards,
we explain how to initialize the channel in states of equilibria. Optimally, from such
perfect initializations we could simulate multiple, non-contiguous channel realiza-
tions of short durations. However, due to time constraints, the correct/perfect ini-
tialization procedure has not been implemented. Therefore we just approximate the
states of equilibria by crude initializations. This crude procedure has also been uti-
lized during the simulation studies conducted in the forthcoming chapter. Despite
these imperfect initializations, the average behavior of the channel can be captured
from a notably reduced amount of overall realization time from this non-contiguous
procedure.

7.3.1 Contiguous Channel Realization

In Figure 7.6, a time vs. delay illustration of the straight line advancements of
the propagation delays are shown. For illustration purposes, the maximum Doppler
frequency have been selected notably larger than 10Hz, and also the initial delays
have been drawn from an interval corresponding to the entire duration of the cyclic
pre�x. The maximum Doppler frequency and the interval [a, b] are immediately
reassigned to the values suggested in the previous section.

Figure 7.6: A twenty seconds realization of the Poisson line processes.
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7.3. Channel Veri�cation

Figure 7.7 summarizes a �ve minutes coherent realization of the dynamic channel.
The channel has been sampled at discrete times corresponding to every single OFDM
symbol, hence 14000 samples every realized second of the channel. The instant
envelope and the number of attending echoes in the channel have been monitored
during the realization.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Distribution of envelope

 

 

Theoretical cdf
Empirical cdf

(a) Envelope |β(t)|

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

L(t)

P
ro

ba
bi

lit
y 

m
as

s

Number of channel echoes

 

 
Empirical pmf
Theoretical pmf

(b) Echo count L(t)

Figure 7.7: Channel realization (contiguous) - �ve minutes duration (30.000 radio frames).

As can be seen, the empirical distribution of the (Rayleigh distributed) envelope
|β(t)| and the (Poisson distributed) non-negative integer L(t), appear both in rea-
sonable correspondence with the theoretical distributions, recall Section 3.4 if nec-
essary.

7.3.2 Non-contiguous Channel Realizations

In contrast to Figure 7.7, we have summarized in Figure 7.8, a 25 seconds non-
coherent realization of the dynamic channel. The channel has simply been re-
initiated over and over again while observed only for durations of �ve radio frames.
Also in this case the empirical distributions appear in reasonable correspondence
with the theoretical distributions.
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Figure 7.8: Channel realization (non-contiguous) - 25 seconds in total (500 · 5 radio frames).

In order to correctly initiate the channel in a state of equilibrium, the �rst to do is
to draw a Poisson distributed number (mean L̄) of attending echoes at time t = 0.
Given this number, we have to simulate backwards in time to locate the particular
moments when the uniformly distributed initial delays arose in the channel. These
backward recurrence times are i.i.d. exponentials with rate λ

S
. Given these echo

arise times and the uniformly distributed initial delays, we simply have to simulate
forward in time until time zero while letting the delays drift according to their
assigned Doppler shifts.
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Chapter 8

Simulation Study

In this chapter a simulation study is carried out based on the two channel models
described in the previous chapter. We demonstrate the delay estimation performance
of both the ESPRIT algorithm and the sequential beamforming algorithm (SBA)
within these two multipath channel scenarios. More speci�cally, we use these two
algorithms to provide the delay parameters presupposed by the ENRA.

8.1 Preliminaries and Chapter Outline

In [12], the ESPRIT algorithm is proposed to serve as initial multipath delay
acquisition tool for pilot-assisted OFDM systems. For complexity reasons the
ESPRIT algorithm is periodically employed for re-acquisitions only. In-between the
acquisitions a delay locked loop (DLL) tracking scheme is proposed. Based on the
proposal in [12] we are going to demonstrate a number of crucial facts concerned
with the applicability of ESPRIT. In particular, we demonstrate how the ESPRIT
algorithm completely fails to provide satisfactory delay estimates when used in the
dynamic multipath channel. This severe performance degradation of ESPRIT is
however not too surprisingly, considering its underlying assumptions.

Furthermore, and very interestingly, we demonstrate that the SBA is a promising
tool for estimation of time-varying multipath propagation delays. However, more
insight and re�nements are needed in order to comprise a decent competitor against
the Robust Wiener Filter.

8.1.1 Simulator Make-up

The scripts forming the simulator have been developed in Matlab and the overall
scheme coincide for both scenarios, i.e. for the LTE reference scenario and the sce-
nario including the dynamic multipath channel. The general simulator framework is
presented below in a step-by-step pseudo-code formulation and two of the involved
steps are of particular importance. These two steps comprise the very essential and
non-trivial parts of the simulator and the time consumption levels associated with
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8.1. Preliminaries and Chapter Outline

the development of these parts have been particularly dominant.

The major distinction between the two channel scenarios considered is of course the
fact that L(t) and τ1(t), τ2(t), . . . , τ

L(t)(t), are time-varying in the one case, while
�xed/static in the other case. Furthermore, the time direction correlation properties
of the complex channel amplitudes are not the same for the two scenarios.

SIMULATOR

Fix SNR level and select T
rf
∈ N (radioframes per Monte Carlo run).

Carry out X independent Monte Carlo runs of the following OFDM transmission
scheme.

(i) Initialize multipath channel (at time t = 0).

for t = 1, 2, 3, . . . , T
rf
· 140, carry out step (1) to (8).

(1) Draw 2Nu bits and modulate these to Nu symbols (QPSK with Gray-coding).

(2) for l = 1, 2, . . . , L(t), update the multipath channel parameter
[
αl(t), τl(t)

]

given the previous parameter
[
αl(t− 1), τl(t− 1)

]
.

(3) Compute the frequency response of the channel and distort the Nu transmitted
symbols by channel and noise e�ects (frequency domain).

(4) if (t mod 7) ∈ {1, 5} then collect the M pilot symbol observations, calculate
h
zf
and initiate step (5). if (t mod 7) 6∈ {1, 5} then goto step (7).

(5) Estimate the delay parameters of the channel with ESPRIT or SBA using the
collection of zero-forcing estimates stored in memory.

(6) Estimate the channel transfer function (CTF) by ENRA using the delay esti-
mates obtained in step (5).

(7) Undo the channel e�ects using the current estimate of the CTF, thereby obtain-
ing estimates of the transmitted data symbols.

(8) if (t mod 7) ∈ {1, 5} then demodulate the Nu−M non-redundant data symbols
and count erroneous bits. if (t mod 7) 6∈ {1, 5} then demodulate all Nu non-
redundant data symbols and count erroneous bits.

The above simulation scheme applies for both channel scenarios, but obviously step
(2) inherits notably dissimilar execution depending on the actual channel under
consideration. Step (2) and (5) comprise the two non-trivial parts of the simulator,
in particular step (2) when using the dynamic channel. Obviously, a lot of details
are omitted in the stepwise pseudo-code given above and a variety of parameters1

must be de�ned before execution of the script can take place.

A crucial and important remark can be obtained from a detailed inspection of the

1Including for instance: N, Nu , M, µ, R, fD , fc , K, I, P and many more.

95



8.2. Extended Vehicular A

simulation scheme above. The current estimate of the channel transfer function is
only updated twice every slot, i.e. when pilot symbols are present in an OFDM
symbol (�rst and �fth OFDM symbol in every slot). We include no time direction
interpolation schemes for in-between improvement of the channel transfer function
estimate. Furthermore, we do not make any use of previously obtained delay
estimates, i.e. the delay estimation is carried out from scratch every single time.

Initially, we carry out a variety of simulations within the Extended Vehicular A
channel scenario. Thereafter, we carry out a similar (but smaller) collection of
simulations within the dynamic multipath channel scenario.

8.2 Extended Vehicular A

The true number of channel echoes, i.e. L = 9, is fed to the ESPRIT algorithm in
all cases considered below. Hence, whenever a delay parameter eigenvalue is plain
mistaken by a noise eigenvalue, the corresponding delay parameter will simply not be
collected. However, if the ESPRIT algorithm was deliberately forced to overestimate
the number of channel components, such a mistaken delay parameter could possibly
be collected even though. Figure 8.1 show the performance of the ENRA when
feeded with delay estimates from ESPRIT. Four di�erent values of the snapshot
memory parameter K have been used.
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Figure 8.1: Performance of the ENRA when feeded with delay estimates from ESPRIT using
persymmetric covariance matrix estimates based on di�erent amounts of snap-
shots. Known CTF and RWF performance are shown for comparison reasons.
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8.2. Extended Vehicular A

Notice how a memory of K = 400 snapshots are needed in order to obtain better
performance than the Robust Wiener Filter, when considering the entire SNR-range.
This is a highly unrealistic number of observations to store at the receiver. Further-
more, there seems to be a SNR threshold at which the ESPRIT starts to improve its
performance. Even the K = 50 improves a lot at the very high SNR levels. In order
to get a better insight on the actual performance of ESPRIT the delay estimation
errors have been monitored by a Levy metric comparison, Figure 8.2 below.
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Figure 8.2: Estimation performance of ESPRIT expressed in terms of the Levy-metric.

To reduce the size of the snapshot memory K, the Forward-Backward (FB) approach
used in [12] has been investigated also. This approach is a heuristical method to
obtain more snapshots by sacri�cing overall dimensionality. More speci�cally, a
sliding window is introduced and used to cut the observations into smaller pieces,
see [12] and [24]. The performance is shown in Figure 8.3.
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Figure 8.3: Performance of the ENRA when feeded with delay estimates from ESPRIT using
Forward-Backward averaged persymmetric covariance matrix estimates (50×50).
Known CTF and RWF performance shown for comparison reasons.

Also in this case the Levy-metric has been invoked to clarify the actual performance
of ESPRIT, shown in Figure 8.4. Notice how a notably BER performance improve-
ment is obtained for the curve with K = 50.
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Figure 8.4: Estimation performance of ESPRIT using Forward-Backward approaches, ex-
pressed in terms of the Levý-metric.
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Hence, provided that enough snapshots are used, the ESPRIT algorithm is able to
estimate the delays in a satisfactory manner. We now look at the performance of
the SBA. Initial results are shown in Figure 8.5.
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Figure 8.5: Performance of the ENRA when feeded with delay estimates from SBA and the
true number of channel echoes. Grid resolution: 10−2 of the sampling time.

Notice how the performance of the SBA algorithm seems to be almost identical for
the three selected values of the snapshot memory K. In Figure 8.6, the number of
channel echoes have been deliberately overestimated. The performance of the SBA
can be observed to improve notably.

99



8.3. Dynamic Multipath Channel
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Figure 8.6: Performance of the ENRA when feeded with delay estimates from SBA while
overestimating the number of channel echoes in two cases. Grid resolution: 10−2

of the sampling time.

Notice that only a single snapshot (K = 1) is used above and that by overestimating
the number of channel echoes, the BER performance is better than the Robust
Wiener Filter in the case when L = 25 channel echoes are collected (the true number
is nine).

8.3 Dynamic Multipath Channel

The methods investigated for the LTE reference channel are now tested in the
dynamic environment. Performance of the ESPRIT algorithm changes dramatically
when the delay parameters are varying over time. Figure 8.7 indicates this clearly,
and notice also how the lack of time direction �ltering is much more notable at high
SNR. This is due to the fact that the delays are drifting.

In this case the ESPRIT algorithm seems non-applicable unless a decent covariance
matrix estimate can be obtained from a small amount of snapshots. Figure 8.8

shows the performance when the Forward-Backward method is invoked to improve
the covariance matrix estimate. However, conclusions remain the same - ESPRIT
cannot be used to estimate the delays when they �uctuate over time.
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Figure 8.7: Performance of the ENRA when feeded with delay estimates from ESPRIT using
persymmetric covariance matrix estimates based on di�erent amounts of snap-
shots. Known CTF and RWF performance shown for comparison reasons.
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Figure 8.8: Performance of the ENRA when feeded with delay estimates from ESPRIT using
Forward-Backward averaged persymmetric covariance matrix estimates based on
di�erent amounts of snapshots. Known CTF and RWF performance shown for
comparison reasons.
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Opposite the the ESPRIT algorithm, the SBA does not su�er from the fact that
the delays are moving. This mainly due to the fact that it performs very nice even
though only a single snapshot is processed. The performance of the SBA is shown
in Figure 8.8, here with three di�erent amounts of channel echoes to collect.
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Figure 8.9: Performance of the ENRA when feeded with delay estimates from SBA. Known
CTF and RWF performance shown for comparison reasons.
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Chapter 9

Conclusion and Future Work

9.1 Conclusions

It has been clearly demonstrated that the performance level of the ESPRIT al-
gorithm depends critically on the channel model assumed. In [12], the ESPRIT
algorithm was proposed to serve solely as an initial multipath delay acquisition
tool. However, if the delays are drifting over time the algorithm simply cannot be
used, not even for acquisitions. Also, it seems that even though the channel model
is assumed to hold static delays, still a large amount of observations are needed in
order to achieve a satisfactory covariance matrix estimate. This turns out to impact
the BER performance for a wide SNR-range (except at very high SNR).

When using the ENRA at high SNR levels, overestimation of the number of echoes
(increased complexity due to matrix inverse) seems to be a very acceptable com-
promise (convergence of the ENRA towards RWF performance). In the case where
just a single true delay is missed in the estimation procedure, notably performance
degradation can be observed.

A more complete and throughout simulation study could possibly have demonstrated
the above conclusions more evidently. However, due to time constraints this have
not been possible.

The sequential beamforming algorithm (SBA) exhibits satisfactory estimation ac-
curacy, and it only requires the current observations, i.e. no memory needed. It
seems to be a promising tool for estimation of multipath propagation delays. To
our knowledge, the SBA has not been proposed in such a context earlier in literature.

The dynamic channel model investigated is considered notably more realistic than
the common reference channels proposed in literature and standards, e.g. those
speci�ed by the 3GPP. Since algorithm performance can be shown to depend very
critically on the channel model in use, we propose to use more realistic channel
models in general.
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9.2. Future Work

9.2 Future Work

The sequential beamforming algorithm appears as a promising delay estimation
tool. However, more insight is needed (stopping criteria, distinguishing side lobes
from main lobes, etc.). Recall for instance the discussion in Section 6.5.1. The
implementation used in this project is rather crude and has not been optimized
or re�ned in any way. Therefore, we sense a great potential with this method, indeed.

The dynamic channel model investigated can absolutely be made even more realistic.
For instance, the transitions in the channel are on/o�-alike and it seems obvious to
invoke more soft transitions. Also, it would be interesting if the zero-echo event
problematic could be solved (we simply avoided it by choosing the mean parameter
in the Poisson distribution large enough).
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Appendix A

Measure Theoretical Details

and Stochastic Processes

This appendix presents a selection of mathematical tools and results used throughout
the report. Measure theoretical details, random variables and stochastic processes
are treated in the following and knowledge of basic probability theory is assumed.
Readers who are less interested in the mathematical de�nitions and aspects may
prefer to skip this appendix.

A.1 Sigma-algebra, Measures and Random Vari-

ables

This section is inspired by [34] and [33, Appendix B]. Denote by Ω an arbitrary
non-empty set and let A be a paving on Ω, i.e. a set of subsets of Ω.

De�nition A.1.1. (Sigma-algebra)

A sigma-algebra on Ω is a non-empty paving E on Ω, with ∅ ∈ E and such that
E is closed under complements and countable unions of its members.

Hence, if E is a sigma-algebra on Ω, then Ω ∈ E since E is non-empty. By De

Morgans Laws [35, Theorem 1.2.5], it follows that E is closed under countable inter-
sections too. Basically, a sigma-algebra is closed under all common set operations
and in general, a sigma-algebra is a very large family of subsets. The smallest
possible sigma-algebra is {∅,Ω} and the largest possible sigma-algebra is P(Ω),
the powerset of Ω, i.e. the set of all subsets of Ω. A sigma-algebra E is said to be
generated by a non-empty paving A if E is the smallest sigma-algebra such that
A ⊆ E . Notice that a smallest sigma-algebra containing A exists since the inter-
section of any two sigma-algebras containing A is also a sigma-algebra containing
A, and at least one sigma-algebra contains the paving A, namely the powerset P(Ω).
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The Borel sigma-algebra on Rn, denoted B(Rn), is the smallest sigma-algebra con-
taining all open subsets of Rn. By the properties of a sigma-algebra, B(Rn) contains
all closed subsets of Rn and hence all half-open subsets too. However, the sigma-
algebra B(Rn) does not contain all subsets of Rn (even though it may seem di�cult
to imagine a subset not included). It turns out that very bizarre subsets of Rn can
be constructed - sets that are never encountered in practice. For technical reasons
such sets are desirable to completely disregard, and this is done by considering only
the sets in B(Rn).
The elements of a sigma-algebra are called measurable sets and the pair (Ω, E), where
Ω is a non-empty set and E a sigma-algebra on Ω, is called a measurable space.

De�nition A.1.2. (Measure)

Let (Ω, E) be a measurable space. A measure on (Ω, E) is a mapping µ : E →
[0,∞] such that µ(∅) = 0 and for mutually disjoint E1 , E2 , . . . ∈ E the mapping
satis�es

µ

( ∞⋃

k=1

E
k

)
=
∞∑

k=1

µ
(
E
k

)
. (A.1)

The property (A.1) is referred to as countable additivity or sigma-additivity of the
measure. Two important examples of measures are Lebesgue-measure and counting-

measure. The former example is the standard way of assigning length, area and
volume to subsets of Euclidian spaces and the latter is a measure taking on integer-
values such that µ(E) = |E|, i.e. the number of elements in E and µ(E) = ∞ if
the set contains an in�nite number of elements. A measurable space (Ω, E) equipped
with a measure µ such that µ(Ω) = 1, is called a probability space. Since µ(Ω) = 1
the measure is, for obvious reasons, called a probability measure and often it its
denoted by P instead of µ. Hence, when referring to (Ω, E , P ) as a probability space
it means that P (Ω) = 1 and that we are able to assign probabilities to all elements
(appropriate subsets of Ω) in the sigma-algebra E .

De�nition A.1.3. (Measurable mapping)

Let (Ω1 , E1) and (Ω2 , E2) denote two measurable spaces and let f : Ω1 → Ω2 .
The mapping f is said to be E1 -E2 measurable, if for every E ∈ E2 the set

{
ω ∈ Ω1 : f(ω) ∈ E

}
∈ E1 ,

i.e., if the pre-image (under f) of every set in E2 is a set in E1 .

The familiar and sometimes casual notion of a random variable is made precise with
a formal de�nition of random variables as measurable mappings.

De�nition A.1.4. (Random variable)

Denote by (Ω, E , P ) a latent probability space. Let
(
R,B(R)

)
denote one-
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A.2. Stochastic processes

dimensional Euclidian space (the real line) equipped with the Borel sigma-
algebra on R. A real-valued random variable is a E-B(R) measurable mapping.

Thus, when expressing probability statements regarding real-valued random vari-
ables, we are utilizing properties of the underlying (latent) probability space (Ω, E , P ),
which we do not have any direct access to. For instance, the well-known properties
of the cumulative distribution function (cdf) F

X
of an ordinary real-valued random

variable X are directly inherited from the underlying probability space and the
measurability of X : Ω→ R, i.e.

F
X

(x) := P (X ≤ x) = P
({
ω ∈ Ω : X(ω) ∈ (−∞, x]

})
,

and the probability statement is well-de�ned since (−∞, x] is a half-open interval
in R and hence (−∞, x] ∈ B(R). Since X is a E-B(R) measurable mapping the
pre-image of the interval (−∞, x] is therefore a measurable subset of Ω, i.e

{
ω ∈

Ω : X(ω) ∈ (−∞, x]
}
∈ E . Since P is a probability measure it follows directly that

0 ≤ F
X

(x) ≤ 1 for any x ∈ R. Furthermore, for x1 , x2 ∈ R with x1 ≤ x2 we calculate

F
X

(x2) = P
({
ω ∈ Ω : X(ω) ∈ (−∞, x2 ]

})

= P
({
ω ∈ Ω : X(ω) ∈ (−∞, x1 ]

}
∪
{
ω ∈ Ω : X(ω) ∈ (x1 , x2 ]

})

= P
({
ω ∈ Ω : X(ω) ∈ (−∞, x1 ]

})
+ P

({
ω ∈ Ω : X(ω) ∈ (x1 , x2 ]

})
,

where we have used the sigma-additivity of P , which we can do since the sets
(−∞, x1 ] and (x1 , x2 ] are disjoint, and hence their pre-images are disjoint. It follows
that

F
X

(x2) = F
X

(x1) + P
(
x1 < X ≤ x2

)

≥ F
X

(x1),

and the above calculations show that the cdf of a random variable is a non-decreasing
function, which is a well-known property for any cdf.

A.2 Stochastic processes

A stochastic (or random) process is a collection of waveforms denoted X(t,Λ), where
t represents time and Λ is a variable representing outcomes in a sample space S of
some underlying random experiment. Usually, the sample space S is a subset of Rn

or Cn. For each speci�c outcome Λ = λ a deterministic function of time x(t, λ) is
associated. These deterministic functions are called sample functions or realizations
of the process (sometimes these cannot be expressed in closed form). Formally, the
random variable Λ is de�ned on a latent or underlying probability space (Ω, E , P ),
and speci�cally, the random variable Λ is a measurable mapping Λ : Ω→ S.
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A.2. Stochastic processes

When neither of t and Λ are �xed, then X(t,Λ) is a collection of functions of time.
When both are �xed, say t = t0 and Λ = λ then X(t0 , λ) = x(t0 , λ) is a single
numerical value. If only t = t0 is �xed, X(t0 ,Λ) is a random variable, however, when
only Λ = λ is �xed, X(t, λ) = x(t, λ) is a deterministic function of time. ThusX(t,Λ)
may denote four di�erent quantities and with a slight abuse of notation a stochastic
process X(t,Λ) is often just denoted by X(t). Then, of course, the interpretation of
X(t) as one of the above mentioned quantities should be clear from the context. A
formal de�nition of a stochastic process is as follows [36].

De�nition A.2.1. (Stochastic process)

Let S be a sample space of a random experiment and let T ⊆ R. A real-valued
stochastic process X is a measurable mapping X : T × S → R (measurable on
S for every t ∈ T ). If T ⊆ Z then X is called a stochastic sequence.

A complex-valued stochastic process is de�ned in a straightforward way as

Z(t) = X(t) + iY (t),

where X(t) and Y (t) are real-valued stochastic processes. Speci�cally, we can think
of Z(t) as a two-dimensional stochastic process

(
X(t), Y (t)

)
. Among several others,

the following quantities (�rst and second order moments) are used for the character-
ization of stochastic processes.

De�nition A.2.2.

Let X(t) be a stochastic process. The mean of X(t) is de�ned as

µ
X

(t) := E
[
X(t,Λ)

]
= E

[
X(t)

]
,

and the autocorrelation of X(t) is given by

R
XX

(t1 , t2) := E
[
X(t1 ,Λ)X∗(t2 ,Λ)

]
= E

[
X(t1)X∗(t2)

]
.

Note how the abuse of notation is inherited in the last expressions for the mean and
the autocorrelation by neglecting the stochastic argument Λ.

De�nition A.2.3. (Stationarity)

A stochastic process X(t) is said to be wide-sense stationary (WSS) if the mean
is constant (does not depend on time) and if the autocorrelation only depends
on the time di�erence. That is, if µ

X
(t) = µ

X
and R

XX
(t, t+ τ) = R̃

XX
(τ).

A stochastic process X(t) is said to be strict-sense stationary (SSS) if all the
distribution functions of the process are invariant under an arbitrary translation
of time. That is, if for all k ∈ N and for all t1 , . . . , tk , t1 + τ, . . . , t

k
+ τ ∈ T

P
(
X(t1) ≤ x1 , . . . , X(t

k
) ≤ x1

)
= P

(
X(t1 + τ) ≤ x1 , . . . , X(t

k
+ τ) ≤ x

k

)
.
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A.2. Stochastic processes

Strict-sense stationarity implies wide-sense stationarity but the converse is not true
in general. In order for a stochastic process to be strict-sense stationary it is required
that the process is de�ned on the entire real line (because of the arbitrary translation
of time).

De�nition A.2.4. (Ergodicity)

A stationary stochastic process X(t) is called ergodic if the time-averaged
(n,m)'th autocorrelation (product moment) is constant for all realizations of
X(t), i.e. if

lim
T→∞

1
2T

∫ T

−T
x(t, λ)nx∗(t+ τ, λ)mdt = K, n,m ∈ {0, 1, 2, . . .},

for all realizations x(t, λ) of X(t), where K is a constant, not depending on λ.

Speci�cally, ergodicity of the process X(t) ensures the time-averaged product mo-
ments of any orders to equal their corresponding probabilistic product moments,
i.e.

lim
T→∞

1
2T

∫ T

−T
x(t, λ)nx∗(t+ τ, λ)mdt = E

[
X(t,Λ)nX∗(t+ τ,Λ)m

]
,

for all realizations of X(t). Other (weaker) forms of ergodicity are often introduced
with the above time-averaging criteria relaxed to hold only for product moments
up to a certain order, e.g. only �rst and second order (called wide-sense ergodic
processes).
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Appendix B

Signal Representations

Today, continuous-time bandpass signals are frequently used to model transmitted
and received signals in wireless communication systems. A bandpass signal typically
results from carrier modulation of a baseband signal, i.e. from converting a signal
of low frequency (baseband) to a signal of much higher frequency level (bandpass).
Bandpass signals are partly used for wireless communication because of their im-
proved propagation properties compared to baseband signals at low frequencies.
Also, high frequency implies small wavelength since frequency and wavelength are
related by their product being equal to the speed of light (a constant). Hence, to
pick up a high frequency signal (short wavelength) requires only a small antenna.

Signal modulators and transmission facilities are built from oscillators that generate
real sines and cosines, and therefore bandpass signals are real-valued (not complex-
valued). When a signal is transmitted through di�erent environments the wireless
channel will inevitably introduce changes in amplitude and phase at each frequency
of the signal. In this appendix we partly describe how the analysis of bandpass
signals is facilitated through their equivalent lowpass representations. The following
section is mainly based on [1, Appendix A].

B.1 Lowpass Representation of Bandpass Signals

We shall see that several useful ways of representing signals are available. A common
way to express a continuous-time bandpass signal s(t), at carrier frequency fc, is

s(t) = s
I
(t) cos(2πfct)− sQ(t) sin(2πfct),

where both s
I
(t) and s

Q
(t) are real lowpass (baseband) signals of bandwidth much

lesser than the carrier level. We refer to s
I
(t) and s

Q
(t) as the in-phase and quadra-

ture component of s(t), respectively. If we de�ne the complex lowpass signal

x(t) := s
I
(t)− is

Q
(t), (B.1)
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B.1. Lowpass Representation of Bandpass Signals

we immediately see that we can express the signal s(t) according to

s(t) = Re {x(t)} cos(2πfct)− Im {x(t)} sin(2πfct)

= Re
{
x(t)ei2πfc t

}
. (B.2)

The expression (B.2) is referred to as the complex lowpass representation of the
bandpass signal s(t), and the complex baseband signal x(t) is called the equivalent
lowpass signal1 for s(t). Alternatively, in (B.1), we can also express the lowpass
signal according to

x(t) = β(t)eiϕ(t),

where
β(t) =

∣∣x(t)
∣∣ =

√
s2
I
(t) + s2

Q
(t)

is referred to as the envelope of x(t) and

ϕ(t) = arctan
(
s
Q

(t)
s
I
(t)

)
, s

I
(t) 6= 0,

is called the phase of x(t). Thus, x(t) is called the complex envelope of s(t) since
the magnitude of x(t) and s(t) coincide.

A bandpass channel is similar to a bandpass signal in the sense that it has a real
impulse response c(t) which likewise has a lowpass representation, referred to as the
equivalent lowpass channel. Now consider a real bandpass signal s(t) as input to a
real and linear bandpass channel c(t). Denote by x(t) the equivalent lowpass signal
for s(t) and denote by g(t) the equivalent lowpass impulse response for c(t). The
received signal r(t) = {s ∗ c}(t) is real and since both s(t) and c(t) are bandpass, so
is r(t). The received signal therefore has an equivalent lowpass representation, say

r(t) = Re
{
v(t)ei2πfc t

}
,

where v(t) is the complex envelope of r(t). Omitting certain details, and in particular,
calculations of corresponding Fourier transforms of s(t), c(t) and r(t), it can be shown
that (see [1, Appendix A])

v(t) =
{
x ∗ g

}
(t)

=
{

(s
I
− js

Q
) ∗ (c

I
− ic

Q
)
}

(t). (B.3)

From (B.3) we see that, even if x(t) is real2, by the presence of a quadrature
component in g(t), the equivalent lowpass output signal v(t) will be complex. In
many wireless channels, e.g. frequency selective fading channels3, the quadrature
component g

Q
(t) = Im {g(t)} is present and this imply that the frequency response

1Sometimes, also referred to as the complex envelope of s(t).
2i.e. the equivalent lowpass input signal has no quadrature component.
3A channel being frequency selective is equivalent to state that the channel is delay dispersive,

i.e. signals transmitted across the channel is spread in delay, see Chapter 3.
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B.1. Lowpass Representation of Bandpass Signals

Sc(f), of the bandpass channel c(t), is non-symmetric around the carrier frequency.

Hence, through this section we have seen that the received signal can be written

r(t) = Re
{
{x ∗ g}(t)ei2πfc t

}
,

and the primary reason to introduce the equivalent lowpass representations is that it
partly removes the dependency on the carrier frequency fc in the analysis of bandpass
signals.
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Appendix C

The Complex Gaussian

Distribution

Consider a real-valued random vector (X,Y ) holding a bivariate Gaussian distribu-

tion with mean (µ
X
, µ

Y
) ∈ R2 and covariance matrix σ2

2 I2 . For short we write

[
X
Y

]
∼ N2

([
µ
X

µ
Y

]
, σ2

2

[
1 0
0 1

])
,

The pdf of this bivariate Gaussian variable (using generic notation for pdf's) is given
by

p(x, y) =
1
πσ2

exp
(
− 1
σ2

[(
x− µ

X

)2 +
(
y − µ

Y

)2]
)
, (x, y) ∈ R2.

We de�ne the complex-valued random variable Z := X+iY , and in a straightforward
manner we de�ne its mean as

E[Z] := E[X] + iE[Y ] = µ
X

+ iµ
Y
,

which analogously, we denote by µ
Z
∈ C. Then, we de�ne the variance of Z by

Var[Z] := E
[(
Z − µ

Z

)(
Z − µ

Z

)∗] = E
[∣∣Z − µ

Z

∣∣2
]

= σ2.

Directly inherited from the above pdf, we �nd the corresponding pdf of Z to be

p(z) =
1
πσ2

exp
(
− 1
σ2

∣∣z − µ
Z

∣∣2
)
, z ∈ C.

We write Z ∼ CN
(
µ
Z
, σ2
)
and say that Z holds a circular symmetric complex Gaus-

sian distribution with mean µ
Z
and variance σ2. The phrase `circular symmetric'

refers to the fact of uncorrelated (independent) real and imaginary parts with equal
variances (half of the variance of Z).
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C.1. Persymmetric Covariance Matrices

More generally, we consider a complex M -variate Gaussian distributed vector

z =
[
Z1 , Z2 , . . . , ZM

]> ∈ CM

with mean µz ∈ CM and positive de�nite covariance matrix

Σ := E
[(
z − µz

)(
z − µz

)H]
.

As in the complex scalar case presented above, we can view the complex M -variate
vector z as the vector

(
Re {z} , Im {z}

)
of double dimensionality, i.e. a real-valued

jointly Gaussian random vector of dimension 2M .

C.1 Persymmetric Covariance Matrices

Let y(1),y(2), . . . ,y(K) be an observed sequence of i.i.d. complex M -variate Gaus-
sian vectors with zero mean and unknown covariance matrix R. From the i.i.d.
assumption it follows that the negative (and normalized) log-likelihood function is
given by

− 1
K
`
(
R;y(1), . . . ,y(K)

)
= C + log det(R) + tr

(
R−1S

)
, (C.1)

where S is the sample covariance matrix de�ned as

S :=
1
K

K∑

k=1

y(k)yH(k).

Minimization of (C.1) with respect to a Hermitian and positive de�nite matrix yields
the maximum likelihood estimate of the unknown covariance matrix R, i.e.

R̂ = arg min
R>0

{
log det(R) + tr

(
R−1S

)}
. (C.2)

For the moment, suppose that the true covariance matrix R is persymmetric, i.e.

RJ =
(
RJ
)> ⇐⇒ R = JR>J, (C.3)

where J is the M ×M reversal matrix with 1's on its entire anti diagonal and zeros
elsewhere (also introduced in the proof of Lemma 4.2.1). As can be readily veri�ed
from the property (C.3), a persymmetric matrix is symmetric in its anti diagonal. If
by theoretical means, the true covariance matrix R is not just Hermitian and positive
de�nite but also persymmetric, it is certainly reasonable to optimize in (C.2) under
this additional constraint. The following general result turns out to be useful in
particular.

Lemma C.1.1.

Let A be a �xed, positive de�nite M ×M matrix. Then, the matrix function

f
(
B; A

)
= log det(B) + tr

(
B−1A

)
,

is minimized uniquely with respect to a positive de�nite matrix at B = A.
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C.1. Persymmetric Covariance Matrices

Proof. Assume that B is positive de�nite, and hence the matrix B−1/2AB−1/2 is
positive de�nite too. Let λ1 , λ2 , . . . , λM > 0 be the eigenvalues of B−1/2AB−1/2 and
notice that these are also the eigenvalues of B−1A. Now consider

f
(
B; A

)
− f

(
A; A

)
= log det(B) + tr

(
B−1A

)
− log det(A)−M

= − log det
(
B−1/2AB−1/2

)
+ tr

(
B−1/2AB−1/2

)
−M

=
M∑

m=1

(
− log λ

m
+ λ

m
− 1
)
≥ 0,

since log x ≤ x − 1 for all x ≥ 0, where equality holds if and only if x = 1. Hence,
f
(
B; A

)
≥ f

(
A; A

)
with equality exactly when λ

m
= 1 for m = 1, 2, . . . ,M . Since

these were the eigenvalues of B−1A we see that f
(
B; A

)
is minimized uniquely at

B = A. �

Assume that the sample covariance matrix S is positive de�nite, which will be true
with probability one if and only if K ≥ M . When K < M the sample covariance
matrix is rank de�cient and therefore certainly not positive de�nite. When K = M
the sample covariance matrix is potentially of full rank and we need to calculate the
probability of S still being rank de�cient, i.e. that a least one of the observations y(k)
can be written as a linear combination of the K−1 = M−1 remaining observations.
Such a linear combination comprise a hyperplane of dimension M − 1 in CM and
therefore

P
({

S has rank strictly less than M
})

= 0.

The interested reader should consult [37] for a formal, lucid and very short proof of
the above discussed positive de�niteness of the sample covariance matrix.

In terms of Lemma C.1.1 the unconstrained maximum likelihood estimate of R is
given by the sample covariance matrix S. However, if we restrict our attention to a
persymmetric estimate we can make straightforward use of the fact that R = JR>J
and rewrite

tr
(
R−1S

)
= tr

(
1

2
R−1S

)
+ tr

(
1

2

(
JR>J

)−1
S
)

= tr
(
R−1 1

2

(
S + JS>J

))
.

This rewritten expression together with Lemma C.1.1 yields the minimizing argu-
ment in (C.2), i.e. the persymmetric maximum likelihood estimate

S̃ :=
1
2

(
S + JS>J

)
.

Notice, that if the true covariance matrix R is Toeplitz then in particular, it is per-
symmetric. Hence, if the true covariance matrix is Toeplitz we would intuitively ex-
pect the persymmetric estimate S̃ to be `more accurate' or `better' than the estimate
provided by the sample covariance matrix S. Heuristically, we could furthermore re-
place the persymmetric estimate by a crude/naive Toeplitz estimate, however, as
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C.2. Toeplitz Constrained Approximation

mentioned in [14, Section 4.8], we should not. The reason for this is seen from theo-
retical considerations with a �nite set of `ideal' (noiseless) observations. For instance,
the complex M -variate observations y(1),y(2), . . . ,y(K) could be realizations from

y(k) = As(k) +w(k),

e.g. a case of L uncorrelated narrowband signal contributions embedded in complex
AWGN (see (5.7) on page 55). Now consider a crude Toeplitz estimate of the true
covariance matrix obtained by averaging the elements along each diagonal of S or
S̃. If the K observations available are completely noiseless (in�nite signal-to-noise

ratio), both S and S̃ have rank equal to L, however, the averaged Toeplitz estimate
will be a full rank matrix in general [14]. Hence, a �nite number of observations
collected in a noiseless environment give rise to a Toeplitz estimate not re�ecting
the true dimension of the underlying signal.

No general closed-form solution for Toeplitz constrained ML estimation of the true
covariance matrix R is known. However, approximative methods have been sug-
gested in the literature [38], where in particular, we �nd the following expectation
maximization (EM) approach interesting, at least from a conceptual point of view.

C.2 Toeplitz Constrained Approximation

We describe the following EM algorithm only in brief manners. Preliminary simula-
tion studies carried out in an early period of the project showed the EM approach
rather unfeasible from a computational point of view. Hence, we present it in this
appendix only to mention that the method has actually been investigated during
the project - with inspiration gained from [38].

Denote by s :=
[
s1 , s2 , . . . , sM

]>
the �rst column of the M × M sample covari-

ance matrix S de�ned in the previous section. In the following we construct a
(2M − 1) × (2M − 1) circularly extended version of S, denoted by S

ext
, and we

consider this circular matrix for two di�erent reasons. We know from Lemma 4.2.1

that any circular matrix is normal, and hence, the complex spectral theorem is
directly applicable. Furthermore, we also know that the (2M−1)-point DFT matrix
comprise the eigenvector basis needed to carry out the diagonalization.

We de�ne the �rst column of the circularly extended matrix S
ext

as

s
ext

:=
[
s1 , s2 , . . . , sM−1 , sM , s

∗
M
, s∗
M−1

, . . . , s∗
3
, s∗

2

]> ∈ C2M−1,

which is the original �rst column s concatenated with a reversed and complex conju-
gated version of itself (but with the very last component discarded). The circularly
extended (2M − 1) × (2M − 1) matrix S

ext
is then build from its �rst column s

ext

and the 2M − 2 subsequent one-step circularly shifts of s
ext
. By construction, S

ext

is Hermitian and the original sample covariance matrix S is present in its upper left
corner. Immediately, it follows that

S
ext

= FHΛF,
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C.2. Toeplitz Constrained Approximation

where F is the (2M−1)-point DFT matrix as de�ned in Section 2.2 and where

Λ = diag
(

(2M − 1)1/2 Fs
ext

)
,

i.e. a diagonal matrix of the 2M − 1 real eigenvalues of S
ext
. These eigenvalues hold

all the information about the original sample covariance matrix S. Speci�cally, by
de�ning the (2M − 1) ×M matrix F

sub
to consist of the �rst M columns of F, we

immediately �nd
S = FH

sub
ΛF

sub
.

The above considerations are now utilized to form a sequence of Toeplitz constrained
approximations to the true covariance matrix R. For some k > 0, denote by R̂(k)

the current Toeplitz constrained estimate of R. Denote by R̂(k)

ext
the corresponding

circularly extended matrix and let λ̂
(k)

be a vector holding its 2M−1 real eigenvalues
such that

Λ̂(k) := diag
(
λ̂

(k) )
.

EM Algorithm

Initialize R̂(0) = tr(S)
M I

M
, and for k = 0, 1, 2, . . .

E-step: Q = Λ̂(k)F
sub

(
R̂(k))−1

(
S− R̂(k)

)(
R̂(k))−1

FH
sub

Λ̂(k)

λ̂
(k+1) = λ̂

(k) + diag
(
Q
)

M-step: R̂(k+1) = FH
sub

Λ̂(k+1)F
sub

The recursion is terminated when two consecutive matrix estimates are close within
an appropriate metric, e.g. in terms of a Frobenius norm threshold.
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