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Abstract

This 10" semester project for the « Applied Signal Process-

ing and Implementation » specialization at Aalborg Univer
is a study on the improvement and implementation of the
gorithms of a Control Unit for a Tongue-based Control S
tem. The project focuses on a medical application permi
motion-disabled people to control their environment, i.e. e
nal devices like computers, wheelchair, mobile phones,..
Tongue Control System is developed by the HST Departme
Aalborg University where prototypes have been designed.
Mouthpiece Unit (MU), which receives the commands from
user by means of his tongue, is fully developed. This units
the different instructions to a Central Unit (CU) for the cont
of the external devices.
This project seeks, firstly, to improve the algorithms for g
cessing the signals provided by the MU. Indeed, because
characteristics, noise and drifts in temperature are added
useful signal. After an analysis of both signal perturbati
the successful custom Kalman filter removes these pertubg
without any delay or data loss. The second part of the pr
deals with the analysis of different platforms to choose the
propriate one for the implementation of the communication
interfaces algorithms. The project group chooses the FPGA4
tera DE2 because its flexibility ensures easy additions of fy
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interfaces for many external devices. Moreover, the Kalman

filter is implemented on this new platform. The third part
plains how to use the tools provided with the Altera DE2
the results obtained on the implementation. The algorithm

ex-
and
per-

forming the logic to control a computer mouse cursor is suc-

cessfully implemented but the core of the project is the wor
this mouse cursor control with the Kalman filter. The prog

k of
ess

of the signal from 8 sensors, has been successfully implemented

and gives good results. Combined with the mouse cursor
trol, it is possible to control the mouse cursor from the MU

con-
and

produce smooth and accurate moves. Finally, the conclysion

and discussion about the performances are developed in th

e last

part, as well as the future perspectives discussions.







Preface

This report is the documentation for @' semester project in Applied Signal Processing and Imple-
mentation (ASPI) entitled « Design & Implementation of a t@arnit for a Tongue Control System »
at Aalborg University (AAU). This report is prepared by gpo09gr1043 and spans from Februady’,
2009 to June3™, 2009. The project is supervised by Yannick Le Moullec,stesi Professor in ASPI
at AAU, and Morten Enemark Lund from the Health Science & feldyies Department at AAU. The
report is divided into seven parts. These chapters cornedppo the introduction of the project, analysis of
the prototype problems and signal processing, analysif@ftrototype algorithms, analysis of different
platforms, implementation, tests and conclusion.

The bibliography is present in the last pages of this repdtt veferences to the bibliography in square
brackets as in [1]. The accompanying CD contains a copy afifport, all code used in the project and
two movies that illustrate the results obtained.

Umberto Cerasani Jeremy Leresteux

Aalborg, June 3rd 2009
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Chapter

Introduction

The International Classification of Functioning (ICE) [Hfthes disability as « the outcome of the inter-
action between a person with an impairment and the enviratahand attitudinal barriers he/she may
face » [2].

Even with major disabilities, such as quadriplegia [3], pleacan still move some part of their body
such as eyes, jaws, head, tongue, finger. Adapted conttelsg$ave been developed to permit disabled
people to control their own environment. With these equipisethey are able to control, for example,
their own wheelchair without the help of any third party. ¥locan also use a computer and move the mouse
cursor, write emails, . Despite the improvement on autonomy, using one part of thg bontinuously is
exhausting and brings pain, headaches for eye controlldrsg, neck pain for head controlled systems,
etc. Moreover, these systems are visible by all and incrbadeeling of difference. Brain control systems
are also in development but they still need significant neteefforts and improvement to be efficient and
aesthetic.

1.1 Introduction to the Tongue-Based Control System

The mouth is the first stage of the digestive system whenasalid jaws chewing transform foodstuffs
to be swallowed with the help of the tongue. The tongue is actausttached to the floor of the mouth.
It permits to detect and to define tastes and temperaturemdfuffs by means of the papillae and taste
buds which are covering the tongue uUp [4]. The tongue is altieuch every single teeth of our mouth. It
is imaginable to reach with the tip of the tongue one sensoedoh of the alphabet’s letters to simulate a
keyboard.

A system based on tongue control has been declared prefgyrdisabled person in a comparative
study [5] even if its efficiency, in terms of response timdeiss accurate than a head control system. This
preference is due to the fact that these systems are hiddlkee mouth and decrease the feeling of differ-
ence for disabled people. Different tongue-based conysibsns have been developed, like described in
[6], [i7], [8]. These control systems cannot be used whileubers eat or drink. This fact accentuates the
feeling of being different among the users.

As mentioned above, the tongue environment, i.e. the mastiymid due to the saliva. The mouth
is also restrained to temperature variations credited bgdtuffs and drinks. A solution which is not
sensitive to humidity and temperature must be found to gehmiusage of a tongue-based control system
while the user eats or drinks hot or cold products.

A new system based on Faraday’s law of induction for a coihtsoduced in « A Tongue Based
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Control for Disabled People » by Lotte N.S. Andreasen $t{9ij. The advantages of a magnetic solution
are its insensitivity to humidity and its small dependerwyemperature variations. This system is using
multiple tiny coils as sensors. It is then possible to instany of them on a palatal plate to simulate a
keyboard or a joystick which can be used to control a computarse cursor or a wheelchair.

Based on Faraday'’s law of induction for a coill[10], the vgéiadrope, known as the ElectroMotive
Force (EMF) of an ideal inductance, i.e without the resiftdl, is defined as:

di
e=—Lx T (1.2)
where :
L = pio * i % N2 % % [Henrys] (1.2)
i : sine wave current [Ampere]
with :

1o : vacuum permeability

1y relative magnetic permeability of the core material
N : number of turns of the coil of wire

A : the area perpendicular to the magnetic field

[ : average length of the magnetic flux path

The value of the inductancg, in equatio I.2, depends on the number of tushef the coil of wire
but above all depends on the relative magnetic permeabiflitye core materigl,..
When a ferromagnetic element approaches the coil, it craatgserred current in the coil which can be
added or subtracted to the generator current (dependirfgeadirection of the generated electromagnetic
field). This change, according to the Lentz-Faraday forped@atio 111, can be interpreted as a voltage
variation which can be detected by a voltmeter to define awuadicin of the sensor. It remains activated
until the ferromagnetic material is removed away from thié co

1.1.1 The Tongue Control System

A research group from the Department of Health Science & fieldgy (HST) at Aalborg University
[9], by using this theory of induction, has developed a tabased control system, the Tongue Control
System (TCS), which can be used while eating or drinking petal As indicated in Sectidn 1.1, a
voltage drop can be detected when a ferromagnetic mat@pabaches a coil of wire, referred as sensor.
A ferromagnetic material on the tip of the tongue could, thmoduce activations of sensors placed on
a palatal plate in the mouth of users. The ensemble compdgbe palatal plate and the 24 sensors is
called the Mouthpiece Unit (MU). The ferromagnetic matenieferred to as the Activation Unit (AU),
is placed at the tip of the tongue. Aiming at the sensors implaed in the palatal plate with the AU
activates them. These activations of the sensors are ddtaod transmitted to the Central Unit (CU),
an external device, which connects the MU and the envirohrienusers wish to control (computer,
wheelchair, lights, doors, .). The CU is designed to receive the instructions from the kHlibrate them
, process them and send them to the external devices (morss®,auheelchair, . .) corresponding to the
instructions.

Figure[1.1 shows each sub-systems of the TCS. ParadrapBsITZLI.I.P and 1.1.1.3, based on the
Requirement Specification from HST Department [12], defirgrtgoals, principles and constraints.

12 Chapter: 1 Introduction
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Figure 1.1: The Tongue Control System (TCS) contains the palatal pldesansors (MU), the ferromag-
netic material piercing on the tongue (AU) and the controlt (&U) that contains software
and hardware for the communications between the MU and ttegred devices.

1.1.1.1 The Activation Unit

The Activation Unit (AU) is a metal tongue piercing made fr@arferromagnetic material which can
be detected by the sensors in the MU. The AU is intended to tggcsilly inserted through the tongue
approximately 1cm from the tongue tip.

1.1.1.2 The Mouthpiece Unit

The Mouthpiece Unit (MU) is the palatal plate where the semaoe implemented in. The MU contains
also the electrical circuit for detecting the state of thesses. Figur@ 112 illustrates, for one sensor, the
signal path from the scanning step to the transmission stepetCU.

The senscr coil together with a
capacitor acts as a band pass filter.

The attenuation of the filter changes
whean the fongue piercing comes
ciose to the coil

\ one sensar cor
\
4 255
\ 200 3060,
Sig y A igi
Signal generator nnaclgﬁ.::ncg?na\
3
5
iy

Figure 1.2: Signal creation path from the activation to the transmissio the CU for one sensor. The
signal generator produces the voltage source signal basethe sine wave current. This
voltage signal traverses the sensor. If the AU approachess#nsor, the voltage signal is
distorted. A rectifier converts the resulting signal to aities signal followed by a low-pass
filter to detect the baseline. The baseline is, then, coaddr digital by means of the Analog
to Digital Converter (ADC).

The MU, then, has to send to the CU the position of the ActvatUnit from the tongue on the

Section: 1.1 Introduction to the Tongue-Based Control &yst 13



different sensors implemented in the palatal plate. Tharret! solution is to use a wireless digital radio
which transmits a packet of data representing the stateobf &ensors. The first prototype, developed by
the HST members, contains 24 sensors hence the MU sends de2deimgor data packet. Disregarding
the bytes used for the transmission protocols and conegiénat the transmission is error free, the radio
packets received by the CU should have the format shown ur&[i@.3

1 Byte 24 Bytes 3 Bytes

Counter (uint8_t) 24 Sensor readings (uint8_t) Reserved

e

c )
2 Bytes 8 Bytes 10 Bytes 4 Bytes
Front coils ggﬁgse aréa Keyboard area coils| Side coils

Figure 1.3: 28 Bytes radio packet received from the Mouthpiece Unit byGt. The 24 Bytes correspond
to the 24 coils implemented in the palatal plate. Modifiearfifd 2]

The counter goes from 0 to 255 (1 byte) and then restarts.gimsoss values are between 0 and 255
and represent the values of the estimate tension of the édilthe activations are negatives.

The state of each coil is transmitted to the CU every 30 reitiisds, i.e. the system is working at
33Hz.

The chosen radio transmitter is the nRF24L01 by Nordic Sendactor [13]. It is a single chip
2.4GHz Transceiver. Its characteristics are as follow:

e Worldwide 2.4GHz ISM band operation. Transmission on trégjfiency band is Licence free;
e 126 RF channels;

e Common RX and TX interface;

e GFSK modulation;

e Ultra low power operation;

e 11.3mA TX at 0dBm output power;
e 13.5mA RX at 2Mbps air data rate;
e 900nA in power down;

e 26uA in standby;

e Maxi supply voltage 3.6V,

e 5V input tolerant;

e Compact 20-pin 4x4mm QFN package.

14 Chapter: 1 Introduction



1.1.1.3 The Central Unit

The Central Unit (CU) is an external box, close or far from tiser, which contains the hardware and
software to link the MU and the external devices the user @gsh control. It contains :

o the radio receiver, which receives the data packets, iessttite of each sensors, from the MU,

¢ the inference system, which combines signals from seversass to create a direction vector, e.qg.
a joystick,

e the Controller Logic (CL), which monitors and calibrates #ignals from the MU. The CL is the

element of the CU which, according to the users input, swido the control of one or another
external device,

e the external device interface, which gives an interfaced@vior wireless) to each of the external
devices.

The CU is still in a research phase but the first prototypegihesi by the HST Department, see Figure
[I.4, permits to a user to move the computer mouse cursor. Han&me noise does not allow the move
to be very accurate: where even in non active state, i.e. nensoasked, the mouse cursor moves by
itself. This problem has to be solved by the Controller Logikis first prototype, implemented on a 8-bit
microcontroller, does not permit to achieve a complete awagpful CU, as no other external devices has

been interfaced on it. Those limitations are addressedsrptbject, as stated in the project goals, Section
12.

(% )‘5\) - —%*\‘/ CENTRAL UNIT

Q: Wheelchair Interface

|1 1

RADIO

' MICROCONTROLLER
’ eInference System eFilters and calibration
N «Controller Logic
1
/
=X !
$ l Suppl
_ Power Supply
US‘RA PC Unit usse (Battery)
keyboard/mouse emulator| Interface

Figure 1.4: The existing CU prototype receives the data from the MU bynsieathe radio receiver. The
microcontroller processes, filters and calibrates theseda define which external interface
needs to be controlled, by means of the Controller Logicalyrthe inference system creates

the direction vector. The result is send to the PC Unit, whaolulate the computer mouse
Cursor.

1.1.2 Conclusion about the context of the project

For disabled people affected by mobility disabilities, tmoatrol of their environment is a constant fight.
Simple moves as opening a door, moving their wheelchair échking the light are impossible without

Section: 1.1 Introduction to the Tongue-Based Control &yst 15



the help of a third person. Access and use of common models, ®g. computer, mobile phone also
requires help. New technologies permit to take advantagavefy movement disabled people can do.
Control systems are now available, based on eyes, jaws drrhegements detection. All these systems,
as competitive as they can be, do not remove the feeling &drdiice perceived by disabled people.
Indeed, these systems add complex architectures visikddl bipd increase the feeling of difference.
Some control systems based on tongue movement have bearedguieferred by disabled people because
they are hidden in the mouth even if their accuracy is lessieffi than other control systems. But this
kind of systems do not permit a usage during eating or driankin

Lotte N.S. Andreasen Struijk and the Department of Healtlerge & Technology (HST) members at
Aalborg University (AAU), by using Faraday’s law of induartifor a coil, have developed a tongue control
system able to be used during eating and drinking. A ferraratig material pierced on the tip of the
tongue, the Activation Unit (AU), changes the propertiegha coils, implemented in a palatal plate,
the Mouthpiece Unit (MU), by approaching or moving away frimem. This change of properties of
the coil is referred to as an activation of a sensor and islsgmtireless to a Central Unit (CU) which
gather all the activations, process them and sent the resthie right external device to be control, e.g.
a computer mouse cursor. The first prototype is able to cbotly the mouse cursor of a computer and
some perturbations do not make the system accurate enobghused by disabled people.

1.2 Project goals

As discussed in paragraph 1.111.3, the CU prototype reabgeHST Department must be improved to
give an accurate and complete system which can be used witiplmexternal devices. An implementa-
tion of the Central Unit on a flexible, extendible and powkpflatform must correct the perturbations and
permit the addition of new future external devices.

To complete the Tongue Control System to a marketable, aephd accurate product, the features
that the new CU platform must provide, and which constitbeedub-goals of this project are:

1. processing the raw signal from the MU to produce a bettgragiquality to enhance the accuracy of
the system,

2. executing the algorithms of communication between tterosub-systems of the TCS and the
external devices,

3. being as flexible and extendible as possible to permitddéian of new external devices interfaces
in the future.

The CU is also a monitor to the users on their actions. It mustgfeedback (audio, graphical) about
the state of the system and which external device is undaralo

1.3 Design Methodology

The purpose of the design methodology is to supply a stredtapproach to the analysis of the specifica-
tions, implementation of the system, and evaluation of &sellts obtained in the project.

The A3 design methodology [14] introduces three domains, AppbeaAlgorithm and Architecture,
described next page. Figurell.5 shows the « genetit design methodology. Each chapter of this thesis
corresponds to one of the domain of this design methodology.

16 Chapter: 1 Introduction
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Figure 1.5: The « generic »43 design methodology.

e Application : Any system with specification requirementsl aonstraints i.e. time constraints,
power consumption, area problems, cost, specific domainragents,... It is the final purpose of
a project.

e Algorithm : Any software tool, standardized or created, miefj and answering to the application
specifications. The improvements and/or changes are onlepded on an algorithmic point of
view.

e Architecture : Any platform (DSP, FPGA,...) used to implethand execute the algorithms to
fulfil the application specifications. The result is comghre the specifications/constraints of the
application. In case of differences or appearance of neweggsmodifications have to be done.
The architecture domain allows two different kind of modifions. On one hand, if the algorithms
are implemented on a fixed architecture, a modification ofalgerithm, in terms of architecture
related program (bus control, data transfer control, mgnadiocation,...) can be done for the
specified architecture. On the other hand, if the algorittames established then a modification
of the architecture (VHDL program for a FPGA platform for exale) can be done.

For this project, all three domains can be identified as fglittustrated in Figuré&_116:

e Application : The Central Unit of the Tongue Control Systdirhas to fulfil the constraints estab-
lished in Sectiof 1]2.

e Algorithm : The algorithms, done for the first prototype bg tHST members, to control the com-
puter mouse cursor. Plus new algorithms developed by thjegtrgroup to process the raw signals
and control other external devices.

e Architecture : In this project, the choice of the architeetfplatform is primary. An analysis of
different architectures, such as FPGA or DSP, is vital télfile objectives.

Section: 1.3 Design Methodology 17
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Figure 1.6: The A3 design methodology for the CU for TCS project.

Time Plan

The following Gant diagram illustrates the time plan follethy the group in order to fulfil all the project
goals.
This time schedule was made at the beginning of the projettas almost respected. However in the
preliminary Matlab experiences and in the implementatian, fhe group meets several issues which shift
all the time schedule. In consequence, some other parte ahdtlice of the platform were restricted.

. Q1 - 2009 Q2 - 2009
Num Task Start End [Duratio
January February] March April May June
Preliminary Matlab
1 Experiences (Remove
) |
Noises and correct the 1/2/2009 1/3/2009 20
effect of temperature variation)
Analysis of the constraints and
2 e e platform 1/3/2009 | 21/3/2009| 15 |
3 Analysis of the different algorithms | 21/3/2009 | 23/5/2009| 45
- Fuzzy code
- raw signal processing
- control of the wheelchair | ]
4 Implementation on the selected 21/3/2009 | 23/5/2009 45
platform
- Fuzzy code
raw signal processing
- fontrol of the wheelchair |
5 Optimization of the algorithms 23/5/2009 | 3/6/2009 7 *
Report Writing 18/2/2009( 3/6/2009 75
Figure 1.7: The CU for TCS project Gant diagram.
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1.5 Project Delimitations

As students of Applied Signal Processing and ImplememaiSPI), no medical’s norms, totally or
partially, are mentioned and/or used in this project thesis

The study of the MU has already reached its completion. Awéhiction of its main principle is presented
as well as the data used for this project from the MU. No degpeeations are given in this work on the
MU.

An evolute study of the digital radio transceiver/receipermitting the communication between the MU
and the CU is not done in this thesis. Only an introductiort ahid the receiving algorithm is purchased.

Section: 1.5 Project Delimitations 19






Chapter

Analysis and signal processing

This chapter is relative to the Algorithmic domain from tHé design methodology, especially to the
raw signal processing, highlightened in Figlire 2.1. Theptdvaintroduces the first experiments made by
the group to get acquainted with the Tongue Control SysteB5{T These experiences are done using
MATLAB. They are focused on the reception and processingefiata transmitted by the MU to the CU.
Moreover, specific signal processing has been applied tsigmals to answer the first sub-goal defined

Sectior 1.P:

1. Processing the raw signal from the MU to produce a betigasiquality to enhance the
accuracy of the system.

~ Algorithmic™ ~ _
constraints

Specificationg
Constraints

terate R@ ¢ signal proce
Comparison L7

Rxternal devices cop

/ Architecture
| constraints

)

FPGA, DSP.. ..

Result Algorithmic

optimizations

\

- /7
Archifectural
optimizations

Figure 2.1: The A2 design methodology applied to Chapter 2

2.1 Environment

For these tests, the MU sends a 28 bits data packet to a radicstitk every 33 milliseconds. This data
packet corresponds to the state of each sensors implemiantieel MU. This USB stick can easily be
interfaced to MATLAB to process the data. Figlire]2.2 illagis the environment.

21
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) ‘)} T '«( UZaBd;c'sick

AU

Figure 2.2: Environment of the MATLAB preliminary experiments. The Mhids the 28 bits data packet
to the USB stick every 30 milliseconds. The USB stick csllhis data to be usable on
MATLAB.

As introduced Sectidn 1.1, the MU sends the state of eaclosetwsthe radio USB stick. The state of
the sensors is defined by the equalion 1.1 which gives a woliiigrence: between two scans of the MU
on the sensors.

The raw signal given by the MU to MATLAB, through the USB stidlom one sensor, has the shape seen
in Figure[2.8. It has an offset of 200mV and is significantlyaired by high frequency noise.

N=1000 samples

200

/

0 Activations of the sens

Figure 2.3: The Raw Signal, from one sensor, given by the MU with diffdesrgth of activations

2.2 Problems and Goals

Different problems are observed during the first tests. Ritwese observations, the group members have
defined 3 sub goals.

1. The first sub goal is the removal of the 200mV offset.

2. The second sub goal is to remove the noise as much as godmbhuse it causes activation effect
when no activation is asked by the user.
Noise is high frequencies added to the raw signal by diffesenrces such as transmission chan-
nels, reflection of the signal on obstacles, other eledtiiegices in the environment which are also
transmitting signals. As the radio transmitter used in thd, Mnd the given project scenario, is
digital, it is assumed that no noise comes from transmissiémthe case of this project, the high
frequency noise comes only from the scanning of the sensensgelves since the scanning is based
on the variation of inductance value of the coils. Theseatams of inductance depends on the tem-
perature applied to them and also on the Electro Magneticpgatibility (EMC) interference in the
Sensors.

22 Chapter: 2 Analysis and signal processing



3. Finally, the previous research done by the Health SciamckeTechnology (HST) members has
shown that when a variation of temperature, e.g. the useavsy a hot drink, appears on the
MU, a variation of the signal delivered by each sensors is alsserved. This variation causes an
offset which could, once again, be interpreted by the systemn activation of the sensors where
no activation is asked. The last sub goal seeks to removdftifigause by temperature.

Sectior Z2.B introduces a complete analysis of the pertiarimmet by the TCS.

2.3 Analysis of the signal perturbations

The analysis of the input signal is of primary importance igidguish the useful signals generated by
the user from the noise perturbations that should be remo#adndicated in Sectioh 2.2, the 2 main
problems are the noise perturbation and the baseline wiagddrhe analysis of the spectrum permits to
distinguish and delimit in frequency the perturbations tluthe two different phenomena.

Noise is present all the time, and probably caused by themoiaé in the system or EMC interference in
the sensors. The characteristics of this noise perturbatie totally different from the characteristics of
the temperature shift. The Power Density Spectrum (PD®jamted Paragraph 2.311.1, shows that for
high frequencies, there is almost only noise because tleflequencies peaks during activations are very
short. Indeed, the user cannot perform very quick actimatiothe sensors (more than 10 activations per
second is impossible so one can assume that for a frequertoylidiiz, noise is highly overriding).
Furthermore, the baseline shift is caused by the variatitimestemperature in the mouth (it can be caused
by the breathing or during drinking a warm or cold liquid) base the resistance of the sensors changes.
Obviously not only one sensor is affected by the temperathamges. For instance during drinking the
localisation of the liquid (water, coffee, etc.) is unpieteble and the variation of temperature caused by
the temperature variations modifies the baseline valueffgirdnt sensors not in the same time and not in
the same way.

2.3.1 Noise analysis

The group assumes that the noise present is the thermal alsse&alled white noise. It is a random
noise generated by the thermal activation of the electmoranielectronic device. This kind of noise is
unpredictable but can be studied through its statistiagpppeties. A white noise3(¢) with a variancer

is an unpredictable stationary process, centred (= 0) where the statistical autocorrelation function is
a delta function weighted by2. According to digital signal process theorerns [15], the R@fZtion is
the Fourrier transform of the autocorrelation function.efiéfore the PSD function of a white noise is a
constant function with the same weight of the autocorretatiinction as shown in equatidns2.1 2.2:

R(t) = 0% x §(t) (2.1)
x(f) = FT[R(t)] = o 2.2

whereR is the autocorrelation function of the white noiseis the variance of this noise andis the
PSD. The same relations are available for a white discrétenas seen in equatidns12.3 2.4:

R(k) = 02 x 6(k) (2.3)
x(f) = FT[R(t)] = o (2.4)

In the latter case, the Discrete Fourrier Transform (DFT)sed to pass from the sample domain to
the time domain.

Section: 2.3 Analysis of the signal perturbations 23



2.3.1.1 Power Density Spectrum Estimators

Consider a random and stationary proc&gs ) with N samples. Every sample is a random variable with
a probability density op[X (n)]. If « is a parameter of this random process (like its mean, itanas,

its PSD,... )@ = F[X(0),X(1),X(2),...,X(n — 1)] is a random estimator variable created from the
N samples.F is called estimator, th&ias (eq.[2.5) and theariance (eq.[2.6) of the estimator can be
evaluated and in order to have a consistent estimation dfttlthed parameter the values of thies and
thevariance has to tend towards 0 whel tends towards the infinite which means that the estimation
error is negligible when the number of sample is sufficient.

bias = Ela] — « (2.5)
variance = E {(d —-FE [d})ﬂ (2.6)
From [15]

There are 5 main estimators [15]:
e simple correlogram,

e smoothed correlogram, which is the previous estimatoeoted with an apodisation window (Han-
ning, Blackman,...),

o the simple periodogram which is the FT of the estimation efdbtocorrelation function,
e the mean-sized periodogram which consists of the divisfah® /N samples inL. section of size
M where a simple periodogram is applied and then the mean dfi@lsimple periodograms is

performed in order to decrease the variance of the previstirmator,

e the Welch Spectral Estimator, the most complex one thatheilexplained on the following para-
graph.

This study focuses on the two utilised periodograms aviglzbMatlab: mean-sized periodogram and
Welch Spectral Estimator.

1. The mean-sized periodogram

The division of thelN samples intd. sections of sizél/ is performed and then on each section, a
simple periodogram is performed as shown in equétionh 2.7.

L M-—1
B3(7) = 7 302N = 73 [ 3 k) exp—2mj £k (2.7)
=1 =1 L k=0

From [15]

wheref is the sampling frequency angdis the value of the signal’3 is an estimator witthias of

the PSD: smaller i3/, larger is thebias. Thewvariance is proportional to the PSD but decreases
when L increases. A trade-off has to be found betweendthe and thevariance, which is the
main drawback of this estimator.
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2. The Welch Spectrum Estimator
The WSE is a mean-sized periodogram and a smoothed period@grahown in equatidn 2.7.

2

. 1 L ) 1 L M—-1 .
5(f) = 7 l:zlrw) = ic ; kZ:O xi(k)yw(k) exp —2mj - f -k (2.8)

From [15]

The division of theN samples intal/ new samples is performed and the multiplication of these
samples with a correction window is carried oGt.is a factor of normalisation needed because of
the multiplication of the samples with the corrected window

1
M
0
From [15]

C= w? (k) (2.9)

M—-1
k

The overlap of samples can be done to improve the resoldtipermits to manipulate more sam-
ples.

The functionpsdor spectrumin Matlab uses by defaul/ = 256, overlap = % and the Hanning
correction function.

A detailed report about the Power Density estimators camibed in the literature [15].

2.3.1.2 Analysis of the received signal

Figured 2.1 and 215 are the results of experiments on the sanser (sensor number 5 in the MU). The
signals received and then processed with a PSD estimatanitgerthe time domain to distinguish the
different problems. The first signal (in blue), illustrated=igure[2.4, is a signal which could be created
by the user with long and small activations. Obviously, aasspresent. The second one (in red), shows
only the noise without the signal. In order to obtain the alacee of the noise (useful for filtering) the PSD
on the two different signals is performed, and finally thedline (in pink) shows the noise added with a
baseline shift.
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Figure 2.4: The first signal (blue) could be created by the user with lond amall activations. The

Power/frequency (dB/Hz)

second one (in red) shows the noise without signal. The tmel (in pink) shows the noise
added with a baseline shift. The value of each sensor is in mV.

Welch Power Spectral Density Estimate (Signal)
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Figure 2.5: Welch Power Spectral Density of each signals from Figurk 2.4

In Figure[2.5, the blue signal shows that the PSD becomedygitdglabove 6Hz and then the con-
tinuous value is predominant. Indeed, the higher frequesigyals appear only during activations or
desactivations but they are really short in time domain. Jinell variation of the PSD’s values close to
OHz are due to the baseline wandering. Red and pink curvdsroahese commentaries.
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2.3.1.3 Tested Solutions to reduce the high frequency noise

To reduce high frequencies noise, an obvious solution isutieeof a low-pass filter, which permits to
remove high frequencies from a given signal while keepingflequencies. The cut-off frequency of this
kind of filter must be set in advance. Many different low palisri exists. The two mains kinds of digital
filter are the Finite Impulse Response (FIR) and the Infingggdnse Filter (IIR). The most common and
simplest FIR low pass filter is the Moving Average Filter|[1djile the IIR filters are led by Butterworth,
[17], Chebychev (Type 1 and 2), [18], and Bessel Filters].[19

FIR Filter: The Moving Average Filter As mentioned above, the Moving Average Filter is the most
common and simplest filter in digital signal processings li$ed to "reduce random noise while retaining
a sharp step response" [16]. This filter gives a good smaptluintime domain. However, it is not the
best choice for the frequency domain usage. The moving gedilter is a FIR filter. It is a digital filter
which is used in many applications, such as imaging, videands processing, transmitted signals, where
filtering unwanted noises is needed. The moving average ifitan example of convolution where its
formula is expressed as in equation 2.10:

yln] = % X [z(n)+xz(n—1)+...+z(n— (m—1))] (2.10)
To compute an outpuf[n], the moving average filter usesprevious samples of the currensample,
as seen in equatidn 2]10, which computes the most likelyevaiuhe signal. Obviously, the largerris,
the more filtered is the output. However, a larger valuswahcreases the computation time, adding more
delay. This can be an issue for a real time filtering applicatiFigure 2.6 illustrates the benefits and
drawbacks of the moving average filter on the raw signal fioenMU, shown in Figure 2]3. It also shows
the one sample delay, in this example, introduced by the.filte

_1'_ 1 samples delay
t

0 i >

Figure 2.6: Signal from one sensor after the use of the moving average flihe filter removes the high
frequency noise but add a delay of 1 sample

The delay seems small, but to use properly a mouse cursadethg has to be zero or very close to
zero. A mouse cursor on a screen has to be fast to respond tdlkled the user. Another point is that
the moving average filter, as efficient it could be, still lesssome noise. This small left noise can still
produce small activations and the mouse cursor is then mdwritself. The method used to solve this
problem is explained in Section 2.%.4.

The use of FIR is not fitting with the requirements of the pcoj&@he FIR filters, by performing a long
convolution, introduced significant delay group which cansuit with real time application. Moreover,
the IIR filters are very close to analog electronic realmadithat can facilitate the implementation on the
board.

Section: 2.3 Analysis of the signal perturbations 27



IIR Filters Recursive filters, such as IIR can perform a very long impuésponse where only few
coefficients are involved (without doing a very long convimn). In such a way they are executed very
quickly but can become unstable because of the feedbacktualgractice, no more than about a dozen
recursion coefficients can be used, otherwise the filterinesainstable [20]. A IIR filter can be expressed
as in equatioh 2.12

yln] =ald x z[n] +al x zn — 1]+ a2 x z[n — 2|+ a3 x z[n — 3] + ... (2.12)
+bl xyln—1]+02xn—2]+b3xn—3]+... (2.12)
From [20]

wherez[n — i] are the values of the input andh — ] is the output. The filter response (in frequency)
can be studied by the z-transform of the filter’s recursivgatign [20].

An ideal filter (for instance a bandpass) removes elemerits fnequencies outside the interesting
band and assures that all the frequencies in the pass bdnmbtile distorted. This kind of filter is math-
ematically a window but physically, a infinite derivativencent be performed and a non causal function
cannot be done. The following analog filters are well knowthimliterature and can be summarized here.

Butterworth filters: Butterworth filters are very monotoiiche pass band and stop band but the roll
off is not very sharp.

Chebycheyv filters: Chebychev filter is separated into twasypType 1 introduces more pass band
ripple than a Butterworth filter while Type 2 gives more st@md ripple. However, Type 1 and 2 have a
stepper roll-of than a Butterworth filter. Chebychev filtare faster than Butterworth but the ripples on
frequencies (pass or stop band) are parameters to avoidadeenacy is needed, as this project ask.

Bessel filters: The Bessel filter has a smooth pass band amébatal response, like the Butterworth.
For the same filter order, the stop band attenuation of thedbdtter is much lower than the Butter-
worth filter. It is not introduced any ripples but the Besskéfigives more delay than a Chebychev or a
Butterworth filter.

The project group tested these 3 recursive filters for theen@moval. Improvement could be seen in
comparison with the moving average filter but a delay is ptiisent.

Phase and group delay First of all to perform real time filtering, long group deldyave to be avoided.
When one sine wave enters in a filter, another one exits frofrhiére can be modifications of the ampli-
tude and modifications of the phase. Comparing a same potheimput wave and in the output wave
can define the phase delay. Suppose thafwt) is the output signal, thesin(wt — ¢) is the output wave
with a phase delay, = % as shown in the following computation, equatiéns 2.13-12.15

sin(wt — ¢) = sinw(t —tp) (2.13)

wt—p=w(t—t,) (2.14)

t, = % (2.15)
From [21]

The phase delay is very useful to compute the time resporsdltér when the delay is independent
of the frequency.

The group delay is the time delay of the amplitude envelomernbdulation of 2 sinusoids. The group
delay is only studied in a bandwidth where the phase resperesgproximately linear [22]. The group
delay,t,, is the slope of the linear phase around 0 Hz and it is equivéatethe time delay of the amplitude
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envelope (because this group delay is only studied in a biticlwhere the phase is linear and a linear
phase can be directly interpreted like a time delay), as seequation§ 2.16[-2.21

yt = cos(wit — ¢1) + cos(wat — ¢2) (2.16)

yt = 2cos <w1 ;th _ 9 ; ¢2> cos (wl ;wzt _ 9 ;(bZ) (2.17)
From [23]

Where:

wi—wz,  P1— @2\ w1 — wa

cos 5 t— 5 = cos 5 (t—tg) (2.18)

(w1 — w2ty = (¢1 — ¢2) (2.19)

_ (91 —¢2) A9

ty = (or ")~ A (2.20)
d

ty = g (2.21)

2.3.2 Temperature drifts analysis

Another problem is introduced by the variation of the terapgne. Depending on cold or hot temperature
variation, the baseline of the signal, given by one sensifts downwards or upwards, respectively.

2.3.2.1 Tested solutions to compensate the temperature fta

Experiments, as illustrated in Figure?.7, show that a dsa®f the temperature makes the reduction of
the baseline and that the increase of the temperature maddmaseline increase. However, there is an
important latency before the baseline drift starts to acbufact, the alteration of the permeability of the
sensors is not immediate and is different for the differemisers because all the sensors are not located
in the same place on the palatal plate (the modification ob#seline is related to phenomena varying
slowly, that means that very low frequencies almost sticthwhie continuous component of the signal
spectrum). These considerations make the baseline wagdesty difficult to remove without altering
the useful information given by the user.

N=10000 samples

200

0

Figure 2.7: Temperature drift of the raw signal coming from one sendatrifts upwards when the tem-
perature increases, and downwards when the temperatureases

The moving average filter is useless to reduce these dhiigjaise is removed but the drift due to the
continuous component of the signal cannot be cancelled.ufaef a high pass filter is needed, like for
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instance a high pass Butterworth filter.

Butterworth Filter A Butterworth filter is a IIR. Its frequency response in thepaéand is exempt of
oscillations. A Butterworth filter is also called "‘maxiniaflat magnitude filter”. This property insures
no ripples in the pass band and rolls off toward zero in stogb&he filter introduces a smooth filtering
but also a delay.

In this project, a second order Butterworth high pass files been applied to the signal. The filter
has a cut off frequency of 0.05 Hz. But it totally removes the frequencies. The output signal appears
disastrous because the filter removes almost all the actigafwhich are produced by user who cannot
produce 100 activations per seconds which means 100 HA.prbblem is illustrated in Figufe 2.8

Solution tested by HST member on a 8 bits microcontroller

Some built in logic (basically a threshold) is added to thelfito detect if the sensor is activated or
not. If the signal was deemed "not activated"” the filter wadiad in the normal way. If the signal was
"activated" then the filter was still applied to the signalf the filter taps were not updated with new
values. The effect is that the filter was "frozen" until thignal returned to baseline. This solution avoids
the effect of the high pass filter.

The problems with this solution are:

e Small activations of the signal might not cross the threshohusing the filter to remove signal
activation anyway.

o If the baseline changes too fast it may cross the threshaldranfilter may process the signal as if
activated while it is actually not. The effect is that theddam level escapes the filter, and thus are
not removed.

N=1000 samples

—

0 v \ﬁ \/
Figure 2.8: When an activation appears, the high pass filter makes thmabkgping back to the average
value. If users want a long activation on one sensor, e.qagyforward with their wheelchair,

user will see its wheelchair stops after some times beca&weseadtivation is no longer set.
There is also a counter-reaction which sets the normal sttiee sensor at higher amplitude,

and then no activation could be detected for a while. Withetteemple of the user wheelchair,
it will stop quickly and could not start after seconds or a ot

Not detected sensor activations

In order to solve this problem more efficiently, the projeap has investigated the possibility to use
a Kalman filter, as described in Sect[on]2.4.
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2.4 Kalman filter based correction

2.4.1 Kalman filter overview

The Kalman filter is a set of mathematical equations that fietim estimate the state of a linear dynamic
system from a series of noisy measurements [25]. The Kalrttanif one of the most efficient recursive
filter based on the estimation of user defined states. Very figeremoving noise as a smoother filter,
it can also support estimations of past and present statedmipredict future states based on previous
or current observations. The first Kalman filter was perfainoeestimate the current state from a linear
dynamic system corrupted by Gaussian ndise [25]. The prejetem is corrupted by white noise and
experiments prove that the Kalman filter is also very efficieith white noise.

The Kalman filter is based on filter theory but also on statitilecision theory. The mathematical foun-
dational concepts are the least square theory, the dyngstienss theory and probability theory. Indeed,
the first method for estimating a state from a set of noisy mressents is the method of least squares.

The least square theory can be resumed as follow:
Consider a problem for which the value of a state is unknowmfa set of observations. The estimation
error given by the Euclidean vector norm is performed. Thendrror cannot be minimize directly but
the variation of it has to tend to a negligible value which barrepresented by the derivatives of this error
with respect to the states estimation which has to be closedssible of 0.[25].

Kalman filters are very used nowadays in GPS localizatioogdgsy but also in real time applications
like the prediction of the trajectory of a high velocity objjdike in military field. The first applications of
the Kalman filter were the control of dynamic systems stakesh manufacturing processes, aircraft and
ships [25].

2.4.2 Linear Dynamic Systems

Isaac Newton first introduced the concept of dynamic systé&ffith differential equations, mathematical
models can be built in order to describe the dynamics systemsd us. The motion of the planets in
the solar system was described by Newton inlti#& century, using a set of mathematical equations with
only a small number of parameters which are related to thectay and also the velocity of these planets
[25].

A dynamic system is composed of intercorrelated entitieskbvolve with time.
Suppose that: is the input of the systemy is the output and the state vector is calledThe internal
representation of a linear dynamic system is:

8
—~.
~
~—
I

Az (t) + Bu(t) (2.22)
Hz(t) + Du(t) (2.23)

<

—~
~+

~—
Il

whereA is the evolution matrix 4 is not linear if A is varying with respect ta)
B is the command matrix
H is the observation matrix
D is the direct transmission matrix

x(t) is the first order derivative of the state vector.
The usual resolution of the previous system is given by tHeviing expressions, equatiohs 2125 and

[2.28:
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t0
z(t) = et g0 +/ A7) Bu(r)dr (2.24)
¢

t0
y(t) = HeAt=10) 20 —|—/ HeA) Bu(r)dr (2.25)
t

wherez0 is the initial conditions of the system.

In the case of a discrete system (like in this project casaumrthe data are sampled before being
analysed), differential equations become recursive émpst

Tpt1 = ¢z + dug (2.26)
Yk = pxy + Ouy (2.27)

Another representation of the linear dynamic system isadsal in order to directly link the input and
the output. If the initial conditions of the systems are éqoi@, and if the Laplace transform of the states
equations and of the output is used then, yield the transégrixrof the system called G in the equation
[26].

G(p)=H(pld— A)™'B+D (2.28)

And for a discrete system, the z-transform of the state amatitput is as follow:

G(2) = p(zId — ¢)" 6+ 6 (2.29)

2.4.3 The discrete Kalman filter Algorithm

In order to understand the Kalman filter theory, notatiorsusth be introduced (other notations can be
found in other documents).
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SYMBOL VECTOR OR MATRIX NAME DEFINITION OF NOTATIONAL USAGE
U input vector input of the system (directly
controllable by the user)

z measurement vector measurement of available sensors in the system
x state vector vector used to describe

totally the system
A state transition model applied to the previous state vector
B control input model applied to the control vectark
H observation matrix describe the links between the measurements

and the current states
w process noise Gaussian distribution with a covarian€e
Q covariance matrix of the process noise statically describe
the noisew
v Sensor noise Gaussian distribution with a covarianée
R covariance matrix of the sensor noige statically describe
the noisev

P Predicted estimate covariance matr|x measure the accuracy of

the state estimate
K Kalman gain matrix Kalman gain matrix is chosen to minimize

the a posteriori error covariance

Table 2.1: Notations used in Kalman filtering

The model underlying the Kalman filter is shown in Figlre] 2.8eve the circles are vectors, the
squares are matrices and the other onesndw) are noises. In this model, one suppose that the noise
corrupting the system can be split into 2 different Gaussi@ise: the process noisewith the covariance
@ and the sensor noisewith a covariance?. Indeed, in most physical systems the sensor noise which is
introduced by the imprecisions of the sensors can be eellsgfore running the filter. In fact, an off line
model can be created in order to measure the sensor noise pviaslematic to evaluate is the process
noise defined as the approximations performed to pass fromavéops state and the input to the current
state.

In either cases, superior statically performances can iexsed by a better selection of the parametgrs
andR [27].

In this project, the noise study is out of concerns becausadise is mostly caused by thermal agitations
of the electrons or caused by electromagnetic sources whadms that it can be assumed as a white
noise not necessarily related to normal distribution. He®vemany dynamical systems are not exactly as
described in the figure and Kalman filter can be very usefulelb[2€].

In the project case, the determinationfofind( is carried out by means of tests. Obviously, the optimal
solution cannot be found theoretically.

The process and measurement noise are considered as wihiteorinal probability distribution where
the covariance§) and R are chosen by performing tests (the group tests diffefeabd R in an interval
from 100 to 0.01). Suppose that the distribution functiofithe noises» andw are following a centered
normal law with different covarianceg and R such as shown in equations 2.30 and .31

p(w) — N(0,Q) (2.30)
p(v) — N(0, R) (2.31)
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e

k-1 k k+1

Figure 2.9: Kalman filter principle

Let’s introduce other notations used to understand the Kalfitter:

SYMBOL | MATHEMATICAL DESCRIPTION DEFINITION OF NOTATIONAL USAGE
x state vector state of the system
Xk x[k] k" element of the sequence
Z Elx] estimate of the values aof
T~ Thlk—1 estimate ofr conditioned
by all measurements except the one at time

Table 2.2: Other notations used in Kalman filtering

The posteriori estimation covariance is given by the foaffilB2 and it is the covariance of the error
made between the estimator and the real value of the state

Py = E[(z) — &) (zx — )] = Elerey] (2.32)

The posteriori state estimate reflects the mean of the statedion all the previous measurement:
E[[L‘k] = fk

Finally the definition of the Kalman gain is fundamentalsithosen to minimize the a posteriori error
covariancel[28]:

Ky =P, HT(HP, H" + R)™* (2.33)

The Kalman filter is based on a recursive algorithm, henceatsia feedback control. The principle
of the filter can be divided in 2 different set of equationméiupdate and measurements. First the filter
performs an estimate of the process, and then it obtainsalves of the sensors corrupted by noise in
order to be compared with the previous estimation [27].

e Time update equations are used to project in the next stegstitaate of the previous state vector
and also the covariance in order to obtain an a priori eséigfar these 2 values that can be corrected
after.
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e Measurements updates equations are responsible of tHefdedhat means the a priori estimate of
the state and the covariance are compared to the measuseamneiithen a more precise a posteriori
estimate of the state and the covariance is found. The irmpoegtof the measurement and the matrix
of observabilityH is fundamental in order to obtain new data.

The following equations can be implemented in Matlab in otdeobtain a recursive Kalman filter.
They are the basis of the Kalman filter and can be split intdf2réint set as specified previously:
Discrete Kalman filter time equations [27]

:cA,; = Ax,f_l + Bug_1 (2.34)
P = AP, AT +Q (2.35)

Discrete Kalman filter measurement update equations [27]

Ky =P, H'(HP; H" + R)™* (2.36)
Tp =0 + Ki(zp — Hiy, ™) (2.37)
Py = (Id — KxH)P; (2.38)

Figure[Z.ID shows the principle of the recursive Kalmanrfitdgorithm [27].

R

Time Update Measurement Update
("Predict"”) ("Correct")

~—_

Initial estimates for:(k — 1)
andP(k —1)

Figure 2.10: Operations done by the Kalman filter

2.4.4 Fitted Kalman filter to remove noise and baseline wandeg

The main two problems cannot be solved directly by the use sihgle low pass system. Indeed, the
Kalman filter has the ability to easily remove noise withodtiiag a delay in opposition to other non

dynamic system based low pass filters. However, the basetmelering is caused by low frequency
temperature drift and the use of a high pass filter is need#d:ttmpletely change the signal. The group
creates a Kalman filter with its own set of equations to rentbeenoise but also the baseline wandering.

e Kalman Filter Noise removal

The system needs to work in real time that means that no delaybe added to the signal but
also that the state vector cannot contain too much previatisssand obviously not all the previous
states (from the start of the simulations). In consequemstate vector with only the current state
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is needed to obtain fast results.

The state vector is defined by the value of the sensor withoisenthe measuremesgy is defined
by the real value of the sensor coming from the bitstream ptiservation matrixd is naturally
equal to 1 as the state transition matrix modefwhich means that the next state is based on the
previous state before the measurement update, it can basé&emmemory of the filter which needs
a value to compare with the new measurement). The user cdaraaty action to remove the noise
that means that the inpuk is equal to 0 as th& matrix.

Suppose that, andz}, are initially set to 0 because of the causality of the system.

Then statistical relations of the filter have to be set.

The definition of@) and R are set randomly at the beginning and performing many tésissthat
the best tradeoff between noise removal and identical kfgna after filtering can be reach for
@Q=0.1andR =0.1.

The value ofP is set tol0e® at the beginning to quickly converge towards a realisticial

Then the time update equations followed by the measureneguigtions are performed in an infi-
nite loop to perform the filtering.

The difficulty of the Kalman filter is to define precisely thendynic system and the statistical initial
conditions (summarized in equatidns 2.40 - P.45)

A=1and B = 0; (2.39)
H=1and D = 0; (2.40)

z,, = value of the senseor (2.41)
uk = 0; (2.42)

g and £ = 0; (2.43)

P = 10e5; (2.44)
Q=0.1and R =0.1; (2.45)

Kalman filter with Q=0.5 and R=0.5
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Figure 2.11: noise suppression with Kalman filter

The noise removal is highly linked to the covariances of tbises( and R. Higher are the values
of @ andR, higher is the filtering effect and even if no delay is addbed,dmall activations will not
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Kalman filter with Q=0.1 and R=.1
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Figure 2.12: noise suppression with Kalman filter(other covariances)

be detected.

e Kalman Filter Noise and Baseline wandering removal
The Kalman filter baseline wandering removal is really maymplex because a careful analysis
of the system is needed. In this section, the group suppbs¢dhe Baseline Shift (BS) can be
calculated and available for the computation.
The next part discusses the computation of the BS and theaqipes to obtain it.
First of all the state vector has to be updated: now, the tdarimations for describing the system
are the Real Value of the Sensor Without Noise (RVSWN) and t8e B consequence, all the
matrices of the system have to be modified.
The transition matrix model is now equal f@2, it means that the next state is based on the
previous state. The value of the input matBxs equal to/ds 2 but this matrix can also be equal
to the null matrix because as in the previous case the userdheemmand to change the RVSWN
or the BS. More complex is the observation matfix
The observation matri¥ is used to compare the actual state vector with the measuteraetor.
The measurement vector has 2 elements: the first one is the ¥hthe Sensor Received from the
System (VSRS) and the second one is the Estimator of the BS)(B#lt as explained in Section
2.435.
In consequence, the equatiéns 2.47 - .49 can define thevabisarmatrixH, equation 2.409:

H o+ % = 2 (2.46)
— (RVEEVN ) _ (VES;SS ) (2.47)
_ (RVSWé\;—}—BESB? VSRS ) (2.48)
LH— [é ﬂ (2.49)

The addition of the RVSWN and the baseline is equal to the VSRStze EBS has to be as close
as possible to the BS.
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Because the statistical values of the sensor determine®ibe parameters, the statistical values are
the same but now the dimension of the matrices has chang@dniequence? = 10e® * Ida,o,

Q = 0.1 % Idoyo andR = 0.05 x Idays.

Obviously, the value of the state vector is 0 at time 0 as theevaf the measurement

The equations - summarize the parameters of the filter inrdodeemove the correction and the
baseline wandering:

A= B =Idsyo (2.50)
Q =0.1x Idgxg andR = 0.05 x Idoyo (251)
P = 10eb5 x Id2><2 (252)

_ (Value of the Sensor Received from the System (VSRS) (2.54)
= Estimator of the Baseline Shift (EBS) '

_ (the Real Value of the Sensor Without Noise and baseline GRMEWN) (2.55)
Tk = the Baseline Shift (BS) '

1 1

i-[b ] 259

One of the main advantages of the Kalman filter is that thereislelay added, the activations
stay very sharp and also that all the computations are peewithout introduction of logic i.e.
without interruption in the filtering.

2.4.5 Recursive definition of the baseline shift

The removal of the baseline shift can be improved by the retafall the baseline in order to center the
values of each sensor to 0. Indeed the values of the sendii@nvany activation are not the same and
that could be an issue for the detection of the activatioetbasm a threshold. In such a way the removal
of the baseline shift but also the removal of mean values df eansors without activation are advised.
The description of the baseline, defined by an algorithm niigdee group, is made recursively, it means
that the previous value of the baseline is saved (calisdline ™). The principle of the baseline correction
made by the group is based on an evaluation algorithm whitdctieor not the activations.
The signal coming from the sensor passes through a high pessafith a very low cutoff frequency,
it means that in time domain during an activation the valuethe filter will make a peak and return
very quickly to 0. The difference between the output of thghhpass filter and the signal coming from
the sensor can be considered as the baseline except dugiagtthation or the deactivation of the sensor
(when the output of the filter makes a peak). During theseattiins, the value of the baseline can be hold
only if the activations are very fast. In the other casesinduthe activation the baseline shift shouldn’
t be present and can be catastrophic for the signal. In fatte ibaseline shift has a negative derivative,
there are no problems because the activations will rematrif the baseline shift has a positive derivative,
deactivations can appear because the baseline shift watrg the signal above the threshold detection
value. In that case, a correction coefficient should be atlwifte constant baseline in order to correct the
shift during the activations.
A logical cell is built by the group in order to detect the sition and to add the adapted correction.
Figure[2.1B summarizes the principle underlying the coiwacsystem.

Both the baseline recognition system and the logical daisystem have been created by the group.
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Figure 2.13: The estimation of the baseline shift performed after thechdglecision is made

2.45.1 Logical decision algorithm

The logical decision algorithm is based on the detectiomefitctivations with 2 different thresholds. Ob-
viously those values depend on the high pass filter used anbdectuned easily. Moreover, the algorithm
is not linked to the noise filtering process, which allowsoitte tuned easily. It is noticeable also that
this algorithm can be improved by performing a large numbdests in order to cover all the possible
situations.

Definition of the variables:

coef ficient is the value of the correction added during an activation

e 2z, is the value of the measurement ( =value of the sensor signal)

e X hat_hp is the output of the high pass filter applied to the signal

e activation is a boolean variable which takes 1 during an activationh@mtise

e The value ofdetect is given by a running mean of the measurement

e detect_fast is a detector, using the output of the high pass filter, airoatetect the peak, it means
the activations (the presence of the 2 detectors is justifiethe big number of activation forms
(long, very high frequency, very repetitive,...).

e t1isthe threshold linked to the detectéatect

e {2 is the threshold linked to the detecifitect fast
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START

|

Activation?
Detect_fast?
Detect?

detect <= t1 && |detect_fast| »= 12
detect > 11 && |detect_fast| >=12

actvation = 1 && |detect_| >=t
baseline <-
haseline slse

activation=-1
baseline <-

baseline- |
activation <- 0;

baszline <
baseline- ;

activation =1

NO
-
baseling <- zk(]) -
X_hat_phij} ; YES
baseline- <-
baseling |

!

(mean(zk(-9).- [}

mean(zk(j-19:j-1
o) ct?/

toefficient =-
(mean(zk(-8.))
mean(zk(-18:j-10
m

baseline <-
(haseline-) +
coefficient ;

END

Figure 2.14: Logical Algorithm Description

The upper flow chart in Figuie Z.114 shows the principle of thgofithm made by the group.
Whendetect is larger thantl anddetect_fast is larger thant2, an activation is detected. The baseline
cannot be updated but has to keep the previous @hueline—). In fact during an activation, the value
of a sensor goes from 200 to 150 for instance. The baselinebarcannot be updated because the true
value of the baseline is not 150 but still 200
A deactivation is detected wheietect > t1 and the absolute value dbtect_fast is larger thant2, in
this case also the baseline as to be kept as its previous (alsdine—).

Very quick activations can exist but in this case o#idyect_fast should be trusted.
The last case are when there are no activation or that a vegydctivation is performed.

o First of all, the case where there is no activation:
The baseline can be defined. For example when there is natatiythe baseline is still 200 and
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can be trusted. To define it the group choose to compare the wélthe sensor with the value of
the high pass filter (the value of the high pass filter is O wheeagtivation is performed). Moreover
the value of(baseline—) is updated.

¢ Then the case where a long activation is detected but a drftiexist, so the addition of a correc-
tion coefficient based on the slope of baseline when thera@eetivation, is needed.
Only for long activations, the baseline shift (due to tenapre variations) is corrected, not for short
activations.
The negligible error introduced will be corrected during treactivation because the output of the
high pass filter will be flat, so the baseline can be defined pesygisely.

The first idea of the algorithm was to run the input signal inafial with this one passing through
a high pass filter. In such a wy the difference between the tgmats gives the baseline, but this value
is reliable only when no activation is detected. The way thatidea is realised, to save memory space
because only the current baseline is stored, introducesyasu®ll error in the baseline definition but the
delay is almost equal to zero.
However, this logical decision function should not be oedaseparately from the data reading and the
Kalman filter processing, because many parameters arechaadéave to be saved. Instead of that, this
function should be integrated in the main program which @imstthe infinite loop used to read the input
values from the MU.

2.4.5.2 Butterworth High Pass Filter

The discussion about Buttherworth filter is already doni@e@.3.1.3 with the presentation of its advan-
tages and drawbacks. The requirement for the high passufieat in the baseline computation is first of
all a very small time response, that means that the filterdesttirn to 0 as quickly as possible (minimum
delay). This ensures to maintain a value to compute the ibasghich cannot be the case for a high pass
filter with very big time constant. For a first order low pastefithe time constant is linked to the cutoff
frequency by the following formula, equatibn 2157:

1

Ll v 2 (2.57)

wherer is the time constant anf]. is the cutoff frequency.
Obviously the relations between the cutoff frequency ddpemm the kind of filter and the order of this
one, but for all the cases higher is the cutoff frequency|llemia the time constant, faster is the return to
0 of the high pass filter.
The high pass filter should have the highest cutoff frequeBgcause there is almost only noise above
5Hz, as explained Sectién 2.3.11.2, the group decides thsetitoff frequency very close to 5Hz.
Moreover, as the IR filters become in practice unstablerfiasraler above 12, the group decides to limit at
maximum the time domain oscillations during the return eftiigh pass filter to the value 0, by choosing
an order 2 Butterworth filter, as seen in Figlire 2.15. Butbetiwfilters are well known in the literature
[17], and they can be easily implemented in hardware wittediht topologies like Sallen & Key [29] or
Cauer|[30].
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Baseline and noise removal (butterwoth filter)
200 T T T T

150 | *
100 *

50| H B

il |
R Uil |
| ! \
vw.\‘a‘w«'wwn '\th‘vww.‘;,“.f’wm‘eq‘,wﬂ,'.w‘ ‘ Wﬂ i '\-’M" U\WML)thMx,WW ,‘ ,‘ ‘\}\ | Rl www.,AL,,A,.M%:W‘-/w’w\\w\wy —
| i i I

sensor 5 values
o

i
i | J M b

| ! I
-50 | | | ‘ { i

-100 - -

~150 I I I I I I
0 5 10 15 20 25 30 35

time(s)

Figure 2.15: The curve in blue is the input signal with a important shifdahe curve in pink is the
Butterworth high pass filter running in parallel. A peak wahpositive derivative can be
noticed after a deactivation and a peak with a negative deie can be noticed after an
activation

Notice that Butterworth is a recursive filter therefore ihd¢ge studied as a linear dynamic system [31].

2.4.5.3 Kalman based High Pass Filter

The study of the Kalman low pass filter is presented Se€fidB2However, no study regarding the fre-
guency response of the Kalman filter is done in this docuntgetause of very low frequency signal and
the very interesting time domain properties, especialtaee no delay is added after filtering especially
for the activation, the group limits the study of the Kalmdiefionly to the time domain. The construction
of a high pass filter based on a low pass kalman filter, perfdrnyethe group, is new and can be called
by extension the Kalman based high pass filter.

For digital filters (manipulating sampled data as here) tieation of a high pass filter can be easily done
from a low pass filter. The low pass filter is supposed to enthateall the signal in the frequencies in the
low frequency band will be not distorted and all the frequesoutside this band will be attenuated. For
a high pass filter it is the same, but this time all the signaligh frequencies has to be kept unchanged.
In consequence, a high pass filter of the same cutoff frequesut be designed from the low pass filter.
One all pass filter, for instance the delta Dirac functioe flequency response of the delta Dirac function
is the constant one in all the frequencies) subtracted byagbss filter running in parallel, give a high
pass filter, as shown in Figure 2117

Obviously the best all pass filter is the input signal itskthe low pass filter introduces no delay as the
Kalman filter does. This is why the use of the delta Dirac figrcis required.
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Kalman filters solution
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Figure 2.16: The received signal from the sensor 5 is shown in blue, thelin@sestimator in pink and
the output of the Kalman filter in green

However, this high pass filter is practically not the same ssabhigh pass filter. In fact the real high
pass filter have a zero attenuation in the pass band. Thisgaigh filter cannot have a zero attenuation
on the pass band because it is the difference between thasdlfjfter subtracted with the low pass.
Obviously, a realistic low pass filter cannot have a zero gathe stop band.

The principle of the high pass Kalman filter is summarizediguFed 2.1 and 2.18

Magnitude (DB)

Theoretical Low pas

Walman filter Theoretical High pass Kalman filter

[ Frequency (Hz)

Real Low pass Kalman — Reg) high pass Kalman
filter fitar

Figure 2.17: The transfer function of the Kalman filter is theoreticallyual to a high pass filter but in
practice, the low pass filter cannot be rectangular, so ttghhpass filter does not have a
zero attenuation in the pass band
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Figure 2.18: The principle of the created Kalman filter is based on the sabgon of 2 filters running in
parallel

Equatior 2.58 shows the mathematical principle of the canson of the high pass filter.
y(n) = 8(n) — Ip(n) (2.58)

wherey is the output of the high pass filter ahis the output of the low pass filter.
The filtering of the signal, received from a sensor corrufiethe noise and the baseline wandering,
with the created Kalman high pass based filter is shown inrE[GUL9.

Kalman high pass filter
200 T T

sensor 5 values

-150

time(s)

Figure 2.19: The blue curve is the signal corrupted by noise and the haseliandering, pink signal
corresponds to the Kalman based high pass filter. The figurevstihat there is no delay
added between the activations, and the deactivations, laageaks of the Kalman based
high pass filter.

Contrary to the Butterworth high pass filter, this high palssrfng is delay free, which permits to the
decision algorithm to be executed in parallel of the reatsignal.
For a better correction, the description of the covariarfa® noise called);,, and Ry, for a Kalman
based high pass filter are different from thand R of the low pass Kalman filter because the group wants
the maximum reactivity of the high pass filter, so the noiseawal is not taken into consideration for the
Kalman High pass filter.

2.4.5.4 Graphical description of the correction

First of all, the group investigates these correction mgshaith only one sensor and then extends these
corrections to the 28 sensors.

1. Correction with only one sensor
The summary of the correction with only one sensor is done.h&he Kalman based high pass
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filter and the logical algorithm are created with the aim ttegbthe baseline estimator as accurate
as possible. Then this estimator of the baseline and theurexasnt of the output without correction
builds up the measurement vectqrwhich is the only external data of the low pass Kalman filter.
The output of the low pass Kalman filter is the signal with aimimm of noise corruption and
baseline wandering correction.

Figure[Z.20 shows the external values used for this filteand the feedback performed by the
Kalman algorithm.

Estimator of the

Baseline Baseline shift
shift (EBS)

Estimator of the
Low Pass the signal value

Kalman Filter without noise
and baseline

Signal value

without noisH
and baseling]

Figure 2.20: External values used for the low pass Kalman filter

The baseline estimator is subtracted automatically by thlenkin filter from the signal in order to
obtain a signal centred around 0 without baseline wandedrghown in Figure Z.21.

Kalman filter baseline removal
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Figure 2.21: Values received from the sensor 5 (in blue) and baselinenasdr (in pink). The baseline
estimator is not accurate during the activation but, as gaieviously, this is not a big issue
and can be easily tuned by modifying the coefficient

The baseline estimator does not follow exactly the baselfrike signal especially during the long
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activations. The correction coefficient can be tuned in otdéollow more precisely the baseline.
However, this is not a big issue because the baseline estim&tirns to the right value during the
deactivation.

The creation of this Kalman filter and all the baseline estirga(except the one using the But-
terworth high pass filter) is done without using any pre @xgsfunctions but only with recursive
equations. The translation of this Matlab code into C codedescribed in Chaptél 5 is easier
without using any Matlab functions.

. Correction with all the sensors:

The correction of all the sensors can be done easily. Ther2 amys to correct all the 28 sensors:

e The simplest way is to set 28 Kalman filters in parallel withti28eline estimators.

e The second way is to define another Kalman filter. The stat®re€this new Kalman filter
has to be built up with 28 values of each sensor without naigevéthout baseline and the
28 baseline estimators. Obviously all the relatives matrigerform the computation have to
be made in consequence. Figlire .22 shows the principleedfafman filter for all the 28
sensors and the equations of this one are defined, eqlai@n 2.

=)

—- —
— |—
—- —
Sensors values Low Pass Signals without
1...28 . baselines and noises
Kalman Filter 1.8
— |———
—- —

Figure 2.22: One single Kalman filter can be used for all the 28 sensors

valuewithout noise and baseline Wanderﬁ@nsm’1

o valuewithout noise and baseline wanderﬁl@n507"28 (2 59)
k baseline,sensorl )
baseline, sensor28
A= B =1Idyyos (2.60)
Q = 0.1 x Idaxas (2.61)
R =10.05 x Id2><28 (262)
_ logxos 128><28) (2.63)
logx2s  0O2sxos

The first method is chosen by the group because it uses ledwdrar resources than the
previous one.
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2.4.5.5 Simulation results

Figure[2.28 and Figurle 2.P4 show the results before and afiglying the Kalman filters on the signal.
Figure[Z.28 is obtained with a Kalman filtering and a Buttatwvdhigh pass filter used to obtain the
baseline estimator. Figufe 2124 is obtained with a Kalmaeriilg and a Kalman based high pass filter
to build the baseline estimators. The baseline shift islpaéded in real time whereas the noise comes
from the received values of the sensbhe test carried out in this project shows that the baselinelsift
correction is performed correctly, no matter how the slope 6the shift is.
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Figure 2.23: Received signal (in blue) and Kalman filtering
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Figure 2.24: Received signal (in blue) and signal after filtering, witlginppass Kalman based filter as an
estimator of the baseline (in green)
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The correction with Kalman based high pass filter is advisedhfe following reasons:
o there is no delay added which is of primary importance foratiene application
¢ there are no time domain oscillation after a peak to retuthed value

e long series of high frequency oscillations are less probt&rthan in Butterworth filter solution.
Tests shown that the baseline estimation has more realdtie in Kalman based high pass filter
than in Butterworth high pass filter.

e \ery quick activations are detected more easily

2.5 Conclusion about the analysis and signal processing

When the user is performing a move of the AU on the sensors quetlagal plate, the MU sends to the CU
the state of each sensor, including the ones activated.r&ihenhission is performed by the digital radio.

The received signals present high frequency noise pettarisa The previous research highlights that
the noise is due to the scanning of the sensors, that is thetioarof the inductance of the coil which
depends on its temperature and the Electro Magnetic Cobilggt{EMC) interferences. This noise is
removed because it may cause voltage drops which could ls&devad by the CU as activation of a sensor
while no activation is actually asked. To remove the noise,group project applied the most common
and simplest FIR low pass filter, the Moving Average Filteut Bs execution on MATLAB shows the
introduction of a delay between the raw signal and the filtevee. For a real-time application which
requires accuracy and reactivity in relation with the usioas, this delay is not acceptable. The project
group tested different common IIR low pass filter as well Bgterworth, Chebychev and Bessel. These
recursive filters can be executed very quickly but stilladiices unacceptable delay.

Literatures about noise removal speak about the Kalman diftd its efficiency, in terms of time response
and noise voltage attenuation. The project group analysedilter and successfully developed a Kalman
filter noise removal.

Other experiments show that the variation of temperatuth@MU environment brings the sensor
signal to shift up, in an increasing temperature variatiovirenment (hot foodstuff) and shift down in a
decreasing temperature variation environment (cold ftuff)s These shifts occur on the baseline of the
signal, i.e. the continuous component or the fundament#hefkignals. It means that if an activation
of a sensor occurs whereas the environment temperatueasen, this activation could not be detected
because it would not reach the detection threshold. Coaleibthe environment temperature decreased,
the CU can consider the baseline shift as an activation. Tévqus research team used a Butterworth
high pass filter to remove the baseline shifts. But this smiuintroduced an unwanted effect on long
activations. Indeed, during a long activation, the filtesaghal tends to go back to 0 and when the long
activation finishes, a counter-reaction peak appears viaiats to go back to 0 as well but slowly. During
this slow decrease, activations cannot be considered bglthas their voltage does not reach the thresh-
old. Then, the research team tried to create an algorithmenthe high pass filter is not working during
long activations but this solution does not remove the sltittring long activation which can cause the
previously mentioned issues.

The project group, after analysis of the Kalman filter, masluaptions that this filter could remove the
baseline shifts. The project group, then, successfullgtedka custom high pass based Kalman filter es-
tablished from the low pass Kalman filter.

As a real-time application, the processing of the data gackent by the MU to the CU needs to be
delay free, without noise and any other external pertuobati Literatures about filtering mention the
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Kalman filter as an optimal recursive data filter. It estirsdtee state of a linear dynamic system from a
series of noisy measurements. Kalman filter is used as anagsti of future state of a system, from past
and present state. This possibility to estimate within dicient method is useful for many applications

like GPS.

For this project, the noise must be removed without addingdstay. Using MATLAB, an algorithm

is produced, following the theory equations. The FigurePamagraph 2.414 show the efficiency of the
Kalman filter in the noise removal process.

A custom Kalman filter producing a high pass filter is createtetnove the baseline temperature shifts.
Based on the low pass Kalman filter and an all pass filter, thle pass based Kalman filter is created.
The Figurd 2.76 in Paragraph 2.415.3 shows the efficienogrimoving the baseline shifts of the high pass
Kalman filter.

Then once the noise and the baseline shifts are removed hysnoédhe Kalman filter, simulations
are successfully performed on the 28 sensors of the MU whedelay and no shifts are observed on the
filtered signals.

2.5.1 Possible improvements of the Kalman filter algorithm

The tests made by the group are insufficient to quantify ofifyutoe solution. Not all the cases are
tested i.e. in not all the possible environments of the tengystem. However, the solution found shows
very promising results and the logic besides this solutfominimal, it means easy to reuse, modify or
even upgrade. The theory underlying the low pass Kalmam §ilteuld be studied more, especially in the
frequency domain (although it is an unusual approach of tenkin filter [25], but can be a good starting
point for the comparison with other filters).

Finally the statistical theory and the study of the white &aan noise should be completed in order to
define mathematically the covariance of the noise pro€egke covariance of the noise sengoof the
Kalman low pass filter but also the covariance of the noisegss();,, and the covariance of the noise
sensotRy,, concerning the high pass based Kalman filter.
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Chapter

Algorithms Analysis

This chapter is relative to the Algorithmic domain of thé design methodology, especially to the analysis
of the existing algorithms for controlling the external s, highlightened in Figufe_3.1. This chapter
introduces the algorithms mentioned in the second subdgfaled Section 112:

2. Executing the algorithms of communication between thesub-systems of the TCS
and the external devices.

- Klgorithmic™ ~ _
constraints

iterate
Comparison C\ Ext ’

/ Architecture
| constraints

|

FPGA, DSP.,...

Specificationg
Constraints

Algorithmic
optimizations

\

- 7
Archifectural
optimizations

Figure 3.1: The A design methodology applied to Chapter 3

3.1 Overview

The HST members have developed a prototype of the TCS wher€lthis realised by a small PCB
board, on which a 8 bit microcontroller ensures the proogssf the raw signal provided by the MU and
the communication interface with a computer mouse curBostiated in Figuré¢ 114, paragraph 1.111.3.
This chapter introduces the algorithms used in this prpetyThe algorithm of the radio establishing
the communication between the MU and the CU is presentedoB&. It is followed, Sectioh 33, by
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the one creating the coordinates to emulate a joystick aadlfithe one which, from these coordinates,
permits the control of the mouse cursor in Secfion 3.4. Tladgerithms have all been translated in C
language before their implementation on the microcoreroll

3.2 The radio communication

The MU sends the state of each sensor to the CU every 30 rodlisls by means of 28 byte data packets.
The CU receives these data packets, processes them andtsenustruction to the selected external de-
vice. In the case of the user wants to control the computeismoursor, the CU calculates the coordinates
(x andy) the mouse cursor has to follow.

The radio transmitter implemented in the MU is a nRF24L01 lyrdic Semiconductor. The CU
prototype developed by the HST members is using the sameedéwi the receiver part, so that, the
communication protocol is easier to develop. It is intesfhavith a SPI bus to read out the data. Nordic
semiconductor provides many C codes for correct use of thieeleThe algorithm for the radio receiver
of the CU is showed in Figufe 3.2

Radio setups Begin interrupt

Interrupt
Get Data

I: Stand-by Mode

Data Packet finished
NO or Rx FIFO full ?

Send data through SH

Stop interrupt

Figure 3.2: The algorithm for the radio receiver. The receiver part istiveg until a data packet interrupt
occurs. The data are placed in a Receiving (Rx) First In Fdst(FIFO) buffer until the end
of the packet or the buffer overflow. Finally, the collectedadare sent through the SPI bus
to the microcontroller. Then, the radio receiver goes baxcthe stand-by mode until another
interrupt occurs.

3.3 Creating the coordinates

After receiving the different state of the sensors by théoragceiver and applying the signal processing
described in Chaptéf 2, the next step for controlling a cdempuouse cursor is the creation of the joystick,
i.e. thex andy coordinates.
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The palatal plate on the MU has 8 sensors which are used t@aeraujoystick, as illustrated in Figure
[B3. When the MU is sending the state of each sensors to theh@lstates of these 8 sensors are used
as inputs for the Inference system of the CU. This systemiisgube Fuzzy Logic to compute the
coordinates, as decribed[in 313.2.

Palatal Joystick

plate N

Figure 3.3: The 8 sensors forming the joystick in the palatal plate.

3.3.1 The inference system

The inference system is a software program which has assipeistate of the 8 sensors which are creating
the joystick, and has as outputs the coordinataady needed to the displacement of the computer mouse
cursor. When the Activation Unit (AU) gets closer to a senfar,nstance the sensor 1 in Figurel3.3,
the computer mouse cursor should operate a move to the timtefiorth-west, in the smoothest way
possible.

Using a boolean estimation method would attribute a valdg wen the AU is close enough to the
sensor, i.e. a threshold is set. The boolean method wouldaitribute 0 or 1 (true : activation, false :
no activation) to any values from the sensors. It would leathat the mouse cursor would jump from a
position to the next one.

As mentioned in Chaptél 1, the values of the state of eactosans ranged between 0 and 255. The
closer the value is to 255, the stronger is the activatione flizzy logic would attribute to all values
an estimated value contained between 0 and 1. The fuzzy &lgarithm is based on the storage of
the maximum value that can reach an activation (which is igatethen a new frame is received). The
difference between the value of the sensor without actimetind the value of the sensor when there is an
activation is compared with the maximum activation gap ideorto obtain a number between 0 and 1.
This number can be used as input of the fuzzy logic system.

Paragraph 3.3 2 explains the theory behind the fuzzy lagicpmragraph 3.3.3 the application to the
coordinates creation.

3.3.2 Fuzzy Logic
This paragraph is inspired by the documentation providethieyMathworks website [32].

Section: 3.3 Creating the coordinates 53



Dictionaries are defining fuzzy as an adjective synonym tpueaimprecise, not-clear, blur [33]. The
Fuzzy Logic (FL) is an evaluation methodology of input values to obtainoatput, function of these
inputs. This logic is closer to the human logic based on égpees where nothing is only 0 or 1 (true or
false) but can have different degrees.

Where the boolean logic declares that for any value of inpligsputput is either 0, or 1, the FL interprets
the input values to give an output (knowngsanged between 0 and 1. For instance, illustrated in Figure
[3.4, considering the qualifier "Tall"” for people, a bootetgic would just attribute. = 1 when height

is above 1m75 ang = 0 when height is below. FL would attribute to height betweer6@rand 1m90

different degree of membership)(
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Figure 3.4; " Tall " fuzzy variable. Modified from [32]

Even if it is the possible to implement the "tall" fuzzy vaia with conventional logic by defining
"tall" as a function of heigh either as an analog or digitalaale, fuzzy logic introduces a higher level of
abstraction by providing more intuitive operators betwherzy variables. These operators are the AND,

OR, NOT logic and the Implication.

e AND is the minimum ¢nin()) of the two fuzzy variables e.g. the degree a person is tallsamall
has its max of: in between 1m40 and 1m90;

e Similarly OR is the maximunvfaz()) of the degrees of both variables;

e NOT is1 — degree(u);

e IMPLICATION (IF a THEN b) (Equivalence is the AND of both ditgons implications) can be
approximated in different ways e.g. Zadeh (creator of Fuagic), Godel, Mamdani and Takagi-
Sugeno.

FL is well suited in case of inter-related analog variablest tannot be unambiguously modelized
into a mathematical function. In this case the program vélhtore flexible, more easily maintained and

rule-based programming is more user-friendly.
The software MATLAB handles the FL by following these 5 opiEnas:

1. fuzzyfying the inputs : this operation interprets thareadf each inputs and assigns an output ranged
between 0 and 1;

2. applying the fuzzy operator : this operation applieshe fuzzyfied inputs, the operatan{n(),
maz() or 1 — degree(n)) which permits to defined the bounds the result is containgd i
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3. applying implication method : this operation applieshe tesult of each operator an operator to
truncat this result (generally.in())

4. aggregating all outputs : this operation is the combamatinax (), probalistic OR or a simple sum)
of the result of each operator appliance (+ implication radjh

5. defuzzyfying : this operation gives the final result, agemumber function of the last aggregation.
This function permits to get an average value of the aggi@yagsult. Five methods are supported :
centroid, bisector, middle of maximum (the average of thgimam value of the output set), largest
of maximum, and smallest of maximum

Figure[3.5 shows an example of application of the FL by MATLARBIs example, based on the speed
of a cyclist depending on the weather and wind, i.e. 2 infpeanits to understand what each step of the
FL is doing. It gives a unique output depending on the inputs.

1. FUZZYFYING THE INPUTS 2. APPLLYING THE OPERATOR 3. APPLYING THE IMPLICATION METHOD
(OR=maz())

0.66
RULE 1 >
0.0
0

012345678910 012345678910 - 0 10 20 30 40 50 ) 10 20 30 40 50

If weather is bad or wind is strong then cyclist goes slow

RULE 2 045 :>
A A a

012345678910 012345678910 - 0 10 20 30 40 50 0 10 20 30 40 50
If weather is good or wind is average then cyclist goes normally
RULE3 _>
0.1
A 00
0123450678910 012345678910 — 0 10 20 30 40 50 0 10 20 30 40 50
If weather is very good or wind is null then cyclist goes fast | |
‘ INPUTS ‘ WEATHER =6 WIND =2
4. AGGREGATING THE OUTPUTS
5. DEFUZZYFYING
3
With the centroid method
The cyclist goes at 23km/h 0 10 20 3 10 50

1

0
0 10 20 30 40 50

Figure 3.5: This application example (speed of a cyclist) shows thecjpia of the FL. 1. Fuzzyfying the
inputs, to get a number between 0 and 1. 2. Applying the fuyzator, here a OR (max())
operator is applied. 3. Applying the implication method Aggregating all the outputs, here
the method used isaz(). And finally 5. Defuzzyfying to get the final result.

3.3.3 Fuzzy logic in the project

The previous paragraph introduces the theory of FL whicloig applied to the project to create the
andy coordinates regarding to the position of the AU on the phfatde i.e. the values of the 8 joystick
sensors. According to the value of the 8 sensors to expressctivation of the sensors, and following the
application example, the rules are:
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e |F sensor 1 is not activated and IF sensor 2 is not activatéd.aand |IF sensor 8 is activated THEN
AU is close to sensor 8

e |F sensor 1is not activated and ... and IF sensor 7 is aativatd |IF sensor 8 is not activated THEN
AU is close to sensor 7

e |IF sensor 1 is activated and IF sensor 2 is not activated aadd.IF sensor 8 is not activated THEN
AU is close to sensor 1

According to the value of each sensor, and after being fuzdythe output of the fuzzy logic gives an
estimation of the position of the AU on the palatal plate tioawhich of the sensor the AU is closer.

A MATLAB method is used on the 8 inputs to get several outpefining thex andy coordinates.
MATLAB provides several C-coded functions used by the HSWettgpers to design the FL code applied
to the first prototype.

However, the MATLAB C-coded functions need an array of 8 ealbetween 0 and 1 to produce the
coordinates. As said in the previous paragraph, the vakmsved are in 8 bits format without sign (be-
tween 0 and 255). So before running the fuzzy logic algoritipmovided by MATLAB, a function called
Fuzzy getXYvas created by HST research team to detect the max activgdjpiand then to normalize
all the activations with this gap. The function takes forutgpthe raw values of the sensors in the mouse
area and produces as output the values of the sensors beivasehl depending on the degree of the
activation.

A for loop is used to perform the same computation for the 8 set®smause the baseline or the degree
of the activation can change from a sensor to another as tiseiseare not exactly the same in the MU.
Then the current baseline is compared with the stored malibas|f the current baseline is higher than
the value of the stored baseline, then the baseline is uhdal® same computation is carried out for the
activation gap which is the difference between the baseliresensor without activation and the value of
the sensor when an activation is produced.

In such a way when a small activation is produced, the basainot updated and the activation gap as
well but the ratio between the maximum baseline minus theevaf the sensor during the small activation
and the maximum activation gap, gives a value between 0 and 1.

0 is produced when the current value of the sensor is equlktonaximum baseline=6- no activation

at all) and 1 is produced when the activation is so strongttieatifference between the baseline and the
current activation can reach the max activation gap.

All values between 0 and 1 can be obtained depending on tlreelefjthe activation. The output value
for each sensor is given by the equafiod 3.1.

outputFuzzy _getXY =1— (z — (B — MazActGap)) /MazxActGap 3.1)

wherez is the current value for one sensétjs the baseline andl/ ax ActGap is the maximum activation
gap.
A threshold can be also defined to take only the values up tetaiceange (0.3 in practice) in order to
remove the noise component.

The two main problems with this algorithm are the following:

e The baseline stored can only increase and never decreasgfthte of the baseline when the current
baseline is lower than the stored baseline is impossiblausecwith this algorithm no distinctions
are made between a small activation and a baseline driftectdyy the change of the temperature
for example).
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e The sensors have to be activated at the beginning and if tkeantvation gap is wrong due to an
unpredictable error, the system should be restarted agaguise the output will have no sense. For
instance, if the max activation gap goes to 200 suddenlylithei almost impossible to obtain a
value in output higher than 0.8 also when a strong activas@erformed.

The running of the Kalman filter or any other high level salatio remove the noise and the baseline
should be considered before applying this function.

3.4 Controlling the mouse cursor

The input values are coming from the sensors, the Kalmam &lgorithm, developed by the group, is
used to remove the noise and the baseline is performed befioning the function created by HST re-
search groupRuzzy getX)X Then, the fuzzy logic functions provided by MATLAB runs ¢dtain the
coordinates. Finally those 2 coordinates are used in MATlfd&:tions to create a cursor on the screen
as summarized in Figufe 3.6

Control Unit (CU) =
I [
— ! I‘al!nan filter— — |
» | (noise and — ——* FLzzy logic %
—— = |baseline ] | Algarithms (
— 1 *|w ng 1 2l > | Matlab toolbax)| —Y¥
1 |removed) — _—

Matlab processing

Figure 3.6: Cursor command algorithm using 8 sensors in the MU

3.5 Conclusion about the algorithm analysis

The research team from HST department created for the Cldtgpat the algorithms of communication
and interfaces with the MU and the mouse cursor control. @a&gorithms have been implemented on the
8 bit microcontroller in C coded language. The algorithmtfer digital radio receiving the data packets
from the MU is simple and based on the Nordic Semiconductdf2#iR01 datasheet which introduce
all the C functions needed to its good working. Once the stheach sensors have been received, the
CU needs to process them to remove the perturbations asireegblen Chaptef]2. Then, the research
team created an algorithm to detect the position of the AUhen8t sensors of the palatal plate forming
the joystick pad and create the coordinateandy which will be used to control the computer mouse
cursor. This algorithm is based on thfezzylogic (FL) which claims that for each value of the state
of a sensor (which could be between 0 and 255) a unique ouglué\vs set (ranged between 0 and
1). The fuzzy logic is close to the human logic where any alostconcept is not only true (1) or false
(0). Applied to the project, the fuzzy logic gives an estiimiatof the position of the AU on the palatal
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plate. MATLAB provides C functions to create a fuzzy logiogram to have these andy coordinates.
Once the coordinates have been established, the reseamhused other MATLAB tools to used these
coordinates to control the mouse cursor.
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Chapter

Platforms Analysis

This chapter is relative to the Architecture domain from #¥edesign methodology, shown in Figlrel4.1,
especially to the analysis and choice of different platfémrexecute the algorithms defined in Chapier 2.
This analysis of different platforms must answer the third-goal defined Sectidn 1.2:

3. Being as flexible and extendible as possible to permit dldech new external devices
interfaces in the future.

- Klgorithmic™ ~ _
constraints

) iterate s
Comparison R =

/7
/ Architectu
| constraints

Specificationg
Constraints

Algorithmic
optimizations

\

- 7
Archifectural
optimizations

Figure 4.1: The A® design methodology applied to Chapter 4

4.1 Overview

Real-Time imaging and signal processing applications ecelming increasingly important. When imple-
mented on hand-held devices they also impose constrairpbysical size, power dissipation and price
of the solution. Ease of reconfiguration of the solution isthar key differentiator. The most used ar-
chitectures fulfilling these constraints are Field Prograhle Gate Arrays (FPGAs) and Digital Signal
Processors (DSPs).
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These two platforms have advantages and drawbacks for thkermentation of the algorithms of the
project. An introduction and analysis of these platformpasformed to define which platform suits the
best the algorithms of the application, in Sectibns 4.3[add 8ectioi 45 presents the main differences
between each platforms and Secfiod 4.6 defines the choséorpia

But first and foremost, Sectidn 4.2 reminds the constraihe$ined in the previous Chapters that, the
platform has to fulfil.

4.2 The constraints on the platform

Chaptei B introduces the algorithms which have been usetiéarealisation of the 8 bit microcontroller
prototype. The radio communication protocol is one of thierpalgorithm to implement on the new
platform. The MU sends to the CU the data over a 28 bytes pagketeans of a digital radio transmitter.
The radio on the platform have to be able to receive the data the MU.

Figure[1.4 shows that the CU needs to gather each contrefaneefor each external devices. This
constraint leads to the need for an extendible platform kvien be upgraded with new future external
devices in the simplest way possible.

The algorithms, designed in Chagiér 2, to reduce noise angtthperature drift, based on the Kalman
filter, have to be implemented in the platform with a maximufitency, in terms of rapidity of execution
of the algorithm. These computations require from the ptatfa quick and powerful computation unit to
be a real-time application.

The CU is an external box, powered by a battery, close or tanfthe user, but it is an embedded
system. Power consumption, dimensions and price of théoptatare constraints to consider as well
since they have to be as small as possible.

4.3 Introduction and Analysis of FPGAs

A FPGA is a Programmable Logic Device composed by progranergaies and programmable intercon-
nections between the gates, hence any application from gesilogic function to FFT can be realised.
Two constructors are sharing the FPGA market of generalagséitinx [34] and Altera [35]. Other man-
ufacturers, such as Atmel [36] or Lattice Semiconduclor$ §8e dedicated to niche domains as transport,
aerospatial or military. Xilinx created the first platforeferred to as a FPGA in 1985.

Before presentation of the detailed architecture of FP@#&ir key design principles are highlighting.

Most FPGAs use Look-Up Tables (LUT) as their elementary kdod. UTs allow the creation of any
logical functions between logic variables because thetpfidemultiplex the input variables combinations
and then implement a one bit wide memory containing the vafuthe output. Then it is possible to
interconnect basic logic functions to combine them into pEx ones. In this way circuits design can be
changed without modifying hardware.

The following Figure$ 412 arfd 4.3 give an overview examplthefFPGASs principle.

60 Chapter: 4 Platforms Analysis



S=AB+C

C| B | A S
/—o
ol o] o 0 [ ¢
o | o |1 o A H g
o|l1]o0 0 ] )
o |1 |1 - R I
1 oo 1 ] ]
1 o1 1 oc H g
111 |o 1 N
1 1|1 1 \1

L s

Figure 4.2: Logic with Memory - LUT. Modified from [38]

The AND and OR logic functions are implemented with two LUBsshown in Figuré 413 where the
un-programmed LUTSs are in grey (LUTs on the Figure) whilesthprogrammed are in yellow (AND
and OR). The Figure is also an indication of the implemeaotatf programmable connections that are
controlled by memory, the "Memory Cell" controlling the gaif the MOS FET.

Connections made

|_, Memory Cell
by MOSFET

@ /
A
N setof
routing
~—paths

Programming of L Set of Look- Up Tables
and routing (LUTSs)

Figure 4.3: FPGA cells architecture and Logic cells interconnectiokdified from [33]

4.3.1 General architecture of FPGAs

The general architecture of FPGAs, illustrated in Figu# 4. composed of:

e Kernel components which are Circuit Logic Blocks or Logim8ks(CLBs or LBs) that provide
LUT function to achieve Logic function, programmable Mpléxers and two Flip-Flops for se-
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quential logic;

¢ Input Output Blocks (I0OBs) are interface modules. Intesfaariables can be stored in Flip-flop
gates;

e Connection lines and connection matrices that allow prmognang of interconnections between
CLBs and 10Bs. Routing delay is dependant of physical layfugource and destination but is
usually less than 10 ns

T S
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|OB m{-
%r?ensnectioaDE

LH

LI L

R IS S

[]

Connectior’
matrix

[Fl

RS R s U S S S 1

e = — I — T — T —

e b 2 e

Figure 4.4: General Architecture of FPGAs. Modified from [38]

In fact, there are four FPGA categories as presented in €.

e Sea-of-gate, Figufe4.5(a): This type is similar to the Hifhx FPGA. The main difference lies in
the type of interconnection used which is implemented asvanay of the whole LB.

e Symmetrical Array, Figure4l5(b): This type uses 100 to 10B8. Multiplexers (MUXs) are used
to choose which LB and Interconnections are on use. The degongsented in Figuie 4.4 is from
this category of FPGAs.

e Row-Based, Figure4.5(c): This type too uses MUXs to chodsemLB and Interconnections are
on use.
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e Hierarchical PLD, Figuré415(d): This type is used by Altek&ith only 20 LB, it is creating an
array of logic gates (20,000 logic gates) between the blocks

Sea-of-gate (a) Row-Based (c)
4— Logic _—1"
Block(LB)
«
\Interconnec[—E
Symmetrical Array (b) Hierarchical PLD (d)
"/B|Logi(i5)
oc =
Logic/"g
Gate(LG) —
>
/A:Z_ —
Interconnect
— — ]

Figure 4.5: The 4 different types of FPGAs. (a) is a representation ofi-of-gate where all the LB are
interconnected to form the desired architecture. (b) représ the Symmetrical array, (c) the
Row-based and finally (d) is a schematic of the HierarchidaDRype.

Each of these types are still used nowadays besides Xildesign are using the symmetrical array.
Recent FPGAs can contain several hundreds of thousands &iBsore than 40 multipliers.
4.3.2 Design and Programming on a FPGA

As mentioned in previous paragraph, FPGAs are programntainigonents working on the concept of
Circuit Logic Blocks, Input/Output Blocks and Intercontiens. All of them are programmable to create
different more or less complex circuit. The process to ereatircuit is called "design development
process™ and consist of a six step sequence, as follow:

1. Design Specification;

2. Conversion of the specification into a logical consistiggcription suitable for entry into a CAD
(Computer-Aided Design) system;

3. Compiling the entered design;
4. Programming the target device;

5. System commissioning and testing.
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A CAD system permits to assist the designer in the conversfatie specification into a logical
description. This system handles the compiling, syntiesiand also simulating of the design. Xilinx or
Altera provide such CAD systems to use at ease their FPGAlboar

Once a design has been completed, it is time to program it.rdgram the board, different method
can be used but the main ones are to use a special programicértvaemsfer the data from the PROM to
the FPGA, or to download from a computer the design to the FBS&Ag an interface. In most case, the
link between the computer and the FPGA is a simple cable. ®hepater connection is more and more
used as the interface using, mostly, the JTAG protocol {Jmst Action Group) is simple, the cable is
connected to serial ports. However, the download of thenarags needed each time the FPGA is turned
off as the design is downloaded in the RAM of FPGA. But oncepftegram reached its completion, it
can be copied to the EEPROM for a permanent storage.

4.3.3 FPGA solution

By their architecture, FPGAs are high flexible platformstémms of Input/Output rate and with high
performance by means of the possibility to parallelise theputations. Depending to the constraints
on the platform defined in the project, FPGAs are a candidaltgisn for the questions of extendible
platform for integrating interfaces to future external ideg. Moreover, the latest FPGAs can provide an
efficient computational power which can be used for the et@cwf the Kalman Filter operations.

The implementation on FPGAs are usually done in VHDL to e&restcurate and optimized design.
However, Altera, or Xilinx, provides with their productsme software to easily create the willing design.
In the project case, illustrated in Figdure]1.4, input/otifiplocks for radio are needed as well as for the
USB interface.

4.4 Introduction and Analysis of DSPs

Digital Signal Processors (DSPs) are microprocessorgidedifor efficient execution of digital signal
processing algorithms, often in real-time. DSPs are ugpatigrammed in C, though optimizations some-
times require to use assembly language. Their architecisréor example the DSP2199X illustrated in
Figure[4.®, is well suited for fast execution of DSP algarith

e Fast Multipliers;

Multiple Execution Units (parallelism);

Efficient Memory Access;

Direct handling of interruptions (with low overhead for kiane);

Efficient Zero-Overhead Looping;
e Specialized Instruction Sets.

DSPs have a fixed architecture composed of a Control Proaasé3PU) which use memory to store
and read the instructions or the data. Other modules carsbg@etsent such as SPI, timer, ... The DSP is
very efficient to implement complex algorithm and has higtieck frequencies than FPGAs. However,
the data in a DSP are mostly processed sequentially (altheaige DSPs manage Very Long Instruction
Word (VLIW), the degree of parallelism is far less than thaF&fGAs) that is a serious drawback for
computation with high parallelism such as finite loop comagion. Moreover, the architecture of a DSP
is fixed so the choice of the DSP is highly dependent on thdegin [41].
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Figure 4.6: General Hardware Architecture of a DSP2199X family. Modifiem [39]

DSPs are used for applications which need high accuracy asidloating point inversion, matrices
division or matrices inversion. The development time isrgfrathan the development time on a FPGA
and DSPs consume less power. They are well suited with real gipplications. In fact DSPs lead the
market of mobile phones, CD recorders, modems,...

The principle manufacturers of DSPs are Texas Instrumemd|ay Devices and Motorola [41].

4.5 Comparison between FPGAs and DSPs

Table[4.1 summarizes the advantages and drawbacks of FR@A3SPs and lists some of their typical

applications.

Advantages

Typical Applications

- Higher performance (very high parallelisn

n)- Applications that can be

- Easier programmation
(can be directly programmed in "C",
conditional execution is simplified)
- Re-use of modules is simplified

FPGA | - High Input/Output rates split into basic logic modules
e.g. Digital Image Processing such
MPEG4 decoder and encryption
- Less power consumption - Applications that can
DSP | - Less expensive present high complexity and

require high flexibility
e.g. Mobile Phones
with their multiple interfaces

Table 4.1: Comparison table between FPGAs and DSPs
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4.6 Chosen platform

The restricted availability of the boards in laboratoryiget the group to choose between few different
platforms. DSPs were not available, implementation of tlat®on on FPGAs was compulsory. Nev-
ertheless, the chosen platform is the FPGA Altera DE2 witH@NII soft-core processor implemented
on it. In such a way, the group had a platform combining theilfiity of software (NIOS II) and the
computational power of hardware (FPGA part which is not dsethe NIOS II).

This choice allows to directly program the FPGA with C coddahihis very attractive because C is higher
level than Hardware programmation (algorithms with moneplexity can be implemented in less time).

4.7 Conclusion about the platform analysis

The main goal of the project is to implement on a powerfulfplan, the existing algorithms of commu-

nication and interface with the MU and the external deviaes @so the algorithm of the Kalman filter

processing the received data from the MU. A need of a hightflexplatform to allow the easy addition

of interfaces to different external devices combined withneed of a powerful computational unit for the
execution of the Kalman filter require the analysis of the 2nptatforms; FPGAs and DSPs.

FPGAs are high flexible and extendible platforms but do niotnatomplex computations. The language
used to program a design is the HDL which requires from thégdes to think in hardware. FPGAs are
more and more used but still cost a lot.

DSPs are recommended for high complexity computations douiod allow many input/output. They can

be directly programmed in C language, are less expensiveéhenpower consumption is less important
than FPGAs.

However, FPGAs are now developed with a DSP softcore procéssillow more complex computation,

as the chosen board for the project, the Altera DE2 FPGA.
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Chapter

Implementation

This chapter is relative to both Algorithmic and Architeetwlomains from thel® design methodology,
shown in Figuré 511, especially to the mapping on the platfarhosen in Chapté&id 4, of the algorithms
defined in Chaptdrl2 and Chapiér 3. This Chapter corresportie tmain goal of the project:

Completing the Tongue Control System to a marketable, cet@ind accurate product.

- Algorithmic™ ~ _
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Constraints

/ Architecture
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g optimizations

/7
Archifectural
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Figure 5.1: The A? design methodology applied to Chapter 5

5.1 Overview

As mentioned in Chaptét 4, the board the group uses is theaAllE2 with a microprocessor on it called
Cyclone Il. This FPGA board, which is introduced Secfiod %2i1sed by the project group to implement
the algorithms detailed in Chapfer 3 then, the Kalman Ffliem Chaptef 2. The way the group done
these implementations and the difficulties met are expth$ectiorl 5.B.
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5.2 Introduction to NIOS Il

NIOS Il core is a family of Software DSPs developed by Alterae of the leaders in this market (other

leader is Xilink). Software DSPs also called embedded m®mes, are implemented using FPGA Hard-

ware i.e. registers, buses, peripheral controllers, e.imaplemented using internal FPGA logic.
Embedded DSPs offer significant advantages over hardwaPsDS

e Can be customized e.g. specific I/O interface;

e More perene hardware solution (just update software);

e Remaining FPGA hardware can be used for Hardware accelerati

But they also provide drawbacks:

e They are less cost effective when standard Hardware DSPdoctre same;

e More complex to design (additional complexity introducesd Definition and Configuration of the
software DSP according to the application).

Altera NIOS family gather 3 implementations (Economy, &t and Fast) according to price and
performance. Figule 5.2 is the overview of the architecture

NIOS Il Processor Core
reset Tightly Coupled
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clock ] Controller ggpe(;’sé .
£pu_resetrequegt & b Instruction .
Address Registers :
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Control ECI
Register: .
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¢ Intefrtf\;a\llce Debug Module
%SO are Exception -
ebugger Controller Instruction Memory
O Regions Management
irq[31...0] Unit
=1 | Conrater || Memov
Protection
! Translation
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Regions Buffer
| gm— Data Bus
| Tightly Coupled
. . Data Memo
Cll;cs)tom Custom Arithmetic Data 24
Si Instruction Logic Unit Cache :
ignal : :
Logic
Tightly Coupled
(€= | Data Memory

Figure 5.2: Architecture of NIOS Il DSP. Modified from_[42]

It contains two separate buses: one for Instructions andayrigata. It can handle of up to 32 Inter-
rupt request levels and allows memory-mapped I/O intesf@aoexternal devices. An optional Memory
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Protection Unit would allow the control of Data and Instians addresses of up to 32 different areas. The
JTAG (Joint Test Action Group from IEEE) is a software basedujger.

Development on Software NIOS DSPs is similar to the one onadingr Hardware DSP. NIOS de-
velopment suite includes the Embedded Design Suite (ED®)hwirovides a Board Support Library
or Package (BSP) implementing the Application Programnhimgrface (API) between the hardware on
board and the controlling program. The executable file gaadrby NIOS has a ".elf" suffix.

IP Megastore is a library of standard functions already emmnted in Altera Hardware such as
Speech, Audio and Video processing, Fast Fourrier TramsfBFT) and modulation/demodulation with(out)
encryption/decryption.

NIOS environment is made of:

Executable code and data files;

Specific code used to load Flash memory into RAM, and thenutggarogram from RAM,;

Hardware Abstraction Layer (HAL) file subsystems describext after;

FPGA hardware configuration data.

5.2.1 Introduction to SOPC Builder

SOPC Builder
Hardware EEnEETE Software

/ Quartus Il \ Processors [ \
Software Automatic

software
Generate FPGA P f
configuration descriptior] | e[slaEliElely)
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RTL System
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System library

Synthesize

Placement
and routing

Header file

Application
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Compile

System test bench

Download

Software

development
Edit
Compile
Debug
FPGA
configuration

Figure 5.3: Altera Embedded processors family. Modified from [43]
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SOPC Builder allows the configuration of the Software DSP te define its architecture in terms of
definition of components and their interfaces:

e On the left hand side of the previous figure is the Altera FPG#dtvare configuration tool i.e.
Quiartus Il software.

e On the right hand side of the previous figure is the developrokthe Software to be run by the
embedded DSP to achieve the desired application.

SOPC combines the Hardware description Language (HDL)e@ttmponents of the system. The
goal of the HDL is to describe the transfer function of the poment, its structure and simulation for
testing purposes. The main component in HDL is time, whiamissing in conventional programming.
Main HDL implementations are Verilog, VHDL and SystemC.

SOPC Builder interfaces with Quartus Il software in ordealtow compilation of FPGA configuration
commands and then downloads code into FPGAs hardware cantson

The SOPC Builder component editor allows the creation aitthgaf files describing the behaviour
of each component. They are named "Hardware Componentipgéseiile (_hw.tcl) files". Each "*.tcl"
file describes a component of the system. These kernel fibhsdiex

e Specification of the Verilog HDL or VHDL files that describeestbomponent and most importantly
its interfaces signals and their behaviour;

e Definition of eventual relationship(s) between interfaces
e Declaration of the parameters of the components e.g. Cloekdsfor an oscillator;
e Optionally Component Driver files for testing purposes.

SOPC uses the "Interconnect fabric" to connect componeritsheen build the architecture of the
system. The system Interconnect Fabric defines the coonsdbetween the various components of the
system. It also provides additional functionalities like:

e Multiplexing of Data buses;

Decoding of address ranges;

Arbitration on Multiple Masters configurations;

Handling of Interrupts;

Pipelining of requests.

There are two types of "Interconnect Fabric (IF)": eithee8ming (ST) or Memory Mapped (MM). ST
Interconnect fabric applies to only one source/destingtar while MM allows multiple sources and des-
tinations. In opposition ST-IF typically provides hightraughputs compared to MM Interconnections.

SOPC Builder allows the definition of the architecture of fystem and will generate the FPGA
configuration data. It also provides information to NIOSdt fts recompilation in order to adapt to new
hardware configuration.

5.2.2 Architecture used in this project

The standard architecture of the FPGA Altera DE2 were nokimgrwhen the group tried to implement
easy code in order to get used with the board. The tutoriaie wet working probably because of a an
older version of Quartus Il. The group decided to createvits Hardware architecture with SOPC Builder,
motivated by the 3 main reasons:
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e A better understanding of the working of the board will befpemed.
e The addition of new modules depends on the future goalsremeints.
e Minimal resources are added in order to implement only thetien.

The Figurd 5.4 shows the hardware existing on the board ¢adite SOPC Builder)
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Figure 5.4: Hardware existing on the board (added with SOPC Builder)

First of all, the addition of the NIOS Il Processor is needathwhe JTAG UART connection to
program and debug it. The System Interconnect Fabric isenteand updated by SOPC Builder each time
a new component is added. Onchip memory such as RAM is rehtdrlwad and store instructions and
data from the processor. The UART Module implements anfaxterto communicate serial data between
the FPGA and another external system. The UART module igguiRecommended Standard 232 (RS-
232) protocol. The RS-232 protocol can transmit synchrehyoor asynchronously with a constant baud
rate (that is the number of symbols/s). To minimize the tngiesion loss, in this project, the baud rate is
set to 38400, there are two stop bits to separate the framéesusé the data of each frame are coded on
8 bits. Moreover to simplify the transmission between thHéedint architectures, only the signals TxD
(Transmit Data) and Rxd (Receive Data) are used. HowevthreiRS-232 standard the voltage levels that
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correspond to logical 1 and logical O levels are between 3¥ &5V or between -3V and -15V. On the
board Altera DE2 there are only one connector RS-232 andamdymodule to shift the voltage level.

The project group decided to communicate with an extermaltinsing RS-232 protocol and to com-
municate with an external output using also an RS-232 pobtddthough the RS-232 protocol is limited
by important power consumption, reduced noise immunity landled transmission distances [44]. The
group project decided to choose this transmission protbeoause of its simplicity and the time gain.
However in the final solution other communication interiabave to be integrated. For instance the Se-
rial Peripheral Interface Bus (SPI) should be preferredhbse it will permit to directly transmit data from
the MU to the FPGA without passing by the microcontroller ggl@ned in the following section. The
second level shifter needed by the second UART module hasthék by the group and the second RS-
232 connector was also created by the group, using the Géherzose Input/Output (GPIO). The GPIO
is an interface which can communicate with external dev{ceading digital data as input or sending
digital data as output).

In order to implement directly C code on the FPGA using the HiAtaries created by SOPC Builder
as explained in the following part, a huge space memory idegkeThe addition of an SDRAM module
is required and no code C can be directly implemented witl ttrd Onchip memory. The group project
chooses to add a Synchronous Dynamic Random Access MenloRAM). SDRAM can only transfer
one world data per clock cycle. In general the clock cycler@iad 133MHz (which is upper than the
Altera DE2 maximum clock frequency of 50MHz). Moreover, thaga bits are well protected each one is
separate with security capacitors and writing pipelinsglso possible [45].

SDRAM has a synchronous interface which means that a venigarelock is needed as input. The
Phase Locked Loop (PLL) Module is needed to synchronize BRR/AM. PLLs circuits apply a negative
feedback to a local oscillator, lowering or raising the fregcy of it, until the phase and the frequency
perfectly match with the desired signal [46]. In order toetafadd the SDRAM controller in the SOPC
Builder and to add the PLL, the Altera tutorial should bedwléd [47].

The SDRAM is a volatile memory in opposition to the flash meynétash memory is very present in
portable applications and allows faster access time tr@8ERAM. Moreover, the flash memory can face
high temperature or even high pressure [48]. NIOS Il IDE jtes a flash memory programmer which
allows to store the hardware architecture used for the FP@if\ the code that is running on the processor
or program code that the user wants to store. Addition of @#hfilnemory in the FPGA Hardware is
motivated by the real environment simulation where the ClUagntinuously run. Addition of the flash
memory controller cannot be done without adding an Avalon WiN&state bridge. An Avalon Bridge
modifies the way the data are transported. A bridge is contpbgean Avalon Memory Mapped (MM)
Master and and Avalon Memory Mapped (MM) Slave. It is usechtyéase the transfer performances
between the NIOS Il Processor and the Flash Memory. AvalonNistate Bridge is used to connect the
NIOS Il Processor with external chip components like thehflaemory. The Avalon MM Tristate Bridge
has to share data, instructions, reading and writing reégqietween the Processor and the Flash Memory.
It is strongly advised to follow the Altera tutorial, whicle be found in/[50].

The Erasable Programmable Configuration Serial (EPCS)harehieapest configuration devices in
the programmable logic gate industry|[49]. EPCS have thalafify of In-System Programmability (ISP)
and are also very used to access flash memory for large memguyrements. In this project, they are
used because they can store the Altera DE2 configurationlémiteaecutable code for NIOS II. Once
again to add the flash memory and the EPCS it is strongly adltis®ollow the Altera tutoriall[50].

SOPC Builder can directly affects Base Addresses for allctreponents and also manage the In-
terrupt Requests. The automatic affectation of Base Addseand Interrupt Requests is also strongly
recommended

The tabld 5.1l regroups the modules used for this project:
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Component Name | Main Informations
Standard RISC Architecture
NIOS 1l Processor Data and Instructions coded on 32 bitg
SDRAM Memory Size: 4194304 16 = 64Mbits
Memory Size: 4 Mbits
Timing:
Flash Memory - Setup: 40ns
- Wait: 160ns
- Hold: 40ns
-Baud Rate: 38400
-Stop Bits: 2
-Data Bits: 8
-No parity
-Baud Rate: 38400
-Stop Bits: 2
-Data Bits: 8
-No parity

UART1

UART2

Table 5.1: Modules used for the project

5.2.3 Instantiation, pins assignment, compilation and hadware programming

Once the SOPC Builder system is created, a HDL entity has toda#ed to instantiate the SOPC Builder
System. Instantiation is a very important part and pernoitsréate the input and output signals for the
SOPC Builder System (created on the Cyclone Il chip), but tdsadd components necessary to the good
working of this system.
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Figure 5.5: Instantiation of the SOPC Builder system

The group project uses VHDL language (because alreadyestydis HDL to define the different
entities (the HDL language in the project as to be the sameeddDL used to describe the SOPC Builder
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System). The NIOS Il system (created with SOPC Builder) sdbd addition of a PLL as explained in
the previous section. The entity uart3.vhd has been crégtéue group.

The Pins assignment is the next step before compiling themsydt is needed to physically connect
the pins between the Cyclone Il Chip and the other modulesarFPGA. Pin Assignment Editor (PAE)
in Quartus Il permits to link the pins with the name of the topity (here uart3.vhd). If the name of the
pins are the same as the name of the input and output signtile tie top entity, PAE directly connects
the Pins with the signals. Otherwise, manual assignmeniohas done but it is a very long and complex
work.

Then, the compilation of the Quartus Il project should beedofhe compilation can be split into 4
main steps [B1]:

¢ Analysis and Synthesis: during this step the HDL is compé#ad performs technology mapping
using the resources of the selected board.

o Fitter: the fitter tool selects optimized interconnecti@ihs, assigns logical cells on the FPGA in
relation with the project and performs the Pin assignment.

e Assembler: the assembler tool creates a programming ineeigled device.

e Timing Analysis: if some timing constraints are defined bg tiser, the timing analysis will try to
optimize the logic in order to respect them. In this projecttiming constraints were imposed.

The last step is the programming of the device with the toolglammer in Quartus Il. The Pro-
grammable Object File (.pof) or SRAM Object File (.sof) candirectly downloaded into the FPGA.

The table. 5.2 shows the resources occupation of the createdvre on the FPGA. The memory
occupation is almost complete (because a lot of memory égatied to implement C code on the NIOS
II), the others resources are not really used in this prpjbet means than other functionalities can be
added easily.

Flow Status Successful - Mon May 18 19:09:12 2009
Quartus Il Version 7.2 Build 151 09/26/2007 SJ Full Version
Revision Name uart3
Top-level Entity Name uart3
Family Cyclone Il
Device EP2C35F672C6
Timing Models Final
Met Timing Requirements Yes
Total Logic Elements 4,419/33,216 (13%)
Total combinational functions 4,149/33,216 (12%)
Dedicated logic registers 2,314/33,216 (7%)
Total registers 2415
Total pins 97/475 (20%)
Total virtual pins 0
Total memory bits 313,216/483,840 (65%)
Embedded Multipliers 9-bit elements | 4/70 (6%)
Total PLLs 1/4 (25%)

Table 5.2: Compilation report
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5.3 Implementation of the existing algorithms on the Altera DE2
board

5.3.1 NIOS Il IDE and the HAL libraries

The Hardware Abstraction Layer (HAL) provides a simple dewdriver interface for programs to com-
municate with various 1/O devices. It allow access to devigsing simple C commands like-int f(),
fopen(), fwrite(), ... After SOPC Builder has generated a hardware systerliti®elDE is able to gen-
erate a custom HAL BSP matching the hardware configuratidran@es in the hardware configuration
automatically trigger the HAL device driver (re)configtioat

Figure[5.6 presents the HAL environment:

User Program

C standard library

HAL API

Device Device e Device
Driver Driver Driver

Nios Il Processor System Hardware

Figure 5.6: HAL environment. Modified from [52]

HAL API can be either directly accessed by the user progracanibe accessed through standard 1/0
primitives of the C library. The C standard library used bylHi& called "Newlib" and must be added to
the main program.

The NIOS Il Integrated Development Environment (IDE) is #ware used to program and run code
with the NIOS 1l Processor. Moreover it is composed by a C/Cempiler, debug tools, and C2H accel-
eration compiler. Each NIOS program is split into two prégec

e The application project,

e The HAL BSP project that will define the 1/O drivers used by #pplication. It depends on the
SOPC Builder information file.

The "system.h" defines the hardware and an interface is gedvior I/O primitives such asead(),
write(), fread(), fwrite(), printf() and fopen().

5.3.2 TCS prototype and project group solution implemented o the board

The TCS prototype built by the HST research team is compogedMU which transmits data packets
to the CU. In the CU, there is a module radio linked with a miomtroller. In the microcontroller all
the computations are processed before sending back théodat®C Unit where data can be verified.
The microcontroller should store all the programs to conuintéie mouse, the keyboard, the wheelchair,
.... The main advantages of the use of a microcontrollerteae@ code can be implemented and that
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microcontrollers are very cheap. However, complex algarg cannot be implemented because of the
reduced space of memory and the limited computations digmcirhe more the project progresses and
the more algorithms are developed which means that the €lobi@ new architecture is required.
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Figure 5.7: The TCS prototype developed by HST

Based on the previous discussion about the different kirddfitectures and the University availabili-
ties, the group project is using a FPGA with microprocesatie(a DE2 board). However, the connections
between the different entity with the new architecture afferént. Indeed no radio module is present on
the FPGA, so the microcontroller and the radio module linkeelkept. This choice was made for com-
modity, and because the price of the microcontroller isigdgle. In the final solution, the communication
between the MU and the CU should be carefully studied in texfwsliability and price. The communi-
cation between the microcontroller and the FPGA is done thi#hRS-232 protocol. Because the solution
running on the FPGA has to be tested, the communication leettte board and the PC Unit needs to be
created. Once again the project group decides to use the8RBr@tocol. However, as explained in the
previous section, only one physical RS-232 connector ahdare level shifter module (needed to reach
the voltage norms) is present on the Altera DE2 board. Thempooject handles it with the use of the
GPIO and constructing itself the level shifter with the lbaircuit documentation. This solution is yet
the easiest one to get the data out from the board. In factefdrtime application few modules can be
considered such as USB, SPI and UART (RS 232). SPI can difeatidle communication between the
radio and the FPGA (without passing by the microcontrolber) it is more complicated to use than the
UART. The USB solution was not retained because the driverface is not provided with the board.
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In the PC Unit, the data arrive by the serial COM Port and they tare processed with different
MATLAB algorithms depending on the solution tested.
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Figure 5.8: The system put forward by the project group
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5.3.3 Fuzzy Logic implementation and Kalman filter implemenation
5.3.3.1 Fuzzy Logic Implementation

The fuzzy logic toolbox in MATLAB provides already C functioThe HST research team simplifies the
C function provided by MATLAB in order to put it in the microntroller. TheFuzzy_get XY function
has been also already programmed in C. The group changesssandard used by the microcontroller in
order to put these functions in the FPGA. The modificationsewmainimal.

5.3.3.2 Translation from MATLAB to C of the Kalman filter

The Kalman filter requires high power computation and theatsm was totally defined by the group, so
no MATLAB predefined functions were used. The main advaniadieat the translation from MATLAB
into C rests easier. On either side the Kalman filter algorith using a lot of matrices (that can be at
maximum with 48 rows and 48 columns). Moreover any variablesusing 30 previous values of the
input.

However, the definition of the matrices, their initialigatiis more complex in C. In fact, a matrix in
C can be defined into two different ways: a double pointer ooabte array, but in all cases the plot of a
single value needs two loops, the first one covers the rowsremskecond one the columns.
More complex are the mathematical operations on matriceSIATLAB, the operators can work (for an
important majority of them) on scalars as on arrays or medridt is obviously not the same for the C
language. The creation of all operators has to be done beésferming any operation with matrices in C.
The two difficult ones are the multiplication and the inversof the matrices. The multiplication is done
by the following formula: Suppose thatis a real matrix withm rows andn columns, the multiplication
is only possible ifB hasn rows.

AeR™ " BeR"Pso(AB) € R™*P (5.1)

where the elements of. B are given by:

n
Vi, j:ciy = Zaikbk]‘ = ai1bi; + aiba; + - - + ainbp; (5.2)
=1

Wherecij is the element of thel x B matrix at the rowi and columny, aij is the element of thel
matrix at the rowi and columny, bij is the element of thé matrix at the rowi and columny.

From [53]

To compute one element, products andw — 1 addition are needed, which will be very slow for the
multiplications of several matrices of 48 rows and 48 colamn

The inversion of matrices is the tricky part. Only squaregrites with non null determinant are
consider so they are invertible.

The 2 main matrices inversion methods are:

e Gaussian elimination: This method uses the computationeo$olutions of a system created by the
following equations: Suppose thdtis the matrix to invert and can be inverted. In this example
is a square matrix with 2 rows and 2 columns:

_(x] [yl _la b
= ()= (W anaa— [ 53

AX =Y - X =AY (5.4)
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The resolution of the equatioAX = Y permits to find the coefficient afi—! as shown in the
following computation:

_ (axl4+bx2\ __ yl 1’1 _ 1 d —b yl
AxX = (cxl+dm2) - (y2> = (IIJ2> - ad — be | —c a y2 (55)

e Cramer solution: Suppose thdtis the matrix to invertA~—1! is given by the following formula:

Oll C21 e Cnl
1 1 1 | Ciz Ca -+ Cha
1_ LAt LAy
A Gl == 5.8)
Oln C2n e Cnn
From [54]

where|A| is the determinant ofl, Ciij is the matrix cofactor, and” represents the matrix trans-
pose. The cofactor is the determinant obtained by deletiegdw and column of a given element of
a matrix or determinant. The cofactor is preceded bBya — sign depending whether the element
is in a even or odd position.

The computation for the determinant foRax 2 matrix is very easy and implies 2 multiplication
and one subtraction. For squares matrices n, the determinant can be computed by the formula
called "determinant expansion by minor" summarized in 8qn&.1:

Al = (-1)"" a;; My (5.7)

The coefficientuij represents the component of the matfivat the row:i and columnj, Mij is the
matrix obtained crossing the roinand the columry of the matrixA. Many algorithms of computation
of the determinant are recursive and compute avllij when Mij is composed by only 2 rows and 2
columns The Gaussian elimination cannot be implemented iecause the algorithm to find the solu-
tions of a system are very complex and take time. The secdnti®ois usually use by many matrix
inversion algorithms. However, for a general square matnith n rows andn columns, the number of
computations is very high. The number of computations of &irma/ij is :

((n - 1)2)! x (2 products and one subtractjon (5.8)

The 2 products and one subtraction are needed to computetirenihant of & x 2 matrix, then for
a matrix of size3 x 3 there are8? M4j matrices of size 2, so the number of computation needed is:

32 x (2 products and one subtraction (5.9

For a4 x 4 matrix, there are? Mij matrices of size 3, so the number of computations is:

4? (3% x (2 products and one subtractign (5.10)
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The number of computation for a matrix of size- 1 is

((n - 1)2)! x (2 products and one subtractjon (5.11)

In the formuld5.1B, the number of computations for finding itiverse matrix of a square matrix of
sizen is:

(n + 1) additions+ n multiplications+ ((n - 1)2)! x (2 products and one subtractian. (5.12)

o n?x ((n - 1)2>! x (2 products and one subtractjon

The(n + 1) additions+ n multiplications+ ((n - 1)2>! x (2 products and one subtractjcare used

to compute the determinant and the other computations ackfasthen? cofactors. This number is a max
number of computations and has no sense practically beoasarsgalgorithms are finding the rows or the
columns with the largest number of 0 before computing therd@nant or the cofactors. However, matrix
inversion requires a lot of computations and is problemiatiwur project because the matrices used for the
Kalman filter have 48 rows and 48 columns. The group projecitéel to modify the Kalman filter. In the
first solution, the same Kalman filter was applied at all the@dsors. In order to create a C program that
can run on the computer and also on the FPGA, the group dettidesate 24 Kalman filters in parallel.
The MU is composed of 24 sensors that should be correctedebi{dhman filter. 24 separates sensors
are possible so, and that permits to manipulate matricesainmum of size2 x 2. Invert matrices will

be easily found. The C code was implemented with succesg adlibrary of matrix operators function
(joined in appendix) found on internet and using 24 Kalmaerflin parallel instead of only one.

5.3.3.3 Implementation of the Kalman filter on the FPGA

The C code created for the FPGA cannot be directly implenteatethe FPGA. All the functions or
the instructions cannot be compiled by the NIOS Il IDE compilFor example instructions for the pre-
processor in C are not understood by the NIOS Il IDE becausetis no pre-processor in the Altera
DE2. The real matter is that the frequency of the FPGA is &ohito 50MHz than is really less than the
frequency of a modern computer. Furthermore the maximumespéathe FPGA is 4 MBits with the
previous architecture (the solution is run with the SDRAM)the C code the matrices are using integer
format for the numbers. An integer is composed by 32 bitsimdichitecture. So the maximum number
of matrix cell that can be saved is:

4194304
32

= 131072 (5.13)

Considering that with the TCS prototype, almost all the e were composed by 48 rows and 48
columns, which means « 8 = 2304 elements, no more thal1372 = 56 matrices can be stored. Less
than 56 matrices where present in the TCS prototype but fimptex matrices operations the definition
of other matrices were done in order to facilitate the workhef Arithmetical and Logical Unit (ALU), so
to gain time during the computations. Although that the grptoject meets difficulties with the memory
space, in the solution with the 24 small Kalman filter, thelfem is fixed. The mean matter was the
computation time. The first paragraph will discuss aboutlifferent ways to find the time needed by the
algorithm. In order to reduce the time computation , the gnmade few modifications:
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¢ All the call to external functions were deleted, becausePtfuggram Counter (PC) needs to move to
a specific address, saves the current address (it is thesaddresturn in the calling function after
the call) in the stack memory and then return to the callingfion.

e The group project deletes successive loops, and gatheotigeiic more complex loops

e The Kalman filter algorithm needs to manipulate real numbetswever, the use of float format
gives faster performances than the use of double formaadit the floats are coded with 32 bits in
this architecture while the double are coded with 64 bits.

e The complex matrices computations are modified to scalaateans. For instance, the equation
was modified:

K = Pminx H” x ((H x Pmin x H” + R) ") (5.14)
WhereK = (390 §91) » H = (330 531) » Pmin = (E190 Fidi) andR = (796 731)

First let’s evaluate

1
H x Pmin x H' + R)™') = e
((H > Pmin x HY + R)™) ((—hOl(hllell ¥ h10Pm10) — h00(A11Pm10 + h01Pm00) — rlO))
h11(h11Pm1l + h10PmO01)+ —h10(h10Pm10 + h00Pm00)—
h10(h11Pm10 + h10Pm00) + r11 h11(h01Pml1l + h00PmO1) — 01
- X ; : (5.15)
—h01(h11Pml1l 4+ h10Pm10)— h00(R00PmMO0 + Pm10 + h10)+
h00(h11Pm10 4+ h01Pm00) — 710  h01(h01Pml1l 4+ h00Pm01) + r00
In order to simplify the notations, let’s call
detK = ((—h01 (h11Pm11 + h10Pm10) — h00 (h11Pm10 + h01Pm00) — r10)) (5.16)
A [ ML(A11PmI1 + h10PmOL) +
~ [110 (h11Pm10 4+ h10Pm00) + 711
g — | ~h10(h10Pm10 + h00PMO0) — |
= |11 (h01Pm11 + h00PmO1) — r01|
C - [ —h01 (R11Pm11 + h10Pm10) — |
B | h00 (h11Pm10 + h01Pm00) — r10]
And D — | 7100 (h00Pm00 + Pm10 + h10) +
~ |hO01 (hO1Pm11 4+ h00Pm01) + r00
The value of K is
(Pm01h1l + PmO0h01) x C (Pm01h11l + PmO0hO1) x D
. + (PmO01h01 + Pm00h00) x A+ (Pm01h11 + Pm00h00) x B
= Tk~ (5.17)

(Pm11h11 4+ Pm01h10) x C (Pm11h11 + Pm01h10) x D
+ (Pm11h01 4+ Pm01h00) x A+ (Pm11h01 + Pm01h00) x B
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It is now possible to identifyk 00, K01, K10 and K'11. By doing directly these computations, no
algorithm to invert or multiply matrices is used and the perg reacts faster.

5.3.3.4 Timing analysis

The MU sends data packets to the CU each 33ms. The CU pro¢hesesnd sends them to the PC Unit
where the data can be interpreted. The processing part mattee lCU cannot be greater than 33ms-
transmission time # 30 ms. The Kalman filter computed andemehted by the project group was first
really slower than that (about 1 minute to compute the d&téh all the modifications made by the group

and reducing the numbers of filtered sensors to 8 (the 8 sensed in the fuzzy logic) the group manages
to compute the data in less time than 33ms. There are 3 méanatif ways to compute the time needed
for the algorithm in the FPGA to run:

e The first one is very theoretical and cannot be apply for ldggor&ghms where the result found is
more than inaccurate. The frequency of the microprocessiiei FPGA is 50MHz that means that
the time for an instruction to be performeddss = 2¢~8s = 20ns. Figurg5l9 is an array which
gives the number of stages for the main used operations:

Nios Il /If Nios Il /s Nios Il fe

Fast Standard Economy
Pipeline 6 Stage 5 Stage None
Multiplier * 1 Cycle 4 Cycle None
Branch Prediction Dynamic Static None
Instruction Cache Configurable Configurable None
Data Cache Configurable None None

Figure 5.9: number of stages for the main used operations. Modified ﬂ@h [

By founding all the number of different operations and npljting this number by the number of
cycles and then by the frequency, the time needed to perfeenalgorithm can be found but it is
very imprecise.

e The second method is to use the profiling tool in the softwd@NIl IDE. To use it, the SOPC
module performance counter has to be added in the hardwigeel5. 10 shows the results obtained
by this counter.

The function highlighted is the C function with the Kalmaneflfor only 8 sensors. The time needed
to perform this function is 37.99 ms. This amount of time isyMgroblematic because, it is higher
than the time between two frames that means that 1 frame ol Reddst, as summarized in Figure
B.13. This report does not validate these results. Howélergroup project notice an important
slow down of the system when the linking to profile librariesnade in the NIOS Il IDE project.
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0.04 D.43 Q.00 x o.09 0.05 alt find dew
a.01 0.43 a9.00 alt_get _errno
0.00 O.23 0.00 2452 0.00 0.00 alt irg hendler

Figure 5.10: Report of the time needed by the different functions usdtkipioject. The needed time for
the C function "function_kalman_8_ sensors_without_lraskis highlightened and shows
that it requires 37.99ms.

Indeed, the request between modules in profile librariesnandules used in the project, discord
with the good working of the entire system. The group decidemove the linking libraries of
the project.

e The third method uses the scope to found the time of a framegguit of the CU. The frame
coming out from the control unit is composed by 8 packets oit® that are the data filtered with
the Kalman filter for only 8 sensors. The time of a frame is Zhat is really lower than 33ms.
However this time does not give the time used for the comjmutstin the FPGA. However, if the
distance between two frames is 33 ms that means that the teded for sending data from the
MU, computing data on the CU and sending them is lower thanithe between two frames. So
no overlapping between signals is present that means #abthputation time is lower than 30ms.
The group manages to implement the Kalman filter alone, theyflogic alone and the Kalman
filter with the fuzzy logic. In the case of the Kalman filter wihe fuzzy logic, the calibration time
needed by the Kalman filter is around 5 minutes but then tharigihgn is working fine. For more
than 8 filters, hardware acceleration should be consideyedlained on the following section.

Figure[5.11 summarizes the time between two packets senkebMUt that is not the time needed
by the FPGA to process the input values filtered by the Kalmigar fion only 8 sensors). Above the
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results given by the report, using a software profile andvbéhe time of the output frame after the FPGA
processing.

Data received alman Titer
Tram the K 31 campitalion with the
the 33 ms FRGA (link with
profiing Horairies)
V/ s % [—

Hmeims)

3 ms lima{ms)

Figure 5.11: Time between two packets sent by the MU

5.4 Conclusion about the implementation

The project design on the chosen platform Altera DE2 is d@ireggulSOPC Builder. The softcore processor
NIOS Il is set to execute the C translated code of the fuzziglagd Kalman filter. The fuzzy logic, alone,
is successfully implemented. It runs for the 24 sensors. Kidiman filter implementation, alone, is also
successfully done. However, a translation from MATLAB cddeC code has firstly been made. The
matrices computation functions, as matrices multiplaratr matrix inversion, have been done using a
tool box found on the Internet where the matrices are detlasdouble. But the slowness of execution
of some of the matrices computation functions obligate tragept group to create its own functions
declaring the matrices goat to reduce the computation time. An other modification hasbeade
over the matrices multiplication and matrix inversion ftions because of the major use of computation
instead of implementing one Kalman filter for the 24 sengbesgroup project decided to run 24 Kalman
filters in parallel. This modification permits as well to samemory space usage.

Then, the combination of the fuzzy logic preceded by the Kairfilter is conducted on the 8 sensors
forming the joystick on the palatal plate. A timing analys@ncludes to that the execution time of both
programs is less than 33ms which is the time between two sifahe sensors. It means that the CU has
enough time to receive the state of the sensors, processsieals and apply the mouse cursor control
before another data packet is sent.
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Chapter

Tests and validation

This chapter is relative to both Architecture and Applicatdomains from thed® design methodology,
shown in Figuré 6]1, especially to the discussion and coismaiof the results of the implementation,
explained in Chaptéld 5, with the constraints establishézhiaptef1l.

- Algorithmic™ ~ _
constraints

iterate .
.~ Wxternal devices cop#ol

/ Architecture
constraints

Specifications
Constraintg

Algorithmic
optimizations

\

4
Archifectural
optimizations

Figure 6.1: The A? design methodology applied to Chapter 6

6.1 Overview

Once the implementation is done on the FPGA board, the validaf the tests regarding the constraints
defined by the application are conducted. Sedfioh 6.2 ptesiea tests results of the Fuzzy Logic imple-
mentation, followed by a comparison between MATLAB testd &RPGA tests for the Kalman Filter, in
Sectior 6.B. The third Section of this Chapter, Sedfioh firdsents the results of the goal of this project,
that is the implementation and working of the Kalman Filtéitvthe Fuzzy Logic. And finally, a possible
optimization is discussed in Section16.5.
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6.2 Fuzzy logic implementation validation

The fuzzy logic test implementation is only graphical. ladethe time needed for the FPGA to compute
it is lower than the time between two frames (33ms), so thdédmpntation can be considered successful.
Graphical simulation is made using MATLAB to display a curaad to control it.

The principle is quite simple: a MATLAB toolbox allows theargo display a cursor. The screen matrices
depends of the resolution of the monitor used. The set ofdioates (0,0) corresponds to the extreme
up right size of the monitor and the set of coordinates (1X&®}) (on a 18-inch monitor) corresponds
to the extreme down left size. The group project sets thalrbordinates to the middle of the screen :
(640,512). Indeed, when no activation is produced in ang@eithe position of the piercing (AU) is sup-
posed to be in the middle of the MU device, that is why theahosition of the cursor in the screen has
these values. Furthermore, if the initial position of thesom was on one corner, the cursor can disappear
when the algorithm will run because values outside the saregrix cannot be displayed. Then the fuzzy
logic (with also the function created by the HST researcimjeauns on the FPGA. The output of this
function is a set ofz, y) coordinates which depends on the position of the AU in the Mléxplained on
the Chaptell4. Each coordinates y) can have a value between 127 and -127. These two max and min
values cannot be modified using the RS 232 protocol betweeg@thand the PC Unit. In fact, the data
transmitted between those two are coded with 8 bits but witkign bit. The values obtained in the CU
are between -127 and 127 and the values received by the P@urgrietween 0 and 255. The addition of
127 to the value transmitted by the CU and the subtractiohisftonstant at the reception by the PC Unit
permits to fix this problem.

The algorithm used to control the cursor with MATLAB alwayddathe new coordinates received to the
previous coordinates. This method is closer to the use ofsi@k, to command a plane for example than
the use of a mouse where the sensor area (the MU in the pr@jse) should correspond to the screen
matrix). However, the use of the joystick is very well suitgith the control of the wheelchair which is
one of the main goals of the TCS.

The main problem when the new coordinates are always addbd firevious one is when one sensor
is activated for too much time, the cursor will disappeanfrihe screen matrix. For instance, when the
sensor 2 (that is the sensor to go up) is activated the curilogavup and disappear from the screen
matrix. The group project defines a closed square matrix dit@a closed square matrix area is the screen
matrix. In this way, when the cursor goes out of the squareixnatea (that means that the cursor goes
out of the screen), the coordinates of the cursor are resessigp the middle of the screen. A graphical
movie (fuzzy logic.avi) is present on the CD related to thissis and shows the working of the fuzzy
logic algorithm graphically.

The main problems highlighted in this video are the follogvin

e A long calibration is needed to obtain the maximum calilmatjap than an activation can reach
for each sensor. With this system if the activation gap ofresseis wrong, too high for example,
the activations related to this sensor will never be maxims@lthe cursor cannot go directly in the
screen area related to this sensor.

¢ |f the baseline starts growing, the algorithm will work. Blithe baseline starts decreasing then the
algorithm will interpret it as small activation. In conseece the cursor will start to shift in one
direction. The temperature variations are the main linatet of this algorithm.

e Noise present in the values received from the MU is very higthsometimes it can be interpreted
as small activations. For instance when no activation isgare noise makes the cursor jump around
the central position. This can be very annoying if the cuisarsed to select data on the screen.
The HST research group decides to put a threshold to filtemaise. No activations are considered
if the value of the activation is lower than the thresholdapically 60 for a baseline around 200).
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The main limitation of the threshold is that small activasare not detected because interpreted as
noise. The sensors loose their sensitivity and on the s¢hescursor seems “heavy” to control.

6.3 Comparison MATLAB and FPGA implementations for the Kalman
filter

The test made at the scope (cf Paragfaph 513.3.4) showshthéitrte between two frames sent by the
FPGA is constant and equal to 33ms. The implementation okélean filter limited at 8 sensors only
on the mouth area is successful. However, there are sonedliffes between the results obtained by
MATLAB simulation and the results obtained by the implenatioin on the FPGA.

50

-100 -

sensor 1 value (mV)

-150 - -

-200 1 1 1 1 1 1 I
0 50 100 150 200 250 300 350 400

time(s)

Figure 6.2: The Kalman filter directly running on the FPGA and applied ensor 1.

The magnitude of the noise is increased in comparison WigtVIATLAB implementation whereas the
same covariances matricg@sand R. This is probably caused by the add of a new device betweedthe
and the PC Unit, which add computational noise. The coveeamatrices) and R should be tuned to
obtain a better solution. Furthermore, the sensibilityhef$ensor is lower, and sometimes a peak appears
after an activation. The peak is due to the time responseeoK#iman filter in the FPGA that is larger
than in MATLAB (because the FPGA has a lower clock frequehentthe PC and also because it is less
suited to make large computations than the PC). In fact, ¢ébection of an activation in the Kalman filter
algorithm is made by the logical decision function basedvamdetectorsdetect anddetect_fast. The
detectordetect is using a high pass Kalman filter. The high pass Kalman filegirs to oscillate when
a variation in the baseline is produced. This oscillatiompts to detect an activation and the baseline
is computed in consequence as explained in the Kalman fitetic®[2.4. However, if the activation is
detected with a little delay due to the computation time efklalman high pass filter, the baseline created
with the values before the activation will be inexact.
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Figure 6.3: All value of the sensors when the piercing is moved in the enatea of the MU. The dispo-
sition of the sensor is the same than on the MU. The analysiedfime when the activations
appear gives the path of the piercing in the MU. Such anabyeisbe a way to create a mouse
cursor instead of a joystick. The piercing starts on sens@ehsor 2, sensor 3, ...

The main advantages of the Kalman filter implemented on anX&® listed here below:

e The value of the noise (less than 10/200, as shown in Flg@esénsor 6) is reduced and can be
easily removed from the useful signal,

e No baseline is present. The system is free from the basdhifievariation due to temperature
change.

On other side, the implementation of the Kalman filter ssffeom negligible drawbacks:

e The system needs a lot of time to compute the first iteratioisthe first computation. Actually
the matrices used in the Kalman filter have to be stored in thimony of the FPGA and after few
runs of this algorithm on the FPGA, the matrices are almossamt so the system can be very fast.
However this auto calibration needs time and can reach thetmidepending on the parameters
used in the algorithm,

e The activation of the sensors is sometimes inaccurate dhe small delay introduced by the FPGA
to perform the computation. This small delay can degradeséimsibility of the sensors or causes
deactivations.

However, the drawbacks introduced are minor and they camitreated by tuning the Kalman filter
(modifying the covariances matrices or the logical decigityorithm for instance).

6.4 Test with Fuzzy Logic and Kalman filter

The fuzzy logic was implemented correctly such as the Kalfilger limited to 8 sensors. The group
follows the advices of the HST research group to implemeatftizzy logic without using directly the
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raw data coming from the MU but the data filtered with the Kairfiter. Some code modifications are
made in order to make it possible. The Kalman filter uses aniiafioop to read the data from the MU,
so the call to other functiongfuzzy_get XY for instance) with other loops slow down the computations.
In consequence, the group decides to create only one funettb the Kalman filter and the fuzzy logic.
Fortunately, the computation time for both the algorithsioiver than 33 ms and these two algorithms
can be implemented at once. The main drawback of this impiéatien is the auto calibration time
(explained in the paragraph 6.2) that can reach severaltesinun the movie linked with this thesis
(fuzzy_logic_with_kalman.avi), the moving of the cursdnem the piercing (AU) is moving on the MU,
is highlighted. The noise as the baseline are totally remh@red the cursor keeps the current position
when no activation is performed. The results are satisfiyirgpite of the apprehension at the beginning of
the project (linked on the computation limits of the FPGA)eTmain limitation of this implementation is
the limitation of the Kalman filter: the cursor is not so sémsidue to the activation detection. However,
this problem can be fixed by tuning the Kalman filter and thedalgdecision function (used to detect
the activations). This implementation is very well suitemthe control of the wheelchair where the
activations have to be stronger before being sent to the lalinge

6.5 Optimization: the hardware acceleration

FPGAs are components made to run HDL programs. The softcocegsor NIOS Il permits the execution
of C codes but the interface between the processor and thé Rt optimized. Altera provides a tool,
C2H, which permits to transform C-code to a Hardware Detionij.anguage (HDL). This transformation
is called hardware acceleration. Hardware accelerationiges better results when the compiler mode
of work is known by the designer in order to structure the Cectmoptimize translation into Hardware
implementation. C2H associates one Hardware accelenabaiule to each C function. Each subfunction
is accelerated on separated modules.

6.5.1 C2H introduction

C2H is acronym for C code to Hardware Acceleration Compileis used to implement a C function
directly in Hardware. C2H compiler also allows debuggingtlué C code before translating it into a
hardware acceleration unit that will be related to the SOR@IBr architecture.

Performance can be increased in several orders of magnHadé C instruction is directly transcoded
into a Hardware unit and facilitating in this way the debumggof the translation.

The following acceleration features are implemented:

o Parallel execution of unrelated instructions,
¢ Pipelining of code inside loops and memory access.

C2H is interfaced with SOPC to integrate generated hardmadule into the global architecture and
with Quartus to recompile the hardware design.

The following procedures are used to change a C program mtdaadware Acceleration Module
(HAM):

o Arithmetic and Logical operators are directly translatet itheir equivalent in HAM e.g.d'+ +"
C instruction is converted into 32 bit up countef; =" into 32 bits adder,

e Assignment is translated into registration of a variablp €z = a x b" is translated into 64
bits multiplier and result is stored in Register (in one &logcle). However, some operations are
unregistered such as Shifting by a constant number of biddrarersion,
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e [terations are pipelined meaning that the next instrudddmaded before the execution of the current
one is completed. Execution is split into states (relateshich clock cycle),

Figure[6.4 is the state diagram and associated pipelining:

data _array cnef_array il
x = *data arrayH+ c = *co=f array+ State 0
prod = data * coef State 1
|
sgum += prod StateZ
Time feration O Ib2ration 1 Iteretion 2
(State 0}
o Z = *data_array++
¢ = *ooaf array+
Bhate
{Stete 1} ¢ o)
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prodl = o * ¥ =
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{State 2) (Hate 1) " 1( ”
2 = Tgata arrayr++
sum += prod prod =rc ¥ x T
= +cpef array++
1 [(Btaim 7] (Siake 1)
um += pred prod = ¢ ¥ x
s += prod

Figure 6.4: HAM for a loop. Modified from/ [55]

States 0 and 1 of iteration 1 are pre-fetched and executedebgération 0 is completed and so on
for other iterations. However, if there are dependenciéwdoen iterations, the pipelining is delayed
to wait for the result of the current iteration before preqessing of the next iteration (called Loop-

Carried dependencies).

e Conditional execution (f ...then...else...endif", "switch") are implemented with a multi-

plexer controlled by the condition,

e Memory access is made through Avalon Read/Write Master teerttekmemory access faster,
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6.5.2 Possible solution for all the sensors

The group project wants to filter all the 24 sensors with theriga filter and also runs the fuzzy logic on
the FPGA. However, the computation speed can be not sufficieall the sensors. Hardware acceleration
can be a possible way to solve this problem, although hamlhaaceleration can be only applied on
function.

Hardware acceleration can be hardly applied to the Kalmeger.filndeed, the Kalman filter is made
directly in the infinite loop where the data input readingésfprmed. The modification of this code into
a function can be done into two different ways:

e The creation and the definition of all the matrices is dona&mge function which means that for
all the iterations they are defined and created again. Theamyespace and the computation units
can be substandard with this solution,

e A Kalman filter function can be defined with only the compuiatl part of the Kalman filter. In
this case numerous parameters have to be called and retUimedalman filter is recursive, so for
numerous variables, current and previous values have taveelsThe memory space would not be
enough with this solution.

The creation of a function with all the Kalman filter code ig advised but small computation part
can be defined as function in order to be accelerated in Haedwarthermore, the fuzzy logic algorithm
can be accelerated in hardware which can make the systeen fast

The group project studied and tried to implement this omation method but several issues occur
not allowing any noticeable results. Meanwhile, the progeadline approached.

6.6 Conclusion about the tests and validation

The tests of the implementation of the fuzzy logic correspimncheck if moving the AU on the 8 sensors
forming the joystick on the palatal plate makes the compukeuse cursor move.

The tests of the Kalman filter are compared to the simulatiademon MATLAB. The FPGA implemen-
tation introduces a higher voltage level of noise due to tihe af the radio PCB board, which is the
microcontroller prototype design by the HST research teBut. this level is only 10mv out of 200mv.
This value of noise cannot be considered as an activatiohd{tJ as an activation value is ranged be-
tween 100mv and 200mv (from the weakest to the strongestdiots). The time response of the Kalman
filter FPGA implementation is larger hence less sensibilftthe sensors. The system needs a lot of time
to compute the first iteration and the first computation ferdhto calibration.

The tests of the implementation of Kalman filter followed Iwe tFuzzy logic is performed. For the 8
sensors forming the palatal plate, the results are vergfgety. The mouse cursor moves in smooth and
accurate way while moving the AU on the palatal plate. Howetl® sensors are less sensitive and the
user needs to apply strong pressure with the AU.
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Chapter

Conclusion & Perspectives

7.1 Ending discussion

For disabled people affected by mobility disabilities, tmoatrol of their environment is a constant fight.
Simple moves as opening a door, moving their wheelchair @ckimg the light are impossible without
the help of a third person. Access and use of common models, ®g. computer, mobile phone also
requires help. New technologies permits to take advantbgeesy movement disabled people can do.
Control systems are now available, based on eyes, jaws drrheaements detection. These systems add
complex architectures visible by all and increase theffigadif difference. Some control systems based on
tongue movement have been declared preferred by disabigdiepeecause they are hidden in the mouth
even if their accuracy is less efficient than other contrstams. But this kind of systems does not permit
a usage during eating or drinking. A research team from thmaBment of Health Science & Technology
(HST) at Aalborg University (AAU), by using Faraday’s law iafluction for a coil, has developed a
tongue control system able to be used during eating andidgnli ferromagnetic material pierced on the
tip of the tongue, the Activation Unit (AU), changes the pedpes of the coils, implemented in a palatal
plate, the Mouthpiece Unit (MU), by approaching or movingasvfrom them. This change of properties
of the coil is referred to as an activation of a sensor andrissgwireless to a Central Unit (CU) which
gather all the activations, process them and send the ttesthié right external device to be control, e.g.
a computer mouse cursor. The first prototype is able to cbotly the mouse cursor of a computer and
some perturbations do not make the system accurate enobghused by disabled people.

To enhance the TCS, an implementation of the existing algos of the CU on a more powerful, to
improve the data processing, to add new external devicedfaees, platform is requested. The goal of
this 10" Semester ASPI project is to design a new CU platform and tdement different algorithms
of data processing and external devices control interfacethis new platform which must fulfil the 3
sub-goals defined in Chapfdr 1, Secfiod 1.2. The new CU phatfoust :

1. process the raw signal from the MU to produce a better bquragity to enhance the accuracy of
the system by removing the noise and the baseline wandering

2. choose a flexible and extendible platform in order to im@at all the algorithms existing and the
algorithms created. Furthermore this platform needs mdiffeinputs and outputs in order to plug
useful devices for future applications.

3. implement all the algorithms and create output signasdhn be interpreted by a PC Unit.
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First of all, MATLAB simulations were performed to undenstecarefully the input data and the vari-
ous problems of the prototype. Then the creation of a filteetoove noise and the baseline was achieved.
This filter totally created by the group uses a Kalman filtgrecform the noise and the baseline wandering
suppression. First a low pass Kalman filter was created toverthe noise and then the Kalman filter was
upgraded to remove the baseline wandering. Indeed theilbaskdfinition needed to be defined before
removing it. The group project made a high pass filter and @é&bdecision function to define recursively
the baselind.he objectives were successfully achieved and the directanslation of this algorithm
from MATLAB to C code was done.

The choice of the platform was the next step. Two kind of platfs leads the industry nowadays: FP-
GAs and DSPs. FPGAs are programmable architectures andecasell in different applications with
high parallelism and a low frequency requirements. DSP§ad architecture with a clock frequency in
general bigger than FPGAs. The computation performancae®&Ps are superior of the ones in a FPGA
but connectivity with external devices is limited. DSPs lass expensive than FPGAS, easier to program
(directly programmed with C code) and consume less powes.liftfited platforms available obligate the
group to choose a FPGA. The FPGA used for the study and theimgpitation of the algorithms, called
Altera DE2, has a microprocessor (NIOS II) on it. In such a,veagle C can be directly implemented and
complex computations can be done.

The FPGA architecture was totally defined using SOPC Builderface to make easier the add of the
different modules and interfaces but also to connect thegmther. The presence of the software processor
NIOS Il allows the user to directly implement high level cdde C code (using the software NIOS Il
IDE). Obviously, more restriction are existing in comparisvith DSP compilers.

HST research group has already created an algorithm (namegdy _get X'Y’) to control a cursor using 8
sensors in the MU. Using the position of the AU in the MU, twaitinates are produced and sent to the
PC Unit. Fuzzy logic is used to allocate at each sensor avesictn value between 0 and 1. Normal logic
allocates only boolean values (0 or 1) to each sensor thys8pbsitions on the screen matrix would
be reach, that is not the case using the fuzzy logic werenmgdiate positions between two sensors are
available.

This algorithm was implemented in an 8 bit microcontrollsing an adapted C code. The use of the fuzzy
logic algorithm in the new board was not in any way problemaltn fact, C code for microcontroller is
very closed to C code for FPGA. Results were concluding: tinear can be controlled by the AU moving
inside the MU. However, the presence of the noise, the eselandering problem and the constant re
calibration of the cursor, make this solution limited.

The Kalman filter algorithm designed and developed by thegroeeded to be applied before running
the fuzzy logic algorithm. The implementation of the Kalnfdter was dissimilar from the MATLAB
implementation. Deep modifications have been applied ssitheadiminution of matrices size. The par-
allelisation of the solution was achieved in order to obtajnares matrices of dimension 2. Moreover, the
algorithms used to compute multiplication or matrices isi@n have a very high complexity which means
that they are using numerous board resources that slow denaddorithm runningThe group manages

to run the Kalman filter algorithm, trying to avoid complex co mputations, using parallelism and
reducing the number of filtered sensors to the 8 present in thé1U.

In order to compare the solution with and without Kalman ffitb@ a physical application, fuzzy logic
algorithm was applied after running the Kalman filter to coamth the mouse cursor. Although a long self
calibration period, the cursor can be controlled with eassn The cursor is not jumping around as it does
without Kalman filter, which means that the noise reduct®mell achieved. Furthermore the baseline
is totally out: the cursor is not shifting alone anymore. Hwer, the Kalman filter needs to be tuned
(changing the covariance parameters and the thresholeitogfical decision algorithm) to reach more
sensitivity in the cursor control.
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7.2 Perspectives

7.2.1 Short term perspectives
Because of time restrictions, the following objectivesdaat been fulfilled:

1. The implementation of the Kalman filter is made for only Bsw@s. In the final solution all the 24
sensors should be corrected with the Kalman filter. Howetaés,solution can be problematic be-
cause of the limited size memory and computational resswotthe FPGA. Hardware acceleration
tool provided by Altera can be useful to manage the impleatent of the complete Kalman filter.
Furthermore the choice of a new platform can be investigatadh as DSP in order to perform
computations with higher complexity and less paralleli$aon {nstance speech processing). This
choice cannot be guided only by the willing to implement thére Kalman filter but if some other
functionalities are added (such as Keyboard controleqyiring sizeable computational resources,
the change of the architecture can be advised.

2. The auto calibration time has to be reduced. When the Kafittanand the fuzzy logic are both
running, the auto calibration time of the filter is too longlarannot suit with real life applications.

3. The flash memory has to be programmed in order to storeaahdhdware architecture and the C
programs. In such a way no reprogrammation of the board hlas toade each time the board is
switched on. The programmation of the flash memory is absigluéquired for the final product.

4. The Kalman filter applied on only 8 sensors has to be tunestdar to control the cursor in an
smoother way and with the maximum precision.

7.2.2 Long term perspectives

The creation and the addition of other algorithms for ottpgrligations needs time and it is not suitable
with the project time period. However the HST research groaup create other applications such as the
control of a keyboard, the control of the wheelchair, TV alels selection, emergency signal, phone
interface,...

This master thesis is aimed to show a possible way of algorithplementation on a different board.
The board used is a middle solution between the two mainiegiglatforms. In fact, the board used
is a FPGA with a software microprocessor which can be progradhlike a DSP. In such a way, the
advantages of the FPGAs such as multi existing input andubiriperfaces are present. Because of the
software microprocessor, code C can be easily implementiéand a real time gain is made. This kind
of platform is a recommended trade-off for hardware begimrnehe members of HST research group will
have to choose the right platform depending on the othericgjmns between an easy programmation
and better performances, between high computational qesiaces and multi interfaces,... In any way
the board selection cannot be made regardless of the @kagiplications.
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