Medium Voltage
Modular Multi-Level Inverter

- Master thesis -

Group 1030

Authors: Supervisor:
Cristian Sandu Stig Munk-Nielsen
Nicoleta Carnu Co-Supervisors:
Valentin Constantin Costea Paul Thggersen (kk-electronic)

Allan Holm Jgrgensen (Vestas)

Florin Lungeanu (Vestas)

Institute of Energy Technology — Pontoppidanstraede 101

Aalborg University, Aalborg, Denmark

<Table of Contents _

! Fusel Call Fuel
ve Wind Turbine
ed C ombustion
Modern Power
Mechatromni«

Green Power

Title: Medium Voltage Modular Multi-Level Inverter

Semester: PED-4

Project period: Feb-lul 2008

ECTS: 30 _ ABSTRACT:

Sup'erwsor: Stig-Munk Nielsen This project presents the design,
Project group: 1030 building and control of a three phase modular

multilevel inverter.

The inverter is simulated with respect
to the 3 main modulation methods and 3
Sandu Cristian submodulation methods. The design and the
way units are connected are also explained
with direct link to their functionality. The
inverter topology, a cascaded full H-Bridge
inverter allows a multi-level functionality with
Nicoleta Carnu 9 levels line-to-line and 5 levels line-to-neutral.

The modulation strategies are
explained for the simulations as well as for the
FPGA implementation. The control was
Valentin Constantin Costea simulated using Simulink and Plecs toolboxes
inside the Matlab platform. Also FPGA code
simulation were carried out. The main aspects
of the modulations were expresses the main

Copies: 2 focus being the simulation and construction of
Pages, total: 108 the inverter in order to provide a working
Appendix: 2 (212 pages) platform for either motor control or grid
Supplements: 0 connection.

By signing this document, each member of the group confirms that
all participated in the project work and thereby that all members are
liable for the content of the report that each member had done.

n Medium Voltage Modular Multi-Level Inverter
TABLE OF CONTENTS

) =Y o1 1o o Y =T o | PSSR iii
R Y o1 1 T AU OO PRSP P PP PUPPPPPP vii
2 ACKNOWIEAZEMENES. . s viii
R [0} goTe [¥ T o] o FA TP PSP PPPTP PP 2-1

1.1.1 VSC- HVDC Modular cascaded H-bridge inverter for wind power applications

2-2

1.1.2 EXisting cONfigUratioNns........c.uuviiiiieeei e e e e e e e e e e 2-2

1.2 Project deSCription .. s 2-4
1.3 Problem statement.......cccuuiiiiiie i 2-4
1.4 Project mitation. oo s 2-4
1.5 ProjeCt layOUL ... s 2-4

2 SYSTOIM OVEIVIEW ...ttt ettt e e e e ettt e e e e e e e et tb bbb e e eeeeena e es 2-6
2.1 AbOoUt the SYSTEM i, 2-6
2.2 U DY PBS ittt e ettt e e e ettt e e e be it as 2-10
2.2.1 SINGIE IEE UMt . s 2-11
2.2.2 DOUDIE 188 UNIt ... s 2-12

I |V, oo 0] =1 4 o o WO U UP P PPRPPPN 3-15
3.1 Aboutthe Modulations........cccuuviiiiiiiiiie e 3-15
3.2 Aboutthe SimuUlationsccceiiiiiiiei e 3-15
3.3 Phase-shifted multicarrier modulationccccoeiiiiiiiiiiiiini e, 3-17
3.4 Level-shifted multicarrier modulation..........ccccceeviiiiiiiiiiiii e, 3-20
3.4.1 In phase disposition (IPD)ccceeeiecuuiiriiiieee ettt e e e seeraeee e 3-22

3.4.2 Alternative phase opposite disposition (APOD).........ccccccvvvevereeeesrcnvvnnennn. 3-24

<Table of Contents

3.4.3 Phase opposite disposition (POD)ceeevuivrrrieeeeirieeieeeeeeeeeeeeeeeeeeeeeeeeeens 3-25
3.5 Staircase Modulationc..euiiiiiiiiiiiiee e 3-26
I ST] o Tol [V T T o F PP UPT SRR 3-28

4 Hardware implementationuciii i 4-30
4.1 About the hardWare ... e 4-30
4.2 Relay CONLIOl coueeee e et e e e e e e e eat e e e aeeeans 4-33

4.2.1 Relay OULPUL ..o e e e e e e e e e e 4-33

4.2.2 Relay iNPUL .. e e e e e e e e e eaes 4-35

4.2.3 Signal distribUtion........coeiiiiiieee e 4-35
4.3 Overvoltage protection board...........ccoeeeiiiiiiiiiiiie e 4-36
4.4 Main POWET SUPPIY coeeeeeeiiieee et e e e e et e e e e e e e e ear e eeaes 4-37

441 CONEACONS .. s 4-39

.42 RECHTIEI it e 4-39

I T B O = T [of-] o Y- [|] - 4-40

N S 1 o 1=l D G 1 o To T o o YT U UEN 4-41

4.4.5 Overvoltage protection..........cuuuciiiiiiiiiiiicccie e 4-42

4.4.6 The voltage sensors CONNECLIONS.........cuuuuieiiiiiiiieiiiicie e e e e eeeans 4-42

4.4.7 The auxiliary relayscooe e e e e e e e eeees 4-43

4.4.8 SIMUIGLIONS....uiiiiiiiiiiiiiee et e e e e e 4-43
4.5 Switched mode power SUPPIY ..cooveeviiiciee e 4-43

4.5.1 Design ConSiderationscceuuuuiieiiiieiiiiiiiiee e eeeeeeeiee e e e e e e e e earraeee e e e 4-43

4.5.2 Experimental RESUILScooieiiiiiiiie e e e 4-45

4.5.3 Overall results and CONCIUSIONScceiiiiiiiiiiiiiieiee e 4-54

5 Software implementation.........ccoooeiiiiiiii i 5-57

Medium Voltage Modular Multi-Level Inverter

5.1 Inter FPGA communication........cccceiiiiiiiiiiiii 5-57
5.2 FPGA connection With DSPcciiiiiiiiiiiiiiiee et 5-58
L0705 K Wo -4 [ol o] oY {1 f (o] 1SS 5-59
5.3 GAtES CPLD i 5-59
5.4 Main FPGA implementation.........cccuuueeeii it 5-62
5.4.1 Main CONEIOL....ceeeiiieiiee et 5-63
5.4.2 Staircase modulationccccceeiiiiiiiiiiiiii e 5-65
5.4.3 Phase shifted modulation..........cccuviiiiiiiiiiiiii e 5-67
5.4.4 Level shifted modulationcccuiiiiiiiiiiiiiii 5-68
5.4.5 Modulation implementation.........cc.cooovviiiiiiiiiiiice e, 5-68
5.5 DSP Software implementation..........cccoeeiiiiiiiiiiiiii e 5-70
5.6 Secondary FPGA software implementation............cccceevviiicieiiiiieeeiiceeee, 5-70
5.7 Relay output microcontroller............uuuuiiiiiiiieiicccce e 5-71
5.8 Relay input microcontroller.........ooooviiiiiiiiiiieeccce e 5-71
EXPEriMENntal WOIK ... oo e e e e e e e e e e at e e e e aaaeees 6-72
0t N I o T=IE <1 d o JURR 6-72
6.2 The ADC 1SS ceeeiiiiieiiiie e ettt e e ettt e e e e e e s e e e e e s s s snrrre e e e e e e s e e e eannes 6-75
6.3 Gt AFIVEIS.ceiii ittt e e e e e e e e e e e e e aanee 6-77
CONCIUSION 1.ttt e e e e e s e e e e e s s ennreeereeeeeeeeeaannes 7-78
Further work - possible unit designceeiiiiiiiiicci e 8-79
8.1 Main syStem COMPONENTES......uuiiiiiiiiieeiie et e e e e e e e e e e e e e e e eeaaeeees 8-79
<32 \V/ =11 o T oY =4 ol oo Y1 0] o Yo 0 1=T o | £ 8-80
TS T U1 oV oo oY Yo o T=1 o) S 8-82

8.4 System CONSTIUCTIONueiiiiii e e e e e 8-84

<Table of Contents

8.5 Unit-High power module.......cccooeiiiiiiiiiiiiii e 8-84
2 R (1 -) OO PR PPPPPPPOPIP 8-85
T A - | L= D 4 V7= O PP PPPPPPPRPPPPPPIRE 8-85
8.5.3 VOoItage diViders......couuuuuiiiiiii e e e 8-86
8.5.4 CUITENT SENSOIS ..eeeeeiiieieieeeeeeieennnnes 8-90
T T D 1 G = 10T PP PPPPPPRPPPPPPPPIRE 8-90
BT ST O U)o T | d) - T TS 8-93

8.6 Unit Communication board.........cccooceiiiiiiiiiiiiiiiee e 8-93

8.7 Unit — Analog COmMPAratorsccceeeieeiiiiiiiie et e e e e e e e e e e aaraa s 8-94

1S B = 11 o] [To7={ =T o] o 12U 9-96
10 NOMENCIATUIE . e e e e e e e 10-98

11 JAY o 01T o Lo [N 11-100

Vil Medium Voltage Modular Multi-Level Inverter

1 ABSTRACT

This project presents the design and building of a nine level three phase Pulse Step
Inverter. Experimental setup description is introduced along with the its related functions.

Staircase modulation and two multilevel carrier based Pulse Width Modulation schemes
(phase-shifted and level-shifted modulation schemes) are used to test the inverter functionality.

Acknowledgements
2 ACKNOWLEDGEMENTS

We would like to express our utmost consideration to our main supervisor Associate
Professor Stig Munk Nielsen for his guidance throughout the project work.

Our special thanks to our co-supervisor Paul Thggersen from KK-Electrnic for the helpful
comments he has made with respect to our project and for the financial support.

Further we would like to acknowledge Florin Lungeanu and Alan Holm Jgrgensen from
Vestas for their advices and financial support. Last but not least we are grateful to our families
for their patience and love.

Introduction

1 INTRODUCTION

This chapter provides a brief overview of multilevel inverter topologies currently available
on the market that can integrate the system of wind energy production. The project description and
the imposed constrains are introduced. Finally, the project layout is presented.

Nowadays, electrical engineer researchers endeavor to provide solutions for a wider
range of applications by optimizing and adapting existing configurations of voltage source
converters as well by developing new configurations that present potential. A new option with
respect to the converter hardware design includes also the multilevel technology. Currently in
use are the following multilevel converter topologies:

e Neutral point clamped converter
® Flying capacitor converter
e Cascaded H-bridge converter

Each having advantages and downsides that are presented in [1]. Among these, the
latter also known as Pulse Step Inverter (PSI) (Figure 1-1:) has proved a particular good adjusting
capability to the requirements of a broad number of applications [2]. It must be point out that
the system complexity of PSls does not increase with the number of levels to the same degree as
there is the case with neutral point clamped converters and flying capacitor converter.

+HVDC
AXAE], |[AEAE] AR
TEws| GaE| Taaa |
I>+>+_. I>+>+__. '44__.

U W] [[WEs|

;

" WA |[4FEAE] [EAEL
gas] Tapes| Tapas]
'44_:'44_: '44___
4@4 1 4@4 1 oAk |

-HVDC

Figure 1-1: Three phase Pulse Step Inverter (PSI)

At first the units were designed with individual dc sources for solar panels and intelligent
batteries management in automotive applications. Later on by replacing the dc sources with
polarized capacitors its usage was extended also for utility applications, a detailed description of
the features, feasibility and control schemes of the multilevel cascaded H-bridge inverter is

Introduction

presented in [3]. Further medium voltage (MV) AC drives also benefit of this type of convertor.
An example is Gen 3 Perfect Harmony drive from Robicon which is an IGBT cascaded H-bridge
inverter-fed MV drive that is an all-in-one, factory pre-wired and tested system resulting in
footprint and cost reduction [4].

1.1.1 VSC- HVDC MODULAR CASCADED H-BRIDGE INVERTER FOR WIND POWER
APPLICATIONS

Power generation worldwide tries to meet an ever-increasing power demand and at the
same time to orientate towards alternative sources of energy. This mainly because the resources
for fossil fuel power plants are predicted to disappear and the disposal of the nuclear power
wastes is still at issue. In this context wind power industry emerged and continued to develop.
Only in Europe over the last decade attained an average market growth of 40% of wind energy
[5]. This has lead to the cost reduction caused by the doubling cycle of production of large-scale,
grid-connected wind turbines, that occur almost every three years now [6]. Following the trend,
the fourth respectively the fifth generation of wind turbines rated in the range of 3-5MW are
designed to be connected in large wind power parks [7]. Up until recently onshore wind farms
were preferred to those offshore because of insufficient reliability of tower foundations
(supporting structures), tower inability to resist corrosion and the high costs implied. As tower
technology for wind turbines evolved, the offshore wind power farms are pushed deeper into
the waters where they can no longer disturb the landscape and make use more effectively of the
wind distribution [8]. Most offshore wind turbines are equipped with fixed-speed or variable-
speed converter-controlled induction generators in order to keep the production costs at a low
level. Regarding the undersea transmission lines, at first it was issued that the use of high
voltage direct current (HVDC) lines is not a feasible solution unless very long distances involved
or the necessity of interconnecting to other grids. This considerations were reviewed when it
was found that high capacitance per length unit on the high voltage alternative current (HVAC)
transmission lines lead to significant increase of the reactive power thus requiring compensation
devices.

In [9] and [10] technical and economical aspects about offshore wind farms connected
through dc link to the grid were analyzed. Both assessed that the use of voltage source converter
(VSC)-HVDC is a feasible alternative that solves a number of problems such as reliability and
stability, that connection of sustainable energy is associated with.

1.1.2 EXISTING CONFIGURATIONS

One on market solution for VSC-HVDC is the Two-level converter with series connected
IGBTs that switch synchronously. This has the advantage of a simple topology with modular
structure that enables the implementation of conventional pulse with modulation (PWM) or
space vector modulation scheme. Also redundancy makes it suitable for systems that require
high reliability. Contrariwise it has a particularly high du/dt on the rising as well as on the falling
edges, which results in the constraint of keeping the switching frequency low. Further this
limitation causes a high level of total harmonic distortion that requires the use of large size LC on

2-2

veeft Medium Voltage Modular Multi-Level Inverter

the output terminals. But the common-mode voltage that his type of converter fails to mitigate
(fails to fully suppress) can have harmful consequences for MV drives [1].

There are also the HVDC Line Commutated Converters based on thyristor valve
technology but these require large size space for the offshore substations and ancillary services
for low wind speeds, which makes them unsuitable for offshore wind farm applications [9].

In what follows the main features of PSls are presented [11]:

e The possibility of attaining lighter weight of the wind turbine by replacing the
inverter onboard the nacelle with a multi-pulse rectifier instead of having a full
inverter;

e Submarine power collection systems based on DC bus and DC transmission
respectively multiple level DC, enable the individual variable speed operation of the
wind turbines [12]

e Potential of increasing the tip-speed in order to lower the torque which would lead
to costs reduction (possible due to lack of noise limitations for offshore parks) [12]

e Reduced semiconductor stress because of a lower average switching frequency
(lower du/dt).

e Regardless of the chosen modulation scheme a high quality output voltage is
obtained (no output filter required) leading to reduced electromagnetic
compatibility problems.

e Existence of numerous redundant states.

e low common mode voltage (it can be even annulled if advanced modulation
strategies applied

e Less losses over HVDC transmission lines for distances longer than 75 km [12]

It must be point out that the system complexity does not increase with the number of
levels as there is the case with the other multilevel topologies.

Silicon usage is ARGUABLY the most IMPORTANT issue in terms of cost efficiency and
often regarded as a disadvantage of multilevel cascaded H-bridge inverters. Therefore an
important aspect that needs to be taken into account is the voltage rating of the switches.
Instead of using IGBT Press Pack Modules as a two-level converter would require, it can be used
standard cheap IGBTs (within 600 - 1200V range), depending on the application and has the
advantage of eliminating the necessity to equalize the voltage sharing on the series connected
capacitors.

Therefore compared with its competitors, the PSI has potential of becoming a viable and
cost effective solution for medium and high voltage applications. Consequently there is strong
motivation to continue the research in this direction and developing control strategies in order
to exploit it at its full operation capacity.

Introduction

1.2 PROJECT DESCRIPTION

The aim of this project is to study and develop PWM schemes for a three phase modular
cascaded H-bridge multilevel voltage source converter.

Beside the staircase modulation which is typical only to this type of converters, there are
two carrier-based PWM schemes, phase shifted and level shifted modulation. Space vector
modaulation can also be implemented but it is not subject of this project.

A three phase modular multilevel inverter with nine voltage levels is to be built in order
to implement and then assess the effectiveness of the modulation schemes.

1.3 PROBLEM STATEMENT

1.4 PROJECT LIMITATION

The project limitations that had been set for this project are:

- Study of three main modulations only: Staircase, Phase shifted and Level shifted
(with IPD, POD and APQOD)

- Voltage limitation to 565 VDC

- Current limitation to 20 Amps

- 3 phases with 8 units per leg

1.5 PROJECT LAYOUT

In order to ease the reading of this report, and to create an overall image of the project,
a short description of the main chapters is given here.

- Introduction

- System structure
- Modulation

- Hardware

- Software

- Experimental work
- Conclusions

- Further work

- Nomenclature

- Bibliograph

- Appendix

2-4

2-5

Medium Voltage Modular Multi-Level Inverter

The Introduction chapter presents an overview of the existing multilevel configurations and
their possible applications in wind energy industry. The project objectives are introduced and
limitations are set.

The System structure chapter gives an application overview. A description of how high
power hardware and its control (software, communication, etc.) it is also presented.

In the Modulation chapter are presented the modulation schemes (phase shifted, level
shifted and staircase used to test) used to test the inverter. In this chapter simulation results are
given.

The Hardware describes the hardware that was done supplementary for the last semester
project. The new hardware relates to power supply of the inverter, protections and new relay
control logic

The Software chapter contains the software description that was used in order to control
the system. The software represents the actual implementation that has been done on the
inverter.

In Experimental work chapter are included data acquisitions from parts of the system. Most
of the tests were done with respect to the new units.

The observations made to the system were made in the Conclusion chapter.

In Further work chapter possible unit design are described, this was proposed at the
beginning of the project. The design contains the most relevant information about how the
system should look like with respect to modularity.

System overview VAR

2 SYSTEM OVERVIEW

The system overview chapter describes the system in order to provide a picture of how the
system is composed and which are its main components. The system is presented with its main
elements highlighted in order to allow a better understanding of how the system is made. Also the
control logic is presented with respect to its main logic devices like FPGAs, DSP and
microcontrollers to show their role in the application. The description of why two H bridges legs
have been used as well as their functionality difference is shown.

2.1 ABOUT THE SYSTEM

The system contains several modules, each with its own role. The roles of the modules
are described in detail in the following sub chapters. In the next paragraphs a short description
of the system construction and functionality is described, the rest being the topic of the other
following chapters.

The main representation of the inverter is depicted by Figure 2-1. In the figure, the
inverter is connected to the main FPGA, the latter being the main control system of the inverter.
The FPGA controls the inverter based on data received from the DSP, the secondary FPGA and
on the units DC voltages.

The inverter contains a set of IGBT units, H bridges as described further in Unit Types.
The units are connected in series as represented by Figure 2-1. A unit contains a set of capacitors
which is measured by a voltage sensor placed on each unit. The value read from the voltage
sensor is passed to the ADC module than to the FPGA. For this application the MVDC have been
replaced with a LVDC (565 VDC from a 400 VAC line).

sHvDC

AKEAE] [AEAF] [AEAEL

TERs| EwE| A |

|4EAE] |WEARE]L | AEAEL

U k| [WEwE| [WERE]|
v |

" AEAE] [AFAE]. | AEAE]L

| ACZ A | Fel | 4 A /I

| EARE], [«EAE]L | WEAEL

KR K| A A 1 A A 1

VDG

Figure 2-1: Main inverter configuration

2-7

Medium Voltage Modular Multi-Level Inverter

Reciifier DC Bus DC Chopper Invertar
- Encoder

- P

— — F iy
P2 T s | a9

A
Units Power 1]
Supply i ADC filter and

comparators

Input
Microcontroller
+USB interface

Output Analog
Microcontroller Comparators

L
-$ Comparators
¢—> CPLD
vy v A A

Secondary Exterjded . Parallel
Qvervoltage Eh Main FPGA interface DSP |-eni—
protection FPGA g Serial inflerface 5
receiver
4 + 4 Simple Serial interface*
Fault
Secondary Board Main Board
v \
VGA Screen VGA Screen

Figure 2-2: The system overview

The DC Chopper is used for protection purposes in order to reduce the DC bus voltage in
case of overvoltage protection and to assure that the DC bus voltage will remain constant when
the load determines the work in quadrant 2 and 4. This is described in further details in the
Hardware chapter.

The DC Bus and the rectifier have the role to create a stable DC voltage. The difference
between this rectifier and a normal one is represented by extra care considered for overvoltage.

The overvoltage mentioned earlier for both the rectifier and the DC chopper was taken
into consideration because, in case of fault, the inverter unit capacitors may get connected in

System overview

series and will discharge in the DC bus. This is not a desired event but with the probability that it
can happen the consideration to design the power supply to withstand the overvoltage was
made.

The motor used by the application has the role only to provide a load in order to see
how the inverter will behave in all the 4 quadrants. The motor is made by the ABB and rated 7,5
kW at 400 V. More details about the motor will be given in the control chapter.

The ADCs connected with the FPGA is responsible for measuring the unit voltages as well
as the currents from the leg sections. The ADC connected with the DSP is responsible with
acquiring the output and DC currents and voltages. These parameters are required for the motor
control, while the ones acquired by the FPGA are used for the modulation and system
monitoring.

The analog comparators have the role to compare the analog value from the ADC filters
with a predefined value. The value is preset during testing to the actual parameters tolerated by
the system. The signal from them is passed to the comparators CPLD which will generate a fault
signal and will send the data to the secondary FPGA in order to determine the fault source. The
comparators CPLD communication is described in [13].

The contactors are used to control the power flow for the power supply, inverter and
load. These are required for protections purposes as well as for better control the capacitor
charge or discharge. The contactors are controlled by small relays which in turn are controlled by
a microcontroller. The role of these contactors is described in the power supply subchapter of
the hardware chapter.

The relays used in the application controls the power supply of the units because, the
units must be power consequently due to the large inrush current absorbed by the internal
switched mode power supply of each unit. Due to this, the units are powered in groups of 4 with
2-3 seconds in between.

The input microcontroller is used to monitor the large contactors for their states in order
to determine is a contractor is closed or opened due to external interaction. One role of this is to
determine when the over-voltage protection is turned on by checking the chopper contactors
and/or the main contactor. The chopper contactor can be controller either by the FPGA or by
external logic.

The output microcontroller is used to control the main relays and also to provide a code
for automatic system connection. The microcontroller can work in two ways, independent
(during automatic power-up or power-down) or controlled by the FPGA.

The main FPGA has the following roles:
- Monitor unit voltages

- Monitor leg section currents
- Handle the gates signals

2-8

2-9

Medium Voltage Modular Multi-Level Inverter

- Modulation control and selection

- Mathematical operations based on lookup tables stored in a FLASH memory
- Connect the entire logic blocks together

- Provide an interface with the user system

The secondary FPGA has the following roles:

- Control the contactors/relays

- Communicate with the analog comparators
- Monitor the contactors

- Handling the user input interface

- Protections

- Handle the fault signals and act accordingly
- Provide an interface with the user system

The DSP has only one role which is to control the motor as a load and to provide a
simple platform on which the control of the inverter can be implemented without the need to
program the FPGAs or any other logic system. The DSP can be considered the main control item
for the entire system even if the main FPGA is responsible will all the management of the
inverter well functionality. Therefore the DSP tasks are:

- Read the output voltage

- Read the output currents
- Read the DC voltage

- Read the motor encoder
- Motor control

All the control items have been placed on two boards named “the cake” and “the
biscuit” (See Figure 2-3). The names were given during construction and they remained like this
throughout the project. The main board contains the main FPGA with everything required to
control the units while the secondary board contains the error handling the contactors controls.
The DSP is placed on an intermediary board in order to reduce the distances between the DSP
and the FPGAs.

The communication between the FPGAs is done over serial differential lines while
between the FPGA and the DSP is done over parallel connection. The communication is an
important part of this project because without it the various components are not able to
communicate one-another. All the communication topics are discussed in the hardware chapter.

System overview [PAulo]

Secondary Board: “The Biscuit” Main Board: “The Cake”
4 4 4 4 4 4
channels | | channels | |channels | | channels | | channels | | channels Line drivers A Line drivers B
relay relay relay relay relay relay 1,2, 3,4, 5] [1,2, 3, 4,5]
output output output output output output
1 1 1 | | + *
1
Contactor| |Contactor
Fault board i i
input input Power Gates CPLD
I I Supply [1.2,3,4,5]
I—! 4

—

" Relaysouput | picrocontroller board for
p| relay and contactor

A

Relays input
FPGA board P control
“Comparators CPLD Comparator CPLD A FPGA board A
—Eenm‘ i communications ADC and ADC and
Comparators Comparators
4,5,6 1,2, 3
AAA A [4.5,6] [1,2, 3]

i
Analog socket/
signal
conversion

DSP Board Analog board

A

Figure 2-3: System board placement
2.2 UNIT TYPES

The IGBT unit of the inverter can be either single leg unit or double leg unit (see Figure
2-4 and Figure 2-5). For each of these two types of configuration various states exist with respect
to the IGBT states. The Figure 2-4, the single leg unit, has 3 states for each of the two possible
current directions while Figure 2-5 has 9 states. These states have been counted without taking
into consideration short-circuit the DC bus. All of these states will be described in the following

subchapters.
—HKZ
g B
HKx
Figure 2-4: Single leg unit Figure 2-5: Double leg unit

The name of cascaded H Bridge converter comes from the way units are connected one
another and the connection is represented by Figure 2-6 and Figure 2-7.

2-11

Medium Voltage Modular Multi-Level Inverter

e
T
1L
g
[+

+_|_
]
Lo
gy
1+
|

Figure 2-6: Single leg unit connection Figure 2-7: Double leg unit connection

2.2.1 SINGLE LEG UNIT

The single leg unit is characterized by 2 serial connected IGBT as Figure 2-4 shows. For
this type of unit, the connection made with the other units or to the large inverter DC bus is
important because it will operate correctly only if proper connections are made. The unit
connections are made similar with Figure 2-1. The DC bus line of the unit is connected to the
next unit positive input or to the negative DC bus line of the large inverter. The output of one leg
is represented by the mid-point of the leg.

The states for a single leg unit are presented in Table 2-1. The states refer to IGBT
command states and to the current flow in the unit. Several states may have the same effect and
they are represented in order to show the current path for each of the situations. In the table,
the commanded IGBT are marked with blue and the current path is marked with red. The
current direction is marked with an arrow on the positive line of the unit.

In case of a direct flow current, in states 00 and 10, the capacitor is connected therefore
the unit can be represented as a single capacitor. These states are used for capacitor charging
and usage. The opposite state for these is the state 01 where the unit behaves like a simple wire
therefore directly conducting from the positive to the negative side of the large inverter. This
state removes the unit capacitor from the circuit and may cause it to discharge due to loads
inside the unit, the discharging resistors and the internal resistors. For this application the
discharging resistors have not been mounted because one role of the application is to maintain a
constant voltage level across the units.

For the reverse current flow the states 00 and 01 have the same effect thus conducting
the current towards the previous unit or to the positive DC bus line of the large inverter. Either
way, these states have the capacitor removed from the circuit. Opposite the state 00 or 01 is the
state 10 which reversely polarize the capacitor causing it to discharge.

System overview

State 00 State 01 State 10
=

Direct
current - -

flow —
Inverse
current

flow -

Table 2-1: States of a single leg unit

By using the Table 2-1 the proper ways of controlling the unit are highlighted. The pros
of this type of unit are that it is compact, low component count, reduced switched loses as the
capacitor is very close to each transistor. If an inverter will be build by using this type of unit no
DC current control is possible for the large inverter DC bus and, during reverse current flow the
capacitor can only be discharged. The current path during this reverse current flow doesn’t
permit voltage balance to take place in order to provide capacitor re-charging. The functionality
of this unit in 4 quadrants in only possible if the voltage from the load is directly transferred to
the DC bus without passing it to the unit capacitor.

2.2.2 DOUBLE LEG UNIT

The double leg unit, as depicted by Figure 2-5, consists of a full H-bridge. The full H-
bridge when compared with the half H-bridge is not sensitive when it comes with the connection
in the large inverter. The connector of this type of unit are located at the mid-point of each leg
and by having both legs identical there is no strict way of connection as it is for the half H-bridge.

This type of unit is characterized by many more states then a half H-bridge is. Even if
there are only two major states for the unit (capacitor connected to the system or direct
connection of the input terminals) these are achieved by selecting one of the 9 possible states
for each of the two possible current flow directions.

The states for this type of unit are presented in Table 2-2. The states where the
capacitor is connected to the system are: 00/00, 00/01, 01/10, 10/00 and 10/01. The opposite
states, where the unit behaves like a conductor are: 00/10, 01/00, 01/01 and 10/10.

2-12

vileyy Medium Voltage Modular Multi-Level Inverter

State xx / 00

State xx / 01

State xx / 10

]
y

L

-
State 00 / xx = —
ZS -l
-
——e —— —— +
State 01 / xx _ﬁ::gg —KI:%S — e
s 4K +
4% S ET
+
State 10 / xx =

=X

Table 2-2: States of a double leg unit for positive current path

For the reverse current path, the states are shown in Table 2-3. In this table, the current
path can cross the capacitor in the opposite way (state 10/01). The states in which the capacitor
is connected to the system are: 00/00, 00/10, 01/00 and 01/10. There are also 4 states for direct
conduction. These states are: 00/01, 10/01, 10/00 and 10/10.

State xx / 00 State xx / 01 State xx / 10
=i %
State 00/ —— + —— — +__
XX T T
=
State 01/ — 0 +:: —— —— +
XX
—ugs kA

System overview

= —|§ 4K i
State 10/ +

XX

_|

Table 2-3: States of a double leg unit for negative current path

When compared with the half H-bridge configuration, there are double the numbers of
semiconductors used by this type of unit while the rest of the parameters are identical. The
extra two IGBTs allows control of power flow in both directions by maintain the possibility of
voltage balancing and control. The possibility of bidirectional power flow gives the possibility of
controlling the DC bus of the large inverter in the case of using several other inverters connected
to the same DC bus. The use of this type of unit in a multi-level inverter gives the possibility to
compensate for the DC bus instability by extracting energy from the capacitors.

2-14

eHi| Medium Voltage Modular Multi-Level Inverter

3 MODULATION

In this chapter main modulation schemes for PSI are analyzed. Specifically phase-shifted
and level-shifted modulations, both multilevel carrier based Pulse Width Modulation, respectively
the staircase modulation, a dedicated modulation scheme for this particular inverter configuration.
Performance assessment is made based on the obtained simulation results.

3.1 ABOUT THE MODULATIONS

Phase-shifted and level shifted modulation schemes are PWM carrier based schemes
that belong to the unipolar modulation category. This type of modulation uses one triangular
carrier and two sinusoidal modulating waves that have the same amplitude and frequency but
which are 180° out of phase. The line output voltage takes values in the interval [0; V] for the
positive half-cycle, respectively in the interval [—V,.; 0] for the negative half-cycle from here
coming the “unipolar” name [14]. In [14] harmonic spectrum analysis presents a decreased level
of low-order harmonics in comparison with bipolar PWM which has only one modulation wave
and one carrier.

Staircase modulation is only used in association with inverters that have cascaded
multilevel configurations where its implementation is facilitated. In this case the output voltage
has an approximated sinusoidal waveform into small voltage steps. The higher the number of
voltage steps, the lower harmonic distortion is obtained; this to the point where filters are no
longer required. The inverter units can be independently controlled, thus contributing to the
reduction of commutation losses [13].

3.2 ABOUT THE SIMULATIONS

The simulations were conducted in Matlab Simulink with the help of Plecs. The model
for the modulations was implemented in S-functions. The code for all the S-Functions is included
into the Appendix E. The appendix B also contains all the waveforms obtained for the
simulations.

Carriers

Gotob

L UnitPulzesl |

From3
Gotod
1GBTPulsesl

WaoltagesF L

Froms

o UnitPulzesy’ |

Gotod
1GBTPulses\

Gotol

L UnitP ulzesit |

From11

Gotod
1GBTPulsesil

Phase Shifted Modulation

Figure 3-1: Example modulator block

Modulation

]
=

Control structure Modulation I Imvert

hodWRef

Gotod

Cantrol

hdodulation Inverter

Measurement

o

Step Gota3

k|

THD_Waltage THD_Current

hleasurement

Monitor

Figure 3-2: Main modulation window

The Control block presented in Figure 3-2 contains a simple sine generator to generate
the reference sine waves. The Modulation block contains the modulation block for the current
simulation. The Inverter is the plecs model of the inverter. The measurement block splits the
output voltage and current into 3 signals each to be processed by the modulation. The monitor,
THD_Voltage and THD_current block are used for monitoring and plotting the waveforms. The
THD blocks measure the voltage and current THD.

The Plecs model on which the modulations had run is shown in Figure 3-3. The DC
Supply contains 2 DC voltage supplies connected in series with the neutral connected in the
middle. The inverter contains the schematic from the beginning of chapter 2 with 8 units per leg,
double legs per unit. The load is an RL filter with R =20 ohms and L = 23mH

3-16

3-17

Medium Voltage Modular Multi-Level Inverter

— =)
Gate_W DCCurrents_U
D
Gate ¥ DCCurrents_y
Gate. U YV DiCCurrents_W
| L
jl)I g| :'I:-Igl
o8 % EEE
5 5 % geg
B e 343 U U_In U_Cut
a1 ts]
Poz Dz Puaz Qoo
D Supply Inverter W WIn Mas W_Out Rload
= o i3 £
- %NegDC Meg wowow %,_E g
s § = T EE nE2 3 W _Out
T 5 3 £ 231 -
] I I R _ 55 5 z
& & i S A & - z 65 & =
z
)
DiC wiolkage DiZvolkages_L Qut Currents
DColtages Y Out Yolkages
D
DC Current DCYoltages_w = Ground! Out Yolkages_HULL
= Ground

3.3

Phase-shifted multicarrier modulation is a derivate of unipolar modulation. As such, this
is an adapted version designed to suit PSl’s requirements imposed by its topology. Namely,
adjustments were made in connection with the number of carriers that increases with the

L1

R1

Figure 3-3:Main plecs model used for simulations

L: Lload F: Rload
C) —
u
L2 R2
L: Lload Rt Rload
C) | S|
W
L3 R3
L: Lload R: Rload
& £ —]
W
O—

Meutral

Figure 3-4: Simulations load

PHASE-SHIFTED MULTICARRIER MODULATION

number of voltage levels. The expression indicating the relation between the two is [14]:

All carriers must have the same frequency and peak to peak amplitude. The angle by

ncarrier_number = mnr_of_voltage_levels -1

which any two juxtaposed carriers need to be shifted is given by [14]:

Modulation

360°

Per =

mnr_of_voltage_levels -1

In this (3) case only one modulating wave, whose amplitude and frequency is generated
by a control algorithm (e.g. for motor control, grid connection, etc.), is sufficient to be further a
term of comparison for the carriers. Following the above, the number of triangular carriers
needed for this inverter modulation is 8 (Vepq, Veras ... Verg) With a 45° phase displacement
from one another. Every carrier controls one unit, specifically two IGBTs of a unit. They are being
continuously compared with the modulating wave in order to generate the gate signals for the
IGBT’s. The frequency modulation index and amplitude modulation index are calculated as:

fer Vma
me =— myg = —
f fm a VCT

To be noted that phase shifted modulation the GBT’s switching frequency coincides with
the carrier frequency f;,, = for-

In Figure 3-6, in the first plot are illustrated the carriers and the modulating wave
corresponding to the U phase. At first sight it may seem that there are only four carriers
although there are eight, they being overlapped two by two due to the fact that they are in the
mirror. This is caused mainly because of the inverter’s functionality constraints of having solely
eight units active at all time (see (2)). Each time one unit from the upper part of a phase is
conducting, its analog unit from the lower part of the same phase must be always turned off.
Consequently there are four carriers controlling the upper unities of one phase, the other four
being in opposition with the first by 180° leading to carriers overlap.

In the second plot of Figure 3-6, the IGBT pulses for the eight units of phase U are
presented. This modulation scheme ought to provide a three phase sinusoidal voltage of
adjustable frequency and amplitude with five voltage levels per phase respectively 9 voltage
levels between phases at the output of the inverter.

To assess the modulation scheme efficacy, simulations were carried using Simulink and
Plecs toolboxes from Matlab simulation platform. To simplify calculations, all quantities were
transformed in per unit. In order to rigorously evaluate the inverter’s response, simulations
were run at 600 [Hz], 1200[Hz] and 2400[Hz] switching frequency. They can be found in
Appendix B. The phase-shifted PWM algorithm was incorporated in an S-function block whose
logic diagram is given in Figure 3-5. The diagram represents how the modulation works like
inside the simulations.

The initialize counters will reset the counter to their initial values. Each time there is a
sample time, the counters are incremented. When the counter had reached its maximum value,
the sign will change and the counter will decrement until reaches 0. At this point the process is
repeated all over again. During the counting process, when the reference gets bigger than the
carrier, the corresponding unit of the carrier will start conducting until the reference drops
under the carrier when the unit will be turned off. This is done by the determine state block. The
IGBT state block determines which IGBTs from inside the units are switched.

3-18

eSICl Medium Voltage Modular Multi-Level Inverter

Initialise
Counters

Y

* Increment
counters
Set old
values
- Yes Change
Carriers Eolrt
Hit B
sign
‘<—‘
.
Determine
Units state
Determine
IGBT state

=

Save last values

Y

Figure 3-5. Phase Shifted PWM logic diagram

——— X

SB LRL ABEB BA R

Figure 3-6. Carriers vs. the modulating wave and the unit states at my = 48, m, = 0.9

Modulation

. (-

L O
a .
;;;; g ML

3.4 LEVEL-SHIFTED MULTICARRIER MODULATION

This modulation scheme is similar to the previous in certain aspects. The required
number of triangular carriers is calculated with the same expression as for the phase shifted
modaulation all having the same amplitude and frequency. The frequency modulation remains
also unchanged. The difference is that here they are vertically disposed one after another, with
the bands covering the whole [-1; 1] interval and the amplitude modulation index is redefined as
[14]:

Vm

Ma =7~ -1
cr(mnr,of,voltage,levels)

form, € [0,1]

Based on phase disposition level-shifted multicarrier modulations can be divided into
the following three subcategories [15]:

. In phase disposition (IPD)
. Alternative phase opposite disposition (APOD)
] Phase opposite disposition (POD) — the carriers above below the zero reference

have opposite phase disposition with respect to those above

All of these subcategories differ by the way the carriers are displaced. The displacement
does not affect the amplitude or the frequency of the carriers. They can be in the mirror (POD)
with respect to the 0 line, alternative (APOD) where one carrier is shifted by 180 degrees or in
phase (IPD) where only the level differs among them.

3-20

3-21

Medium Voltage Modular Multi-Level Inverter

The common for all these subcategories is the requirement of unit shifting. After each
step, the units must be rotated in a cyclic way in order to prevent large difference between the
unit voltages. This may represent a problem when compared with the staircase for example,
because the rotation is only made at the end of one period of the fundamental and not during
any switching step. From the losses point of view, the units are switched at the lowest rate
possible and still be able to create a staircase similar output.

The number of carriers required for this modulation equals the number of units per leg.
The logic diagram for the implementation in Simulink is depicted by Figure 3-5.

The initialize counter block resets the counters to their initial value. While no sample
time had occurred, the old values are sampled for output. When a sample time do occurs, the
counters are incremented. When a counter reaches the maximum position it is decremented
until it reaches 0, point in which the process will restart with incrementation.

When the reference value gets bigger than the carrier the corresponding unit will be
switched on. For the opposite situation, when the reference value is lower than the carrier, the
unit will be switched off. This will determine the actual unit states. The IGBT states are
determined from the unit states.

Modulation [Fefyi

'

Initialise
Counters

No

Yes

Recall
Old values

Increment
Counters

Change
Yes—{ Increment
sign

No
2
Y
End of Yes ficy
e mm— Index
o Values
No =

Y

Determine Units states

.

Determine IGBT states

v

Save last values

AJ

Figure 3-8. Level Shifted PWM logic diagram

3.4.1 IN PHASE DISPOSITION (IPD)

The in phase disposition, or IPD, is based on a single carrier that is multiplied across the
entire voltage range. The difference between any two carriers is represented only by the voltage
offset, offset which represent the actual step size of the modulation.

ekl Medium Voltage Modular Multi-Level Inverter

<} Phase Outputl
SE| oL hAEE B S R

Figure 3-9. The carriers and the modulating wave — in-phase level shifted modulation

-400
600
25

Figure 3-10 The output voltage and current

Modulation ez

3.4.2 ALTERNATIVE PHASE OPPOSITE DISPOSITION (APOD)

The alternative phase opposite disposition, or APOD, is based on two carriers that have
varies in the initial starting voltage level and phase. These two carriers are then multiplies
consequently over the entire voltage range.

-} Carriers vs Reference

gB LLL AEE BAF

Figure 3-11 Triangular carriers vs. modulating wave — alternative phase opposite

<) Output T= & x

Figure 3-12 The output voltage and current

3-25

Medium Voltage Modular Multi-Level Inverter

|3.4.3 PHASE OPPOSITE DISPOSITION (POD)

The phase opposite disposition, or POD, uses two carriers, one for the positive voltage
levels and one for the negative voltage levels. The negative voltage levels are shifted by 180
degrees with respect to the carrier for the positive voltage levels. The carriers are multiplied for
their corresponding voltage level sign in order to fill the entire voltage range.

S E| O 0| dhiEEB| B B

Figure 3-13 The carriers and the modulating

<) Output T= & x

SHE(LEL AEE DA T N

Figure 3-14 The output voltage and current

Modulation

3.5 STAIRCASE MODULATION

Essentially, as the name indicates, the staircase modulation generates an output
waveform that follows a staircase pattern. The output wave form is created based on proper
selection of the units to be turned on. The selection is made with respect to the reference
voltage as well with the help of a set of predefined voltage levels.

The reference voltage is similar with that used for the other modulations while the
preset voltage levels are determined based on a coefficient (t) and on the DC bus voltage. The
voltage level is calculated for each individual step. The voltage level is calculated based on the
following formula:

VDC

Vix] =7+
Nunits

Equation 3.1: Voltage level calculation

Where:
V[x] —voltage threshold for the X level
T — coefficient
Vbe —The DC bus voltage
Nyunits — Number of units per leg

The coefficient role is to adjust the level when the next step will be applied. The
coefficient for all the simulations made for this application was set at 0,5. This value represents
half step. When the voltage reference gets bigger than one threshold value, the inverter will
jump to the voltage level represented by the threshold value.

Similar with level shifted modulation a unit shift is required in order to maintain a
constant voltage across the units. Because the output waveform of one leg can be generated by
switching among the units of the leg a voltage balancing based on sorting can be implemented.
The sorted values represent the voltages across the units of that particular leg. By measuring the
voltage across one unit, at the next step the units with the highest voltage across their DC bus
will be switched ON.

The logic schematic of the algorithm is presented in Figure 3-15.

The initialize steps block sets the internal parameters to their predefined values (eg. The
steps are calculated).

The “is sample hit” block determines if the current sampling time is equal or bigger than
the preset sample time. If the sample time hit did not occurred the previous values are
outputted. For a sample time hit, the current level is determined based on the preinitialized
steps. The level, which can be an integer value between 0 and the number of units per section

3-26

3-27

Medium Voltage Modular Multi-Level Inverter

gives the number of units turned on for the upper section.

the lower section is calculated as the difference between
the level number. [13]

:

Initialise
Steps

No

Is sample

The number of switched on units for
the number of units per section and

Time hit

k|

Determine
Current Level

Recall old
values

Y

Determine
Phase Levels

v

Sort Unit
Voltage

Y

Determine Unit

!

Determine IGBT state

.

Save last values

Y

Figure 3-15. Logic scheme of the staircase modulation algorithm

The determine phase levels block determine the quadrant for which the calculation are

made. The quadrant is determined from the current, the voltage being known.

The sort unit does a sort on the lower and upper sections of the leg individualy. The
results are then passed to the determine unit block which determines the units that need to

switch based on the sort result and the phase level.

The determine IGBT block calculates which IGBT

will actually be switched. After this

block the values are saved to be used for the next step until the sample time will be hit again.

Modulation [FEEPA]
3.6 CONCLUSION
The harmonic content of the output voltage waveform is an important criterion for
evaluating the quality of the output voltage.
e The number of switching per modulation cycle is dependent of the carrier frequency in
the case of PWM based modulations.
e The synthesized output voltage has a low content of harmonic distortion for all
modulations schemes, even at low frequencies.
e Tabel 3-1 Harmonics analysis for 600 Hz
Method 3"Harmonic 5"Harmonic 7"Harmonic Total THD
Voltage | Current | Voltage | Current | Voltage | Current | Voltage | Current
[%] [%] [%] [%] [%] [%] [%] [%]
Phase Shifted
Modulation 0.2 0.16 3 0.63 9 1.76 20 2.67
IPD 0.8 0.18 15 0.48 15 0.6 15 0.9
Level APOD | 0.4 0.01 18 0.01 18 1 20 1.2
Shifted POD | 0.02 0.025 |7 005 |7 0.02 7 1,2
Modulation
Staircase 0.02 0.6 7 0.3 7 1.1 7 2.3
Modulation
e Tabel 3-2 Harmonics analysis for 1200 Hz
Method 3"Harmonic 5"Harmonic 7t"Harmonic Total THD
Voltage | Current | Voltage | Current | Voltage | Current | Voltage | Current
[%] [%] [%] [%] [%] [%] [%] [%]
Phase Shifted 0.2 0.06 16.7 0.02 10 0.2 6.8 4
Modulation
Level IPD 0.4 0.6 2.2 0.2 1 0.2 6.8 4
Shifted APOD | 0.2 0.1 2.4 0.6 4.5 1 7 1.2
Modulation | ., |4 002 |416 058 |9.46 |1.89 264 |2
Staircase 0.03 0.008 7 2.4 6.28 1.35 24 4.65
Modulation

el Medium Voltage Modular Multi-Level Inverter

Tabel 3-3 Harmonics analysis for 2400 Hz

Method 3"Harmonic 5"Harmonic 7"Harmonic Total THD
Voltage | Current | Voltage | Current | Voltage | Current | Voltage | Current
[%] [%] [%] [%] [%] [%] [%] [%]
Phase Shifted
Modulation 0.03 0.002 18.6 0.06 12.82 0.03 25.4 0.08
Level IPD 0.4 0.2 4.87 0.5 3 0.8 10 13
Shifted APOD | 0.3 016 |5 0.5 3 068 |10 1.3
Modulation |, [, 0.2 235 | 0.62 9 1.78 206 |27
Staircase 0.025 0.005 6.95 2.4 6.28 1.35 24 4.65
Modulation

Hardware implementation

4 HARDWARE IMPLEMENTATION

The hardware chapter describes the hardware that was done supplementary to the last
project without taking into consideration the boards or wires that were multiplied, modified or
replaced. Compared with the last project where a inverter single leg was realized. A set of more
than 20 new boards have been multiplied in order to allow the new 2 legs of the inverter to function
properly. The new hardware relates to power supply of the inverter, protections and new relay
control logic. The FPGAs connectivity is not presented in this chapter due to connectivity and can be
found in the software chapter. The schematics for this chapter are located in Appendix A.

4.1 ABOUT THE HARDWARE

The hardware implementation is based on the use of 24 pairs of 2-pack IGBT from
Semikron: SKiiP 2 and 3 type modules both rated 1200 V. The modules have the gate driver on-
board so there was no need to make a gate driver board. The connection with the FPGA is made
through a set of cables over differential lines. The units are powered from a 24 VDC source for
the SKiiP 3 units and from a 15 VDC power supply for the SKiiP 2 units.

The differential cables helps in reducing the noise caused by the IGBT switching. The
IGBTs gate driver does not support differential signals so a board was created for the interface.
The interface board used was designed for the previous project (see [13]) and for this project
only multiplication were made.

The SKiiP 2 based units, shown in Figure 4-1, are connected in parallel with a Toshiba
1200V/150 Amps IGBT pack. The Toshiba IGBT pack has no on-board IGBT driver so an Skyper 32
gate driver was used to control them. The interface for this type of gate driver is identical with
that used for the rest of the gate drivers. The units do not have a voltage sensor on board so an
external voltage sensor was used. The SKiiP 2 units are rated 1200 V and 1200 Amps

The SKiiP 3 based units, shown by Figure 4-2, are connected back to back in order to
obtain the required unit configuration. These units come with a voltage sensor on board so no
external sensors were required. The SKiiP 3 units are rated 1200 V and 2400 Amps.

In both cases the connection were made with aluminum boards and discharging
resistors were placed as well as decoupling capacitors on the IGBT module pins.

ZEeki Medium Voltage Modular Multi-Level Inverter

Figure 4-1: SKiiP 2 based unit Figure 4-2: SKiiP 3 based unit

The gate drivers are controlled by the FPGA via a set of CPLD (a Xilinx CPLD XC95108).
The basic schematic of the subsystem is presented in Figure 4-3. The CPLDs are used in order to
allow the large number of units to be controlled by the FPGA. The communication from the
FPGA to the CPLD is serial at 31 MHz in order to be converted into parallel communication for
gate driver control. Because the communication is made over differential lines a set of line
drivers with 2 transmitters and 2 receivers embedded were used.

Line driver |

Line driver Il
> - To IGET Units
| Line driver (Il -

Line driver [V
3.3VDC SVDC

Line driver V'

Protection Line driver VI

- Board

Line drivers A

st CPLD

. Protection Line driver |
Board

Line driver I

Line driver Il
To IGET Units

-

Line driver I\

Line driver W

Line driver VI

A

Line drivers B

Figure 4-3: FPGA side gate driver control

Hardware implementation

The Figure 4-3 contains the FPGA side gate driver control with the line drivers
represented. The FPGA runs at 3,3 VDC and a level shifter was also required. The protection
boards helps protect the CPLD from overvoltages that can be caused by the line drivers. The
delay time from the FPGA to the actual gate driver is less than 1 ps in normal operation while in
case of fault, the response time is 10 ns. The response times are strictly hardware related and
were measured without taking into consideration the software implementation.

The main FPGA (shown in Figure 4-4) is used to control the entire system, the secondary
FPGA and the DSP are based on the main FPGA. The FPGA is a Spartan 3A 1800 DSP while the
secondary FPGA is a Spartan 3 AN 750. The DSP used is a TMS320F28335 with an incorporated
FPU.

Main FPGA

Figure 4-4: Main FPGA Board

The FPGA connect with a set of 6 ADCs made also for the last project and presented in
[13] as well as the analog comparator boards. The ADCs can convert data at a speed of 2 MSPS
and uses also serial communication with the FPGA. The 12 channels per ADC give the possibility
of 72 channels to be acquired in less than 3 ps. The ADCs boards used are based on the AD7266
made by Analog devices.

Besides the main control elements of the inverter there is a set of other components
and submodules that were designed for this project like:

- DC power supply board with overvoltage protection for inverter DC bus

- Relay control board in order to control the system contactors by intermediary relays
- Overvoltage protection board

- ADC gain amplifier board for the SKiiP 3 units

The supplementary SKiiP 3 based IGBT units were also assembled by mounting
capacitors on them as well as discharging resistors and decoupling capacitors.

4-32

4-33

Medium Voltage Modular Multi-Level Inverter

After all the hardware boards were made and the units constructed more than 100
meters of cable was used to connect the units with the main control units. The cable was mostly
shielded in order to protect the signals from noise. Twisted pair cable was used for the IGBT gate
drivers communication as well for the analog signals from the SKiiP 3 based units.

4.2 RELAY CONTROL

The relay control board handles the control of the relays, monitors the contactors and
distributes the signal from the FPGA to the comparators CPLDs. The board contains 2
microcontrollers one for the relay control and the other one for the contactor monitor. The
board is described in the following subchapters with respect to the functionality of each
submodule.

The relay control board is shown in Figure 2-1.

-
E Micro controller
o4 for monitoring

o contactors
Micro controller -

for controling
Contactors

Figure 4-5: Relay control board

4.2.1 RELAY OUTPUT

The relays used in this application are controlled by a microcontroller from Microchip
PIC18F4580. The microcontroller interfaces with the secondary FPGA thought a SPI interface.
The SPI interface on the microcontroller is embedded into hardware so no special protocol
software needed to be implemented besides the SPI control.

The microcontroller can control up to 24 relays from which only 20 relays are used, the
other 4 being auxiliary relays or reserves. The relays are divided into 3 categories:

- Unit power supply
- Auxiliary

Hardware implementation

- Power supply relays

The unit power supply relays help in controlling the power up the units in group of 4.
This power-up is required due to the large inrush current of the switched mode power supply of
each unit. Therefore the decision was taken to power-up a group at a time. The delay between
two consecutive groups power up is 3 seconds. The power up can be done automatic by the
“Automatic control of units power up”. A “manual” power up of units is also implemented in
order to allow FPGA control over the relays states.

The auxiliary relays, as mentioned earlier are considered reserved. They are going to be
used only in case of failure for other relays.

The power supply relays are used to control the actual behavior of the power supply.
The relays control in turn the contactors which are powered from 220 VAC. The relays offers
galvanic insulation as well as the possibility of same level of logic in order to be able to "OR" or
"AND’ two signals. The relays for the main contactor as well as the relay for the chopper are
controller by two signals as the system schematic from appendix A shows.

The microcontroller software used to control the relays is divided as well into several
part. The section that deals with units power supply contains the automatic power up and the
manual override.

The command decoder also stores the mapping data of the relays. If a relays
malfunctions, the software can remap the corresponding relay to another one without
reprogramming the main software. The remap is done over the SPI interface by the secondary
FPGA.

Automatic
Relays Ch. 1-4 control of units || €ommand | 1 input

decoder
power up
Relays Ch. 5-8 | | |

Manual

Relays Ch. 9-12 c.Jverride of -
units power up Counter e

Relays Ch. 13-16 Auxiliary relays— |

Emergency | | | Status —— Data output

capacitors [
discharge

Relays Ch. 17-20

Relays Ch. 21-24 | |

Safe power
L supply -
power-up

| | Load control
connection

Manual
override

Figure 4-6: Relay output control

4-34

4-35

Medium Voltage Modular Multi-Level Inverter

|4.2.2 RELAY INPUT

The relay input board receives the states from the contactors with the help of auxiliary
normal open contacts of the contactors. The signals are then send to the secondary FPGA in
order to determine the actual states of the contactors. The contactors may fail to open/close or
can be commanded by the overvoltage protection. In order to determine the actual state of the
inverter, the relay input board is used in direct connection with the relay output board.

The relay input control is implemented on a microcontroller from Microchip PIC18F2550
which also provides to possibility to connect to a computer via a USB connection. The
connection is only provided and no code was implemented on it.

The communication with the FPGA is done over a SPl connection where the
microcontroller is the master. This solution was selected because the FPGA number of
connectors is limited and the amount of connections required is quite large.

The diagram which represents the main blocks used by the relay input control is shown
in Figure 4-1. The command decoder is also a command encoder. Its task is to determine what
does the FPGA requires and also to prepare the data for sending.

Contactors 1-4 Contactor Command Data input
monitor et
Contactors 5-8 |
SPI
Counter Interface
*& Data interface |
Data output

Figure 4-1: Relay input control

4.2.3 SIGNAL DISTRIBUTION

Besides the relay control, the board also splits the connection between the secondary
FPGA and the analog comparators CPLD. The board also handles the fault and reset signals from
the system by providing access to a set of open drain lines one for reset and the other for fault
signals. To these lines, devices are connected in order to trigger faults, devices like the
overvoltage protection board or the DSP.

Hardware implementation

4.3 OVERVOLTAGE PROTECTION BOARD

The overvoltage protection board is placed on the power supply and used to measure
the DC Bus voltage. The voltage is measured with the help of a voltage divider and the output is
then compared with a preset value. The ratio between the measured value and the output is
900:1 thus allowing a 1,8 kV to be measured safety. The limit does not come from the output
comparator but from the resistor limits. The resistors are rated 150 kOhms and 350 V. Because
there are 6 resistors, the measured voltage is divided between them therefore a resistor, at 900
VDC, will have 150 V. At 2 kV, the voltage drop on one resistor is 333 V. The power dissipation on
one resistor is less than 1 W.

The measure resistor, the one on which the voltage drop will be measured, it is rated 1
kohm. The measured voltage is then passed to two comparators in order to produce two signals.
The two signals are then passed to a fiber optic and the other one to optocoupler.

The fiber optic will offer insulation between the DC bus and the FPGA. The insulation
between the overvoltage board and the command relay is assured by the supplementary relay.
The optocoupler was intended for cable connection between other boards and for simplification
it was connected directly a relay.

Live
oo \;?J:sg: Reference 1
Bus Corm
parator | | | To FPGA
1 Sl Extension
Reference 2
Comp;rator || Optocouples

Relay
+15VDC
GMND
-15VDe +24DC

Figure 4-7: Overvoltage protection board

The basic schematic of the comparator control is depicted in Figure 4-8.

—8 1281”82 —
Relay

LooJ |

v, .

Figure 4-8: Basic schematic of the comparator control

4-36

ey

Medium Voltage Modular Multi-Level Inverter

The reference 1 and reference 2 are not the same value, the difference between the two
voltages compared is about 50 V. The difference was set in order to allow the FPGA to take all
the necessary precautions, if possible, to prevent the hardware protection to kick-in.

When the hardware protection is on, the relay is turned on, the main contactor is
therefore switched OFF and the copper contactor is switched ON. All other contactors remain in
their initial position and are not affected by the over-voltage protection board. For more details
see Figure 4-9.

In the Figure 4-9 the voltage represents the measured voltage at the input of the board,
the reference 1 is the reference for the optic fiber while reference 2 is the reference for the
opto-coupler. When the voltage crosses over one reference the corresponding signal will be
switched LOW. The low state is also for safety because, if the signal is missing then either the
board is damaged or the system is not connected. Therefore the system has an active low
control which implies that the relays normal-closed contacts will be used.

Referance 2

Reference 1

Voltage

Fiber optic | |

Optocoupler | I

coﬂiicnlor e) K il
&:ngsgr Unknown) K Unknown

Figure 4-9: Over-voltage commands and timings

4.4 MAIN POWER SUPPLY

The power supply for the inverter had been constructed in order to have a regulated DC
power supply capable of withstanding voltages up to 1,3 kV. Everything that the power supply
incorporates permits working at such high voltages. Even if the power supply takes its main
power from a 400 VAC grid, the high voltage protection was required in order to prevent
hardware faults to occur when the unit’s capacitors discharge in the DC bus. The 1,3kV can be
reached inside the DC bus when by wrong control of the switches, the unit capacitors gets all
connected in series with to the DC bus. The power supply contains the following relevant blocks:

- Rectifier

- DC Bus capacitors

- Capacitor charge control

- Chopper

- Overvoltage protection (with varistors)

Hardware implementation &l

The components are represented by Figure 4-10. The configuration of the DC power
circuits of the supply together with the main contactors and connectors. The resistors colored in
green represent the DC chopper resistors while the yellow resistors represent the charging
resistors for the power supply capacitors. The diodes blocks are part of the rectifier while the
block starting with letter K represents the contactors. The signals corresponding for the main
contactors are handling by auxiliary relays located in the lower left of the figure. The actual
construction of the power supply is represented by Figure 4-11.

+VDC
K1
A e A ey
I
-
ccn Charging III
m LOAD Resistors
= [KF
! DC Chopper
’—‘ S -VDC
K2 [
‘ ‘ Relays ‘ PO |
Inverter
Figure 4-10: Supply configuration diagram
Chargin .
DCBus Rectifier Contictir Varistors Capacitor
Main Contactor Bank
Contactor DC Bus
Contactor
(-vDC)
Fuse
Box Chopper
Contactor
Connectors
Command Load Charging Chopper
Relays Contactor Resistors Reistor

Figure 4-11: Power Supply and Main components

ZEelel Medium Voltage Modular Multi-Level Inverter

The main contactors are rated for 50 A and the contacts are connected in series in order

for them to withstand high voltage inputs.

4.4.1 CONTACTORS

The power supply is also equipped with a set of contactors to allow the possibility to

control the system. Therefore 6 contactors have been used, contractors with 690 voltage rating

on each individual contact. The contactors used and their role is described better in Table 4-1.

Number

Description

K1

Main contactor is used to connect the power supply to the 400 VAC grid.

K2

The charging control of the power supply DC Bus. This contactor short-circuits the
charging resistors thus taking the system to a normal operation mode.

K3

The contactors connected the positive DC Bus line with the positive line of the
inverter.

K4

The contactors connected the negative DC Bus line with the negative line of the
inverter.

K5

The chopper contactor will close down as soon as overvoltage event is triggered by
one of the protection elements (voltage measurement or overvoltage protection
board)

K6

The load contactor is responsible with connecting the load with the inverter.

Table 4-1: Power supply contactors roles

The complete power supply schematic can be seen in Appendix 1.

4.4.2 RECTIFIER

The rectifier differs from a normal rectifier due to high-voltage protections that have

been required. Therefore instead of 6 diodes, the rectifier contains an additional 4 diodes in

order to allow an increased voltage blocking level. The diodes are placed as depicted by Figure

4-12.

FEE

VANRVANRVAN

D2 D4 Dé

<

Figure 4-12: Bridge Rectifier

Hardware implementation _

4.4.3 DC BUS CAPACITORS

The DC bus capacitors have been connected in groups of 5 in series and the groups have
been connected in parallel. This type of connection ensures that the capacitors can withstand
higher voltages and also provide a low voltage ripple for the inverter. The capacitor

configuration is depicted by Figure 4-13.

Cap Charge

Poz_In

54

R3 RZ Rl

CL— R4

+
C2=— RS

+
C3 =

+
Ca= R7
+

Cs =

C8 =

C9 =

Ci0 =

+
+

+
ci1 ‘q] R10
+

Clz— R15

C13 =

C1a =

Poz_Out

Neg_In

Figure 4-13: Capacitors configuration

Neg_Out

The parallel resistors of each capacitor are 30 kOhms, value which allows the capacitor
to discharge and provides a current path in case of fault when the contactors open. The resistors
are rated 450 Vand 5 W.

TR TR I

&l PP hEE

&

Figure 4-14 Charging rates for Capacitors

4-41

Medium Voltage Modular Multi-Level Inverter

The capacitors are charged at startup through a set of charging resistors. The resistors
are also used to charge the units DC Bus capacitors close to their nominal operating voltage in
order to limit the inrush current. The resistors will be short-circuited with the help of contactor
K5 when the charging is complete.

) Scope [

&GE OLP AR

Figure 4-15 Discharging rates of the capacitors

The charge complete event is triggered by the FPGA which measures the unit DC bus
voltages while the DSP measures. In order to properly charge the inverted units DC bus
capacitors, the units must be controlled in order to provide time for all the capacitors to charge.
Half of the number of units on each leg will be switched on, each at a time in order to allow the
capacitors to charge.

4.4.4 THE DC CHOPPER

The DC Chopper is used to lower the DC Bus voltage in care of overvoltage. The voltage
should be lowered fast enough in order to protect the main DC Bus capacitors. A normal DC
chopper would use an IGBT and a certain chopping frequency but for this application, where the
power supply was only made for this application because no other power supply was available,
the decision to place a contactor seemed to be the simplest solution. The contactor will remain
connected as long as the DC bus voltage is over the preset limit. During the time the DC Chopper
is connected the main contactor is disconnected.

The discharge resistors are rated 100 Ohms at 200 W and are connected in parallel thus
the total equivalent resistor will be 25 Ohms at 800 W. The DC chopper is depicted by Figure
4-16.

Hardware implementation

Poz_In Poz_Cut
> D
|jR20 |jR21 |jR22 |;I]R23 Z‘ISDI
IGETD
Gate Chopper
IGETD1
Meg_Out
Meg_In

Figure 4-16 DC Chopper

4.4.5 OVERVOLTAGE PROTECTION
The overvoltage protection was implemented in two ways:

- with varistor
- with logic and measurement

The varistor is used to transform the voltage into a current, by lowering its resistance, in
order to determine the fuses to break up. This method is the most appropriate for this power
supply because no other cheap method will limit the voltage fast enough. The downside of this
method is the fact that it will protect only once, after which the fuses must be changed. The
fuses used are ultra fast fuses rated 50 Amps.

The logic method is not as fast as the one with varistor but the role is the same. This
method uses a voltage divider to measure the voltage. The voltage divider has a ratio of 900:1.
Therefore, it is capable to measure voltages up to 2 kV. The limit is imposed by the resistors
which form the voltage divider. A resistor is rated 150 kOhms, 350 V. The 2 kV allows a limit of
330V per resistor. The power dissipation on each resistor will be no more than 1 W.

4.4.6 THE VOLTAGE SENSORS CONNECTIONS
The voltage sensors are placed on the power supply board at 3 locations:
- Mains
- DCBus

- Load

A total of 7 voltage sensors have been used. The main voltage sensors are used to detect
the voltage level at the input in order to determine the charging state of the main DC bus.

4-42

4-43

Medium Voltage Modular Multi-Level Inverter

|4.4.7 THE AUXILIARY RELAYS

In order to control the high power contactors, several auxiliary relays are used. The
relays are rated 24 VDC while the contactor coils are rated 220 VAC. The relays also provide a
level of insulation between the two types of signals (24 VDC versus 230 VAC). Each relay is
responsible for a single contactor except the main and chopper contactor which can be triggered
also by the overvoltage protection mechanism. (see Over Voltage protection subchapter)

4.4.8 SIMULATIONS

In order to check the results also a simulation of the supply is made. The input
parameter is the voltage from the gird. The simulation it is very complex it includes also models
of the wire inductance and components that resemble to the real components. There were also
included the contactors which were controlled by an S-Function with code located in Appendix E.

The Figure 4-17 shows the bridge Rectifier shows the simulated PLECS circuit:

ki

Neutrall fo

7
2

NS
Am1

S

Cap Charge
Gate C happ

Am2

3 B vmz2)
DC Chopper DC Voltage Wires

+

Main Contactor -
g
ES
g
5

Vm1

[=]
&
I'e}
o

o

€ harge and distharge rate

Rectifier
Rectified Voltage

Neg_Out Neg_I . Neg_In MNeg_Ow

=
8

o
y

[1 Neutral

Neutral
Chareg and discharge rates

Figure 4-17 Simulated Circuit of the DC power supply

The simulation results are placed in the Appendix-D where there are displayed the wave
forms corresponding to the output voltage and currents. The supply was loaded with a
R = 30 Qresistor. The simulation of the power supply was made separately from the main

simulation due to their combined complexity.

4.5 SWITCHED MODE POWER SUPPLY

4.5.1 DESIGN CONSIDERATIONS

It is very frequently required to convert unregulated DC voltage to a regulated output
voltage at a certain voltage level or in many applications it is required to have more the one
output with different voltage levels. The regulation is achieved by adjusting the on and off time
of the switching element. A switch mode power supply provides that. In the project it is required
to provide different voltage levels in order to supply different kinds of components for example
the cooler and the small commands components [16]. Such a converter it is called a step-down
converter or buck-converter. A basic schematic is described in Figure 4.18

—O— Rectifier Current (-,
Main Contactor | Cap Charge Gate Chopper DC current
= T
] 3 2 Poz Ot = Poz_I A Poz_In Poz Oul—— ()

Poz DT

Neg DC

Hardware implementation _

) VO g W —
1
A ° °
T N N Ciiter——
£ ! N h Ve =15V
w
> <
2 A
8 =
3
g
] YT Y L
2 o -
ource
Nz N Cznev:[: Vo =12V
| Y Y
=g
o
N Catiter ——
Ns & Ver =5V
| Y Y
7
N Coiter =—
4 v e Ve =12V
o

Figure 4.18 Switch Mode Power supply basic diagram

Basic SMPS parameters design and design considerations:

Input Voltage V,=800 Vdc

Output Voltage:
V=15 [V] Vrp1=20m [V] lo1min=0.250 [A] lo1max=2 [A]
V=12 [V] Vrp2:20m [V] lo2min=0.250 [A] lozmax=1 [A]
Vg3=5 [V] Vrp320m [V] lo3min=0.250 [A] lozmax=5 [A]
V,=-12 [V] Vrp1=20m [V] lo1min=0.250 [A] lormax=1 [A]
No Name Symbol Value Minimum
1 Input voltage V 800 VDC 60 VDC
2 Output 1- Voltage Vsq 15 VDC n/a
3 Output 1- Current Iy1 2A 0.25A
4 Output 2- Voltage Vs 12 VDC n/a
5 Output 2- Current Iy 1A 0.25A
6 Output 3- Voltage Vg3 5vDC n/a
7 Output 3- Current Iy3 5A 0.25A
8 Output 4- Voltage Vsa -12VDC n/a
9 Output 4- Current Ios 1A 0.25A

Table 4-2 Outputs of the SMPS

ZIESY Medium Voltage Modular Multi-Level Inverter

The design specification was placed in the Appendix C tougher with the specific steps
that have to be followed. The calculation formulas were included also the results after the
calculation.

4.5.2 EXPERIMENTAL RESULTS

In order to have a good power supply a basic schematic was constructed by using OrCAD
and also to construct the PCB for the flyback converter. The basic schematic it is showed in the
Figure 4.18 (from underneath)

IS0C |r
o
Ly
=
L
wiiny

Figure 4.19 OrCAD schematic for Flyback Converter

Hardware implementation _

The schematic is describing the principle of the flyback converter and basic components

like the MOSFET involved in the circuit and the transformer used to lower the input voltage to
the needed output voltage. The MOSFET has been chosen based on the input voltage and based
on the needed output power of the converter. The transformer was selected to correspond to
the chosen input voltages and also the output voltages and output currents. Taking in
consideration the parameters, some consideration must be made for the circuit, the most
important is the insulation between the circuits. This is important due to the fact that the
primary circuit it is working with high voltage. Another important parameter in the process is the
switching frequency of the converter so that the transformer and the filtering components can
be made much smaller and lighter, leading to a low cost for manufacturing. For the transformer
has been used ferrite core type ETD-34(Figure 4.20)

)

B i @ A

e
—— D =

Figure 4.20 Dimensions for ETD Ferrites Cores

Part A B C D E G
No. | [cm] [cm] [cm] [cm] [cm] [cm]
ETD- 3.5 2.56 3.46 1.110 1.110 2.36
34

Table 4-3 Dimensions data for ETD-34

In the Table 4-3 are presented basic parameters of core. The parameters represent the
physical dimensions of the transformer core. The magnetic core plays an important role due to
the fact that it stores energy for each conduction period.

After the design parameters where determined, the transformer was realised according
to the calculation. The winding where placed on bobbin on core ETD34 given by design
calculations. The Figure 4.21 show the construction of the transformer including even the
placement of the windings.

4-47

Medium Voltage Modular Multi-Level Inverter

Figure 4.21 Transformer Construction [17]

In the Figure 4.21 the primary winding is represented by W1 colored in red, the
secondary windings are: W2 colored in green which is corresponding to the 15 V, W3 - purple
corresponding to 12 V, W4 — blue corresponding to 5V, W6 — light green corresponding to -12V
and W7 which is common with W1. Between the winding special insulation yellow polyester
tape (UL) was put to ensure a proper insulation [17].

The next step in design was to test the realized transformer to ensure that the results
where corresponding to the calculations. The tests where done by providing voltage to the
primary winding and then measuring the output voltage with an oscilloscope on each one of the
windings to guarantee that the ration is according to the design (Figure 4.22, Figure 4.22,Figure
4.24).

Hardware implementation [FZEiE]

Run b i’ { Trig'd
Tek _.‘ et T J:.. ML 1A s0.0V TekRun | I 3 :] Trig’d

[T] @ GBS0V T T — EARERS T % 155605 Vv

A: 116kHz ' m

]@ =Hz A 116kHz
] @: 6.25MHz

Ch2 Mean :
—464my : : : : Ch2 Mean

A /\ Chavean gl Pam V. chi wean

| Ch4 RMS : . h X]
X : 302mVv . . 1 : Ch4 RMS
N : he aut
1 Ch2 CycRMS : : b
344V H Ch2 CycRMS
H 814V
25.0V_ |M[4.00ps] A| Ch2 & 4.50V] A - i I s
Cha_s00mvy | 12 May 2009 ch2[100V __ |M4.00us| A Ch2 & 0.00
i+~ [=160.000ns 11:00:17 EE[250V] 12 May 200¢
i+~ [0.00000 s 11:06:01
Figure 4.22 Measurements for 5V secondary Figure 4.23 Measurements for 15V winding
winding
Tek Run [i] | Trig'd
= — e
@: —650mv
A 116kHz
@: 6.25MHz
Ch2 Mean
—8.17V
Ch4 Mean
—225mY
Ch4 RMS
1.07 v
Ch2 CycRMS
52.0v
'chz'\ T00 v \.Ml;l..O(.]}..lsl. A\'Chz'f” 0.00 v
W 250V | 12 May 2009
W+~ 0.00000 s 11:09:01

Figure 4.24 Measurements for 12V winding

The test that where carried proved that the calculations where made correctly and
wanted ratios where achieved leading to the fact that the transformer is suitable for the supply.

Another important part in developing a power supply is to choose a suitable MOSFET for
the required input voltage. Taking into account that the power supply will work in discontinuous
mode and at a range 53.3:1 the MOSFET has to withstand breakdown voltage ratings of 1000V.
The power switch it is placed in series with the primary of the transformer (Figure 4.18). The
current in the primary winding of the transformer has the shape of a ramp which starts from
zero to peak value given by Equation 4.1:

I _ Vin : Ton
peak Lpri

Equation 4.1 [18]

m Medium Voltage Modular Multi-Level Inverter

In order to reach the steady state for a short period of time the output power of the

converter must comply with the following relationship:

2
Lpri : ka

Poutstw' 2

Equation 4.2

Where:
P,,,+ output power
Lyyiprimary inductance
fsw the switching frequency

-1

pk Peak current

To obtain the wanted output voltage it is necessary to have a good control of the power
switch, that control it is provided by a PWM Controller UC3845AN. The controller uses a
feedback loop to determine if the output is correct. The internal error of the amplifier is not
used in this case. The error is given by the voltage regulator TL431 which is connected to primary
side trough a 6N137.The voltage across the optocoupler gives the operation frequency and the
peak current that goes trough the power switch for each period or cycle. This procedure will give
the necessary compensation for UC3845AN which sets the peak current. The diode D9 which is
connected at the output of the optocoupler , the diode will raise the voltage to set the
frequency of the oscillator. Based on the fact that the current on the optocoupler is limited by a
resistor R11. The resistor value it is set by the output saturation of the optocoupler. The 6N137
has a current transfer ration of 100% which makes the current led aprox. 6 mA. A limit is added
to the gain variations in order to give the right current. The value of the current it is given by a
resistor R13 which is calculated with Equation 4.3 [18]:

_ (5V — (Vrpass + VLED))
13 8mA

= 120KQ

Equation 4.3

The resistor dedicated for voltage measurement is set by the current sense. For example
one milliamp leads to one kilo ohm per volt. To improve voltage regulations the outputs for
voltage measuring are split between al the outputs. The most important which is the 5V is
connected directly to the to the UC3845AN trough the 6N137 which is voltage susceptible taking
in consideration that the resistors connected to the 12V and 15V are less susceptible to voltage
variations. The amount of current that is sensed can be determined by the resistors R15 and
R16. The resistors are calculated by [18]:

_ (VSV - Vref)

Rys = =2.5KQ
15 0.8,

Equation 4.4

Hardware implementation

_ (V12V - Vref)

=32KQ
0.21,,

Ris

Equation 4.5

Where:
- Vsy 5V output
- Vioy 12V output
- Vyes reference voltage

- L, current (1 mA)

As it was mention above the 5V output is the most important due to the fact that is the
most sensitive so it is used as voltage feedback loop for compensation. The gain of the open loop
is represented by Equation 4.6 [18]:

(Vi B Voui:)2 * Ngec (800 - 5)2 -4

Gpe = = = 12.64 dB
be VinVoNpyi 800 -1-250

Equation 4.6

The value of the gain is maxim for open loop control. By reducing the line input to the
minimum, the bandwidth of the close loop will also decrease but this time for closed loop
control. The maximum bandwidth that can be achieved is [18]:

foana = %W = 15 KHz

Equation 4.7

An important consideration is made when the supply is working at minimum input
voltage, at this point the duty cycle must be at maximum value which is 80%. In this case the
voltage across the regulator will be at the maximum level of 8.5V [18].

Another matter is the deadtime of the power switch which is set to be minim. The timer
it is set by the capacitors and resistors. The capacitance is considered from controller datasheet.
The timing resistance R12 placed at the input RT/CT of the controller is determined by
multiplying the voltage corresponding to 100% duty cycle divided by auxiliary voltage (5V) will
give the resulting resistance (Equation 4.8) [18]:

_ Wioon (16K)

Vaux

Ry =27KQ

Equation 4.8

An important issue is the working frequency, because the minimum frequency at which
the power supply can work is when the error of the controller is at the minimum output voltage
(Vourmin=0.85V). The frequency is calculated based on Equation 4.9 [18] :

Medium Voltage Modular Multi-Level Inverter

_ (VVLOOn(min) + Vinput(ctrl))

frow =

-140KHz = 75 KHz

VvLoon
Equation 4.9

Where:
- Wioon(min) minimum on voltage (0.85V)
- fiow lowest working frequency
- Vinput(cery) controller input voltage
- 140 KHz is which is the operating frequency of the oscillator

In order to function proper the control needs also a current sense resistor (R10) which is
connected to the source of the power MOSFET. To determine this resistance in conditions of
minimum input voltage it is necessary to use peak current determined in the design calculation.
To have linear operation mode the sense voltage must be limited at 1V. The equation describing
the resistance [18] :

| o~

Re =—5=12Q0atP =1W
k

"3\

Equation 4.10

Where:
- V. sense voltage
- Ly peak current

- R, sense resistor

To avoid instabilities for example due to high range and short time input voltages and
also current ripples, it is important to have a current slope delay circuit. This kind of circuit will
also provide a delay function caused by the current sense resistor (R9) and capacitor (C7). The
amount of delay introduced is 0.7us. The value of the capacitance ca varies from 0.4uF to 1uF,
which in this case is selected to be maximum. In exchange the value of the resistor can be
calculated based on the Equation 4.11 [18]:

Tq
Ry =-2=17000
Ca

Equation 4.11

It is know that the whole controller will draw energy from the system. The start-up
current for the controller is <0.7mA. The necessary energy during start-up is stored in a capacitor
C6 which is connected at the input pin of the controller. It is also important that the breakdown
voltage to be limited by a set of resistances connected in series. The total resistance for start-up
is given by Equation 4.12 [18] :

Hardware implementation

Vin(min)

=410 KQ

Rstratup =
startup

Equation 4.12

The resulting resistance is divided in 5 resistors connected in series R1, R3, R4, R5, R8.
The total power dissipated on them is given by Equation 4.13:

, _ Vimax 8002
Rstratup Rstartup 410000

=156 W

Equation 4.13

The conclusion is that each one of the resistors will dissipate 0.31 W. Taking in
consideration that the total power is 84.4 W , the resistors are dissipating 1.84% from the total
amount of power.

An important part in designing the SMPS is the design of the PCB. The design was made
using the OrCAD software with regard to insulation problems because in the primary part of the
supply is located the high voltage part. The circuit it is presented in Figure 4.25:

4-53

Medium Voltage Modular Multi-Level Inverter

22 D : ; =Nt
yooe : Fien POWER_F IN

Figure 4.25 PCB Layout of SMPS

As the figure shows the Layout is composed from two layers of copper. The red layer
represents the bottom part of the PCB and the green layer represents top of the PCB. The trace
of the PCB where made considering all the facts like RFI radiation, component reliability,
efficiency and stability. Like any other traces these ones also have resistance and inductance.
These factors can lead to high voltage transitions as consequence of large variations of the
current that flows through the traces. For example the trace from an amplifier that are near to
the power signals can be influenced so the amplifier will get very unstable. In the design it is
good to consider having traces thick and short in order to minimize the inductive effect and the
resistive. Additional attention was paid to the layout that is around the capacitive filter. For
example if the capacitors where placed in parallel within a straight line and placed nearby the
source will get hot due to the ripple current. There are many aspects to consider when designing
a PCB, most of them very important in well functionality of the supply [19].

Hardware implementation St

4.5.3 OVERALL RESULTS AND CONCLUSIONS

Overall results are deducted after conducting experimental test on the supply. So
problems have been encountered due to the PCB imperfections occurred in the manufacturing
process. The entire have been corrected until satisfying results where accomplish.

In order to perform the laboratory tests some minimum conditions must be fulfilled:

- The minimum voltage necessary for the supply to work is 60 V, for safety reasons the
tests for maximum voltage was not done.
- The loads where chosen so the nominal currents have been reached.

The test setup is displayed in the Figure 4.26 :

Feedback
circuit

Figure 4.26 Top and bottom PCB of SMPS

The basic components of the SMPS are displayed in the Figure 4.26. A cable was
attached to the drain of the MOSFET. The purpose is to measure the current flow trough the

transistor.

Several tests where done in order to determine the each output of the supply. The first
test was done for the 15 V output. The results where plotted using an oscilloscope.

Y Medium Voltage Modular Multi-Level Inverter

Tek Run | [it] Auto
L S i e
R
(T3
. . L . . . ch1 RMS
R 145V
Ch3 RMS
108 A
3]
chi| 20,0V | ' M 100ps| A Ch1 & 15.6 V)
2.00AQ 26 May 2009
i+~ [0.00000 s 16:40:50

Figure 4.27 Output 1 — CH1 Voltage output, — CH3 current output

In Figure 4.27 it is shown the output current coloured in magenta and output voltage
coloured in blue. The amplitude of the voltage is according to the wanted output. To test also
the how it behaves also a load was connected. The load is a resistor of 12 Q.

The conclusion is that for this output the target for 15V with maximum current of 2A
was reached.

The second test was for the 12 V output. This is shown in Figure 4.28 coloured in the
same manner like the one from above.

Tek Run | f {f] AUto

T : v T
: : : u : :
P S S :
OF
)) Cch1 RMS
S USRS ... osv
; : : : : S : : 1 494ma
% ...
chil 2000V] ' M[100ps| A Ch1 & 15.6 V|
2.00A %9 26 May 2009

5+~ [0.00000 s 16:50:17

Figure 4.28 Output 2 — CH1 Output voltage, - CH3 current output

The conclusion is that also this output behaves well taking in consideration the target of
12 V at a maximum current of 1A.

Hardware implementation

The most important test is the one for 5V because this voltage is used as a feedback for
the control loop. So it is important because the other outputs depend of this output.

The Figure 4.29 is also plotted by using the same procedure like the others and also the
output was loaded with a 4 Q resistor.

Tek Run | f i}] Auto
' ; ; 1] : :
... d
ﬁ\ ...
: Ch1 RMS
... 4.75V
ch3 RMS
1.20 A
E&' ...
chil 20,0V M 100ps] A Ch1 & 15.6V
2.00AQ 26 May 2009
ii+~[0.00000 s 16:59:26

Figure 4.29 Output 3 — CH1 Output voltage, - CH3 current output

The entire test showed that the power supply it is behaving according to the design. Due
to the fact that a 3.5 Q resistor was available the test was performed with that resistor. The
power supplies made in now days use closed control loop so it is very important to have a good
feed back loop and also a good galvanic separation between them provide by optocouplers.

Flyback topologies are widely used because of their simple, robust design. Of course like
any other system it has also drawbacks. One of the major advantages is that it does not need an
inductive filter like other topologies. The fact that transistors today can withstand more and
more voltage makes the topology fitted also for high voltage applications like in this case. The
range is very wide because of the transistors variety. The most frequently known supplies are
form 110VAC and 220VAC to DC wide range.

stoy/i| Medium Voltage Modular Multi-Level Inverter

5 SOFTWARE IMPLEMENTATION

The software chapter contains the software description that was used in order to control
the system. The software represents the actual implementation that has been done on the inverter.
The data structures, memory map as well as the implementation of mathematical operations on the
FPGA by using a look-up table based on a flash memory is described. The software is also
described in direct relation to hardware due to the logic connectivity especially between FPGAs and
the rest of the system. The software described herein relates to FPGAs, DSP and microcontrollers
used in the application.

5.1 INTER FPGA COMMUNICATION

The main FPGA is connected with the secondary FPGA through an extended serial
interface. A normal serial interface uses 3 or 4 signals in order to do a bidirectional
communication and signaling. The Interface used here is based on both serial and parallel
interface. The basic 4 wires serial communication, plus the optional signals, is presented in Table
5-1.

No | Signal name | Description

1 Clock The main clock signal

2 Chip select The chip select flag

3 MISO Master In, Slave Out

4 MOSI Master Out, Slave In

5 INT Interrupt (Optional)

6 Ready The ready flag (ex: when high the device can be used) (Optional)

Table 5-1: Basic serial communication interface

The interface used for this communication is based on multiplying the MISO and MOSI
signals and using the interrupt line in order to signal the master that data exist in the buffer.
Therefore a communication line based on 4 MISO and 4 MOSI have been created. The
communication is made over differential lines in order to be able to increase the frequency. The
base clock frequency is 133 MHz which is not the actual communication frequency. Depending
on the cable the frequency will be adjusted.

The communication is made over LVDS unbalance lines. The unbalanced lines were used
because they are simpler in the sense of connectivity. The difference lines require resistors to be
placed at the end of the cabled between the positive and negative lines.

The role of this communication is the data exchange between the two FPGAs. The
secondary FPGA interfaces with a keyboard and therefore allows the user to input values. The
user input values are send to the main FPGA or handled locally depending on their role and
purpose.

Software implementation

This interface also allows the error to be sent from one FPGA to the other, errors like
faults, control errors, parameter errors or other kind of data. The error sent by the main FPGA
refers mainly to control errors or measured errors. The control errors represent invalid states of
the input parameters.

The secondary FPGA also interfaces with the microcontrollers which control the relays
and therefore the power supply of the entire system. The main FPGA requires the status of these
in order to better control the inverter and to determine its status.

The protocol and the data bus are exemplified in Appendix F Section 2. These are
required in order to know how they interface one-another and how the data is interface
between them.

The pin-outs of the communication are shown in Appendix H Section 1 and are used by
the software and by the FPGAs main pin types.

5.2 FPGA CONNECTION WITH DSP

The main FPGA connects with the DSP through a parallel interface. The parallel interface
is used to connect the DSP with a memory device or with an external peripheral. Therefore, the
FPGA emulates a memory device in order to allow DSP to connect and exchange data with the
FPGA. The data exchange, from the DSP point of view is as simple as writing to a memory like an
ASRAM. The data is therefore read and write to a preset memory location. The data bus line of
16 bits plus the address bus of 20 bits allows a memory space of 1Mbit. The amount of data is
more than enough for the application. The total accessible memory space is 262 Kbit because
only the first 14 bits of the address bus are used.

The connection is made as depicted by Figure 5-1. In the figure there are some extra
communications like reset and fault. These signals even if they are spread system wide, the
FPGA acts like a router in order to simplify the connection.

Data [0:15]

Address [0:13]

Bus Select

Read

Wi FPGA
TMS320F28335 rite Xilinx Spartan-3AN

1800 A DSP

Clock

Ready

Reset

Fault

Figure 5-1: DSP — FPGA connection

5-58

5-59

Medium Voltage Modular Multi-Level Inverter

|5.2.1 LOGIC CONNECTION

The logic interface, as depicted by Figure 5-2 showed the communication bus between
the two logic devices. The DSP uses the external memory interface in order to communicate with
its peripheral device. The FPGA software contains a set of parallel port control structures as well
as a data bus and address bus.

The control structure helps in synchronization with the DSP as the FPGA is a slave for the
DSP. The parallel control assures that proper response will be issued by the FPGA according to
the DSP request. Signals like Read, Write, Clock and chip select are the main signals that the DSP
provides. These signals establish the main protocol on which the entire communication is made.

The data bus is 16 bits wide and it is fed into a set of data latches in order for the parallel
control to manage them. The address bus is only 14 bits wide (limited by the design) and it is
directly connected with the parallel control. In order to simplify the design inside the FPGA and
to allow full control over the data communication at full speed, the entire parallel subsystem
interfaces with a dual port RAM. The dual port RAM allows two systems to operate at different
clocks and still synchronize. Also, the main advantage is that the two parts of a dual port RAM
memory can operate independently

External

Memory FPGA Parallel >

Interface control

EMIF
() ¥
Data latches
DSP Memory FPGA Parallel —F" (Synch.) Double port
bus data bus 7y RAM FPGA Control

FPGA Parallel -

address bus

Figure 5-2: FPGA with DSP communication

The FPGA ports used for the data bus are configured as Input/Output ports and have
been programmed as direct ports without buffering in latches.

The entire communication and the parameters of the control is located in Appendix F
Section 8.

5.3 GATES CPLD

The gates CPLD software had been updated for this project in order to provide a better
synchronization between the units. The current version supports selection of fault signals that
will form the main fault signal. As the Gates CPLD role is also to connect the faults from all the
units it connects to, it also generates a single fault signal from all the units. Because not all the
units post two fault signals, or some ports are left unconnected as backup or are reserved, the
fault signal from these port must be ignored as well as pulses shall not be send to them. Due to
this, the units can be validated or invalidated (turned OFF).

Software implementation &)

Decode gate
pulses

-L General fault

selection

Gate driver
‘ faults

General fault

Data Input Gates Latch To Gates

Counter

Gate driver

Data Output faults

Fault Interface
(Asynchronous)

Figure 5-3: Gates CPLD Software blocks

The gate CPLD uses a standard SPI interface as described in the previous report (See
[13]). Over this SPI interface, the data output and data input structures have been modified in
order to allow the new enable signals. Therefore the bits used by the interface are presented in
Table 5-2 while the pulses order and alighnment are presented in Figure 5-4.

Bit Data Input 1 Data Input 2 Data output

0 Enable 0 Enable 1 The fault flag of the entire connection
1 Unit O State Unit 1 State The state of the internal Fault
2 Unit O Leg O Level | Unit 0 Leg 1 Level Unit O - Fault

3 Unit 1 Leg O Level | Unit 1 Leg 1 Level Unit O - Over temperature
4 Unit 2 State Unit 3 State Unit 1 - Fault

5 Unit 2 Leg O Level | Unit 2 Leg 1 Level Unit 1 - Over temperature
6 Unit 3 Leg O Level | Unit 3 Leg 1 Level Unit 2 - Fault

7 Unit 4 State Unit 5 State Unit 2 - Over temperature
8 Unit 4 Leg O Level | Unit4 Leg 1 Level Unit 3 - Fault

9 Unit 5 Leg O Level | Unit5 Leg 1 Level Unit 3 - Over temperature
10 Enable Fault 0 Enable Over Temp O | Unit 4 - Fault

11 Enable Fault 1 Enable Over Temp 1 | Unit 4 - Over temperature
12 Enable Fault 2 Enable Over Temp 2 | Unit5 - Fault

13 Enable Fault 3 Enable Over Temp 3 | Unit5 - Over temperature
14 Enable Fault 4 Enable Over Temp 4 | Unit 6 - Fault

15 Enable Fault 5 Enable Over Temp 5 | Unit 6 - Over temperature
16 Enable Fault 6 Enable Over Temp 6 | Unit 7 - Fault

17 Enable Fault 7 Enable Over Temp 7 | Unit 7 - Over temperature
18 Enable Fault 8 Enable Over Temp 8 | Unit 8 - Fault

19 Enable Fault 9 Enable Over Temp 9 | Unit 8 - Over temperature
20 Enable Fault 10 Enable Over Temp 10 | Unit 9 - Fault

5-61

Medium Voltage Modular Multi-Level Inverter

21 Enable Fault 11 Enable Over Temp 11 | Unit 9 - Over temperature
22 Enable Fault 12 Enable Over Temp 12 | Unit 10 - Fault

23 Unit 10 - Over temperature
24 Unit 11 - Fault

25 Unit 11 - Over temperature
26 Unit 12 - Fault

27 Unit 12 - Over temperature
28-31

Table 5-2: Bit description for the Gate CPLD

The data input bits on position 0 will set the enable flag of the entire communication
system. If the bits are low, the states and levels of the units will be ignored, and all the output
signals for the gate drivers will be cleared. In this situation, the system is turned off immediately
after setting the bit low (see Figure 5-4). If no enable flags should be set or faults signal to be
read, the communication may stop right after the first bit.

The unit states defines the actual way the unit is working. If 0, the unit will be off
condition in which the IGBTs are shutdown. If the state is on (logic high), the levels for the
corresponding unit will be on therefore for that particular unit 2 IGBT will be switched on, one
on each leg. The actual states of the IGBTs will be set only at step 11 unless the enable flags are
low (see Figure 5-5).

The enable fault signals are used to configure each fault signal received from the IGBT
drivers as a source for the global fault signal. Each bit of the enable fault data set will be bit
“AND” with the corresponding fault signal of the unit.

The fault flag of the entire connection (bit 0) is high if any of the input fault signals is
high. This is not affected by the enable fault flags.

The internal fault flag (bit 1) represents the actual state of the external fault signal. This
flag is affected by the enable fault flags.

The unit faults and over temperature faults are identical with those presented in the
previous report (see [13]).

The bits are aligned according with Figure 5-4. The MOSI lines are set on the falling edge
of the clock therefore a read can be made on the rising edge. The MISO lines are shifted 180
degrees therefore they will be set on the rising edge of the clock and read by the master on the
falling edge.

The clock frequency can be as high as 40 MHz, limit imposed by the CPLD internal
arrangement of logic. At a clock rate of 33 MHz, the entire system can be updated at a total
speed of 1 MHz due to data bus size of 33 bits. The data bus can be reduced to at least the first
10 bits. After the first 10 bits of data, the communication may stop (CS goes low) and the

Software implementation

remaining bits will not be set. If this is desired, the CS line should go low on the rising edge of the
clock. The communication can be reduced to 1 bit if it is desired to shutdown the system as
described earlier in this chapter (see description of bit 0 of the communication protocol).

Clock

Ccs
MOSI 1
MOSI 2

MISO

Gates Output Unchanged)i Unchanged or 0 if (Enb1 = D) or (Enb2 = 0) b4 New states or 0 If (Enb1 = 0} or (Enb2 = 0)

Figure 5-4: Gates CPLD communication data order

Clock

cs] L
MOSI 1 - EEET B CH)EX) 610 EX) 5D 0 D) R0 3D G
MOSI 2 A Don't care.
MISC
Gates Output Unchanged W 0

Figure 5-5: Gates CPLD communication data example (enable OFF)

5.4 MAIN FPGA IMPLEMENTATION

The main FPGA contains the software related with modulation techniques, actual
control of the IGBTs as well as fault management and system monitor. The software contained
by this FPGA is the most relevant as it is used to control all other devices used in the system. It
can control the contactors though paths like: Main FPGA -> Secondary FPGA -> Microcontroller -
> Auxiliary relays -> Contactors. This path is possible due to serial communication between the
two FPGAs and also through a serial communication between the secondary FPGA and the
microcontroller after which all the data is send in parallel to the relays. The software simulation
for the FPGA done in ISE (Programming software from Xilinx) is found in Appendix G.

The main FPGA contains several state machines that help in stepping throughout the
processes in order to accomplish the desired result. The FPGA input is given by several devices
like:

- The secondary FPGA: gives the go ahead after the power supply has stabilized as
well as the fault signal is something is wrong with the measured values

- The DSP gives the main control reference for the inverter and the main measured
values of the currents and voltages

- The ADC provides the unit voltages in order to monitor them

- The gates CPLD provides the fault signals of the IGBT gate drivers

5-62

5-63

Medium Voltage Modular Multi-Level Inverter

| 5.4.1 MAIN CONTROL

The main control of the FPGA is to handle the inverter modulations. The modulations
are therefore handled by a state machine inside the FPGA which runs at 125 MHz (the top speed
for the control structure inside the FPGA is 145 MHz — value obtained from the Xilinx compiler).
All the measurements, control, unit selection and mapping are done in 5 steps which allow a
control refresh each 40 ns. The actual speed at which the gates drivers are refreshed is also
depended on the gate CPLD communication and the CPLD possibility. Therefore the actual
refresh rate for the IGBTSs is given by the sum of the two values which is 32 ns for the gates CPLD
and the total is 72 ns. The response speed is totally dependent on the ADC possibility which is
set at 2 MSPS for a channel therefore all channels are acquired in 3 ps. The value of 3 us
represents the actual response time of the main control. During this period, the gates CPLD can
be updated 40 times with values obtained from the partial reads from the system. The fault
response is limited to 40 ns.

As stated earlier the control is divided on 5 stages each represented in Figure 5-6. Each
stage is triggered by the previous step and all reference to the rising edge of the main clock.
Most of the stages take 1 cycle to complete except with the ADC which is based on several
cycles. This is compensated to a single cycle by using latches and registers in order to allow the
control to better process the data and handle the faults.

5.4.1.1 STAGE 0 - CLOCK AND ADC

The Clock block inputs the main clock as well as the maximum value for the counter
which is set by the DSP. The output of this block, the reference counter is based for carrier
generation.

The ADC reads the data from the actual ADCs and receives the measurement done by
the DSP. The ADC requires 30 clocks at 30 MHz to complete all the acquisition but the data
output is maintained between period in order to allow the control structure to handle the data.
The data output is scaled to Q8 for the acquired values while the data received from the DSP can
have any Q value. For testing the Q8 was used also for the DSP.

Software implementation

Cloek ADC Stage 0
Reference cnunt&ri l Measured values
Method
: —-
selection Control Stage 1
levels
Unit States * ______________
Units o g
IGET Stage 2
States + +Le~als ______________
Mapping Stage 3
States Wmal&
-f—
IGBTs ggﬁ Enable Stage 4

Figure 5-7: FPGA Control stages

5.4.1.2 STAGE 1-THE CONTROL BLOCK

The control block contains the modulation strategies which are selected by the DSP
when the enable flag in software is turned OFF. The voltage levels are used only by the staircase
modulation and are defined for all three phases as a single set of values. These values represent
the trigger state for the next level. By default, the voltage levels are set to half of the step size.
The values are given in Q17 with a range of [0, 2] which represent the actual voltage output in
per unit in the range of [-1, 1]. In order to simplify the way values are compared inside the FPGA
the offset of 1 was considered.

The method selection is as follows:

Method ID Type Sub Type
000 Staircase modulation -

001 Phase shifted modulation -

010 Level shifted modulation IPD

011 Level shifted modulation APOD
100 Level shifted modulation POD

Tabel 5-1: Method selection bits

The method selected the corresponding modulation block inside the control structure.
As stated earlier the method cannot be changed with the enable flag on in order to prevent
undefined conditions.

5-64

5-65

Medium Voltage Modular Multi-Level Inverter

The output of this block is selected with respect to the current method from the three
blocks. If a block is not used, the enable flag is set to 0. The block is only used to connect all the
modulation blocks together.

55.4.1.3 STAGE 2 — UNITS TO IGBT CONVERSION BLOCK

The Units to IGBT block converts the states for all three phases received from the control
structure. The conversion is made with respect the quadrant in which the corresponding phase is
located. The input value represents the state of the units like capacitive and conductive. The
states are converted to a unit state of ON or OFF and to a leg level which represent the actual
IGBT. A level of 0 represents the lower IGBT is turned on while a state of 1 represent the upper
IGBT to be turned ON. The conversion only handles the required number of cells of 24 divided
into 8 per phase.

55.4.1.4 STAGE 3 — MAPPING

The mapping routes the signals received from the conversion block to the actual location
of the gate driver connections. This is required because the system is equipped with 30 outputs
from which only 24 are used. The rest of 6 links are reserved and can be used if a port fails. The
mapping was done by test the port functionality and by cable number.

5.4.1.5 STAGE 4 - COMMUNICATION

The communication block posts the data from the entire modulation block to the gates
CPLD. Because the gates CPLD communication is done to a different speed than the modulation
block, latches are used to proper set the output values.

5.4.2 STAIRCASE MODULATION

The staircase modulation was implemented on the FPGA with the help of state
machines. The state machine defines 5 stages from which the first and the last are idle stages.
The stages 1, 2 and 3 are active stages during the following tasks are done:

Stage | Name Operations

0 Begin stage - resets the used values to their default state

1 Sort stage - sorts the units by voltage level for the upper and lower

sections of each phase

2 Voltage level - Determine the actual number of cells that will be set for the
calculation upper and lower sections of each phase

3 Determine active - Determine based on the voltage level calculation and sorting
units which cells will be turned ON or OFF

4 Idle stage - Signals the end of the modulation and prepares the jump to

the begin stage for the next clock cycle

Tabel 5-2: Staircase modulation stages

Software implementation

15.4.2.1 SORTING

The sorting only handles 4 units, number which represents the cell count for the upper
and lower sections of one leg. The sorting uses comparators and additions in order to sort the
values in descending order. The output vector represents the index of the sorted units. For
example, the index position 0 represents the location of cell 0 with respect to the other units. A
vector with the values [0, 1, 2, 3] tells us that the units are already sorted while a vector like [3,
1, 0, 2] tells us that the unit 0 which has the value 3 is the last unit in the sorting vector while
unit 2 (with value 0) has the lowest input value compared with the other 3. For a better
understanding on how the sorting works a print screen from the unit simulation is presented in
Figure 5-8. The clock from the figure is the simulation clock and not the actual clock rate. The
voltageO, voltagel, voltage2 and voltage3 represent the input variables while the sortedO,
sortedl, sorted2 and sorted 3 represent the output of the block. The done flag is set at the same
time with the enable flag which signals that a single clock cycle is required for the sorting.

The sorting algorithm is not based on iterations as the FPGA can process parallel data by
its design therefore the entire sort can be done in a single clock cycle. The sorting block
implementation on the DSP requires a maximum clock frequency of 143 MHz, this being the
limitation imposed to the rest of the blocks in the modulation.

For further details and examples see Appendix F Section 1.

5.4.2.2 DETERMINE VOLTAGE LEVEL

The voltage level is determined based on the reference voltage and the preset voltage
levels’. Depending on the comparison, the corresponding number of units will be on for the
upper and lower sections of an inverter leg. A representation of how the number of units turned
ON is calculated is shown in Figure 5-9. The M represents the number of units turned On for the
lower part while N represents the number of units turned ON for the upper part. When all the
units in the upper part are ON, the output voltage is the +VDC.

! The voltage level is set by the DSP prior to any operation or the default values will be used

5-66

5-67

Medium Voltage Modular Multi-Level Inverter

M:U, N=4 < I"_I

Preset Level 1

M=3, N='1< Preset Level 0
M=4, N=0 ¢

Figure 5-10: Voltage levels

55.4.2.3 SELECT UNITS STATES

The unit states are selected based on the sorted values and on the voltage level. The
level number is taken from the voltage level determination block and compared with the sorted
values. Both values are in the range of [0, 3]. If the sorted index value for one unit is less than
then the voltage level than the unit is selected, if not it is turned OFF.

For example if the voltage level is 3 and the sorted values are {3, 1, 2, 0} then the units 2,
3 and 4 are turned ON while unit 0 is OFF.

5.4.3 PHASE SHIFTED MODULATION

The phase shifted modulation also implements a state machine in order to cope with the
operation order as well as with the timings.

The operations required for this modulation are:

- Generate the carriers
- Compare carrier with reference
- Determine unit states

The carriers are generated based on the system clock. The counter on which the system
is based on is incremented up to a preset value by the DSP then is decremented. This process is
repeated all over again until the modulator is stopped. As an example of how the carrier is

generated and how the comparison is made is shown in Figure 5-11 for a single unit, phase and
carrier.

For this method a total of 8 carriers are required. Because each 2 carrier are in mirror,
only 4 carriers needs to be implemented while the other 4 represent the difference between the
maximum counter and the main carrier.

At initialization one carrier is the minimum value, one takes the maximum value while
the other two get the half of the counter maximum value.

Software implementation

|
|
| | | | |
! RN o
Duty 0% | ! | ! | | : 1|
Cycle : | | l[| | | o
| | | |
Duty 55q I ___|_ | | . | |
Cycle i : | | i | | : | | I [
Ll L
Dut
Cycle so0% _:_:_ |1 . RN
R A I IR A I B
| R o
Duty RN LA A L S AL A T
T 1 T
Cycle 75% | _I, | I L
T i_[']_l |—r":-r|
Duty - | : : | | | I | | : : ‘ | I
Cycle 100% =t : — | : : —
| Lo L

Figure 5-11: Counter and comparison made for output pulses

The unit states of each unit are calculated with respect to their reference and with all 4
counters. If the reference is less than the carrier the unit will turn ON. The state is maintained
until the reference is bigger than the carrier when the unit will be turned OFF. This applies for all
the units and phases.

5.4.4 LEVEL SHIFTED MODULATION

The levels shifted modulation is different from the phase shifted modulation when it
comes to implementation. The difference consists in the fact that units must be cycles at each
period of the fundamental plus the level of the maximum value of the counter is divided among
all the 4 required carriers. The carrier calculation is based on a single counter which is has its
maximum value 4 times lower than the maximum value. To the value of this counter, the
corresponding offset is added in order to obtain the proper carrier. The carriers are also
calculated with respect to the sub method.

The comparison is made in the same as for the phase shifted modulation. The difference
for unit selection consists in the way how the units to be switched are selected due to the cyclic
rotation of the units. The comparison needs only to be made with respect to the lower or upper
units, the corresponding unit from the other leg section is triggered in the opposite way.

5.4.5 MODULATION IMPLEMENTATION

The modulation was implemented on the FPGA into a single unit with the representation
from Figure 5-12.

5-68

5-69

Medium Voltage Modular Multi-Level Inverter

CurrentOutput Levels Cutput j—

Currentiutouey

Currentoutputity
States OuipLp |—
MWethodSelection
Referencell
UnitStates!)
Referencel’
Reference'y
UnitvoltagesU UnitStatesy
UnitVoltagesy
Lnit oltagesiy
VoltageLevels LnitStates)y

Clack

Enakbile

EEEEEREEEN

Bun Daoneff—

Figure 5-12: Modulation block

The output of the block is common for all the modulation as it outputs the states for the
units and the levels (first two outputs). The UnitStatesU, UnitStatesV and UnitStatesW outputs
the states only for the units on the corresponding phases. The Done output triggers the next
step to take place (eg. Send the data data to the IGBTSs).

The first three inputs are used only by the staircase modulation as well as the
UnitVoltages U, V, W and Voltage Levels. The real input is the ReferenceU, ReferenceV and
ReferenceW which represent the main reference from the control structure. The method
selection input selects the modulation methods which are:

- 0-—Staircase

- 1-Phase shifted

- 2-—Level shifted—IPD

- 3-—Level shifted— APOD
- 4-Level shifted —IPOD

The Clock represent the main clock based on which the modulation is calculated. The
Enable triggers the modulation to run. If false, all the values inside the modulator will be cleared
including the counters. The Run is high only when the modulation has to run. This is used in
order to integrate the modulation into a state machine.

Software implementation

5.5 DSP SOFTWARE IMPLEMENTATION

The DSP software represents the main control of the entire system. This implements a
simple U/V motor control in order to show the system functionality. Also code had been written
to allow a simple RL load to be tested.

The DSP software was implemented as any other control software without any
consideration to the inverter topology. The DSP task is only to provide the reference voltages for
the modulation. The PWM module inside the DSP is not used, being replaced with the FPGA. The
duty cycles are calculated and then sent to the FPGA over the external interface. For the DSP the
FPGA is just a normal external memory mapped at the address 0x10000 (Zone 7). Therefore, a
structure can be defined and a variable of the structure allocated at the beginning of Zone 7.
After this step, all the communication between the DSP and FPGA is done transparently as easy
as writing to a normal variable.

The software that was implemented only shows that the DSP can be used to control this
inverter without any supplementary programming required. For this a single unit had been
written which configures the zone 7 and the I/O pins of the DSP. The data type structure has also
been defined and can be accessed throughout the software. Also the helper functions for
numeric conversion have been included in the unit file. The pin-out, memory map and number
representation have been already described at the beginning of this chapter.

The DSP board made by Spectrum Digital with code eZDSP28335 has been used. The
board also includes an ASRAM on zone 6 which uses the same data and address pins as the
FPGA.

5.6 SECONDARY FPGA SOFTWARE IMPLEMENTATION

The secondary FPGA is used to communicate with the comparators CPLD, main FPGA,
and the both relay microcontrollers. The communication is serial on differential lines with the
main FPGA and on single ended lines with the other components.

The communication with the microcontrollers on the relay board is done according with
the microcontroller documentation for the hardware interface and with the protocol described
in the relay output microcontroller subchapter.

The secondary FPGA tasks are simple and will not be described in detail. The tasks are:

- Control the relays

- Interface with a keyboard

- Handle the comparators CPLD communication

- Handle the communication with the main FPGA

5-70

5-71

Medium Voltage Modular Multi-Level Inverter

5.7 RELAY OUTPUT MICROCONTROLLER

The relay output microcontroller handles the communication between the secondary
FPGA and the relays. Between the relays and the microcontroller a set of 6 boards with
optocouplers and open collector ICs help in controlling the relays with 24 VDC.

The protocol as well as the commands is shown in Appendix F Section 6.

5.8 RELAY INPUT MICROCONTROLLER

The relay input microcontroller is used to read the contactors states. The states are then
sent to the secondary FPGA for validation. The data is send over an SPI connection on 4 wires.
The relay outputs 5 bytes with the format identical with that from the relay output
microcontroller including the CRC calculation.

The protocol and the commands for the relay input microcontroller are found in
Appendix F Section 7.

Experimental work
6 EXPERIMENTAL WORK

The experimental work that was conducted included several data acquisitions from parts

of the system. Most of the tests were done mostly with respect to the new units.
6.1 THE SETUP
The setup is shown in Figure 6-1 with the main component highlighted.

VVGA screens for
Phase U main and

Main power supply secondary FPGA

Phase V

Maih input _
Insulation Phase W Main control
transformer boards

Figure 6-1: Setup

6-73

Medium Voltage Modular Multi-Level Inverter

The setup has the each phase on a separate metallic shelf. The insulation transfer was
used for protection purposes as it represents the main interface between the grid and the
inverter. The power supply of the inverter, located at the top connects with the other three
phases on the edges of the shelf. The front-most self side represents the +VDC while the back
most self side is the —VDC. The main control boards are located in the middle in order to
minimize the distance between them and the IGBTSs.

The main control unit of the setup is represented in Figure 6-2. The FPGAs and DSP were
not shown for clarity reason. The DSP would have covered most of the picture because it sits in
front of the main board on a support.

. ADC and Analog
Units power Comparators
supply relays (6 pcs of each)
Relay control ! Main board and secondary

Place of main
board power supply

Pldce of ' ‘

Overvoltage
protection secondary Anal
receiver Newog in€ dri
FPGA Comparators Gates CPLD ngo:rg\;er
Relay control CPLD (5 pes) (10 pcs)

board (6 pcs)

Figure 6-2: Setup control boards (FPGA boards and the DSP were removed for clarity)

Experimental work

The set-up control board are placed on aluminum sheets in order to ground them more
easily as well as the other cables shields. In the above figure, the left board, called the secondary
board, contains the relay control board as well as the overvoltage protection receiver. The main
board, located on the right and called the main board in chapter 2, contains the main FPGA, the
gates CPLD, ADC, analog comparators and analog comparators CPLDs.

The high power unit boards are shown in Figure 6-3.

Unit power
Interface supply
board for distribution Unit DC Bus
_ subunit A board Interface Unit analog discharge
Unit Goard foi gain board resistors
capacitors b B

Decoupling
Subunit A Subunit B capacitors

Figure 6-3: Unit boards

The unit boards for subunits A and B as well as the unit analog gain board are placed on
a single board which is located right on top of the corresponding units. This placement of the
board ensures that the noise is kept to a minimum.

6-75

Medium Voltage Modular Multi-Level Inverter

6.2 THE ADC TESTS

The ADC test was conducted with respect to the SKiiP 3 units in order to test the analog
gain boards and the FPGA acquisition. First the ADC data communication was tested in order to
ensure that data arrive property to the FPGA. The test was made with the FPGA running and
connected with the ADC. The data was acquired with a logic analyzer and shown in Figure 6-4. In
the figure the first three lines represent the channel address (0, 1, 2, 3, 4, and 5). The 3" line
represents the chip select command, an active low signal. The 4™ line is not connected to
anything while the 5" line represents the ADC clock. The lines 6 and 7 represent the data
received by the FPGA form the ADC.

| I ‘—‘Zw
1) Ty || '

Figure 6-4: ADC Communication

The data was handled by the FPGA and transferred to the screen where the actual
measurement was represented in hexa-decimal representation in Figure 6-5. The values that
represent the 8 units of the U leg are located at ADC 3 and ADC 4, lines 2, 4, 6 and 11. The value
of 0x1680 in hexa-decimal representation is the equivalent of 20 V. The scale is valid only for
these units while for the others it was measured for the last project (See [13]). The values
correspond to the acquisition made with the scope meter as presented in Figure 6-6. The test
was also made to detect the gain between the measured value and the actual one. The gain was
determined to be 276 after several measurements for various voltages.

Experimental work

Figure 6-5: FPGA screen with the displayed ADC values

Figure 6-6: Acquisition made with the oscilloscope for one unit (Ch1: DC bus voltage of the unit;
Ch2: output wave form; Ch3: none, Ch4: Measured voltage before analog gain board)

The acquisition presented in Figure 6-6 was made by firing the IGBTs of one unit through
the gates CPLD. By doing this acquisition the gates CPLD, interface boards and IGBT units were
tested as well as the analog gain board.

A Medium Voltage Modular Multi-Level Inverter

6.3 GATE DRIVERS

The tests over the gate drivers was made in order to test if the new software for the
CPLD works as well as the interface boards, communication, gate drivers and IGBTs.

The test was made with a microcontroller connected with the gates CPLD and giving the
signals from Figure 6-7. In the figure the lines are:

Not Connected
Data output 0
Chip select
Clock

Output enable
Not Connected
Not connected

No vy .k wDdNRE o

Data output 1

form NACHINE 1

LUrrent SampTe Ferion

Next Sample Period =

Figure 6-7: Gates test signal

The data is outputted as presented in the gates CPLD sections in chapter 5 as well in the
Appendix E. The signal presented herein represents the triggering for the first unit only. The
other pulses, according to the protocol, are offline. The clock delays are caused by the
microcontroller due to variable number of operations done per cycle. The same output was
generated by the FPGA and the results are found in Figure 6-6.

Conclusion FVAVAS

7 CONCLUSION

The main purpose of the project was to build a three phase cascaded full H-bridge

inverter in order to perform tests with several modulations strategies. The modulations were
simulated in Matlab and Plecs with a model identical with that found in the lab. The results
obtained were satisfactory taking into account that no filters were used. The measured THD was
lower than 5 % in most cases.

Phases shifted modulation has proved that better simulated results are obtained at
lower switching frequencies.

Therefore the level shifted modulation is not suitable for lower frequencies but the
simulated results are improved with the frequency increase. This is not quite optimal due to the
lack of voltage balance that the method produces over the IGBT units. This can prove to be
unsuitable for high voltage inverters due to the large stress.

Staircase is easy to implement and the result can prove satisfactory.

Laboratory tests were performed to individually components of the setup. The
communication between components proved their functionality. The IGBT gate drivers were
tested in connection with the CPLD communication and proved that worked. ADC was tested as
well as the voltage sensors of the new IGBT units. The FPGA output towards the gate drivers was
also tested with success.

Software tests were also performed on the FPGA software modulations in order to test
the implementation capabilities. The FPGA software prove to be working properly during
simulations.

The power supply control as well as automatic power up of IGBT units has also been
tested with 3 seconds delay between power-up of consecutive units. This prove to be a good
timing in order to limit the inrush current when powering up the IGBT gate drivers. This
concludes the functionality of the system relays.

8-79

Medium Voltage Modular Multi-Level Inverter

8 FURTHER WORK - POSSIBLE UNIT DESIGN

The chapter describes the possible unit design that was proposed at the beginning of the
project. The design contains the most relevant information about how the system should look like
with respect to modularity. The design is based on having a unit with all the electronics on-board
including a switched mode power supply, gate drivers, microcontrollers and other components that
would assure a proper functionality.

8.1 MAIN SYSTEM COMPONENTS

The modular multi-level inverter contains a series of components each with its own role.
The main components are the IGBT units which form the three phases of the inverter. On each
phase there are 10 IGBT units allowing up to 6 levels per phase and 11 levels in total. A unit can
handle voltages up to 600 V but 800 V can also be achieved if the units are pushed at higher
voltages. By having 600 V (800 V) per unit, the DC bus can have a voltage of 3 KV (4 KV).

The system components are:

- IGBT Units (30 units in total)

- Current sensors (4 sensors with at least 6 KV isolation)
- Voltage sensors (4 sensors for voltages up to 4 KV)

- Contactors (2 contactors)

- DC Power Supply

The IGBT units contain the IGBT packs as well as on-board electronics and power supply
for individual functionality.

The current and voltage sensors are used for measuring the parameters used by the
main control as a feedback loop.

The contactors are used in order to allow connection/disconnection of the units for
normal operation or for fault related problems.

The DC Power supply is the main energy provider for the inverter as it does not use solar
cells, batteries nor is it used as a static compensator.

All of these components are joined together by the control system which has as its main
components an FPGA. The FPGA is used to centralize the data from the sensors and units in
order to be able to control the whole inverter according to the user and application
requirements.

The system is represented in Figure 8-1 without the control components as they will be
presented in the following sub-chapters.

Further work - possible unit design [tEE0)

+VDC
. ? ? T
Phase U Phase V Phase W I DC Power
[
Unit 1 Unit 1 Unit 1 | v?ngpal?:v
X
: : Imax: 20 Amps
: 1
Unit6 Unit 6 Unit6 —
Unit 7 Unit 7 Unit 7
Unit 12 Unit 12 Unit 12
L ¢ ¢
VDC
7 ° A Y
A) P Y Y Y
P ﬁ) © P Y Y Y

Figure 8-1: Application structure (the control blocks have been omitted for representation
purposes)

8.2 MAIN LOGIC COMPONENTS

The main logic components represent the base of the application as they are responsible
for the application functionality. The components that the main system uses are:

- FPGA

- ADC module

- Computer communication

- Units communication

- Inverter temperature control

All of these components can be represented in a hierarchical way in order to better
understand the connectivity and relation between them. Such representation is depicted in

Figure 8-2.

The FPGA is used to control the inverter as it centralizes the data from all the units and
sensors. The FPGA analyze the data and commands each unit in order to achieve the desired

response as the implemented control structure dictates.

The ADC module is required as the FPGA does not incorporate any analog to digital
converter. The ADC is responsible to acquire the data from the current and voltage sensors in
order to provide the feedback loop for the control.

8-81

Medium Voltage Modular Multi-Level Inverter

The computer communication layer is represented by two interfaces one based on
wireless with speeds up to 128 kbps and the other with optic fibers for high speed data transfer.
The wireless system uses two RS232 wireless modems in order to command the turn ON/OFF
the system or to set the current working parameters. The high speed interface is dedicated to
monitor the voltages, currents and the actual units. On this interface measurements will be sent
to the computer as fast as possible.

The unit communication is achieved by using two optic fibers for each unit: one for
transmission and one for receiving. The data rate on these optic fibers can be up to 144 Mbps (5
m) depending on length and fiber quality. Both FPGAs are capable of communication speed up
to 650 Mbps, the speed is limited only by the fiber interface.

The inverter temperature control is responsible with the enclosure temperature
monitoring and cooling. The cooling system contains several fans that provide fresh air to the
inverter mainly to the units. The temperature monitoring is done with the help of several NTC
temperature sensors placed in appropriate location where temperature build-up may occur.

System control (FPGA)

N Computer Communication
Communica Cabinet monitoring ADC P Laver
tion Layer Y
Fan control
Units (4% 230 VAQ) T;tg;g?s;e Voltage sensor || Current sensor Fiber optic ‘ Wireless
X

Figure 8-2: Main system logic components

As a better overview of the entire system from the control logic point of view is depicted
in Figure 8-3. In the figure the isolation lines are marked in order to show where communication
between components is made over fiber optics. By using this figure, the role of each block can
be shown as well as the relation between them.

Further work - possible unit design [ty

| -
QO
]
3 Computer
£
8 Optional - Wireless Modem (RS232) ‘ Ethernet
Isolation line Optic fiber
§ Optional - Wireless Modem (R5232) ’ Ethernet
‘E’ Communication layer
@]
@)
_9 Main FPGA Microcontroller for cabinet monitoring
wn
%)
— Fan control Temperature
- Communication layer ADC System control 4x230 VAC Fans TEECITETTTT]
5 -
- Current Voltage
E g sensor Sensors M
=
- - o
=
13
Communication layer Microcontroller Microcontroller
Dead-Time Fan control Temperature
—
c FPGA adjustment ADC 2x12 V fan measurement
- Gate Dri Current Voltage
ate briver sensor dividers
IGBT Module ‘

Figure 8-3: Entire system logic structure
8.3 UNIT COMPONENTS

The IGBT units are composed of 4 main sub-systems each handling a different part. The

subsystems are:

- IGBT High power unit

- Switched mode power supply
- Controller

- Temperature control

- Analog comparator board

- Fiber optic board

The IGBT High power unit contains the gate driver and the IGBT pack, DC Bus capacitors
and charging resistors, various filters and the current and voltage sensors. The module interfaces
with all the other boards. The controller gives the signals to the gate driver and reads the
desaturation status plus the readings from the sensors, the switched mode power supply offers
voltage to the boards while the temperature control boards reads the IGBT pack NTC sensor.

The switched mode power supply connects to the DC bus of the inverter in order to
generate all the required voltage levels. The power supply uses the energy from the DC
therefore it discharges the unit capacitors.

8-83

Medium Voltage Modular Multi-Level Inverter

The main schematic of a unit is represented by Figure 8-4.

The controller is represented by one FPGA and one microcontroller connected over a
parallel interface. The interface is used to send data between them. The FPGA will handle the
communication with the master controller (the system FPGA) and the pulses validation. The
microcontroller role is to provide ADC functionality and the capability of controlling the PWMs.
Both components have an individual EEPROM in order to be programmed one at a time or both
in the same time over the serial connection from the master controller.

The inverter temperature control is used to optimize the fan use in order to prevent
units DC capacitors to discharge if not required. The whole application is based on controlling
the DC capacitor charge of each unit so the power consumption of the units must be controlled
starting with the cooling system. The temperature control will monitor the IGBT pack NTC sensor
as well as the heat sink temperature and the fan speed in order to better control the unit
cooling.

The analog comparator board is used to compare the analog signals received from the
voltage dividers and the current sensors to a predefined voltages corresponding to a threshold.
If the threshold is reached or jumped, the comparators will trigger a fault signal that will be
picked up by the FPGA. The fault signal will have a shut-down effect over the entire unit.

DC Chopper IGBT Mpdule
Current
Voltage _| Sensor
Sensor HXS 50 To other units of
-1 (Resistive the inverter
4| Divider) 4| —
|
! v
Gate Driver
S Temperature
itched Mode
. Supply (Ex: IR2214, IR2238) Sensor
(DC/DC Converter) 4
RX Fiber >

FPGA

TX Fiber « !
r
E Optional Fiber Board

U IGBTs
Selector V IGBTs
P W IGBTs
Low cost microcontroller
(Microchip or Atmel uC)
Reset

Figure 8-4: Unit connectivity

The fiber optic board is used in order to communicate with the main system over fiber
optic at relative high speed. The fiber optic board uses analog circuits in order to boost the

Further work - possible unit design [tz

transmitted signal and a smith trigger for the receiving part. The fiber optic board communicated
with the FPGA on differential lines in order to allow a low influence over the communication
lines. The differential lines also allow a high speed communication to take place without the
concerned over noise or other perturbing factors.

The DC chopper is used to protect the DC bus from over-voltages as well as providing a
way to rapidly decrease the DC bus voltage as the command structure decides to.

A unit can also have a hierarchic representation:

. . Switched
Communication layer mode power
supply
Microcontroller
FPGA Microcontroller (ADC, PWM, etc) for unit
monitoring
High Tempera-
g Current Voltage Dead-Time Fan ture
power - - EEPROM
. Sensors divider adjustment control measure-
section ment

Figure 8-5: Main unit logic components

The Figure 8-5 shows the basic unit components and subsystems while Figure 8-4 shows
how the entire unit components are connected one another.

8.4 SYSTEM CONSTRUCTION

The system can be constructed into a metallic enclosure in order to be compact and to
prove that the system is modularized and it is quite simple to remove/replace one unit. The
system enclosure is cooled by the help of several fans that provide air flow to the units. The
enclosure also prevents the touch of exposed wires and parts which can cause electrocution. By
assembling the system in this way, the possibility of moving it as a whole system is therefore
possible.

8.5 UNIT - HIGH POWER MODULE

The high power module contains all the high power components of a single unit like the
IGBTs filters etc. The high power module also incorporates DC link capacitors and charging
resistors plus a set of voltage and current measurement devices like current sensors and voltage
dividers.

8-85

Medium Voltage Modular Multi-Level Inverter

8.5.1 1GBT

The IGBT used in this application is a standard 6 Pack IGBT unit made by Danfoss code
25H1200T. The internal schematic of the pack is represented in Figure 8-6.

PIDA PO PIDE o wof KU wof(& wof(Zpw R
17

10—

15 {71
1o L 5 [}
30 8 5
NDA NDA N3DA '1L0—| CH-T 130_{ NU 120—{ NV a—| NW
o

<10

FE

Figure 8-6: IGBT internal schematic (picture taken from the IGBT Pack datasheet)

The IGBT contains a DC chopper as well as a three phase rectifier. For the application
only the DC chopper and two legs of the inverter side will be used. All the related components
with the parts that are not used will not be mounted on the board but place for future mounting
will be left.

8.5.2 GATE DRIVER

The gate driver used in this application should be able to control all the required
switches. A gate driver dedicated for this type of IGBT pack had been selected from the
International rectifier: IR22381. The driver offers adjustable dead-time as well as desaturation
protection for the IGBTs. The driver also provides the possibility of controlling the DC chopper.
The schematic of this gate driver is shown in

e
15V vee V5123
3 DSH123 y— 4
L —e—»| UN122
§ i L——— T WL poei2a| A E}
. LT
g o =EE a Ho@1,2,3 — =
0 J = | o [A —ou %
B o VFH123 g :l: —0V E
o C e lumiz: ; V5123 oW o
a 4 oss m DEL123 g
o ||:.}
LOP123 ST
l - : |
{:‘j AN 3 ﬂ_’.' L0Q123
oT LOM1,2,3
vss cOM

[

Figure 8-7: Gate driver connection schematic (picture taken from the gate driver datasheet)

The gate driver does not offer any isolation between the inverter and the control part,
isolation not required for the current application. Among the signals that the driver can provide
to the control part are:

Further work - possible unit design

- General fault (an open collector output)
- Desaturation signals for each IGBT from the inverter

The dead-time can be adjusted with a simple resistor but for this application a digital
potentiometer was used in order to be able to adjust the dead-time by digital means. On the
board place had been left for a simple resistor and for a potentiometer if manual adjustment is
desired.

8.5.3 VOLTAGE DIVIDERS

The cheapest solution for voltage measurement for low voltage measurement is the
resistive divider. When compared to voltage sensors like LEM LV-25 which cost more than 300
DKK, the voltage dividers offers the lowest price on the market with the cost of isolation. The
voltage divider does not offer any galvanic isolation between the measured voltage and the
measurement device. For this application this solution was used because no isolation is required,
each unit being capable of handling on its own. Further on, each unit communicates with the
central control system through fiber optics which is the main isolation barrier between the units

?m

\in R2

and between the units and the system.

Rm I Vout

Figure 8-8: Voltage divider

The voltage dividers are placed in those locations where the importance of voltage
measurement could be crucial. There are several voltage dividers that are used for the following
purposes:

- Output phase measurement (3 voltage dividers)

- Input phase measurement (3 voltage dividers)

- DC Bus voltage measurement after and before the filter (2 voltage dividers)
- DC Bus capacitor voltage measurement (1 voltage divider)

The output phase voltage measurement can be used on the control board with a low
pass filter in order to obtain the sine wave for the ADC.

The input phase voltage measurement is required in order to determine the input
voltages and to check for wrong connection of the inverter (the output connected to the input).
It can also be used to check for input voltage waveform and number of phases present. This will
help in determining the limitation of the inverter with respect to the DC capacitor value
(determine the voltage ripple).

8-86

8-87

Medium Voltage Modular Multi-Level Inverter

The DC bus voltage measurement helps in establishing the real DC voltage in order for
the PWM duty cycle calculation.

The DC Bus capacitor voltage measurement helps in determining the charge state of the
capacitor useful at power up. The charging resistor is short-circuited when the DC bus voltage is
very close to the capacitor voltage (charge complete). At this point, the relay that will disconnect
the DC charging resistor will be switched ON so all the current from and towards the capacitors
will pass through it.

The voltage dividers are sized in such a way that a 0,6 W or 1W resistors are required for
the main resistors. The smallest resistor must be connected in parallel with a capacitor
(depending on the voltage divider location) in order to filter the voltage. This resistor and the
capacitor can be rated 0,6 W or less and MUST be placed as close as possible to the board
terminals for the command board. The output voltage of the voltage dividers has a rating of 800
V / 3.3 V. This is not quite equal for each voltage divider as the number of resistors as well as
resistors value may differ from one voltage divider to the other. For the software
implementation the resistors will be measured for each unit in order to determine the actual
gain of each set of voltage dividers.

In order to calculate the voltage divider the peak voltage for which the divider will be
used must be known. The output voltage of the voltage divider is (see Figure 8-8):

Ry
Vour = Vi

" Rtotal
Rtotal = R1 + Rz + -+ Rn + RM
Equation 8-1: Voltage output divider formula

In Equation 8-1 the V;, represents the input voltage while the V, represents the output
voltage. The R; to R, represents the main resistors and Ry, represents the measurement resistor.
In order to size them the power dissipation on each should be measured by using the basic
formula: P = UI = U?R.

The voltage divider must be able to charge a small capacitor and also to offer a low
current for the ADC therefore a current of 1 mA is more than enough for a voltage divider.

8.5.3.1 INPUT/OUTPUT PHASE VOLTAGE DIVIDER

The output voltage divider can have a reduced number of resistors because the voltage
is not constant on it and switched between VDC and 0. Therefore a certain amount of time for
cooling is therefore provided.

For this divider the peak voltage is 800 V and the average duty cycle is 0,5. The total
resistance required in order to extract 1 mA will be:

Further work - possible unit design

Uu 800V

Riotar = 7= 00014~ 8000hms

Each resistor that will be used for this voltage divider has a voltage limit which can be up
to 350 V for small 0,6 wire resistor. In order to prevent this limit to be reached a voltage
difference of 50-100 V will be enough to prevent the resistor from being destroyed. Because of
this, the minimum number of resistors that can be used is:

%4 800V)
Nyesistors max — m = W = 3,2 - 4 resistors
%4 _ 800V

Nresistors_min — = 2,6 —» 3 resistors

Viimie 300V

In order to reduce the track length and the number of resistors used, 3 resistors will be
used for power dissipation in the voltage divider. The actual resistors that will be used is hard to
determine due to standardized values of the resistors. A table can be the better approach in
order to determine the resistors that will be selected. A great care should be taken for the
voltage output in order not to burn the ADC of the microcontroller, therefore, the output (Vi)
should be limited to 3,3 V. By taken into consideration the duty cycle average of 0,5 a resistor of
0,6 W can have the power dissipation up to 0,4 - 0,45 W. The limitation is imposed in order not
to burn the resistor and also to have a 0,6 W, 1% tolerance resistor because 1 W with 1 %
tolerance is not that commonly used. In order to simplify calculation will consider R; = R, = Rz =
R.

No. R Rum Riotal I Wr Vi Vm Viotal
[kQ] [kQ] [kQ] [mA] [mW] [Vl [Vl [Vl
1 200 2,4 602,4 1,328 350 | 26560 | 3,19 | 828,30
2 220 2,7 662,7 1,207 320 | 26558 | 3,26 | 809,97
3 240 2,7 722,7 1,107 290 | 26567 | 2,99 | 883,30
4 240 3,0 723,0 1,106 294 | 26556 | 3,32 79530
5 270 3,0 813,0 0,984 261 | 26568 | 2,95 | 894,30
6 270 3,3 813,3 0,983 261 | 26558 | 3,25 813,30
7 300 33 903,3 | 0,8856 235 | 26569 | 2,93 | 903,30
8 300 3,6 903,6 | 0,885347 235 | 2656 | 3,19 | 82830

Table 8-1: Phase Voltage divider resistor selection

From the Table 8-1 we selected configuration 3 because it fits the power dissipation

requirements, the current output is very close to 1 mA plus it leaves a relative small margin of
error for the ADC. The resistors in this case should be wire resistors (not SMD) mounted at 5 mm
one from the other and at 5 mm from the board (long pins). The voltage drop on a resistor is
around 265 V plus the voltage can be measured up to 883 V.

8-88

8-89

Medium Voltage Modular Multi-Level Inverter

The resistors that are used for the phase output can also be used for the phase input
voltage divider because the latter also has variable voltage level (being a sine wave).

58.5.3.2 DC BUS VOLTAGE DIVIDERS

The DC Bus voltage divider is somehow different when compared with the phase
output/input voltage divider. This is due to the fact that the voltage is almost stationary at a high
voltage level therefore the voltage divider should have at least 3 resistors for power dissipation
SMD type with 1 % tolerance should be considered in order to ease the placing on the board and
to reduce the track length. Because a relative constant voltage will be found in the DC bus the
current that the voltage divider should supply can be between 0,3 and 0,6 mA. Also the SMD
components does not support a large voltage drop on them therefore the voltage drop should
be maintain at least 50 V lower then the SDM resistor voltage. A normal 1206 SMD has a voltage
rating of about 200 V (data taken from various manufacturers, ex: Panasonic). With this rating
the voltage drop on the component should not go above 150 V.

Being a voltage divider the minimum number of resistors that must be used is:

1% 800V £33 5 6 -
Nyesi =——=——=15,33 - 6resistors
resistors Vlimit 150V
As the formula above specifies, a minimum of 6 resistors should be used therefore will
consider R; = R, = R; = R, = R; = R4 = R. A number of 7 resistors is unjustified because the
track length will become greater therefore only 6 resistors for power dissipation will be used.

The total resistance required will be around:

800V
Rtotal_min = m =~1,3 M0

800V
Rtotal_max = 03mA = ~2,6 M1}

Rtotal_min + Rtotal_max

Rtotal_av = 2 =~19 M0

Equation 8-2: Total resistance (minimum, maximum, average) for DC voltage divider

By considering Ria = 1900 kQ the individual resistance value will be 330 kQ for 6
resistors (values obtained by using standardized resistor values — 316,6 being the actual value
required). By using 330 kQ resistor the total resistance will be Ry = 1980 kQ.

The selection of the resistors can also be made by using a table being the simplest way.
The values displayed in the table represent only the most relevant selections that can be made
with respect to the total resistance limitation as Equation 8-2 shows.

No. R RM Rtotal I WR VR VM Vtotal

Further work - possible unit design [tEE[0)

[ka] [ka] [ka] [mA] [mW] [Vl [Vl [Vl
1 220 51| 13251 0,603 80 | 132,82 3,08 | 857,42
2 220 56| 13256 0,603 80 | 132,77 3,38 Over
3 240 56| 14456 0,553 74 | 132,82 3,10 | 851,87
4 240 62| 1446,2 0,553 71| 132,76 3,43 Over
5 270 62| 1626,2 0,491 65 | 132,82 3,05 | 865,56
6 270 68| 16268 0,491 65| 132,78 3,34 Over
5 300 6,8 | 1806,8 0,442 59 | 132,83 3,01 | 876,83
6 300 75| 18075 0,442 59 | 132,78 332 Over
7 330 75| 19875 0,402 53 | 132,87 3,02 | 8745
8 330 82| 19882 0,402 53 | 132,87 3,30 | 800,13
9 360 82| 21682 0,368 49 | 132,83 3,03 | 872,57
10 360 91| 21691 0,368 49 | 132,77 3,36 Over
11 390 91| 23491 0,340 45 | 132,82 3,10 | 851,87
12 390 10 | 2350,0 0,340 45 | 132,77 3,40 Over
13 430 10 | 2590,0 0,308 41| 132,82 3,09 | 854,70
14 430 11| 2591,0 0,308 41| 132,77 3,40 Over

Table 8-2: DC voltage divider resistor selection

From Table 8-2 the final selection is made with respect to current, power dissipation and
measured voltage. The better candidates are numbers 3, 5 and 11. Number 5 will be selected
because the current is relatively high, the measured voltage output is scaled almost to the
maximum range of 3,3 V and allows the maximum value of 76 V over measurement and the
power dissipation and voltage drop fits the resistor requirements.

8.5.4 CURRENT SENSORS

The current sensor used for each module allows local control of the unit IGBT switches
with respect to the current sense. The current sensor will only be placed on one phase the other
phase that will be used will be wire-strapped.

The current sensor used is a low cost current sensor made by LEM (HX15) with voltage
output so it can be directly connected to the microcontroller.

8.5.5 DCBUS

The unit DC bus contains several basic components like filters, capacitors, a current
sensor (see 8.5.4 - Current sensors), voltage sensors (see 8.5.3 - Voltage dividers), charging
resistor and relay. The unit DC bus is interrupted in order to let space for a filter if required for
other applications.

8-91

Medium Voltage Modular Multi-Level Inverter

8.5.5.1 PROTECTION

The DC bus contains a single varistor connected between the positive line and the unit
ground. The role of this varistor is to prevent the DC bus for increasing beyond normal range in
order to protect the various components which use the DC bus (capacitors, SMPS, voltage
dividers etc). The varistor limits the DC bus to 1 kV.

The role of this varistor is not to protect the equipment against long periods over-
voltages but for short periods of time.

8.5.5.2 MEASUREMENT

The DC bus has current and voltage sensors used for the control system in order to
determine the power capability of the inverter by determining the voltage level as well as
current value. These two parameters also helps in determining the power flow across the unit.

The current sensor is a LEM unit used to measure the currents up to 30 Amps. The
sensor is located before the IGBT module and after the filter (if used). For more details see 8.5.4
- Current sensors.

The voltage dividers measure the DC bus voltage in 3 points:

- After the rectifier (before the filter)
- After the filter (before the IGBT module pack)
- At the DC capacitors

The measurement before the filter is not going to be used for this application it is left as
an potential Add-on for further usages of the inverter unit.

The measurement between the filter and the IGBT module pack is required because it is
used for both unit control as DC voltage measurement as to determine when the capacitors are
fully charged.

The DC capacitor voltage measurement is used to measure the voltage near the
capacitors after the charging resistor. This measurement is only used at boot-time in order for
the system to determine when the capacitors are charged. (See: 8.5.5.3 - Capacitors charge
control)

8.5.5.3 CAPACITORS CHARGE CONTROL

The capacitor charge must be controlled in order to prevent a large inrush current to be
absorbed from the grid or from an external DC bus power supply when the inverter gets
connected. In order to control the capacitor charge at boot-up a charge resistor is therefore
used. The charge time is directly influence by the size of the power resistor R17 from Figure 8-9.

Further work - possible unit design [tEE

The charging resistor limits the current flowing towards the capacitors when the system is first
connected.

When the voltage difference between the actual DC bus and the capacitors is small
enough (around 10-20 V) the charging resistor is short-circuited with the help of a relay RL1 from
Figure 8-9. After charge is complete, the relay must withstand the full current flowing from and
towards the capacitors.

R17

150

OC BUS + S—yg
RL1
Rl R Ra Rit
L 4 Bk 36k #hik 36k
3 | J oo J o
1 - =
Comanda M »—_ﬁ 4700 4700
] Rz R RiD RiZ
Comanda P 2—m7m———= 1 4000 4004
2 Ak a6k Bk a6k
RELAY SPET | | |)
33 ET Rz F1§
Bk 36k #hik 36k
J ooz J oo
T 4F0u T 470u
a0y R R a0 Ri4 RiG
Ak a6k Bk a6k
OCBUS. 1 1 1 J

Figure 8-9: Schematic of the DC Bus capacitors with short-circuit relay (RL1)

Charging resistors tend to heat-up so great care should be considered to the resistors
power dissipation. The resistor is placed in the proximity of the capacitors with an isolation
material covering it.

The charging resistor is selected by considering a maximum of 4 Amps current during
charge. This will determine a charge resistor of:

U 600V

—=——=1500
1 4A

By considering a 150 Q charging resistor the time constant will be:
T = RC = 150 * 1,65 * 1073 = 0.2475s

In order to determine the amount of time the capacitor needs to charge, a 100 mA
current will be the lowest value considered for which the charge resistor will be used to charge
the capacitor. The amount of time required to achieve the imposed current threshold is
calculated from the charging current equation:

V:
input "

_t
I = e RC

Equation 8-3: Charging current

8-93

Medium Voltage Modular Multi-Level Inverter

15042 * 100mA
1500 - 100m) _ o,

RI
t=—R*C*ln<7>=—150.Q*1,65mF*ln< 00V
Equation 8-4: Required time for capacitor charging

For this application a single charge resistor of 150 Q rated 8 W is used and will charge
the capacitor in 0,91 seconds.

58.5.5.4 DC BUS DISCHARGE

The DC bus is used by several subsystems and therefore it discharges. The discharge
process depends on the current absorbed which is not constant. Therefore it is hard to establish
a time constant or a load for the DC bus. For this application the purpose is to maintain the DC
bus charged as long as possible. The unit consumers must be optimized in order not to extract
unnecessary energy and also to provide a discharge path for the capacitors. The discharge
resistors on the capacitors will not be mounted for this application even if the resistors will be
calculated in this chapter.

Besides the DC filter, IGBT module pack (load) and the discharge resistors, the DC bus is
discharged by several factors like:

- A LED which shows voltage presence in the DC Bus (max 8 mA)
- The switched mode power supply (variable current absorbed from the DC bus)
- Internal DC capacitors resistors

The discharge resistors must discharge the capacitors in less than 3 minutes. If we
consider that 5 time constants (5T = 3*60s) is more than enough time for the capacitors to
discharge then the required resistor is:

R—ST—3*60—109kQ
T C 1,65

Equation 8-5: Required discharge resistor

8.5.6 OUTPUT STAGE
The output stage of the inverter was design so that a voltage divider and a current

sensor can be placed on each phase. Because of the application structure, only one phase will
have the voltage divider and current sensor mounted.

8.6 UNIT COMMUNICATION BOARD

The communication board contains the fiber optics required for unit to system
communication. The board contains a set of fast fiber optics receivers and transmitters with

Further work - possible unit design

level shifters in order to make it compatible for 3.3 V systems. The board uses 5 V in order to
boost the transmitter signal and also to filter the receiving signal.

This board will be located on the unit as well as on the main system. The board was
created for high speed communication for speeds up to 125 MSymbols/second.

The main components of the boards are represented by one fiber optic emitter (HFBR-
15X7Z) and one receiver (HFBR-25X6Z). The transmitter has a set of components analog
amplifiers and triggers in order to boost the signal by forcing a current into the fiber optic LED.
The receiver contains a set of filters with the role of creating a smith trigger in order to filter the
received signal. Both the transmitter and the receiver are digital devices but for this board are
used as analog devices.

The electrical connection with the board is made over differential lines at 3,3 V. The
differential signal allows high speed data to pass through without a large interface from the
other signals.

8.7 UNIT — ANALOG COMPARATORS

The analog comparator board connects on top of the control board and provides
protection for over-voltages and over-currents by comparing the analog values received from
the voltage dividers and from current sensors with a set of preset values. The preset values are
set with the help of several potentiometers one for each set of parameters. The parameters that
will have individual voltage reference are:

- Input voltages (3 voltages)

- DC voltages (2 voltages)

- Output voltages (3 voltages)
- DC Current (1 current)

- Output currents (3 currents)

The values in parenthesis are the maximum number of possible sensors or voltage
dividers. For this application only the DC voltages, output voltages and one output current will
be used. Space on the board is left for the rest of the components.

The schematic used to obtain the desired reference voltage is shown in Figure 8-10. In
the figure the fixed resistor will be placed only if the potentiometer is omitted. In that case, the
resistors will determine the voltage output as a normal voltage divider will. The capacitors C48
and C49 from the figure are used to provide a relative stable voltage output for the reference
voltage. The potentiometer will be used to adjust the reference voltage. Most of the reference
voltages will have a potentiometer. The resistive divider will only be used for the currents and
DC voltages because these are determined by the components used. The output/input voltages
may differ so for these a potentiometer will be used.

8-94

8-95

Medium Voltage Modular Multi-Level Inverter

oWCC

R7S
Cd4a OHP
100n

R4
20k

v REF_% OUTRUT_P

R7G
C42 > DHP

J_ _T_ 100

Figure 8-10: Analog comparators reference voltage selection

The number of comparators per signal varies depending on the value that will be
compared. For example, the DC voltage cannot be negative (from design) and therefore only one
comparator is requires (see Figure 8-12). For parameters that can have negative values two
comparators are used, one for the lowest value and one for the upper value. Both absolute
values (the negative and positive) represent the limited voltage/current for that particular

sensor. The schematic of such comparator is depicted by Figure 8-11.

7 %
c1 2{1?
i T
REF_W IMFUT P % =
callbt 7235
l (I})
WILTABE R B D\,:'cc —>» OWER_W R REF ' CAP P 3 —a]
WOLTAGE CAP s— 3|,
cz
“ _:l_ 100nF
REF_W IMFUT_N %
W7 235
-
Figure 8-11: Double comparator Figure 8-12: Simple comparator

The input analogical value is taken after the filter for the parameters that can have a

negative value. The comparators are open collector so several of these can be connected on a

single line with a pull-up resistor.

<Bibliography _

9 BIBLIOGRAPHY

[1] B. Wu, High-power converters and AC drives. Wiley-IEEE Pres, 2006.

[2] A. C. Rufer, N. Schibli, and C. Briguet, "A direct 4-quadrant multilevel converter for 16(2/3) traction
system".

[3] F.Z.Peng, J. W. McKeever, and D. J. Adams, "Cascade Multilevel Inverters for Utility Applications".

[4] Sustainable Facility. (2009, May) Gen 3 Perfect Harmony drive from Rubicon. [Online].
http://www.sustainablefacility.com/Articles/Products/3a6c94b4ece38010VgnVCM100000f932a8c0

[5] P. S. Perez, D. Van Hertem, J. Driesen, and R. Belmans, "Wind power in the European Union: grid
connection and regulatory issues," pp. 776-783, 2006.

[6] T.Ackermann, Wind power in power systems, 0470855088, Ed. Wiley, 2005.
[71 W. Brook-Hart, "Concrete foundations for offshore wind turbines ," february 2009.
[8] A. P.S. Weimers Lars, "HVDC Light, the Transmission Technology of the future," 2001.

[9] P. Bresesti, W. L.Kling, R. L. Hendriks, and R. Vailati, "HVDC Connection of offshore wind farms to the
transmission system," no. IEEE Transactions on energy conversion, vol. 22, no.1, 2007.

[10] N. B. Negra, J.Todorovic, and T. f. Ackermann, "Loss evaluation of HVAC and HVDC transmission
solutions for large offshore wind farms," Science direct - Electric power systems research no.76, pp. 916-
927, 2006.

[11] S. Khomfoi and L. M. Tolbert, Chapter 31 Multilevel Power Converters.

[12] J. Weatherill, "First International Workshop of Feasibility of HVDC Transmission Networks for offshore
Wind Farms," 2000.

[13] S. Cristian, C. Valentin, and C. Nicoleta, "Medium Voltage Bidirectional DC to DC Modular-Multilevel-
Power Converter for MW power rating," Aalborg University, Aalborg, Semester report, January 2009.

[14] B. Wu, High-power converters and AC drives. Willey, IEEE Press.

[15] N.C. V. C. Cristian Sandu, "Medium Voltage Bidirectional DC to DC Modular-Multilevel-Power Converter
for MW power rating".

[16] N.C. V. C. Cristian Sandu, " Medium voltage bidirectional dc to DC modular-multilevel-power converter
for MW power rating," 2009.

[17] S. A. Bashi, N. F. Mailah, M. Z. Kadir, and K. H. Leong, "Generation of Triggering Signals for Multilevel
Converter," vol. European Journal of Scientific Research, Vol.24 No.4, pp. 548-555, 2008.

[18] P. Abraham, Switching Power Supply Design, 2nd ed., 978-0070522367, Ed. Waban: McGraw-Hill, 1998.

[19] www6.poweresim.com. (2009, Apr.) Power Simulator. [Online]. www6.poweresim.com

[20] M. Brown, "Very Wide Input Voltage Power Supply," On Semiconductors Manual, 2002.

[21] M. Brown, "SWITCHMODE Power Supplies Reference Manual and Design Guide," On Semiconductor
Manual, May 1999.

[22] C.Wm.T.McLyman, Transformer and Inductor Design Handbook. New York: Marcel Dekker, 2004.

CECyAY Medium Voltage Modular Multi-Level Inverter

Nomenclature [FHE0ECL

10 NOMENCLATURE

Nearrier numbper — NUMbers of carriers

Mur_of voltage._levels — NUMber of voltage levels
@cr — phase shift angle

for — carrier frequency

fm —modulating wave frequency

ms — modulation frequency index

m, —amplitude modulation index

V:n\a — peak amplitude of the modulating wave
V;r — peak amplitude of the carrier

V,; — peak amplitude of the modulating wave

TBD To be discussed ASCII American Standard for

IC Integrated Circuit NC Not connected

OpAmp Operational Amplifier EN Enable

ADC Analog-to-Digital Converter FPU Floating point unit

DAC Digital-to-Analog Converter CLK Clock

AVCC Analog Voltage supply HRF Human Readable Form

DvCC Digital Voltage supply ovC Over Current

IGBT Insulated Gate Bipolar Transistor OE Output Enable

DC Direct Current FLOPS FLoating point Operations Per Second
MSPS Mega Samples per second MIPS Millions of instructions per second
MOSI Master Output Slave Input

MISO Master Input Slave Output

CPLD Complex programmable logic device

FPGA Field-programmable gate array

HID Human Interface Device

VGA Video Graphics Array

ovv Over Voltage ovT Over Temperature

LUT Look-up table

(0ECeEl Medium Voltage Modular Multi-Level Inverter

Appendix [iEEiL0[o)
11 APPENDIX

Appendix A — System boards

Appendix B — Modulations

Appendix C — Possible design

Appendix D — Hardware simulations

Appendix E —Simulink code

Appendix F — DSP Source code

Appendix G — Main FPGA source code

Appendix H — Main software

Appendix | — Switched mode power supply

0 1 2 3 5 6 7 8 9
P T T T
X1 | . * . . * . * —
soovac! | [[F1
u v W 50A
660V
AL A1 AL
R1 R2 R3 1 3 5 Al Al Al Al 1 3 5
68 Ohm | A2 68 Ohm | A2 68 Ohm | A2 K2 RY RS R6 R7 K3
1 3 |5 100 100w 100 3112 Ju s 100 Ohm [A2 100 Ohm | A2 100 Ohm | A2 100 Ohm | A2 33Y2 Ty Js
K1 200 W 200 W 200 W 200 W 3x690V
330Y2 4 Ve
e VDC_PO0Z/2.0
Nl Nl r _____ -i
< < XA21 |
61[§ 4 < [< 2evoct []]!
- .| A M IH .| A1 u v W
[MlJL R8 [MaJL R13 [MlliL R18 RV1 u RV3 u
450VDC ’_HZ 33k 450vDC ’_F‘Z 33k 450vVDC ’_92 33k E — 550V 550V
2, 2nF 4 2, 2nF 4 2, 2nF 4 U1
~ - ' “peryetizgs i i k3
c1 .| A .| At .| At
VAL VB2 [MZJ R9 [M7JL R1Y4 [MlZJL R19 RV2 v RVY4 u
150R E1C2 450vDC Az 33k 450vDC ’_F‘Z 33k 450VDC ’_92 33k Al 550V 550V
2,2 p 2,2 p 2, 2nF o PVDE<>
A2
E1C2 b e e
VAL 7N VB2 P ol oLn
Ez CM3 R10 CM8 R15 CM13 R20 o
450vDC ’_RZ 33k 450vDC ’_HZ 33k 450VDC ’_HZ 33k
2, 2nF o 2, 2nF ¢ 2, 2nF o
‘ ‘ ‘ VCC Rela GND NEG
NI NI NI R 7
+ + +
cmy== r11l] cno== r1s[] cwie== Rt . |
4s50vDC ’_HZ 33k 450vDC ’_HZ 33k 450VDC ’_”2 33k 1 3 5
2. 2nF ¢ 2, 2mF ¢ 2nF 4 KS
3.5 I }
2 y 6
J)) 3x690V VDC_NEG/2.0
.| A .| At .| At
M5 = R12[| cM10 — R17[| cM15 = R22 —=P_SBN/u.9
450vnc_"_ﬂz 33k 450vuc_v—”2 33k u50vuc_v_92 33k
L 2nF o 2, 2nF 4 2, 2nF o L =P _VCC/u. 39 ‘y 1 3 5
3.4 X B I 4 6
3x690V
—
J S—
F2
50A
660V
DC Bus Capacitors Chopper Varistors (1100 V)
2
Date |30.0ct.2008 Aalborg University / A High power project MMLC - HVDC Project E
User Cristian Sandu ,,,/ architecture ‘* - 1
Check. [31. May. 2009 g.
Change Date Name [Stand. First ‘Created for EPIAN| c(reated by GrOUp 930/2008_2009 5 Pg.

1 I 2 I 3 I 4 I 5 6 7 8 9
i i |
UNIT_ur | [UNIT_v1| [UNIT_W1 [[
P = P = P =
N IOmFT N IOmFT N lOmFT
o o o
UNIT_UZ2 UNIT_V2 & UNIT_W2
P El.I. P El.I. P El.I.
N 10mF-|- N 10mF-|- N 10mF-|-
(e}
AL
P4<ﬂ> UNIT_U3[[N UNIT_v3[[N UNIT_W3[[N o o o
Az F C1o= F C1e= F C1e= P18<ﬂb PZB<H> p3B(H
N 10mF N 10mF N l0mF A2 A2 A2
o o o
UNIT_uu| | UNIT_vu| [UNIT_Wu [|
P El.I. P El.I. P El.I.
N IOmFT N IOmFT N lOmFT
o o o
[[[
A1 A1 A1 A1l A1 A1 N 3 5
P1A P2RA P3R@A PU<> PV<> PN<>
A2 A2 A2 A2 A2 A2 3-8, 4 6
1.9/VDC_POZ =—
1.9/VDC_NEG =—
AL AL AL
P1C PZCd‘:‘b P3CCT5
A2 A2 A2
UNIT_US| [UNIT_v5| [UNIT_W5[[
P El_I_ P El_I_ P El_I_
N IOmFT N IOmFT N lOmFT
(e} (o] (e}
UNIT_ug[[UNIT_vE| [UNIT_W6[[
P El.I. P El.I. P El.I.
N 10mF-|- N 10mF-|- N 10mF-|-
o Q o
UNIT_U7 S UNIT_V7 s UNIT_W7 S
p El_I_ P El_I_ p El_I_
N 10mF-|- N 10mF-|- N 10mF-|-
o o o
UNIT_US8 UNIT_V8 Ky UNIT_W8 _1__
b El_I_ b El_I_ b El_I_ PE =
N IOmFT N IOmFT N lOmFT
7 ? 7
1 . . . 3
Date — Aalborg University /’ A High power project MMLC - HVDC PFOjECt t
User Cristian Sandu ,,/ architecture ; >
Check. |31. May. 2009 g
Change Date Name |Stand. First ‘Created for EPIAN| cCreated by GrOUp 930/2008_2009 5 Pg.

0 1 2 3 Y 5 6 7 8
uz[- - .
XAl |
| | yoovac! | _JL_}
u v W
X3:1
| 1 |
‘ Sl(f? ‘ PE —
2
‘ ‘ X3: 2
o "
External Mushroom push button contact (Safety) F3|:][:|
10A [A2
11 11 11 11 11
KA1 KA2 KRA3 KR4 KA KAB
4.0} gy LR 42y gy CRER T 4. CRCR
kAg L2t
49 f,
AL Al A1 AL Al
K1 K2 K3 K4 K5 K6
230VAC Az 230VAC A2 230VAC A2 230VAC A2 230VAC 230VAC A2
Main Input VDC Bus
Charging Positive VDC Bus Chopper Load
resistor Negative
1-~ 21.0 1 -~ 2 1.3 1-~ 21.8 1-~ 2 1.8 1-~ 21.5 1-~ 22.8
3. 41.0 3. 4 1.4 3.~ 41.9 3. 41.9 3. 41.5 3. 429
5_ - 6 1.0 5~ 6 1.4 5- - 6 1.9 5- -~ 6 1.9 5- - 6 1.5 5- - 62.9
2 11 — ~ 14 5.1 11 — ~ 14 5.2 11—~ 14 5.2 11 — - 14 5.3 11 — - 14 5.5 11 — - 14 5.5 4
Date |21.Nov.2008 Aalborg University / A High power project MMLC - HVDC Project E
User Cristian Sandu ’,,/ architecture ‘*
Check. [31. May. 2009 Pg 3
Change Date Name |Stand. First ‘Created for EPIAN| cCreated by GrOUp 930/2008_2009 5 Pg.

0 1 2 Y 5 6 7 8 39
P i
XA21 |
24 voc! _JL_!
u v W
E —
+24 VDC +24 vDC
— M M M — M — —
0 W 0 W 01 W 02 W 03 W oy W 05 W 06 W
+ I + T + T + I + T + T + I + I
] A4 A4 A4 A4 A4 A4 A4
TN N N N N N N N
0 VDC (GND) Vi Vi Vi vi 0 vbC (GNK3 Vi
1.6/P_SGN =——
1.6/P_VCC
X1:19X1: 2 X1:3 X1: 4 X1:5 X1:6 X1:7 X1:8 X1:9
+24 vDC +24 VDC
Al Al A1 Al A1 A1 Al Al Al
KA1 KA2 KA3 KAY KRS KRB KR7 KA8 KA9
24voC A2 24voC A2 24voC A2 24voC A2 24voC A2 24voC A2 24voC A2 24voC A2 24voC A2
11—~ 14 3.0 11—« 14 3.1 11—~ 14 3.3 11—~ 14 3.4 11 — ~ 14 3.5 11—~ 14 3.6 11—« 14 3.6
21 22 3.0
3 5
Date Aalborg University / A High power project MMLC - HVDC Project E
User Cristian Sandu ,,,/ architecture ‘* - m
Check. |31. May. 2009 g
Change Date Name |Stand. First ‘Created for EPIAN| c(reated by GrOUp 930/2008_2009 5 Pg.

kiy tokzy Mt ks Tt ket ksy 't key Mt
3.0} 44 3.1 % 4y 3.3 % 44 3.4 4y 3.5} 44 3.6 % 44
us3 o] o] (o] o] o] uy o] o] (J) (JJ o
Mo poR 1 2 3 4 com FPGA 1 2 3 4 cam
onitor Monitor
FPGA Monitor FPGA Monitor
Input Input

Date Aalborg University / A High power project MMLC - HVDC Project E
User Cristian Sandu ,,,/ architecture ‘*
Check. [31. May. 2009 Pg. 3

Group 930/2008-2009> >

Change Date Name [Stand. First ‘Created for EPIAN| Created by

1 CONT _OuUT 07
2 CONT_OUT 06
3 CONT_OUT 05
4 CONT_OUT 04
5 CONT _OUT 19
6 CONT OUT 18
7 CONT OuUT 17
8 CONT OUT 16

1 CONT _OUT 20
2 CONT_OUT 21
3 CONT_OUT 22
4 CONT _OUT 23
5 CONT_OUT 00
6 CONT_OUT 01
7 CONT_OUT 02
8 CONT_OUT 03

1 CONT OUT 12
2 CONT _OUT 13
3 CONT _OUT 14
4 CONT _OUT 15
5 CONT_OUT 08
6 CONT_OUT 09
7 CONT _OUT 10
8 CONT_OUT 11

1 CONT_IN_00
2 CONT_IN_01
3 CONT IN 02
4 CONT_IN_03
5 CONT IN 04
6 CONT_IN_05
7 CONT_IN_06
8 CONT IN 07

SPI_MISO

SPI_MOSI

SPI_CLK

SPI CS

P1

VPP
vCC
GND

PGD

PGC

AUX
PICPRG

P2

VPP
vCe
GND

PGD

PGC

AUX
PICPRG

SPI_MISO1

U1

MCLR/VPP/RES3

RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM

OSC1/CLKI/RA7
OSC2/CLKO/RA6

RDO/PSP0/C1IN+
RD1/PSP1/C1IN-
RD2/PSP3/C2IN+
RD3/PSP3/C2IN-
RD4/PSP4/ECCP1/P1A
RD5/PSP5/P1B
RD6/PSP6/P1C
RD7/PSP7/P1D

REO/RD/AN5
RE1/WR/AN6/C10UT

+3.3VCC

R2
10k

RE2/CS/AN7/C20UT 29
>>

RAO/ANO
RA1/AN1
RA2/AN2/VREF-
RAS3/ANS/VREF+
'RA4/TOCKI
RA5/AN4/SS/HLVDIN

RBO/INTO
RB1/INT1
RB2/INT2/CANTX
RB3/CANRX
RB4/KBI0/AN9

RCO/T10SO/T13CKI
RC1/T10SI
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

(2R
(2R
>>

CONT OUT 12

CONT OUT 13

CONT OUT 14

CONT _OUT 15

CONT_OUT 08

SPI CS

GENERAL_FAULT

CONT_OUT 03

CONT_OUT 02

CONT_OUT o1

CONT _OUT 20

CONT_OUT 21

CONT_OUT 22

SPI_CLK

SPI_MOSI

SPI_MISO

CONT OUT 18

CONT _OUT 19

PIC18F4480 a [

+3.3VCCO

u2

i

1

SPI_MOSI1

SPI_CLK1

1|0\ D|D

SPI_CSH

CONT_IN_00 2
CONT _IN_01 3
CONTIN 02 4]
CONT_IN_03 5
CONT _IN_04 6

MCLR/VPP/RE3

RAO/ANO

RA1/AN1
RA2/AN2/VREF-/CVREF
RA3/AN3/VREF+
RA4/TOCKI/C10OUT/RCV

28

PGD1

RB7/KBI3/PGD 57

PGC1

RB6/KBI2/PGC o8

PGM1

RB5/KBI1/PGM o5

LED 0

RB4/AN11/KBIO o4

LED_1

RB3/AN9/CCP2/VPO
RB2/AN8/INT2/VMO

23

SPI_CSH

SPrest 7] SS
SPI_CS1 RA5/AN4/SS/HLVDIN/C20UT

8
9

VSS

RB1/AN10/INT1/SCK/SCL
RBO/AN12/INTO/FLTO/SDI/SDA

10

CONT_IN_05 11
CONT_IN_06 12
CONT IN 07 43|
USB VCC 14

OSC1/CLKI
OSC2/CLKO/RAG
RCO/T10SO/T13CKI
RC1/T10SI/CCP2/UCE
RC2/CCP1

VUSB

22

SPI_CLK1

21

SPI_MOSI1

vDD 20— 0 +3.3VCC

19

VSS 18

SPI_MISO1

RC7/RX/DT/SDO 17

LED 2

RC6/TX/CK 16

USB_DP

RC5/D+/VP 15

USB_DM

RC4/D-/VM

PIC18F2550

USB_DP

USB_DM

USB VCC

GENERAL FAULTNSGENERAL FAULT

Contactor control

Document Number |
Relay interface board

Friday, May 15, 2009

1 MY_FAULT

CPLD

MISO 0

CPLD

MISO_1

CPLD

MOSI_0

CPLD

MOSI_1

CPLD

NOT CS_0

10

CPLD

NOT CS_1

11

CPLD

NOT OE 0

12

CPLD

NOT OE 1

13

CPLD

RESET_0

14

CPLD

RESET_1

15

CPLD_NOT FAULT_O

16

CPLD_NOT FAULT_1

17

CPLD

MISO_2

18

CPLD

MISO 3

19

CPLD

MOSI_2

20

CPLD

MOSI_3

21

CPLD

NOT CS_2

22

CPLD

NOT CS_3

23

CPLD

NOT OE_2

24

CPLD

NOT OE_3

25

CPLD

RESET 2

26

CPLD

RESET_3

27

CPLD_NOT_FAULT 2

28

CPLD_NOT FAULT_3

29

CPLD

MISO 4

30

CPLD

MISO 5

31

CPLD

MOSI_4

32

CPLD

MOSI_5

33

CPLD

NOT CS_4

34

CPLD

NOT CS_5

35

CPLD

NOT OE 4

36

CPLD

NOT OE 5

37

CPLD

RESET 4

38

CPLD

RESET_5

39

CPLD_NOT_FAULT 4

40

CPLD_NOT_FAULT 5

41

GENERAL_FAULT

42

GENERAL_RESET

43

USER_FAULT

44

USER_RESET

45

CPLD NOT CS

46

47

CPLD CLK

48

J27

CON2
J28

CON2
J29

CON2
J30

49
50 2

1 MY_RESET

+3.3VCC

MY_FAULT

GENERAL_RESET

+3.3VCC

R43
10k

USER_RESET

CPLD

MISO 0

CPLD

MOSI_0

CPLD

NOT CS_0

CPLD

CLK

KOO NP s KOO~

CPLD

NOT OE 0

CPLD

RESET 0

+3.3VCC

R44
10k

USER_FAULT

CPLD_NOT FAULT_O

1l

CPLD

O +3.3VCC

MISO_1

CPLD

MOSI_1

CPLD

NOT CS_1

CPLD

CLK

KOO N S OO =

CPLD

NOT OE 1

CPLD

RESET 1

CPLD_NOT FAULT_1

1

CPLD

MISO 3

CPLD

MOSI_3

CPLD

NOT CS_3

CPLD

CLK

KOO NP s OO =

CPLD

NOT OE_3

CPLD

RESET 3

CPLD

NOT FAULT_3

CPLD

: O +3.3VCC

MISO 4

CPLD

MOSI_4

CPLD

NOT CS_4

CPLD

CLK

KOO N S OO~

CPLD

NOT OE_4

CPLD

RESET 4

CPLD_NOT FAULT 4

O +3.3VCC

+3.3VCC

CPLD

MISO_2

R45

10k

CPLD

MOSI_2

uUs

GENERAL_FAULT

CPLD

NOT CS_2

a2

CPLD

CLK

GND VCC +3.3VDC
SN74LVC1g06 Cé

KOO N s OO =

CPLD

NOT OE_2

CPLD

RESET 2

100n
L

CPLD_NOT FAULT_2

+3.3VCC

1

R47
10k

MY_RESET

——

2
GND VCC +3.3VDC
SN74LVC1g06 c7

100n +3.3VCC

O +3.3VCC

: O +3.3VCC

CPLD

MISO 5

CPLD

MOSI_5

CPLD

NOT CS_5

CPLD

CLK

KOO N s OO~

CPLD

NOT OE 5

CPLD

RESET 5

CPLD_NOT FAULT_5

: O +3.3VCC

Analog comparators CPLD

Document Number |
Relay interface board

; ;Z%S.3VDC
) B

W»GENERAL_FAULT =

Friday, May 15, 2009

3

oooonm ° o oooonm
00000 o o 00000

00000000O0OOOOOOOOOOODN

00000000000000000000

o (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]
(<] (<]

o

o u
olRo

o nn

oeow:w.mia

a onro

o [[1]

© O:20012VIP
o o

a
(<]
(<]
(<]
(<]
(<]

0TNOD

c0000M0O:!

100000z
ser

o o

100000

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

P1

08v¥48131d

00000000000000000000

0TNOD
«s0000M0O:
0100000z

ver

oodbon

sIir

0000000000000

!

u2

£n

PIC18F2550

m’UOOOOOOOOOOOOO
N

o

o o

£0 16p

J2
200000000 16

100000000 s
LON16

J17
200000000 16

100000000 s
LON16

J19
200000000 16

100000000 s
LON16

J1
200000000 16

100000000 s
LON16

J18
200000000 16

100000000 s
LON16

J20
200000000 16

100000000 s
LON16

J31
200000 10

100000~
CON1g

Jie

2000000000 000000000O00000SO
1000000000 000000000O0DO0DO0O0O00OO0 =

-CONSO

J1s

2000000000 000000000O00000SO
1000000000 000000000O0DO0DO0O0O00OO0 =

-CONSO

SEololololn]
® 0O

(oJoXoXoJoJoXoXOXoIOXOYOXOYOXO oXooXoI O o
®
(O]

®

. ©
(2 0}
@@@@@@@@@@@@9@@@@@@@ ©

ID{OJOJOIOO)

(O]
O]
O]
O]

OIO]

(

®

olo}
o
®
)
®
®
®
)

(

OOEEOOOOO®
[ajolofo]}

(

(0JOXOXOJOXO]
0@
83
®

(O]

®@®

D6

O+5VDC >
D1N4007

Signal_1 Us
TL780-05C

outT2 N

O+5VDC

Signal_2
5V power supply for electronics Connector for relay section

O+5VDC

+5VDC

Signal _3 1 o Signal_1_

Relay 1
mz Relay 2
3 Relay 3

IN4
IN5 Relay 4

IN6
IN7

R5 Signal 2_

Signal 3_

Signal 4_

9 09 9 9
ONP SN

O+5VDC

: COM
Signal_4 +24VDC O

ULN2803

Output to Relays

+24VDC ©

+24VDCO4

g CF{\D S4
C' D_S3 L0 +3.3VDC
CMD_S2

CON2

%f CF{\D St

1|0\ 0|1

c d 1
cone ommand power supply

FPGA Connector

74LVC541A/SO

Contactor output

Document Number
Contactor Output

Friday, May 01, 2009

000000000

ooom ooom ooon

0000 O0O0OOO O©OOOO

c0ooo0o0000D
0oo0o0o0o0000O0OD

00000O0O0OOOO

ocooooo0o000D
a [}

0000O0O0OO0OOO

R7

000000000

15k

e
Gobodd

ooom ooonm ooom ooon
LSING ﬂ LSING ﬂ LSING ﬂ LSING ﬂ
$0S1 £0S1 zos1 1081

0000 0O0OOO ©0OOOO OOOO

AST
@ cooooooomn

oy
0o0o0o000000D
O¥SIHYL
o0
00000O0O0OOOO

c0ooo0o0000D

£08ZNTN _
£n

0000O0O0OO0OOO

SR

R23
° s l-a 00000

Sn 10k
. oon ood%on

8r

0,Q on OF) O.m.@ﬁ_

+15VDC

SENSOR 1

SENSOR 2

SENSOR 3

«-15VDC

SENSOR 4

+15VDC

SENSOR 1

-15VDC

SENSOR_1 SENSOR_2 SENSOR_3 SENSOR_4

+15VDC

SENSOR 2

-15VDC

+15VDC

SENSOR 3

-15VDC +15VDC
SENSOR_4
0VvDC
-15VDC

GND

R1
OR

Current Sensors

Document Number
<Doc>

Saturday, May 16, 2009

“ @ 0 0 @ 06 O O 0
(o) (o) ‘o) ‘o)

=

D1 R4

A
” YELLOW MWV
D2

560

R25

A
” YELLOW MWV
D3

560 Signal_0

R26

A
” YELLOW MWV
560

D4 R27

A
” YELLOW MWV
560

D5 R28

U4 lal Not_Fault
P —rep Wy
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

Signal_1

com OCMD 1 Ja

ULN2803 _2 CMD 1

3

OCMD 2 J5
_ 2 COMD 2

L3
J6

o
\ 2 CMD 3 1

- InSignal 75
J7

3
InSignal B 4
_2 CMD 4 5

e—3 I

Fault selector

Not_Fault

R22 Signal 3 g InSignal_3
R19
MWV Signal 2 4 InSignal_2

MWy BC547 560
BC547 560 Q3

Q1 OCMD_4 gg g Signal_0 SN74LV({J2G04DBVR
Q OCMD_3 E Signal_1
Not_Fault Eﬁg

1 o R21 R23 OCMD_2 Signal_2
Not_Fault —ﬂgg g T [¢]

3 Wy Wy OCMD_1 = Signal_3

4 BC547 560 BC547 560 % ; g g

Q2 Q4
74HCT540

Overvoltage Receiver

Document Number
<Doc>

Low power triggers

Thursday, May 21, 2009

4

00000 5900 0000

o
o EUAITACSEOYDBAK

ﬁmr n
L1

o
o 2

000O00OOOOOD

0000000000

o o

ooo oom oob ood
0o0o0o0o0000D
000000000

oo 0000O0OOOOOD

FBR-4pX6Z

oonmm.uou_o

o

o wﬁw
1

o

0000000O0COD °
_ OVSLIHYL m o

9n

0000000000

o

I I
R o

o
Y

Ay

anmn

°

o

%

«

“ “

o o o o oo
%b&b%bmb &mw
o o o o oo

(0 69 29 29

00o0o00000D

£08ZNIN _ N
X @

000000000

‘ 0000%Bo000n
e

Bt 0'060Y0000)

o (0]

o (0]
(070,0,0,0,0,0,0,0, ®

oooooooom.OO

G o
®© 0

0,0,0,0,0,0,0,0,0
(o]lo @0 00,0,0,0,0,0,0.0

u4

1

O

CON3

L3 O VCC_IN2
2

-VCC_IN2

VCC_INo——4 v QouT |F2—o0 VCe
(0]

LM7815C/TO220

3 o -vce

LM7915C/TO220

R4
YELLO 1

DVCC 1
Trigger 0 2

Trigger 1

A

YELLOW

3
4
5

NA

Overvoltage Transmit

Document Number
<Doc>

Monday, May 18, 2009

goooo

o O oo0o0O o000 ©O o

0000 DmDooOO DOOO 000O
o o

0000000

oooooo0o0

2
X71

2.4

HFBR-

O o00O0O 0000 O
w 1502 w 501
6N136 6N136 I

0000 ﬂanOO gooo 000O

o (o]
o " T00p 4 © 778 wg

% = e S
m g 000 g
A oooo0o000 2 °

— ut

LM319
0600000 5 o

door

goooo

o 0O oo0o0O oooo0 © (-]

0000 DoOOO oooo 0000

o o

° on o o o on

0000000

o o
moooooo . .
o o o o
o
o o -
o o ° °
[o o o oo oanm
o o
o o oo oanm
o o
(-] (-]
o o onmn
ooon oom oonm

nsit2ivd] ubnse

+15VDC -15VDC
Q Q Analog_Gnd Signal 1

Signal Out NF 4 Signal In_ 4 _2 S Out 1

Signal_Out 4 Analog_Gnd Signal NF_1 3

PRERARRRAR L T T

Jo
\ 2 sous

COPREND DN

Signal 1

Signal 3

J10
_2 S Out4

Signal 4 1

Signal NF 4 1

+15VDC -15VDC
o o

Analog_Gnd
Signal Out NF_3 Signal In_3
Signal_Out 3 Analog_Gnd

A l

[95] (73] (¢p] (]

KOO N s OO~

Signal _In_1
Signal In 2
Signal_In_3
Signal In_4

+15VDC -15VDC Analog_Gnd [6
o o

Analog_Gnd
Signal_Out_NF_2 Signal_In 2 R1
Signal_Out 2 Analog_Gnd

2]

D1N4148

A l

CON40 LM7815C/TO220
+15VDC -15VDC 3 1
o o

[a)
Analog_Gnd OUT ZIN
Signal_Out NF 1 Signal _In_1

i] 5]

Unit analog conversion

D1
N

Document Number
<Doc>

Saturday, May 02, 2009

32
200000 10

100000 ¢
CON1O

1[0 o|s[moo|smoo]|smo o
u._:v-un1u u.__.w-un1u u.__.r-un1u u._c—- er3

1[d000000000]w

CON1O
J12

(©fo]ajo o OXOINO]

[©jo]ajo o oXOIO]

+15VDC _-15vDC

D8
BAT54S
R5

Signal_In

2Signal_Out_NF

J:— R10

50k

Signal_Out

oy

C5
TBD

AN4558

Analog_Gnd

+15VDC

BAT54S
-15VDC +15VDC

+15VDC -15VDC
Q Q Analog_Gnd
Signal_In

Analog_Gnd

!

Signal_Out_NF
Signal_Out

A

-15VDC

j C9 j C10
100n 100n

[Title
Unit voltage conversion

Document Number
<Doc>

[Size
A4

Friday, May 01, 2009

Date:
2

Modular Multi-Level Inverter

B OB ABE DA S

lgPeak1

Figure 2 Voltage Harmonics for Phase Shifted Modulation at 600 Hz

Modulations

<) Currents THD

WaPeak

lgPeak
|

|gHam5P
I

1gThdP
|

Figure 3 Current Harmonics for Phase Shifted Modulation at 600 Hz

Modular Multi-Level Inverter

Unit Wave Forms

Figure 4 Carriers for Phase Shifted Modulation for 600 Hz

Modular Multi-Level Inverter

Yoltage Thds

EIEEEEEEE

WgHarm5P
I

oo |

WgHarm?F
I

012 0135

Figure 6 Voltage Harmonics for Phase Shifted Modulation at 1200 Hz

Modulations

Currents THD

EIEEEEEEE

Figure 7 Current Harmonics for Phase Shifted Modulation at 1200 Hz

Modular Multi-Level Inverter

g8 LLL BB

Z00M %-axis

Figure 8 Carriers for Phase Shifted Modulation for 1200 Hz

Modulations I

EIREEN Y EIEEE

| B

Figure 9 Output voltage and current for Phase Shifted Modulation at 2400 Hz

Modular Multi-Level Inverter

Yoltage Thds

Figure 10 Voltage Harmonics for Phase Shifted Modulation at 2400 Hz

Modulations

<} Currents THD

|
01415 0142 01425 . . 0144 01445 0.145 0.1455

Figure 11 Current Harmonics for Phase Shifted Modulation at 2400 Hz

Modular Multi-Level Inverter

~lolx|
sB LLpp ABE E -

Figure 12 Carriers for Phase Shifted Modulation for 2400 Hz

Modulations

lgPeakl

YgHam5F

YgHam?P
T A

Modular Multi-Level Inverter

Figure 14 Voltage Harmonics for Level Shifted Modulation IPD at 600 Hz

SBE LLL ABR

\‘\ 1 L
! s
i o

S
|'|‘\'|'|‘\‘\'|“'|H'
\ !

i
S

IgThdP

|
{
i

Figure 16 Carriers for Level Shifted Modulation IPD for 600 Hz

&B LRAL AHBE BA R

|
|

ML ﬂh&u{

Figure 17 Output voltage and current for Level Shifted Modulation IPD at 1200 Hz

Modular Multi-Level Inverter

EIF R

Figure 18 Voltage Harmonics for Level Shifted Modulation IPD at 1200 Hz

Modulations

- Scope EB&]
SE £ 00 dhidE ~

Figure 19 Current Harmonics for Level Shifted Modulation IPD at 1200 Hz

<) Carriers vs Reference ‘_J
~

S8 LLL AEIE

Figure 20 Carriers for Level Shifted Modulation IPD for 1200 Hz

Modular Multi-Level Inverter

LLL ARBRE B A

-25
0.03

Time otfset:

LPRL ABE B &

WgRms1

lgPeakl

VgHamaP

VaHarm7P

[HEE LT

WgThdP

TTT 000

=)
=1
g
@

Figure 22 Voltage Harmonics for Level Shifted Modulation IPD at 2400 Hz

Modulations

=) |Scope

EEIX]
sl L RL ABE

Figure 23 Current Harmonics for Level Shifted Modulation IPD at 2400 Hz

SE ORP dBEE 2 =

i R S)] VoL !
o e e o e e e e e e B S e e e e et o o
L T O O O T O L O R O L O L Y R I Py ey R O T A N L L N
AL A T T O A T O O I O O O R | I T I O I A TR O [O O O T O B R R
A A A A R R TR AT YR URTRATE

YV Y A Y BERREERERRERN

T ¥ X i L] !) I ! X X) L ! 1 T

W N
L)
I"\ \MI 'H'\ ‘M' o “‘|
1 |

| : hod
i i ! II I‘”I‘ IIH |‘”" |‘II‘I |‘Il‘| IIH|‘ |‘II"‘ fi
/

‘|'|‘ R hop A |‘|‘| ‘H \'ﬁl, .‘I‘
I IRl [R
‘ AEANANA

\ 1l PR B R
I | i ! \ ! "u"
L O S P y

)
v
Ll i v

hh IR : [T T R A I | O T |
SR A A A A
[

i (U LR T

I i Prooer (R it i ()
\ AN VIV VT AT
P! T S L YO O A N T A A T O O (N I T S O N A O T A O O R B AR A I |
TP A TR R TR RV RV RT TR BTRTR
1 (HIY ¥ (W) (WY (FIY) [FIY) 7l (VT [FI h
Y Y N T T R R Y A AR TR Y [A E A A N W R F N ¥ L A ¥ A
Vo Yy Yy [

Figure 24 Carriers for Level Shifted Modulation IPD for 2400 Hz

Modular Multi-Level Inverter

gB LPLL ARBRE B A

-25
003

Time offset

“gHarm?P

Figure 26 Voltage Harmonics for Level Shifted Modulation APOD at 600 Hz

Modulations

-3 [scope E e

SBH L0 ARE ~

Figure 27 Current Harmonics for Level Shifted Modulation APOD at 600 Hz

<} Carriers vs Reference Lj \j _J

SBE LR ABE ~

P NN i
et o A e e e e o

| | T T R A R R A | hooh fop
H (TR LU | U U LSO | IO L U | WO | O 1 (U { D B

M IH\ AR M o e AR \'H‘l'ﬂl“l‘ 'II"\ a ‘M‘ l“"\ \'II‘I 'H‘ 1""\ |‘I‘I‘I '“‘l \“I ‘IH' I‘II'\ \M | IH\ I IHI 'M‘ ‘M' IMI | |‘II
| T R N N O B IR | 1 [| [N R A T A O O [T O S AL Y U R B 1
\ IR R RNA [IR RERERER 'R [.
L A N | [| I L A M T . W O ',l;,\‘\l !

(N [T AR YRR Y : (0 O O 1 O 1 I O O 1 B Y B Y I
TR TR TR T [T [T L I O N R O A v T R F R Y Y
UL A OO U T O A A O A O T O O O

!
| 1 ! | |
[1
1 REA [

I \ ! \
T ", | I'\ V|“ i “| \E ! |" "‘ f I‘I |f

I \ | 1 | !
Vo ey
LI N D P 1

A T A R A N R |

i ! t h
f __‘,H‘I_..‘I‘u‘ "|‘|"" ""‘. LU
A AR AR A N A S AN

HANAYARANANAUANAY
A
N ' [T I !
1A VR T VA A O

[R S N Y T U N N | f
S i ..“. ‘|I|‘ "|”|" w'”‘u”.‘”" ;IJI‘..‘MI.. ;\I'I\”f“l‘” .‘||.I‘I 'M;' ‘IHI‘ .|" .|‘|
(IR AN A B AR R AR A /
LT A T T A U O B T O O Y A R
\"\,‘IHllﬁw""\‘l"‘l‘ll‘l\"”".l‘ll‘l"'\"I'l'l
R Y R N A F A Y oA
ARRREREEEN

) | [

1l I fl)
5‘ .‘ . ‘||‘ ”ll‘l‘” ‘IJ‘I ; .. IJ

| | [t i

e
1 (B
"I

Vo L
O : Ao
8 it ..I‘|||‘. ‘IUII ot I\‘ EIRHICHIS it .‘||‘I.. i'.l\
AN AN A
P
PR I

[}
fi :._I\“\I
o

SVANATRY v
IR ‘ \f ‘

Figure 28 Carriers for Level Shifted Modulation APOD for 600 Hz

Modular Multi-Level Inverter

Figure 30 Voltage Harmonics for Level Shifted Modulation APOD at 1200 Hz

Modulations

|laPeak

IgHarm?P

1gThdP

Figure 32 Carriers for Level Shifted Modulation APOD for 1200 Hz

Modular Multi-Level Inverter

Figure 33 Output voltage and current for Level Shifted Modulation APOD at 2400 Hz

). Scope

SH LPLP HER BAF

WoRms1

YoHam3P

YgHam?P

Figure 34 Voltage Harmonics for Level Shifted Modulation APOD at 2400 Hz

Modulations

IgH arm3P

IgHarm5P

1gThdP

7). Carniers vs Refence

calriers

Figure 36 Carriers for Level Shifted Modulation APOD for 2400 Hz

Modular Multi-Level Inverter

- BEE
5- ,O,®,® ih (& B -

JM L. M

oy I
: " it M

A,

WHL 1

MW f ST

Figure 37 Output voltage and current for Level Shifted Modulation POD at 600 Hz

e =S
SE OR0 AEE ~

Figure 38 Voltage Harmonics for Level Shifted Modulation POD at 600 Hz

Modulations v/

SRR AREE B A T

IgFeal
T

IgH arm5P
|

lgHam7F

Figure 39 Current Harmonics for Level Shifted Modulation POD at 600 Hz

)} Carriers vs Reference

SE oL HBE

Modular Multi-Level Inverter

Figure 40 Carriers for Level Shifted Modulation POD for 600 Hz

Figure 41 Output voltage and current for Level Shifted Modulation POD at 1200 Hz

Modulations

Figure 42 Voltage Harmonics for Level Shifted Modulation POD at 1200 Hz

LR HBE|DAR

Figure 43 Current Harmonics for Level Shifted Modulation POD at 1200 Hz

Modular Multi-Level Inverter

SEP MEER DA%

calriers

Ble AEE B

Figure 45 Output voltage and current for Level Shifted Modulation POD at 2400 Hz

Modulations

ope

LR HBE|DAR

Figure 46 Voltage Harmonics for Level Shifted Modulation POD at 2400 Hz

) Scope

SHE LD HEE BAF

Figure 47 Current Harmonics for Level Shifted Modulation POD at 2400 Hz

Modular Multi-Level Inverter

vs Refence

LBEL ABE

i I [} { b b |
AR AR Ak M, A i i I .w .". A e‘R" i “ TEAR i
'\ | ||<'\|‘|” ‘ B! |H|I'

HI || II",”"HIH‘”‘ \ iy I\\
| ||._..| |.\I . .;M ,u
|‘ T " If \f I i I ul TRV o
. O SO0 O O O L B+ !

Y

|
A
/

n f i int ||.'|
I \‘ .

I ' H f| ” [F iAo ‘|| I i il ‘
iw H I\ iNi |‘ |I I‘I\ \I‘I‘I\ I‘I‘I ‘II‘| I‘I II‘I “ [
i HAVAN {

f
fl

H‘II'I‘\II‘\\”I‘ |

I‘,‘IIHI“‘I\‘I II?_‘IJI__H_"I E\I‘IH\

i [\Jli' SR |

JO 2O P

W

V

[[| Fohog
I p \'l g I U .\ oo R 1 U...‘
i ﬁ h i Hu'l‘ll‘”lll‘m"\l“\ |H| \Il\ﬁl“\ |‘II‘| r
)
|

I I”\ il i

“II\IHII‘WH"I\‘HI“M'I\\"‘H\#I}\“H
(MR] |\H

u H ‘,l ‘l‘ "\ ‘|| \,' H | |\' ol
"u‘ oy \l‘u'

L 1
\‘l \f “| \,' |‘|‘| ,\ If

1] i
A A A
|\H||IIMH|‘|II Ill‘“ H"IIIH‘HIH|'I|‘I|HII‘||“\\"|\,‘|" ‘
‘|"\|"\'|<“'r"‘ IH\'H |'|<H oL 'I‘ll "'r'
SV

I
H

"\"I‘ﬂ'\‘ ! I | I
|‘|\ '\‘l' I“' '”J ‘,\ \|

I Vo
|I'\"'H 'I\"E |‘Iﬁ' : |"H| M || 1'\

Figure 48 Carriers for Level Shifted Modulation POD for 2400 Hz

Modulations

Figure 49 Output voltage and current for Staircase Modulation at 600 Hz

Modular Multi-Level Inverter

<) Dutputs

BH|LPL ABB B & &

Figure 50 Voltage Harmonics for Staircase Modulation at 600 Hz

Modulations

<) Dutputs

BH|LPL ABB B & &

Figure 51 Current Harmonics for Staircase Modulation at 600 Hz

Modular Multi-Level Inverter

«) Dutputs =lolx
SB LLL hEE

@

Z00m #-axis

Figure 52 Output voltage and current for Staircase Modulation at 1200 Hz

Modulations

B LRp ABE| O

Foveee] Joee s [i
YgHarmbP

gThdP
|

Figure 53 Voltage Harmonics for Staircase Modulation at 1200 Hz

Modular Multi-Level Inverter

B LR L AEBE

i [=[9

Figure 54 Current Harmonics for Staircase Modulation at 1200 Hz

Modulations

<) Outputs =Olx
S8 LLL HhEE

]

Figure 55 Output voltage and current for Staircase Modulation at 2400 Hz

Modular Multi-Level Inverter

Ppp ABEP

IgPeakl

Figure 56 Voltage Harmonics for Staircase Modulation at 2400 Hz

Modulations

Sinix
B ,LLL HEE

"]

Figure 57 Current Harmonics for Staircase Modulation at 2400 Hz

Modular Multi-Level Inverter

Part 1: Unit Design

Section A: High power module

Master Thesis

Authors:
Cristian Sandu
Nicoleta Carnu
Valentin Costea

Aalborg University 2009

Supervisor:
Stig Munk Nielsen

<Title>

Document Number
<Doc>

Thursday, March 12, 2009 [Sheet

Fi
N\ L >> PHASE_R

63A

F2

>> PHASE_S

63A

F3
N\ L : >> PHASE_T

63A

R14

240k
Over-Current protection

R114
240k

ADC_R
ADC_S
—>> ADC_T

R17 C21 R18

_[2k7 _[1n 2k7

Input filter Over—-Voltage protection Input voltage measurement

Resistors R10-R15 are wire resistors
rated 350 Vv; 0,6 W, 1 % tollerance
or less

Resistor R16-R18 are SMD rated 250 V;
0,5 W, 1 % tollerance or less
Resistors R16-R18 must be place as
close as possible to the ADC, while
resistors R10-R15 must be place near
the bridge input

The resistor are only rated 0,6 W
because the voltage has zero
crossing so time to cool-down

exists

Resistors R1-R7 are wire resistors
rated 250 V; 0,6 W, 5 % tollerance
Each group resistor will be placed
in series under the coresponding
capacitor

The capactors must be rated 600 V

<Title>

Document Number
<Doc>

Sunday, March 15, 2009

J3 J4

PHASE_R Y)>—1 1 D D 1 >> VDC_POZ

+FILTER_OUT +FILTER_IN

PHASE_S Y>—2—

J5 J6

PHASE T S>—3 1 VDC : : >> VDC_NEG

FP25R12KE3 -FILTER_OUT -FILTER_IN

R107
300k

ADC_CURRENT DC ({—

ADC_REF_DC {{——

9—>>ADC_DCO

R109 T
6k8 C44
10n

Bridge rectifier Voltage presence Filter connection DC Bus inductor compensator

The bridge rectifier # Resistors R20, # The filter connection # The compensator offers
is incorporated into R21 are rated can be used to connect filters the voltage with
the IGBT module pack 0,5 W and 500 V to an external inductor respect to the housing

and/or capactor or to a EMF filter
MOSFET based over-current Over—-Voltage protection
protection

Inductance compesator Control connection Over-Voltage protection

C7 capacitor is rated # R19 is rated 1 W and # RV5 is used to protect
1000 V and MUST be is used to connect the the pozitive line from
placed as close as control section to the the rectifier to
possible to the output negative voltage line overvoltages
of the rectifier
The role is to eliminate
the track impedance

<Title>

Document Number
<Doc>

Sunday, March 15, 2009

CH_RELAY_P >>—o

CH_RELAY N > >> ADC_CAP

6k8 C18

10n

DC Charging control Capacitors voltage measurement DC Capacitors Discharge/Balance resistors

The relay must handle # The resistors R39-R43 are # The capacitors are # The resistors have the
full current rating rated 1 W while R44 is rated mounted on the PCB role to assure a 5 min.
Resistor R38 is rated 0,6 W and all are 1% tolerance in a compact configuration discharge time
10 W, 500 V and should The resistor R44 must be so that the arrea where The voltage between
be cauted with a termic placed as close as possible the capacitors are placed capacitors is also
insulation material to the ADC input pin or is kept to a minimum maintained
filter input The equivalent capacitance Resistors are rated 1W
is 1012 uF 250 Vv

<Title>

Document Number
<Doc>

Sunday, March 15, 2009

>> BREAK_POZ

0

GATE_BR yy——14
VDC_NEG py——24

GATE_B R—|

-VDC_IN

lz
>> BREAK_NEG

FP25R12KE3

U1F

NTC
FP25R12KE3

NTC Connector

Break chopper and NTC Connector

Document Number
<Doc>

Thursday, March 12, 2009

[Sheet

uic
VDC_POZ »»22-{ ,vDC_IN

GATE_U_TOP)>——201 GATE U_TOP
EMIT_U_TOP Y»—S8 EmIT_U_TOP

PHASE_U

GATE_U_BOT y>—13 GATE_U_BOT
EMIT BOT ~ >>—101 EmiT_BOT

VDC_NEG 24 vpC_IN
FP25R12KE3

ADC_CURRENT_U

ADC_REF_U

uiD
VDC_POZ »»22-{ ,vDpC_IN

GATE_V_TOP Y>—181 GATE v _TOP

EMIT_V_TOP Y»>—171 EMIT V_TOP PHASE V E:ﬁgg_\g
) PHASE_W

GATE_V_BOT Yp>——12{ GATE v _BOT
EMIT BOT ~ >>—101 EmiT_BOT

VDC_NEG »»24 vpC_IN
FP25R12KE3

ADC_CURRENT_V

ADC_REF_V
UIE
VDC_POZ »»22-{ ,vDpC_IN
GATE_W_TOPY>—181 GATE W_TOP
EMIT_ W_TOP »—151 EmiT_w_TOP

PHASE_W

GATE_W_BOTy>—1 GATE W_BOT
EMIT BOT ~ >>—101 EmiT_BOT

VDC_NEG 24 vpC_IN
FP25R12KE3

ADC_CURRENT_W Phase output (U, V, W)

Document Number
ADC_REF_W <Doc>

Monday, March 16, 2009

VDC_POZ >

GATE W_TOP & 7

+15vDC YR80 e

C35

1
I
56u 25V

VDC_POZ >

GATE V_TOP & 7

+15vDc Y>—PR79 e

J‘L c37

100n

\Vele} < +15VDC
LOP1
LOQ1
VDC_POZ > LON1

DSL1
GATE_U_TOP < IR2238 opa
LOQ2
LON2
+15vDc Y>—F78 DSLo
LOP3
LoQ3 o8
LON3

DSL3 11 \ﬂ/ EMIT_W_TOP
?|7_-|- C38
100n us
+5VDC >>——lr—fL VDC D12

POT_CS s BREAK_NEG
POT CLK §< CIK Foo Pt DIODE

81
82
83
o
84
85
86

2%
87

GATE_U_BOT

EMIT_U_TOP

GATE_V_BOT

o|o|o|=|o[o |0
[®]
O
m

EMIT_V_TOP

[®)
[w)
m

GATE_W_BOT

O| 2| 3| 2|O| 3| 2| D|O| | D)2
wlwfw(o|wlwlwlolwlw(w

(o] (o] [e2]

9
[e]
[w)
m|

< GATE_BR
POT_SDI SDI
POT D0 &K SDO

GND "
CMD_U_TOP

MCP41x2 GMDV_TOP 12
.. CMD_W_TOP

100 kohm digital pot 10k cvD U BOT 11

CMD_V_BOT 10

CMD_W_BOT 9

CMD_BREAK 8

+5VDC Y—RZ
R94
R95

NN NN VYN

ooooI

4816P-T01-221LF
RN2

SONOT_FAULT GATE

14
13
12
11
10
9

8

CMD_SD
Deadtime (min - typ - max): BE%Q?—S%&'Z
- 0 ohm -> 76-100-124 ns DESAT_W_TOP

_ _ _ _ DESAT_U_BOT
39 kohm -> 800 1000 1200 ns DESAT V BOT
- 220 kohm -> 4500 - 5000 - 5500 ns DESAT W_BOT

NP s o=

Gate driver

4816P-T01-221LF

) Document Number
RN1, RN2: 220 ohms resistor array <Doc>

Thursday, March 12, 2009 [Sheet

U9
2 1 4
CMD_U_TOP D U BoT 13; >> CMD_U_BOT

> +5VDC +15VDC CMD_V_TOP DV BOT g 2B1 H—>> CMD_V_BOT
282

- +5VDC

GND C39 CMD_W_TOP Sy T - 3B oA ——>> cMmD_W_BOT
382

15V 141 4py an H2—<
<131 4p2

—1—§ +15VDC

15 | =
16 OE S

X . VCC VSS
Main board power suppl Power supply storage capacitors R103
p PPy ppLy El b SN74CBT3257 10k

1 MODE_SELECTION

i

o J12
J18 5VDC Y
+
.
Voltage R ADC_R >> CMD_U_TOP
H— % vbc_Poz GND

2 Voltage S
e
la =

>> VDC_NEG

ADC_S

>> CMD_V_TOP Mode selection:

o HIGH - BOT = BOT
>> CMD_W_TOP LOW - BOT — TOP
A_CMD_U BOT

GND
Voltage T
Output supply Vol tage’;\la

GND
DC Bus output Vonag?\,g
for the power supply Voltage W

GND
Voltage DC
GND
Voltage DCO
GND
Voltage CAP
GND

NC

GND

PHASE U Con High Power ADC Voltages DESAT_W_TOP
PHASE_V DESAT_U_BOT
PHASE_W v

CONG DESAT_V_BOT

ADC_T

ADC_U

O o NP s N
KO o NP s O N

A_CMD_V_BOT

ADC_V
ADC_W A _CMD_W_BOT

ADC_DC >> CMD_BREAK
ADC_DCO >> CMD_SD
ADC_CAP < DESAT_U_TOP

N ANANANANANNANANAN

ADC_DC_HALF DESAT_V_TOP

DESAT_W_BOT
Phases output connectors -

NOT_FAULT_GATE

ADC_CURRENT_U Ros 75— POT.CS

ADC_REF_U 799 o> POT CLK

ADC_CURRENT V R100 5> POT_SDI

ADC_REF V R101 75— POT_SDO

ADC_CURRENT W MODE_SELECTION

|

J17
BREAK_POZ
BREAK_NEG

CON2

KO o NP s OO

Break chopper connector

ADC_REF_W

ADC_CURRENT_DC

ADC_REF_DC

Current connector N/
<Title>

Document Number
<Doc>

Friday, March 13, 2009

Modular Multi-Level Inverter

Part 1: Unit Design

Section B: Command module

Master Thesis

Authors:
Cristian Sandu
Nicoleta Carnu
Valentin Costea

Aalborg University 2009

Supervisor:
Stig Munk Nielsen

Introduction

Document Number
<Doc>

Sunday, March 15, 2009

BANK 0
0 32—

IO/VREF 0 (124

10_Lo1 N o 18

10_Lo1_ P o -2

10 L02 N_0 FHZ

I0_Lo2 P o |18

I0_L04 N 0/GCLK5 23

I0_L04_P_0/GCLK4 22

10 L05_N_0/GCLK7 |28

I0_L05_P_0/GCLK6 22

I0_L07 N_0/GCLK11 |31
I0_L07_P_0/GCLK10
10_L08_O/VREF_0
[0_L08P_0
I0_LO9N_0
I0_LO9P_0

GATE_MODE_SEL
GATE_U_BOT
GATE_U_TOP
GATE_V_BOT
GATE_V_TOP
GATE_W_BOT
GATE_W_TOP
GATE_SD
GATE_BREAK
GATE_PWM_CLOCK

I0_L10N_O/HSWAP
10_L10P_0

%

IP_LO3_N_O

IP_LO3P_0

IP_LO6N_0/GCLK9

IP_LO6P_0/GCLK8
XC3S100E

BANK 1

FPGA_GATE_DESAT_U_TOP
FPGA_GATE_DESAT V_TOP
FPGA_GATE_FAULT

FPGA_GATE_DESAT_V_TOP
FPGA_GATE_DESAT_U_BOT
FPGA_GATE_DESAT_V_BOT
FPGA_GATE_DESAT_W_BOT

I0/A0

IO/VREF_1

I0_LO1N_1/A15

I0_LO1P_1/A16

10_LO2N_1/A13

10_L02P_1/A14

10_LO3N_1/A11

I0_LO3P_1/A12

10_L04N_1/A9/RHCLK1

I0_L04P_1/A10/RHCLKO

I0_LO5N_1/A7/RHCLK3/TRDY1

I0_LO5P_1/A8/RHCLK2

10_LO06N_1/A5/RHCLK5S

I0_L06P_1/A6/RHCLK4/IRDY1

10_LO7N_1/A3/RHCLK?7
I0_L07P_1/A4/RHCLK6
10_LO8N_1/A1
I0_L08P_1/A2
10_LO9N_1/LDCO
10_L09P_1/HDC
10_L10N_1/LDC2

I0_L10P_1/LDCH

> FIBER_TRIP

FIBER_U

FIBER_V

FIBER_W

FIBER_RESET

IXC3S100E

FIBER_ENABLE

IP/VREF_1

FIBER_BR

ONP SN

ONP SN

FPGA_AO
FPGA_A1
FPGA_A2
FPGA_A3
FPGA_A4
FPGA_A5
FPGA_A6
FPGA_A7

FPGA_A8

FPGA_A9

FPGA_A10
FPGA_COMM_READY
FPGA_COMM_WR
FPGA_COMM_CS
FPGA_COMM_INT

[Title

FPGA - Bank 0, 1

[Size
A4

Document Number
<Doc>

Sunday, March 15, 2009

Date:
2

BANK 2

10/D5

10/M1

I0_LOIN_2/INIT_B

10_L01P_2/CSO_B

I0_L02N_2/MOSI/CSI_B

I0_L02P_2/DOUT/BUSY

I0_L04N_2/D6/GCLK13

I0_L04P_2/D7/GCLK12

I0_LO5N_2/D3/GCLK15

I0_LO5P_2/D4/GCLK14

FPGA_M1
FPGA_INIT
FPGA_MEM_CS
FPGA_MEM_MOSI
FPGA_FAULT

I0_LO7N_2/D1/GCLK3
10_L07P_2/D2/GCLK2

I0_LO8N_2/DIN/DO

10_LO8P_2/M0

< COMM_RX_CLOCK
FPGA_CLOCK
FPGA_MEM_MISO
FPGA_MO

IO_LO9N_2/VS1/A18

DSP_UART_RX

10_L09P_2/VS2/A19
10_L10N_2/CCLK
10_L10P_2/VS0/A17

IP/VREF_2
P

)
§ DSP_UART_TX
PPGA MEM_CLOCK

< DSP_PWM_AUX_TOP

P

P

IP_LO3N_2/VREF_2

IP_LO3P

IP_LO6N_2/M2/GCLK1

DSP_PWM_AUX_BOT
FIBER_ACCEPT
SYS_TRIP

SYS_RESET

FPGA_M2

IP_L06P_2/RDWR_B/GCLKO

XC3S100E

BANK 3

I0_LOTN_3

10_L01P_3

10_L02N_3/VREF_3

10_L02P_3

I0_LO3N_3

10_LO3P_3

10_L04N_3/LHCLK1

I0_L04P_3/LHCLKO

I0_LO5N_3/LHCLK3/IRDY2

I0_LO5P_3/LHCLK2

10_LO6N_3/LHCLK5

10_L06P_3/LHCLK4/TRDY2

I0_LO7N_3/LHCLK?

I0_LO7P_3/LHCLK6

10

10

IP/VREF_3
P

P

P

1|0\ 0| D|D|0

IP/VREF_3

XC3S100E

| 70| 0| 1| 1| 0|

DSP PWM Signal

{ FPGA_DSP_HALT

DSP_PWM_W_TOP
DSP_PWM_U_TOP
DSP_PWM_V_TOP
DSP_PWM_V_BOT
DSP_PWM_W_BOT
DSP_PWM_U_BOT

Inputs

+3.3VDC

c108 J25

u1s

17 =

VCC

FPGA_TX_N
FPGA_TX_P
FPGA_R
FPGA_R

N

X |
X_P

EN CLK F3——>> FPGA_CLOCK

GND

100 MHz Clock generator for FPGA

l_L
~

KC3225A100.000C30E00

ONP SN

ONP SN

33R

DSP Communication

Data Bus

FPGA_DO
FPGA D1
FPGA D2
FPGA D3
FPGA D4
FPGA D5
FPGA_D6
FPGA D7

FPGA D8

FPGA_D9

FPGA D10
FPGA D11
FPGA D12
FPGA D13
FPGA D14
FPGA D15

Note: Place as close as possible

to the FPGA

[Title

FPGA - Bank 2, 3

[Size
A4

Document Number
<Doc>

Sunday, March 15, 2009

Date:
2

Qo

Q1

Q2

Q3

Q4

Q5

Q6

] e (22 (82 Bl [42] [o2] B [AV] (O8]

Q7

Q8

e
FODORONBRN

=

Q9
w12 | 5o

74HC4017/SO

FPGA_A0
FPGA_A1
FPGA_A2
FPGA_A3
FPGA_A4
FPGA_A5
FPGA_A6
FPGA_A7

FPGA_COMM_READY

FPGA_COMM_WR

FPGA_COMM CS

FPGA_COMM_INT

ANALOG_V_R
ANALOG_V_S
ANALOG_V_

ANALOG_V U
ANALOG_V_V
ANALOG_V W

U2A

TMS/RAO
TCK/RA1
SCL2/RA2
SDA2/RA3
TDI/RA4
TDO/RA5
AN22/CN22/RA6
AN23/CN23/RA7
VREF-/RA9
VREF+/RA10

INT3/RA14
67
< INT4/RA15

AN2/SS1/CN4/RB2

AN4/QEA/CN6/RB4
ANS5/QEB/CN7/RB5

PGD3/EMUD3/ANO/CN2/RBO
PGC3/EMUC3/AN1/CN3/RB1

AN3/INDX/CN5/CN5/RB3

PWM1L/REO
PWM1H/RE1
PWM2L/RE2
PWM2H/RE3
PWMB3L/RE4
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
AN20/FLTA/INT1/RE8
AN21/FLTB/INT2/RE9

C1RX/RFO
C1TX/RF1
U1RX/RF2
U1TX/RF3
U2RX/CN17/RF4
U2TX/CN18/RF5
SCK1/INTO/RF6
SDI1/RF7
SDO1/RF8

DSP_PWM_U_TOP
DSP_PWM_U_BOT
DSP_PWM_V_TOP
DSP_PWM_V_BOT
DSP_PWM_W_TOP
DSP_PWM_W_BOT
DSP_PWM_AUX_TOP
DSP_PWM_AUX_BOT
FPGA_FAULT

>> DSP_FPGA_PROG

< FPGA_PROG

DSP_FPGAMEM_CS
N

< FPGA_DONE

DSP_UART_RX

DSP_SPI1_MISO

DSP_SPI1_MOSI

ANALOG_V_DC PGC1/EMUC1/AN6/OCFA/RB6
ANALOG_V_CAP PGD1/EMUD1/AN7/RB7
ANALOG_V_DCO AN8/RB8

ANALOG_I U AN9/RB9

ANALOG_I_V AN10/RB10

ANALOG_I W AN11/RB11

ANALOG_I_DC AN12/RB12

D8 AN13/RB13

AD14/RB14
AN15/0CFB/CN12/RB15

U2CTS/RF12
U2RTS/RF13

<
; DSP_UART_TX
2 DSP_SPI1_CLOCK

DSP_POT_CS

C2RX/RGO
C2TX/RG1
SCL1/RG2
SDA1/RG3

SCK2/CN8/RG6
SDI2/CN9/RG7 <
SDO2/CN10/RG8
SS2/CN11/RGY
RG12

RG13

RG14

RG15

DSP_CAN_RX
DSP_CAN_TX
DSP_SCL
DSP_SDA
DSP_MEM_CLOCK
DSP_MEM_MISO
DSP_MEM_MOSI
DSP_MEM_CS
FPGA A8

FPGA_A9

FPGA_A10

FPGA_A11

bt o] [52] [2] [S] B2 (O8] [\V] B

N
2
D1N4148

SW DIP-10

AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
OSC1/CLKIN/RC12
PGC2/EMUD2/SOSCI/CN1/RC13
PGC2/EMUC2/SOSCO/T1CK/CNO/RC14
OSC2/CLK0/RC15

DSP_RESET.
DSP_TRIP
FPGA_DSP_HALT

DSP_PGD
DSP_PGC

FPGA_DO
FPGA D1
FPGA D2
FPGA D3
FPGA D4
FPGA D5
FPGA_D6
FPGA D7
FPGA D8
FPGA_D9
FPGA_D10
FPGA D11
FPGA D12
FPGA D13
FPGA D14
FPGA D15

OC1/RDO

OC2/RD1

OC3/RD2

OC4/RD3
OC5/CN13/RD4
OC6/CN14/RD5
OC7/CN15/RD6
OC8/UPDN/C16/RD7
IC1/RD8

IC2/RD9

IC3/RD10

IC4/RD11

IC5/RD12
IC6/CN19/RD13
IC7/U1CTS/CN20/RD14
IC8/U2RTS/CN21/RD15

dsPIC33FJxxMC710

Y1
—i[|

— C100 == C101

; 16p L 16p

Note: If DSP_FPGAMEM_CS is
low then the SPI bus 1is selected

to the digital potentiometer

3« DSP_MCLR

DSP

Document Number
<Doc>

Sunday, March 15, 2009

FIBER_U &

FIBER_V &

FIBER_W &

KOO NP s OO~

FIBER_BR &

FIBER_RESET

FIBER_ENABLE

FIBER_TRIP >>—j |
Fiber connector

+5VDC o—i ;:57: 2A
>3 . +3.3VDC
+3.3VDCOTL VCC% i 279:
+3.3VDCO cas SN75452B g; 16V

100n

FPGA TX N 5
FPGA_TX_P

Optional fiber connection

FPGA_RX_N
FPGA_RX_P

GND
CON_FAST_FIBER

+3.3VDC

N4

Fast Fiber Optic Interface

< FIBER_ACCEPT

J18
Accept fiber

Accept input from optional
fiber if J18 is connected

Optic fiber interface

Document Number
<Doc>

Sunday, March 15, 2009

R123
100

FPGA_MEM_CLOCK >>

FPGA_MEM_CLOCK

R124
100

Utl4

SYS MEM CS
SYS_MEM_MOSI
SYS_MEM_MISO
SYS _MEM_CLOCK

L6 0O +3.3VDC
FPGA_EEPROM

FPGA EEPROM Programming interface

DSP_SPI1_MOSI

1B1

FPGA_MEM_MOSI §<

1B2

2B1

FPGA_MEM_CLOCK
DSP SPI1_CLOCK ~ $S

2B2

FPGA_MEM_CS 11
DSP_FPGAMEM CS $S 10

3B1 3A

3B2

FPGA_MEM_MISO

4B1 4A

$ 13

MEM_OE 15

DSP_SPI1_MISO

4B2

+3.3VDC O 16

OE S

C82

I o

VCC VSS

SYS _MEM_MOSI

SYS MEM_CLOCK

SYS MEM CS

12 SYS_MEM_MISO

—1—<< FPGA_PROG

SN74CBTLV3257 ; /

Selector for FPGA memory

P C58
100n

2 SYS MEM_MISO

SYS _MEM_MOSI
SYS_MEM_CLOCK
SYS MEM CS

|

C98 J16
100n Write Protect FPGA MEM

M25P40-MN

EEPROM for FPGA Data storage (4 MB)

J13
JUMPER

]

C60 i
1T100n

2
>> DSP_MEM_MISO

DSP_MEM_CLOCK
DSP_MEM_CS

|

DSP_MEM_MOSI §<
<

Q
O
>
o
=z
(O]

C99 J15
100n Write Protect DSP MEM

M25P16-MN

EEPROM for DSP Data storage (16 MB)

Memory

Document Number
<Doc>

Sunday, March 15, 2009

JTAG_TDI

144

U1B

JTAG_TCK

110

TDI

JTAG_TDO

109

JTAG_TMS

108

|2
TCK DONE FPGA_DONE
TDO PROG_B —1—22 FPGA_PROG

™S

XC3S100E

FPGA_MO

FPGA Interface FPGA_MH1

FPGA_M2

R92 JTAG_TMS +2.5VDC

R93 JTAG _TDI

R94 JTAG TDO

|| ||

R95 JTAG TCK
C39

+2.5VDC

(e,

+2.5VDC 100n

1 2 JTAG_TCK

)¢ 3 JTAG TDI
4 JTAG TMS

FPGA JTAG Connector

VPP

DSP_MCLR

VvCC

GND

PGD

PGC

DSP_PGD
DSP_PGC
DSP_PAUX

AUX
PICPRG

N4

DSP Programming interface

J7
EN_JTAG

Q2
FPGA_DONE > FPGA DONE [2N7002

FPGA Done signaling

FPGA_PROG

FPGA_PROG

DSP_FPGA_PROG Y)—H128

J9
FPGA_PROG_EN

N4

Select FPGA Programming state

FPGA and DSP Programming

Document Number
<Doc>

Sunday, March 15, 2009

U1C

VCCO_0 VCCINT
VCCO_0 VCCINT

VCCINT
VCCO_1 VCCINT
VCCO_1

VCCO_2 GND
VCCO_2 GND
VCCO_2 GND
GND
VCCO_3 GND
VCCO_3 GND
GND
GND
GND
VCCAUX GND
VCCAUX GND
VCCAUX GND
VCCAUX GND

XC3S100E

U28

VvCC
VvCC
VvCC
VvCC
VvCC
vCcC

2
16
37
46
62
86

VCC CORE 85

VCCCORE
C40 VCC_CORE
J; 56u +33AVDC o—— 301 Ayce AGND

15V
3 dsPIC33FJxxMC710

C40-Tantalum

[Title
FPGA and DSP power

[Size Document Number
Ad <Doc>

Date: Sunday, March 15, 2009
2

O +5VDC +5VDC

- » o
2 [« T 1T .1 o]
0.033
T T 100n T 100n 100n 10u
CON83 :

Input power supply 47 = OR _|_

Decoupling capacitors for i
. SI2323DS
power supply controller Ground connection
le) UK]
13

IN1 IS1
22 No Wi . +3.3AVDC
IN3 FB1 o)
EN1 17 TP1
EN1 1S2
EN2 4]
Emg ENa swa MBRM120LT1

EN3 FB2 TEST POINT

SS1 OouT3

a)
SS2 Z FB3
9] C48
H
SS3 =< 100u
TPS75003RGY : 1 v Generate 1.2 VDC

+5VDC

J o
100n 100n 100n R97 l
0.033 C49
L 10u
+3 3VDC
M1
SI2323DS
Separate power supplies
1~ Y2 - i

J5 5uH
—3 0o +25VDC R102 c51 l
2 _ 61k 100u
1 o .33vDC 10p 16V 100n
MBRM120LT1
o) 0 0

R103
+2.5VDC +3.3VDC 36k
o o

Enable different voltages
+5VDC
o

Generate 3.3 VDC

R

Jé

i o Q1
P +5VDC K BC447A
1 o .33vDC

J4 J3 ;
f% Jumper Jumper Power supply

Document Number
<Doc>

Test pro-be for voltages

Wednesday, March 18, 2009 [Sheet

R156 R155
+3.3VDC 3k9 3k9

READY

DSP_SDA

DSP_SDA
BePser SbAoUT
* SCLOUT

DSP_SCL) <-|77 C105 —— C104 PCA9511AD C103 ——= C102
47p <—|77 47p <—|77 47p <—|77 47p<7

5 V link

3.3 vV 1link

I2C Communicaton for 3.3 and 5 V systems
Capacitors will be placed ONLY if required

Note:

J24

I

CANH

VCC RS CANL

CANfTX D CANH £ GND
CAN,RX RX O

L5 Arcturus_CAN

i?L GND VREF
SNB5HVD230D

CAN Interface

DSP Communication

Document Number
<Doc>

Sunday, March 15, 2009

>> COMPARE_CH_0

VOLTAGE_R >)>—

VOLTAGE_S >)>—

3> INPUT_CH_0

D9
BAT54S

> COMPARE_CH_1

ou

+

u22C
R19
12k

BVCC

C120
i
R21 AN

%> INPUT_CH_1

D11
BAT54S

12k

TLCO084N

>> COMPARE_CH_2

T

= 9

VOLTAGE_T >)>—

3> INPUT_CH_2

D13
BAT54S

VOLTAGE_W

VOLTAGE_W

C114
i

R2_aw
12k

TLCO084N

>> COMPARE_CH_3

%> INPUT_CH_3

D10
BAT54S

>> COMPARE_CH_4

T

- C7

%> INPUT_CH_4

D12
BAT54S

>> COMPARE_CH_5

T

ou

+

u24C
R30
12k

BVCC

%> INPUT_CH_5

D14
BAT54S

Filter

Document Number
<Doc>

Sunday, March 15, 2009

H——— CMD_U_TOP

{ CMD_V_TOP

< CMD_W_TOP u12

{ CMD_U_BOT VCCA veeB 24
DIR VCCB
{ CMD_V_BOT CMD_U_TOP A0 OF p22—
CMD_V_TOP A1 BO 55 GATE_U_TOP
< CMD_V_BOT CMD_W_TOP A2 B1 GATE_V_TOP
CMD_U_BOT

19 T
A3 B2 GATE_W_TOP
< CMD_BREAK CMD_V_BOT A4 B3 [H8 GATE_U_BOT
CMD_W_BOT

17
A5 B4 GATE_V_BOT
< CMD_SD CMD_BREAK A6 g5 |6 GATE_W_BOT

CMD_SD
>> DESAT_U_TOP -

KO o NP s OO

KO o NP s O N

o

A7 Be B GATE_BREAK
GND g7 H4 GATE_SD
GND GND [H13

n

%> DESAT_V_TOP

74LVC4245A - SO24 7

DESAT_W_TOP .
2 - Data to the gate driver

%> DESAT_U_BOT

%> DESAT V_BOT

3> DESAT W _BOT

u13

3> NOT FAULT GATE

VCCA VCCB gg

DIR VCCB

AO OE p22——
Al Bo 21 FPGA_GATE_DESAT_U_TOP
A2 B1 -2 FPGA_GATE_DESAT_V_TOP
A3 B2 2 FPGA_GATE_DESAT W_TOP
A4 B3 |8 FPGA_GATE_DESAT U _BOT
A5 B4 L FPGA_GATE_DESAT_V_BOT
A6 B5 & FPGA_GATE_DESAT_W_BOT
A7 B6 L2 FPGA_GATE_FAULT

o GND B7 (4 %> DSP’8PI_MISO

Q3 GND GND [12

2N7002 -
| Riss < 74LVC4245A - 5028 L,
{ GATE_MODE_SEL

; Data from the gate driver +
0 Digital potentiometer MISO

< POT_CS

DESAT_U_TOP
< POT_CLK DESAT_V_TOP
DESAT _W_TOP

< POT_SDI DESAT_U_BOT
DESAT_V_BOT

>> POT_SDO DESAT W_BOT
R154 NOT_FAULT GATE

POT_SDO

KOO N s OO~

-]

n

+3.3VDC
+5VDC

C88

7 I

LI l, 1=
[=]®T% |
~

u9

us
+3.3VDC VCCA VCCB F&——o0 +5VDC +3.3VDC , .
O_ﬁﬁ: DIR (A2B) Oy | VCCA VCCB F8— o +5VDC Decoupling capacitors

= DSP_SPI1_MOSI ;gj A1 B1 —7—§ POT_SDI
DSP_POT CS >>_3_ A &B J—>> POT CS DSP_SPI1_CLOCK A2 B2 Fo—— PO'[I') CLK

SN74LVC1T45 GND DIR F2——0 ~+3.3VDC
SN74LVC2T45
Document Number

Digital Potentiometer interface <Doc>

High power side link

Sunday, March 15, 2009

J19

Voltage R VOLTAGE_R
GND
Voltage S
GND
Voltage T
GND
Voltage U
GND
Voltage V VOLTAGE_V
GND
Voltage W VOLTAGE_W
GND
Voltage DC VOLTAGE_DC
GND
Voltage DCO VOLTAGE_DCO
GND
Voltage CAP VOLTAGE_CAP
GND

V DC Half VOLTAGE_DC_HALF

GND
Con High Power ADC Voltages

VOLTAGE_S

VOLTAGE_T

VOLTAGE_U

O o NP s N

N4

CURRENT_U

CURRENT_REF_U

CURRENT_V

CURRENT_REF_V

KO o NP s O N

CURRENT_W

CURRENT_REF_W

CURRENT_DC

CURRENT_REF_DC

Current connector N/

Sensors connectors

Connectors

Document Number
<Doc>

Sunday, March 15, 2009

Modular Multi-Level Inverter

Part 1: Unit Design

Section C: Fast Fiber optic 1nterface

Master Thesis

Authors:
Cristian Sandu
Nicoleta Carnu
Valentin Costea

Aalborg University 2009

Supervisor:
Stig Munk Nielsen

Introduction

Document Number
<Doc>

Sunday, March 15, 2009

ai 74ACTQ00
BFQ262A/PLP GND
Gl aND

L °

Q3 HFBR-15X7Z <
74ACTQ00 2N3904

U1D

Cé
-l

43p

74ACTQO00

VvCC
VvCC
VvCC
vCcC

bR
DR

ar = o

= R9 470n

ot X 4R7) Us d

MCT0SX1189 —
o

=z

— zgﬁ%
0 GND

GND % 2

U3 o

VCCVCC2 HFBR-25X6Z

AOUT N _C11

AR |1
AIN - AOUT AOUT P__Ci2 100n
AIN AOUT AN N ”100”

BIN BOUT ———aN P
O] 8N BouT " MY_RX_N
c15 c1e <GNP] CIN cout —;; e

—————— CIN COUT
100n —[100n

+3.3VDC

VBB VEE
MC10H116

C18

T o

<Title>

MY_RX_P Document Number
MY_RX_N <Doc>

Sunday, March 15, 2009

+3.3VDC

I E

4u7

[T=
10u 10u
100n 16V 100n 16V

Power supply for fast fiber optics interface

GND
CON_FAST_FIBER

Cc28 C29 C30 C31
T 100n T 100n T 100n T 100n

F

Decoupling capacitors for
level shifters

C33

1
€

P2

—

o—

N4

125 MHz fiber optic interface

Power supply

Document Number
<Doc>

Sunday, March 15, 2009

Modular Multi-Level Inverter

Part 1: Unit Design

Section D: Protection Module

Master Thesis

Authors:
Cristian Sandu
Nicoleta Carnu
Valentin Costea

Aalborg University 2009

Supervisor:
Stig Munk Nielsen

Introduction

Document Number
<Doc>

Thursday, March 12, 2009 [Sheet 1 of 5

1

C1
100nF
REF_V_INPUT_P REF_V_INPUT_P

C4
100nF

VOLTAGE R > +—>> OVER.V_R VOLTAGE.S > +—>> OVERV_S

REF_V_INPUT_N REF_V_INPUT_N

REF_V_OUTPUT_P’) REF_V_OUTPUT_P’)

VOLTAGE U > +—>> OVER V_U VOLTAGE.V > +—>> OVER_V_V

REF_V_OUTPUT_N REF_V_OUTPUT_N)

R8
4k7

REF_V_DC_P H—3
VOLTAGE_DC ~ »—4

3> OVER V_DC

REF_V_CAP_P »—3
VOLTAGE_CAP >4

REF_V_INPUT_P

VOLTAGE. T >

REF_V_INPUT_N

REF_V_OUTPUT_P’)

VOLTAGE W >

REF_V_OUTPUT_N

R7
4k7

%> OVER_V_CAP

+—>> OVERV_T

+—>> OVER V_W

Comparators - 1

Document Number
<Doc>

Thursday, March 12, 2009

[Sheet

REF_|_ OUTPUT P

CURRENT_U D>

REF_|_ OUTPUT N

REF_|_DC_P

CURRENT_DC

REF_|_DC_N

C20
100nF

REF_|_ OUTPUT P

+—>> OVER_IU CURRENT_V D>

REF_|_ OUTPUT N

+—>> OVER_ I DC

C17
100nF

—>> OVER IV

REF_|_ OUTPUT P

CURRENT_W D>

REF_|_ OUTPUT N

—>> OVER I W

Comparators - 2

Document Number
<Doc>

Thursday, March 12, 2009 [Sheet

R73
DNP

>> REF_V_INPUT P

R74
DNP

R81
DNP
S> REF_V_INPUT_N

R82
DNP

R85
DNP

> REF_I_OUTPUT_P

R86
DNP

R91
DNP
3> REF_|_OUTPUT N

R92
DNP

R75
DNP
3> REF_V_OUTPUT_P

R76
DNP

R83
DNP
3> REF_V_OUTPUT N

R84
DNP

R87
DNP
> REF_I_DC_P

R88
DNP

R89
DNP
> REF_I_DC_N

R90
DNP

R77
DNP
> REF_V_DC_P

R78
DNP

R79
DNP
> REF_V_AF_P

R80
DNP

Reference voltages for comparators

Document Number
<Doc>

Thursday, March 12, 2009 [Sheet

VOLTAGE_R

VOLTAGE_S

VOLTAGE_T

VOLTAGE_U D(\éCC V(D)C

KO o NP s OO

VOLTAGE_V

VOLTAGE_W

VOLTAGE_DC

VOLTAGE_CAP

KOO N s OO~

< OVER_V_R
< OVER_V_S
Voltage conector ./ OVER_V_T

< OVER_V_U
< OVER_V_V
OVER_V_W

<SOVER_V_DC
OVER_V_CAP

CURRENT_U >§ OVER_I U

< OVER_I_V
CURRENT_REF_U OVER_I.W

CURRENT_V

< OVER_I_DC

CURRENT_REF_V

KO o NP s 0N

CURRENT_W \

CURRENT_REF_W

CURRENT_DC
for the command board

CURRENT_REF_DC

Current connector N/

Connectors

Document Number
<Doc>

Thursday, March 12, 2009 [Sheet

Modular Multi-Level Inverter

Part 1: Unit Design

Section E: Switched mode power supply

Master Thesis

Authors:
Valentin Costea
Cristian Sandu
Nicoleta Carnu

Aalborg University 2009

Supervisor:
Stig Munk Nielsen

Switched mode power supply

Document Number
Possible unit design

Sunday, May 31, 2009

R19 D16 D17
” - ” - - +5VDC
5 DSEP29-12A Ri DSEP29-12A l
82k R12 2 MBR360
100k C4
R 1n R20=—= C10 L3 cé
400 — 37k 6 60u 47u
— R2 P 553u ey
82k | L1
. D13
=) MUR1100 ! [K] K1
K_Linear
R3 COUPLING =0.9
82k
U2 R8 "
'_
VAUX R4 VFB DRV 1 1zrHaaNso = 1000000k
82k COMP 1 0
RTCT COMP 10 R
4 9
a RTCT 1K D14
VREF VAUX
D20 R5 ISENSE 3
VCC D1N4148 82k ISENSED = L2 MUR13
VCCO—— 7] VGG % 31u C5
2n2
R11
UC3842 ISENSE - $
C1 l 9 2
10u C9 680 R10
16V VAUX _L_ 100n ?0 C3 1.2
= I
TO — —
-0 -0
+5VDC Cc7 +5VDC
D12
0—'
BZV85C3V6/PLP 1u3
R14 R16 R17
ComMP 120 7k5 (01:] 32k
1n5
[200p U3
=0 MOC1005 us Z(’
;'_‘ # TLas1m L\
R15
2k5
GND_0
R18 ne Title
?0 10k ?0 ?0 Switched mode power supply
Size Document Number Rev
— —_, CustpmPossible unit design 1
0 0
Date: Wednesday, March 25, 2009 [Sheet 2 of 2

3 [2 [1

AT
SdTI_~omotrans~T

L]

0100000z
sr

a a a a
=3 ﬁo ﬁo ﬁo
@ = N Y
o o o
]]]]

o o

i

o o
J

[o]
o

oomn
\er’ ©

ocoon

ooon

0000OO
a (] o]
o o
[[
o o0 o

o] (]
o
[
o
o
o
o o
(]
(]
(]
(]

ooonmn

APPENDIX D HARDWARE

A.1 INTER-FPGA COMMUNICATION

The pin-outs of the connection are presented in Table D-1. The P and N represent the positive and negative
lines of the differential signals.

Name Main FPGA | Main Extension FPGA Board | Secondary Secondary
pin FPGA board pin pin FPGA pin FPGA
signals signals
Clock P: B14 L26 P:J1/3 P: TX 29 P: AA10 TX_CLK
N: A14 N:J1/5 N: TX30 N: AB10 L15
MISO 0 P: D16 L21 P:11/4 P: TX25 P: AA8 TXP_4
N: C15 N:J1/6 N: TX26 N: AB8 L12
MISO 1 P: B15 L23 P:11/7 P: TX21 P:Y7 TXP_3
N:A15 N:J1/9 N: TX22 N: AB7 L10
MISO 2 P: D13 L30 P:11/8 P: TX13 P: AA6 TXP_2
N: C12 N:J1/10 N: TX14 N: AB6 LO8
MISO 3 P: F15 L20 P:J1/13 P: TX9 P: AB3 TXP_1
N: E15 N:J1/15 N: TX10 N: AA4 LO4
INT P: A12 L29 P:11/14 P: TX5 P: AB2 TXP_O
N: B12 N:J1/16 N: TX6 N: AA3 LO3
MOSI 0 P:E14 L24 P:11/17 P: RX5 P: A4 RXP_0O
N: F14 N:J1/19 N: RX6 N: B4 L31
MOSI 1 P: C10 L34 P:J1/16 P: RX9 P: B6 RXP_1
N: D10 N:J1/20 N: RX10 N: A5 L28
MOSI 2 P: G15 L16 P:J1/23 P: RX13 P: A7 RXP_2
N: H15 N:J1/25 N: RX14 N: A6 L26
MOSI 3 P: C11 L32 P:11/24 P: RX21 P: A9 RXP_3
N: D11 N:J1/26 N: RX22 N: A8 L22
Chip Select P: G12 L35 P:11/27 P: RX25 P: A10 RXP_4
N: H12 N:J1/29 N: RX26 N: C10 L21
Auxiliary P: A4 L45 P:11/28 P: RX29 P: A12 RX_CLK
N: B4 N:J1/30 N: RX30 N: A1l L18

Table D-1: Pin-out for inter FPGA communication

A.2 DSP WITH FPGA INTERFACE

The connection between the DSP and the FPGA is made over a shielded cable no longer then 10 cm. The
connection lines are shown by Table D-2. The FPGA connector is the SAM extension line. Due to FPGA configurability
of pin roles, the lines have been configured to fit the FPGA. Therefore in the pinout table the actual signal names are
those given by the DSP and not by the FPGA board design.

P2 DSP | DSP Pin | FPGA SAM SAM SAM SAM FPGA DSP DSP Pin
Pin Name Pin name pin no pin no Name Pin Name

n/a VCC 01 02 VCC n/a

n/r TDO 03 04 GND n/a

n/r TMS 05 06 CLK AA14 CLK 48

n/r TDI 07 08 GND n/a

Modular Multi-Level Inverter

n/r PROG 09 10 TCLK n/r

n/a GND 11 12 GND n/a
3 DO V22 OE 13 14 INIT n/r
4 D1 AC26 AO 15 16 WE V24 D2 5
6 D3 AB23 A2 17 18 Al AB26 D4 7

n/a 2,5VDC 19 20 A3 AB24 D5 8
9 D6 AA23 DO 21 22 2,5VDC n/a
11 D8 u20 D2 23 24 D1 V21 D7 10
13 D10 AA25 D4 25 26 D3 AA24 D9 12
15 D12 u18 D6 27 28 D5 u19 D11 14
17 D14 Y23 D8 29 30 D7 Y22 D13 16
19 AO T20 D10 31 32 D9 u21 D15 18
21 A2 Y25 D12 33 34 D11 Y24 Al 20
23 A4 T17 D14 35 36 D13 T18 A3 22
25 A6 V18 Ad 37 38 D15 W23 A5 24
27 A8 AA22 A6 39 40 A5 V19 A7 26
40 2CS6 L23 IRQ 41 42 GND n/a
43 XWR V23 RST 43 44 CE V25 A9 28
39 XRDY n/r Done 45 46 BRDY P21 XRD 44

n/r CLK 47 48 F_Done n/r

n/a GND 49 50 n/c n/c -

Table D-2: DSP — FPGA pinouts

A.3 RELAY OUTPUT

The pin-outs of the microcontroller for relay output are presented in Table D-3.

Id Relay Microcontroller pin Role

1 Al-1 C1 Reserved

2 Al1-2 Cc2 Reserved

3 Al-3 Cc3 Reserved

4 Al-4 DO Reserved

5 A2-1 D1 Auxiliary

6 A2-2 B4 Auxiliary

7 A2-3 B3 Auxiliary

8 A2-4 B2 Auxiliary

9 A3-1 D7 Units U1-U2
10 A3-2 D6 Units U3-U4
11 A3-3 D5 Units U5-U6
12 A3-4 D4 Units U7-U8
13 Ad-1 Cc7 Units V1-V4
14 A4-2 C6 Units V5-V8
15 A4-3 D2 Units W1-W4
16 A4-4 D3 Units W5-W8
17 A5-1 A0 Contactor K1
18 A5-2 Al Contactor K2
19 A5-3 A2 Contactor K3
20 A5-4 A3 Contactor K4
21 A6-1 A4 Contactor K5

22 A6-2 EO Contactor K6
23 A6-3 E1 Aux Relay K7
24 A6-4 E2 Aux Relay K8

Table D-3: Relay output microcontroller pins

Source Code for S-Functions in Simulink

APPENDIX E SOURCE CODE FOR S-FUNCTIONS IN SIMULINK

E.1 LEVEL SHIFTED

// LevelShifted

//

// Level Shifted modulation
//

// Copyright:

// Sandu Cristian - 2008
// sanducristian@gmail.com
// Code created for
semester at

// Aalborg University
//

#define S_FUNCTION_NAME
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
#include <math.h>
#endif

#define SWITCHING_FREQUENCY
#define HALF_UNIT_COUNT

#define UNIT_COUNT
HALF_UNIT_COUNT)

#define MAX_VALUE

#define SAMPLE_TIME
(SWITCHING_FREQUENCY * MAX_VALUE))
#define MAX_CYCLES_ZERO_CROSS

#define COUNT_DELTA
/ UNIT_COUNT)
#define LEVEL_SIZE
HALF_UNIT_COUNT)

#define TYPE_IPD
#define TYPE_APOD
#define TYPE_POD

#define USE_TYPE

#define OP_NONE
#define OP_UNIT_CYCLE
#define OP_VOLTAGE_BALANCE

#define OP_TYPE

double * dvalues;

for the class

int * nValues;

for the class
SimStruct * baseStruct;

#define nCounts(a)
(a)]

#define nSign(a)
(a)]
#define
(a)]
#define
(a)]
#define
(a)]

nIndexesU(a)

nIndexesV(a)

nIndexesW(a)

the Project

nValues[(0 *

nValues[(2 *
nValues[(3 *

nValues[(4 *

of the 10th

LevelShifted

(900.0)
(4)

(100)

(5)
(MAX_VALUE * 2.0

(1.0 /

TYPE_IPD
(0)
(1)
(2)

OP_UNIT_CYCLE

// Global double values

// Global integer values

UNIT_COUNT) +

nValues[(1 * UNIT_COUNT) +

UNIT_COUNT) +

UNIT_COUNT) +

UNIT_COUNT) +

nValues[(5 * UNIT_COUNT) + 0]
nValues[(5 * UNIT_COUNT) + 1]
nValues[(5 * UNIT_COUNT) + 2]

#define nCyclesU
#define nCyclesV
#define nCyclesW

#define nSignVoltageU
#define nSignVoltageV
#define nSignVoltageW

nValues[(5 * UNIT_COUNT) + 3]
nValues[(5 * UNIT_COUNT) + 4]
nValues[(5 * UNIT_COUNT) + 5]

// Only positive carriers
#define dCariers(a)
+ (a)]

dValues[(0O * UNIT_COUNT)

#define dCurSenseU dvalues[(1 * UNIT_COUNT)

+ 0]
#define dCurSenseV dvalues[(1 * UNIT_COUNT)
+ 1]
#define dCurSenseW dvalues[(1 * UNIT_COUNT)
+ 2]

#define dOldUnitStateU(a) dvalues[(2 * UNIT_COUNT)

+ (a)]
#define dOldUnitStateV(a) dvalues[(3 * UNIT_COUNT)
+ (a)]
#define dOldUnitStateW(a) dvalues[(4 * UNIT_COUNT)
+ (a)]

#define dOldLegStateUO0 (a) dvalues[(5 * UNIT_COUNT)

;dé?iie dOldLegStateUl (a) dvalues[(6 * UNIT_COUNT)
;dé?iie dOldLegStatevO0 (a) dvalues[(7 * UNIT_COUNT)
gd;?lie dOldLegStateVl (a) dValues[(8 * UNIT_COUNT)
gd;?lie dOldLegStateWO0 (a) dValues[(9 * UNIT_COUNT)
gd;?lie dOldLegStateWl (a) dValues[(10 * UNIT_COUNT)
+ (a)]

#define dCarrierOffsets(a) dValues[(11 * UNIT_COUNT)

+ (a)]

/* *

* S-function methods *

* */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to
determine the S-function
* block's characteristics (number of inputs,
outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S) {
ssSetNumSFcnParams (S, 0); /* Number of expected
parameters */
if (ssGetNumSFcnParams (S) 1=
ssGetSFcnParamsCount (S)) {
/* Return if number of expected != number of
actual parameters */
return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S,
/*Input Port 0 */

3)) return;

E-2

Medium Voltage - Modular Multi-Level Inverter

ssSetInputPortWidth (S, 0, 1); /* Enabled */

ssSetInputPortDataType (S, 0, SS_DOUBLE);

ssSetInputPortComplexSignal (S, 0, COMPLEX_NO);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortRequiredContiguous (S, 0, 1)
/*direct input signal access*/

/*Input Port 0 */

ssSetInputPortWidth (s,
voltages */

ssSetInputPortDataType (S, 1, SS_DOUBLE);

ssSetInputPortComplexSignal (S, 1, COMPLEX_NO);

ssSetInputPortDirectFeedThrough(Ss, 1, 1);

ssSetInputPortRequiredContiguous (S, 1, 1),
/*direct input signal access*/

1, 3); /* Desired

/*Input Port 0 */
ssSetInputPortWidth (s, 2, 3); /* Phase currents
*/
ssSetInputPortDataType (S, 2, SS_DOUBLE);
ssSetInputPortComplexSignal(S, 2, COMPLEX_NO);
ssSetInputPortDirectFeedThrough(S, 2, 1);
ssSetInputPortRequiredContiguous (S, 2, 1)
/*direct input signal access*/

/*
* Set direct feedthrough flag (l=yes, 0=no).
* A port has direct feedthrough if the input is
used in either

* the mdlOutputs or mdlGetTimeOfNextVarHit
functions.

* See
matlabroot/simulink/src/sfuntmpl_directfeed.txt.

*/

ssSetInputPortDirectFeedThrough(Ss, 0, 1);

if (!ssSetNumOutputPorts(S, 7)) return;

/* Output Port 0 - Carriers */
ssSetOutputPortWidth (S, 0, UNIT_COUNT);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 0, COMPLEX_NO) ;

/* Output Port 1 - Unit U states */
ssSetOutputPortWidth (S, 1, UNIT_COUNT);
ssSetOutputPortDataType(S, 1, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 1, COMPLEX_NO);

/* Output Port 2 — IGBT U States */
ssSetOutputPortWidth (S, 2, 2 * UNIT_COUNT);
ssSetOutputPortDataType (S, 2, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 2, COMPLEX_NO);

/* Output Port 3 — Unit V states */
ssSetOutputPortWidth (S, 3, UNIT_COUNT);
ssSetOutputPortDataType (S, 3, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 3, COMPLEX_NO) ;

/* Output Port 4 - IGBT V States */
ssSetOutputPortWidth (S, 4, 2 * UNIT_COUNT);
ssSetOutputPortDataType (S, 4, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 4, COMPLEX_NO) ;

/* Output Port 5 - Unit W states */
ssSetOutputPortWidth (S, 5, UNIT_COUNT);
ssSetOutputPortDataType (S, 5, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 5, COMPLEX_NO) ;

/* Output Port 6 - IGBT W States */
ssSetOutputPortWidth (S, 6, 2 * UNIT_COUNT);
ssSetOutputPortDataType (S, ©, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 6, COMPLEX_NO);

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, UNIT_COUNT * 15);
ssSetNumIWork (S, UNIT_COUNT * 10);

ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, 0);

}
/* Function: mdlInitializeSampleTimes
* Abstract:
* This function is used to specify the sample
time(s) for your
* S-function. You must register the same number
of sample times as
* specified in ssSetNumSampleTimes.
*/

static void mdlInitializeSampleTimes (SimStruct *S) {
ssSetSampleTime (S, 0, SAMPLE_TIME) ;
ssSetOffsetTime (S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS /*

#undef to remove function */

#if defined (MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions (SimStruct *S){

Change to

#endif /* MDL_INITIALIZE_CONDITIONS */

#define MDL_START /* Change to #undef to remove
function */
#if defined (MDL_START)

/* Function: mdlStart

* Abstract:

* This function is called once at start of
model execution. If you

* have states that should be initialized once,
this is the place

* to do it.

*/

static void mdlStart (SimStruct *S) {
int i, j;

// Retrieve global variables
dvalues = ssGetRWork(S);
nvValues = ssGetIWork(S);
baseStruct = S;

// Initialize indexes

for (i = 0; i < UNIT_COUNT; i++){
nIndexesU(i) = 1i;
nIndexesV (i) = 1i;
nIndexesW(i) = 1i;
}
// Do initialization of carriers levels
#if USE_TYPE == USE_IPD
for (i = 0; i < HALF_UNIT_COUNT; i++){

dCarrierOffsets(i) = i * LEVEL_SIZE;
dCarrierOffsets (i + HALF_UNIT_COUNT) = -
(i + 1) * LEVEL_SIZE;

nCounts (i) = 0;
nCounts (i + HALF_UNIT_COUNT) = 0;
nSign(i) = 1.0;
nSign(i 4+ HALF_UNIT_COUNT) = 1.0;
}
#endif
#if USE_TYPE == TYPE_APOD
j=1;
for (i = 0; i < HALF_UNIT_COUNT; i++){

dCarrierOffsets(i) = i * LEVEL_SIZE;
dCarrierOffsets(i + HALF_UNIT_COUNT) = -

(i + 1) * LEVEL_SIZE;

nCounts(i) = ((1 % 2) == 0) *?
MAX_VALUE;
nCounts(i + HALF_UNIT_COUNT) = ((i % 2)
== 0) ? MAX_VALUE : 0;
nSign(i) = ((1 % 2) == 0) ? =1.0 : +!
nSign(i + HALF_UNIT_COUNT) = ((i % 2) ==
0) 2 +1.0 : =1.0;
if ((1 % 2) == 1){
j+= 7
}
#endif
#if USE_TYPE == TYPE_POD
for (i = 0; i < HALF_UNIT_COUNT; i++){

dCarrierOffsets(i) = i * LEVEL_SIZE;
dCarrierOffsets(i + HALF_UNIT_COUNT) = -
(i + 1) * LEVEL_SIZE;

nCounts (i) = 0;
nCounts (i + HALF_UNIT_COUNT) = MAX_VALUE;

nSign(i) = 1.0;
nSign(i 4+ HALF_UNIT_COUNT) = -=1.0;

#endif

}
#endif /* MDL_START */

#define MDL_SET_DEFAULT_PORT_DATA_TYPES

static void mdlSetDefaultPortDataTypes (SimStruct *S) {
ssSetInputPortDataType (S, 0, SS_DOUBLE);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);

}

static void HandleCariers() {

int 1i;
for (i = 0; i < UNIT_COUNT; i++){
if (nSign(i) == 0) nSign(i) = 1;

nCounts (i) += nSign(i);

if (nCounts (i) >= MAX_VALUE) nSign(i) = -1;
if (nCounts(i) <= 0) nSign(i) = 1;

dCariers (i) = dCarrierOffsets (i) +
(nCounts (i) * LEVEL_SIZE / MAX_VALUE);
}
}

static void HandleCurrentSign() {
const real_ T *PhaseCurrent = (const real_ T¥%)
ssGetInputPortSignal (baseStruct, 2);

// get the current sign. If not set (value 0) set
the sign to pozitive

if (PhaseCurrent[0] > 0.5) dCurSenseU = 1.0;

if (PhaseCurrent[0] < =0.5) dCurSenseU = -1.0;

if (dCurSenseU == () dCurSenseU = 1.0;

if (PhaseCurrent[l] > 0.5) dCurSenseV = 1.0;
if (PhaseCurrent[l] < =0.5) dCurSenseV = -=1.0;
if (dCurSenseV == () dCurSenseV = 1.0;

if (PhaseCurrent[?] > 0.5) dCurSenseW = 1.0;
if (PhaseCurrent[?] < =0.5) dCurSenseW = —=1.0;
if (dCurSenseW == () dCurSenseW = 1.0;

static void HandleUnitStates() {
const real_ T * DesiredVoltage =
real_T*) ssGetInputPortSignal (baseStruct, 1);

(const

Source Code for S-Functions in Simulink

int 1i;
int nMySign;

#if OP_TYPE == OP_NONE
for (i = 0; i < HALF_UNIT_COUNT; i++){
// Set the unit states according with the
carrier and the desired voltage
dOldUnitStateU(i) =
dCariers(i)) ? -1 : 1;

(DesiredVoltage[0] <

i
dOldUnitStateV (i) = (DesiredVoltage[l] <
dCariers(i)) ? -1 : 1;
dOldUnitStateW (i) = (DesiredVoltage[Z] <
dCariers(i)) ? -1 : 1;

dOldUnitStateU (HALF_UNIT_COUNT + i)
(DesiredVoltage[0] < dCariers (HALF_UNIT_COUNT + 1i)) *?
1 :-1;

dOldUnitStateV (HALF_UNIT_COUNT + i)
(DesiredVoltage[l] < dCariers(HALF_UNIT_COUNT + 1i)) ?

’

dOldUnitStateW (HALF_UNIT_COUNT + i)
(DesiredVoltage[2] < dCariers (HALF_UNIT_COUNT + 1i)) *?
: =1;

#endif // OP_NONE
#if OP_TYPE == OP_UNIT_CYCLE
// Determine the New indeses
if (nCyclesU > MAX_CYCLES_ZERO_CROSS) {
// Determine the sign
nMySign = (DesiredVoltagel[0] > 0) ?

// Now let's monitor the voltage
reference sign

if (nSignvVoltageU != nMySign) {

}

// Determine the unit states
for (i = 0; i < HALF_UNIT_COUNT; i++){
// Set the unit states according with the
carrier and the desired voltage
dOldUnitStateU(nIndexsU(i)) =
(DesiredVoltage[0] < dCariers(i)) ? -1 : 1;
dOoldUnitStateV(nIndexsV(i)) =
(DesiredVoltage[l] < dCariers(i)) ? -1 : 1;
dOoldUnitStateW(nIndexsW(i)) =
(DesiredVoltage[2] < dCariers(i)) ? -1 : I1;

dOldUnitStateU(nIndexsU(HALF_UNIT_COUNT +

i)) = (DesiredVoltage[0] < dCariers (HALF_UNIT_COUNT +
i)) 2 : =1;

dOldUnitStateV(nIndexsV (HALF_UNIT_COUNT +
i)) = (DesiredVoltage[!] < dCariers (HALF_UNIT_COUNT +
i)y 2 1 =1;

dOldUnitStateW(nIndexsW (HALF_UNIT_COUNT +
i)) = (DesiredVoltage[?] < dCariers (HALF_UNIT_COUNT +
i)y 2 1 =1;

}
#endif // UNIT_CYCLE

static void HandleIGBTStates() {
int 1i;
double dNewStateUO, dNewStateUl;
double dNewStateV0, dNewStateVl;
double dNewStateW0, dNewStateWl;

for (i = 0; i < UNIT_COUNT; i++){
// Set the states according with the current
sign

dNewStateUO =
((dOldUnitStateU(i) > 0) 2 1.0

(dCurSenseU > 0) 2 1.0
-1.0);

E-4

Medium Voltage - Modular Multi-Level Inverter

dNewStateUl =
((dOldUnitsStateU(i) > 0)

(dCurSenseU > 0) ?
? 1.0 -1.0) : 1.0;

dNewStatevVO0 = (dCurSensev > 0) 2 1.0
((dOldUnitStatev(i) > 0) 2 1.0 -1.0);

dNewStateVl = (dCurSenseV > 0) ?
((dOldUnitStatev(i) > 0) 2 1.0 -1.0) : 1.0;

dNewStateW0 = (dCurSenseW > 0) ?2 1.0
((dOldUnitStatew (i) > 0) ? 1.0 -1.0);

dNewStateWl = (dCurSenseW > 0) ?
((dOoldUnitStatewW(i) > 0) 2 1.0 -1.0) : 1.0;

// Set state for leg 0 (towards positive)

// - If idle (old state = 0) then take the
new state

// — If different than new state than take 0

// - Else 0

if (dOldLegStateU0 (1) == 0){
dOldLegStateU0 (i) = dNewStateUO; }

else if (dOldLegStateUO (1) 1= dNewStateUQ)
dOldLegStateU0(i) = 0;

if (dOldLegStateVv0 (1) == 0){
dOldLegStateV0 (i) = dNewStatevO0; }

else if (dOldLegStateVO0 (i) 1= dNewStateVv0)
dOldLegStatevO (i) = 0;

if (dOldLegStateWO (1) == 0){
dOldLegStateW0 (i) = dNewStateWO; }

else if (dOldLegStateWO (i) 1= dNewStateW0)
dOldLegStateW0O (i) = 0O;

// Set state for leg 0 (towards negative)
if (dOldLegStateUl (1) == 0){
dOldLegStateUl (i) = dNewStateUl; }

else if (dOldLegStateUl(i) != dNewStateUl)
dOldLegStateUl (i) = 0O;

if (dOldLegStateVl (i) == 0){
dOldLegStateVl (i) = dNewStateVl; }

else if (dOldLegStateV1(i) != dNewStateVl)
dOldLegStateVvl(i) = 0;

if (dOldLegStateWl (1) == 0){
dOldLegStateWl (i) = dNewStateWl; }

else if (dOldLegStateWl (i) 1= dNewStateWl)
dOldLegStateWl (i) = 0;

}

}
/* Function: mdlOutputs

* Abstract:

* In this function, you compute the outputs of
your S-function
* block. Generally outputs are placed in the
output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid){
const real T * Enabled = (const real_T¥%)
ssGetInputPortSignal(S,0);
real T *Cariers = (real_T
*) ssGetOutputPortRealSignal (S, 0);
real_T *UnitU = (real_T
*) ssGetOutputPortRealSignal (S, 1);
real T *IgbtU = (real_T
*) ssGetOutputPortRealSignal (S, 2);
real T *UnitVv = (real_T
*) ssGetOutputPortRealSignal (S, 3);
real T *IgbtV = (real_T
*) ssGetOutputPortRealSignal (S, 4);
real_T *UnitW = (real_T
*) ssGetOutputPortRealSignal (S, 5);
real T (real_T

*TgbtW =
*) ssGetOutputPortRealSignal (S, 0);

int i; // Index counter
// Retrieve global variables
dvalues = ssGetRWork(S);

nvValues = ssGetIWork(S);
baseStruct = S;

// 1f the sample time hit us
if (ssIsSampleHit (S, 0, 0)){

// handle the cariers
HandleCariers();

// handle the current sign
HandleCurrentSign();

// handle the unit states
HandleUnitStates();

// Handle
Unit states
HandleIGBTStates();

IGBT states with respect to the

// Output the data
for (i = 0; i < UNIT_COUNT; i++){
Cariers[i] = dCariers(i);

if (Enabled[0] != 0){
UnitU[i] = dOldUnitStateU(1i);
UnitV[i] = dOldUnitStateV(i);
UnitW[i] = dOldUnitStateW(i);

IgbtU[i * 2 + 0] = dOldLegStateUO0(1i);
IgbtU[i * 2 + 1] = dOldLegStateUl(i);

IgbtV[i * 2 + 0] = dOldLegStateVO(i);
IgbtV[i * 2 + 1] = dOldLegStateV1(i);

IgbtW[i * 2 + 0] = dOldLegStateWO(1i);
IgbtW[i * 2 + 1] = dOldLegStateWl (i) ;
} else {
UnitU[i]
UnitVv[i]
UnitW[i]

IgbtU[i * 2
IgbtU[i * 2

IgbtV[i * 2 +
IgbtV[i * 2 +

IgbtW[i * 2 + 0] =
IgbtW[i * 2 + 1] =

}
}
//
// END
//

#undef MDL_UPDATE /* Change to #undef to remove
function */
#if defined (MDL_UPDATE)

/* Function: mdlUpdate

* Abstract:

* This function is called once for every major
integration time step.

* Discrete states are typically updated here,
but this function is useful

* for performing any tasks that should only
take place once per

* integration step.

*/
static void mdlUpdate (SimStruct *S, int_T tid){
}

#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES
function */
#if defined (MDL_DERIVATIVES)

/* Change to #undef to remove

/* Function: mdlDerivatives
* Abstract:
* In this function, you compute the S-function
block's derivatives.
* The derivatives are placed in the derivative
vector, ssGetdX(S).
*/

static void mdlDerivatives (SimStruct *S) {

#endif /* MDL_DERIVATIVES */

Source Code for S-Functions in Simulink

/* Function: mdlTerminate

* Abstract:

* In this function, you should perform any
actions that are necessary

* at the termination of a simulation. For
example, if memory was

* allocated in mdlStart, this 1is the place to
free it.

*/
static void mdlTerminate(SimStruct *S){

}
#ifdef MATLAB_MEX_FILE /* Is this file being
compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface
mechanism */

#else

#include "cg_sfun.h" /* Code generation

registration function */
#endif

Medium Voltage - Modular Multi-Level Inverter

E.2 PHASE SHIFTED

// PhaseShifted

//

// Phase Shifted modulation

//

// Copyright:

// Sandu Cristian - 2008

// sanducristian@gmail.com

// Code created for the Project of the 10th
semester at

// Aalborg University

//

#define S_FUNCTION_NAME PhaseShifted
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
#include <math.h>

#endif

#define INV_SQRT_3
0.57735026918962576450914878050196

#define SATURATE (val, min, max) { (val) = ((val)
< (min) ? (min) ((val) > (max) ? (max) (val))); 1}
#define MIN(a, b, c) (((a) < (b) 2
((a) < (c) 2 (a) = (c)) = ((b) < (c) 2 (b) (c))))
#define MAX(a, b, c) (((a) > (b) 2
((a) > (c) 2 (a) = (c)) = ((b) > (c) 2 (b) (c))))
#define SATURATION_MIN (0.02)

#define SATURATION_MAX (0.98)

#define SWITCHING_FREQUENCY (200)

#define HALF_UNIT_COUNT (4)

#define UNIT_COUNT (2 *

HALF_UNIT_COUNT)

#define MAX_VALUE (200)

#define SAMPLE_TIME (1.0 /
(SWITCHING_FREQUENCY * MAX_VALUE))

#define COUNT_DELTA
/ UNIT_COUNT)

(MAX_VALUE * 2.0

double * dvalues;

for the class

int * nValues;

for the class
SimStruct * baseStruct;

// Global double values

// Global integer values

#define nCounts(a)
(a)]

#define nSign(a)
(a)]

nValues|[(0 * UNIT_COUNT) +
nValues[(1 * UNIT_COUNT) +
// Only positive carriers

#define dCariers(a)
+ (a)]

dvalues[(O * UNIT_COUNT)

#define dCurSenseU dValues[(1 * UNIT_COUNT)

+ 0]
#define dCurSenseV dValues[(1 * UNIT_COUNT)
+ 1]
#define dCurSenseW dValues[(1 * UNIT_COUNT)
+ 2]

#define dOldUnitStateU(a) dvalues[(2 * UNIT_COUNT)

+ (a)]
#define dOldUnitStateV(a) dvalues[(3 * UNIT_COUNT)
+ (a)]
#define dOldUnitStateW(a) dvalues[(4 * UNIT_COUNT)
+ (a)]

#define dOldLegStateU0 (a) dValues[(5 * UNIT_COUNT)

+ 1]
#define dOldLegStateUl (a) dValues|[(6 * UNIT_COUNT)
+ 1]
#define dOldLegStateVO0 (a) dValues[(7 * UNIT_COUNT)
+ 1]
#define dOldLegStateVl (a) dValues|[(8 * UNIT_COUNT)
+ 1]
#define dOldLegStateWO (a) dValues|[(9 * UNIT_COUNT)
+ 1]
#define dOldLegStateWl (a) dValues[(10 * UNIT_COUNT)
+ 1]
/* *
* S-function methods *
* */
/* Function: mdlInitializeSizes
* Abstract:
* The sizes information is used by Simulink to
determine the S-function
* block's characteristics (number of inputs,
outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S) {
ssSetNumSFcnParams (S, 0); /* Number of expected
parameters */
if (ssGetNumSFcnParams (S) 1=
ssGetSFcnParamsCount (S)) {
/* Return 1if number of expected != number of
actual parameters */
return;
}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 3)) return;

/*Input Port 0 */

ssSetInputPortWidth(S, 0, 1); /* Enabled */

ssSetInputPortDataType (S, U, SS_DOUBLE);

ssSetInputPortComplexSignal (S, 0, COMPLEX_NO) ;

ssSetInputPortDirectFeedThrough(s, 0, 1);

ssSetInputPortRequiredContiguous (S, 0, 1),
/*direct input signal access*/

/*Input Port 0 */

ssSetInputPortWidth (S, 1, 3); /*
voltages */

ssSetInputPortDataType(S, 1, SS_DOUBLE);

ssSetInputPortComplexSignal (S, 1, COMPLEX_NO);

ssSetInputPortDirectFeedThrough(s, 1, 1);

ssSetInputPortRequiredContiguous (S, 1, 1);
/*direct input signal access*/

Desired

/*Input Port 0 */

ssSetInputPortWidth (S, 2, 3); /* Phase currents
*/

ssSetInputPortDataType(S, 2, SS_DOUBLE);

ssSetInputPortComplexSignal (S, 2, COMPLEX_NO) ;

ssSetInputPortDirectFeedThrough(s, 2, 1);

ssSetInputPortRequiredContiguous (S, 2, 1),
/*direct input signal access*/

/*
* Set direct feedthrough flag (l=yes, 0O=no).
* A port has direct feedthrough if the input is
used in either

* the mdlOutputs or mdlGetTimeOfNextVarHit
functions.

* See
matlabroot/simulink/src/sfuntmpl_directfeed.txt.

*/

ssSetInputPortDirectFeedThrough(s, 0, 1);

if (!ssSetNumOutputPorts(S, 7)) return;

/* Output Port 0 - Carriers */
ssSetOutputPortWidth (S, 0, UNIT_COUNT);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 0, COMPLEX_NO);

/* Output Port 1 - Unit U states */
ssSetOutputPortWidth (S, 1, UNIT_COUNT);
ssSetOutputPortDataType(S, 1, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 1, COMPLEX_NO) ;

/* Output Port 2 - IGBT U States */
ssSetOutputPortwWidth (s, 2, * UNIT_COUNT) ;
ssSetOutputPortDataType (S, 2, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 2, COMPLEX_NO) ;

/* Output Port 3 - Unit V states */
ssSetOutputPortWidth (S, 3, UNIT_COUNT);
ssSetOutputPortDataType (S, 3, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 3, COMPLEX_NO);

/* Output Port 4 — IGBT V States */

ssSetOutputPortWidth (S, 4, 2 * UNIT_COUNT);
ssSetOutputPortDataType (S, 4, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 4, COMPLEX_NO);

/* Output Port 5 — Unit W states */
ssSetOutputPortWidth (S, 5, UNIT_COUNT);
ssSetOutputPortDataType (S, 5, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 5, COMPLEX_NO) ;

/* Output Port 6 - IGBT W States */
ssSetOutputPortwWidth (s, ¢, * UNIT_COUNT) ;
ssSetOutputPortDataType (S, ©, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 6, COMPLEX_NO) ;

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, UNIT_COUNT * 12);
ssSetNumIWork (S, UNIT_COUNT * 2);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, 0);

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function 1is used to specify the sample
time(s) for your

* S-function. You must register the same number
of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes (SimStruct *S) {
ssSetSampleTime (S, 0, SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS /*

#undef to remove function */

#if defined (MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions (SimStruct *S){
}

#endif /* MDL_INITIALIZE_CONDITIONS */

Change to

#define MDL_START /*
function */
#if defined (MDL_START)

Change to #undef to remove

Source Code for S-Functions in Simulink

/* Function: mdlStart
* Abstract:
* This function 1is called once at start of
model execution. If you
* have states that should be initialized once,
this is the place
* to do it.
*/
static void mdlStart (SimStruct *S) {
}
#endif /* MDL_START */

#define MDL_SET_DEFAULT_PORT_DATA_TYPES

static void mdlSetDefaultPortDataTypes (SimStruct *S) {
ssSetInputPortDataType (S, U, SS_DOUBLE);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);

}

static void HandleCariers() {
int 1i;

if ((nCounts(0) == nCounts(l)) && (nCounts(0) ==
DRt

for (i = 1; i < UNIT_COUNT; i++){
if (1 % 2 == 0){
nCounts (i) = nCounts(i - 1);
nSign(i) = -1;
} else {
nCounts (1) = nCounts (1 - 1) +
COUNT_DELTA;
nSign(i) = 1;
}
if (nCounts (i) == MAX_VALUE) {
nSign(i) = -1;
}
}
}
for (i = 0; i < UNIT_COUNT; i++){
if (nSign(i) == 0) nSign(i) = 1;
nCounts (i) += nSign(i);
if (nCounts (i) >= MAX_VALUE) nSign(i) = -1;
if (nCounts (i) <= 0) nSign(i) = 1;
dCariers(i) = 1.0 — (nCounts(i) * 2.0 / 200);
}

static void HandleCurrentSign() {
const real_ T *PhaseCurrent = (const real_ T%)
ssGetInputPortSignal (baseStruct, 2);

// get the current sign. If not set (value 0) set
the sign to pozitive

if (PhaseCurrent[0] > 0.5) dCurSenseU = 1.0;
if (PhaseCurrent[0] < =0.5) dCurSenseU = =1.0;
if (dCurSenseU == () dCurSenseU = 1.0;

if (PhaseCurrent[l] > 0.5) dCurSenseV = 1.0;
if (PhaseCurrent[l] < =0.5) dCurSenseV = =1.0;
if (dCurSenseV == () dCurSenseV = 1.0;

if (PhaseCurrent[Z?] > 0.5) dCurSenseW =
if (PhaseCurrent[?] < =0.5) dCurSenseW =
if (dCurSenseW == () dCurSenseW = 1.0;

static void HandleUnitStates () {
const real_T * DesiredVoltage =
real_T*) ssGetInputPortSignal (baseStruct, 1);

(const

Medium Voltage - Modular Multi-Level Inverter

int 1i;

for (i = 0; i < HALF_UNIT_COUNT; i++){
// Set the unit states according with the
carrier and the desired voltage

dOldUnitStateU(1) = (DesiredVoltage[0] >=

dCariers(i)) 2 1 : =1;

dOldUnitStateV (i) = (DesiredVoltage[1] >=
dCariers(i)) 2 1 : =1;

dOldUnitStateW (i) = (DesiredVoltage[2] >=
dCariers(i)) 2 1 : =1;

dOldUnitStateU(HALF_UNIT_COUNT + i) = 0 -
dOldUnitStateU(i);

dOldUnitStateV (HALF_UNIT_COUNT + i) = 0 =
dOldUnitStateV (i) ;

dOldUnitStateW (HALF_UNIT_COUNT + i) = 0 -

dOldUnitStateW (i) ;
}
}

static void HandleIGBTStates () {
int 1i;
double dNewStateUO, dNewStateUl;
double dNewStateV0, dNewStateVl;
double dNewStateW0, dNewStateWl;

for (i = 0; i < UNIT_COUNT; i++)({

// Set the states according with the current
sign

dNewStateUO = 1;

dNewStateUl = (dOldUnitStateU(i) > 0) ? 1.0
-1.0;

dNewStateV0 = 1;

dNewStateVl = (dOldUnitStatevV(i) > 0) ? 1.0
-1.0;

dNewStateW0 = 1;

dNewStateWl = (dOldUnitStateW(i) > 0) ? 1.0
-1.0;
/*

dNewStateUO = (dCurSenseU > 0) ? 1.0
((dOldUnitStateU(i) > 0) 2 1.0 -1.0);

dNewStateUl = (dCurSenseU > 0) ?
((dOldUnitStateU(i) > 0) 2 1.0 -1.0) : 1.0;

dNewStateV0 = (dCurSenseV > 0) ? 1.0
((dOldUnitStatev(i) > 0) 2 1.0 -1.0);

dNewStateV1l = (dCurSenseV > 0) ?
((dOldUnitStatev(i) > 0) 2 1.0 -1.0) : 1.0;

dNewStateW0 = (dCurSenseW > 0) ? 1.0
((dOldUnitStateW(i) > 0) 2 1.0 -1.0);

dNewStateWl = (dCurSenseW > 0) ?
((dOldUnitStateW(i) > 0) 2 1.0 -1.0) : 1.0;

*/

// Set state for leg 0 (towards positive)

// - If idle (old state = 0) then take the
new state

// — 1If different than new state than take 0

// - Else 0

if (dOldLegStateU0 (1) == 0){
dOldLegStateU0 (i) = dNewStateUO; }

else if (dOldLegStateUO0 (1) 1= dNewStateUO0)
dOldLegStateU0 (i) = 0;

if (dOldLegStateVvo0 (1) == 0){
dOldLegStateVv0 (i) = dNewStatevO0; }

else if (dOldLegStateVO0 (i) 1= dNewStatev0)
dOldLegStatev0O (i) = 0;

if (dOldLegStateWO (1) == 0){
dOldLegStateW0 (i) = dNewStateWO; }

else if (dOldLegStateWO (i) 1= dNewStateW0)

dOldLegStateW0O (i) = 0;

// Set state for leg 0 (towards negative)
if (dOldLegStateUl (i) == 0){
dOldLegStateUl (i) = dNewStateUl; }

else if (dOldLegStateUl (i) 1= dNewStateUl)
dOldLegStateUl (i) = 0;
if (dOldLegStateVl (i) == 0){
dOldLegStateVl (i) = dNewStateVl; }
else if (dOldLegStateV1 (i) = dNewStateVl)
dOldLegStateVl(i) = 0;
if (dOldLegStateWl (i) == 0){
dOldLegStateWl (i) = dNewStateWl; }
else if (dOldLegStateWl (i) = dNewStateWl)
dOldLegStateWl (i) = 0;
}
}
/* Function: mdlOutputs
* Abstract:
* In this function, you compute the outputs of

your S-function

* block. Generally outputs are placed in the
output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid){
const real_T * Enabled = (const real_T¥%)
ssGetInputPortSignal (S, 0);
real_T *Cariers = (real_T
*) ssGetOutputPortRealSignal (S, 0);
real_T *UnitU = (real_T
*) ssGetOutputPortRealSignal (S, 1);
real_T *IgbtU = (real_T
*) ssGetOutputPortRealSignal (S, 2);
real_T *UnitVv = (real_T
*) ssGetOutputPortRealSignal (S, 3);
real_T *IgbtV = (real_T
*) ssGetOutputPortRealSignal (S, 4);
real_T *UnitW = (real_T
*) ssGetOutputPortRealSignal (S, 5);
real_T *TgbtW = (real_T

*) ssGetOutputPortRealSignal (S, 0);

int i; // Index counter
// Retrieve global variables
dvalues = ssGetRWork(S);

nvValues = ssGetIWork(S);
baseStruct = S;

// 1f the sample time hit us
if (ssIsSampleHit (S, 0, 0)){

// handle the cariers
HandleCariers();

// handle the current sign
HandleCurrentSign();

// handle the unit states
HandleUnitStates();

// Handle IGBT states with respect to the

Unit states
HandleIGBTStates();

// Output the data

for (i = 0; i < UNIT_COUNT; i++){
Cariers[i] = dCariers(i);
if (Enabled[0] != 0){

UnitU[i] = dOldUnitStateU(i);

UnitV[i] = dOldUnitStateVv(i);
UnitW[i] = dOldUnitStateW(i);

IgbtU[i * 2 + = dOldLegStateUO0 (1) ;
IgbtU[i * 2 + = dOldLegStateUl(1i);
IgbtV[i * 2 4+ 0] = dOldLegStateVvO(1i);
IgbtV[i * 2 + = dOldLegStateV1(i);
IgbtW[i * 2 4+ 0] = dOldLegStateWO(1i);
IgbtW[i * 2 4+ 1] = dOldLegStateWl (i);
} else {
UnitU[i] = 0;
UnitV[i] = 0;
UnitW[i] = 0;
IgbtU[i * 2 4+ 0] = 0;
IgbtU[i * 2 4+ 1] = 0;
IgbtV[i * 2 + 0] = 0;
IgbtV[i * 2 + 1] = 0;
IgbtW[i * 2 + 0] = 0;
IgbtW[i * 2 + 1] = 0;
}
}
//
// END
//

#undef MDL_UPDATE /*
function */
#if defined (MDL_UPDATE)

Change to #undef to remove

/* Function: mdlUpdate
* Abstract:
* This function is called once for every major
integration time step.
* Discrete states are typically updated here,
but this function is useful
* for performing any tasks that should only

take place once per

Source Code for S-Functions in Simulink

* integration step.
*/
static void mdlUpdate (SimStruct *S, int_T tid){
}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES
function */
#if defined (MDL_DERIVATIVES)

/* Change to #undef to remove

/* Function: mdlDerivatives

* Abstract:

* In this function, you compute the S-function
block's derivatives.

* The derivatives are placed in the derivative
vector, ssGetdX(S).

*/

static void mdlDerivatives (SimStruct *S) {

#endif /* MDL_DERIVATIVES */

/* Function: mdlTerminate

* Abstract:

* In this function, you should perform any
actions that are necessary

* at the termination of a simulation. For
example, if memory was

* allocated in mdlStart, this 1is the place to
free it.

*/
static void mdlTerminate(SimStruct *S){

}
#ifdef MATLAB_MEX_FILE /* Is this file being
compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface
mechanism */
#else
#include "cg_sfun.h" /* Code generation
registration function */
#endif

Medium Voltage - Modular Multi-Level Inverter

E.3 STAIRCASE

// Staircase

//

// Staircase modulation

//

// Copyright:

// Sandu Cristian - 2008
// sanducristian@gmail.com
// Code created for
semester at

// Aalborg University
//

#define S_FUNCTION_NAME
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
#include <math.h>
#endif

#define

the Project

of the 10th

Staircase

INV_SQRT_3

0.57735026918962576450914878050196

#define SATURATE (val, min,
< (min) ? (min) ((val) >
#define MIN(a, b, c)

((a) < (c) 2 (a) (c))
#define MAX(a, b, c)

((a) > (c) 2 (a) (c))
#define SATURATION_MIN
#define SATURATION_MAX

#define SWITCHING_FREQUENCY
#define HALF_UNIT_COUNT
#define UNIT_COUNT
HALF_UNIT_COUNT)

#define SAMPLE_TIME
SWITCHING_FREQUENCY)

#define COUNT_DELTA
/ UNIT_COUNT)
#define STEP_OFFSET
HALF_UNIT_COUNT)

#define
#define
#define
#define
#define
#define
#define
#define

PORTIN_ENABLE
PORTIN_DESIRED_VOLTAGE
PORTIN_COEFFICIENT
PORTIN_UNIT_VOTLAGES_U
PORTIN_UNIT_VOTLAGES_V
PORTIN_UNIT_VOTLAGES_W
PORTIN_CURRENTS
PORTIN_VOLTAGES

#define PORTIN__COUNT

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PORTOUT_LEVELS
PORTOUT_SORT_U
PORTOUT_UNITSTATE_U
PORTOUT_IGBTSTATE_U
PORTOUT_SORT_V
PORTOUT_UNITSTATE_V
PORTOUT_IGBTSTATE_V
PORTOUT_SORT_W
PORTOUT_UNITSTATE_W
PORTOUT_IGBTSTATE_W
PORTOUT_QUADRANTS

#define PORTOUT__COUNT

double * dvalues;
for the class

max) {
(max) ?

(val) = ((val)

(max)

(0.02)
(0.98)
(6000)
(4)
(2~
(1.0 /

(MAX_VALUE * 2.0

(1.0 /

O U W N O

// Global double values

int * nValues; // Global integer values
for the class
SimStruct * baseStruct;

double dMainSteps[UNIT_COUNT + 1];

#define
(a)]
#define
(a)]
#define
(a)]

nSortedU(a) nValues[(0 * UNIT_COUNT) +

nSortedV(a) nValues[(1 * UNIT_COUNT) +

nSortedW(a) nValues[(2 * UNIT_COUNT) +

#define nQuadrantU nValues[(3 * UNIT_COUNT) + 0]
#define nQuadrantV nValues[(3 * UNIT_COUNT) + 1]
#define nQuadrantW nValues[(3 * UNIT_COUNT) + 2]
// Only positive carriers
#define dUnitStateU(a) dvalues[(0 *
UNIT_COUNT) + (a)]
#define dUnitStateV(a) dvalues[(1 *
UNIT_COUNT) + (a)]
#define dUnitStateW(a) dvalues[(2 *
UNIT_COUNT) + (a)]
#define dPhaseLevelU dvalues[(3 *
UNIT_COUNT) + 0]
#define dPhaseLevelV dvalues[(3 *
UNIT_COUNT) + 1]
#define dPhaseLevelW dvalues[(3 *
UNIT_COUNT) + 2]
#define dCurSenseU dvalues[(4 *
UNIT_COUNT) + 0]
#define dCurSenseV dvalues[(4 *
UNIT_COUNT) + 1]
#define dCurSenseW dvalues[(4 *
UNIT_COUNT) + 2]
#define dOldLegStateUO0 (a) dvalues[(5 *
UNIT_COUNT) + i]
#define dOldLegStateUl (a) dvalues[(6 *
UNIT_COUNT) + i]
#define dOldLegStateVO (a) dvalues([(7 *
UNIT_COUNT) + i]
#define dOldLegStateVl (a) dvalues[(8 *
UNIT_COUNT) + i]
#define dOldLegStateWO (a) dvalues[(9 *
UNIT_COUNT) + i]
#define dOldLegStateWl (a) dvalues[(10 *
UNIT_COUNT) + i]

/* *

* S-function methods *

* */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to
determine the S-function

* block's characteristics (number of inputs,
outputs, states, etc.).

*/
static void mdlInitializeSizes(SimStruct *S) {

int i;

ssSetNumSFcnParams (S, 0); /*
parameters */
if (ssGetNumSFcnParams (S) 1=
ssGetSFcnParamsCount (S)) {
/* Return if number of expected !=
actual parameters */
return;

Number of expected

number of

}

ssSetNumContStates (S, 0);

ssSetNumDiscStates (S, 0);
if (!ssSetNumInputPorts (S, PORTIN__COUNT))
return;
/*Input Port 0 */
ssSetInputPortWidth (S,
Enabled */
ssSetInputPortDataType (S,
SS_DOUBLE) ;
ssSetInputPortComplexSignal (S,
COMPLEX_NO) ;
ssSetInputPortDirectFeedThrough (S,

PORTIN_ENABLE,)Y,/
PORTIN_ENABLE,
PORTIN_ENABLE,

PORTIN_ENABLE,
1);

ssSetInputPortRequiredContiguous (S,
PORTIN_ENABLE, 1); /*direct input signal access*/

/*Input Port 0 */

ssSetInputPortWidth(s,
3); /* Desired voltages */

ssSetInputPortDataType (S,
SS_DOUBLE) ;

ssSetInputPortComplexSignal (S,
PORTIN_DESIRED_VOLTAGE, COMPLEX_NO);

ssSetInputPortDirectFeedThrough(S,
PORTIN_DESIRED_VOLTAGE, 1);

ssSetInputPortRequiredContiguous (S,
PORTIN_DESIRED_VOLTAGE,); /*direct
access*/

PORTIN_DESIRED_VOLTAGE,

PORTIN_DESIRED_VOLTAGE,

input signal

/* Input Port X */
ssSetInputPortWidth (S,
/x o/
ssSetInputPortDataType (S,
SS_DOUBLE) ;
ssSetInputPortComplexSignal (S,
PORTIN_COEFFICIENT, COMPLEX_NO);
ssSetInputPortDirectFeedThrough (S,
PORTIN_COEFFICIENT, 1);
ssSetInputPortRequiredContiguous (S,
PORTIN_COEFFICIENT, 1), /*direct
access*/

PORTIN_COEFFICIENT, 1);

PORTIN_COEFFICIENT,

input signal

/* Input Port X */

ssSetInputPortWidth(s, PORTIN_UNIT_VOTLAGES_U,
UNIT_COUNT); /* Phase units voltages */

ssSetInputPortDataType (S, PORTIN_UNIT_VOTLAGES_U,
SS_DOUBLE) ;

ssSetInputPortComplexSignal (S,
PORTIN_UNIT_VOTLAGES_U, COMPLEX_NO);

ssSetInputPortDirectFeedThrough (S,
PORTIN_UNIT_VOTLAGES_U, 1);

ssSetInputPortRequiredContiguous (S,
PORTIN_UNIT_VOTLAGES_U,); /*direct
access*/

input signal

/* Input Port X */

ssSetInputPortWidth(s, PORTIN_UNIT_VOTLAGES_V,
UNIT_COUNT); /* Phase units voltages */

ssSetInputPortDataType (S, PORTIN_UNIT_VOTLAGES_V,
SS_DOUBLE) ;

ssSetInputPortComplexSignal (S,
PORTIN_UNIT_VOTLAGES_V, COMPLEX_NO);

ssSetInputPortDirectFeedThrough (S,
PORTIN_UNIT_VOTLAGES_V, 1);

ssSetInputPortRequiredContiguous (S,
PORTIN_UNIT_VOTLAGES_V, 1); /*direct
access*/

input signal

/* Input Port X */

ssSetInputPortWidth (s, PORTIN_UNIT_VOTLAGES_W,
UNIT_COUNT); /* Phase units voltages */

ssSetInputPortDataType (S, PORTIN_UNIT_VOTLAGES_W,
SS_DOUBLE) ;

ssSetInputPortComplexSignal (S,
PORTIN_UNIT_VOTLAGES_W, COMPLEX_NO);

ssSetInputPortDirectFeedThrough (S,
PORTIN_UNIT_VOTLAGES_W, 1);

ssSetInputPortRequiredContiguous (S,
PORTIN_UNIT_VOTLAGES_W,); /*direct
access*/

input signal

Source Code for S-Functions in Simulink

/* Input Port X */
ssSetInputPortWidth (S,
Phase currents */
ssSetInputPortDataType (S,
SS_DOUBLE) ;
ssSetInputPortComplexSignal (S,
COMPLEX_NO) ;
ssSetInputPortDirectFeedThrough (S,
PORTIN_CURRENTS, 1);
ssSetInputPortRequiredContiguous (S,
PORTIN_CURRENTS, 1); /*direct input signal access*/

PORTIN_CURRENTS, 3); /*
PORTIN_CURRENTS,

PORTIN_CURRENTS,

/* Input Port X */
ssSetInputPortWidth (S,
Phase voltages */
ssSetInputPortDataType (S,
SS_DOUBLE) ;
ssSetInputPortComplexSignal (S,
COMPLEX_NO) ;
ssSetInputPortDirectFeedThrough(S,
PORTIN_VOLTAGES, 1);
ssSetInputPortRequiredContiguous (S,
PORTIN_VOLTAGES, 1); /*direct input signal access*/

PORTIN_VOLTAGES, 3); /*
PORTIN_VOLTAGES,

PORTIN_VOLTAGES,

/‘k

* Set direct feedthrough flag (l=yes, 0=no).

* A port has direct feedthrough if the input is
used in either

* the mdlOutputs or mdlGetTimeOfNextVarHit
functions.

* See
matlabroot/simulink/src/sfuntmpl_directfeed.txt.

*/

ssSetInputPortDirectFeedThrough(s, 0, 1);
if (!ssSetNumOutputPorts (S, PORTOUT___COUNT))
return;

/* Output Port 0 - Carriers */

ssSetOutputPortWidth (S, PORTOUT_LEVELS, 3);

ssSetOutputPortDataType (S, PORTOUT_LEVELS,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
COMPLEX_NO) ;

PORTOUT_LEVELS,

/* Output Port 1 — Unit U Sorted values */

ssSetOutputPortWidth (S, PORTOUT_SORT_U,
UNIT_COUNT) ;

ssSetOutputPortDataType (S,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
COMPLEX_NO) ;

PORTOUT_SORT_U,

PORTOUT_SORT_U,

/* Output Port 2 — IGBT U States */
ssSetOutputPortWidth (S, PORTOUT_UNITSTATE_U,
UNIT_COUNT) ;
ssSetOutputPortDataType (S,
SS_DOUBLE) ;
ssSetOutputPortComplexSignal (S,
PORTOUT_UNITSTATE_U, COMPLEX_NO);

PORTOUT_UNITSTATE_U,

/* Output Port 3 - Unit V states */
ssSetOutputPortWidth (S, PORTOUT_IGBTSTATE_U, 2 *
UNIT_COUNT) ;
ssSetOutputPortDataType (S,
SS_DOUBLE) ;
ssSetOutputPortComplexSignal (S,
PORTOUT_IGBTSTATE_U, COMPLEX_NO);

PORTOUT_IGBTSTATE_U,

/* Output Port 1 — Unit V Sorted values */

ssSetOutputPortWidth (S, PORTOUT_SORT_V,
UNIT_COUNT) ;

ssSetOutputPortDataType (S,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
COMPLEX_NO) ;

PORTOUT_SORT_V,

PORTOUT_SORT_V,

/* Output Port 2 — Unit V states */

12

Medium Voltage - Modular Multi-Level Inverter

ssSetOutputPortwWwidth (S,
UNIT_COUNT) ;

ssSetOutputPortDataType (S,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
PORTOUT_UNITSTATE_V, COMPLEX_NO);

PORTOUT_UNITSTATE_V,

PORTOUT_UNITSTATE_V,

/* Output Port 3 - Unit V IGBT states */
ssSetOutputPortWidth (S, PORTOUT_IGBTSTATE_V, 2 *
UNIT_COUNT) ;
ssSetOutputPortDataType (S,
SS_DOUBLE) ;
ssSetOutputPortComplexSignal (S,
PORTOUT_IGBTSTATE_V, COMPLEX_NO);

PORTOUT_IGBTSTATE_V,

/* Output Port 1 - Unit W Sorted values */

ssSetOutputPortWidth (S, PORTOUT_SORT_W,
UNIT_COUNT) ;

ssSetOutputPortDataType (S,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
COMPLEX_NO) ;

PORTOUT_SORT_W,

PORTOUT_SORT_W,

/* Output Port 2 — Unit W unit states */
ssSetOutputPortwWwidth (S, PORTOUT_UNITSTATE_W,
UNIT_COUNT) ;
ssSetOutputPortDataType (S,
SS_DOUBLE) ;
ssSetOutputPortComplexSignal (S,
PORTOUT_UNITSTATE_W, COMPLEX_NO);

PORTOUT_UNITSTATE_W,

/* Output Port 3 - Unit W igbt states */
ssSetOutputPortWidth (S, PORTOUT_IGBTSTATE_W, 2 *
UNIT_COUNT);
ssSetOutputPortDataType (S,
SS_DOUBLE) ;
ssSetOutputPortComplexSignal (S,
PORTOUT_IGBTSTATE_W, COMPLEX_NO);

PORTOUT_IGBTSTATE_W,

ssSetOutputPortWidth (S,

ssSetOutputPortDataType (S,
SS_DOUBLE) ;

ssSetOutputPortComplexSignal (S,
PORTOUT_QUADRANTS, COMPLEX_NO);

PORTOUT_QUADRANTS, 3);
PORTOUT_QUADRANTS,

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, UNIT_COUNT *
ssSetNumIWork (S, UNIT_COUNT *
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

15);
10);

ssSetOptions (S, 0);

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function is used to specify the sample
time(s) for your

* S-function. You must register the same number
of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes (SimStruct *S) {
ssSetSampleTime (S, 0, SAMPLE_TIME);
ssSetOffsetTime (S, 0.0);

#define MDL_INITIALIZE_CONDITIONS /*

#undef to remove function */

#if defined (MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions (SimStruct *S){

}

Change to

#endif /* MDL_INITIALIZE_CONDITIONS */

#define MDL_START /* Change to #undef to remove
function */
#if defined (MDL_START)
/* Function: mdlStart
* Abstract:
* This function 1is called once at start of
model execution. If you
* have states that should be initialized once,
this is the place
* to do it.
*/
static void mdlStart (SimStruct *S) {
int i;
// Initialize dMainSteps
dMainSteps[0] = 1;
for (i = 1; i < HALF_UNIT_COUNT + 1; i++){
dMainSteps[i] = dMainSteps[i - 1] -

STEP_OFFSET * 2;
}

}
#endif /* MDL_START */

#define MDL_SET_DEFAULT_PORT_DATA_TYPES

static void mdlSetDefaultPortDataTypes (SimStruct *S) {
ssSetInputPortDataType (S, U, SS_DOUBLE);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);

}

static void StaircasePulses(){

const real_T * DesiredVoltage = (const
real_T¥*) ssGetInputPortSignal (baseStruct,
PORTIN_DESIRED_VOLTAGE) ;

const real_ T * Coefficient = (const real_ T¥)
ssGetInputPortSignal (baseStruct, PORTIN_COEFFICIENT);

double nStepSize = 0;
char bSetU = 0;

char bSetV = 0;

char bSetW = 0;
int i;

dPhaselLevelU = -1;
dPhaselLevelV = =1;
dPhaselLevelW = -1;

bSetU
bSetV
bSetwW

// Determine the step size
if (DesiredVoltage[0O] < 0){
nStepSize = STEP_OFFSET * (1 -
Coefficient[0]);
} else {
nStepSize = STEP_OFFSET * Coefficient[0];
}

// Determine the sector ID in which the current
voltage level is found

for (i = 1; i < HALF_UNIT_COUNT + 1; i++){
if ((DesiredVoltagel[(] > (dMainSteps[i] +
nStepSize)) && (bSetU == 0)){
dPhaseLevelU = (dMainSteps[i - 1] + 1) *
HALF_UNIT_COUNT * 0.5;
bSetU = 1;
}
if ((DesiredVoltage[l] > (dMainSteps[i] +
nStepSize)) && (bSetV == 0)){
dPhaseLevelV = (dMainSteps[i - 1] + 1) *

HALF_UNIT_COUNT * 0.5;

bSetv = 1;
}
if ((DesiredvVoltage[”] > (dMainSteps[i] +
nStepSize)) && (bSetW == 0)){
dPhaselevelW = (dMainSteps[i - 1] + 1) *
HALF_UNIT_COUNT * 0.5;
bSetWw = 1;
}
}
if (bSetU == () dPhaseLevelU = (dPhaseLevelU + 1)
* HALF_UNIT_COUNT * 0.5;
if (bSetV == 0) dPhaselLevelV = (dPhaselLevelV + 1)
* HALF_UNIT_COUNT * 0.5;
if (bSetW == 0) dPhaselevelW = (dPhaselevelW + 1)
* HALF_UNIT_COUNT * 0.5;

}

static void BubleSort(const real_T * dInput, int *
nOutput) {

int nIndexHi[HALF_UNIT_COUNT];

int nIndexLo[HALF_UNIT_COUNT];

int nAux;

int 1, 3;

// Copy the values

for (i = 0; i < HALF_UNIT_COUNT; i++){
nIndexHi[i] = 1i;
nIndexLo[i] = 1i;

}

// Sort the voltages for the upper part and lower
part
for (i = 0; i < HALF_UNIT_COUNT - 1; i++){
for (j = i + 1; j < HALF_UNIT_COUNT; j++){
// Sort for the upper part
if (dInput [nIndexHi[i]] <
dInput[nIndexHi[j]1]){
nAux = nlIndexHi[i];
nIndexHi[i] = nIndexHi[j];
nIndexHi[j] = nAux;

}

// Sort for the lower part
if (dInput[nIndexLo[i] + HALF_UNIT_COUNT]
< dInput[nIndexLo[j] + HALF_UNIT_COUNT]) {
nAux = nIndexLo[il];
nIndexLo[i] = nIndexLo[j];
nIndexLo[j] = nAux;

}

// Output the vector
nOutput[i] = nIndexHi[i];
nOutput [1 + HALF_UNIT_COUNT] = nIndexLo[i];

}

nOutput [HALF_UNIT_COUNT - 11 =
nIndexHi [HALF_UNIT_COUNT - 1];

noutput [UNIT_COUNT - 1] =
nIndexLo [HALF_UNIT_COUNT - 1];
}

static void VoltageBallance () {

const real_T * UnitVoltagesU
ssGetInputPortSignal (baseStruct,
PORTIN_UNIT_VOTLAGES_U);

const real_T * UnitVoltagesV = (const real_ T¥)
ssGetInputPortSignal (baseStruct,
PORTIN_UNIT_VOTLAGES_V);

const real_T * UnitVoltagesW
ssGetInputPortSignal (baseStruct,
PORTIN_UNIT_VOTLAGES_W) ;

(const real_ T¥*)

(const real_ T¥*)

Source Code for S-Functions in Simulink

int 1i;

// Sort the voltages for
upper and lower sections
BubleSort (UnitVoltagesU, & nSortedU(0));
BubleSort (UnitVoltagesV, & nSortedvV(0));
BubleSort (UnitVoltagesW, & nSortedW(U));

each phase for both

// Set the main states for lower
sections for each phase

for (i = 0; i < HALF_UNIT_COUNT; i++){

upper and

// Do the upper section

dUnitStateU(nSortedU(i)) = (i < dPhaseLevelU)
? 1.0 : -1.0;

dUnitStateV(nSortedv(i)) = (i < dPhaseLevelV)
? 1.0 : =-1.0;

dUnitStateW(nSortedW(i)) = (i < dPhaseLevelW)
? 1.0 =1.0;

// Do the lower section

dUnitStateU (HALF_UNIT_COUNT +
nSortedU (HALF_UNIT_COUNT + i)) = (i <
(HALF_UNIT_COUNT —= dPhaseLevelU)) ? 1.0 : =1.0;

dUnitStateV (HALF_UNIT_COUNT +
nSortedV (HALF_UNIT_COUNT + i)) = (i <
(HALF_UNIT_COUNT — dPhaseLevelV)) ? 1.0 : =1.0;

dUnitStateW (HALF_UNIT_COUNT +
nSortedW (HALF_UNIT_COUNT + i)) = (i <
(HALF_UNIT_COUNT - dPhaselevelW)) ? 1.0 : =1.0;

}

}

static void HandleCurrentSign() {

const real T * PhaseCurrent = (const real_ T¥%)
ssGetInputPortSignal (baseStruct, PORTIN_CURRENTS);
const real_T * PhaseVoltages = (const real T¥)

ssGetInputPortSignal (baseStruct, PORTIN_VOLTAGES);

// get the current sign. If not set (value 0) set
the sign to pozitive

if (PhaseCurrent[0] > 0.5) dCurSenseU = 1.0;
if (PhaseCurrent[0] < =0.5) dCurSenseU = —=1.(
if (dCurSenseU == () dCurSenseU = 1.0;

if (PhaseCurrent[1] > 0.5) dCurSenseV = 1.0;
if (PhaseCurrent[l] < =0.5) dCurSenseV = —=1.(
if (dCurSenseV == () dCurSenseV = 1.0;

if (PhaseCurrent[2] > 0.5) dCurSenseW = 1.0;
if (PhaseCurrent[?] < =0.5) dCurSenseW = —=1.(

if (dCurSenseW == () dCurSenseW = 1.0;

// nQuadrantU = (PhaseVoltages[0] < 0) 2 2 : 1;
// nQuadrantV = (PhaseVoltages[1l] < 0) 2 2 : 1;
// nQuadrantW = (PhaseVoltages[2] < 0) 2 2 : 1;
nQuadrantU = (dCurSenseU < 0 ?
((PhaseVoltages[0] > 0) ? 4 : 3) ((PhaseVoltages[0]
> 0) ?2 1 :2);
nQuadrantV = (dCurSenseV < 0) ?
((PhaseVoltages[1l] > 0) ? 4 : 3) ((PhaseVoltages[1]
> 0) ?2 1 :2);
nQuadrantW = (dCurSenseW < 0) ?
((PhaseVoltages[2] > 0) ? 4 : 3) ((PhaseVoltages[2]
> 0) ?2 1 :2);

}

static void HandleIGBTStates () {
int 1i;
double dNewStateUO, dNewStateUl;
double dNewStateV0, dNewStateVl;
double dNewStateW0, dNewStateWl;
double dCurrentState, b;

for (i = 0; i < UNIT_COUNT; i++){

14

Medium Voltage - Modular Multi-Level Inverter

// Set the states according with the current
sign

dCurrentState = (dUnitStateU(i) > 0) 2 1.0
-1.0;
dNewStateUO =
dCurrentState;
dNewStateUl =

dCurrentState 1.0;

(dCurSenseU > 0) ? 1.0

(dCurSenseU > 0) ?

dCurrentState = (dUnitStatev(i) > 0) 2 1.0
-1.0;
dNewStateV0 =
dCurrentState;
dNewStateV1l =

dCurrentState 1.0;

(dCurSenseV > 0) ?2 1.0

(dCurSenseV > 0) ?

dCurrentState = (dUnitStatewW(i) > 0) 2 1.0
-1.0;
dNewStateW0 =
dCurrentState;
dNewStateWl =

dCurrentState 1.0;

(dCurSenseW > 0) ? 1.0

(dCurSenseW > 0) ?

if (nQuadrantU %
dNewStateUl; dNewStateUl =

== 0) { dNewStateUO =

b = dNewStateUl = (dUnitStateU(i) > 0) ?

switch (nQuadrantU) {

case |:
dNewStateUO =
dNewStateUl
break;

case :
dNewStateU0 = 1.0;
dNewStateUl = b;
break;

case °
dNewStateU0 = 1.0;
dNewStateUl = b;
break;

case 4:
dNewStateU0 = 1.0;
dNewStateUl = Db;
break;

[
o

}

dNewStateV0 1.0;
dNewStateVl = (dUnitStatev(i) > 0) ? .0 -

dNewStateW0
dNewStateWl =

1.0;
.0;

(dUnitStatewW(i) > 0) 2 1.0 : =

// Set state for leg 0

// - If idle
new state

// — 1f different than new state than take 0

// - Else 0

if (dOldLegStateU0 (1)
dOldLegStateU0 (i) = dNewStateUO; }

(towards positive)
(old state = 0) then take the

0){

else if (dOldLegStateU0(i) != dNewStateUO0)
dOldLegStateU0(i) = 0;

if (dOldLegStateV0 (1) == 0){
dOldLegStateV0 (i) = dNewStatevO0; }

else if (dOldLegStateVO0 (1) 1= dNewStateVv0)
dOldLegStatev0O (i) = 0;

if (dOldLegStateWO (1) == 0){
dOldLegStateW0 (i) = dNewStateWO; }

else if (dOldLegStateWO (i) 1= dNewStateW0)

dOldLegStateW0O (i) = 0;

// Set state for leg 0 (towards negative)
if (dOldLegStateUl (i) == 0){
dOldLegStateUl (i) = dNewStateUl; }

else if (dOldLegStateULl (1) = dNewStateUl)
dOldLegStateUl (i) = 0;
if (dOldLegStateVl (i) == 0){
dOldLegStateVl (i) = dNewStateVl; }
else if (dOldLegStateV1(i) != dNewStateVl)
dOldLegStateVl(i) = 0;
if (dOldLegStateWl (i) == 0){
dOldLegStateWl (i) = dNewStateWl; }
else if (dOldLegStateWl(i) != dNewStateWl)
dOldLegStateWl (i) = 0;
}
}
/* Function: mdlOutputs
* Abstract:
*

In this function,
your S-function
* block.
output vector,

*/
static void mdlOutputs(SimStruct *S, int_T tid){
const real_T * Enabled = (const real_T¥%)
ssGetInputPortSignal (S, PORTIN_ENABLE);

you compute the outputs of

Generally outputs in the

ssGetY (S) .

are placed

real_T

*) ssGetOutputPortRealSignal (S,
real_T

*) ssGetOutputPortRealSignal (S,
real_T

*) ssGetOutputPortRealSignal (S,
real_T

*) ssGetOutputPortRealSignal (S,
real_T

*) ssGetOutputPortRealSignal (S,
real T

*) ssGetOutputPortRealSignal (S,
real T

*) ssGetOutputPortRealSignal (S,
real T

*) ssGetOutputPortRealSignal (S,
real T

*) ssGetOutputPortRealSignal (S,
real T

*Levels =
PORTOUT_LEVELS) ;
*SortedU =
PORTOUT_SORT_U) ;

*UnitU = (real_T
PORTOUT_UNITSTATE_U) ;

*IgbtU = (real_T
PORTOUT_IGBTSTATE_U) ;
*SortedVv = (real T
PORTOUT_SORT_V) ;

*UnitVv = (real_T
PORTOUT_UNITSTATE_V) ;

*IgbtV = (real_T
PORTOUT_IGBTSTATE_V) ;
*SortedW = (real_T
PORTOUT_SORT_W) ;

*UnitW = (real_T
PORTOUT_UNITSTATE_W) ;

*TgbtW = (real_T
*) ssGetOutputPortRealSignal (S, PORTOUT_IGBTSTATE_W) ;

real_T *Quadrants = (real_T

*) ssGetOutputPortRealSignal (S, PORTOUT_QUADRANTS) ;

(real_T

(real_T

int i; // Index counter
// Retrieve global variables
dValues = ssGetRWork(S);

nValues = ssGetIWork(S);
baseStruct = S;

// 1f the sample time hit us
if (ssIsSampleHit (S, 0, 0)){

// handle the main pulses
StaircasePulses();

// Do the voltage balancing
VoltageBallance();

// handle the current sign
HandleCurrentSign();

// Do the IGBT states
HandleIGBTStates();

Source Code for S-Functions in Simulink

* Abstract:

* This function is called once for every major
// Output the data integration time step.
Levels[0] = dPhaselLevelU; * Discrete states are typically updated here,
Levels[1l] = dPhaselLevelV; but this function is useful
Levels[?] = dPhaselLevelW; * for performing any tasks that should only
take place once per

for (i = 0; i1 < UNIT_COUNT; i++){ * integration step.

SortedU[i] = nSortedU(i); */

SortedV[i] = nSortedV(i); static void mdlUpdate (SimStruct *S, int_T tid) {

SortedW[i] = nSortedW(i); }
#endif /* MDL_UPDATE */
if (Enabled[0] !'= 0){

// output the unit states

UnitU[i] = dUnitStateU(i);

UnitV[i] = dUnitStateV(i); #undef MDL_DERIVATIVES /* Change to #undef to remove
UnitW[i] = dUnitStateW(i); function */
#if defined (MDL_DERIVATIVES)
// Output the igbt states /* Function: mdlDerivatives
IgbtU[i * 2 4+ 0] = dOldLegStateUO0(1i);
IgbtU[i * 2 4+ 1] = dOldLegStateUl(i); * Abstract:
* In this function, you compute the S-function
IgbtV[i * 2 4+ 0] = dOldLegStateVO(i); block's derivatives.
IgbtV[i * 2 4+ 1] = dOldLegStateV1(i); * The derivatives are placed in the derivative
vector, ssGetdX(S).
IgbtW[i * 2 4+ 0] = dOldLegStateWO(1i); */
IgbtW[i * 2 4+ 1] = dOldLegStateWl (i); static void mdlDerivatives (SimStruct *S){
} else { #endif /* MDL_DERIVATIVES */
UnitU[i] = 0;
UnitVI[i] =
UnitW[i] =
/* Function: mdlTerminate
IgbtU[1 * 2 + 0]
IgbtU[i * 2 + 1] * Abstract:
IgbtV[i * 2 4+ 0] * In this function, you should perform any
IgbtV[i * 2 4+ 1] actions that are necessary
IgbtW[i * 2 + 0] * at the termination of a simulation. For
IgbtW[i * 2 4+ 1] = 0; example, if memory was
} * allocated in mdlStart, this 1is the place to
} free it.
Quadrants[0] = nQuadrantU; */
Quadrants[1l] = nQuadrantV; static void mdlTerminate (SimStruct *S){
Quadrants[2] = nQuadrantW; }
}
#ifdef MATLAB_MEX_FILE /* Is this file being
compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface
#undef MDL_UPDATE /* Change to #undef to remove mechanism */
function */ #else
#if defined (MDL_UPDATE) #include "cg_sfun.h" /* Code generation
/* Function: mdlUpdate registration function */

#endif

16

E.4
//

Medium Voltage - Modular Multi-Level Inverter

POWER SUPPLY PROTECTIONS

// Protection for over/voltages, over-currents

//

// Copyright:

// Sandu Cristian - 2008
// sanducristian@gmail.com
// Code created for the Project of the 10th

semester at

// Aalborg University
//
#define S_FUNCTION_NAME Protection

#define

if (!ssSetNumInputPorts(S, 7)) return;

/*Input Port 0 */

ssSetInputPortWidth(s, 0, 1); /* Reset */
ssSetInputPortDataType (S, U, SS_DOUBLE);
ssSetInputPortComplexSignal (S, 0, COMPLEX_NO) ;
ssSetInputPortDirectFeedThrough(s, 0, 1);
ssSetInputPortRequiredContiguous (S, 0,

/*direct input signal access*/

/*Input Port 0 */

ssSetInputPortWidth(s, 1, 3); /* Vout */
ssSetInputPortDataType(S, 1, SS_DOUBLE);
ssSetInputPortComplexSignal (S, 1, COMPLEX_NO);
ssSetInputPortDirectFeedThrough(s, 1, 1);
ssSetInputPortRequiredContiguous (S, 1,

S_FUNCTION_LEVEL 2 /*direct input signal access*/

#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
#include <math.h>

/*Input Port 0 */
ssSetInputPortWidth(s, 2, 3); /* Iout */
ssSetInputPortDataType(S, 2, SS_DOUBLE);

#endif ssSetInputPortComplexSignal (S, 2, COMPLEX_NO) ;
ssSetInputPortDirectFeedThrough(s, 2, 1);
ssSetInputPortRequiredContiguous (S, 2,
#define INV_SQRT_3 /*direct input signal access*/
0.57735026918962576450914878050196
#define SATURATE (val, min, max) { (val) = ((val) /*Input Port 0 */
< (min) ? (min) : ((val) > (max) ? (max) : (val))); } ssSetInputPortWidth (S, 3, 1); /* vDC */
#define MIN(a, b, c) (((a) < (b) 2 ssSetInputPortDataType (S, 3, SS_DOUBLE);
((a) < (c) 2 (a) : (c)) = ((b) < (c) 2 (b) : (c)))) ssSetInputPortComplexSignal (S, 3, COMPLEX_NO) ;
#define MAX(a, b, c) (((a) > (b) 2 ssSetInputPortDirectFeedThrough(s, 3, 1);
((a) > (c) 2 (a) : (c)) : ((b) > (c) 2 (b) : (c)))) ssSetInputPortRequiredContiguous (S, 3,
#define SATURATION_MIN (0.02) /*direct input signal access*/
#define SATURATION_MAX (0.98)
/*Input Port 0 */
ssSetInputPortWidth(s, 4, 1); /* Vrect */
#define LIMIT_DC_VOLTAGE (700) ssSetInputPortDataType (S, 4, SS_DOUBLE);
#define LIMIT_DC_VOLTAGE_LOW (650) ssSetInputPortComplexSignal (S, 4, COMPLEX_NO) ;
#define MAIN_DC_VOLTAGE_OFFSET (20) ssSetInputPortDirectFeedThrough (s, 4, 1);
#define MAIN_DC_CHARGE_DIFF (50) ssSetInputPortRequiredContiguous (S, 4,
#define MAX_VOLTAGE (2800) /*direct input signal access*/
#define MAX_OUTCURRENT (30)
#define MAX_CURRENT (100) /*Input Port 0 */
ssSetInputPortWidth(s, &5, 1); /* IDC */
#define POS_CHOPPER (0) ssSetInputPortDataType (S, 5, SS_DOUBLE);
#define POS_FAULT (1) ssSetInputPortComplexSignal (S, 5, COMPLEX_NO) ;
#define POS_CONTACTOR (2) ssSetInputPortDirectFeedThrough(Ss, 5, 1);
#define POS_CHARGE (3) ssSetInputPortRequiredContiguous (S, 5,
#define POS_ENABLE (4) /*direct input signal access*/
#define POS_DCVOLTAGEMAX (5)
#define POS_DCVOLTAGEMAX_DET (6)
#define POS_DCVOLTAGEMIN (7) /*Input Port 0 */
#define POS_DCVOLTAGEMIN_DET (8) ssSetInputPortWidth (S, 1); /* Run */
#define POS_DCVOLTAGE_DET (9) ssSetInputPortDataType (S, ©, SS_DOUBLE);
ssSetInputPortComplexSignal (S, 6, COMPLEX_NO);
/* * ssSetInputPortDirectFeedThrough(s, 6, 1);
* S-function methods * ssSetInputPortRequiredContiguous (S, 6,
* */ /*direct input signal access*/
/* Function: mdlInitializeSizes
/*
* Abstract: * Set direct feedthrough flag (l=yes, 0=no).

*

determine the S-function

*

*/

static void mdlInitializeSizes(SimStruct *S) {

The sizes information is used by Simulink to

block's characteristics (number of inputs,

ssSetNumSFcnParams (S, 0); /* Number of expected
parameters */

if

(ssGetNumSFcnParams (S) 1=

ssGetSFcnParamsCount (S)) {

/* Return if number of expected != number of

actual parameters */

}

return;

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

* A port has direct feedthrough if the input

used in either

1)

1) ;

1) ;

1)

1) ;

1) ;

1)

is

* the mdlOutputs or mdlGetTimeOfNextVarHit
outputs, states, etc.). functions.

*

matlabroot/simulink/src/sfuntmpl_directfeed.txt.

*/
ssSetInputPortDirectFeedThrough(s, 0, 1);

if (!ssSetNumOutputPorts(S, ©¢)) return;

/* Output Port 0 */

ssSetOutputPortWidth(s, 0, 1); /* Fault */
ssSetOutputPortDataType (S, 0, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 0, COMPLEX_NO) ;

/* Output Port 0 */
ssSetOutputPortWidth(s, 1, 1); /* Chopper */
ssSetOutputPortDataType (S, 1, SS_DOUBLE);

See

ssSetOutputPortComplexSignal (S, 1, COMPLEX_NO);

/* Output Port 0 */

ssSetOutputPortWidth (S, 2, 1) /* Main
contactor */

ssSetOutputPortDataType (S, 2, SS_DOUBLE);

ssSetOutputPortComplexSignal (S, 2, COMPLEX_NO);

/* Output Port 0 */

ssSetOutputPortwidth(s, 2, 1); /*
Charge */

ssSetOutputPortDataType (S, *, SS_DOUBLE);

ssSetOutputPortComplexSignal (S, 3, COMPLEX_NO) ;

Capacitor

/* Output Port 0 */

ssSetOutputPortWidth (S, 4, 1), /*
Enable */

ssSetOutputPortDataType (S, 4, SS_DOUBLE);

ssSetOutputPortComplexSignal (S, 4, COMPLEX_NO) ;

Control

/* Output Port 0 */

ssSetOutputPortWidth(s, 5, 10); /* Debug */
ssSetOutputPortDataType (S, 5, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 5, COMPLEX_NO);

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 10);

ssSetNumPWork (S,
ssSetNumModes (S,
ssSetNumNonsampledZCs (S, 0);

)i

’

ssSetOptions (S, 0);

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function is used to specify the sample
time(s) for your

* S-function. You must register the same number
of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes (SimStruct *S) {
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime (S, 0,
FIXED_IN_MINOR_STEP_OFFSET); // 0.0);
}
#define MDL_INITIALIZE_CONDITIONS /* Change to

#undef to remove function */

#if defined (MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions(SimStruct *S){
}

#endif /* MDL_INITIALIZE_CONDITIONS */

#define MDL_START /* Change to #undef to remove
function */
#if defined (MDL_START)
/* Function: mdlStart
* Abstract:
* This function 1is called once at start of
model execution. If you
* have states that should be initialized once,
this is the place
* to do it.
*/
static void mdlStart (SimStruct *S) {
}
#endif /* MDL_START */

Source Code for S-Functions in Simulink

#define MDL_SET_DEFAULT_PORT_DATA_TYPES
static void mdlSetDefaultPortDataTypes (SimStruct *S) {
ssSetInputPortDataType (S, 0, SS_DOUBLE);

ssSetOutputPortDataType (S, 0, SS_DOUBLE);

}

/* Function: mdlOutputs
* Abstract:
* In this function, you compute the outputs of

your S-function

* block. Generally outputs are placed in the
output vector, ssGetY(S).
*/

static void mdlOutputs(SimStruct *S, int_T tid)({

const real T *Reset = (const real_T¥*)
ssGetInputPortSignal (S, 0);

const real_ T *Vout = (const real_T*)
ssGetInputPortSignal (S, 1);

const real T *Tout = (const real_T*)
ssGetInputPortSignal (S, 2);

const real_T *VDC = (const real_T¥*)
ssGetInputPortSignal (S, 3);

const real_T *Vrect = (const real_T¥*)
ssGetInputPortSignal (S, 4);

const real T *IDC = (const real_T¥*)
ssGetInputPortSignal (S, 5);

const real T *Run = (const real_T¥*)
ssGetInputPortSignal(S,©);

real_T *Fault = (real_T
*) ssGetOutputPortRealSignal (S, 0);

real T *Chopper = (real T
*) ssGetOutputPortRealSignal (S, 1);

real T *MainContactor = (real_T
*) ssGetOutputPortRealSignal (S, 2);

real T *CapCharge = (real_T
*) ssGetOutputPortRealSignal (S, 2);

real_T *Enable = (real_T
*) ssGetOutputPortRealSignal (S, 4);

real T *Debug = (real T

*) ssGetOutputPortRealSignal (S, 5);

int i;

int bFault = 0;

int bMajorFault = 0;
int nDCVoltageMax 'H
int nDCVoltageMin 0;
int nDCDeterminedMax = 0;
int nDCDeterminedMin =

int nDCDetermined = 0;

// Retrieve the previous states

Chopper[0] = ssGetIWorkValue (S, POS_CHOPPER);

Fault[0] = ssGetIWorkValue(S, POS_FAULT);

MainContactor[(] = ssGetIWorkValue (S,
POS_CONTACTOR) ;

CapCharge[0] = ssGetIWorkValue (S, POS_CHARGE);

Enable[0] = ssGetIWorkValue (S, POS_ENABLE);

nDCVoltageMax = ssGetIWorkValue (S,
POS_DCVOLTAGEMAX) ;

nDCDeterminedMax = ssGetIWorkValue (S,
POS_DCVOLTAGEMAX_DET) ;

nDCVoltageMin = ssGetIWorkValue (S,
POS_DCVOLTAGEMIN) ;

nDCDeterminedMin = ssGetIWorkValue (S,
POS_DCVOLTAGEMIN_DET) ;

nDCDetermined = ssGetIWorkValue (S,

POS_DCVOLTAGE_DET) ;

// If run 1is set then enable the main contactor
and set the enable flag
// the <check for charging 1is done
checking the charging state
if (Run[0] !'= 0.0){
MainContactor[0] = 1.0;
Enable[0] = 1.0;

later by

Medium Voltage - Modular Multi-Level Inverter

// Check for over DC Voltage in order to connect
the contactor
if (Chopper[0]) {
if (VDC[0] < LIMIT_DC_VOLTAGE_LOW) {
Chopper [0] = 0;
}
} else {
if (VDC[0] > LIMIT_DC_VOLTAGE) {
Chopper[0] = 1;
if (VDC[0] > MAX_VOLTAGE) {
// Triger fault if the VDC get over
the limited voltage
bMajorFault = 1;

} else {
Chopper[0] = 0;
}

// Check for charging
if (CapCharge[0] == 0.0){
if (nDCDeterminedMax == 0){
if (Vrect[0] > nDCVoltageMax) {
nDCVoltageMax = Vrect[0];
nDCVoltageMin = nDCVoltageMax;
}
if (nDCVoltageMax -
MAIN_DC_VOLTAGE_OFFSET) {
nDCDeterminedMax = 1;
nDCDeterminedMin = 0;
nDCVoltageMin = nDCVoltageMax;

Vrect[0] >=

}
} else {
if (nDCVoltageMin > Vrect[0]){
nDCVoltageMin = Vrect[0];
}

if (nDCVoltageMin < Vrect[0]
nDCDeterminedMin = 1;
nDCDeterminedMax = 0;

- 10){

}

// No charging was made so check the voltages
if ((nDCVoltageMin <= VDC[0]) &&
nDCDeterminedMin) {
if (nDCDetermined > 95){
CapCharge[0] = 1;
} else {
nDCDetermined++;
}

}

if (nDCDetermined < 10){
// Don't run just yet
Enable[0] = 0;
if (nDCVoltageMax - VDCI[O] <
MAIN_DC_VOLTAGE_OFFSET) {
nDCDetermined++;
}

// Check for output overcurrent

//if (Iout[0] > MAX_OUTCURRENT) bFault = 1;
//if (Tout[1l] > MAX_OUTCURRENT) bFault = 2;
//if (Iout[2] > MAX_OUTCURRENT) bFault = 3;
// if (IDC[0] > MAX_CURRENT) bFault = 4;

// Check for major fault

if (bMajorFault) {
bFault = 10;
MainContactor[0] = 0;

// Check for reset signal
if (Reset[0] !
if (bFault
Fault[0] = 0;

}

// Check for fault
if (bFault != 0) Fault[0] = bFault;

// Check the enable flag for fault,
if (Fault[0]) Enablel[0] ;
if (CapCharge[0] .0) Enablel[0] = 0O;

charge, etc

// Save the values
ssSetIWorkValue (S,
ssSetIWorkValue (S,
ssSetIWorkValue (S,
MainContactor[0]);
ssSetIWorkValue (S,
ssSetIWorkValue (S,
ssSetIWorkValue (S,
nDCVoltageMax) ;
ssSetIWorkValue (S,
nDCDeterminedMax) ;
ssSetIWorkValue (S,
nDCVoltageMin) ;
ssSetIWorkValue (S,
nDCDeterminedMin) ;
ssSetIWorkValue (S,
nDCDetermined) ;

POS_CHOPPER, Chopper[0]);
POS_FAULT, Fault[0]);
POS_CONTACTOR,

POS_CHARGE, CapChargel[0]);
POS_ENABLE, Enable[0]);
POS_DCVOLTAGEMAX,
POS_DCVOLTAGEMAX_DET,
POS_DCVOLTAGEMIN,
POS_DCVOLTAGEMIN_DET,
POS_DCVOLTAGE_DET,
Debug[0] = nDCVoltageMax;
Debug[l] = nDCDeterminedMax;
Debug[2?] = nDCVoltageMin;

Debug[3] = nDCDeterminedMin;
Debug[4] = nDCDetermined;

//
// END
//

#undef MDL_UPDATE /* Change to #undef to remove
function */
#if defined (MDL_UPDATE)
/* Function: mdlUpdate
* Abstract:
* This function is called once for every major
integration time step.
* Discrete states are typically updated here,
but this function is useful
* for performing any tasks that should only
take place once per
* integration step.
*/
static void mdlUpdate (SimStruct *S, int_T tid) {

}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES

function */

#if defined (MDL_DERIVATIVES)
/* Function:

/* Change to #undef to remove

mdlDerivatives

* Abstract:

* In this function, you compute the S-function
block's derivatives.

* The derivatives are placed in the derivative
vector, ssGetdX(S).

*/
static void mdlDerivatives (SimStruct *S){

}
#endif /* MDL_DERIVATIVES */

/* Function: mdlTerminate
* Abstract:
* In this function, you should perform any actions that
are necessary
* at the termination of a simulation. For example, if
memory was
* allocated in mdlStart, this is the place to free it.
*/
static void mdlTerminate (SimStruct *S){
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a
MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

Source Code for S-Functions in Simulink

Software [l

APPENDIX F. SOFTWARE

F.1 SORTING ALGORITHM

The sorting is based on equal and greater comparison while the lowest comparison done by AND the negated
values of the other 2 comparisons. The result is summed together as explained in the following paragraphs.

The equality as greater comparison is done by comparing each value with all the ones after it. Therefore for 4
values a vector of 6 elements is used. The equality will be named E[x] with X being in the range of [0, 5]. The greater
comparison will be named G[x] while the lowest comparison will be named L[x]. The signification of how the values
are calculated is presented in Table F-1.

E[index] G[index]
ndex
Input[0] == Input[1] Input[0] > Input[1]
Input[0] == Input[2] Input[0] > Input|2]
Input[0] == Input|[3] Input[0] > Input|3]
Input[1] == Input[2] Input[1] > Input|2]
Input[1] == Input|[3] Input[1] > Input|3]
Input[2] == Input|[3] Input[2] > Input|3]

Table F-1: Sorting comparisons index
The Less comparison is calculated by the following equation:
L[x] = (not[E[x]]) AND (not[G[x]]); with x € {0,1,2,3,4,5}
Equation F-1: Sorting less comparison

The offset used by the sorting is only used for duplicate values, for each duplicate the first value will be
incremented with an initial value of 0. The offset is calculated as follows:

0[0] = E[0] + E[1] + E[2]

0[1] = E[3]+ E[4]

Equation F-2: Sorting offset calculation

Several examples of how sorting works are given in the appendix following subchapters.

F-2 Modular Multi-Level inverter
2445ns
Current Simulation
Time:5000ns (PN 500ns 1000ns 1300ns 2000ns 2500ns 3000ns 3300ns 4000 ns 4500ns5000ns
|
clock __
enable | 1 | 1 1 T]
voltageO[1 7:0] E 1 i 4
yoltage1[17:0] 0 2 4
voltage 2[17:0] E 3 e z
valtage3[1 7:0] 0 4 W 1
sorted[2:0] T 0 W 1 b4 3
sortedi (2:0] "0 (1 ¥ 2 3 N :
sorted 220 " o0 % 2 X 1 L 1
sorted3[2:0] C 0o 3 W 0
stergore | [| [|] 1 [[T
penad L 200000000
duty_cvcle : 0.5
offset : 100000000
Figure F-1: FPGA Control stages
F.1.1 EXAMPLE 1
As an example the vector [0, 1, 2, 3] will be sorted.
Input Equality Grater Less Offset | Result
values | E[x] G[x] L[x] O[x]
0 (0]=[1])->0 ([0]>[1]) >0 ('"E)&(!G)>1 |0 O[0] + G[0] + G[1] + G[2] =0
1 (01=12])->0 (0]>[2])->0 ('e)&(!G)>1 |0 O[1] +G[3] +G[4] + L[0] =1
2 (01=[3])->0 (01>[3])->0 ('E)&(!G)>1 |0 O[2] + G[5] + L[1] + L[3] =2
3 (11=121)->0 (11>[21)->0 ('e)&(!G)>1 |0 O[3] + L[2] + L[4] + L[5] =3
([11=[3])->0 ([11>[3)->0 ('E)&(!1G)>1
(21=13)->0 ([21>3)->0 ('E)&(1G)>1
F.1.11 EXAMPLE 2
The secondary example is with the values of [0, 2, 1, 3]:
Input | Equality Grater Less Offset | Result
values | E[x] G[x] L[x] O[x]
0 (0]=[1])->0 ([0]>[1]) >0 ('E)&(!G)>1 |0 O[0] + G[0] + G[1] + G[2] =0
2 (01=12])->0 (0]>[2])->0 ('E)&(!G)>1 |0 O[1] + G[3] + G[4] + L[0] =2
1 (01=[3])->0 (01>[3])->0 ('E)&(!G)>1 |0 O[2] +G[5] + L[1] +L[3] =1
3 (11=121)->0 (11>12)->1 ('E)&(!G)>0 | O O[3] + L[2] + L[4] + L[5] =3
([11=[3])->0 ([11>[3)->0 ('E)&(!1G)>1
(21=13)->0 ([21>3) >0 ('E)&(1G)>1

F.1.001

EXAMPLE 3

The third example is with the values of [0, 2, 2, 3]:

Software [IFE]

Input | Equality Grater Less Offset | Result
values | E[x] G[x] L[x] 0[x]
0 ([0]=[1])->0 ([0]>[1]) >0 ('E)&(!'G)->1 | O O[0] + G[0] + G[1] + G[2] =0
2 (01=12])->0 (01>[2])->0 'e)&(!Gg)>1 |1 O[1] + G[3] + G[4] + L[0] =2
2 ([o]=[3])->0 ([0]>[3])->0 ('E)&(!'G)->1 | O O[2] + G[5] + L[1] +L[3]=1
3 (M1=121)->1 (11>[21)->0 ('e)&(!G)->0 |0 O[3] + L[2] + L[4] + L[5] =3
([1]=[3]))->0 ([1]>13])->0 ('E)&('G)>1
(21=13)->0 ([21>[3)->0 ('B)&(!G)>1

F.2 INTER FPGA COMMUNICATION

F.2.1 PROTOCOL

The protocol for the communication is simple as it uses data packets to send data. A data packet is a set of
bits, each with its own role. A packet contains 64 bits. These 64 bits are grouped into 3 sections:

Command
Parameters
Number

The format of the data packet is shown in Table F-2.

Offset Size Name

0 8 Command

8 8 Parameter O

16 8 Parameter 1

24 8 Parameter 2

32 32 Number (see number format)

Table F-2: Data packet

The command is an 8 bit value which represents the actual command that is to be executed. The commands
vary from the open of a contactor to a user parameter pass between the two. The commands will be described further
inside the software documentation present on the attached CD.

The command parameters as well as the attached number have various functions depending on the issued
command. Each command has its own parameters and number. Of course for some commands, the parameter, the
number or both can be empty. This is the case of shut-down or power-up command.

F.2.11 DATA BUS

The data bus for the FPGA to FPGA communication is composed of 4 MISO and 4 MOSI lines. Because the
data packet has a size of 64 bits the bits have been split up over the 4 data lines. For better understanding of the bus
the data flow is represented in Figure F-4.

The MOSI lines are synchronized with the Chip Select signal while the MISO lines are shifted 180°. The shift is
necessary in order to allow the slave to properly respond to the CS line trigger.

F-4

Modular Multi-Level inverter

Even if the data lines are differential LVDS in the Figure F-4 only the main signal have been represented. By
using the 4 data lines, the clock cycles used are reduced 4 times from 64 cycles to 16 cycles. This leads to faster
communication as well as to higher bandwidth.

F.3 MAIN FPGA — STAIRCASE MODULATION

As an overall picture of how the staircase modulation is working inside the FPGA a print screen of the Xilinx
ISE simulation over the staircase modulation of one phase is depicted by Figure F-2.

The voltage levels are the default limits and are presented also as independent variable in myTest1, myTest2,
myTest3 and myTest4. The reference variable represents the actual reference that was “received” from the DSP. The
unit states are clearly set after 5 cycles. The stages of the state machine also switch, the current state being defined by
the myCurrentState variable. The sorted values can also be noticed in the lower part of the figure in the calculated
order. Because this is a simple simulation in which the unit states were tested, the voltage level of the units have been
set to consecutive values of 0, 1, 2 and 3.

dus
Current Simulation

Time: 10 us us Tus 2 us Jus 4us LT L Tus Bus us 10us
T T T T T T T AT
enahble | |
| | | |
sone [] | | |
referencel17:0] D(18'h25000 X 18'h38000 X 18'h148000 X 18'h23000
voltagelevels(71:0] X T2hEOO0Z8000800008000
unitvaltages[143:0] X 144'h000000000000000000000000001000080002
currentoutput[17¥:0] D(1800142
unitstates(7:0] ghoo % Bh7i i BhFO b 8h33 i
rycurrentstate st. fs. o] otat. fJs.] sta. [stat. pls.] sta. [st pJs.f] state_idle
rmynextstate st [s. |= st | stat. [s.. |= state_jdle | stat. [s.. |= state_idle [st.. [s.. |= state_idle
mydetvoltagedone —| —| —| —|
myselactightdane —| —l —| —l
rrysotterenable l_ l_ l_ l_
e]]] |
period 200000000
duty_cycle 05
rrivtest | |
offset 100000000
rrylowercount3:0] @ 43 i 4'hd W 432)(E
myuppercountl®:0] |} aho Y #hi ¥ 4ho i 4h2 wh
rrysarterupard... 3'ho
mysarterupard... Fho Y Zhi
mysarterupoard... k0)(Ihz
rmysorterupord... Ahi X 3h3
rrytestd[17:0] X 18'h0a000
mytesta(l 7:0] X 1815000
rytest2[17:0])(1828000
rrytest1[17:0] X 18'h3a00n

Figure F-3: Staircase simulation for FPGA

F-5

Clock

w
o
=+
~+
3
Q
=
[0}

CSs

MISO 0
MISO 1
MISO 2
MISO 3

MOSI 0 (D8) 012 X ©18 ¥ ©20 X D24 ¥ ros XioE NS NIDNDN) (EMAT X048 D52 \IDSE) (080')
MOSI 1 ((0a)(or=) o7 ¥ a1 Yres Y o \ERTMETRNEED(EENEEMEEVEEREED)

|
(

MOSI 2 (D10 014 X Dte ¥ 022 X D26 ¥ 0o {034 (038 ¥ D42)(bee) DS0)(254) DS D62)
MOSI 3 (D11 {015 X Ots ¥ 023 X D27 X ot X103S (2 { M3 D47) 051)(BSS)y Dso) Des)

Figure F-4: FPGA Communication bit order and position

In the Figure F-4 the blue represents the commands, with the lighter blue are the parameters while with light
purple is the number.

F.4 FLASH MEMORY

The flash memory of the main FPGA is used to store values of various operations. These values were
calculated offline, on a personal computer. The obtained values were transferred into the FPGA which in turned wrote
them to the FLASH memory.

The mathematical functions for which the calculations were made are:

- F(x) =sin(x)

- F(x) =cos(x)

- F(x) =tan(x)

- F(x) = ctan(x)
- F(x) = asin(x)
- F(x) =acos(x)
- F(x) = atan(x)
- F(x) = actan(x)

- F(x) =In(x)

- F(x) =log(x)
- F(x) = exp(x)
- F(x)=10"

- Fix)=1/x

- F(x)=vx

- F(x)=Vx

The “X” represents a number which format is described in F.4.i Number format.

Modular Multi-Level inverter

The flash memory found on the main FPGA board only allows 8 bits of data to be transferred at one
read/write operation. Therefore, in order to read the whole result, several steps must be followed during which 8 bits
will be read at a time.

The flash memory is only used to store real numbers so the division by 0 will return 0. It is up to the main
software to handle such exceptions not to the flash memory.

The function parameter “x” represents the actual address in the flash memory of the result. The full memory
space of the flash memory is divided in order to allow access to results of all functions, all values and for all result bits.
Therefore, the memory space is divided as presented in:

2322212019 1827161514 13| 12|1alw|s|a|7]6|s|al3[2][1]0
Function Mumber Section
3|2 1lo]17]16]1s]1afl13]12]11]w] el z]l6ls]alzf2]1]lola]o

Figure F-5: Address format

The function parameter bits select the desired function. The definition of these bits is:

No. Function | Description
Bits

1 0000 F(x) = sin(x)

2 0001 F(x) = cos(x)

3 0010 F(x) = tan(x)

4 0011 F(x) = ctan(x)

5 0100 F(x) = asin(x)

6 0101 F(x) = acos(x)

7 0110 F(x) = atan(x)

8 0111 F(x) = actan(x)

9 1000 F(x) =In(|x|)

10 1001 F(x) =log(|x])

11 1010 F(x) = exp(x)

12 1011 F(x) = 10"

13 1100 F(x)=1/x

14 1101 F(x) =+/|x]

15 | 1110 F(x) = 3/1x]

16 1111 Constants (PI, e, etc)

Table F-3: Memory function bits

The section bits describe the result value and may set the type of the input/output parameter of the function
for the trigonometric function. The bit flags for the section bits are:

No. Bit flags Description

1 00 Result bits 7-0

2 01 Result bits 15 -8

3 10 Result bits 23 — 16 (see F.5 Number format)
4 11 Result bits 31 — 24 (see F.5 Number format)

Table F-4: Section bit flags

Software [V

The number section is on 18 bits and the representation is discussed in F.4.i Number format.

F.4.1 NUMBER FORMAT

The function parameter is an integer value on 18 bits (with sign). The value represents a certain number in
fixed point format. The number format had been established for the application as being 8 bits decimal, 9 bits integer
plus one sign bit.

A) TRIGONOMETRIC FUNCTIONS

The sine, cosine, tangent and cotangent have an input range from [—m, 7w | therefore the input value will be
limited to [-4, 4]. The number representation and limitation is presented in Table F-5. The output for the tangent and
cotangent are normal number representation defined at application level.

Name Domain of x Domain of y
Sign Bits of Bits of Real Interval | Sign Bits of Bits of Real Interval
Integral Decimal Integral Decimal
part part part part
y = sin(x) 17 16-15 14-0 [-1,] 17 16 15-0 [-1, 1]
y = cos(x) 17 16-15 14-0 [-m, m] 17 16 15-0 [-1, 1]
y = tan(x) 17 16-15 14-0 [-mt, m] 17 16-8 7-0 [-512, 511]
y =ctan(x) | 17 16-15 14-0 [-1, i 17 16-8 7-0 [-512, 511]
y = arcsin(x) | 17 16 15-0 [-1, 1] 17 16-15 14-0 [-1, i
y = arccos(x) | 17 16 15-0 [-1, 1] 17 16-15 14-0 [,
y = arctan(x) | 17 16-8 7-0 [-512,511] | 17 16-15 14-0 [-1, i
y = arcctan(x) | 17 16-8 7-0 [-512, 511] 17 16-15 14-0 [,

Table F-5: Numeric format for trigonometric functions

B) EXPONENTIAL FUNCTIONS

The exponential functions use e and the base of 10 for calculations. All the input values are in Q8 format. The
Q8 format is defined at application level and will not be discussed here. The output is still a number in Q8 format.

For the logarithmic functions, the parameter number is assumed to be positive. The sign will be ignored and
the result will be f(x) = exp(|x|).

Name Domain of x Domain of y
Sign Bits of Bits of Real Interval | Sign Bits of Bits of Real Interval
Integral Decimal Integral Decimal
part part part part
y = In(|x]) 17 16-8 7-0 [-512, 512] 17 variable | variable | n/a
y = log(|x|) 17 16-8 7-0 [-512, 512] 17 variable | variable | n/a
y = exp(x) 17 16-14 13-0 [-8, 8] 17 variable | variable | n/a
y = 10X 17 16-14 13-0 [-8, 8] 17 variable variable n/a

Table F-6: Exponential function input and output parameters interval

Modular Multi-Level inverter

Q) DIVISION

The input and output of the division is in Q8 number format. For the 0 value as input parameter the output
value is 0. It is up to the main program to handle division by zero.

Name Domain of x Domain of y
Sign Bits of Bits of Real Sign Bits of Bits of Real
Integral Decimal Interval Integral Decimal Interval
part part part part
1
y== 17 variable variable n/a 17 variable variable n/a
x

Table F-7: Division input and output parameter range

The domain of X can be variable because the result is shifted depending on the Q value of X domain. For
example the value 11 in Q5 is 352 while in Q6 is 704. The 1/x for the three values is 0,0909, 0,002841 and 0,00142
respectively. When shifted with the Q value, all three results will be 0,0909.

D) SQUARE ROOT

The square root is calculated without taking in consideration the sign. It is assumed that the sign is always
positive. The number format of the input and output is Q8.

F.4.11 EXCEPTIONS

The exceptions must be handled by the main software and represent faults in the mathematical processing.
The faults that the application must solve are:

- Division by zero

- Square root of negative numbers

- Tangent parameter ¢ (89,88; —89,88)

- Arcsine and arccosine parameter ¢ [—1; 1]
- Exponential parameter ¢ [—5,54; 6,23]

F.5 NUMBER FORMAT

For this application, a number format on 18 bits with 32 bits implementation has been used. The 32 bits
implementation is required due to memory mappings on either 16 or 32 bits. 16 bit platform represents a step back
for the FPGA capabilities as well as for the number resolution. In order to Increase the resolution and not to affect the
data bus size of either the DSP or the RAM the 32 bit representation seemed to be the best option.

The number format had been chosen on 18 bits due to limitations by the FPGA multiplier and by flash
memory available for extracting the desired result. The limit could have been set to 20 bits but there is no visible
importance to it because the number range required for the application as well as resolution fits in the 18 bits
number.

Software [

The application also requires the use of decimal values, values that are not integer. Because the FPGA does
not natively support floating point, the support for integer multiplication is used in order to allow a fixed point
representation. The fixed point representation used is based on the Q number format. The Q number format is
implemented on 32 bits for this application as it will be described further.

F.5.1 Q NUMBER FORMAT

The Q number format is a number format that allows flexible usage of bits for fixed point representation. The
main number format used in this application is based on Q8, meaning that 8 bits are used for the decimal. Of course,
other Q’s are used all over the application depending on the role and purpose. Due to this, a list of sighed number is
shown in Table F-8. The table contains the Q, the corresponding number format as well as the range and resolution.
The resolution represents the smallest undivided value that can be represented. All other values between the
minimum and maximum are multiples of the resolution value. Values which are not an integer multiple of the
resolution are represented to the closest integer multiple.

Number ’
a Maximum Minimum Resolution
17]16(15 1413 (12)11|10| S 8176 5] 43 2 1 0

0 S| N[N|N|N|N[N|N[N|N|N|N[N|N|N|N|NI|N]|I31.071,00000000 -131072] 1,0000000000
1 5 N N N N N | N N N N N N N | N N N N D 65.535,50000000 -65536| 0,5000000000
2 S|IN[N|N|N|N[N|N[N|N|N|N[N|N[N|N|D|D 32.767,75000000] -32768] 0,2500000000
3 SIN[N|N|N|N[N|N[N|N|N| N[N|N[N|D|D|D 16.383,87500000] -16384] 0,1250000000
4 5 N N N N N | N N N N N N N | N D|(D|D|D 8.1591,53750000 -8192 0,0625000000
3 S|IN[N|N|N|N[N|N[N|N|N N[N|D|[D|D|D|D 4.095,96875000| -4036] 0,0312500000
B S|IN[N|N|N|N[N|N[N|N|N N[D|D|[D|D|D|D 2.047,58437500) -2048] 0,0156250000
7 SIN[N|N|N|N[N|N[N|N|N| D[D|D|[D|D|D|D 1.023,59218750) -1024] 0,0078125000
8 5 N N N N N | N N N N D|D|(D|D|D|(D|D|D 511,99609375 -512 0,0039062500
9 SIN[N|N|N|N[N|N[N|D|D| D|[D|D|D|D|D|D 255,35804688 -256) 0,00158531250
10 SIN[N|N|N|N[N|N[D|D|D|D|[D|D|D|D|D|D 127,55502344 -128] 0,0009765625
11 5 N N N N N | N D|(D|D pD|D|(D|D|D|(D|D|D 63,99551172 -64] 0,0004882813
12 S|IN[N|N|N|N|D|D[D|D|D|D|[D|D|[D|D|D|D 31,35575586 -32| 0,0002441406
13 S|IN[N|N|N|D|D|D[D|D|D|D|[D|D|[D|D|D|D 15,39987793 -16] 0,0001220703
14 5 N N N D|D|D|(D|D|D pD|D|(D|D|D|(D|D|D 7,99953 856 -8] 0,0000610352
15 S|IN[(N|D|D|D|(D|D{D|D|D|D|{D|D|{D|D|D|D 3,3555654 8 -4 0,0000305176
16 S|IN|(D|D|D|D|(D|D{D|D|D|D[{D|D|{D|D|D|D 1,59558474 -2| 0,0000152588
17 s|pfp|DpD|]D|]D|(D|D{D|D|D|D{D|D|{D|D|D|D 0,35555237| 1] 0,0000076254

Table F-8: Q Number format values for signed 18 bit representation

The sign number format is not required in many cases. Therefore an unsigned number format is aloes
required, for example if the value represents the DC voltage or other strictly positive values. For these cases the sign
bit is omitted. The corresponding Q number values for the unsigned number are shown in Table F-9. In the table, only
the maximum value is indicated, the minimum being 0. Identical with the case of sighed Q number the actual number
is an integer multiplier of the resolution. If a value is not a positive integer multiplier, the result will be rounded to the
nearest positive integer multiplier of the resolution.

Modular Multi-Level inverter

Mumber .
Q Maximum Resolution
17|16 |15 (14 (13 (12|11 | 10| 9 8|76 |54] 3 2110

i} MIN|N[N|N|N|N|N|N[N|N|N|N[N|[N]N]|N|N]|Z262.143,00000000/ 1,0000000000
1 NI NI M| NI N|N|IN|IN|{N[N|N|N|N|N|N|[N|N|D,|I13107150000000(0,5000000000
2 N{MNINMNINI NIN|IN|IN[{N{N|IN|N|N|N|N|N|D|D 65.535,75000000| 0,2500000000
3 N N[NNI N|IN|IN|IN[IN|{N|IN|IN|IN|N|N|D|D|D 32.767,87500000(0,1250000000
4 N{MNNIN|IN|IN|IN|IN|IN|{N|IN|IN|IN|N|D|D|D|D 16.383,93750000| 0,0625000000
a5 N N[NNI NIN|IN|ININ|{N|IN|IN|IN|D|D|D|D|D 8.191,96875000(0,0312500000
il N N[NNI N|IN|IN|ININ|{N|IN|N|D|D|D|D|D|D 4,095,98437500(0,0156250000
7 N N[NNI N|IN|IN|IN(IN|{N|N|D|D|D|D|D|D|D 2.047,99218750(0,0078125000
a8 N N[NNI N|IN|IN|IN|{N|(N|D|D|D|D|D|D|D|D 1.023,99609375| 0,0039062500
9 N NININ|IN|IN|IN|IN(N|(D|D|D|D|D|D|D|D|D 511,99804688| 0,0019531250
10 NI N(IN|IN|IN|IN|IN|N|(D|(D|D|D|D|D|D|D|D|D 255,99902344| 0,0009763625
11 N NINININ|IN|IN|D|(D|(D|D|D|D|D|D|D|D|D 127,99951172| 0,0004882813
12 NI NINININ|IN|D|D|(D|D|D|D|D|D|D|D|D|D 63,99975586| 0,0002441406
13 NI N|IN|IN|IN|]D|D|D|(D|D|D|D|D|D|D|D|D|D 31,99987793(0,0001220703
14 NI NIN|IN|D|D|D|D|(D|D|D|D|D|D|D|D|D|D 15,99993896| 0,0000610352
15 NI N|IN|D|D|D|D|D|(D|D|D|D|D|D|D|D|D|D 7,999905948| 0,0000305176
16 NI N|D|ID|D|D|D|D|(D|(D|D|D|D|D|D|D|D|D 3,99998474| 0,0000152588
17 N|(D|(D|D|D|)D|D|D|(D|(D|D|D|D|D|D|D|D|D 1,99999237| 0,0000076294
18 op|(DpD|lD|)D|D|D|D|D|(D|(D|D|D|D|D|D|D|D|D 0,99999619| 0,0000038147

Table F-9: Q Number format values for unsigned 18 bit representation

Both number representations (signed and unsigned) are used to represent operational result values. These
values are encoded in a number format on 32 bits as described further.

F.5.11 STORED NUMBER FORMAT

The 18 bit value implemented on a 32 bit platform implies that several bits will not be used, therefore, the
remainder of the bits will be used for other purposes like the representation of the Q value (see Q number format) the
flag that specified that the number is signed or unsigned as well as some other bits used for specific purposes. The
number format used for RAM/ROM storage is represented in Table F-10. For DSP communication the bits D and E will
be reserved as they are used only for memory storage for specific operations.

The total number of bits for a number is 18 from which the first one may represents the sign. In order to
allow a flexible usage of the 18 bits and to know the Q value 6 bits have been used in order to store the Q value. 6 bits
have been used instead of 5 in order to align the number to 24 bits. The remained 8 bits are used as flags for various
purposes. The actual format is shown in Table F-10 and described in detail in the following paragraphs.

Offset 11 Offset 10 Offset 01 Offset 00

Byte 3 Byte 2 Byte 1 Byte 0
31]30]29]28[27]26] 25] 24| 23] 22| 21[20 18] 18] 17 16 15| 14 13]12]11]10[s [8| 7 [6 5] a3] 2] 1] 0
R IR |[R|R |R |BJE |5 Q value Numher
E - Exception
S -Signed
R - Reserved
O - Over domain (sine, cosine, etc)

Table F-10: Stored result number format

The number parameter is scaled according with the Q value and it’s representation with respect to Q value
and signed flag can be seen in Table F-8 for signed values or in Table F-9 for unsigned values.

Software [Pkl

The Q value is stored on 6 bits but only the 4-0 bits are used, the 6" bit is reserved for further use. By using
this Q value storage, the numbers can have a variable length making the result more accurate and enlarging or
reducing the number domain when necessary. The 5 bits allow 32 values for the Q therefore, as an example, the
absolute maximum number will be 131072 while the absolute minimum number is 0,0000076294 for sighed number.

The sign flag represents the fact that the result is signed or unsigned. This will affect the number
representation as well as all the other operations.

The exception flag is used only if the requested value would have triggered an exception. This can be used to
test the exception trigger mechanism as well as a redundancy check for the result.

The D flag represents the over-domain flag. This will not trigger an exception and it is mainly used for
trigonometric functions. For example the sine function should return value in the interval of [—1; 7] but the result
exists for a range of [—4; 4]. For the values outside the main interval of [—m; 7] the D flag is set to 1. For all other
functions, the flag will be set only if the number is outside the representation capabilities of Q0 or Q17. For example
10"° would give a result bigger then 131072. In this case the D flag will be set.

F.6 RELAY OUTPUT

F.6.1 PROTOCOL AND COMMUNICATION
The communication is based on a SPI communication over 4 lines, with the FPGA being the slave.

The communication is based on 5 bytes, from which 4 contains the data and the 5™ contains the checksum.
The data packet is presented in Table F-11.

Offset Size Description
0 1 Command

1 3 Parameters
4 1 Checksum

Table F-11: Relay output data packet

The commands represent the request made by the FPGA to the microcontroller. The possible commands can
be noticed in Table F-12.

Command | Name Description
0 Clear Reset all the relays (turn them off)
1 Set output Set the relays as stated in the parameters. Each bit of the
parameters represent a relay state
2 Shutdown units Turn off all the relays that power up the units
3 Shutdown contactors | Turn off all the power supply contactors
10 Automatic power on | Automatic power on the units with a 3 seconds delay between
them
11 Automatic power on | Automatic power on the units with a preset delay like set in the
with delay parameter 0
20 Main power Turn off the main contactor of the power supply
contactor OFF
21 Main power Turn on only the main contactor of the power supply

F-12 Modular Multi-Level inverter

contactor On
22 Charge contactor OFF | Turn off the charging contactor (state used during power-up)
23 Charging contactor Turn on the charging contactor (charge complete)
ON
24 DC Bus contactors Turn off both DC bus contactors in order to isolate the inverter
OFF from the power supply
25 DC Bus contactors Connect the inverter with the DC bus of the power supply
ON
26 Load contactor OFF Disconnect the output of the inverter from the load (default state
at power-up)
27 Load contactor ON Connect the output of the inverter with the load
70 Chopper OFF Turn OFF the contactor which maintains the chopper resistors
connected to the DC bus
71 Chopper ON Connect the chopper resistors to the main DC Bus

Table F-12: Command list
The checksum is calculated by using the following formula:

CRC,,,, = Data[0] + Data[1] + Data[2] + Data[3]

RCyum & 0x3C0
16

C
CRC = (CRCgyyp & 0XOF) +

Equation F-3: CRC sum check for the relay output microcontroller

F.7 RELAY INPUT

The commands used by the relay input microcontroller are not many because it is an input only device with
respect to the contactors while for the USB connection (not implemented) is a bidirectional communication. The
commands are presented in Table F-13.

Co Name Description
mmand
0 Read Read all the relays
1 Write USB Write data from the 3 parameters to the USB
2 Read USB Read 3 bytes from the USB

Table F-13: Relay input commands
F.8 DSP MEMORY SPACE

In order to determine what data is located where, a memory space had to be defined for the DSP and FPGA.
The entire memory space of 1 Mbit is more than enough for the application and only a fraction of it will be used.
Because the FPGA is capable of handling integer multiplication on 18 bits (with the sign included), the entire memory
is therefore split into 32 bit sections called registers.

(42}
-
L

Software

Section

Control

Main

voltages

Units U

Units V'

Units W

Currents

Faults

Triggers

Flags

Status

MName

tage R

tage 5

tage T

tage DC
tage U

tage V

tage W

tage Unit Ul

tage Unit U2

tage Unit U3

tage Unit U4

tage Unit US

tage Unit UG

tage Unit U7

tage Unit U8

tage Unit V1

tage Unit V2

tage Unit V3

tage Unit V4

tage Unit V5

tage Unit Ve

tage Unit V7

tage Unit V8

tage Unit W1
tage Unit W2
tage Unit W3

tage Unit W4
tage Unit W5
tage Unit W6
tage Unit W7
tage Unit W3

Bits

Offset +0

Offset+1

s|lajalajala|a|lA|A]A|[A|A|A|[A|A|A|A|A[A|A|[A|A|A]|A]|A|Control Voltage U
s|lajajajalaja|lA|A]AlA|A]A[A|A|A|A|A[A|A|[A|A|A|A]A|Control Voltage V
SslajlaajalajalA|A]A[A]A]A[A]A[A|A|A|A|A[A]|A|[A]|A]A]|Control Voltage W
s|lajala|lalalala|alalalalalalalajalalala|la|A|A]A|A|cControll/vDC

Slajajajaja|alA|AJAJAJAIAIAIAJAIAIAA[A[AIAIAIA]A]LVO

Slajajajaja|alA|AJAJAJA|AIAIAJAIAIA|A[A[AA|AIA]A]LVD

s|lalalalalalalalalalaljalalalalalalalalalalajalalalve

sSjlajajaja|a|alA|JA|JA|A|JA|JAIAJA|A[A|A|A|AJA|IA|AJA]A]VO
S|lajajaja|a|a[A]A|JA|AJAJA|AJA|A[A|A|A[A|A|IA|AIA]A]VD

S|lajajaja|a|a[A]A|JA|AJAJA|AJA|A[A|A|A[A|A|IA|AIA]A]VD

slajajajaja|a[A]AJA|JAJAJA|AJA|JA[AJAJA[AJAAJAJA]A]VO

Slajajajaja|alA|JAJAJAJAIAIAIAIAIAIAA[A[AIAIAIA]A]LVO

Slajajajaja|alA|AJAJAJA|AIAIAJAIAIA|A[A[AAIAIA]A]LVD

s|lalalalalalalalalalaljalalalalalalalalalalajalalalve

sSlajajaja|a|alA|A|JA|A|JA|JAIAJA|A[A|A|A|AJA|IA|AJA]A]VO

S|lajajaja|a|a[A]JA|JA|AJAJA|AJA|A[A|A|A[A|AIA|AIA]A]VD

S|lajajaja|a|a[A]JA|JA|AJAJA|AJA|A[A|A|A[A|AIA|AIA]A]VD

S|lajajaja|a|a[A]JA|JA|AJAJA|AJA|A[A|A|A[A|AIA|AIA]A]VD

sjlajajajaja(alA|JAJAJAJA[AIAJAJAJAA|A[A[AIAJAJA]ALVD

Slajajala|a|a]A|AJAJA[AJAJA|A|A[A[A|A|AIAIAIAAA]|VO

sjajafalQ|a|a]A|JAJAJA[AJAJA|A|A[A[AIA|AIAIAIAIAlA]|VE

Ss|lajlaja|a(a|Q|A|[AJA|A|A|A|A[A|A|A[A|A|A[A|JA|A|A]A]|VS

S|lajaja|jafa|a|A[AJA|A[AJA|AIAA|A[A|AA[A|A|A|A]A]|VS

S|lajaja|jafa|a|A[AJA|A[AJA|AIAA|A[A|AA[A|A|A|A]A]|VS

S|lajaja|jafa|a|A[AJA|A[AJA|AIAA|A[A|AA[A|A|A|A]A]|VS

Slajajala|a|a]A|JAJAJA[AJAJA|A|A[A[AIA|AIAIAIAIAIA]|VS

sjajajalaja|QjA|AJAJA[AJAJA|A|A[A[A|AJA|JAJAJAAlA]|VO

s|lalalalalalalalalalajalalalalalalalalalalajalalalve

sjlajajaja|a|alA|A|JA|A|JA|JAIAJA|A[A|A|AIAJA|A|AJA]A]VO

S|lajajafja|a|a[A]A|JA|AJAJAIAJA|A[A|A|A[AJA|IA|AIA]A]VD

S|lajajafja|a|a[A]A|JA|AJAJAIAJA|A[A|A|A[AJA|IA|AIA]A]VD

S|lajajafja|a|a[A]A|JA|AJAJAIAJA|A[A|A|A[AJA|IA|AIA]A]VD

Slajajajaja|alA|JAJAJAJAIAIAIAIAIAIAA[A[AIAIAIA]A]LVD

Slajajajaja|alA|A]JAJAJA|AIAIAJAIAIA|A[A[AA|AIA]A]LVD

s|lalalalalalalalalalajalalajajajalalalalalajalalalve

s|lalalalalalalalalalajalalajalalalalalalalalalala]currentr
slalalalalalalalalalajalalajalalalalalalalalala]a]currents
s|la|currentT
s|la]lcurrentde
s|lalalalalalalalalalalalalajalalalalalalalalala]alcurenty
s|lalalalalalalalalalalalalajalalalalalalalalala]alcurenty
s|lajlalalalalalalalalajalalajalaljalalalalalalalala]currentw
s|lalalalalalalalalalajalalajajalalalalalalalala]alcurrentu-hi

slalalalalalalalalalajalalajalajalalalalalalala]alcurrentu-low
s|lalalalalalalalalalalalalajalalalalalalalalala]alcurrenty-hi

s|lalalalalala|ajalalalalalalalalalalalalala]ala]alcurentv-low
s|lalalalalalalalalalalalalalalalalalajalalalala]alcurrentw-hi
s|lalcurentw-low

offset| 31| 30| 29| 28] 27| 26 25| 24] 23] 22| 21] 20 19] 18] 17] 16] 15] 14| 13 12] 11] 10] 9] 8| 7] 6| 5] 4] a] 2] 1] o

10

12
14
16

18

20

22

24
26|

28

30
32
34
36|
33

42]

46|

32|

4
56|

58|

60

62

66|

68

70

72

74
76

78]

80|

82

86

88

90|
92
94

| R|R]|Faultsu
98| R|R|R|R|R|R|R|R|[R|R|R|R|R|[R|R|[R|R|R|R|R|R|R|R|[R|R|R|R|R|R|R|R|R|FaultsVv
100] R|R|R|[R|R|R|R|R|R|R|R[R|R[R|R|R|R|R|[R|R|R|[R|R|[R|R|R|R|R|[R|R|R|R|FaultswW

102| R|R|R[{R|R|R|[R|R|R|R|R[R|R[R|R|R|R|R|[R|R|R[R|R|R|R|R|R|R|R]|R|R]|R|General Faults
104 W [W W W W WW W W)W W W W W)W WW W W W W W W W W W W W W W W W Triggers
welajajalalajalalalalalalalAlAlA[AlAAIAAAIAJAJA|IA|AJA|A|A|A]A]A]|Flags
108|AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAStEtUS

Table F-14: Memory map

The symbols used in Table F-14 are:

‘A’: available for both read and write

‘R’: read-value

F-14

Modular Multi-Level inverter

- ‘W’: write-value (read as 0)

- ““reserved (should be 0)

- ‘Q’: the number format of the corresponding number (see the Number format subchapter)
- ‘S": specifies if the number is signed or unsigned

A) CONTROL VALUES

The control values memory map contains the main data in order to proper control the inverter. The data
represents the desired voltage on each inverter leg. The data is calculated by the DSP and sent to the FPGA in order to
apply the modulation algorithm. The 4" value, 1/VDC represents the already divided value for the VDC in order to
ease the computation for the FPGA.

B) MAIN VOLTAGES

The main voltage represents the measured voltages of the power supply. For the position of these sensors
see Power Supply subchapter in the Hardware chapter. These values are measured either by the FPGA or the DSP. The
voltage R, S and T are measured by the FPGA while the rest by the DSP. In order to align every data to the FPGA
standard every value that is passed from the DSP to the FPGA or vice-versa the data format will be on 18 bits with
sign.

C) UNIT VOLTAGES

The unit voltages represent the measured values of the voltages across the units. These are measured by the
FPGA and have the offset and gain already applied.

D) CURRENTS

The currents represent the actual values measured by the FPGA and DSP. The main currents, the DC current,
U, V and W currents are measured by the DSP and used by the control structure. The currents for the upper and lower
sections of the inverter legs as well as the input currents of the power supply units are measured by the FPGA. The
currents measured by the FPGA are used for modulation and current control of the inverter units.

E) FAULTS

The faults represents the detailed values of the entire system with respect to units and modules. The faults U,
V and W represent the detailed faults of all the units. The bits 0, 2, 4,..., 30 correspond to the main fault signals of the
units while the bits on the odd positions (1, 3, 5 ..., 31) correspond to over-temperature fault of the units.

The general faults represent the faults caused by the logic system due to overvoltage, overcurrent, etc. These
values can only be read. In order to set a value, the triggers should be used. The lowest 16 bits are used by the FPGA
internal logic while the upper 16 bits can be set with the help of the upper 16 bits of the trigger register.

F) TRIGGERS

The triggers are used to signal events inside the FPGA. These are defined at kernel level and have the highest
priority. The difference between flags and triggers is that flags maintain their value after the effect had passed.
Triggers will be switched to 0 after the corresponding task had completed its execution. Triggers can only be set not

Software BIFE)

cleared. The value read of a certain trigger signals the state of the corresponding operation. A high state (1)
represents that the operation is in progress. A low state (0) tells that the operation has ended or is not in progress.

Bit Name On Write (only for high state - 1, for low state it has no effect)

No.

0 Reset The system will reset the fault condition

1 Shutdown The system will enter shutdown state

2 Units power up The system will attempt to power up each unit at a turn. There is about 2-3
seconds between units switching on in order to allow the power supply to
stabilize.

3 Units power down The system will attempt to power down each group of units at a turn. It will
take approximately 500 ms per unit to shutdown.

4 System power-up The system will be powered up. The trigger will be cleared after all the units
and the DC bus capacitors were charged.

Table F-15: Triggers register map

G) FLAGS

The flags set the main system states like enable, running etc.

Bit Name On Read On Write

No.

0 Enable 0 — The system is idle 0 — The system will shut-down
1 —The system is running 1 — The system will start

1 Fault 0 — No fault 0 — No effect
1 - Afault had occurred 1 — A fault signal will be issued

Table F-16: Flags register map

H) STATUS

The status register is used to show the status of individual components of the system. It is a read-write
register in order to allow easy access to the states.

Bit Name Value meaning
No.
0 Enable 0 — The system is idle
1 —The system is running
1 Trip 0 — No fault
1 — Afault had caused the system to stop
2 Relays operational 0 — The relays are stopped
1 — At least one relay is working
3 Chopper 0 — The chopper is OFF
1 —The chopper is ON
4 Main power 0 — The system is unpowered
1 —The system is powered
5 Charging 0 — The system is uncharged
1 —The system is charged
6 Load 0 — The load is disconnected
1—The load is connected

Modular Multi-Level inverter
7 Inverter connected 0 —The inverter DC bus is not connected
1 —The inverter DC bus is connected
8,9 System state 00 — Disabled
01 — Test mode 1
10 — Test mode 2
11 — Normal mode
10 Output enable 0 — The gate driver signals are disabled

1 —The gate driver signals are enabled

Table F-17: Status register map

FPGA source code simulations €Sl

APPENDIX G. FPGA SOURCE CODE SIMULATIONS

CurrentGuipubtU{17:0) UnitLevel Qut{58: (7) —
CumrentOulputd(17.0)
CurentOulputW{17:0)
Main Camier{17:0)
Meth odSdedion(2 0)
ReferenceCounterhl (23 0)
Referencell{23:.0)
ReferenceW{23: 0)
UnitStateQut{20 0) pm—
ReferenceW(23:0)
Uit/ oll agesi{ 143:0)
Unity oll ages{143:0)
Uity oll agesi{143:.0)
Vollagel evels{71:0)
Clodk

Enable

Run Done ——

Figure G.1 Modulation Block

¢tv2 Modular Multi-Level Inverter

41225 ns
Current Simulation

Time: : 10000 ns Ons 3000ns 3500ns 4000rs 4500 ns 5000 ns 5500 hs 6000 ns 6500 FRBO0 ns
I\II|IIII|IIII|\III\II\I|I\II\IIII|I\II|IIII|II\I

clock

enahle

run

done

referencen[23:0]

referencev[23:0]

3

5

referencew[232:0] 3
referencecau

=]

3 XA S B s e)32 X1 X0 X1 XKD HB N NEXE NS5 N4 N3 KD)1 M0 X2 XS
DX 1 X2 X3 N4 N5 HE 24X 32 X1 X0X1 K23 X4 5 xX6X5XsX3X2 {1 X0

mycarrier4p[23:0]

mycarrierap(23:0]

rycarrier2p[23:0] R T e E D T G B GO e (T) B o e g e B T P T e e e T)

rrycarrier p(23:0] D i B T e L e)

unitstatesul7:0] h33 [h B'hAs 8'hCC 855 8'h33 B'hAs ShCC 8h55 8h33
unitstatesu[7] | | | |

unitstatesu[s]

unitstatesu[s]

unitstatesu(4]
unitstatesu[3]

unitstatesu[2]

unitstatesu[1]
Unitstates0[0]

unitstatesy(7:0] h71 [B'hBZ2xE. X 8'hESXS. XE'hD4 X8 X 8'h71 x5 . X8hB2 X8, X 8'hESXE. 8'hDAa X8, X 8'h71 X8, xhB

unitstatesv[7]

Unitstatesv(e]

unitstatesws]

unitstatesv4]

unitstatesv[3]

unitstatesv[z]

unitstatesv[1]

unitstatesv(]
unitstate sw(7:0]

h17 [8'hiB x5 8'haE %38 B'haD x5 ah17 x5 a'h2B X8 B'hBE X8 8'hd4D X& ah17 X8 h2|

unitstateswiT]

unitstate swi(6]

Unitstatesw(5]

unitstateswi4]

unitstate swi([2]

Unitstatesw(2]

Unitstateswii]

unitstate sw([0]

=lo|m| = =[=o|=|o|o|c|a|=|o|o|o|=|=|=o|al=|=|o|o|=-|c|o|u|laa|n=|a =lolw == =]c

period 200000000
duty_cycle 5 0.5
offset 100000000

Figure G.2 Phase shifted Modulation

Correm Sinwulation
Tine: 11 s Ons 500ns 1000ns 1500ns 2000ms 2500ns 3000ns 3500ns 4000ns 4300ns 5000ns S500ns 6000ns B500ns 7000ns 7500ns 8000ns €500ns 9000ns 9500ns

tlock ! |

Entla |

rlmne. |16 {)] 16
myglere, | 16 {0 18 16
submetha.. | 0] 1

SLCL U] I o O VTR TN R N DN MM R e CT R R N BRI R R N Ikl
amer2z30l | 4 i) o) 1) € e kel €0 Gl D O R N G (DR R G (e e eTp e e e b b el) ey ki e € (NGB (R CH
LC U U I D FHE T 0 A PR DB O 0D € C RS D RO AT O ID VDB SONT EHEL B D O SR N B D ¥]
camerd[230) | 12 i
piod | . 200000000 200000000
by | 0 05 5

ofsil 1. 100000000 100000000

Figure G.3 Level Shifted Modulation IPD

FPGA source code simulations [FEEE]

Current Simulation
Time: 11000 ns

i

— =

400 ng
I

1000ns 1500ns 2000ns 2500ns 3000ns 3500ns 4000ns 4500ns 5000ns 5500ns BOOOns G500ns 70OOns 7500ns B000ns 8300ns 9000ns 950018000 ng

tlock 1 ﬂ

enable 1 4

referencecou. 18 _

mreference(230] | 16 _

submethod[10] | 1 _

ramier! [230] 2 _'.q

LaMmer2[230] M _..q

LaMmer3230)] 0 _..q

camierd[23:.0] 2

neriod it

duty_cycle 04

offset 1.

Figure G.4 Level Shifted Modulation APOD
Fs0.0rs]
Current Simulation
Time: 11us ns A00ns 1000ns 1500ns 2000ns 2500ns 3000ns 3500ns 4000ns 4400ns 5000ns 49500ns GO00ns G500ns 7000ns 7400ns 8O0O0ns 8500ns 9000ns 9500ns
Pt e e e e e e e e

tlock 1 J_U—m

enable 1 |

referenc.. | 16 @(16 16
riyrefers. 16 @X 16 18
submetha.. | 2 :X

carrier![23:0] | 52

2 2
(82D (60159 58157 56)55,54)(53)(52161 XGURAS 48X 495031 4525354 65,56, 67)38159) (601 X62)(3354, 53 2B 0395867 (5o 55 5453 2)c1

carrier2[23:0] | 36

e A8 XIS 0 39X 36) 373635 34X 313233 X34) 30 36N T8N0/ Az s X 45 Xae 7 XaB AT RO S X3 T A AT 0136 57 26105

carrier3[23:0] | 28

(1831820121 X22123X24)35,26) 27 78128 30X 12X 31 30/ (93823625 X 2423 2N a0 191 e 17X TG T 1819102127034 X35 676109

vatterd[231) | 12 0 8006800060000 B066E0EEN00000606600000860600060000FE
period 2. 200000000 200000000

duty_cycle 0.4 0.4 0.4

offset 1. 100000000 100000000

Figure G.5 Level Shifted Modulation POD

G-4

Modular Multi-Level Inverter

Current Simulation
Time: 11000 ns

Ons 500ns 1000ns 1500ns 2000 ns 2500 ns 3000 ns 3500 ns 4000 ns 4500 ns 500046500 ns
bt rrabrrrrtrrrtrrr e rrr i rr ettt it rrirrid

referencecount...

clock

enahble |

run

done

referenceu[23:0] @(3 b 4 e 5 b e

ryreference[23:0] @(3 X gl X &

referencev(23:0] @(5 b B e 5 b £

ryreference[23:0] @X 5 X 4 X ¢

referencew(23:0] @X 1 b 2 o 3 A £

ryreference[23:0] @X 1 X e X ¢
0

rrycarrierdp(23:0]

rycarrier3p(23:0]

rycarrier2p(23:0]

}(}(K){}(}(X}(XS}(E}(SK){}(}(}(}(){2}(3}(4}(){}{){}(}(){

rrycarrier! p[23:0]

0606006 GEGBQ“QGGBGEGEQBGDQG'

unitstatesu[7:0]

unitstatesu[7]

BhFD_ WBMCCY 8his % 8h33 4% 8'han X 8. KB ¥EhD4 KB W EhT1 4B {BNB2 ¥B K. HEhFD
| |

unitstatesulf]

unitstatesula]

unitstatesul4]

unitstatesul3]

unitstatesulZ]

unitstatesul1]

unitstatesul0]

unitstatesy[7:0]

‘hFO

unitstatesv[¥]

| |
BHFD {EhD4 B Y enT1 e Y eneziE WY BhFO {8«
| |

unitstatesv[b]

unitstatesv[s]

unitstatesv[4]

unitstatesv[3]

unitstatesv[2]

unitstatesv[1]

unitstatesv[0]

unitstatesw(7:0]

=
=
3

unitstate swi(7]

| |
ghFo 8 EhaD e 17 ¥ B n2B B e heE e WehaD e, W en1 7 4B W ehae B i 8.
| | |

unitstate swilf]

L[] I |

unitstate swi(a]

unitstate swild]

unitstatesw(3]

unitstatesw(2]

unitstatesw(1]

unitstate swi(l]

period

200000000

duty_cvcle

0.4

offset

100000000

Figure G.6 Unit states

APPENDIX H.

MAIN SOFTWARE

Main software

H.1 DSP

|H.1.I WORKER.C

#include "main.h"
tTranformInvClark myAB2ABC;

//
// This function will be called each cycle
// All the tasks that the DSP must execute are found
in this
// function.
void Worker (void) {
// int 1i;
// double dAlpha, dBeta;
double dU, dv, dw;

117777777777 7777777777777777777777777777777777
// Read the current and the DC Voltage

L1777 7777 777777777777 777777777777777777777777
mAdc.read (&mAdc) ;

// Now control the system
// Good look

117777777777 7777777777777777777777777777777777
// Compute the speed ramp

L1777 77 777777777777 77777777777777777777777777
ramp_speed.calc (&ramp_speed) ;

L1177 77777 777777777777 7777777777777777777777
// Compute frequency ramp
L1177 77777 777777777777 7777777777777777777777
ramp_freqg.calc (&ramp_freq);

L1777 77 777777777777 77777777777777777777777777

// Connect frequency ramp with angle theta
generator

L1777 777 777777777777 77777777777777777777777777

ramp_theta.fFrequency =
(ramp_freqg.fOutputFrequency) ;

ramp_theta.calc(&ramp_theta);

L1777 777777777777 7777777777777777777777777777
// Connect frequnecy ramp with U/F calculator
1177777777 777777777777777777777777777777777777
vhzl.Freq = ramp_freq.fOutputFrequency; //

(ramp_freq.fOutputFrequency + fil.slip_comp_output) ;
vhzl.calc(&vhzl);

L1777 777777777777 7777777777777777777777777777

// Connect theta generator with the voltage
calculator

L1777 777777777777 7777777777777777777777777777

volt.fAngleTheta = ramp_theta.fOutputAngle;

volt.fVoltageReference = vhzl.VoltOut;

volt.calc(&volt);

// spv.fVoltageAlpha = volt.fVoltageAlpha;
// spv.fVoltageBeta = volt.fVoltageBeta;

AB2ABC (volt.fVoltageAlpha, volt.fVoltageBeta, dU,
dv, dw, dSqrt3Div2);

L1177 77 7777777777777 77777777777777777777777
//

// Copy the data from the ADC to the FPGA

//

L1177 7777 777777777777 7777777777777777777777

// Copy voltages
myStruct->VDC =
DSP2FPGA_float (mAdc.fDCBusVoltage) ;
myStruct->VoltageU =
DSP2FPGA_float (mAdc.fVoltagelU) ;
myStruct->VoltageV =
DSP2FPGA_float (mAdc.fVoltageV) ;
myStruct->VoltageW =
DSP2FPGA_float (mAdc.fVoltageW) ;

// Copy currents
myStruct->CurrentDC =
DSP2FPGA_float (mAdc.fDCBusCurrent) ;
myStruct->CurrentU =
DSP2FPGA_float (mAdc.fCurrentU);
myStruct->CurrentV =
DSP2FPGA_float (mAdc.fCurrentV);
myStruct->CurrentW =
DSP2FPGA_float (mAdc.fCurrentW) ;

if (mAdc.fDCBusVoltage == 0) {
myStruct=>InvVDC = DSP2FPGA_float (1) ;
} else {

myStruct=>InvVDC = DSP2FPGA_float(l /
mAdc.fDCBusVoltage); ;
}

// Set the control voltages in PU + 1 (range: [2

01)
myStruct—>ControlVoltageU = DSP2FPGA_float (dU /
565 + 1);
myStruct->ControlVoltageV = DSP2FPGA_float (dV /
565 + 1);
myStruct=>ControlVoltageW = DSP2FPGA_float (dW /
565 + 1);
nCnt2++;
if (nCnt2 > 10) {
nCnt2 = 0;
nCnt++;
if (nCnt >= 200) nCnt = 0;
dUU[nCnt] = volt.fVoltageAlpha; // dU;
duv[nCnt] = volt.fVoltageBeta; // dV;
dUW[nCnt] = dW;

H.1.11 TIMER.C

#include "main.h"

struct CPUTIMER_VARS CpuTimerO;
struct CPUTIMER_VARS CpuTimerl;

struct CPUTIMER_VARS CpuTimer2;

interrupt void mainTimerInterrupt (void) {

Modular multi-level inverter

CpuTimer0O.InterruptCount++;

// Call the main worker
Worker () ;

// Acknowledge this interrupt to receive more
interrupts from group 1

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}

void InitializeTimer () {

// Interrupts that are used in this example are
re-mapped to

// ISR functions found within this file.

EALLOW; // This is needed to write to EALLOW
protected registers

PieVectTable.TINTO = &mainTimerInterrupt;

EDIS; // This is needed to disable write to
EALLOW protected registers

// Step 4. Initialize the Device Peripheral. This
function can be

// found in DSP2833x_CpuTimers.c

InitCpuTimers(); // For this example, only
initialize the Cpu Timers

// Configure CPU-Timer 0 to interrupt every 500
milliseconds:

// 150MHz CPU Freqg, 50 millisecond Period (in
uSeconds)

ConfigCpuTimer (&CpuTimer0, 150, 500);

// To ensure precise timing, use write-only
instructions to write to the entire register.
Therefore, if any

// of the configuration bits are changed in
ConfigCpuTimer and InitCpuTimers (in
DSP2833x_CpuTimers.h), the

// below settings must also be updated.

CpuTimerORegs.TCR.all =
instruction to set TSS bit = 0

// Use write-only

// Enable CPU INT1l which is connected to CPU-
Timer O:
IER |= M_INTI1;

// Enable TINTO in the PIE: Group 1 interrupt 7
PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

void InitCpuTimers (void) {
// CPU Timer 0
// Initialize address pointers to respective
timer registers:
CpuTimer0.RegsAddr = &CpuTimerORegs;
// Initialize timer period to maximum:
CpuTimerORegs.PRD.all = 0Ox& F;
// Initialize pre-scale counter to divide by 1
(SYSCLKOUT) :
CpuTimerORegs.TPR.all =
CpuTimerORegs.TPRH.all = 0;
// Make sure timer is stopped:
CpuTimerORegs.TCR.bit.TSS = 1;
// Reload all counter register with period value:
CpuTimerORegs.TCR.bit.TRB = 1;

// Reset interrupt counters:
CpuTimer0.InterruptCount = 0;

// CpuTimer 1 and CpuTimer2 are reserved for DSP BIOS
& other RTOS
// Do not use these two timers if you ever plan on

integrating

// DSP-BIOS or another realtime OS.

//

// Initialize address pointers to respective timer
registers:

CpuTimerl.RegsAddr = &CpuTimerlRegs;
CpuTimer2.RegsAddr = &CpuTimer2Regs;
// Initialize timer period to maximum:
CpuTimerlRegs.PRD.all = Oxi¥ FFF;
CpuTimer2Regs.PRD.all = 0x F;
// Initialize pre-scale counter to divide by 1
(SYSCLKOUT) :
CpuTimerlRegs.TPR.all
CpuTimerlRegs.TPRH.all
CpuTimer2Regs.TPR.all
CpuTimer2Regs.TPRH.all 0;
// Make sure timers are stopped:
CpuTimerlRegs.TCR.bit.TSS = 1;
CpuTimer2Regs.TCR.bit.TSS = 1;
// Reload all counter register with period value:
CpuTimerlRegs.TCR.bit.TRB = 1;
CpuTimer2Regs.TCR.bit.TRB = 1;
// Reset interrupt counters:
CpuTimerl.InterruptCount = 0;
CpuTimer2.InterruptCount = 0;

// This function initializes the selected timer to
the period specified
// by the "Freq" and "Period" parameters. The "Freqg"
is entered as "MHz"
// and the period in "uSeconds". The timer is held in
the stopped state
// after configuration.
//
void ConfigCpuTimer (struct CPUTIMER_VARS *Timer,
float Freq, float Period){

Uint32 temp;

// Initialize timer period:
Timer->CPUFreqInMHz = Freq;
Timer->PeriodInUSec = Period;
temp = (long) (Freqg * Period);
Timer->RegsAddr->PRD.all = temp;

// Set pre-scale counter to divide by 1
(SYSCLKOUT) :

Timer->RegsAddr->TPR.all = 0;

Timer->RegsAddr->TPRH.all =

// Initialize timer control register:

Timer—->RegsAddr—->TCR.bit.TSS = 1; // 1=
Stop timer, 0 = Start/Restart Timer
Timer—->RegsAddr—=>TCR.bit.TRB = 1; // 1 =

reload timer
Timer->RegsAddr->TCR.bit.SOFT
Timer->RegsAddr->TCR.bit .FREE
Free Run Disabled
Timer—->RegsAddr—->TCR.bit.TIE = 1; // 0 =
Disable/ 1 = Enable Timer Interrupt

// Timer

// Reset interrupt counter:
Timer->InterruptCount = 0;

Main software -
3

H.1.11I

"main.h"

EXTERNAL INTERFACE

#include

void extInterface_SetIO(){
// Make sure the XINTF clock is enabled
SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;

EALLOW;
GpioCtrlRegs.GPCMUX1.bit.GPIO64 = 3; // XD15
GpioCtrlRegs.GPCMUX1.bit.GPIO65 = 3; // XD14
GpioCtrlRegs.GPCMUX1.bit.GPIO66 = 3; // XD13
GpioCtrlRegs.GPCMUX1.bit .GPIO67 ; // XD12
GpioCtrlRegs.GPCMUX1.bit .GPIO68 // XD11
GpioCtrlRegs.GPCMUX1.bit .GPIO69 // XD10
GpioCtrlRegs.GPCMUX1.bit.GPIO70 = 3; // XD19
GpioCtrlRegs.GPCMUX1.bit.GPIO71 3; // XD8
GpioCtrlRegs.GPCMUX1.bit.GPIO72 = 3; // XD7
GpioCtrlRegs.GPCMUX1.bit .GPIO73 ; // XD6
GpioCtrlRegs.GPCMUX1.bit.GPIO74 // XD5
GpioCtrlRegs.GPCMUX1.bit .GPIO75 // XD4
GpioCtrlRegs.GPCMUX1.bit .GPIO76 // XD3
GpioCtrlRegs.GPCMUX1.bit.GPIO77 = 3; // XD2
GpioCtrlRegs.GPCMUX1.bit .GPIO78 ; // XD1
GpioCtrlRegs.GPCMUX1.bit.GPIO79 = 3; // XDO
GpioCtrlRegs.GPBMUX1.bit.GPIO40 = 3; //
XAO0/XWE1ln

GpioCtrlRegs.GPBMUX1.bit.GPIO41 = 3; // XAl
GpioCtrlRegs.GPBMUX1.bit.GPIO42 ; // XA2
GpioCtrlRegs.GPBMUX1.bit .GPIO43 // XA3
GpioCtrlRegs.GPBMUX1.bit.GPIO44 = 3; // XA4
GpioCtrlRegs.GPBMUX1.bit.GPIO45 = 3; // XAS
GpioCtrlRegs.GPBMUX1.bit.GPIO46 = 3; // XA6
GpioCtrlRegs.GPBMUX1.bit.GPIO47 = 3; // XAT
GpioCtrlRegs.GPCMUX2.bit.GPIO80 = 3; // XA8
GpioCtrlRegs.GPCMUX2.bit.GPIO81 = 3; // XA9

GpioCtrlRegs.GPCMUX2.bit .GPIO82 = // XA10
GpioCtrlRegs.GPCMUX2.bit .GPIO83 // XAll
GpioCtrlRegs.GPCMUX2.bit .GPIO84 // XAl2
GpioCtrlRegs.GPCMUX2.bit .GPIO85 // XAl13
GpioCtrlRegs.GPCMUX2.bit .GPIO86 // XAl4d
GpioCtrlRegs.GPCMUX2.bit .GPIO87 // XAl5
GpioCtrlRegs.GPBMUX1.bit .GPIO39 // XAl6
GpioCtrlRegs.GPAMUX2.bit .GPIO31 // XAl7
GpioCtrlRegs.GPAMUX2.bit .GPIO30 // XAl18
GpioCtrlRegs.GPAMUX2.bit .GPIO29 = // XAl19
GpioCtrlRegs.GPBMUX1.bit.GPIO34 = // XREADY
GpioCtrlRegs.GPBMUX1.bit .GPIO35 // XRNW
GpioCtrlRegs.GPBMUX1.bit .GPIO38 = // XWEO
GpioCtrlRegs.GPBMUX1.bit .GPIO36 = // XZCS0
GpioCtrlRegs.GPBMUX1.bit .GPIO37 // XZCS7
GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 3; // XZCS6
EDIS;

// For all zone,

EALLOW;
// All Zones

set

timings

// Timing for all zones based on XTIMCLK

SYSCLKOUT

XintfRegs.XINTCNF2.bit .XTIMCLK
// Buffer up to 3 writes
XintfRegs.XINTCNF2.bit .WRBUFF =
// XCLKOUT is enabled

XintfRegs.XINTCNF2.bit .CLKOFF =

// XCLKOUT =

XTIMCLK

XintfRegs.XINTCNF2.bit .CLKMODE

EDIS;

Jr

S

H.1.1V EXTINTERFACE ASRAM

#include "main.h"

void extInterface_Asram(void) {
EALLOW;

// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing

XintfRegs.XTIMING7.bit .XWRLEAD = 1; // 1
XintfRegs.XTIMING7.bit .XWRACTIVE = 2; // 2
XintfRegs.XTIMING7.bit .XWRTRAIL = 0; // 1
// Zone read timing
XintfRegs.XTIMING7.bit .XRDLEAD = 1;
XintfRegs.XTIMING7.bit .XRDACTIVE = 3; // 3

XintfRegs.XTIMING7.bit .XRDTRAIL = 0;

// don't double all Zone read/write
lead/active/trail timing

XintfRegs.XTIMING7.bit .X2TIMING

0-
Jr

// Zone will not sample XREADY signa
XintfRegs.XTIMING7.bit .USEREADY

XintfRegs.XTIMING7.bit .READYMODE

// 1,1 =
// 0,1 =
// other

x16 data bus
%32 data bus
values are reserved

XintfRegs.XTIMING7.bit .XSIZE =

EDIS;

’

’

//Force a pipeline flush to ensure that the write

to

//the last register configured occurs before

returning.
asm(" RPT #7

}

[[NOP");

H.1.V FPGA INTERFACE

#include
#include

"main.h"
"fpga.h"

// tFpgaOutput * myFpgaData =
// Set it to ZONE 6

(tFpgaOutput*) 0x100000;

TMyStruct sss0;
TMyStructFpga sssl;

TMyStruct * myStruct = & sss0; // =
(TMyStruct*)0x100000; // Set it to ZONE 6
TMyStructFpga * myStructFpga = & sssl; // =

(TMyStructFpga*)0x100000; // Set it to ZONE 6

void extInterface_Fpga (void) {

EALLOW;
// Zone
// When
// Lead

// Zone

XintfRegs.XTIMING6 .bit .XWRLEAD = 1;

using ready, ACTIVE must be 1 or greater
must always be 1 or greater

write timing

// 1

XintfRegs.XTIMING6 .bit .XWRACTIVE = 2

XintfRegs.XTIMING6 .bit .XWRTRAIL =

// Zone

read timing

Modular multi-level inverter

XintfRegs.XTIMING6 .bit .XRDLEAD = 1;
XintfRegs.XTIMING6 .bit .XRDACTIVE = 3; // 3
XintfRegs.XTIMING6 .bit .XRDTRAIL = 0;

// don't double all Zone read/write
lead/active/trail timing

// 1,1 = x16 data bus

// 0,1 = x32 data bus

// other values are reserved
XintfRegs.XTIMING6.bit .XSIZE = =;
EDIS;

XintfRegs.XTIMING6.bit .X2TIMING = 0; //Force a pipeline flush to ensure that the write
to
// Zone will not sample XREADY signal //the last register configured occurs before
XintfRegs.XTIMING6 .bit .USEREADY = 0; returning.
XintfRegs.XTIMING6 .bit .READYMODE = 0; asm(" RPT #7 || NOP");
}
H.1.VI MAIN .C

#include "main.h"

// Prototype statements for functions found within
this file.
interrupt void cpu_timerO_isr (void);

double myl;
float my2;
float my3;
double myRes;

void main(void) {
// Initialize global variables

InitializeGlobal();

// Initialize user space
InitializeUser();

// Enable global Interrupts and higher priority
real-time debug events:

EINT; // Enable Global interrupt INTM

ERTM; // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever:
for(;;);

H.1.VII OTHERS.C

#include "main.h"

// +W2230

unsigned long nPowerOf2[32];

/= A

// 1,2,4,8,16,32,64,128,256,512,1024,2048,

//
4096,8192,16384,32768,65536,131072,263144,524288,1048
576,2097152,4194304

/1Y

long GetSystemFreq() {
long nSystemSpeed;

nSystemSpeed = MAIN_CRISTAL_FREQ_KHZ;
nSystemSpeed *= 0.5;

// Calculate Coefficient based on Div Sel
switch (DSP28_DIVSEL) {

case 0:
case |:
nSystemSpeed *= 0.25;
break;
case :
nSystemSpeed *= 0.5;
break;
// case 3: // do nothing
// nSystemSpeed *= 1;
// break;
}

if ((DSP28_PLLCR > 1) && (DSP28_PLLCR <= 10)) {
nSystemSpeed *= DSP28_PLLCR;
}

nSystemSpeed *= 1000;

return nSystemSpeed;

double FPGA2DSP_float (TFpgaNumber myNumber) {
double nValue = 0;

if (myNumber.value == () return 0;

nValue = myNumber.value;

// If signed .
if (myNumber.sign) {

nValue = - (nPowerOf2[18] - myNumber.value) /
nPowerOf 2 [myNumber.q];
} else {

nValue = myNumber.value /
nPowerOf 2 [myNumber.q];
}

return nValue;

unsigned long DSP2FPGA_int (long nNumber) {
union {
TFpgaNumber myNumber;
unsigned long myResult;
} myParam;

myParam.myResult = 0;
myParam.myNumber.q = 0;

if (nNumber < 0){
myParam.myNumber.sign = 1;

if (nNumber <= —-nPowerOf2[18]) {

myParam.myNumber .value = 0x20000;
} else {
myParam.myNumber .value = nPowerOf2[18] +
nNumber;
}
} else {
myParam.myNumber.sign = 0;

Main software

if (nNumber >= nPowerOf2[13])({

myParam.myNumber .value = 0x3FFFE;
} else {
myParam.myNumber .value = nNumber &
)x3FFFE;
}

return myParam.myResult;

unsigned long DSP2FPGA_float (double nNumber) {
union {
TFpgaNumber myNumber;
unsigned long myResult;
} myParam;
// double dT1l, dT2;
unsigned long nT3;

if (nNumber == 0) return 0;
myParam.myResult = 0;

if (nNumber < 0){
// For negative numbers

myParam.myNumber.sign = 1;

// 3 = (Q15) = 98304 = 011000000000000000
// -3 = (Q15) = 163840 = 101000000000000000
// 3 + (=3) = 0 - checked

if (nNumber >= - (double)nPowerOf2[0])
myParam.myNumber.q = 17/; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[17]; }

else if (nNumber >= —(double)nPowerOf2[1])
myParam.myNumber.q = 16; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[16]; }

else if (nNumber >= -(double)nPowerOf2[2]1)
myParam.myNumber.q = 15; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[15]; }

else if (nNumber >= —(double)nPowerOf2[31)
myParam.myNumber.q = 14; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[14]; }

else if (nNumber >= —(double)nPowerOf2[4])
myParam.myNumber.q = 13; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[13]; }

else if (nNumber >= -(double)nPowerOf2[5])
myParam.myNumber.q = 12; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[12]; }

else if (nNumber >= —(double)nPowerOf2[61])
myParam.myNumber.q = 11; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[11]; }

else if (nNumber >= —(double)nPowerOf2[7])
myParam.myNumber.q = 10; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[10]; }

else if (nNumber >= —(double)nPowerOf2[81])
myParam.myNumber.q =); myParam.myNumber .value =
nPowerOf2[18] + nNumber * nPowerOf2[9]; }

else if (nNumber >= —(double)nPowerOf2[9])
myParam.myNumber.q = ; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[2]; }

else if (nNumber >= —(double)nPowerOf2[10])
myParam.myNumber.q = ; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[7/]; }

else if (nNumber >= —(double)nPowerOf2[11])
myParam.myNumber.q = 6; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[©]; }

else if (nNumber >= —(double)nPowerOf2[12])
myParam.myNumber.q = ; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[5]; }

else if (nNumber >= —(double)nPowerOf2[13])
myParam.myNumber.q = 4; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[4]; }

else if (nNumber >= —(double)nPowerOf2[14])
myParam.myNumber.q = ; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[3]; }

else if (nNumber >= —(double)nPowerOf2[15])
myParam.myNumber.q = 2; myParam.myNumber.value =
nPowerOf2[18] + nNumber * nPowerOf2[2]; }

myParam.

else if (nNumber >= —(double)nPowerOf2[16])
myNumber .q = 1; myParam.myNumber.value =

nPowerOf2[18] + nNumber * nPowerOf2[1]; }

myParam.

else if (nNumber >= —(double)nPowerOf2[17])
myNumber .q =); myParam.myNumber.value =

nPowerOf2[18] + nNumber * nPowerOf2[0]; }

maximum value
myParam.myNumber.q = 0x20000;
myParam.myNumber .value = 0;
}
//nRes = part & O0x3FFFF + bSign * 0x1000000;
//nRes += (nQvalue & O0x3F) << 18;
} else {
myParam.myNumber.sign = 0;
if (nNumber < nPowerOf2[0]) {
myParam.myNumber.q = 18; myParam.myNumber.value =
nNumber * nPowerOf2[13]; }
else if (nNumber < nPowerOf2[1]1) {
myParam.myNumber.q = 17/; myParam.myNumber.value =
nNumber * nPowerOf2[17]; }
else if (nNumber < nPowerOf2[2]1) {
myParam.myNumber.q = 16; myParam.myNumber.value =
nNumber * nPowerOf2[16]; }
else if (nNumber < nPowerOf2[31) {
myParam.myNumber.q = 15; myParam.myNumber.value =
nNumber * nPowerOf2[15]; }
else if (nNumber < nPowerOf2[4]1) {
myParam.myNumber.q = 14; myParam.myNumber.value =
nNumber * nPowerOf2[14]; }
else if (nNumber < nPowerOf2[5]) {
myParam.myNumber.q = 13; myParam.myNumber.value =
nNumber * nPowerOf2[13]; }
else if (nNumber < nPowerOf2[©6]1) {
myParam.myNumber.q = 12; myParam.myNumber.value =
nNumber * nPowerOf2[12]; }
else if (nNumber < nPowerOf2[7]1) {
myParam.myNumber.q = 11; myParam.myNumber.value =
nNumber * nPowerOf2[11]; }
else if (nNumber < nPowerOf2[28]1) {
myParam.myNumber.q = 10; myParam.myNumber.value =
nNumber * nPowerOf2[10]; }
else if (nNumber < nPowerOf2[9]1) {
myParam.myNumber.q =); myParam.myNumber .value =
nNumber * nPowerOf2[91; }
else if (nNumber < nPowerOf2[10]) {
myParam.myNumber.q = ; myParam.myNumber.value =
nNumber * nPowerOf2[38]1; }
else if (nNumber < nPowerOf2[11]) {
myParam.myNumber.q = ; myParam.myNumber.value =
nNumber * nPowerOf2[71; }
else if (nNumber < nPowerOf2[12]) {
myParam.myNumber.q = 6; myParam.myNumber.value =
nNumber * nPowerOf2[61; }
else if (nNumber < nPowerOf2[13]) {
myParam.myNumber.q = ; myParam.myNumber.value =
nNumber * nPowerOf2[51; }
else if (nNumber < nPowerOf2[14]) {
myParam.myNumber.q = 4; myParam.myNumber.value =
nNumber * nPowerOf2[4]1; }
else if (nNumber < nPowerOf2[15]) {
myParam.myNumber.q = ; myParam.myNumber.value =
nNumber * nPowerOf2[31; }
else if (nNumber < nPowerOf2[16]) {
myParam.myNumber.q = 2; myParam.myNumber.value =
nNumber * nPowerOf2[21; }
else if (nNumber < nPowerOf2[17]) {
myParam.myNumber.q = 1; myParam.myNumber.value =
nNumber * nPowerOf2[1]1; }
else if (nNumber < nPowerOf2[18]) {
myParam.myNumber.q =); myParam.myNumber.value =
nNumber * nPowerOf2[0]; }
else {
// ERROR: To big number so make the
maximum value
myParam.myNumber.q = 0;
myParam.myNumber .value = 0Ox
}
}

else {
// ERROR: To small number so make the

-~

-~

Modular multi-level inverter

while (Usec—-) { // lus loop at
return myParam.myResult; 150MHz CPUCLK
} asm(" RPT #139 || NOP");
}
}
/* */
void DelayUs (volatile Uint32 Usec) {
H.2 VHDL CODE
H.2.1 MAIN.VHD
777777777777777777777777777 —— Note: The index represents the CPLD (index O

—— Company: Aalborg university
-- Engineer: Cristian Sandu
-— Create Date: 09:05:52 04/25/2009
—— Design Name:
—— Module Name:
—-— Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

main - Behavioral

—-— Dependencies:

—-— Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

——-- Uncomment the following library declaration if
instantiating

—-—-- any Xilinx primitives in this code.

——library UNISIM;

—-use UNISIM.VComponents.all;

entity main is
Port (
sys_clock : in STD_LOGIC;
vga_clock : in STD_LOGIC;
not_reset: in STD_LOGIC;

myButtons: in STD_LOGIC_VECTOR (3 downto 0);
mySwitches: in STD_LOGIC_VECTOR(/ downto 0);
myLeds: out STD_LOGIC_VECTOR(/ downto 0);

—- User input

PS2_MISO: out std_logic;
PS2_MOSI: in std_logic;
PS2_Clock: in std_logic;
PS2_ChipSelect: in std_logic;

—- Video Connections

Video_Red

out STD_LOGIC_VECTOR (3 downto 0);
Video_Green out STD_LOGIC_VECTOR (3 downto
0);
Video_Blue out STD_LOGIC_VECTOR (3 downto
0);
Video_Vsync out STD_LOGIC;
Video_Hsync out STD_LOGIC;

-- Gates CPLDs (5 gate CPLDs)

represents CPLD O,
- index 1 <-> CPLD 1, index 2 <-> CPLD
3)

Gates_Clock:
Gates_ChipSelect:

out STD_LOGIC_VECTOR(4 downto 0);
out STD_LOGIC_VECTOR (4 downto
0);

Gates_OutputEnable:
downto 0);

out STD_LOGIC_VECTOR (4

Gates_MOSI: out STD_LOGIC_VECTOR(4 downto 0);
Gates_MOSI2: out STD_LOGIC_VECTOR(4 downto 0);
Gates_MISO: in STD_LOGIC_VECTOR(4 downto 0);

Gates_Fault:
Gates_Reset:

in STD_LOGIC_VECTOR(4 downto 0);
out STD_LOGIC_VECTOR(4 downto 0);

-— ADCs
lines per ADC)

(2 sets of 3 ADCs IC with 2 data input

ADC_Address: out STD_LOGIC_VECTOR(5 downto 0);
—-— ADC address lines

ADC_ChipSelect: out STD_LOGIC_VECTOR(! downto

0); —— ADC Chip Select

ADC_Clock: out STD_LOGIC_VECTOR(L downto 0);
—— ADC Clock (max: 32 MHz)

ADC_Data: in STD_LOGIC_VECTOR(!1 downto 0);

—-— ADC Data lines

—- DSP interface

DSP_Data: inout STD_LOGIC_VECTOR(L5 downto 0);

DSP_Addr: in STD_LOGIC_VECTOR(9 downto 0);
DSP_Clock: in STD_LOGIC;
DSP_CS: in STD_LOGIC;

DSP_RD:
DSP_WR:

in STD_LOGIC;
in STD_LOGIC
)i

end main;

architecture Behavioral of main is

- MAIN DSP Communication

Main software

- signal datCurrentS: std_logic_vector (24 downto 0)

— := (others => '0');
signal datCurrentT: std_logic_vector (24 downto 0)
:= (others => '0"');
signal DSP_Output: std_logic_vector(l5 downto 0) := signal datCurrentDC: std_logic_vector (24 downto 0)
(others => '0'); := (others => '0');
signal DSP_Input: std_logic_vector (15 downto 0) := signal datCurrentU: std_logic_vector (24 downto 0)
(others => '0'); := (others => '0"');
signal datCurrentV: std_logic_vector (24 downto 0)
— := (others => '0');
—-- DSP Memory map data signal datCurrentW: std_logic_vector (24 downto 0)
— := (others => '0"');
signal datControlU: std_logic_vector (24 downto 0) signal datCurrentUhi: std_logic_vector (24 downto 0)
:= (others => '0'); := (others => '0');
signal datControlV: std_logic_vector (24 downto 0) signal datCurrentUlo: std_logic_vector (24 downto 0)
:= (others => '0"'); := (others => '0');
signal datControlW: std_logic_vector (24 downto 0) signal datCurrentVhi: std_logic_vector (24 downto 0)
:= (others => '0'); := (others => '0"');
signal datInvVDC: std_logic_vector (24 downto 0) := signal datCurrentVlo: std_logic_vector (24 downto 0)
(others => '0'); := (others => '0');
signal datVoltageR: std_logic_vector (24 downto 0) signal datCurrentWhi: std_logic_vector (24 downto 0)
:= (others => '0'); := (others => '0"');
signal datVoltageS: std_logic_vector (24 downto 0) signal datCurrentWlo: std_logic_vector (24 downto 0)
:= (others => '0"'); := (others => '0"');
signal datVoltageT: std_logic_vector (24 downto 0) signal datFaultsU: std_logic_vector (31 downto 0)
:= (others => '0'); := (others => '0');
signal datVoltageDC:std_logic_vector (24 downto 0) signal datFaultsV: std_logic_vector (31 downto 0)
:= (others => '0"'); := (others => '0"');
signal datVoltageU: std_logic_vector (24 downto 0) signal datFaultsW: std_logic_vector (31 downto 0)
:= (others => '0"'); := (others => '0"');
signal datVoltageV: std_logic_vector (24 downto 0) signal datFaults: std_logic_vector (31 downto 0)
:= (others => '0'); := (others => '0"');
signal datVoltageW: std_logic_vector (24 downto 0) signal datTriggers: std_logic_vector (21 downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageUl: std_logic_vector (24 downto 0) signal datFlags: std_logic_vector (31 downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageU2: std_logic_vector (24 downto 0) signal datStatus: std_logic_vector (31 downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageU3: std_logic_vector (24 downto 0) signal datReference: std_logic_vector(ll downto 0)
:= (others => '0'); := (others => '0');
signal datVoltageU4: std_logic_vector (24 downto 0) signal datLeds: std_logic_vector(/ downto 0)
:= (others => '0'); := (others => '0"');
signal datVoltageU5: std_logic_vector (24 downto 0) signal datVoltageLO: std_logic_vector(l/ downto 0)
:= (others => '0'); := (others => '0');
signal datVoltageU6: std_logic_vector (24 downto 0) signal datVoltageLl: std_logic_vector(l/ downto 0)
:= (others => '0'); := (others => '0');
signal datVoltageU7: std_logic_vector (24 downto 0) signal datVoltageL2: std_logic_vector(l/ downto 0)
:= (others => '0'); := (others => '0');
signal datVoltageU8: std_logic_vector (24 downto 0) signal datVoltageL3: std_logic_vector(l/ downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageVl: std_logic_vector (24 downto 0) signal datVoltagelL4: std_logic_vector(l/ downto 0)
:= (others => '0'); := (others => '0"');
signal datVoltageV2: std_logic_vector (24 downto 0) signal datVoltageL5: std_logic_vector(l/ downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageV3: std_logic_vector (24 downto 0) signal datVoltageL6: std_logic_vector(l/ downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageV4: std_logic_vector (24 downto 0) signal datVoltageL7: std_logic_vector(l/ downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageV5: std_logic_vector (24 downto 0) signal datVoltageL8: std_logic_vector(l/ downto 0)
:= (others => '0"'); := (others => '0');
signal datVoltageVé6: std_logic_vector (24 downto 0)
:= (others => '0'"); signal DspSetReferenceClock: std_logic := '0';
signal datVoltageV7: std_logic_vector (24 downto 0) signal DspSetLeds: std_logic := '0';
:= (others => '0');
signal datVoltageV8: std_logic_vector (24 downto 0)
:= (others => '"0");
signal datVoltageWl: std_logic_vector (24 downto 0) = ————————
:= (others => '0"'); —
signal datVoltageW2: std_logic_vector (24 downto 0) -
:= (others => '0'); —
signal datVoltageW3: std_logic_vector (24 downto 0) -
:= (others => '0"'); —
signal datVoltageW4: std_logic_vector (24 downto 0) - System clocks
:= (others => '0"'); —
signal datVoltageW5: std_logic_vector (24 downto 0) -
:= (others => '0"'); —
signal datVoltageWé6: std_logic_vector (24 downto 0) -
:= (others => '0"'); —
signal datVoltageW7: std_logic_vector (24 downto 0)
:= (others => '0');
signal datVoltageW8: std_logic_vector (24 downto 0) component Clocks
:= (others => '0'); port (
signal datCurrentR: std_logic_vector (24 downto 0) Clockl25 : in STD_LOGIC;

:= (others => '0'); Clock25 : in STD_LOGIC;

Modular multi-level inverter

downto

Clock62 out STD_LOGIC;

Clock31l out STD_LOGIC;

Clockl5 out STD_LOGIC;

Clock8 out STD_LOGIC;

Clockl2 : out STD_LOGIC;

Clock25Hz out STD_LOGIC;

Clock2Hz out STD_LOGIC;

ControlClock: out STD_LOGIC;
ControlReference: in STD_LOGIC_VECTOR(1L

)
)i

end component;

signal myClock_62_Mhz: std_logic := '0';
signal myClock_31_Mhz: std_logic := '0';
signal myClock_15_Mhz: std_logic := '0';
signal myClock_8_Mhz: std_logic := '0';
signal myClock_12_Mhz: std_logic := '0"'
signal myClock_25_Hz: std_logic := '0';
signal myClock_2Hz: std_logic := '0';

signal myControlClock: std_logic := '0O"'

Gate drivers

component GateSet
port (

:: Hardware Connections

é;tes_clock: out STD_LOGIC_VECTOR(4 downto

Gates_ChipSelect: out STD_LOGIC_VECTOR (4
Gates_OutputEnable: out STD_LOGIC_VECTOR (4
Gates_MOSI: out STD_LOGIC_VECTOR (4 downto
Gates_MOSI2: out STD_LOGIC_VECTOR(4 downto
Gates_MISO: in STD_LOGIC_VECTOR (4 downto
Gates_Fault: in STD_LOGIC_VECTOR (4 downto
Gates_Reset: out STD_LOGIC_VECTOR(4 downto

Software Connections

Clock: in STD_LOGIC; —— The
main input clock
Running: in STD_LOGIC; —— The main
running flag (if High the unit is operational)
UnitLevels: in STD_LOGIC_VECTOR(59 downto
0);
UnitStates: in STD_LOGIC_VECTOR(29 downto
0);
Faults: out STD_LOGIC_VECTOR(59 downto 0);
OverTemp: out STD_LOGIC_VECTOR (59 downto 0)
)i
end component;
-— Gate drivers
signal myGate_Reset: std_logic_vector (4 downto 0)

"

,,,,, "
i

signal myGate_SysReset: std_logic_vector (4 downto

signal myGate_OE: std_logic_vector (4 downto 0) :=

data display

signal myGate_SysOE:

"O0000C ".
i

std_logic_vector (4 downto 0)
signal myGate_IGBT: std_logic_vector (119 downto 0)
(others => '0"'); —— IGBTs for the raw

—-signal myGate_Fault: std_logic_vector (35 downto

0) := (others => '0'); -— Faults for the
raw data display

signal myUnitFaults: STD_LOGIC_VECTOR(59 downto 0)
:= (others => '0'");

signal myUnitOverTemp: STD_LOGIC_VECTOR(59 downto
0) := (others => '0');

signal myUnitStatesU: std_logic_vector (/ downto 0)
:= (others => '0"');

signal myUnitStatesV: std_logic_vector (/ downto 0)
:= (others => '0"');

signal myUnitStatesW: std_logic_vector (/ downto 0)
:= (others => '0"');

signal myUnitStatesOut: std_logic_vector (29 downto

:= (others => '0"');

std_logic_vector (59 downto

signal myUnitLevelOut:
:= (others =>

0N

Base control structures

component MainControl Port (

Clock: in std_logic; —-- Main system
clock

Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

converts the data input,

Run: in std_logic; —— If enable, it

if not, output the last data
Done:

out std_logic; —-- High when

the conversion is done

downto

—-- Input data
MethodSelection: in STD_LOGIC_VECTOR (2 downto
—— Method selection

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR (23 downto 0);
ReferenceV: in STD_LOGIC_VECTOR(23 downto 0);
ReferenceW: in STD_LOGIC_VECTOR(23 downto 0);

ReferenceCounterMax in STD_LOGIC_VECTOR (23
0); —— The maximum value for the counters

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR(L43 downto
UnitVotlagesV: in STD_LOGIC_VECTOR(L43 downto
UnitVotlagesW: in STD_LOGIC_VECTOR(L43 downto

—- Current input values

Main software

CurrentOutputU: in STD_LOGIC_VECTOR(1l/ downto
0);

CurrentOutputV: in STD_LOGIC_VECTOR(1l/ downto
0);

CurrentOutputW: in STD_LOGIC_VECTOR(1l/ downto

-— Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(/! downto

—-- Output data

UnitStatesU : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesV : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesW : out STD_LOGIC_VECTOR (/ downto
0);

—-- Output data

UnitStateOut : out STD_LOGIC_VECTOR (29 downto
0); -— States for 8 * 3 units

UnitLevelOut : out STD_LOGIC_VECTOR (59 downto

0) -- Levels for 8 * 3 * 2 legs
)i

end component;

—-- Control parameters

signal myControlReference: std_logic_vector (11
downto 0) := x"OAO"; —— The counter for the
reference clock

signal myUserControlReferenceChange: std_logic :=

K
o

signal myUserControlReference: std_logic_vector (11

downto 0) := x"0AO";
—- signal myDSPControlReference: std_logic_vector (11
downto 0) := x"0AO";

signal myVoltageCoeff_ Inc: std_logic_vector (L

downto 0) := "000000000010000000™; -— = 0.5
signal myVoltageCoeff_ Dec: std_logic_vector (L
downto 0) := "000000000010000000™; -— = 0.5

signal myVoltageSensors_Gain: std_logic_vector (1
downto 0) := "00" & x"014F"; -- The gain for the
voltage sensors

signal myCurrentSensors_Gain: std_logic_vector (1
downto 0) := "00" & x"00 "; —-— The gain for the
current sensors

signal myVoltage_ChargeLevel: std_logic_vector (1
downto 0) := "000000000010000000™; —-- The gain for
the charge complete

signal myModulationRun std_logic := '0';

signal myModulationDone: std_logic := '0';

signal myModulationMethod: std_logic_vector (2
downto 0) := "000";

signal myModulationCounterMax: std_logic_vector (22

downto 0) := (others => '0');

signal myReferenceU std_logic_vector (23 downto 0)
= (others => '0"');

signal myReferenceV std_logic_vector (23 downto 0)
= (others => '0"');

signal myReferenceW std_logic_vector (23 downto 0)
= (others => '0"');

- ADCs

component ADCs
port (
Clock: in STD_LOGIC; —— The ADC
Clock
Enable: in std_logic_vector (!l downto 0);
—— The running flag (If high than the unit is
operational)

—- Hardware interface

ADC_Address: out STD_LOGIC_VECTOR(5 downto
0); -— ADC address lines
ADC_ChipSelect: out STD_LOGIC_VECTOR (L

—— ADC Chip Select

ADC_Clock: out STD_LOGIC_VECTOR(! downto
0); —— ADC Clock (max: 32 MHz)

ADC_Data: in STD_LOGIC_VECTOR(!1 downto 0);
-— ADC Data lines

downto 0);

—-— The ADC data for each channel

-—- ADC 1A

Channel_10_0: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_10_1: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_10_2: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_10_3: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_10_4: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_10_5: out STD_LOGIC_VECTOR(Ll1
downto 0);

-- ADC 1B

Channel_11_0: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_11_1: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_11_2: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_11_3: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_11_4: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_11_5: out STD_LOGIC_VECTOR(Ll1
downto 0);

-— ADC 2A

Channel_20_0: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_20_1: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_20_2: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_20_3: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_20_4: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_20_5: out STD_LOGIC_VECTOR(Ll1
downto 0);

-- ADC 2B

Channel_21_0: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_21_1: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_21_2: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_21_3: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_21_4: out STD_LOGIC_VECTOR(Ll1
downto 0);

Channel_21_5: out STD_LOGIC_VECTOR(Ll1
downto 0);

-— ADC 3A

Channel_30_0: out STD_LOGIC_VECTOR(Ll1
downto 0);

10

Modular multi-level inverter

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

Channel_30_1:
Channel_30_2:
Channel_30_3:
Channel_30_4:
Channel_30_5:

—-— ADC 3B
Channel_31_0:

Channel_31_1:
Channel_31_2:
Channel_31_3:
Channel_31_4:
Channel_31_5:

—-— ADC 4A
Channel_40_0:

Channel_40_1:
Channel_40_2:
Channel_40_3:
Channel_40_4:
Channel_40_5:

-— ADC 4B
Channel_41_0:

Channel_41_1:
Channel_41_2:
Channel_41_3:
Channel_41_4:
Channel_41_5:

—— ADC 5A
Channel_50_0:

Channel_50_1:
Channel_50_2:
Channel_50_3:
Channel_50_4:
Channel_50_5:

—-— ADC 5B
Channel_51_0:

Channel_51_1:
Channel_51_2:
Channel_51_3:
Channel_51_4:
Channel_51_5:

—— ADC 6A
Channel_60_0:

Channel_60_1:

Channel_60_2:

Channel_60_3:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11
STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

STD_LOGIC_VECTOR (11

downto

downto

downto

downto

downto

downto

downto

downto

Channel_60_4: out STD_LOGIC_VECTOR(Ll1

Channel_60_5: out STD_LOGIC_VECTOR(Ll1

-— ADC 6B

Channel_61_0: out STD_LOGIC_VECTOR(Ll1

Channel_61_1: out STD_LOGIC_VECTOR(Ll1

Channel_61_2: out STD_LOGIC_VECTOR(Ll1

Channel_61_3: out STD_LOGIC_VECTOR(Ll1

Channel_61_4: out STD_LOGIC_VECTOR(Ll1

Channel_61_5: out STD_LOGIC_VECTOR(Ll1

-- Voltage

Voltage_UO:
Voltage_Ul:
Voltage_U2:
Voltage_U3:
Voltage_U4:
Voltage_U5:
Voltage_U6:
Voltage_U7:

Voltage_U8:

Voltage_VO:
Voltage_V1:
Voltage_V2:
Voltage_V3:
Voltage_V4:
Voltage_V5:
Voltage_V6:
Voltage_V7:

Voltage_V8:

Voltage_WO:
Voltage_W1:
Voltage_W2:
Voltage_W3:
Voltage_W4:
Voltage_W5:
Voltage_W6:
Voltage_W7:

Voltage_W8:

Voltage_R:

Voltage_S:

section

out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1

out STD_LOGIC_VECTOR (1

out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1

out STD_LOGIC_VECTOR (!

out STD_LOGIC_VECTOR (!
out STD_LOGIC_VECTOR (!
out STD_LOGIC_VECTOR (!
out STD_LOGIC_VECTOR (!
out STD_LOGIC_VECTOR (!
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (1
out STD_LOGIC_VECTOR (!

out STD_LOGIC_VECTOR (!

out STD_LOGIC_VECTOR (!

out STD_LOGIC_VECTOR (!

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

Main software

Voltage_T: out STD_LOGIC_VECTOR(l/ downto signal myCurrent_Uhi: STD_LOGIC_VECTOR (L7 downto 0)
0); := (others => '0');
signal myCurrent_Ulo: STD_LOGIC_VECTOR(L7/ downto 0)
- := (others => '0"');
—— Current section signal myCurrent_Vhi: STD_LOGIC_VECTOR(L7/ downto 0)
- := (others => '0');
signal myCurrent_Vlo: STD_LOGIC_VECTOR(L/ downto 0)
Current_R: out STD_LOGIC_VECTOR(17/ downto := (others => '0"');
0); signal myCurrent_Whi: STD_LOGIC_VECTOR(L/ downto 0)
Current_S: out STD_LOGIC_VECTOR(17/ downto := (others => '0');
0); signal myCurrent_Wlo: STD_LOGIC_VECTOR(L7/ downto 0)
Current_T: out STD_LOGIC_VECTOR(17/ downto := (others => '0"');
0); -
—— Delay view
Current_Uhi: out STD_LOGIC_VECTOR(!l/ downto -
0); signal myVoltages_Delay: std_logic_vector (28
Current_Ulo: out STD_LOGIC_VECTOR(!l/ downto downto 0) := (others => '0');
0);
Current_Vhi: out STD_LOGIC_VECTOR(1l/ downto
0);
Current_Vlo: out STD_LOGIC_VECTOR(!l/ downto
0);
Current_Whi: out STD_LOGIC_VECTOR(l7/ downto =
O T e
Current_Wlo: out STD_LOGIC_VECTOR(!l/ downto -
0); -
—-- Gain section - Data display
Voltage_Gain: in STD_LOGIC_VECTOR(1/ downto -
0); -
Current_Gain: in STD_LOGIC_VECTOR(1l/ downto -
0
); component DataDisplay port (
end component; Clock: in STD_LOGIC;
—-— ADC Command in STD_LOGIC_VECTOR(283 downto
_— 0);
signal myADC_Enable: std_logic_vector (!l downto 0)
Ho B -— System states
- SystemState: in STD_LOGIC_VECTOR (! downto
-— ADC Values 0);
- SystemRunning: in STD_LOGIC;
signal myADCl: std_logic_vector (142 downto 0) := SystemOutput: in STD_LOGIC;
x"000000000000000000000000000O0O0O0O0C0O00O00O™
signal myADC2: std_logic_vector (142 downto 0) := —— Unit handler
x"000000000000000000000000000O0O0O0O0C0O00O00O™ IGBTs: in STD_LOGIC_VECTOR (63 downto 0);
signal myADC3: std_logic_vector (143 downto 0) := OverTemp: in STD_LOGIC_VECTOR(15 downto 0);
x"000000000000000000000000000O0O0O0O0C0O00O00O™ OverVolt: in STD_LOGIC_VECTOR(15 downto 0);
signal myADC4: std_logic_vector (142 downto 0) := OverCurrent: in STD_LOGIC_VECTOR(15 downto
x"000000000000000000000000000000000C000O™ 0);
signal myADC5: std_logic_vector (142 downto 0) := FaultA: in STD_LOGIC_VECTOR(15 downto 0);
x"000000000000000000000000O0O0O0O0O0O0O0C0O00O0O0O™ FaultB: in STD_LOGIC_VECTOR(15 downto 0);
signal myADC6: std_logic_vector (142 downto 0) := Active: in STD_LOGIC_VECTOR(!5 downto 0);
x"0000000000000000000000000O0O0O0O0O0O0C0O00O0O0O™
—— —— Measurements
-- Voltage section Voltages: in std_logic_vector (287 downto
_— 0);
signal myVoltagesU: std_logic_vector (143 downto 0) VDC: in std_logic_vector (17 downto 0);
:= (others => '0'); IDC: in std_logic_vector (17 downto 0);
signal myVoltagesV: std_logic_vector (143 downto 0) Thi: in std_logic_vector (17 downto 0);
:= (others => '0"'); Ilo: in std_logic_vector (17 downto 0);
signal myVoltagesW: std_logic_vector (143 downto 0) Tout: in std_logic_vector (17 downto 0);
:= (others => '0'); Fref: in std_logic_vector (17 downto 0);
Fout: in std_logic_vector (17 downto 0);
signal myVoltage_R: STD_LOGIC_VECTOR(l"7/ downto 0)
:= (others => '0'); -- System constants
signal myVoltage_S: STD_LOGIC_VECTOR(L/ downto 0) VoltageGain: in std_logic_vector (1 7/ downto
:= (others => '0"'); 0);
signal myVoltage_T: STD_LOGIC_VECTOR(L"/ downto 0) CurrentGain: in std_logic_vector (17 downto
:= (others => '0"'); 0);
—— VoltageCharge: in std_logic_vector (1
- Current section downto 0);
—— VoltageCoeff_ Inc: in std_logic_vector (1
signal myCurrent_R: STD_LOGIC_VECTOR(L7/ downto 0) downto 0);
:= (others => '0"'); VoltageCoeff_ Dec: in std_logic_vector (1
signal myCurrent_S: STD_LOGIC_VECTOR(L"/ downto 0) downto 0);
:= (others => '0"'); ControlFregRef: in std_logic_vector (11
signal myCurrent_T: STD_LOGIC_VECTOR(l/ downto 0) downto 0);

:= (others => '0');

Modular multi-level inverter

connection
std_logic_vector (5 downto
in std_logic_vector (

—- Hardware
Comp_OE: in
Comp_GFault:

0);
downto

Comp_Reset: in std_logic_vector (5 downto

Gate_Reset: in std_logic_vector (2 downto

Gate_GFault: in std_logic_vector (2 downto

Gate_OE: in std_logic_vector (2 downto

0);

ADC_Enable: in std_logic_vector (! downto

Gate_IGBT: in std_logic_vector (/1 downto

Gate_Fault: in std_logic_vector (35 downto

Gate_OvTemp: in std_logic_vector (35 downto

Comparator_Under: in std_logic_vector (/1

downto 0);

Comparator_Over: in std_logic_vector (71
downto 0);

—- Contactors

K_ChargeIn: in STD_LOGIC;

K_ChargeOut: in STD_LOGIC;

K_SourceIn: in STD_LOGIC;

K_SourceOut: in STD_LOGIC;

K_LoadRezIn: in STD_LOGIC;

K_LoadRezOut: in STD_LOGIC;

K_LoadTransIn: in STD_LOGIC;

K_LoadTransOut: in STD_LOGIC;

-— ADCs

ADCl: in std_logic_vector downto 0);

ADC2: in std_logic_vector downto 0);

ADC3: in std_logic_vector downto 0);

ADC4: in std_logic_vector downto 0);

ADC5: in std_logic_vector downto 0);

ADC6: in std_logic_vector downto 0);

—— Screen writer

Data_Addr out std_logic_vector (12 downto
0);

Data_Type out std_logic_vector (¢ downto
0); —— The data type (see SCreenWriter.vhd
header)

Data_Bool
Data_Number:

out std_logic;
out std_logic_vector (47 downto

0);

Data_Ack in std_logic;
—-- Master: Acknowledge a data write
Data_DataReady: out std_logic;

—-- Slave: specify that data is ready

Data_Ready in std_logic
-— Master: Signals when data can be placed in the
buffer

)i

end component;

User input

component UserInput Port (
Clock in std_logic;

—- Hardware connections

MISO out
MOSI in
PS2Clock

ChipSelect

STD_LOGIC;

STD_LOGIC;

in STD_LOGIC;
in STD_LOGIC;

Software

0y ;

Key: out std_logic_vector(/ downto

Ascii: out std_logic_vector(/ downto 0);
AsciiDone: out std_logic;
InputData: out std_logic

)i

end component;

signal myMISO: std_logic := '0';
—- User input

signal myKey: std_logic_vector (/ downto 0) :=

"00000000";
i

signal myAscii: std_logic_vector (/ downto 0) :=

"00000000";
i

(others =>

"

signal myAsciiDone:
signal myInputData
signal myCommand:
')
signal myCommandSize:

000000":
i

std_logic := '0';
std_logic := '0';
std_logic_vector (322 downto 0)

std_logic_vector (5 downto 0)

User handler

component UserHandler Port (
Clock in STD_LOGIC;

—- Keyboard input

Key_ScanCodeId: in STD_LOGIC_VECTOR(/ downto
Key_Asci: in STD_LOGIC_VECTOR(/ downto 0);
Key_AsciiDone: in std_logic;

Key_InputData: in STD_LOGIC;

—— Output system parameters

—-— Video output

ScreenId: out STD_LOGIC_VECTOR(l downto 0);
ScrollPos: out STD_LOGIC_VECTOR(/ downto 0);

—-— System states

SystemState: out STD_LOGIC_VECTOR(! downto
SystemRunning: out STD_LOGIC;
SystemOutput: out STD_LOGIC;

SystemReset: out STD_LOGIC;

0);

—— Command output
Command out STD_LOGIC_VECTOR(283
CommandSize: out std_logic_vector(

downto
downto

0);
0);

Main software

signal myScreenlId: std_logic_vector(l downto 0) :=
VoltageCoeff_ Inc: out std_logic_vector (L "oo";
downto 0); signal myScrollPos: std_logic_vector(/ downto 0) :=
VoltageCoeff_ Dec: out std_logic_vector (L "00000000";
downto 0); __
-— Screen variables
ControlReference: out std_logic_vector (L1 —
downto 0); signal CursorX: STD_LOGIC_VECTOR(6 downto 0) :=

ControlReferenceIn : in std_logic_vector (11 "000)o";
downto 0); signal CursorY: STD_LOGIC_VECTOR(6 downto 0) :=
ControlReferenceChange : out std_logic; "0000000";

VoltageGain: out std_logic_vector (17 downto 0);
CurrentGain: out std_logic_vector(l/ downto 0);
VoltageCharge: out std_logic_vector(l7 downto = = = ————mmmmmm

)i -

end component; __

- State machine variables

- -—- type TStateType is (State_DoControl,

- State_DoUnitConversion, State_DoMapping,

- VGA System State_DoTransmit) ;

- —-- signal myCurrentState, myNextState : TStateType;

component VGA _
port (_

—-- Hardware interface -

sys_clock : in STD_LOGIC; - Main system variables
vga_clock : in STD_LOGIC; —
ClockScreenWritter : in STD_LOGIC; —
reset: in STD_LOGIC; —

Color_R : out STD_LOGIC_VECTOR (3 downto
0); signal reset: std_logic := '0';
Color_G : out STD_LOGIC_VECTOR (3 downto

Color_B : out STD_LOGIC_VECTOR (3 downto

0); signal myData_DataReady: std_logic := '0';
Vsync : out STD_LOGIC; —— Slave: specify that data is ready
Hsync : out STD_LOGIC; signal myData_Addr : std_logic_vector (12 downto 0)
=)000000000000™,
ScreenId: in STD_LOGIC_VECTOR(! downto 0); signal myData_Type : std_logic_vector (6 downto 0)
ScrollPos: in STD_LOGIC_VECTOR(/ downto 0); := "0000000"; —-- The data type (see
SCreenWriter.vhd header)
signal myData_Bool : std_logic := '0';
CursorX: in STD_LOGIC_VECTOR (6 downto 0); signal myData_Ack : std_logic := '0';
CursorY: in STD_LOGIC_VECTOR (6 downto 0); signal myData_Ready : std_logic := '0';
signal myData_Number: std_logic_vector (47 downto 0)
— := (others => '0');

—- Screen writer

Data_Addr : in std_logic_vector (12 downto -
0); -

Data_Type : in std_logic_vector (5t downto —— System parameters
0); —-- The data type (see SCreenWriter.vhd -
header) -
Data_Bool : in std_logic; signal mySystemState: std_logic_vector (!l downto 0)
Data_Number: in std_logic_vector (47 downto = "00";
0); signal mySystemRunning: std_logic := '0';
signal mySystemOutput: std_logic := '0';
Data_Ack : out std_logic; signal mySystemReset: std_logic := '0';
—-- Master: Acknowledge a data write signal mySystemFault: std_logic := '0';
Data_DataReady: in std_logic; signal mySystemChargeComplete: std_logic := '0';
—-- Slave: specify that data is ready
Data_Ready : out std_logic signal myFref: std_logic_vector (17 downto 0) :=
—-- Master: Signals when data can be placed in the "000000000000000000";
buffer signal myFout: std_logic_vector (17 downto 0) :=

)- "000000000000000000™
c . "gooooooooo00000000 ;

end component;

Modular multi-level inverter

signal myLedsOutput: std_logic_vector(/ downto
:= (others => '0'");

begin

- System parameters

reset <= not not_reset;

— Create a system clock object to
generate various clocks

0

GateSet_Block: GateSet port map(

—- Hardware Connections

Gates_Clock => Gates_Clock,

——— Gates_ChipSelect => Gates_ChipSelect,

Gates_OutputEnable => myGate_OE,
Gates_MOSI => Gates_MOSI,
Gates_MOSI2 => Gates_MOSIZ2,
Gates_MISO => Gates_MISO,
Gates_Fault => myGate_GFault,
Gates_Reset => myGate_Reset,

—-- Software Connections

Clock => myClock_15_Mhz,
Running => mySystemRunning,

——— UnitLevels => myUnitLevelOut,

UnitStates => myUnitStatesOut,

- UnitLevels (59 downto 8) => myUnitLevelOut (59
downto 8), --
"00",
- UnitLevels (7 downto 0) => mySwitches,

— UnitStates (29 downto 4) => myUnitStatesOut (29
downto 4), —-- "00000000000000000000000000",

— UnitStates (3 downto 0) => myButtons,

Faults => myUnitFaults,
OverTemp => myUnitOverTemp
)i

SystemClocks: Clocks port map(
Clockl25 => sys_clock,
Clock25 => vga_clock,
Clock62 => myClock_62_Mhz,
Clock31l => myClock_31_Mhz,
Clockl5 => myClock_15_Mhz,
Clock8 => myClock_8_Mhz,
Clockl2 => myClock_12_Mhz,
Clock25Hz => myClock_25_Hz,
Clock2Hz => myClock_2Hz,
ControlClock => myControlClock,
ControlReference => myControlReference

- Gates

- VGA System: Create a VGA Unit in
order to create an VGA output

VGA_System: VGA port map (
sys_clock => sys_clock,
vga_clock => vga_clock,
ClockScreenWritter => myClock_8_Mhz,
reset => reset,

Color_R => Video_Red,

——— Color_G => Video_Green,

Color_B => Video_Blue,
Vsync => Video_Vsync,
Hsync => Video_Hsync,

ScreenId => myScreenld, -- "00", -- myScreenId,
ScrollPos => myScrollPos,

CursorX => CursorX,
CursorY => CursorY,

—-- Screen writer

——— Data_Addr => myData_Addr,

Data_Type => myData_Type,
Data_Bool => myData_Bool,

Main software

Data_Number => myData_Number, K_SourceIn => '0', —--myKSourceln,
K_SourceOut => '0', —--myKSourceOut,
Data_Ack => myData_Ack, K_LoadRezIn => '0', —--myKLoadRezIn,
Data_DataReady => myData_DataReady, K_LoadRezOut => '0', --myKLoadRezOut,
Data_Ready => myData_Ready K_LoadTransIn => '0', --myKLoadTransIn,
), K_LoadTransOut => '0', —--myKLoadTransOut,
CursorX <= "0001010" + myCommandSize;
CursorY <= "0011100"; —— ADCs

ADC1 => myADCI1,

ADC2 => myADC2,

ADC3 => myADC3,

ADC4 => myADC4,

777 ADC5 => myADCS5,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ADC6 => myADC6,

- Voltages => (others => '0'), -- myVoltages,
- VDC => (others => '0'), —--myVDC,
- IDC => (others => '0'), —--myIDC,
— Ihi => (others => '0'), —--myIhi,
- Ilo => (others => '0'), —--myIlo,
- Display Unit is used to display the Iout => (others => '0'), --myIout,
system parameters on a VGA screen Fref => (others => '0'), —--myFref,
- Fout => (others => '0'), --myFout,

- Data_Addr => myData_Addr,

- Data_Type => myData_Type,

- Data_Bool => myData_Bool,

——— Data_Number => myData_Number,
Data_Ack => myData_Ack,
Data_DataReady => myData_DataReady,

Data_Display: DataDisplay port map (Data_Ready => myData_Ready

Clock => myClock_15_Mhz,),

Command => myCommand,

SystemState => mySystemState,
SystemRunning => mySystemRunning,
SystemOutput => mySystemOutput,
—-—-SystemReset => mySystemReset,

VoltageGain => myVoltageSensors_Gain, —
CurrentGain => myCurrentSensors_Gain, —
VoltageCharge => myVoltage_Chargelevel, —

VoltageCoeff_Inc => (others => '0'), —— -
myVoltageCoeff_Inc, —
VoltageCoeff_Dec => (others => '0'), —— - ADCs

myVoltageCoeff_Dec, —
ControlFregRef => myControlReference, -

IGBTs => (others => '0'), --myIGBTs, -
OverTemp => (others => '0'), --myOverTemp, -
OverVolt => (others => '0'), --myOverVolt, = -
OverCurrent => (others => '0'), -- =
myOverCurrent,
FaultA => (others => '0'), --myFaultA,
FaultB => (others => '0'), --myFaultB, ADC_Block: ADCs port map (
Active => (others => '0'), --myActive, Clock => myClock_15_Mhz, —
The ADC Clock (max 32 MHz)
—-—- Hardware data Enable => myADC_Enable,
Comp_OE => (others => '0'), --myComp_OE,
Comp_GFault => (others => '0'), —— -
myComp_GFault, —-- Hardware interface
Comp_Reset => (others => '0'), —- -
myComp_SysReset, ADC_Address => ADC_Address, -
ADC address lines
Gate_Reset => myGate_SysReset (2 downto 0), ADC_ChipSelect => ADC_ChipSelect, —
Gate_GFault => myGate_GFault (2 downto 0), ADC Chip Select
Gate_OE => myGate_SysOE (2 downto 0), ADC_Clock => ADC_Clock,
—— ADC Clock (max: 32 MHz)
ADC_Enable => myADC_Enable, ADC_Data => ADC_Data,

—-— ADC Data lines
Gate_IGBT => myGate_IGBT (/1 downto 0), —-

myIGBTs, —-- —-- The ADC data for each channel
Gate_Fault => myUnitFaults/(downto 0), —-— ADC 1A
Gate_OvTemp => myUnitOverTemp (downto 0), Channel_10_0 => myADC1l(11 downto 1),
Channel_10_1 => myADCl(23 downto 12), Channel_10_2 =>
Comparator_Under => (others => '0'), —- myADCL (downto 24),
myComp_Under, Channel 10_3 => myADCl(4/ downto 30),
Comparator_Over => (others => '0'), —— Channel_10_4 => myADC1 () downto 48),
myComp_Over, Channel 10_5 => myADCl(/1 downto ©0),
—-— ADC 1B
K_ChargeIn => '0', —--myKChargeln, Channel_11_0 => myADCl(83 downto 72),

K_ChargeOut => '0', --myKChargeOut, Channel_11_1 => myADCl(95 downto 84),

- Modular multi-level inverter

Channel_11_2 => myADC1 (107 downto 90),

Channel_11_3 => myADCl1 (119 downto 108), Voltage_V1 => myVoltagesV(l/ downto 0),
Channel_11_4 => myADC1l (131 downto 120), Voltage_V2 => myVoltagesV(downto 18),

Channel_11_5 => myADC1l (143 downto 132), Voltage_V3 => myVoltagesV(downto 36),
—-— ADC 2A Voltage_V4 => myVoltagesV(/l downto 54),
Channel_20_0 => myADC2(11 downto 1), Voltage_V5 => myVoltagesV (89 downto 7/2),

Channel_20_1 => myADC2(23 downto 12), Voltage_V6 => myVoltagesV(.0/ downto 90),
Channel_20_2 => myADC2 (downto 24), Voltage_V7 => myVoltagesV (125 downto 108),

Channel_20_3 => myADC2(47 downto 320), Voltage_V8 => myVoltagesV (143 downto 120),
Channel_20_4 => myADC2 () downto 48),

Channel_20_5 => myADC2(/1 downto 60), Voltage_Wl => myVoltagesW(!/ downto 0),
-—- ADC 2B Voltage_W2 => myVoltagesW(downto 18),
Channel_21_0 => myADC2(83 downto 72), Voltage_W3 => myVoltagesW(downto 36),

Channel_21_1 => myADC2(95 downto ©4), Voltage_W4 => myVoltagesW(/l downto 54),
Channel_21_2 => myADC2 (107 downto 90), Voltage_W5 => myVoltagesW (89 downto 7/2),

Channel_21_3 => myADC2 (119 downto 108), Voltage_W6 => myVoltagesW(.!0/ downto 90),
Channel_21_4 => myADC2 (131 downto 120), Voltage_W7 => myVoltagesW(!25 downto 108),

Channel_21_5 => myADC2 (143 downto 132), Voltage_W8 => myVoltagesW(!43 downto 120),
—-— ADC 3A
Channel_30_0 => myADC3(11 downto 1), Voltage_R => myVoltage_R,

Channel_30_1 => myADC3(23 downto 12), Voltage_S => myVoltage_S,

Channel_30_2 => myADC3 (downto 24), Voltage_T => myVoltage_T,

Channel_30_3 => myADC3(47 downto 320),

Channel_30_4 => myADC3 () downto 48),

Channel_30_5 => myADC3(/1 downto 60), -

-—- ADC 3B —-— Current section
Channel_31_0 => myADC3(83 downto 72), -

Channel_31_1 => myADC3(95 downto ©4),

Channel_31_2 => myADC3 (107 downto 90), Current_R => myCurrent_R,

Channel_31_3 => myADC3 (119 downto 108), Current_S => myCurrent_S,
Channel_31_4 => myADC3 (131 downto 120), Current_T => myCurrent_T,

Channel_31_5 => myADC3 (143 downto 132),

—-— ADC 4A Current_Uhi => myCurrent_Uhi,
Channel_40_0 => myADC4(11 downto 1), Current_Ulo => myCurrent_Ulo,

Channel_40_1 => myADC4(23 downto 12), Current_Vhi => myCurrent_Vhi,
Channel_40_2 => myADC4 (downto 24), Current_Vlo => myCurrent_Vlo,

Channel_40_3 => myADC4(47 downto 320), Current_Whi => myCurrent_Whi,
Channel_40_4 => myADC4 () downto 48), Current_Wlo => myCurrent_Wlo,

Channel_40_5 => myADC4(/1 downto 60),

—— ADC 4B -
Channel_41_0 => myADC4(23 downto 7/2), —— gAIN SECTION

Channel_41_1 => myADC4(95 downto ©4), -

Channel_41_2 => myADC4 (107 downto 90),

Channel_41_3 => myADC4 (119 downto 1083), Voltage_Gain => myVoltageSensors_Gain,
Channel_41_4 => myADC4 (131 downto 120), Current_Gain => myCurrentSensors_Gain

Channel_41_5 => myADC4 (143 downto 132),),

—— ADC 5A

Channel_50_0 => myADC5(11 downto 1),
Channel_50_1 => myADC5(23 downto 12),

Channel_50_2 => myADC5 (downto 24),

Channel_50_3 => myADC5(47 downto 3:0),

Channel_50_4 => myADC5(59 downto 483), -

Channel_50_5 => myADC5(/1 downto 60), -
—-— ADC 5B -
Channel_51_0 => myADC5(83 downto 72), -

Channel_51_1 => myADC5(95 downto ©4), -
Channel_51_2 => myADC5(107 downto 90), -

Channel_51_3 => myADC5(119 downto 108), — User handler
Channel_51_4 => myADC5(131 downto 120), -

Channel_51_5 => myADC5(143 downto 132), ——

—— ADC 6A -
Channel_60_0 => myADC6(11 downto 1), —

Channel_60_1 => myADC6(23 downto 12), ——

Channel 60_2 => myADC6 (downto 24),
Channel 60_3 => myADC6(47 downto 36), = ———cm—mmm—————

Channel_60_4 => myADC6(59 downto 483), User_Handler: UserHandler port map (

Channel_60_5 => myADC6(/1 downto 60), Clock => myClock_31_Mhz,

—-— ADC 6B
Channel_61_0 => myADC6(23 downto 7/2), Key_ScanCodeId => myKey,

Channel_61_1 => myADC6(95 downto ©&4), Key_Asci => myAscii,

Channel_61_2 => myADC6 (107 downto), Key_AsciiDone => myAsciiDone,
Channel_61_3 => myADC6 (119 downto 108), Key_InputData => myInputData,

Channel_61_4 => myADC6 (131 downto 120),

Channel_61_5 => myADC6 (143 downto 132), ScreenId => myScreenld,
ScrollPos => myScrollPos,

Voltage_Ul => myVoltagesU(l/ downto 0), SystemState => mySystemState,
Voltage_U2 => myVoltagesU(downto 189), SystemRunning => mySystemRunning,
Voltage_U3 => myVoltagesU(downto 36), SystemOutput => mySystemOutput,
Voltage_U4 => myVoltagesU(/l downto 54), SystemReset => mySystemReset,
Voltage_U5 => myVoltagesU(89 downto 7/2),

Voltage_U6 => myVoltagesU(.l0/ downto 90), Command => myCommand,

Voltage_U7 => myVoltagesU(.!25 downto 108), CommandSize => myCommandSize,

Voltage_U8 => myVoltagesU(!43 downto 120),

Main software

VoltageCoeff_Inc => myVoltageCoeff_Inc,
VoltageCoeff_Dec => myVoltageCoeff_Dec,

ControlReference => myUserControlReference,

ControlReferenceIn => myControlReference,

ControlReferenceChange =>
myUserControlReferenceChange,

VoltageGain => myVoltageSensors_Gain,

CurrentGain => myCurrentSensors_Gain,
VoltageCharge => myVoltage_ChargelLevel

— Create an interface for user input

User_Input: UserInput port map (
Clock => myClock_15_Mhz,

—- Hardware connections

MISO => myMISO,

MOSI => PS2_MOSI,

PS2Clock => PS2_Clock,
ChipSelect => PS2_ChipSelect,

-- Software

Key => myKey,
Ascii => myAscii,
AsciiDone => myAsciiDone,

InputData => myInputData

- Control

Control: MainControl Port map (
Clock => myClock_62_Mhz, —-— Main
system clock
Enable => mySystemRunning, -
Enable the conversion (if disable, set to 0 all
outputs)

Run => myModulationRun, -- If
enable, it converts the data input, if not, output the
last data

Done => myModulationDone, —-- High
when the conversion is done

—— Input data

MethodSelection => myModulationMethod, -—-
Method selection

—— Input data

ReferenceU => myReferenceU,
ReferenceV => myReferenceV,
ReferenceW => myReferenceW,

ReferenceCounterMax => myModulationCounterMax,
—— The maximum value for the counters

—— Measured values

UnitVotlagesU => myVoltagesU,
UnitVotlagesV => myVoltagesV,
UnitVotlagesW => myVoltagesW,

—— Current input values

CurrentOutputU => datCurrentU(l
CurrentOutputV => datCurrentV (1
CurrentOutputW => datCurrentW(l

downto 0),
downto 0),
downto 0),

—-— Voltage level definition

VoltageLevels(l/ downto 0) => datVoltagelO,
VoltageLevels (downto 18) => datVoltagell,
VoltageLevels (downto 36) => datVoltagel2,
VoltageLevels (/1 downto 54) => datVoltagel3,

—— Output data

UnitStatesU => myUnitStatesU,
UnitStatesV => myUnitStatesV,
UnitStatesW => myUnitStatesW,

—— Output data
UnitStateOut => myUnitStatesOut, —
States for 8 * 3 units
UnitLevelOut => myUnitLevelOut -
Levels for 8 * 3 * 2 legs
)i

- Control the main reference for the clock
of the control algorithm

P_ControlMainReference: process
(DspSetReferenceClock, datReference,
myUserControlReferenceChange, myUserControlReference)

begin
if (DspSetReferenceClock = '0') and
(myUserControlReferenceChange = '1') then

myControlReference <=
myUserControlReference;

elsif (DspSetReferenceClock = '1') and
(myUserControlReferenceChange = '0') then
myControlReference <= datReference;
else
null;
end if;

end process P_ControlMainReference;

18

Modular multi-level inverter

- DSP Signals

P_DSP_Process: process (DSP_Clock, DSP_CS,

DSP_Input, DSP_Addr)

variable myTempData: std_logic_vector (15 downto 0);

variable myTempDataOut: std_logic_vector (15 downto
0);
begin
if (DSP_Cs = '0') then
if (DSP_Clock'event and DSP_Clock = '1"'")
then
if (DSP_RD = '0O') then
if (DSP_Addr(0) = '0') then
case (DSP_Addr (Y downto 1)) is
when "000000000" =>
DSP_Output <= datControlU(l5 downto

) myTempDataOut
& datControlU(24 downto ;

when
DSP_Output <= datControlV(l5 downto
& datControlV (24 downto

,,,,,,, "

J—

= "000000O0"™

when "000000010"™ =>
DSP_Output <= datControlW(l5 downto 0 myTempDataOut
= "0000000" & datControlW (24 downto ;

when "000000011" =>
DSP_Output <= datInvVDC(l5 downto 0); myTempDataOut :=

WA "

& datInvVDC (24 downto 16);

when "000000100"™ =>

DSP_Output <= datVoltageR(15 downto 0); myTempDataOut
1= "00000001001000" & datVoltageR(1l/ downto 10);
when "000000101" =>

DSP_Output datVoltageS (15 downto 0); myTempDataOut
= "00000001001000" & datVoltageS(l/ downto 16);
when "000000110" =>

DSP_Output <= datVoltageT(l5 downto 0); myTempDataOut
= "00000001001000" & datVoltageT(l/ downto 16);
when "000000111" =>

datVoltageDC (15 downto 0); myTempDataOut

JO000001001000" & datVoltageDC(l/ downto 10);

when "000001000"™ =>

datVoltageU(l5 downto 0); myTempDataOut
JO000001001000" & datVoltageU(l/ downto 10);
when "000001001" =>

datVoltageV(l5 downto 0); myTempDataOut
J0000001001000" & datVoltageV(l/ downto 16);
when "000001010" =>

datVoltageW(A downto 0); myTempDataOut

downto 16);

when "000001011" =>
DSP_Output <= myVoltagesU(15 downto 0);
myTempDataOut := "00000001001000" & myVoltagesU(1
downto 16);

when " 00" =>
DSP_Output <= myVoltagesU(downto |
myTempDataOut := "00000001001000" & myVoltagesU(
downto 34);

when)" =>
DSP_Output <= myVoltagesU(51 downto
myTempDataOut := "00000001001000" & myVoltagesU(
downto 2);

when "000001110" =>
DSP_Output <= myVoltagesU(©9 downto 4);
myTempDataOut := "00000001001000" & myVoltagesU(/1
downto 0);

when "000001111" =>
DSP_Output <= myVoltagesU(downto 2);

myTempDataOut
downto 883);

DSP_Output <=
myTempDataOut
downto 106);

DSP_Output <=
myTempDataOut
downto 124);

DSP_Output <=
myTempDataOut
downto 142);

DSP_Output <=
myTempDataOut
downto 16);

DSP_Output <=
myTempDataOut
downto 34) ;

DSP_Output <=
myTempDataOut
downto 2);

DSP_Output <=
myTempDataOut
downto 0);

DSP_Output <=
myTempDataOut
downto £883);

DSP_Output <=
myTempDataOut
downto 106);

DSP_Output <=
myTempDataOut
downto 124);

DSP_Output <=
myTempDataOut
downto 142);

DSP_Output <=
myTempDataOut
downto 16);

DSP_Output <=
myTempDataOut
downto 34) ;

DSP_Output <=
myTempDataOut
downto 2);

DSP_Output <=
myTempDataOut
downto 0);

DSP_Output <=
myTempDataOut
downto 883);

DSP_Output <=
myTempDataOut
downto 106);

DSP_Output <=
myTempDataOut
downto 124);

DSP_Output <=
myTempDataOut
downto 142);

:= "00000001001000" & myVoltagesU(
when "0000

myVoltagesU (105 downto ©

:= "00000001001000" & myVoltagesU(A
when "0000

myVoltagesU(12> downto 10

:= "00000001001000" & myVoltagesU(2
when "000010010" =>

myVoltagesU(1l41 downto 120);

J—

when "00001
myVoltagesV(15 downto

,,,,,,,, 001000" & myVoltagesV(1

=

when "000010100" =>

downto 1€

myVoltagesV (

=

= "00000001001000" & myVoltagesV(
when "000010110" =>

myVoltagesV (/) downto 4);

= "00000001001000" & myVoltagesV(
when "000010111" =>

myVoltagesV (downto 2);

= "00000001001000" & myVoltagesV(
when "000011000" =>

myVoltagesV (105 downto

= "00000001001000" & myVoltagesV(A
when "0000)1 =>

myVoltagesV(Az, downto |

[

when "000011010" =>
myVoltagesV(A,A downto 126);

[

1000" & myVoltagesU(142

when "00001 ro=>

myVoltagesW(downto

:= "00000001001000" & myVoltagesW(1
when "0000 o =>

myVoltagesW(downto 18);

:= "00000001001000" & myVoltagesW(
when "0000 i o=>

myVoltagesW(51 downto

:= "00000001001000" & myVoltagesW(
when "000011110" =>

myVoltagesW() downto 4);

:= "00000001001000" & myVoltagesW(
when "000011111" =>

myVoltagesW(downto 2);

:= "00000001001000" & myVoltagesW(
when "000

myVoltagesW(Ll05 downto ©

:= "00000001001000" & myVoltagesW(A
when "000 o=>

myVoltagesW(l23 downto 10

:= "00000001001000" & myVoltagesW(2
when "000100010" =>

myVoltagesW (141 downto 120);

:= "00000001001000" & myVoltagesW(L143

Main software

when "0001000L1" =>
DSP_Output <= datCurrentR(15 downto 0); myTempDataOut
:= "0000000" & datCurrentR(24 downto 10);
when "000100100" =>
DSP_Output <= datCurrentS(l5 downto 0); myTempDataOut
:= "0000000" & datCurrentS (24 downto ;
when "0001
DSP_Output <= datCurrentT(l5 downto 0
:= "0000000" & datCurrentT (24 downto 10);
when "000100110" =>
downto 0); myTempDataOut
0);

01" =>
; myTempDataOut

DSP_Output <= datCurrentDC (L

:= "0000000" & datCurrentDC(24 downto

when "0001
DSP_Output <= datCurrentU(l5 downto 0
:= "0000000" & datCurrentU(24 downto 1

when "000101000" =>
DSP_Output <= datCurrentV(l5 downto 0); myTempDataOut
:= "0000000" & datCurrentV (24 downto 10);

when "0001 01 =>
DSP_Output <= datCurrentW(l5 downto 0); myTempDataOut
:= "0000000" & datCurrentW(24 downto 16);

; myTempDataOut
6);

when "000101010" =>
DSP_Output <= datCurrentUhi(l5 downto 0 myTempDataOut
:= "0000000" & datCurrentUhi (24 downto 16);

when "000101011" =>
DSP_Output <= datCurrentUlo(l5 downto myTempDataOut
:= "0000000" & datCurrentUlo (24 downto 16);

when "000101100" =>
DSP_Output <= datCurrentVhi(l5 downto 0 myTempDataOut
:= "0000000" & datCurrentVhi (24 downto 16);

when "0001C 01" =>
DSP_Output <= datCurrentVlo(l5 downto

yTempDataOut
6);

:= "0000000" & datCurrentVlo (24 downto
when "00010
DSP_Output <= datCurrentWhi(l5 downto

= "0000000" & datCurrentWhi (24 downto 1¢);

when "0001C 11" =>
DSP_Output <= datCurrentWlo(l5 downto myTempDataOut
:= "0000000" & datCurrentWlo (24 downto 16);

when "000110000"™ =>

DSP_Output <= datFaultsU(l
datFaultsU (21 downto 10);

downto 0); myTempDataOut :=

when "000110001" =>
DSP_Output <= datFaultsV(l5 downto 0); myTempDataOut :=
datFaultsV(downto 10);

when "000110010" =>
DSP_Output <= datFaultsW(l5 downto 0); myTempDataOut :=

datFaultsW(downto 10);

when "0001100L1" =>
DSP_Output <= datFaults(l5 downto 0); myTempDataOut :=
datFaults(downto 10);

when "000110100" =>

DSP_Output <= datTriggers(l

:= datTriggers (31 downto 16);
when "000110101" =>

downto 0); myTempDataOut :=

downto (); myTempDataOut

DSP_Output <= datFlags (L
datFlags (31 downto 16);

when "000110110" =>
DSP_Output <= datStatus(l5 downto 0); myTempDataOut :=
datStatus (31 downto 16);

when "000110111" =>
DSP_Output <= "0000" & myControlReference;
myTempDataOut := (others => '0');

when "010000000" =>
DSP_Output <= "00000000" & mySwitches; myTempDataOut :=
(others => '0');

when "010000001" =>
DSP_Output <= "000000000000" & myButtons; myTempDataOut
:= (others => '0'");

when "010000100" =>
DSP_Output <= "00000000" & myLedsOutput;

when others =>
myTempDataOut :=
(others => '0');
DSP_Output <= (others
=> '0");
end case;

else
DSP_Output <= myTempDataOut;
end if;
else
if (DSP_WR = '0') then -- DO: DSP
WRITE, FPGA READ
if (DSP_Addr(0) = '0') then
-— Store the LSB
myTempData := DSP_Input;
else
case (DSP_Addr (° downto 1))
is
when "000000000"™ =>
datControlU <= DSP_Input (¢ downto 0)

when "0000000¢
datControlV <= DSP_Input (2 downto

when "0
datControlW <= DSP_Input (2 downto

when "000000011

datInvVDC <= DSP_Input (8 downto 0) & myTempData;

when "000000111" =>
datVoltageDC <= DSP_Input (2 downto () & myTempData;
when "000001000"™ =>
datVoltageU <= DSP_Input (2 downto () & myTempData;
when "000001001" =>
datVoltageV <= DSP_Input (2 downto () & myTempData;
when "000001010" =>

datVoltageW <= DSP_Input (2 downto () & myTempData;

when "000100110" =>
datCurrentDC<= DSP_Input (2 downto () & myTempData;
when "000100111" =>
datCurrentU <= DSP_Input (2 downto () & myTempData;
when "000101000"™ =>
datCurrentV <= DSP_Input (2 downto () & myTempData;
when "000101001" =>

datCurrentW <= DSP_Input (2 downto () & myTempData;

when "000110100" =>
datTriggers <= DSP_Input & myTempData;

when "000110111" =>
datReference <= myTempData(ll downto 0);
DspSetReferenceClock <= '1"';

when "000111000" =>
myModulationRun <= myTempData(0);

when "000111001" =>
myModulationMethod <= myTempData (2 downto 0);

when "000111010" =>
myModulationCounterMax <= DSP_Input(/ downto 0) &
myTempData;

when "001000000"™ =>
datVoltageLO <= DSP_Input (! downto () & myTempData;

when "001000001" =>
datVoltageLl <= DSP_Input (! downto () & myTempData;

when "001000010" =>
datVoltagelL2 <= DSP_Input (! downto () & myTempData;

when "001000011" =>
datVoltagelL3 <= DSP_Input (! downto () & myTempData;

when "001000100"™ =>
datVoltagelL4 <= DSP_Input (! downto () & myTempData;

when "001000101" =>
datVoltagelL5 <= DSP_Input (! downto () & myTempData;

when "001000110" =>
datVoltagelL6 <= DSP_Input (! downto () & myTempData;

when "001000111" =>

datVoltagelL7 <= DSP_Input (! downto () & myTempData;
— when "001001000" =>
datVoltageLO <= DSP_Input(l downto 0) & myTempData;;
— when "001001001" =>
datVoltageLO <= DSP_Input(l downto 0) & myTempData;;
— when "001001010" =>
datVoltageLO <= DSP_Input(l downto 0) & myTempData;;
— when "001001011" =>
datVoltageLO <= DSP_Input(l downto 0) & myTempData;;
— when "001001100" =>
datVoltageLO <= DSP_Input(l downto 0) & myTempData;;

when "010000100" => datLeds

<= myTempData(/ downto 0); DspSetLeds <= '1';

Modular multi-level inverter

when others => myGate_IGBT(4) <= myUnitStatesOut(1) and
null; myUnitLevelOut (2); myGate_IGBT(5) <=
end case; myUnitStatesOut(1) and (NOT myUnitLevelOut(2));
end if; -- End DSP_Addr (0) myGate_IGBT(6) <= myUnitStatesOut(1) and
end if; -- DSP WRITE, FPGA READ myUnitLevelOut (3); myGate_IGBT(7) <=
end if; —-- End DSP Read myUnitStatesOut(1) and (NOT myUnitLevelOut(2));
end if; -- END DSP Clock event myGate_IGBT() <= myUnitStatesOut(2) and
else myUnitLevelOut (4); myGate_IGBT(9) <=
DspSetReferenceClock <= '0'; myUnitStatesOut(2) and (NOT myUnitLevelOut(4));
DspSetLeds <= '0'; myGate_IGBT(10) <= myUnitStatesOut(2) and
end if; -- End DSP CS myUnitLevelOut (5); myGate_IGBT (11) <=

end process P_DSP_Process; myUnitStatesOut(2) and (NOT myUnitLevelOut(5));

—— DSP_OutputEnable <= (DSP_CS = '0') AND (DSP_RD = myGate_IGBT(12) <= myUnitStatesOut(3) and
'0"); myUnitLevelOut (6); myGate_IGBT (13) <=

DSP_Data <= DSP_Output when ((DSP_CS = '0') AND myUnitStatesOut(3) and (NOT myUnitLevelOut(6));
(DSP_RD = '0')) else (others => 'Z'); myGate_IGBT(14) <= myUnitStatesOut(3) and

DSP_Input <= DSP_Data; myUnitLevelOut (7); myGate_IGBT (15) <=

myUnitStatesOut(3) and (NOT myUnitLevelOut(7));

myReferenceU <= datControlU(22 downto 0); myGate_IGBT(16) <= myUnitStatesOut(4) and
myReferenceV <= datControlV (22 downto 0); myUnitLevelOut (8); myGate_IGBT (17) <=
myReferenceW <= datControlW (22 downto 0); myUnitStatesOut(4) and (NOT myUnitLevelOut(2));

myGate_IGBT(189)
myUnitLevelOut (9);
myUnitStatesOut (4)
myGate_IGBT (20)

<= myUnitStatesOut (4) and
myGate_IGBT (19) <=

and (NOT myUnitLevelOut(9));

<= myUnitStatesOut(5) and

— Handle the led display

myUnitLevelOut (10);
myUnitStatesOut(5)
myGate_IGBT(22)
myUnitLevelOut (11);
myUnitStatesOut(5)
myGate_IGBT (24)
myUnitLevelOut (12);
myUnitStatesOut(©)
myGate_IGBT (26)
myUnitLevelOut (13);
myUnitStatesOut(©)
myGate_IGBT (22)
myUnitLevelOut (14);

and

<= myUnitStatesOut (

and

<= myUnitStatesOut (

and

<= myUnitStatesOut (

and

<= myUnitStatesOut (

myGate_IGBT (21) <=
(NOT myUnitLevelOut (L

myGate_IGBT (23) <=
(NOT myUnitLevelOut (L

myGate_IGBT (25) <=
(NOT myUnitLevelOut (1

myGate_IGBT (27) <=
(NOT myUnitLevelOut (1

myGate_IGBT (29) <=

0));

) and

1))

6) and

2));

6) and

));

) and

_ myUnitStatesOut(7)

myGate_IGBT (30)
myUnitLevelOut (15);
myUnitStatesOut(7)

myGate_IGBT(32)
myUnitLevelOut (16);
myUnitStatesOut (2)

and (NOT myUnitLevelOut(14));
<= myUnitStatesOut(/) and
myGate_IGBT (21) <=
and (NOT myUnitLevelOut (1
<= myUnitStatesOut (&) and
myGate_IGBT (23) <=
(NOT myUnitLevelOut(16));

));
datLeds)

P_LedHandler: process (DspSetLeds,
begin
if (DspSetleds'event and DspSetlLeds =

'0') then and

myLedsOutput <= datLeds; myGate_IGBT(24) <= myUnitStatesOut(8) and
else myUnitLevelOut (17); myGate_IGBT (35) <=

—— Place here all other switched for leds myUnitStatesOut(&) and (NOT myUnitLevelOut(17));

null; myGate_IGBT(26) <= myUnitStatesOut(9) and
end if; myUnitLevelOut (18); myGate_IGBT (27) <=

end process P_LedHandler;
myLeds <= myLedsOutput;

myUnitStatesOut (9)

myGate_IGBT (38)
myUnitLevelOut (19);
myUnitStatesOut (9)

myGate_IGBT (40)
myUnitLevelOut (20);
myUnitStatesOut (10)
- myGate_IGBT (42)
- myUnitLevelOut (21);
- myUnitStatesOut (10)
- myGate_IGBT (44)
—— myUnitLevelOut (22);
- myUnitStatesOut (11)
- State machine for the system myGate_IGBT (46)
—— myUnitLevelOut (23);
—— myUnitStatesOut (11)
- myGate_IGBT (48)
—— myUnitLevelOut (24);
—— myUnitStatesOut (12)

myGate_IGBT (50)
myUnitLevelOut (25);

and (NOT myUnitLevelOut(18));

<= myUnitStatesOut (9) and
myGate_IGBT (29) <=

and (NOT myUnitLevelOut(19));

<= myUnitStatesOut (10) and
myGate_IGBT (41) <=

and (NOT myUnitLevelOut (20));

<= myUnitStatesOut (10) and
myGate_IGBT (43) <=

and (NOT myUnitLevelOut(21));

<= myUnitStatesOut (11) and
myGate_IGBT (45) <=

and (NOT myUnitLevelOut(22));

<= myUnitStatesOut (11) and
myGate_IGBT (47) <=

and (NOT myUnitLevelOut (23));

<= myUnitStatesOut (12) and
myGate_IGBT (49) <=

and (NOT myUnitLevelOut (24));

<= myUnitStatesOut (12) and
myGate_IGBT (51) <=

myUnitStatesOut (12) and (NOT myUnitLevelOut(25));
myGate_IGBT(52) <= myUnitStatesOut (13) and
myUnitLevelOut (26); myGate_IGBT (53) <=

—— myUnitStatesOut (13)

—— IGBT Pulses Map myGate_IGBT(54)

—— myUnitLevelOut (27);
myGate_IGBT(0) <= myUnitStatesOut(0) and myUnitStatesOut (13)
myUnitLevelOut (0); myGate_IGBT(1) <= myGate_IGBT (56)
myUnitStatesOut(0) and (NOT myUnitLevelOut(0)); myUnitLevelOut (28);
myGate_IGBT(2) <= myUnitStatesOut(0) and myUnitStatesOut (14)
myUnitLevelOut (1); myGate_IGBT(3) <= myGate_IGBT (58)
myUnitStatesOut(0) and (NOT myUnitLevelOut (myUnitLevelOut (29);
myUnitStatesOut (14)

and (NOT myUnitLevelOut (26));

<= myUnitStatesOut (12) and
myGate_IGBT (55) <=

and (NOT myUnitLevelOut(27));

<= myUnitStatesOut (14) and
myGate_IGBT (57) <=

and (NOT myUnitLevelOut (28));

<= myUnitStatesOut (14) and

myGate_IGBT (59) <=

(NOT myUnitLevelOut(29));

1))

and

Main software

myGate_IGBT (60
myUnitLevelOut (30
myUnitStatesOut (15)

myGate_IGBT(62)
myUnitLevelOut (31);
myUnitStatesOut (15)

myGate_IGBT(64)
myUnitLevelOut (32);
myUnitStatesOut (16)

myGate_IGBT (66)
myUnitLevelOut (33);
myUnitStatesOut (16)

myGate_IGBT (689)
myUnitLevelOut (34) ;
myUnitStatesOut (17)

myGate_IGBT(/0)
myUnitLevelOut (35);
myUnitStatesOut (17)

-- output data

—— PS2_MISO <= '0';

<= myUnitStatesOut (15) and
myGate_IGBT (61) <=

and (NOT myUnitLevelOut (20));

<= myUnitStatesOut (15) and
myGate_IGBT (63) <=

and (NOT myUnitLevelOut (31));

<= myUnitStatesOut (16) and
myGate_IGBT (65) <=

and (NOT myUnitLevelOut (32));

<= myUnitStatesOut (16) and
myGate_IGBT (67/) <=

and (NOT myUnitLevelOut (33));

<= myUnitStatesOut (17/) and
myGate_IGBT (69) <=

and (NOT myUnitLevelOut (34));

<= myUnitStatesOut (17/) and
myGate_IGBT (/1) <=

and (NOT myUnitLevelOut (35));

7

PS2_MISO <= myClock_25_Hz;

-- Gate signals
-—- Gates_Reset <= myButtons(0) & myButtons(0) &
myButtons (0) & myButtons(0) & myButtons(0);

—-—- Gates_OutputEnable <= myGate_OE;

myGate_GFault <= Gates_Fault;

myGate_SysReset <= myGate_Reset or (mySystemReset &
mySystemReset & mySystemReset & mySystemReset &
mySystemReset) ;

Gates_Reset <= myGate_SysReset;

—-- Output enable

myGate_SysOE (U) <= mySystemOutput and (not
mySystemFault) and (not myGate_SysReset (0));
myGate_SysOE (1) <= mySystemOutput and (not
mySystemFault) and (not myGate_SysReset(l));
myGate_SysOE (2) <= mySystemOutput and (not
mySystemFault) and (not myGate_SysReset (2));
myGate_SysOE (3) <= mySystemOutput and (not
mySystemFault) and (not myGate_SysReset (3));
myGate_SysOE (4) <= mySystemOutput and (not
mySystemFault) and (not myGate_SysReset (4));
Gates_OutputEnable <= myGate_SysOE;

end Behavioral;

H.2.1l MODULATION.VHD

—— Company: Aalborg University

-- Engineer: Sandu Cristian

-—- Create Date: 17:49:49 12/08/2008
—— Design Name:

—— Module Name:

—-— Project Name:
—-— Target Devices:
—— Tool versions:
—— Description:

Modulation - Behavioral

—— Dependencies:

-— Revision:
—— Revision 0.01 - File Created
—— Additional Comments:
—— Methods are:
- Staircase
- 001 - Phase shift
— 010 - Level shift (IPD)
- 011 - Level shift (APOD)
- 100 - Level shift (POD)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Modulation is
Port (
Clock: in std_logic; —-- Main system
clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

-— State machine parameters

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic; —- High when
the conversion is done

MethodSelection: in STD_LOGIC_VECTOR (2 downto
0); —-- Method selection

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(23
ReferenceV: in STD_LOGIC_VECTOR(23
ReferenceW: in STD_LOGIC_VECTOR(23

downto 0);
downto 0);
downto 0);

ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —— The maximum value for the counters

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR (143 downto
0);

UnitVotlagesV: in STD_LOGIC_VECTOR (143 downto
0);

UnitVotlagesW: in STD_LOGIC_VECTOR (143 downto
0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1l/ downto
0);

CurrentOutputV: in STD_LOGIC_VECTOR(1l/ downto
0);

CurrentOutputW: in STD_LOGIC_VECTOR(1l/ downto

-— Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(/! downto

—-- Output data

UnitStatesU : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesV : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesW : out STD_LOGIC_VECTOR (/ downto

)
)i
end Modulation;

architecture Behavioral of Modulation is

22

Modular multi-level inverter

- Level Shift

component Mod_LevelShift_Phases is
Port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
(if disable, set to 0 all outputs)

—-- Main

conversion

-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—- High

ReferenceCounterMax: in STD_LOGIC_VECTOR (23

downto 0); —— Main counter for the carriers

—— Submethod
SubMethod: in std_logic_vector (I downto 0);

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(Z> downto
0);

ReferenceV: in STD_LOGIC_VECTOR(2> downto
0);

ReferenceW: in STD_LOGIC_VECTOR (2> downto

—-- Output data
UnitStatesU : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesV : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesW : out STD_LOGIC_VECTOR (
downto 0)
)i
end component;
signal myLSEnable: std_logic
signal myLSRun: std_logic := '0';
signal myLSDone: std_logic := '0';

signal myLSUnitStatesU: std_logic_vector (/ downto
0) := (others => '0');
signal myLSUnitStatesV: std_logic_vector (/ downto
0) := (others => '0');
signal myLSUnitStatesW: std_logic_vector (/ downto
0) := (others => '0');
- Phase Shift
component Mod_PhaseShift_Phases is
Port (
Clock: in std_logic; —-— Main
system clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—- High

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(Z> downto
0);

ReferenceV: in STD_LOGIC_VECTOR(2> downto
0);

ReferenceW: in STD_LOGIC_VECTOR(2> downto

ReferenceCounterMax : in STD_LOGIC_VECTOR
(23 downto 0); —— The maximum value for the counters

—-- Output data
UnitStatesU : out STD_LOGIC_VECTOR (
downto 0);

UnitStatesV : out STD_LOGIC_VECTOR (
downto 0);

UnitStatesW : out STD_LOGIC_VECTOR (
downto 0)

)i

end component;

signal myPSEnable: std_logic := '0O';

signal myPSRun: std_logic := '0';

signal myPSDone: std_logic := '0';

signal myPSUnitStatesU: std_logic_vector (/ downto
0) := (others => '0');

signal myPSUnitStatesV: std_logic_vector (/ downto
0) := (others => '0');

signal myPSUnitStatesW: std_logic_vector (/ downto

0N

0) :=

(others =>

- Staircase

component Mod_Staircase_Phases
Port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
(if disable, set to 0 all outputs)

—-- Main

conversion

—-— State machine parameters
Run: in std_logic; —— If enable,

it converts the data input, if not, output the last
data

Done: out std_logic; —-- High
when the conversion is done

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(!l/ downto
0);

ReferenceV: in STD_LOGIC_VECTOR(1l/ downto
0);

ReferenceW: in STD_LOGIC_VECTOR(!l/ downto

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR (143
downto 0);

UnitVotlagesV: in STD_LOGIC_VECTOR (143
downto 0);

UnitVotlagesW: in STD_LOGIC_VECTOR (143
downto 0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputV: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputW: in STD_LOGIC_VECTOR(1
downto 0);

—-— Voltage level definition

Main software

VoltageLevels: in STD_LOGIC_VECTOR(7/1 CurrentOutputW => CurrentOutputW,
downto 0);
VoltageLevels => Voltagelevels,
—— Output data

UnitStatesU : out STD_LOGIC_VECTOR (—-— output
downto 0); UnitStatesU => mySCUnitStatesU,
UnitStatesV : out STD_LOGIC_VECTOR (UnitStatesV => mySCUnitStatesV,
downto 0); UnitStatesW => mySCUnitStatesW
UnitStatesW : out STD_LOGIC_VECTOR ();

downto 0)
)i

end component;

signal mySCEnable: std_logic := '0';
signal mySCRun: std_logic := '0';
signal mySCDone: std_logic := '0'; e
signal mySCUnitStatesU: std_logic_vector (/ downto - -
0) := (others => '0'); -
signal mySCUnitStatesV: std_logic_vector (/ downto -
0) := (others => '0'); -
signal mySCUnitStatesW: std_logic_vector (/ downto -
0) := (others => '0'); -
— Phase shift
- PhaseShift: Mod_PhaseShift_Phases port map (
_ —-- Main parameters
- Main parameters Clock => Clock,

_ Enable => myPSEnable,

- Run => myPSRun,
- Done => myPSDone,
signal myMethod: std_logic_vector(l downto 0) :=

(others => '0'); ReferenceU => ReferenceU,
signal myLevelShiftMethod: std_logic_vector (L ReferenceV => ReferenceV,
downto 0) := (others => '0'); ReferenceW => ReferenceW,
signal myUnitStatesU : std_logic_vector(/ downto 0) ReferenceCounterMax => ReferenceCounterMax,
:= (others => '0'");
signal myUnitStatesV : std_logic_vector(/ downto 0) —— output
:= (others => '0'"); UnitStatesU => myPSUnitStatesU,
signal myUnitStatesW : std_logic_vector(/ downto 0) UnitStatesV => myPSUnitStatesV,
:= (others => '0'"); UnitStatesW => myPSUnitStatesW
)i
signal myDone: std_logic := '0';

begin

- Staircase - Level shift
Staircase: Mod_Staircase_Phases port map (LevelShift: Mod_LevelShift_Phases port map (
—-— Main parameters —— Main parameters
Clock => Clock, Clock => Clock,
Enable => mySCEnable, Enable => myLSEnable,
Run => mySCRun, Run => myLSRun,
Done => mySCDone, Done => myLSDone,
ReferenceU => ReferenceU(l/ downto 0), SubMethod => myLevelShiftMethod,
ReferenceV => ReferenceV(l/ downto 0),
ReferenceW => ReferenceW(l/ downto 0), ReferenceCounterMax => ReferenceCounterMax,
UnitVotlagesU => UnitVotlagesU, ReferenceU => ReferenceU,
UnitVotlagesV => UnitVotlagesV, ReferenceV => ReferenceV,
UnitVotlagesW => UnitVotlagesW, ReferenceW => ReferenceW,

CurrentOutputU => CurrentOutputU,
CurrentOutputV => CurrentOutputV, —-— output

Modular multi-level inverter

UnitStatesU => myLSUnitStatesU,

UnitStatesV => myLSUnitStatesV,

UnitStatesW => myLSUnitStatesW
)i

- Determine method

—— Determine method in order for the other
modulation techniques

-— to be selected

—— Input:

— Clock - Main system clock

- Enable - Main enable signal

— MethodSelection - The main input parameter for
the selection

—— Output:

- myMethod - The selected method (00 -
Staircase, 01 - Phase shift, 10 - Level shift)

- myLevelShiftMethid - The level shift
configuration (00 - IPD, 01 - APOD, 10 - POD)

—— Note:
- The parameters are set when the Enable flag is
0 and on the
— rising edge of the clock
P_DetermineMethod: process (Clock, Enable,
MethodSelection)
begin
if (Clock'event and Clock = '1') then
if (Enable = '0') then
case (MethodSelection) is
when "000" => -— Set staircase
myMethod <= "00";
myLevelShiftMethod <= "00";

when "001" => —-- Set phase shift
method
myMethod <= "01";
myLevelShiftMethod <= "00";

when "010" => —-- Set level shift
method, IPD
myMethod <= "10";
myLevelShiftMethod <= "00";

when "011" => —-- Set level shift
method, APOD
myMethod <= "10";
myLevelShiftMethod <= "01";

when "100" => —-- Set level shift
method, POD
myMethod <= "10";
myLevelShiftMethod <= "10";

when others =>
null;
end case;
end if;
end if;
end process P_DetermineMethod;

— # Set done output

P_DetermineOutput: process(Clock, Enable, myMethod,
mySCDone, myPSDone, myLSDone)

begin
if (Enable = '0') then
myUnitStatesU <= (others => '0');
myUnitStatesV <= (others => '0');
myUnitStatesW <= (others => '0');
myDone <= '0';
else
if (Clock'event and Clock = '1') then
case (myMethod) is
when "00" => -- SC
if (mySCDone = '1') then
myDone <= '1"';
myUnitStatesU <=
mySCUnitStatesU;
myUnitStatesV <=
mySCUnitStatesV;
myUnitStatesW <=
mySCUnitStatesW;
else
myDone <= '0';
end if;
when "01" => -- PS
if (myPSDone = '1') then
myDone <= '1"';
myUnitStatesU <=
myPSUnitStatesU;
myUnitStatesV <=
myPSUnitStatesV;
myUnitStatesW <=
myPSUnitStatesW;
else
myDone <= '0';
end if;
when "10" => -- LS
if (myLSDone = '1') then
myDone <= '1"';
myUnitStatesU <=
myLSUnitStatesU;
myUnitStatesV <=
myLSUnitStatesV;
myUnitStatesW <=
myLSUnitStatesW;
else
myDone <= '0';
end if;

when others =>

myUnitStatesU <= (others => '0');
myUnitStatesV <= (others => '0');
myUnitStatesW <= (others => '0');

-— Done was set to true just to
allow resume
myDone <= '1';
end case;
end if;
end if;
end process P_DetermineOutput;

P_DetermineRun: process(Run, myMethod)
begin
if (Run = '1l') then

Main software

case (myMethod) is end if;
when "00" => end process P_DetermineRun;
mySCRun <= '1';
myLSRun <= —
myPSRun <= '0'; -
when "0O1" => - Output the data
mySCRun <= '0'; -
myLSRun <= '1'; -
myPSRun <= '0';
when "10" => Done <= myDone;
mySCRun <= '0';
myLSRun <= '0';
myPSRun <= '1'; mySCEnable <= '1' when (myMethod = "00") else '0';
when others => myPSEnable <= 'l' when (myMethod = "01") else '0O';
mySCRun <= '0 myLSEnable <= 'l' when (myMethod = "10") else '0O';
myLSRun <= '0
myPSRun <= '0'; UnitStatesU <= myUnitStatesU;
end case; UnitStatesV <= myUnitStatesV;
else UnitStatesW <= myUnitStatesW;
mySCRun <= '(
myLSRun <= ' end Behavioral;
myPSRun <= '0';
H.2.111 SORTER4.VHD
——— Clock : in std_logic;
777777777777777777777777777 —— The clock
—— Company: Aalborg University Enable: in std_logic;
—-- Engineer: Sandu Cristian —-- Enable the sorter
-— Create Date: 11:47:48 10/18/2008 -— The values to be sorted
—— Design Name: Voltage0O: in std_logic_vector(l/ downto 0);
—— Module Name: main - Behavioral Voltagel: in std_logic_vector(l/ downto 0);
—-- Project Name: Voltage2: in std_logic_vector(l/ downto 0);
—-- Target Devices: Voltage3: in std_logic_vector(l/ downto 0);
—-— Tool versions:
—— Description: —-- The sorted values
- Sorted0: out std_logic_vector (2 downto 0);
—- Dependencies: Sortedl: out std_logic_vector (2 downto 0);
- Sorted2: out std_logic_vector (2 downto 0);
—— Revision: Sorted3: out std_logic_vector (2 downto 0);
—-— Revision 5.0
—— Additional Comments: SorterDone: out std_logic
-= v7.0 —— 1: When sorting is complete
—— - Jump from 12 bits to 18 bits)i
- — Modification for 4 sorted values end Sorter4;
-- v6.0
- - Corrections made to the sorting algortithm
- — The value vector had been split
-= v5.0 architecture Behavioral of Sorter4d is
- - Improved timings (88 Mhz) type myTCoeff is array (0 to 3) of unsigned(Z
- - Single cycle downto 0); -- integer range 0 to 7;
- - Removed acknowledge pin (the done flag is reset -— type myTComp is array (27 downto 0) of unsigned(0
by lowering the downto 0);
- enable signal) -— type myTCompX is array (27 downto 0) of unsigned(2
- — Acquisition is done when enable is low, and on downto 0);
the falling edge of the clock type myTValues is array (0 to 2) of unsigned(l
-—— v4.0 downto 0);
- - Reduced number of resources (areea
optimization)
-- v3.0 signal myValues: myTValues := (others =>
- - Sorting done in a single step (72 Mhz) "000000000000000000™); -- The saved values
-— v2.0
- — Remake and small optimisation of the main signal mySort : myTCoeff := (others => "000");
sorting algoritm\ —— The final sort
- - Step size reduced to 2 cycles (175 Mhz clock) +
1 acknowledge signal mySorterDone: std_logic := '0';
-— v1.0 —— True if sorting is done
- - Sorter algorithm done
- - 4 clock cycles for one sorting + 2 for begin

validation and Anknowledge

P_Sorter: process(Clock, Enable, myValues,

mySorterDone)
library IEEE; variable myComp_E : std_logic_vector (downto 0)
use IEEE.STD_LOGIC_1164.ALL; := (others => '0'); -- The main comparators used for
use IEEE.STD_LOGIC_ARITH.ALL; duplicate values
use IEEE.STD_LOGIC_UNSIGNED.ALL; variable myComp_G: std_logic_vector(downto () :=
(others => '0'); —— The comparators used for

determining the maximum
entity Sorter4 is
port (

Modular multi-level inverter

variable myComp_L: std_logic_vector(downto 0)

(others => '0'); —— The comparators used for
determining the minimum —— Compute the individual coefficients
variable myCoeff: myTCoeff := (others => "000"); for the modified values
—— The coefficients used if duplicates are found myCoeff (0) := ("00" & myComp_E(0) +
begin myComp_E (1) + myComp_E(2));
if (Clock'event and Clock = '1') then myCoeff (1) := "00" & myComp_E(3) +
if (Enable = '1') then myComp_E (4);
—-— If (greate) elsif (less) else myCoeff (2) := "00" & myComp_E (5);
(equal) myCoeff (3) := "000";
—— Compute the comparison between the
greater mySort (0) <= ("00" & myComp_G(0) +
if (myValues(0) > myValues(l)) then myComp_G(1)) + (myComp_G(2) + myCoeff(0));
myComp_G(0) := '1', else myComp_G(0) := '0'; end mySort (1) <= ("00" & myComp_G(3) +
if; myComp_G(4)) + ("00" & myComp_L(0) + myCoeff(l));
if (myValues(0) > myValues(2)) then mySort (2) <= ("00" & myComp_G(5) +
myComp_G(1) := '1',; else myComp_G(1) := '0O'; end myComp_L(1)) + ("00" & myComp_L(2) + myCoeff(2));
if; mySort (3) <= ("00" & myComp_L(2) +
if (myValues(0) > myValues(3)) then myComp_L(4)) + ("00" & myComp_L(5) + myCoeff (3));
myComp_G(2) := '1',; else myComp_G(2) := '0O'; end
if; mySorterDone <= '1';
if (myValues(l) > myValues(2)) then else
myComp_G(2) := '1',; else myComp_G(3) := '0O'; end myCoeff := (others => "000");
if; mySorterDone <= '0';
if (myValues(l) > myValues(3)) then end if;
myComp_G(4) := '1', else myComp_G(4) := '0O'; end end if;
if; end process P_Sorter;
if (myValues(2) > myValues(3)) then
myComp_G(5) := '1'; else myComp_G(5) := '0O'; end
if;
P_SaveValues: process (Clock, Enable, VoltageO,
—— Compare for equality Voltagel, Voltage2, Voltage3)
if (myValues(0) = myValues(l)) then begin
myComp_E(0) := '1', else myComp_E(0) := '0O'; end if (Clock'event and Clock = '1') then
if; if (Enable = '0') then
if (myValues(0) = myValues(2)) then myValues (0) <= unsigned(VoltageO);
myComp_E(1) := '1'; else myComp_E(1) := '0O'; end myValues (1) <= unsigned(Voltagel);
if; myValues (2) <= unsigned(Voltage2);
if (myValues(0) = myValues(3)) then myValues (3) <= unsigned(Voltage3);
myComp_E(2) := '1', else myComp_E(2) := '0O'; end end if;
if; end if;
if (myValues(!) = myValues(2)) then end process P_SaveValues;
myComp_E(2) := '1',; else myComp_E(3) := '0O'; end
if;
if (myValues(l) = myValues(3)) then -
myComp_E(4) := '1', else myComp_E(4) := '0O'; end —— Output the values
if; —
if (myValues(2) = myValues(3)) then SorterDone <= mySorterDone;
myComp_E(5) := '1'; else myComp_E(5) := '0O'; end Sorted0 <= std_logic_vector (mySort (0));
if; Sortedl <= std_logic_vector (mySort(l));

Sorted2 <= std_logic_vector (mySort(2));
Sorted3 <= std_logic_vector (mySort(3));
myComp_L := (not myComp_E) and (not end Behavioral;
myComp_G) ;

H.2.IV PS_CARRIERS.VHD

777 use IEEE.STD_LOGIC_ARITH.ALL;
777777777777777777777777777 use IEEE.STD_LOGIC_UNSIGNED.ALL;
—— Company: Aalborg Univeristy

—-- Engineer: Cristian Sandu

- entity Mod_PS_Carriers is

-—- Create Date: 01:30:58 05/31/2009 Port (

—— Design Name: Clock : in STD_LOGIC;

—- Module Name: Mod_PS_Carriers - Behavioral Enable : in STD_LOGIC;

—-- Project Name:

—-— Target Devices: ReferenceCounterMax : in STD_LOGIC_VECTOR (23
—-- Tool versions: downto 0); —— The maximum value for the counters
—— Description:

- Carrierlp : out STD_LOGIC_VECTOR (23 downto
—— Dependencies: 0);

- Carrier2p : out STD_LOGIC_VECTOR (23 downto
—-— Revision: 0);

—— Revision 0.01 - File Created Carrier3p : out STD_LOGIC_VECTOR (23 downto
-- Additional Comments: 0);

- Carrierd4p : out STD_LOGIC_VECTOR (23 downto 0)
)i
end Mod_PS_Carriers;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

Main software

architecture Behavioral of Mod_PS_Carriers is
signal myCounterA : std_logic_vector (23 downto 0)
(others => '0');
signal myCounterB : std_logic_vector (23 downto 0)
:= (others => '0"');

signal myCounterC : std_logic_vector (23 downto 0)
:= (others => '0');

signal myCounterD : std_logic_vector (23 downto 0)
:= (others => '0');

signal myCounterSignA: std_logic := '0';
signal myCounterSignB: std_logic : '0';
signal myCounterSignC: std_logic : 'l
signal myCounterSignD: std_logic := 'l';

constant cmyCounterSignA : std_logic := '0';
constant cmyCounterSignB : std_logic := '0';
constant cmyCounterSignC : std_logic := '1"';
constant cmyCounterSignD : std_logic := '1"';

signal myReference : std_logic_vector (23 downto 0)

begin

P_DetermineCarriers: process (Clock, Enable,
ReferenceCounterMax, myReference,
myCounterA, myCounterB, myCounterB, myCounterC,
myCounterSignA, myCounterSignB, myCounterSignC,
myCounterSignD)

begin
if (Enable = '0') then
myCounterA <= (others => '0');
myCounterB <= "0" & ReferenceCounterMax (23
downto 1);
myCounterC <= "0" & ReferenceCounterMax (23

downto 1);
myCounterD <= ReferenceCounterMax;

myCounterSignA <= cmyCounterSignA;
myCounterSignB <= cmyCounterSignB;
myCounterSignC <= cmyCounterSignC;
myCounterSignD <= cmyCounterSignD;

myReference <= ReferenceCounterMax;
else
if (Clock'event and Clock = '1') then
if (myCounterA = x"00000") then
myCounterSignA <= '0';
myCounterA <= myCounterA + 1;
elsif (myCounterA = myReference) then

end if;
end if;

if (myCounterB = x"000 ") then
myCounterSignB <= '0';
myCounterB <= myCounterB + 1;
elsif (myCounterB = myReference) then

myCounterSignB <= '1';
myCounterB <= myCounterB - 1;
else
if (myCounterSignB = '0') then
myCounterB <= myCounterB + 1;
else
myCounterB <= myCounterB - 1;
end if;
end if;

if (myCounterC = x"000

myCounterSignC <= '0';

myCounterC <= myCounterC + 1;
elsif (myCounterC = myReference) then

myCounterSignC <= '1';
myCounterC <= myCounterC - 1;
else
if (myCounterSignC = '0') then
myCounterC <= myCounterC + 1;
else
myCounterC <= myCounterC - 1;
end if;
end if;

if (myCounterD = x"000
myCounterSignD <= '0';
myCounterD <= myCounterD + 1;
elsif (myCounterD = myReference) then

myCounterSignD <= '1';
myCounterD <= myCounterD - 1;
else
if (myCounterSignD = '0') then
myCounterD <= myCounterD + 1;
else
myCounterD <= myCounterD - 1;
end if;
end if;
end if;
end if;

end process P_DetermineCarriers;

—— Output values

myCounterSignA <= '1'; Carrierlp <= myCounterAi;
myCounterA <= myCounterA - 1; Carrier2p <= myCounterB;
else Carrier3p <= myCounterC;
if (myCounterSignA = '0') then Carrier4p <= myCounterD;
myCounterA <= myCounterA + 1; end Behavioral;
else
myCounterA <= myCounterA - 1;
H.2.V LS_CARRIERS.VHD

—— Company: Aalborg university
—-- Engineer: Cristian Sandu

-— Create Date: 15:45:59 06/01/2009
—— Design Name:
—— Module Name: Mod_LS_Carriers - Behavioral

—-- Project Name:
—-— Target Devices:
—-- Tool versions:
—— Description:

—— Dependencies:

—-— Revision:
—-— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_LS_Carriers is
Port (
Clock : in STD_LOGIC;

28

Modular multi-level inverter

Enable : in ST

D_LOGIC;

SubMethod in STD_LOGIC_VECTOR(l downto 0);
-- 00 = IPD, 01 - APOD, 10 - POD
ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —- The maximum value for the counters
Carrierl out STD_LOGIC_VECTOR (23 downto 0);
Carrier2 out STD_LOGIC_VECTOR (23 downto 0);
Carrier3 out STD_LOGIC_VECTOR (23 downto 0);
Carrier4d out STD_LOGIC_VECTOR (23 downto 0)

)i
end Mod_LS_Carriers;

architecture Behavioral of Mod_LS_Carriers is

signal myCounter std_logic_vector (23 downto 0) :=
(others => '0');

signal myCounterSign: std_logic := '0';

signal myCounterl std_logic_vector (23 downto 0)
:= (others => '0"');

signal myCounter2 std_logic_vector (23 downto 0)
:= (others => '0');

signal myCounter3 std_logic_vector (22 downto 0)
:= (others => '0"');

signal myCounter4 std_logic_vector (23 downto 0)

:= (others => '0');

constant cmyCounter

signal mySubMethod:

Sign std_logic := '

R
o

std_logic_vector (1l downto 0) :=

myReferencel <= "0
ReferenceCounterMax (2! downto

g
)

non .
& "

myReference2 <= myReferencel + myReference;
myReference3 <= ReferenceCounterMax (21

signal myReference std_logic_vector (22 downto 0)
= x"100000"
signal myReferencel std_logic_vector (22 downto 0)
x"000000";
signal myReference2 std_logic_vector (23 downto 0)
x"000000";
signal myReference3 std_logic_vector (23 downto 0)
x"000000";
begin
P_DetermineCarriers: process (Clock, Enable,
ReferenceCounterMax, myReference, SubMethod,
myReferencel, myReference2, myReference3,

myCounter, myCounterSign)
begin
if (Enable = '0') then

(others => '0"');

myCounter <=

myCounterl <= (others => '0');
myCounter?2 <= (others => '0');
myCounter3 <= (others => '0');
myCounter4 <= (others => '0');

myCounterSign <= cmyCounterSign;
mySubMethod <= SubMethod;

myReference <= "00" &

ReferenceCounterMax (21 downto 0);

downto 0) & "00";
else
if (Clock'event and Clock = '1') then
if (myCounter = x"0000
myCounterSign <= '0';
myCounter <= myCounter + 1;
elsif (myCounter = myReference) then
myCounterSign <= '1';
myCounter <= myCounter - 1;
else
if (myCounterSign = '0') then
myCounter <= myCounter + 1;
else
myCounter <= myCounter - 1;
end if;
end if;
case (mySubMethod) is
when "0O1" => —— APOD
myCounterl <= myReference3 -
myCounter;
myCounter2 <= myCounter +
myReferencel;
myCounter3 <= myReferencel -
myCounter;
myCounter4 <= myCounter;
when "10" => -— POD
myCounterl <= myReference3 -
myCounter;
myCounter2 <= myReference2 -
myCounter;
myCounter3 <= myReference +
myCounter;
myCounter4 <= myCounter;
when others => -- IPD

myCounterl <= myCounter +

myReference2;

myCounter2 <= myCounter +

myReferencel;

myCounter3 <= myCounter +

myReference;

myCounter4 <= myCounter;
end case;
end if;
end if;
end process P_DetermineCarriers;

—— Output values

Carrierl <=
Carrier2 <=
Carrier3 <=
Carrierd <=

myCounterl;
myCounter?2;
myCounter3;
myCounter4;

end Behavioral;

H.2.VI PHASESHIFT.VHD

Company: Aalborg University

Engineer: Sandu Cristian

Create Date: 17:49:49 12/08/2008
Design Name:
Module Name:
Project Name:

Staircase - Behavioral

Target Devices:
Tool versions:
Description:

Dependencies:
Revision:

Revision 0.01 - File Created
Additional Comments:

Main software

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_PhaseShift is
Port (
Clock: in std_logic; —-- Main system
clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

—-- State machine parameters

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic; —-- High when
the conversion is done

—-- Input data
Reference: in STD_LOGIC_VECTOR (23
—— The reference counter

downto 0);

Carrierlp : in STD_LOGIC_VECTOR (23
—— The carrier counter

Carrier2p : in STD_LOGIC_VECTOR (23

Carrier3p : in STD_LOGIC_VECTOR (23

Carrier4p : in STD_LOGIC_VECTOR (23

downto 0);

downto 0);
downto 0);
downto 0);

—— Output data

UnitStates : out STD_LOGIC_VECTOR (7 downto 0)
)i

end Mod_PhaseShift;

architecture Behavioral of Mod_PhaseShift is

- Main parameters

signal myUnitStates: std_logic_vector (3 downto 0)

:= (others => '0'");

signal myReference: std_logic_vector (23 downto 0)
:= (others => '0'");

signal myDone: std_logic := '0';
begin

P_ProcessTheStates: process (Clock, Enable, Run,
Reference, myReference,
Carrierlp, Carrier2p, Carrier3p, Carrierdp)
begin
if (Enable = '0') then
myUnitStates <= (others => '0');

myReference <= Reference;

myDone <= '0';
else —— Enable =1
myReference <= Reference;
end if;

if (Run = '1l') then
- if (myUnitStates(0) = '0') then
- if (Reference < Carrierlp) then
- myUnitStates (0) <= '1';
- end if;
- else
- if (Reference > Carrierlp) then
- myUnitStates (0) <= '0';
- end if;
- end if;

if (myReference < Carrierlp) then

myUnitStates(0) <= '1"';

elsif (myReference > Carrierlp) then
myUnitStates (0) <= '0';

else
null;

end if;

if (myReference < Carrier2p) then

myUnitStates(l) <= '1"';

elsif (myReference > Carrier2p) then
myUnitStates(l) <= '0';

else
null;

end if;

if (myReference < Carrier3p) then

myUnitStates(2) <= '1"';

elsif (myReference > Carrier3p) then
myUnitStates(2) <= '0';

else
null;

end if;

if (myReference < Carrier4p) then

myUnitStates(3) <= '1"';
elsif (myReference > Carrier4p) then
myUnitStates(3) <= '0';
else
null;
end if;
myDone <= '1"';
else
myDone <= '0';
end if;
end if;

end process P_ProcessTheStates;

— output values

Done <= myDone;

UnitStates(0) <= myUnitStates(0);
UnitStates(l) <= myUnitStates(l);
UnitStates(2) <= myUnitStates(2);
UnitStates(3) <= myUnitStates(3);
UnitStates(4) <= (not myUnitStates(2)) and Enable;
UnitStates(5) <= (not myUnitStates(2)) and Enable;
UnitStates(6) <= (not myUnitStates(l)) and Enable;
UnitStates (/) <= (not myUnitStates(0)) and Enable;

end Behavioral;

Modular multi-level inverter

H.2.VII PS_PHASES.VHD

—— Company: Aalborg University

-- Engineer: Sandu Cristian

-—- Create Date: 17:49:49 12/08/2008
—— Design Name:

—— Module Name:

—-— Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

Staircase - Behavioral

—— Dependencies:

—-— Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_PhaseShift_Phases is
Port (
Clock: in std_logic; —-- Main system
clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

—-— State machine parameters

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic; —-- High when
the conversion is done

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(23
ReferenceV: in STD_LOGIC_VECTOR(23
ReferenceW: in STD_LOGIC_VECTOR(23

downto 0);
downto 0);
downto 0);

ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —— The maximum value for the counters

—-- Output data

UnitStatesU : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesV : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesW : out STD_LOGIC_VECTOR (/ downto

)i
end Mod_PhaseShift_Phases;

architecture Behavioral of Mod_PhaseShift_Phases is

- Main parameters

signal myDone: std_logic := '0';

downto 0);
downto 0);
downto 0);

signal myUnitStatesU: std_logic_vector (
signal myUnitStatesV: std_logic_vector (
signal myUnitStatesW: std_logic_vector (

- Per Phase Staircase

component Mod_PhaseShift
port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

—-- Main

-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic; —- High
when the conversion is done

—-- Input data

Reference: in STD_LOGIC_VECTOR (23 downto
0);

Carrierlp : in STD_LOGIC_VECTOR (23 downto
0);

Carrier2p : in STD_LOGIC_VECTOR (23 downto
0);

Carrier3p : in STD_LOGIC_VECTOR (23 downto
0);

Carrier4p : in STD_LOGIC_VECTOR (23 downto

—-- Output data
UnitStates : out STD_LOGIC_VECTOR (
downto 0)

)i

end component;

- Carriers

component Mod_PS_Carriers Port (
Clock : in STD_LOGIC;
Enable : in STD_LOGIC;

ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —— The maximum value for the counters

Carrierlp : out STD_LOGIC_VECTOR (23 downto
i Carrier2p : out STD_LOGIC_VECTOR (23 downto
i Carrier3p : out STD_LOGIC_VECTOR (23 downto
i Carrierd4p : out STD_LOGIC_VECTOR (23 downto 0)

)i

end component;

signal myPhaseUDone: std_logic
signal myPhaseVDone: std_logic
signal myPhaseWDone: std_logic

Main software

signal myCarrierlp: std_logic_vector (23 downto 0) —-- Main parameters
:= (others => '0'"); -
signal myCarrier2p: std_logic_vector (23 downto 0) Clock => Clock,
:= (others => '0'"); Enable => Enable,
signal myCarrier3p: std_logic_vector (23 downto 0)
:= (others => '0'"); Run => Run,
signal myCarrierdp: std_logic_vector (23 downto 0) Done => myPhaseVDone,
:= (others => '0"');
Reference => ReferenceV,
begin
Carrierlp => myCarrierlp,
Carrier2p => myCarrier2p,
——— Carrier3p => myCarrier3p,
——————————————————— Carrierd4p => myCarrierip,
- —— output
- UnitStates => myUnitStatesV
-)i
- Carriers
- myPhase_W: Mod_PhaseShift port map (
_ —-- Main parameters
myCarriers: Mod_PS_Carriers port map (Clock => Clock,
- Enable => Enable,
—-- Main parameters
- Run => Run,
Clock => Clock, Done => myPhaseWDone,
Enable => Enable,
Reference => ReferenceW,
ReferenceCounterMax => ReferenceCounterMax,
Carrierlp => myCarrierlp,
Carrierlp => myCarrierlp, Carrier2p => myCarrier2p,
Carrier2p => myCarrier2p, Carrier3p => myCarrier3p,
Carrier3p => myCarrier3p, Carrierd4p => myCarrierip,
Carrierd4p => myCarrier4p
)i —-- output

UnitStates => myUnitStatesW

- - Idle state

- Per Phase Staircase - # Set done output to tru

myPhase_U: Mod_PhaseShift port map(@ e
— P_SetDoneFlag: process (Enable, myDone,

—-— Main parameters myPhaseUDone, myPhaseVDone, myPhaseWDone)
- begin
Clock => Clock, if (Enable = '1') then
Enable => Enable, myDone <= myPhaseUDone and myPhaseVDone and
myPhaseWDone;
Run => Run, else
Done => myPhaseUDone, myDone <= '0';
end if;
Reference => Referencel, end process P_SetDoneFlag;

Carrierlp => myCarrierlp,
Carrier2p => myCarrier2p, ——
Carrier3p => myCarrier3p, ——

Carrierd4p => myCarrierdp, — output values
—— output -
UnitStates => myUnitStatesU

), Done <= myDone;

UnitStatesU <= myUnitStatesU;

UnitStatesV <= myUnitStatesV;

UnitStatesW <= myUnitStatesW;
myPhase_V: Mod_PhaseShift port map (

Modular multi-level inverter

end Behavioral;

H.2.VIII LEVELSHIFT.VHD

—— Company: Aalborg University

-- Engineer: Sandu Cristian

-—- Create Date: 17:49:49 12/08/2008
—— Design Name:

—— Module Name:

—-— Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

Staircase - Behavioral

—— Dependencies:

—-— Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_LevelShift is

Port (

Clock: in std_logic; —-- Main system
clock

Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

—-— State machine parameters

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic; —-- High when

the conversion is done

—-- Input data
Reference: in STD_LOGIC_VECTOR(Z3
—— The reference counter

downto 0);

Carrierl in STD_LOGIC_VECTOR (23 downto 0);
—— The carrier counter

Carrier2 in STD_LOGIC_VECTOR (23 downto 0);

Carrier3 in STD_LOGIC_VECTOR (23 downto 0);

Carrier4d in STD_LOGIC_VECTOR (23 downto 0);

—-- Output data

UnitStates : out STD_LOGIC_VECTOR (7 downto 0)
)i

end Mod_LevelShift;

architecture Behavioral of Mod_LevelShift is

- Main parameters

signal myUnitStates: std_logic_vector(/ downto 0)
:= (others => '0');

signal myReference: std_logic_vector (23 downto 0)
:= (others => '0');

signal myDone: std_logic := '0';

signal myToggleStatesUp: std_logic := '0';

signal myToggleStatesDown: std_logic := '0O';
signal myUnitLO std_logic := 'l';
signal myUnitLl std_logic := '0';
signal myUnitL2 std_logic := '1';
signal myUnitL3 std_logic := '0"';

begin

P_ProcessTheStates: process (Clock, Enable, Run,
Reference, myReference,
Carrierl, Carrier2, Carrier3, Carrier4,
myUnitLO, myUnitLl, myUnitL2, myUnitL3,
myToggleStatesDown, myToggleStatesUp)
begin
if (Enable = '0') then
myUnitStates <= (others => '0');
myReference <= Reference;
myDone <= '0';
myUnitLO <= '1';
myUnitLl <= '0';
myUnitL2 <= '1';
myUnitL3 <= '0';
else —— Enable =1
if (Clock'event and Clock = '0') then
if (Carrierl = myReference (2! downto
& "00") then
—-- Togle between the two upper
units
myToggleStatesUp <=
myToggleStatesDown;
end if;
if (Carrier4 = x"000000") then
-— Set the reference
myReference <= Reference;
myToggleStatesDown <= not
myToggleStatesDown;
end if;
end if;
if (Run = '1l') then
- if (myUnitStates(0) = '0O') then

- if (Reference < Carrierlp) then
- myUnitStates(0) <= '1';

- end if;

- else

- if (Reference > Carrierlp) then
- myUnitStates(0) <= '0';

- end if;

- end if;

if (myReference < Carrierl) then

myUnitL0 <= '1';

elsif (myReference > Carrierl) then
myUnitL0 <= '0';

else
null;

end if;

if (myReference < Carrier2) then

myUnitLl <= '1';

elsif (myReference > Carrier2) then
myUnitLl <= '0';

else

0

Main software

null;
end if;

if (myReference < Carrier3) then

myUnitL2 <= '1';

elsif (myReference > Carrier3) then
myUnitL2 <= '0';

else
null;

end if;

if (myReference < Carrier4) then

myUnitL3 <= '1';

elsif (myReference > Carrier4) then
myUnitL3 <= '0';

else
null;

end if;

if (myToggleStatesUp = 'l') then

myUnitStates (4) <= myUnitLO;

myUnitStates (6) <= myUnitL2;
else

myUnitStates (6) <= myUnitLO;

myUnitStates (4) <= myUnitL2;
end if;

if (myToggleStatesDown = '1') then
myUnitStates (5) <= myUnitLl;
myUnitStates (/) <= myUnitL3;
else

myUnitStates (/) <= myUnitLl;
myUnitStates (5) <= myUnitL3;

end if;

myDone <= '1';
else

myDone <= '0';
end if;

end if;
end process P_ProcessTheStates;

- output values

Done <= myDone;

UnitStates(0) <= (not myUnitStates (7)) and Enable;
UnitStates(l) <= (not myUnitStates(©)) and Enable;
UnitStates(2) <= (not myUnitStates(5)) and Enable;
UnitStates(2) <= (not myUnitStates(4)) and Enable;
UnitStates(4) <= myUnitStates(4);
UnitStates(5) <= myUnitStates(5);
UnitStates (6) <= myUnitStates(©);
UnitStates (/) <= myUnitStates(7/);

end Behavioral;

H.2.1X LS_PHASES.VHD

—— Company: Aalborg University

-- Engineer: Sandu Cristian

-—- Create Date: 17:49:49 12/08/2008
—— Design Name:

—— Module Name:

—-— Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

Staircase - Behavioral

—— Dependencies:

—-- Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_LevelShift_Phases is
Port (
Clock: in std_logic; —-- Main system
clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

-— State machine parameters

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic; —-- High when
the conversion is done

—— The submethod (00 - IPD, 01 - APOD, 10 -
POD, 11 - Reserved)
SubMethod: in std_logic_vector (I downto 0);

ReferenceCounterMax: in STD_LOGIC_VECTOR (23
downto 0); —— Main counter for the carriers

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(23
ReferenceV: in STD_LOGIC_VECTOR(23
ReferenceW: in STD_LOGIC_VECTOR(23

downto 0);
downto 0);
downto 0);

—-- Output data

UnitStatesU : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesV : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesW : out STD_LOGIC_VECTOR (/ downto

)i
end Mod_LevelShift_Phases;

- Main parameters

signal myDone: std_logic := '0';

signal myUnitStatesU: std_logic_vector (
signal myUnitStatesV: std_logic_vector (
signal myUnitStatesW: std_logic_vector (

downto 0);
downto 0);
downto 0);

- Carriers

34

Modular multi-level inverter

component Mod_LS_Carriers
Port (
Clock : in STD_LOGIC;
Enable : in STD_LOGIC;

SubMethod in STD_LOGIC_VECTOR(l downto 0);
-- 00 = IPD, 01 - APOD, 10 - POD

ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —— The maximum value for the counters

Carrierl : out STD_LOGIC_VECTOR (23 downto 0);
Carrier2 : out STD_LOGIC_VECTOR (23 downto 0);
Carrier3 : out STD_LOGIC_VECTOR (23 downto 0);
Carrier4 : out STD_LOGIC_VECTOR (23 downto 0)
)i
end component;

signal myCarrierl std_logic_vector (23 downto 0)

:= (others => '0');

signal myCarrier2 std_logic_vector (22 downto 0)
:= (others => '0"');

signal myCarrier3 std_logic_vector (23 downto 0)
:= (others => '0'");

signal myCarrier4 std_logic_vector (22 downto 0)
:= (others => '0'");

- Carriers

myCarriers: Mod_LS_Carriers port map (

—-— Main parameters

Clock => Clock,
Enable => Enable,

SubMethod => SubMethod,

ReferenceCounterMax => ReferenceCounterMax,

Carrierl => myCarrierl,
Carrier2 => myCarrier2,
Carrier3 => myCarrier3,
Carrier4 => myCarrier4d

- Per Phase Staircase

component Mod_LevelShift
port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

—-- Main

—-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—- High

—-- Input data
Reference: in STD_LOGIC_VECTOR (23 downto

0); —- The reference counter

Carrierl in STD_LOGIC_VECTOR (23 downto
0); —— The carrier counter

Carrier2 in STD_LOGIC_VECTOR (23 downto
0);

Carrier3 in STD_LOGIC_VECTOR (23 downto
0);

Carrier4d in STD_LOGIC_VECTOR (23 downto

—-- Output data
UnitStates : out STD_LOGIC_VECTOR (
downto 0)
)i

end component;

signal myPhaseUDone: std_logic := 'l';
signal myPhaseVDone: std_logic :
signal myPhaseWDone: std_logic := 'l';

- Per Phase Staircase

myPhase_U: Mod_LevelShift port map (

—— Main parameters
Clock => Clock,
Enable => Enable,

Run => Run,
Done => myPhaseUDone,

Reference => Referencel,

Carrierl => myCarrierl,
Carrier2 => myCarrier2,
Carrier3 => myCarrier3,
Carrier4 => myCarrier4,

—— output
UnitStates => myUnitStatesU

myPhase_V: Mod_LevelShift port map (

—-— Main parameters
Clock => Clock,
Enable => Enable,

Run => Run,
Done => myPhaseVDone,

Main software

Reference => ReferenceV, -
- Idle state
Carrierl => myCarrierl, -
Carrier2 => myCarrier2, - # Set done output
Carrier3 => myCarrier3, -
Carrier4 => myCarrier4, -

—— output -
UnitStates => myUnitStatesV —

P_SetDoneFlag: process (Enable, myDone,

myPhase_W: Mod_LevelShift port map (myPhaseUDone, myPhaseVDone, myPhaseWDone)
- begin
—-— Main parameters if (Enable = '1') then
- myDone <= myPhaseUDone and myPhaseVDone and
Clock => Clock, myPhaseWDone;
Enable => Enable, else
myDone <= '0';
Run => Run, end if;
Done => myPhaseWDone, end process P_SetDoneFlag;

Reference => ReferenceW,

Carrierl => myCarrierl, -
Carrier2 => myCarrier2, -
Carrier3 => myCarrier3, - output values
Carrier4 => myCarrier4, -

—— output
UnitStates => myUnitStatesW Done <= myDone;

UnitStatesU <= myUnitStatesU;
UnitStatesV <= myUnitStatesV;
UnitStatesW <= myUnitStatesW;

- end Behavioral;

H.2.X STAIRCASE.VHD
777777777777777777777777777 -- Input data
—— Company: Aalborg University MethodSelection: in STD_LOGIC_VECTOR(Z downto
-- Engineer: Sandu Cristian 0); —— Method selection
—— Create Date: 17:49:49 12/08/2008 —— Input data
—— Design Name: ReferenceU: in STD_LOGIC_VECTOR(23 downto 0);
—— Module Name: SimpleUnit2ComplexUnit - Behavioral ReferenceV: in STD_LOGIC_VECTOR(23 downto 0);
—-- Project Name: ReferenceW: in STD_LOGIC_VECTOR(23 downto 0);
—-— Target Devices:
—— Tool versions: ReferenceCounterMax : in STD_LOGIC_VECTOR (23
—— Description: downto 0); —- The maximum value for the counters
—— Dependencies: —— Measured values
- UnitVotlagesU: in STD_LOGIC_VECTOR (143 downto
-— Revision: 0);
—— Revision 0.01 - File Created UnitVotlagesV: in STD_LOGIC_VECTOR (143 downto
-- Additional Comments: 0);
- UnitVotlagesW: in STD_LOGIC_VECTOR (143 downto
0);
library IEEE; —— Current input values
use IEEE.STD_LOGIC_1164.ALL; CurrentOutputU: in STD_LOGIC_VECTOR(1l/ downto
use IEEE.STD_LOGIC_ARITH.ALL; 0);
use IEEE.STD_LOGIC_UNSIGNED.ALL; CurrentOutputV: in STD_LOGIC_VECTOR(1l/ downto
0);
CurrentOutputW: in STD_LOGIC_VECTOR(1l/ downto
entity MainControl is 0);
Port (
Clock: in std_logic; —-- Main system —-- Voltage level definition
clock VoltageLevels: in STD_LOGIC_VECTOR(/! downto
Enable: in std_logic; —-- Enable the 0);

conversion (if disable, set to 0 all outputs)

—-- Output data
Run: in std_logic; —-— If enable, it UnitStatesU : out STD_LOGIC_VECTOR (/ downto
converts the data input, if not, output the last data 0);
UnitStatesV : out STD_LOGIC_VECTOR (/ downto
Done: out std_logic; —-- High when 0);
the conversion is done

36

Modular multi-level inverter

UnitStatesW : out STD_LOGIC_VECTOR (/ downto

—-- Output data

UnitStateOut : out STD_LOGIC_VECTOR (29 downto
0); -- States for 8 * 3 units

UnitLevelOut : out STD_LOGIC_VECTOR (
0) -- Levels for 8 * 3 * 2 legs
)i
end MainControl;

) downto

architecture Behavioral of MainControl is

- State machine variables

type TStateType is (State_DoControl,
State_DoUnitConversion, State_DoMapping,
State_DoTransmit, State_Idle);

signal myCurrentState, myNextState TStateType;

signal myDone

std_logic := '0';

UnitVotlagesV: in STD_LOGIC_VECTOR (143
downto 0);

UnitVotlagesW: in STD_LOGIC_VECTOR (143
downto 0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputV: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputW: in STD_LOGIC_VECTOR(1
downto 0);

—-- Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(/1
downto 0);

—-- Output data
UnitStatesU : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesV : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesW : out STD_LOGIC_VECTOR (
downto 0)
)i
end component;
signal myControlRun:

signal myControlDone:

std_logic := '0';
std_logic := '0';

signal myControlUnitStatesU:
downto 0);

signal myControlUnitStatesV:
downto 0);

signal myControlUnitStatesW:
downto 0);

std_logic_vector (
std_logic_vector (

std_logic_vector (

- Control parameters

component Modulation
Port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
(if disable, set to 0 all outputs)

—-- Main

conversion

—-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—-- High

MethodSelection: in STD_LOGIC_VECTOR (2

downto 0); —— Method selection

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(Z> downto
0);

ReferenceV: in STD_LOGIC_VECTOR (2> downto
0);

ReferenceW: in STD_LOGIC_VECTOR (2> downto

ReferenceCounterMax : in STD_LOGIC_VECTOR
(23 downto 0); —— The maximum value for the counters

—— Measured values
UnitVotlagesU: in STD_LOGIC_VECTOR (143
downto 0);

- Unit Conversion parameters

component Unit2Igbts
Port (

Clock: in std_logic; —-— Main
system clock

Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic; —— High
when the conversion is done

—-- Input data

UnitIn : in STD_LOGIC_VECTOR (downto

0);
CurrentOutput: in STD_LOGIC_VECTOR (1
downto 0);

—-- Output data

UnitStateOut : out STD_LOGIC_VECTOR (

downto 0); -- States for 8 * 3 units
UnitLevelOut : out STD_LOGIC_VECTOR (1
downto 0) —-— Levels for 8 * 3 * 2 legs

)i
end component;

signal myConvDoneU:
signal myConvDoneV:
signal myConvDoneW:

std_logic := '0';
std_logic :=
std_logic :=

Main software

signal myConvRun: std_logic := '0';

signal myConvUnitStatesU: std_logic_vector (

downto 0) := (others => '0');

signal myConvUnitLevelsU: std_logic_vector (L

downto 0) := (others => '0');

signal myConvUnitStatesV: std_logic_vector (

downto 0) := (others => '0');

signal myConvUnitLevelsV: std_logic_vector (L

downto 0) := (others => '0');

signal myConvUnitStatesW: std_logic_vector (

downto 0) := (others => '0');

signal myConvUnitLevelsW: std_logic_vector (L

downto 0) := (others => '0');

— Unit Mapping parameters

component UnitMapping
Port (
Clock: in std_logic;
system clock
Enable: in std_logic;
conversion (if disable, set to 0 all outputs)

—-- Main

—-- Enable the

signal myTransmitRun: std_logic := '0';
signal myTransmitDone: std_logic := '0';
begin

SYNC_PROC: process (Clock, Run)
begin
if (Run = '1l') then
if (Clock'event and Clock = '1') then
myCurrentState <= myNextState;
end if;
else —- Enable = 0
myCurrentState <= State_Idle;
end if;
end process;

OE_DoControl: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoControl then

myControlRun <= '1';
else

myControlRun <= '0';
end if;

end process;

OE_DoConversion: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoUnitConversion then

Run: in std_logic; —-- If enable, myConvRun <= '1';
it converts the data input, if not, output the last else
data myConvRun <= '0';
end if;

Done: out std_logic;
when the conversion is done

—— High end process;

—— Input data from Unit2IGBTs
UnitStateIn : in STD_LOGIC_VECTOR (2
downto 0); -— States for 8 * 3 units
UnitLevellIn : in STD_LOGIC_VECTOR (4
—-— Levels for 8 * 3 * 2 legs

OE_DoMap: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoMapping then

downto 0);

—— Output data from Unit2IGBTs myMapRun <= '1';
UnitStateOut : out STD_LOGIC_VECTOR (29 else

downto 0); —-—- States for 6 * 5 units myMapRun <= '0';
UnitLevelOut : out STD_LOGIC_VECTOR (end if;

downto 0)
)i

end component;

—-— Levels for 6 * 5 * 2 legs end process;

OE_DoTransmit: process (myCurrentState)
signal myMapDone: std_logic := '0'; begin
signal myMapRun: std_logic := '0'; —-—-insert statements to decode internal output
signals

signal myMapUnitStates: std_logic_vector (29 downto ——below is simple example

0) := (others => '0'); if myCurrentState = State_DoTransmit then
signal myMapUnitLevels: std_logic_vector (59 downto myTransmitRun <= '1';
0) := (others => '0'); else
myTransmitRun <= '0';
end if;

end process;

7777777777777777777 NEXT_STATE_DECODE: process (myCurrentState,
— myNextState, myControlDone, myConvDoneU, myConvDoneV,
—— myConvDoneW, myMapDone, myTransmitDone)
- begin
- --declare default state for next_state to avoid
- latches
— myNextState <= myCurrentState;
- Transmit parameters
- —-—insert statements to decode next_state
— case (myCurrentState) is
— when State_DoControl =>
— if myControlDone = '1' then
myNextState <= State_DoUnitConversion;
end if;

Modular multi-level inverter

when State_DoUnitConversion => myUnit2Igbt_U: Unit2Igbts port map (
if myConvDoneU = '1' and myConvDoneV = '1' Clock => Clock,
and myConvDoneW = 'Il' then Enable => Enable,
myNextState <= State_DoMapping;
end if; Run => myConvRun,
when State_DoMapping =>
if myMapDone = '1' then Done => myConvDoneU,
myNextState <= State_DoTransmit;
end if; UnitIn => myControlUnitStatesU,
when State_DoTransmit =>
if myTransmitDone = 'l1' then CurrentOutput => CurrentOutputU,
myNextState <= State_Idle;
end if; UnitStateOut => myConvUnitStatesU,
when others => UnitLevelOut => myConvUnitLevelsU
myNextState <= State_Idle;);
end case;
end process; myUnit2Igbt_V: Unit2Igbts port map (

Clock => Clock,
Enable => Enable,

777777777777777777777777777777777 Run => myConvRun,
— Done => myConvDoneV,
_ UnitIn => myControlUnitStatesV,

- CurrentOutput => CurrentOutputV,
- Modulation

- UnitStateOut => myConvUnitStatesV,
- UnitLevelOut => myConvUnitLevelsV

_)i

- myUnit2Igbt_W: Unit2Igbts port map (
Clock => Clock,
Enable => Enable,

myModulation: Modulation port map(Run => myConvRun,
Clock => Clock,
Enable => Enable, Done => myConvDoneW,
Run => myControlRun, UnitIn => myControlUnitStatesW,

Done => myControlDone,

CurrentOutput => CurrentOutputW,
MethodSelection => MethodSelection,

UnitStateOut => myConvUnitStatesW,
ReferenceU => ReferenceU, UnitLevelOut => myConvUnitLevelsW
ReferenceV => ReferenceV,);
ReferenceW => ReferenceW,

ReferenceCounterMax => ReferenceCounterMax,

UnitVotlagesU => UnitVotlagesU,
UnitVotlagesV => UnitVotlagesV, -
UnitVotlagesW => UnitVotlagesW, -

CurrentOutputU => CurrentOutputU, -
CurrentOutputV => CurrentOutputV, -
CurrentOutputW => CurrentOutputW, -
- Unit mappings
VoltagelLevels => Voltagelevels, ——

UnitStatesU => myControlUnitStatesU, ——
UnitStatesV => myControlUnitStatesV, ——
UnitStatesW => myControlUnitStatesW ——

777 myUnitMapping: UnitMapping port map (
777777777777777777777777777777777 Clock => Clock,
— Enable => Enable,

- Run => myMapRun,
— Done => myMapDone,

— Unit conversion (Unit 2 IGBTs) UnitStateIn(downto)) => myConvUnitStatesU,
- UnitStateIn(!5 downto &) => myConvUnitStatesV,
- UnitStateIn(22 downto 16) => myConvUnitStatesW,

— UnitLevelIn(l5 downto)) => myConvUnitLevelsU,
- UnitLevelIn(31 downto 16) => myConvUnitLevelsV,
777 UnitLevelIn(4/ downto 32) => myConvUnitLevelsW,

UnitStateOut => myMapUnitStates,

Main software

UnitLevelOut => myMapUnitLevels

- # Set done output to tru

P_SetDoneFlag: process (Enable, myDone, myMapDone)
begin
if (Enable = '1') then

myDone <= myMapDone;

else
myDone <= '0';
end if;
end process P_SetDoneFlag;

—-- Output data

UnitStateOut <= myMapUnitStates;
UnitLevelOut <= myMapUnitLevels;

UnitStatesU <= myControlUnitStatesU;
UnitStatesV <= myControlUnitStatesV;
UnitStatesW <= myControlUnitStatesW;

Done <= myDone and myMapDone;

end Behavioral;

H.2.XI

—— Company: Aalborg University
-- Engineer: Sandu Cristian

—- Create Date:
—— Design Name:
—— Module Name:
-— Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

17:49:49 12/08/2008

Staircase - Behavioral

—-— Dependencies:

-- Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mod_Staircase_Phases is

Port (
Clock: in std_logic; —-- Main system
clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)
-— State machine parameters
Run: in std_logic; —— If enable, it

converts the data input, if not,
Done: out std_logic;
the conversion is done

output the last data
-— High when

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(1l/ downto 0);
ReferenceV: in STD_LOGIC_VECTOR(1l/ downto 0);
ReferenceW: in STD_LOGIC_VECTOR(1l7/ downto 0);

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR (143 downto
0);

UnitVotlagesV: in STD_LOGIC_VECTOR (143 downto
0);

UnitVotlagesW: in STD_LOGIC_VECTOR (143 downto
0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1l/ downto

STAIRCASE_PHASES.VHD

CurrentOutputV: in STD_LOGIC_VECTOR(l/ downto
CurrentOutputW: in STD_LOGIC_VECTOR(1l/ downto
-— Voltage level definition

VoltageLevels: in STD_LOGIC_VECTOR(/! downto
—-- Output data

UnitStatesU out STD_LOGIC_VECTOR (/ downto
UnitStatesV out STD_LOGIC_VECTOR (/ downto
UnitStatesW out STD_LOGIC_VECTOR (/ downto

)i

end Mod_Staircase_Phases;

architecture Behavioral of Mod_Staircase_Phases is

- Main parameters

signal myUnitStatesU: std_logic_vector (/ downto
signal myUnitStatesV: std_logic_vector (/ downto
signal myUnitStatesW: std_logic_vector (/ downto

signal myDone:

std_logic := '0';

- Per Phase Staircase

component Mod_Staircase

0);
0);
0);

Modular multi-level inverter

port (
Clock: in std_logic; —-— Main
system clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—- High

—-- Input data
Reference: in STD_LOGIC_VECTOR(1l/ downto

—— Measured values
UnitVoltages: in STD_LOGIC_VECTOR(14:2
downto 0);

—- Current input values
CurrentOutput: in STD_LOGIC_VECTOR (L
downto 0);

—-— Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(
downto 0);

—-- Output data
UnitStates : out STD_LOGIC_VECTOR (
downto 0)
)i

end component;

signal myPhaseUDone: std_logic
signal myPhaseVDone: std_logic
signal myPhaseWDone: std_logic

begin

—— Main parameters
Clock => Clock,
Enable => Enable,

Run => Run,
Done => myPhaseVDone,

Reference => ReferenceV,
UnitVoltages => UnitVotlagesV,
CurrentOutput => CurrentOutputV,
VoltageLevels => VoltagelLevels,

—— output
UnitStates => myUnitStatesV

myPhase_W: Mod_Staircase port map(
—-— Main parameters

Clock => Clock,
Enable => Enable,

Run => Run,
Done => myPhaseWDone,

Reference => ReferenceW,
UnitVoltages => UnitVotlagesW,
CurrentOutput => CurrentOutputW,
VoltageLevels => VoltageLevels,

—— output
UnitStates => myUnitStatesW

- Per Phase Staircase

myPhase_U: Mod_Staircase port map(

—-— Main parameters
Clock => Clock,
Enable => Enable,

Run => Run,
Done => myPhaseUDone,

Reference => ReferenceU,
UnitVoltages => UnitVotlagesU,
CurrentOutput => CurrentOutputU,
VoltageLevels => VoltagelLevels,

—— output
UnitStates => myUnitStatesU

myPhase_V: Mod_Staircase port map(

- Idle state

- # Set done output to tru

P_SetDoneFlag: process (Enable, myDone,

myPhaseUDone, myPhaseVDone, myPhaseWDone)

begin
if (Enable = '1') then
myDone <= myPhaseUDone and myPhaseVDone and
myPhaseWDone;
else
myDone <= '0';
end if;

end process P_SetDoneFlag;

- output values

Done <= myDone;

UnitStatesU <= myUnitStatesU;
UnitStatesV <= myUnitStatesV;
UnitStatesW <= myUnitStatesW;

end Behavioral;

Main software

H.2.XIl UNIT2IGBT.VHD

—— Company: Aalborg University

—-- Engineer: Sandu Cristian

—-— Create Date: 17:49:49 12/08/2008
—- Design Name:

—— Module Name:

—-- Project Name:
—-— Target Devices:
—-- Tool versions:
—— Description:

SimpleUnit2ComplexUnit - Behavioral

—— Dependencies:

—-— Revision:
—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Unit2Igbts is
Port (
Clock: in std_logic; —— Main system
clock
Enable: in std_logic; —— Enable the

conversion (if disable, set to 0 all outputs)

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic;
the conversion is done

—-- High when

—— Input data

UnitIn : in STD_LOGIC_VECTOR (7 downto 0);

CurrentOutput: in STD_LOGIC_VECTOR(!/ downto

—— Output data
UnitStateOut : out STD_LOGIC_VECTOR (
0); -- States for 8 * 3 units
UnitLevelOut : out STD_LOGIC_VECTOR (1
0) -- Levels for 8 * 3 * 2 legs
)i
end Unit2Igbts;

downto

downto

architecture Behavioral of Unit2Igbts is
signal myUnitStates: std_logic_vector(
:= (others => '0');
signal myUnitLevels: std_logic_vector (1
:= (others => '0"');

downto 0)

downto 0)

signal myCurrentSign std_logic := '0';

signal myDone std_logic := '0';

constant mycCurrentJumplLevel_ Poz:
std_logic_vector (17 downto 0) := "00" & x"00AO"; -
- 0,3 Amps = The limit imposed in order to determine
zero crossing

constant mycCurrentJumpLevel_ Neg:
std_logic_vector(l/ downto 0) := "11" & x"FEOHE"; -
- -0,3 Amps = The negative limit imposed for the
negative zero crossing

begin

|

- +———t +———t |

-— T1 | | 3 | |

- /- /=== |

e / \ =1/ N\ |

- N\ - N |

- | | | | |

- +———t +———t |

-— + | | +

R —— e

,,,,,, | ———————— ————

—-- Load| | |

- +———t +———t |

-— T2 | | T4 | |

- /- /=== |

e / \ =11 / \ |

- N\ - N |

- | | | | |

- +———t +———t |

- | | |

- o o +

——- States

J— O T - - - =

- 1: T1 - Capacitor -> DC Bus

— 2: T2

- 3: T3 - DC BUS -> Load

— 4: T4

- 5: T1 T3 — Current sign +/-: DC Bus <->
load ———=—————————~ Used

- 6: T1 T4 - Current sign +: DC Bus —>
capacitor -> load ---- Used

- N T2 T3 - Current sign -: load ->
capacitor -> DC Bus —---- Used

— 8: T2 T4 - Current sign +/-: load <—>

DC Bus

P_Simple2Complex: process(Clock, Enable, UnitIn,

myCurrentSign)
begin
if (Enable = '0') then
myUnitStates <= (others => '0');
myUnitLevels <= (others => '0');
myDone <= '0';
else
if (Run = '1l') then
myUnitStates(/ downto 0) <= (others =>
¥
If (myCurrentSign = '0O') then
myUnitLevels(0) <= '1"';
myUnitLevels(1) <= UnitIn(0);
myUnitLevels(2) <= 'l"';
myUnitLevels(3) <= UnitIn(1);
myUnitLevels(4) <= '1"';
myUnitLevels(5) <= UnitIn(2);
myUnitLevels(6) <= 'l"';
myUnitLevels(7) <= UnitIn(3);
myUnitLevels(8) <= '1"';
myUnitLevels(9) <= UnitIn(4);
myUnitLevels (10) <= '1"';
myUnitLevels(11) <= UnitIn(5);
myUnitLevels (12) <= '1"';
myUnitLevels (13) <= UnitIn(6);
myUnitLevels (14) <= '1"';
myUnitLevels (15) <= UnitIn(7);
else
myUnitLevels(1) <= '1"';
myUnitLevels(0) <= UnitIn(0);
myUnitLevels(3) <= '1"';
myUnitLevels(2) <= UnitIn(1);
myUnitLevels(5) <= '1"';
myUnitLevels(4) <= UnitIn(2);
myUnitLevels(7) <= '1"';
myUnitLevels(6) <= UnitIn(3);
myUnitLevels(9) <= '1"';
myUnitLevels(9) <= UnitIn(4);
myUnitLevels(11) <= '1"';
myUnitLevels (10) <= UnitIn(5);
myUnitLevels (13) <= '1"';

myUnitLevels (12) <= UnitIn(6);

Modular multi-level inverter

myUnitLevels(15) <= '1"';
myUnitLevels (14) <= UnitIn(7/);
end if;

—-— Signal that state has ended
myDone <= '1"';
end if; -- Run
end if; —- Enable
end process P_Simple2Complex;

—— Determine the current sign based on the limits
imposed by the zero crossings

—— Note: The enable sign will be ignored because
when the system would start it will
— have the current sign determined
P_DetermineCurrentSign: process(Clock,
CurrentOutput, myCurrentSign)
begin
if (Clock = 'l' and Clock'event) then
— if (myCurrentSign = '0') then
—— If the current sign is +, monitor
the current value. If the value
—— reached the negative cross value,
the sign will become '-'

if (CurrentOutput <

mycCurrentJumplLevel_Neg) and (CurrentOutput > "10" &
x"0000") then
myCurrentSign <= '1';
end if;
- else
—— If the current sign is '-' then the

current is compared with the
—-- pozitive current limit
if (CurrentOutput >

mycCurrentJumplLevel_Poz) and (CurrentOutput < "10" &
x"0000") then
myCurrentSign <= '0';
end if;
- end if;
end if;

end process P_DetermineCurrentSign;

—— Output data

UnitStateOut <= myUnitStates;
UnitLevelOut <= myUnitLevels;

Done <= myDone;

end Behavioral;

H.2.XI1I

—— Company: Aalborg University
—-- Engineer: Sandu Cristian
-— Create Date: 17:49:49 12/08/2008
—— Design Name:
—— Module Name:
—-- Project Name:
—-— Target Devices:
—-— Tool versions:
—— Description:

—— Dependencies:
-— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity UnitMapping is
Port (
Clock: in std_logic;
clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

Run: in std_logic; —— If enable, it
converts the data input, if not, output the last data

Done: out std_logic;
the conversion is done

—-- High when

—— Input data from Unit2IGBTs

UnitStateIn : in STD_LOGIC_VECTOR (23 downto
0); -— States for 8 * 3 units
UnitLevelIn : in STD_LOGIC_VECTOR (47 downto

0); -— Levels for 8 * 3 * 2 legs

—— Output data from Unit2IGBTs

UNITMAPPING.VHD

SimpleUnit2ComplexUnit - Behavioral

—— Main system

UnitStateOut : out
0); -- States for 6 * 5 units
UnitLevelOut : out STD_LOGIC_VECTOR (
0) -- Levels for 6 * 5 * 2 legs
)i
end UnitMapping;

architecture Behavioral of UnitMapping is
signal myUnitStates: std_logic_vector (29 downto

:= (others => '0"');
signal myUnitLevels: std_logic_vector (59 downto
:= (others => '0"');

signal myDone std_logic := '0';
begin
P_UnitMap: process(Clock, Enable, UnitStateln,
UnitLevellIn)
begin
if (Enable = '1') then
if (Clock = 'l' and Clock'event) then
if (Run = '1') then
myUnitStates (20) <= UnitStateIn(
0); myUnitLevels (40) <= not UnitLevelIn(0);
myUnitLevels (41) <= UnitLevelIn(1);
myUnitStates (19) <= UnitStatelIn(
1) myUnitLevels(38) <= not UnitLevellIn(2);
myUnitLevels (39) <= UnitLevelIn(3);
myUnitStates (18) <= UnitStatelIn(
2); myUnitLevels (36) <= not UnitLevelIn(4);
myUnitLevels (37) <= UnitLevelIn(5);
myUnitStates (23) <= UnitStatelIn(
) myUnitLevels(46) <= not UnitLevellIn(6);
myUnitLevels (47) <= UnitLevelIn(7);
myUnitStates (22) <= UnitStatelIn(
4); myUnitLevels(44) <= not UnitLevellIn(8);
myUnitLevels (45) <= UnitLevelIn(9);
myUnitStates(21) <= UnitStatelIn(
) myUnitLevels(42) <= not UnitLevelIn(10);
myUnitLevels (43) <= UnitLevelIn(11);
myUnitStates (26) <= UnitStateIn(
6); myUnitLevels(52) <= not UnitLevelIn(12);
myUnitLevels (53) <= UnitLevelIn(13);
myUnitStates (25) <= UnitStatelIn(
) myUnitLevels(50) <= not UnitLevelIn(14);
myUnitLevels(51) <= UnitLevelIn(15);

STD_LOGIC_VECTOR (29 downto

) downto

Main software

2); myUnitLevels (
) <= UnitLevelIn(l7);
1) <= UnitStatelIn(

myUnitLevels (

myUnitStates(2) <= UnitStateIn(
4) <= not UnitLevellIn(1l6);

myUnitStates(

9); myUnitLevels(2) <= not UnitLevelIn(18);

myUnitLevels (

UnitStateIn(10);
UnitLevelIn(20);
UnitLevelIn(21);

UnitStateIn(l1l);
UnitLevelIn(22);
UnitLevelIn(22);

UnitStatelIn(l2);
UnitLevelIn(24);
UnitLevelIn(25);

UnitStatelIn(l12);
UnitLevelIn(26);
UnitLevelIn(27);

UnitStateIn(14);
UnitLevelIn(28);
UnitLevelIn(29);

UnitStateIn(15);
UnitLevelIn(30);
UnitLevelIn(31);

UnitStateIn(16);
UnitLevelIn(32);
UnitLevelIn(32);

UnitStateIn(l7/);
UnitLevelIn(34);
UnitLevelIn(35);

UnitStateIn(18);
UnitLevelIn(36);
UnitLevelIn(37);

UnitStateIn(19);
UnitLevelIn(32);
UnitLevelIn(39);

) <= UnitLevelIn(19);

myUnitStates (0)
myUnitLevels (0)
myUnitLevels (1)

myUnitStates (&)
myUnitLevels (16)
myUnitLevels (17)

myUnitStates(7)
myUnitLevels (14)
myUnitLevels (15)

myUnitStates (©)
myUnitLevels (12)
myUnitLevels (13)

myUnitStates (14)
myUnitLevels (28)
myUnitLevels (29)

myUnitStates (123)
myUnitLevels (26)
myUnitLevels (27)

myUnitStates()
myUnitLevels (10)
myUnitLevels (11)

myUnitStates (4)
myUnitLevels (&)
myUnitLevels(9)

myUnitStates (2)
myUnitLevels (©)
myUnitLevels(/)

myUnitStates (11)
myUnitLevels (22)
myUnitLevels (23)

myUnitStates (10) <=
myUnitLevels (20) <= not
myUnitLevels (21) <=

UnitStateIn(20);
UnitLevelIn(40);
UnitLevelIn(41);
myUnitStates(9) <=
myUnitLevels (18) <= not
myUnitLevels (19) <=

UnitStateIn(21);
UnitLevelIn(42);
UnitLevelIn(42);
myUnitStates (17) <=
myUnitLevels (34) <= not
myUnitLevels (35) <=

UnitStateIn(22);
UnitLevelIn(44);
UnitLevelIn(45);
myUnitStates (16) <=
myUnitLevels (32) <= not
myUnitLevels (33) <=

UnitStatelIn(22);
UnitLevelIn(46);
UnitLevelIn(47);

—-- Signal that state has ended

myDone <= '1';
else -- Run is set to 0
myDone <= '0';

-- no change for output
null;
end if;
end if; —-- Clock event (1)
else
myUnitStates <=
myUnitLevels <=
myDone <= '0';
end if;
end process P_UnitMap;

(others =>
(others =>

0

0

—-- Output data

UnitStateOut <= myUnitStates;
UnitLevelOut <= myUnitLevels;

Done <= myDone;

end Behavioral;

H.2.XIV

—— Company: Aalborg University

-— Engineer:

—- Create Date:
—— Design Name:
—— Module Name:
—-— Project Name:

—-— Target Devices:
—— Tool versions:

—— Description:
—-— Dependencies:

—-— Revision:

—- Revision 0.01

Sandu Cristian

- File Created

—— Additional Comments:

17:49:49 12/08/2008

SimpleUnit2ComplexUnit - Behavioral

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity MainControl is

Port (
Clock:
clock

in std_logic;

—-- Main system

MAINSTATEMACHINE.VHD

Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

Run:
converts the data input,

in std_logic; —— If enable, it
if not, output the last data

Done: out std_logic;
the conversion is done

—-— High when

—-- Input data
MethodSelection: in STD_LOGIC_VECTOR (2 downto
0); —-- Method selection

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(23 downto 0);
ReferenceV: in STD_LOGIC_VECTOR(23 downto 0);
ReferenceW: in STD_LOGIC_VECTOR(23 downto 0);

ReferenceCounterMax : in STD_LOGIC_VECTOR (23
downto 0); —— The maximum value for the counters

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR(L43 downto
0);

UnitVotlagesV: in STD_LOGIC_VECTOR(L43 downto
0);

UnitVotlagesW: in STD_LOGIC_VECTOR(L43 downto
0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1l/ downto

44

Modular multi-level inverter

CurrentOutputV: in STD_LOGIC_VECTOR(1l/ downto

CurrentOutputW: in STD_LOGIC_VECTOR(1l/ downto

-— Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(/! downto

—-- Output data

UnitStatesU : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesV : out STD_LOGIC_VECTOR (/ downto
0);

UnitStatesW : out STD_LOGIC_VECTOR (/ downto

—-- Output data

UnitStateOut : out STD_LOGIC_VECTOR (29 downto
0); -- States for 8 * 3 units

UnitLevelOut : out STD_LOGIC_VECTOR (
0) -- Levels for 8 * 3 * 2 legs
)i
end MainControl;

) downto

architecture Behavioral of MainControl is

- State machine variables

type TStateType is (State_DoControl,
State_DoUnitConversion, State_DoMapping,
State_DoTransmit, State_Idle);

signal myCurrentState, myNextState TStateType;

signal myDone std_logic := '0"';

- Control parameters

component Modulation

Port (
Clock: in std_logic; —-— Main
system clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

-— State machine parameters

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—- High

MethodSelection: in STD_LOGIC_VECTOR (2

downto 0); —— Method selection

—-- Input data

ReferenceU: in STD_LOGIC_VECTOR(Z> downto
0);

ReferenceV: in STD_LOGIC_VECTOR(Z> downto
0);

ReferenceW: in STD_LOGIC_VECTOR(2> downto

ReferenceCounterMax : in STD_LOGIC_VECTOR
(23 downto 0); —— The maximum value for the counters

—— Measured values

UnitVotlagesU: in STD_LOGIC_VECTOR (143
downto 0);

UnitVotlagesV: in STD_LOGIC_VECTOR (143
downto 0);

UnitVotlagesW: in STD_LOGIC_VECTOR (143

downto 0);

—- Current input values

CurrentOutputU: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputV: in STD_LOGIC_VECTOR(1
downto 0);

CurrentOutputW: in STD_LOGIC_VECTOR(1

downto 0);

—-- Voltage level definition
VoltageLevels: in STD_LOGIC_VECTOR(/1
downto 0);

—-- Output data
UnitStatesU : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesV : out STD_LOGIC_VECTOR (
downto 0);
UnitStatesW : out STD_LOGIC_VECTOR (
downto 0)
)i
end component;
signal myControlRun:

signal myControlDone:

o

std_logic := '0';
std_logic := '0';
signal myControlUnitStatesU: std_logic_vector(
downto 0);
signal myControlUnitStatesV:
downto 0);
signal myControlUnitStatesW:
downto 0);

std_logic_vector (

std_logic_vector(

- Unit Conversion parameters

component Unit2Igbts

Port (

Clock: in std_logic; —-— Main
system clock

Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic; —- High
when the conversion is done

—-- Input data

UnitIn : in STD_LOGIC_VECTOR (downto

Main software

CurrentOutput: in STD_LOGIC_VECTOR (1
downto 0);

—— Output data

UnitStateOut : out STD_LOGIC_VECTOR (
downto 0); -- States for 8 * 3 units

UnitLevelOut : out STD_LOGIC_VECTOR (L
downto 0) —— Levels for 8 * 3 * 2 legs
)i

end component;

signal myConvDoneU: std_logic
signal myConvDoneV: std_logic
signal myConvDoneW: std_logic
signal myConvRun: std_logic := '0';

signal myConvUnitStatesU: std_logic_vector (
downto 0) := (others => '0');

signal myConvUnitLevelsU: std_logic_vector (L
downto 0) := (others => '0');

signal myConvUnitStatesV: std_logic_vector (
downto 0) := (others => '0');

signal myConvUnitLevelsV: std_logic_vector (L
downto 0) := (others => '0');

signal myConvUnitStatesW: std_logic_vector (
downto 0) := (others => '0');

signal myConvUnitLevelsW: std_logic_vector (L
downto 0) := (others => '0');

— Unit Mapping parameters

component UnitMapping
Port (
Clock: in std_logic;
system clock
Enable: in std_logic; —— Enable the
conversion (if disable, set to 0 all outputs)

—-- Main

Run: in std_logic; —— If enable,
it converts the data input, if not, output the last
data

Done: out std_logic;
when the conversion is done

—— High

—— Input data from Unit2IGBTs
UnitStateIn : in STD_LOGIC_VECTOR (2
downto 0); -— States for 8 * 3 units
UnitLevellIn : in STD_LOGIC_VECTOR (4
downto 0); —— Levels for 8 * 3 * 2 legs
—— Output data from Unit2IGBTs
UnitStateOut : out STD_LOGIC_VECTOR (29
downto 0); -- States for 6 * 5 units
UnitLevelOut : out STD_LOGIC_VECTOR (
downto 0) —-— Levels for 6 * 5 * 2 legs
)i

end component;

signal myMapDone: std_logic := '0';
signal myMapRun: std_logic := '0';

signal myMapUnitStates: std_logic_vector (29 downto
0) := (others => '0');

signal myMapUnitLevels: std_logic_vector (
0) := (others => '0');

) downto

- Transmit parameters

signal myTransmitRun: std_logic := '0';
signal myTransmitDone: std_logic := '0';
begin

SYNC_PROC: process (Clock, Run)
begin
if (Run = '1l') then
if (Clock'event and Clock = '1') then
myCurrentState <= myNextState;
end if;
else —-- Enable = 0
myCurrentState <= State_Idle;
end if;
end process;

OE_DoControl: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoControl then
.

myControlRun <= ' ;
else

myControlRun <= '0';
end if;

end process;

OE_DoConversion: process (myCurrentState)
begin
——insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoUnitConversion then
myConvRun <= '1';
else
myConvRun <= '0';
end if;
end process;

OE_DoMap: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoMapping then

myMapRun <= '1';
else

myMapRun <= '0';
end if;

end process;

OE_DoTransmit: process (myCurrentState)
begin
—-—insert statements to decode internal output
signals
—-below is simple example
if myCurrentState = State_DoTransmit then

myTransmitRun <= '1';
else

myTransmitRun <= '0';
end if;

end process;

Modular multi-level inverter

NEXT_STATE_DECODE: process (myCurrentState, —
myNextState, myControlDone, myConvDoneU, myConvDoneV, -
myConvDoneW, myMapDone, myTransmitDone) —
begin -
--declare default state for next_state to avoid -
latches — Unit conversion (Unit 2 IGBTs)
myNextState <= myCurrentState; -

—-—insert statements to decode next_state -
case (myCurrentState) is —
when State_DoControl => -

if myControlDone = '1' then @
myNextState <= State_DoUnitConversion; - —-——--——————mmmmm—
end if;
when State_DoUnitConversion => myUnit2Igbt_U: Unit2Igbts port map (
if myConvDoneU = '1' and myConvDoneV = '1' Clock => Clock,
and myConvDoneW = 'l' then Enable => Enable,
myNextState <= State_DoMapping;
end if; Run => myConvRun,
when State_DoMapping =>
if myMapDone = '1' then Done => myConvDoneU,
myNextState <= State_DoTransmit;
end if; UnitIn => myControlUnitStatesU,
when State_DoTransmit =>
if myTransmitDone = '1' then CurrentOutput => CurrentOutputU,
myNextState <= State_Idle;
end if; UnitStateOut => myConvUnitStatesU,
when others => UnitLevelOut => myConvUnitLevelsU
myNextState <= State_Idle;);
end case;
end process; myUnit2Igbt_V: Unit2Igbts port map (

Clock => Clock,
Enable => Enable,

Run => myConvRun,
- Done => myConvDoneV,
- UnitIn => myControlUnitStatesV,

- CurrentOutput => CurrentOutputV,
- Modulation

- UnitStateOut => myConvUnitStatesV,
- UnitLevelOut => myConvUnitLevelsV
__)i

- myUnit2Igbt_W: Unit2Igbts port map (
Clock => Clock,
Enable => Enable,

myModulation: Modulation port map(Run => myConvRun,
Clock => Clock,
Enable => Enable, Done => myConvDoneW,
Run => myControlRun, UnitIn => myControlUnitStatesW,

Done => myControlDone,

CurrentOutput => CurrentOutputW,
MethodSelection => MethodSelection,

UnitStateOut => myConvUnitStatesW,
ReferenceU => ReferenceU, UnitLevelOut => myConvUnitLevelsW
ReferenceV => ReferenceV,);
ReferenceW => ReferenceW,

ReferenceCounterMax => ReferenceCounterMax,

UnitVotlagesU => UnitVotlagesU, oo
UnitVotlagesV => UnitVotlagesV, —

UnitVotlagesW => UnitVotlagesW, —

CurrentOutputU => CurrentOutputU, -
CurrentOutputV => CurrentOutputV, -
CurrentOutputW => CurrentOutputW, -
- Unit mappings
VoltagelLevels => Voltagelevels, ——

UnitStatesU => myControlUnitStatesU, ——
UnitStatesV => myControlUnitStatesV, ——
UnitStatesW => myControlUnitStatesW ——

777 myUnitMapping: UnitMapping port map (
777777777777777777777777777777777 Clock => Clock,

Main software

Enable => Enable,

Run => myMapRun,

Done => myMapDone,

UnitStatelIn(downto 0) => myConvUnitStatesU,
UnitStateIn(l5 downto &) => myConvUnitStatesV,
UnitStateIn(23 downto 16) => myConvUnitStatesW,
UnitLevelIn(!5 downto 0) => myConvUnitLevelsU,
UnitLevelIn(3]l downto 16) => myConvUnitLevelsV,

UnitLevelIn(4/ downto 32) => myConvUnitLevelsW,

UnitStateOut => myMapUnitStates,
UnitLevelOut => myMapUnitLevels

- # Set done output to tru

P_SetDoneFlag: process (Enable, myDone, myMapDone)

begin
if (Enable = '1') then
myDone <= myMapDone;
else
myDone <= '0';
end if;

end process P_SetDoneFlag;

—-- Output data
UnitStateOut <= myMapUnitStates;
UnitLevelOut <= myMapUnitLevels;

UnitStatesU <= myControlUnitStatesU;
UnitStatesV <= myControlUnitStatesV;
UnitStatesW <= myControlUnitStatesW;

Done <= myDone and myMapDone;

end Behavioral;

Switch Mode Power Supply
APPENDIX I. SWITCH MODE POWER SUPPLY

|I.1.I CALCULATION AND DESIGN CONSIDERATIONS

To determine the right components for the supply calculations were made. The make an appropriate
design steps have to be followed so a standard design was considered. The main steps that have to be
followed:

® Power calculation to determine the proper switch unit.
e Transformer design

e The basic parameters for control

® Filter design

For the calculation the forward diode voltage was considered to be:
Vgrw=0.6 [V]
Equation I.1 Forward diode voltage
Before any converter calculation is to be made, the total minimum and maximum output power
of the converter will be calculated asPy,,;,, and Py ax:
Pomin = (Vs1 + Vagw) Toamin + (Vez + Vasw) Tozmin +(Ves + Vasw) Tosmin +(Vea + Vasw) Ioamax
Pomin = 11.6 [W]
Where:
- Pyin is the minimum output power
Pomax = (Vs1 + Vagw) lotmax + (Vsz + Vagw) Tozmax +(Vss + Vagw) losmax +(Vea + Vagw) Toamax
Pymax = 84.4 [W]
Equation .2 The SWMP minimum and maximum power rating
Where:
- P ax is the maximum output power

Calculate the total power :

1 1
Prot = Pams(; +1) = 844 (ﬁ + 1) = 173.24[W]

Chosen frequency f;,, = 75 [KHz]

Modular Multi-Level Inverter

1
=T =—=13.3[us]
fsw

Equation I.3 Total switching period
Where:

fsw is the switching frequency
T is the period

Transformer Efficiency n = 0.95

Calculate the electrical coefficient :
K, = 0.145- (K;)" - (fu)? - (By)? - 10*

K, = 0.145 - (4)2 - (73 - 10%)2 - (0.2)% - 10* = 52200

Where:

- K; = 4 due to square wave input signal K = 4.44 due to sine wave
- fsw is the switching frequency
- B,, = 0.2 is the flux density [Tesla]

Calculate the geometry coefficient :

Pt 173.24
K = =
97 2.K,-a 2-52200-0.5

= 0.0331 [cm®]

Where:

- K, is the electrical coefficient
- P;,; is the total power
- a is the regulation factor [%]

The leakage coefficient of the transformer: K=0.95

The total energy stored in the transformer will be :

1
Weoe = = = 1.052 /]

W, P,
Wiiyback = ————=1.183- 1073 [J]
fow

Equation I.4 Total energy stored in the transformer
Where:

W,,: total energy in the transformer
Wriypack total energy from the converter

Switch Mode Power Supply

Based on the total amount of power the core of the transformer can be chosen and according to
calculated geometry coefficient and frequency and energy the resulting core is (2): ETD-34

The core has the following characteristics:

- A, = 36.8 [cm?] surface area of the transformer
- A, =0.716[cm*] area product

- W, =1.19 [cm?] window area

- A, = 0.6 [cm?] effective iron area

- MLT = 5.2 [cm] mean length turn

- Wy, = 22 [grams] iron weight

- Wi, = 22.226 [grams] copper weight
- Ly = 3[cm] total length

- W; = 2[cm] total width

- Hy = 3[cm] total height

- MPL = 6.7[cm] magnetic path length

- G = 1.94[cm] window length

- F = 0.615[cm] window width

Maximum switching stress of the mosfet: Ky, = 0.8
V}m = be * Vinmin = 480 [V]
Where:

- Vi is the min voltage
- K, switching stress
- Viumin is the min input voltage

Maximum switching voltage of the mosfet:
Vas = (Fopixe + 1) (Vinmax + Vym)
Vys = 1792 V]
Equation I.5 The voltage drop on the MOSFET
Where:

- Vys is the voltage drain to source
- Vinmasx is the max input voltage
- Fgpike safe factor

Calculation of max duty cycle V,,,, = DV,

Ton+ T, + Ty =T = fi the chosen D, = 0.1

sw

Equation I.6 ON state period for MOSFET

Where:

- T,, period of time when the MOSFET is in conduction

Modular Multi-Level Inverter

T, recovery time
T, dead time

R, = 1.8[Q]
Equation I.7 Drain to source resistance
Where:
R, drain to source resistance

_ Poutmax

Vdson - Rdson

. Vinmin
Where:

Vison the voltage drop when the switch is in conduction

v 84.4
dson ™ () 95 . 800

1.8 = 0.266 [V]
Viiy = Ngy (Vsl + Vdfw)
Ve = 30.76(15 + 0.6)
Ve, = 480 V]
Where:

Vfiy voltage in the converter

V}ly(l - Ddt)T
(Vinmin - Vds)K + I/}ly

T,p,max =

479.85(1 — 0.1)1.33- 1075
(600 — 0.266)0.95 + 479.85

T,pymax =

T,,max = 5.47 [us]
Equation .8 The maximum ON period for the switch
Where:

T,,max the max period of time when the switch can be on

I/}ly (1 - Ddt)T
(Vinmax - Vds)K + I/}ly

Typmin =

479.85(1 — 0.1)1.33- 1075
(600 — 0.266)0.95 + 479.85

Typmin =

T,,min = 4.633 [us]
Equation 1.9 The minimum ON period for the switch

Where:

Switch Mode Power Supply

T,,min the min period of time when the switch can be on

Maximum duty cycle: D, = T”";nax = 0.83
Minimum duty cycle: D,,;,, = Ton™mit _ 1384
2Wfly'fsw

Primary peak current: [, = -
yP Pk T . min Dimax

. 2-1.183-1073-75-103
pk 600 - 0.411

Ly, = 0.8[A]
Equation .10 Primary peak current

Ipk |Topmax
Primary RMS current : I =2 [en_
y prms \/§ T

; 0719 [5.47-1076
prms /3 ,]1.33-1075

Equation .11 Primary RMS current

Lyrms = 0.266 [A] the chosen wire type is Ay,#35 with d; > 0.14 [mm]
. PO'U. max
Primary DC current : Ipac = _Vzm:unﬂ
84.4

Toac = 5000411

Lyae = 0.2 [A]
Equation .12 Primary DC current

Calculation of number of turns necessary for the primary winding:

N = v, - 10* B 173.24 - 10*
P Ki Ky By fow-A, 4:04:02-75-10%-0.7

N, = 250 [turns]
Equation .13 Primary number of turns

Where:

- K; = 4 due to square wave input signal K = 4.44 due to sine wave

- K,, window utilization factor

- fsw is the switching frequency

- B,, = 0.2 is the flux density [Tesla]
- A, core area

Calculation of current density for primary:

Modular Multi-Level Inverter

B P, - 10* B 173.24 - 10*
K;Ky By faw-A, 4-04-02-75-10%-0.176

J

=101 4
] - [sz]
Equation I.14 Current density

Where:

- K; = 4 due to square wave input signal K = 4.44 due to sine wave
- K,, window utilization factor

- fsw is the switching frequency

- B,, = 0.2 is the flux density [Tesla]

- Ay, area product

Calculate the primary wire area :

I 0.716
_ prms _ _ 2
= = 0.0174 [cm

] 100.81 [em”]

Ayp =
Equation I.15 Cross section of the wire
The chosen wire for primary is: AW G# 14 with area a=0.02002 [cm’] with % = 82.8

Calculation of primary inductance:

2-W,
LP = Izﬂy
14
_2-1.183-1073
P 0.7192
L, = 4.5 [mH]

Equation I.16 Primary inductance

Calculation of primary resistance:
VL9
R, = (MLT)-(N,) -—-107% = (5.2) - (191) - 82.8 - 107 = 0.082 []
cm

Equation .17 Primary resistance

Calculation of primary copper loss:
B, =(1,)" - (R,) = (0.11)% - 0.082 = 9.92 - 10~* [W]

Equation 1.18 Losses for primary

Switch Mode Power Supply

Determine the second number of turns :

Vi + Vi 15406
= -
s Vi 479.85

= N;; = 4.8 turns

Vo + Vi 12406
Vi 479.85

2 = N, = 3.9 turns

Vs + Vi 5406
.= =
s Viiy 479.85

= Ny = 1.9 turns

Ve + Vi 12406
7 479.85

” = Ny, = 3.9 turns

Equation .19 The number of turns for the secondary windings

First slave output:

I _ 2. Islmax
otpk 1- Dmax - Ddt

L 2-2
stk ™ 1 _ 0.411 - 0.1

Equation .20 Secondary 1 — Peak current
Ig1px = 8.17 [A] the chosen wire type and size Ay, #35 with d; = 0.14 [mm]

Islpk

RMS current : Ig;,ms = N 1= Dpax —Dat
_ Islpk
leams = “EVT= 041101

Lsyrms = 3.29 [4]
Equation I.21 Secondary 2 — RMS current
Ly = N& - L, = 4.75 [uH]

Equation I.22 Inductance for the first output

Second slave output

I _ 2. IsZmax
ozpk 1- Dmax - Ddt

L 2-2
s2pk ™ 1 _ 0.411 - 0.1

Equation I.23 Secondary 2 — Peak current

Modular Multi-Level Inverter

Iszp = 4.08 [A] the chosen wire type and size Ay, #38 with d, > 0.12 [mm]

1
RMS current : Isprms = Sjgk 1 — Dpax —Dge

4.08
Lgrms = f‘/l —0411—0.1

Liyrms = 1.64 [A4]
Equation .24 Secondary 2 — RMS current
Ly, = N% - L, = 6.05 [uH]
Equation .25 Secondary 2 — Inductance

3" slave output:

2. Is3max

I =
o3k 1- Dmax - Ddt

L 2-5
s3pk ™ 1 _0.411 - 0.1

Equation I.26 Secondary 3 — Peak current

Iszpr = 20.44 [A] the chosen wire type and size Ay #14 with d3 > 1.7 [mm]

I
RMS current : Lizpms = %:"‘ 1— Dy —Dy

20.44
Lzrms = f‘/l —0411—-0.1

Ls3rms = 8.25 [4]
Equation .27 Secondary 3 — RMS current
Lz = N&- L, =308 [uH]

Equation .28 Secondary 3 — Inductance

4" slave output:

2. Is4max

I =
o4pk 1- Dmax - Ddt

L 2-1
stk ™1 _ 0411 - 0.1

Equation 1.29 Secondary 4 — Peak current

Switch Mode Power Supply _

Isyp = 4.08 [A] the chosen wire type and size Ay #38 with d3 > 0.12 [mm]

1
RMS current : Isarms = Sjgk 1 — Dpax —Dge

4.08
Lgrms = f\/l —0411—0.1

Lyrms = 1.64 [4]
Equation .30 Secondary 4 — RMS current
Ly = N& - L, = 6.05 [uH]

Equation .31 Secondary 4 — Inductance

[.1.11 CAPACITIVE FILTER

The capacitive filter is required in order to provide a smooth voltage at the output for each output of
the inverter. The capacitive filter was sized with respect to the maximum duty cycle, duty cycle reached when
the DC bus voltage is at the lowest value.

T,,max T,nma

X
Cfilter = Ispkm = leilter = slpkm = 575.63[uF]

T,,max
Caruter = s20k 025 505.613[uF]
rp .

T,,max

Csritter = 53pkm =2.54- 103[uF]

T,,max
Carurter = 4Pk 025 505.613[uF]
rp .

Due to standard values of the capacitors, the following capacitors have been used:

Cfilter = szilter = C4filter = 1[mF]

C3filter = 3.3[mF]

