
A Survey of Implementation Issues from a FPGA-based
Multi-Standard Receiver for SATCOM Handheld

Receiver on the TMS DSP Platform Application

Master Thesis

APPLIED SIGNAL PROCESSING
AND IMPLEMENTATION (ASPI)

Group 1044
Jean-Michel LORY

ii

Abstract

This Master Thesis project for the
“Applied Signal Processing and
Implementation” specialization at Aalborg
University is a study of polyphase
channelizer for multi-standard radio
receiver on DSP Platform. The project
focuses on SATCOM handheld receiver,
which require efficient FIR filters
utilization to process data received. In our
case, WLAN and UMTS applications are
chosen. Bandpass sampling techniques at
840MHz are used to alias both combined
bands. The output channels are required at
baseband and with a sampling rate of
20MHz and 61.44MHz. Simulations are
performed on MatLab. The prototype filter
for WLAN standard is 150-taps length,
partitioned in 5 sub-filters. In UMTS case,
the length of the prototype filter is 2520
taps, partitioned in 210 sub-filters.
Polyphase filter bank structures are
studied. Parallel MAC is selected for the
final implementation. The estimation of
number of cycles to process data for one
WLAN sub-channel is done. This
estimation does not respect time
constraints (process time through the sub-
channel is bigger than 2 data sample
intervals). Some optimizations are
described to reduce the execution time
without improvements to respect
constraints. The implementation shows that
the execution time is bigger than
estimation. Optimizations developed
before allow reducing considerably this
time but it does not respect time constraints
yet. It is concluded that it is not possible to
implement this application on DSP
TMS320C6713 due to frequency
specifications of the application.

Institute for Electronic Systems
Fredrik Bajers Vej 7B
Telefon 96 35 98 36
Fax 98 15 36 62
http://www.esn.aau.dk

Title:
Power Consumption in DFTs
for OFDM Systems

Project period:
P10, fall semester 2008

Project group:
ASPI 08gr1042

Members:
Peter August Simonsen
peter@augusts.dk

Jes Toft Kristensen
jes@buskefjomp.dk

Supervisors:
Anders B. Olsen
Jesper M. Kristensen

Copies: 6

Pages in report: 106

Appendices: 1 CD

Printed June 20, 2008

Abstract:

This Master Thesis of “Applied Signal Process-
ing and Implementation” specialization at Aalborg
University is an investigation of FFT algorithms in
OFDM receivers and the algorithms power usage on
customizable platforms.
The project focuses on mobile applications and co-
operative radios, wherein only a part of the received
frequency spectrum is needed. This can be ex-
ploited by special FFT algorithms to yield a lower
operations count and intuitively a lower power con-
sumption. However, what is not reflected in the op-
erations count is the power-consumption of the con-
trolling HW/SW. This thesis seeks to investigate the
possibilities and tradeoffs, with regards to power
usage, when computing a subset of the frequency
spectrum, as opposed to the full spectrum.
Initially, the concept of cooperative radio and a sig-
nal model for OFDM is defined. Afterwards, two
Fourier transform algorithms - a full Split-Radix
FFT and an FFT algorithm computing only a subset
of the spectrum (SFFT) - are examined and mapped
to a Cyclone III FPGA architecture. Next, the
power performance of each implementation is ex-
amined and an investigation into possible improve-
ments is performed. In conclusion the algorithms
are compared to a performance measure of com-
putational complexity traditionally used to theoreti-
cally evaluate FFT algorithms.
The test results shows that the SFFT is not feasible
with regards to power usage, without further im-
provements. These improvements include, among
others, an enhanced power-off mechanism when
subsystems are not in use. If a power-off state is
introduced it is predicted that the SFFT becomes
feasible and that computational complexity corre-
sponds to the power usage for this implementation.

Title:

Implementation from a FPGA-based
multi-standard receiver on DSP platform

Theme:

Implementation for Polyphase
Channelizer

Project Period:

10th Semester
February 2009 to June 2009

Project Group:

ASPI 09gr1044

Participant:

Jean-Michel Lory
jlory@es.aau.dk

Supervisors:

Peter Koch (CSDR)
Mehmood-Ur-Rehman Awan (CSDR)

Publications: 5

Number of pages: 68

Appendices: 1 CD-ROM

Finished: 3rd of June 2009

iii

iv

Jean-Michel Lory

Preface

This report is the documentation for the Master Thesis in Applied Signal
Processing Implementation (ASPI), and is written by the group 09gr1044 at the
Institute of Electronics Systems at Alborg University (AAU). This report, entitled “A
Survey of Implementation Issues from a FPGA-based Multi-Standard Receiver for
SATCOM Handheld Receiver on the TMS DSP Platform Application”, spans from
February 1st, 2009 to June 3rd, 2009. Peter Koch, Associate Professor at AAU and
Mehmood-Ur-Rehman Awan, PhD fellow at AAU, supervised it during this period.

The introduction provides a general discussion on SDR, as well as the problem
definition. Polyphase channelizer, for UMTS and WLAN, is examined in the second
chapter. Model Design is applied on the application of this project. Simulations are
performed and complexity algorithm is carried out. Then, the algorithm is mapped on
the DSP processor and tests are carried out for the final implementation. Finally, the
results are concluded. A CD is attached to the report. It contains the code and test
material produced during the project as well as an electronic version of this report in
pdf.

v

iii

Table of Contents

Abstract...ii 
Preface..iv 

1 Introduction...1 
1.1 General Discussion on SDR...1 
1.2 Project subject ..2 
1.5 Problem Definition ...4 

2 Application Description...5 
2.1 Project Specification...5 
2.2 System Design...7 
2.3 Technical problem ... 12 

3 Design Methodology... 15 
3.1 Overview.. 15 
3.2 The A3 Model .. 15 
3.3 The Rugby Meta­Model ... 16 

4 Algorithm Analysis ... 21 
4.1 Overview.. 21 
4.2 Algorithms .. 21 
4.2.1 Signal Theory ...21 
4.2.2 Simulation ...23 
4.2.3 Complexity Analysis..27 

5 Algorithm to Architecture Mapping.. 35 
5.1 Overview.. 35 
5.2 Commutator ... 36 
5.3 FIR Filter .. 38 
5.4 Discrete Fourier Transform.. 40 
5.5 Optimizations .. 42 
5.5.1 Circular Buffer ...42 
5.5.2 Deterministic Complex Terms..44 
5.5.3 Building Optimizations..44 

6 Implementation... 45 
6.1 Overview.. 45 
6.2 Test Definition ... 45 
6.3 Tests Results .. 46 
6.3.1 One WLAN Sub‐Channel..46 
6.3.2 Results After Optimizations ..47 

7 Conclusion & Perspectives... 51 
7.1 Conclusions... 51 
7.2 Perspectives ... 52 

Bibliography... 53 

Appendix A: Polyphase Channelizer .. 55 

Appendix B: DSP Architecture.. 63 

iv

1

Bandpass Filter
Baseband
Processing

DSP

Low Noise
Amplifier

Analog Digital
Converter

Antenna

Figure 1.10: Ideal software radio receiver. The ADC is as close as possible to the Antenna.

1 Introduction
1.1 General Discussion on SDR

Software Defined Radio (SDR) system is a radio communication system (composed
of filters, amplifiers, modulators, etc) that is defined mainly by software instead of
hardware. SDR is achieved on many applications using receivers or transmitters for
handheld devices (cellular phone, laptop, Global Positioning Syst, etc). The flexibility
of a software radio system is to be able to process on multiple applications, without
being blocked by a particular standard. This system has to be compatible with any
defined radio mobiles. It is reconfigurable, for example on Digital Signal Processor
(DSP), which implement in real time radio interface and upper layer protocols. Two
main goals have to be respect to develop a software radio system:

- The Analog-Digital Conversion has to be as close as possible to the Antenna,
in the Radio Frequency (RF) domain.

- The Application Specific Integrated Circuits (ASICs) has to be replaced by
DSPs for baseband signal processing, in order to define as many radio
functionalities as possible in software.

The ideal concept of a SDR system is to go through the digital domain as close as

possible to the Antenna. The Figure [1.10] shows the scheme of an ideal software
radio receiver. This ideal system is not completely realizable, due to the problem of
sampling of the Radio Frequency (RF) signal.

Indeed, it is impossible to build Antennas and LNAs on a bandwidth ranging
from hundreds of megahertz to tens of gigahertz. Moreover, problem of time variation
make A/D conversion at RF very difficult [2].

The possible solution to realize a software radio receiver is shown in Figure
[1.11]. This architecture is composed of three stages: RF stage, Intermediate
Frequency (IF) and Baseband (BB) stage. The RF stage is totally analog whereas
digital conversion is done in IF one.

2

Figure 1.11: Possible solution for software radio receiver. It composes of three main
stages: RF (totally analog), IF (where the digital conversion is done) and BB (where the

DSP processes the data) [1].

Table 1.20: Specifications of UMTS and WLAN standards

The RF stage is composed of Antenna, Bandpass Filter and Low Noise
Amplifier. Then, by means of heterodyning, the frequency is reduced and the digital
conversion is done in the IF domain. Finally, data are processed in BB domain (use of
PDC and DSP).

The motivations for the SDR are multiples. Firstly, commercial wireless
communication industry is facing problems due to constant evolution of protocols
standards. Indeed, these networks (from 2G to 3G, and 4G now) are different and
some problems appear when a new generation of network is created, especially for the
migration of the network from one generation to another one.

Another motivation is the incompatibility of wireless network technologies

between different countries. For instance, the main wireless network in Europe is
GSM whereas in USA, CDMA2000 is used. It is a big problem for people who travel
a lot from Europe to USA, and in general from one continent to another one.

Then, problems in rolling out new services due to wide spread presence of
legacy subscriber handsets motivate to develop SDR.

1.2 Project subject

The goal of this project is to implement an algorithm capable of receiving multiple
standards and processing them (such as down-conversion and filtering operation).
These standards can be Bluetooth, ZigBee, DVB, DAB, GSM, WiMAX, etc but it is
limited to only two standards: WLAN and UMTS. Some specifications of UMTS and
WLAN standards are summarized in Table [1.20].

 UMTS WLAN
Frequency Band 1.920-1.980 GHz: UL

2.110-2.170 GHz: DL
2.4-2.4835 GHz

Channel Bandwidth 3.84 MHz 16.6 MHz
Receiver Sensitivity -117dBm -82 to -65 dBm

3

Figure 1.21: Block diagram of the whole system [12].

The block diagram of the system is shown in Figure [1.21]. Firstly, the signal is
received on the Antenna and is passed through the LNA. This amplifier allows adding
a low noise. Then, the bandpass sampling block samples the signal just after the LNA;
therefore, at the output of this block, the signal is in the digital domain and at the
intermediate frequency. The analog part is only composed of the Antenna and the
LNA. A Band-select filter is used to select the complete band after the sampling
(UMTS and WLAN information). There are two separate paths now for UMTS and
WLAN. A Bandpass filter and the channelizer compose each path. The Bandpass
filter is used to select the appropriate standards (UMTS or WLAN). The IF signal is
downconverted, filtered and downsampled through the channelizer. On the output of
the channelizer, each channel is at the desired sampling rate. It can be noticed that
bandpass filter after the bandpass sampling is removed for the rest of the project.
Indeed, bandpass filters in both paths (UMTS and WLAN) are sufficient to select the
required passband of the input sampled signal to be processed later in the channelizer.

To finish on the description of the project, the architecture where the algorithm
is implemented has to be chosen. The purpose of the project is to examine the
implementation of polyphase channelizer for UMTS and WLAN application on a
DSP platform, i.e. TMS320C6713. The DSP platform is used in this project for:

- Implementation of the algorithm.
- Evaluation of the performance, in particular in terms of execution time.

The DSP uses VLIW architecture [Appendix B], making excellent choice for

the multi-channel and multifunction applications. It can execute up to maximum 8 32-
bit instructions per cycle. It composes of two data paths. Each data path contains 16
32-bit registers, one multiplier and three ALUs. Both of these data paths can work in
parallel, allowing optimized execution for computation. The Figure [1.22] shows the
platform used for this project.

4

Figure 1.22: Picture on the DSP platform (TMS320C6713).

1.5 Problem Definition

The project problem specification is

Performance evaluation of a Digital Signal Processor implementation of a Multi-
Standard Digital Radio Receiver

5

Figure 2.10: Spectral representation of UMTS and WLAN standards.

f (MHz) 500 1000 1500 2000 2500

U
M
T
S

W
L
A
N

2400 2483.5

2110 2170

(2.11)

2 Application Description

In this chapter, the application is described. A quick description of multi-standard
software radio receiver is done, in particular for WLAN and UMTS standards. Then,
WLAN and UMTS polyphase channelizers are designed. Finally, a technical problem
is found out and solutions are studied to resolve it.

2.1 Project Specification

The main idea of SDR is to carry out a lot of operations on an input signal in the
digital domain, it means, for the study of a receiver (as this is the case of this project),
the Analog-Digital Conversion (ADC) must be realize as near the antenna as possible.

For the multi-standard software radio receiver studied in this report, UMTS and
WLAN standards are chosen and it is required down-conversion to baseband
separately. The spectral representation of these two standards is shown in Figure
[2.10]. The UMTS bandwidth is 60 MHz with 12 channels for downlink whereas
WLAN bandwidth is 83.5 MHz with 3 non-overlapped channels.

As shown in Figure [2.10], the spectrum combining UMTS and WLAN signals
has a bandwidth of 373.5 MHz. According to the Nyquist-Shannon sampling criterion
[11], the sampling frequency must be superior or equal to the double bandwidth B
(2.11).

The bandpass sampling is thus 747 MHz. But, in the combined spectrum for
UMTS and WLAN shown in Figure [2.12], there is an unused spectrum between
them. To overlap this unused spectrum, the sampling frequency can be decreased. It
has been hit and tried to reduce it at 676 MHz.

6

Figure 2.12: Combined Spectrum of UMTS and WLAN sampled at 676 MHz [12].

Figure 2.13: 12 UMTS channels of 5 MHz, down sampled at 61.44 MHz and
downconverted to baseband. 3 WLAN channels of 24 MHz, down sampled at 20 MHz and

downconverted to baseband as well [12].

According to the specifications of UMTS and WLAN standards, UMTS
bandwidth (WLAN) is 5 MHz (24 MHz) wide. It means the UMTS spectrum contains
12 channels of 5 MHz with 5 MHz of spacing between each inter-channels carriers.
For WLAN, 3 non-overlapped channels of 24 MHz with a space of 30 MHz between
inter-channels carriers. The representation of all these channels is described in Figure
[2.13]. The bandpass corresponds to the aliases of the two combined signals in the
Nyquist-zone shown in Figure [2.12]. All the channels are downsampled and
downconverted (to baseband). The target output sample rate is 20 MHz (61.44 MHz)
for WLAN (UMTS). 61.44 correspond to the product of the UMTS bandwidth (3.84
MHz) and the oversampled ratio of 16, which is taken into account in this case.

A summary of the specifications for the UMTS and WLAN is shown in Table
[2.14]:

7

Table 2.14: Specifications for UMTS and WLAN sample rates.

(2.20)

Standards UMTS WLAN

Sampling rate after AD
Conversion 676 MHz 676 MHz

Sampling rate desired to
separate the channels 61.44 MHz 20 MHz

In order to downconvert and downsample the respective channels for UMTS and
WLAN, we need to design the channelizer.

2.2 System Design

Now, polyphase channelizers described above are designed for UMTS and WLAN.
This design covers the modifications to obtain the desired target-sampling rate
respecting the different specifications to design the channelizers.

Until now, Figure [2.13] has shown the UMTS and WLAN channels, as well as
the downsampling and down-conversion to baseband inside the polyphase
channelizer. To remind, for UMTS, the Nyquist-zone lie at (82-142) MHz, with
channels centered at 84.5, 89.5, … and 139.5 MHz whereas, for WLAN, this zone lie
at (220-304) MHz, with 3 channels centered at 232, 262 and 292 MHz.

According to [13], the relation between the sampling frequency, the transform
size (number of channels) and the channel spacing for the polyphase channelizer is
(2.20):

At 676MHz of sampling frequency, the number of channels for UMTS
(WLAN) for a channel spacing of 5 (30) MHz is equal to 135.2 (22.53). But, always
according to [13], there are two requirements that have to be met:

- The transform size (number of channels) must be integer.
- The channels that are downsampled and downconverted have to be centered

on the multiples of the channel spacing.

For those two constraints, polyphase channelizer doesn’t fit the UMTS and
WLAN aliases as shown in Figure [2.21].

Channelization in these circumstances involves an offset after the
downconversion operation to baseband as shown in Figure [2.22].

8

Figure 2.21: 3 WLAN channels carriers (A) with 30 MHz spacing. 12 UMTS channels carriers (B)
with 5 MHz spacing. This representation result of the downsampling operation at 676 MHz [12]

Figure 2.22: 3 WLAN channels downconverted at 20 MHz (A) with 8 MHz offset (fs =20 MHz).
12 UMTS channels down-converted (B) with 0.5 MHz offset (fs = 61.44 MHz)[12].

There are many possibilities to try to correct this offset. The first possibility is
the change of the sampling frequency. The choice of the sampling frequency must be
done such that the aliases of UMTS and WLAN channels satisfy the required
demands. Furthermore, the frequency must not allow the overlap of the required
aliases. Frequencies lower than 676 MHz are chosen but none of them satisfied the
specifications described above.

The second possibility is to correct the offset by heterodyning after the
polyphase channelizer. It consists of multiplying the outputs of the channelizer by an
oscillating and low-pass filtering them. It means this method uses an extra mixer and
filter for each channel, requiring more hardware resources.

9

(2.24)

Figure 2.24: The modified structure of the polyphase channelizer to compensate the offset
after the down sampling and down-conversion operation. [12]

(2.23)

The best solution is to use the heterodyning method, but inside the polyphase
structure. The equation of this structure is seen in (A.11). Then, this equation is
developed. The term is congruent to , and the selected frequency aliased

to zero in the polyphase partition. can be replaced by where s=0,1,2…d-1.

With d=4, the equation becomes:

The summation representing the polyphase always has a phase shift that varies

with time index . The fact to take d=4 allows to compensate the offset during the
channelization when the channels are centered on the multiple to the quarter of the
channel spacing. This offset is also embedded in the phase rotators of each polyphase
channel (first summation in 2.23). The Figure [2.24] shows the modified structure of
the polyphase channelizer.

10

Figure 2.25: Combined spectrum of UMTS and WLAN sampled at 840MHz. [12]

Figure 2.26: Representation of WLAN and UMTS channel carriers. WLAN channels have 30MHz
spacing and are centered on multiple of 24MHZ, where the second and third carriers require an

extra offset (one and two quarter of 24MHz) for the position of the carriers. For the UMTS carriers,
they are centred on multiple of 5MHz, which is added two quarter of 5MHz[12]

This modified structure is efficient. However, it works only for the offsets of the
multiple of quarter of the channel spacing. When the number of channels is not an
integer or if the offset is not the quarter sub-multiple of channel spacing, the offset is
still present on the output of the channelizer. Another solution has to be found to
compensate the offset in these cases.

The solution to compensate this offset is to change the sampling frequency to fit
the specifications of the polyphase channelizer. After different tries, a sampling
frequency of 840MHz has been chosen. The new spectrum of UMTS and WLAN is
shown in Figure [2.25].

For UMTS, the channel spacing still is 5MHz and there are 168 channels at this
sampling frequency. For the case of WLAN, the number of channels is 35 for a
channel spacing of 24MHz. The Figure [2.26] shows the carriers positions of the
channels for UMTS and WLAN.

11

Figure 2.27: block diagram after modification. WLAN and UMTS path are resampled by M=7
and M=8 before polyphase process. The input sampling frequencies for the polyphase channelizer

are now 120MHz and 105MHz for WLAN, respectively UMTS. The number of channels is 5 (21) for
WLAN channelizer (UMTS channelizer) [12]

The first representation shows, for WLAN case, that the carriers are centered at
position characterized by (k=2, 3, 4 and s=0, 1, 2). It means that for each channel, the
parameter has to change. Thus, only one channel can be extract at one time. For
UMTS (second graph), the carriers are centered at k=70, 71, 72, …, 81 and the
parameter s doesn’t change (s=2). So, the polyphase channelizer can extract all the
channels at the same time.

To finish the system design of the polyphase channelizer, the sampling rate has
to be changed on the output. The output-sampling rate for WLAN (UMTS) is 20MHz
(61.44MHz). But an observation can be done before; the number of channels for
WLAN (UMTS) is 35 (168), which require high clock speed and large memory to
store all the coefficients during the filtering process. Furthermore, only twelve
channels are used and extracted at one time in the case of UMTS, whereas for
WLAN, three channels are used and one extracted at one time. The purpose is to
reduce the sampling frequency as low as possible on the input of the polyphase
channelizer, to not have overlap aliases and still meet the specifications of the
channelizer. After different resampling factors have been tried, the choice has been
done and WLAN is resampled by a factor 7 whereas UMTS is resampled by a factor
8. It results that the input sampling frequency of the channelizer is 120MHz
(105MHz) for WLAN (UMTS). The Figure [2.27] shows this modification.
Moreover, the number of channels in the polyphase channelizer goes from 35 to 5 for
WLAN and from 168 to 21 for UMTS, which reduce the requirements for the
implementation.

Now the signal has to be downsampled to the output rate (20MHz for WLAN

and 61.44MHz for UMTS). It becomes obvious for WLAN path. Having an input
sampling frequency of 120MHz, the signal is downsampled by a factor 6. For the case
of UMTS, the factor to downsample from 105MHz to 61.44MHz is 1.7. It means the
signal has to be first upsampled by 10 and then downsampled by 17. All these
operations are realised by the input commutator.

12

Figure 2.30: General system of the application. The signal is received at the Antenna, passed
through the LNA and bandpass sampled at 840MHz. Then, the signal is filtered and downsampled
for the standards (UMTS and WLAN) before the DSP process. In order to downsampling an input

frequency at 840MHz, operations have to be done before the platform.

DSP Process
Working at
225MHz

LNA ADC

Signal sampled
at 840MHz

Antenna

@ 840MHz

The system design is now completed. The input signal of the block is sampled at
840MHz. Then, this signal is filtered to separate the WLAN and UMTS spectrum. An
operation of resampling is done in order to reduce the number of channels in the
polyphase channelizer. The sub-filters inside the channelizer select the good channels,
and a down-conversion to baseband is carried out.

2.3 Technical problem

The bandpass sampling after the LNA (Figure [1.21]) allows passing from the RF to
the IF domain. The input signal is sampled at 840MHz. Output signal of the bandpass
sampling is then process through a bandpass filter to select the band composed of
WLAN and UMTS signal. After, the path is divided into two paths (one for WLAN
and one for UMTS) and data are processed into the channelizer. Before the
channelizer, data are resampled at 120MHz (WLAN) and 105MHz (UMTS). There
are resampled in order to reduce the number of channels inside the channelizer. These
frequencies have been chosen because there is no overlapping during this operation of
resampling as seen in Appendix [A]. The clock frequency of the DSP platform is
225MHz (Appendix [B]). The problem is that the DSP cannot manage to reduce the
sampling rate from 840 MHz to 120 or 105MHz due to the low clock frequency. The
changing of sample rate has to be done before the tasks perform on the DSP platform.
The Figure [2.30] shows the general system.

It has been found several solutions to perform this operation: all the operations
are in the analog domain between the LNA and the ADC.

The first solution consists in passing the input signal received at the Antenna
through a mixer to bring the signal to a lower possible frequency. The signal, after the
LNA, is filtered in two bandpass filters to select the spectrums (UMTS and WLAN).
Then, heterodyne multiplies the selected band to bring it to the baseband. Finally, the
Nyquist sampling technique is used. The result is sampled at 2*fmax to respect the
Nyquist sampling theorem [11]. Figure [2.31] shows the spectral representation of all
these steps while this operation.

13

Figure 2.31: Spectral representation of different steps of the operation to reduce the
sampling frequency.

0

U
M
T
S

W
L
A
N

f (MHz)

374MHz

60MHz 84MHz

a) Spectral representation of input signal with UMTS and WLAN standards.

2285

U
M
T
S

W
L
A
N

f (MHz)
b) Input signal is filtered by means of bandpass filter

0

U
M
T
S

W
L
A
N

f (MHz)
144MHz

c) Input signal is brought to baseband by means of heterodyning. The spectrum
occupation is now 144MHz.

0

f (MHz)

U
M
T
S

W
L
A
N

U
M
T
S

W
L
A
N

U
M
T
S

W
L
A
N

U
M
T
S

W
L
A
N

d) Signal is now down sampled at 2*144MHz = 288MHz.
288MHz

0

The Figure [2.32] shows the diagram of this operation. After these operations,
the sampling frequency is 288MHz. The problem is therefore not resolved.

Another solution is possible. Instead of filtering all the spectrum of standard,
only one channel is selected among 3 channels for WLAN and 12 channels for
UMTS. The idea is exactly the same as the previous solution but bandpass filter

14

Bandpass
filter

Bandpass
filter

Figure 2.32: Structure of one solution to reduce the input sampling frequency in order
to process all the operations after the ADC on DSP clocked at 225MHz.

specifications change. Indeed, it consists in changing value of passband. In the first
solution, the passband for WLAN bandpass filter was 60MHz. WLAN is composed of
three channels. The bandwidth of each channel is 24MHz. Therefore, the passband is
24MHz now. In the UMTS case, 12 channels of 5MHz-bandwidth compose the
spectrum. Instead of a passband of 84MHz, the new passband is 5MHz. By filtering
only one channel for each standard, the bandwidth of combined channels is 29MHz at
baseband after the heterodyne operation. The sampling frequency becomes 58MHz.
Therefore, operations in the digital domain are performed on DSP.

But there is one problem: the constraints on the analog filters are strong,
especially for UMTS case. Indeed, filter has to process around 2GHz with a 5MHz
passband and very strong band-edges to select only one channel. This filter is
realizable, but the signal is deformed. Thus, this solution is also discarded.

In conclusion, it has been that UMTS and WLAN standards are sampled at
840MHz after reception at the Antenna. WLAN is consisted of 3 channels. The
bandwidth of each channel is 24MHz. For UMTS case, it is composed of 12 channels
and the bandwidth is 5MHz. They are processed through front-end and polyphase
channelizer. The output sample rate is 20MHz (61.44MHz) for WLAN (UMTS). It is
decided to perform the front-end on FPGA due to low clock frequency of DSP and
therefore, to focus only on the polyphase channelizer for the rest of the project.

15

Applications

Algorithms

Architectures

Feedback

Feedback

Iterate

Result
s

Specifications
Constraints

Figure 3.20: The”generic” A3 design methodology

Comparison

3 Design Methodology
3.1 Overview

The purpose of this chapter is to show the different methodologies that are used in the
project work. First of all, the A3 Model is used and specifies the domains and the
connections between them. Next, another methodology, the Rugby Meta-Model is
presented. A brief conclusion is done to choose the appropriate model.

3.2 The A3 Model

The design of the A3-model [6] is divided in three parts: Application, Algorithm and
Architecture. First of all, “generic” A3-model is shown in Figure [3.20]. Then, this
model is applied to the project presented in this report, as shown in Figure [3.21].

• Application: is a description of the system with specifications and constraints.

It can be time, power, area problems…

• Algorithm: is the mathematical description of the application. It can be
existing algorithms or new algorithms. They are optimized on a purely
mathematical point of view, i.e. the optimizations are done on the algorithm’s
parts directly related to the application.

16

DSP
TMS320C6713

Application

Algorithm

Architecture

Requirements
Iterate

SDR front-end for
SATCOM handheld

Receiver

Polyphase
channelizer

Figure 3.21: A3 model for project

• Architecture: is the platform where the algorithms are mapped (DSP, FPGA,
Cell-BE…). The results and the specifications/constraints of the application
are compared and modifications are done in case of incompatibility.

In the application domain, a presentation of SDR front-end for SATCOM

handheld Receiver in section [2] is done.

One algorithm is developed. First, an algorithmic survey is done based on
Multi-rate DSP methodology. Then, an algorithm exploration is analysed by means of
MatLab. Finally, polyphase channelizer algorithm is coded in C language.

In the architecture domain, the platform used to implement the algorithms is
analysed. Available hardware and system limitations are studied. Then, measurements
in terms of resource utilisation, execution speed, etc are realized.

3.3 The Rugby Meta-Model

The Rugby Meta-Model Methodology [7] is explained in this section. This model is
based on the Y Chart [7], introduced in 1983 by Gajski and Kuhn but with some

17

Figure 3.30: The general Rugby Meta-Model, composed by the four domains Time, Computation,
Communication and Data. The development time line proceeds from the left to the right whereas the
abstraction levels (represented by the vertical lines) go from a high to low. The designer starts from

an idea to arrive to a physical system.

modifications due to the increase of the complex systems requiring concurrent
processes (many activities on the same device). The rugby Meta-Model is composed
of four domains: Time, Computation, Communication and Data with different
abstraction levels for each domain as shown in Figure [3.30].

• Time: is the domain concerned with the time relations between activities. At
each levels of abstraction, the timing in the architecture is specified. For
example, at the highest level, it is sufficient to consider the causality, whereas
at the low level, delays appear on every port and signals and are essential.

• Computation: it concerns the relation between input and output values. This

domain describes the behaviour of the components at different levels of
abstraction. For example, at high level, these components could be transmitter
or receiver; on the other hand, at low level, they could be logic blocks or
instruction set.

• Communication: treats the connections between design elements. For instance,

during the first steps of the development, it describes the protocols of
communication between the functional blocks. At the low level software, it
deals with the interaction between the storage and the computation part of a
processor. For the hardware branch, the communication is concerned by the
connections between logical ports.

• Data: is the domain that informs the data types at every abstraction level. That

could be real numbers like voltage for low level, Boolean or logic before this
one or integer, real for high one.

18

Time

Computation

Data

Polyphase
channelizer

Physical
system
on DSP

Abstraction Level

Development time-line Start Stop

High Low

Figure 3.31: The Rugby Meta-Model applied on this project, with domains and abstraction levels

System

Specification

System
 M

odel and
G

lobal A
rchitecture

M
A

TLA
B

 Sim
ulation,

C
 code and

C
om

plexity A
nalysis

Im
plem

entation
and tests

Communication

Now, the Rugby Meta-Model is applied on the project, as presented in Figure
[3.31]. Different abstraction levels are added according to the requirements of the
project.

In the meta-model of this SatCom Handheld Receiver, the different abstraction
levels are defined as following:

- The System Specification corresponds to the constraints and requirements for a
multi standard receiver, which both UMTS and WLAN standards receive
simultaneously on the same front-end.

- The System Model and Global Architecture, where a survey of the given
platform (DSP) is done as well as the application of the project (polyphase
channelizer)

- The Algorithm analysis, with a mathematical description and simulations on
MatLab (floating point), is analysed and developed. Developing and
debugging of the C code to prepare the implementation.

- The Implementation and tests consist to download the program on the platform
and carry out tests to satisfy the system specification.

19

In conclusion, the A3 model is chosen for this project. Indeed, this methodology
is more general than Rugby Meta-Model that is applied on one specific application.
Moreover, A3 model corresponds to our project. The project flow development
follows this model. Application is studied, algorithm is simulated and implemented on
the architecture. After comparison with the constraints, optimizations are developed in
order to satisfy the specifications of the application.

20

21

DSP
TMS320C6713

Application

Algorithm

Architecture

Requirements
Iterate

SDR front-end for
SATCOM

handheld Receiver

Polyphase
channelizer

Figure 4.10: A3 model for project. Highlighted in red, the analysis of the
algorithm

4 Algorithm Analysis
4.1 Overview

In this chapter, the analysis of filtering calculations is discussed to implement them
later on the platform. First of all, different design filter methods are presented. Then,
the chosen filter is applied to the polyphase channelizer and simulations are carried
out. Finally, complexity analysis is studied. A short conclusion is done about the
results of the different simulation on MatLab. According to the A3 design model, this
section belongs to the algorithm domain, as illustrated in Figure [4.10].

4.2 Algorithms

4.2.1 Signal Theory

A digital filter is a system that performs operations on sampled discrete signal to
modify its characteristics. There exist two classes of digital filters: Infinite Impulse
Response (IIR) and Finite Impulse Response (FIR) filter. The type of filter is chosen
according to several criteria: complexity, computational speed, and required

22

Transition Band

Stop band
Passband

Figure 4.2.1: Frequency response of a low pass filter used the equiripple method [9]

Passband
ripple

Stopband
attenuation

resources. The IIR filter is supposed to be unstable and is difficult to control in terms
of phase [8]. But as mentioned in Appendix [A], the application requires least phase
distortion; therefore FIR filter is the best choice, especially by means of its linear
phase and its stability. Moreover, this type of filter is supported by purpose DSP that
have Multiplier and Accumulator (MAC) that reduce the computational speed of
higher order FIR filters.

The filter has to be design, i.e. finding the coefficients from frequency
specifications. There are three methods (the most commonly used) to design it:

• Window design method
• Frequency sampling method
• Equiripple design

In this section, the study is carried out only on the window and the equiripple

design method. The “window design method” is the simplest method to design a FIR
filter because it’s very easy to use and understand. The process to use it is described
below:

1) Specify the desired frequency response
2) Calculate the IFFT which give lots of coefficients
3) Truncate the filter coefficients
4) Apply a window function to sharpen up the filter’s frequency
response

But this method has some limitations. Indeed, the truncation of filter

coefficients introduces some ripples and overshoots called Gibb’s phenomenon.
Another problem is that the stopband attenuation is fixed for a given window. Thus,
for a given attenuation specification, the window has to fit perfectly the filter’s
specifications. Moreover, this method is not flexible. This method is not optimal,
hence another method called Equiripple.

23

(4.2.2)

This method, created by Remez/Parks-Mclellan, uses an algorithm that iterates
between the filter coefficients and the frequency response until it finds the filter that
fits with the given specifications and with the lowest number of coefficients. This
method just meets the specifications without over performing. On the other hand,
many window methods design filter better than the specifications, hence wasting the
performance. An example of the frequency response of a low-pass filter using the
equiripple method is shown in Figure [4.2.1]

By means of this method, the optimal filter is defined by the following
specifications; sampling frequency, transition width , passband ripples
and stopband attenuation . Then, the order of the filter is computed with the
formula (4.2.2) and presented in [10].

Where

And is the transition width normalized to the sampling frequency. To finish,
the ratio from the passband ripples to stopband ripples gives the weight for each band.

To summarize, the choice of the design method must be done carefully. The
different specifications of the filter impose us to design it with the optimal method, to
obtain the minimum numbers of coefficients (therefore less resources to implement)
and to fit perfectly to the requirements.

4.2.2 Simulation

In this section, the equiripple design method has been chosen for the polyphase
channelizer simulations. These simulations are carried out by means of MatLab. For
each standard (WLAN and UMTS), the prototype filter is shown as well as one
channel on the output of the polyphase channelizer

The filter specifications (developed in the previous chapter) have shown that the
channel spectral distribution for WLAN and UMTS are 24 MHz, respectively 5 MHz.
For WLAN, the passband bandwidth is 16.6 MHz and the transition bandwidth is 7.4
MHz. For the case of UMTS, the passband bandwidth is 3.84 MHz whereas the

24

Figure 4.2.3: Filter specifications for WLAN channelizer. The passband is 16.6 MHz
and the transition band is 7.4 MHz. The channel spacing is 24 MHz [12]

Figure 4.2.4: Filter specifications for UMTS channelizer. The passband is 3.84 MHz
and the transition band is 1.16 MHz. The channel spacing is 5 MHz [12]

transition bandwidth is 1.16 MHz. The Figure [4.2.3] and [4.2.4] show these filter
specifications.

First, the order of the filter has to be defined according to the specifications
(cutoff frequencies, attenuation in the stopband). The MatLab function firpmord
allows obtaining the approximate order of the filter. This function needs four
parameters to determine the value; the vector of the frequencies band edges between 0
and Fs/2 (Fs is the sampling frequency), the vector that defines the amplitude in the
different bands, the vector specifying the desired attenuation in the stopband and
finally the sampling frequency.

With the order of the filter, the coefficients can be computed now. The function
Firls is used. This function returns a row vector of N+1 coefficients of the n FIR filter
whose approximately match the characteristics of the filter according to frequency
and amplitude vector specified above in the description of firpmord function. The
output coefficients are real and symmetric.

The frequency response of the filter prototype is shown in Figure [4.2.5] for the
WLAN channelizer and in Figure [4.2.6] for the UMTS channelizer. Frequency
response of WLAN in Figure [4.2.5] and UMTS in Figure [4.2.6] respect
specifications of the filters described previously (Figure [4.2.3] for WLAN and Figure
[4.2.4] for UMTS). Filters are designed at baseband.

25

Figure 4.2.5: Frequency response of the
prototype filter for WLAN channelizer. The

passband is 16.6 MHz with ripple less than 0.5 dB
whereas the transition band is 7.4 MHz. There is an

attenuation of 60 dB in the stopband.

Figure 4.2.6: Frequency response of the
prototype filter for UMTS channelizer. The

passband is 3.84 MHz with ripple less than 0.5 dB
whereas the transition band is 1.16 MHz. There is

an attenuation of 60 dB in the stopband.

For the WLAN filter, the passband is 16.6MHz with a ripple less than 0.5dB.
The transition-band is 7.4MHz and the stopband attenuation is 60dB. The MatLab
function firpmod gives a length of 51 for non-partitioned WLAN filter. For the
polyphase decomposition, the number of channels is 5. In order to have an integer
number of coefficients for the sub filters inside the polyphase channelizer, the order of
the filter is decreased to 50. Therefore, the length of sub filter is 10 taps.

In the case of UMTS, the passband is 3.84MHz with a ripple less than 0.5dB.
The transition-band is 1.16MHz and the stopband attenuation is 60dB. The filter is
designed at 1050MHz. The length of the non-partitioned filter is 2521. The number of
channels for the polyphase decomposition is 21. Like the WLAN applications before,
the order of the non-partitioned is modified in order to have an integer number of
coefficients. The new order is 2520. The length of each sub filters in the filter bank is
120 taps. But in the UMTS polyphase channelizer, a down-conversion of 1.7 or 17/10
is required (seen in section [2])(upsampling by 10 and downsampling by 17). This
upsampling creates 10 copies of the signal. Thus, the number of taps is divided by 10.
The length of the sub filters is 12 taps.

Figure [4.2.7] and [4.2.8] show the test-signal generated for WLAN and UMTS
standards. Indeed, signals from the bandpass filters are composed of only one
standard. For this simulation, it was necessary to show all the channels of both
standards. Therefore, these signals have been created to represent the channel carriers
at the desired sampling frequency. They have been built by adding several
exponentials together.

26

Figure 4.2.7: Input signal for WLAN channelizer
sampled at 120MHz. 3 channels are centered at -42,

-12 and 48MHz occupying a bandwidth of
16.6MHz.

Figure 4.2.8: Input signal for UMTS channelizer
sampled at 105MHz. 12 channels are centered at

15, 20, 25...70MHz occupying a bandwidth of
3.84MHz.

Figure 4.2.9: output spectrum of WLAN channelizer.
The channel is centered at -12MHz, corresponding to

k=4 and s=2. The signal is downconverted to baseband
and downsampled at 20MHz.

Data are fed into the polyphase channelizer by means of commutator. In the
case of WLAN, data are dealt and shifted inside a two dimensional array (5 channels
with 10 data samples each). Then, 6 data are fed at a time. The coefficient sets are
stored in a two dimensional register (5 channels with 10 coefficients each). There are
5 different states to feed the data inside the input register. This channelizer is non-
maximally decimated, i.e. output sampling rate and channel spacing are different. An
offset appeared by feeding 6 data in 5 channels at a time. Therefore, the coefficients
sets have to be rotated each time data are fed. The convolution is performed between
data and coefficient sets. Finally, signal is downconverted to baseband and
downsampled to the required sampling rate of 20MHz. The Figure [4.2.9] represents
the output spectrum WLAN channel centered at -12MHz corresponding to variable k
= 4 and s = 2.

The result is unexpected. Indeed,
the output signal does not
correspond of the input channel in
Figure [4.2.7]. It is supposed that
the downsampling operation into
the polyphase channelizer causes
data loss in the initial signal,
hence this kind of result.

27

Figure 4.2.10: the channel centered at 35MHz, which
variable k=7 and s=2, corresponds to UMTS standard.

The signal is downconverted to baseband and
downsampled at 61.44MHz.

For UMTS, the algorithm is a little bit different. Indeed, there is an operation of
upsampling by 10 and an operation of down sampling by 17 to reduce the input
sampling frequency at 105MHz to the output sampling frequency at 61.44MHz. Data
are shifted and fed in a two dimensional register. Due to upsampling and
downsampling, 9 zero packing are inserted between two data through the register in
stride of length 17. Only 1 or 2 data are fed at a time. The same sequence of feeding
repeats every 10 cycles; data are fed according to 10 states. Moreover, the filter has
been designed at 1050MHz therefore one tenth of coefficients are used at a time.
Then, convolution operation performs the filtering. The Signal is downconverted to
baseband and downsampled to the output-sampling rate of 61.44MHz. In Figure
[4.2.10], the output of one channel of UMTS channelizer is drawn. The channel
centered at 35MHz, corresponds to k=7 and s=2.

It appears that the attenuation is
not 60 dB in the stopband. It is
supposed that the successive
up/downsampling operations cause
this kind of problem. Indeed, these
operations result in data loss;
therefore the signal energy
decrease and that the reason why
the attenuation is only 40 dB.

To summarize, the order of the WLAN filter is 50. It is divided in 5 sub-filters.
Therefore, the polyphase channelizer is divided in 5 channels. 6 data are fed at a time
and the signal is downconverted to baseband by means of DFT. The output-sampling
rate is 20MHz.

In the case of UMTS, the filter is composed of 2520 taps. It is divided in 210
sub-filters. 1 or 2 data are fed at a time. The channelizer is divided in 21 channels and
the signal is downconverted to baseband. The output-sampling rate is 61.44MHz.

4.2.3 Complexity Analysis

In this section, a particular attention is done on the design of polyphase filter
bank. Indeed, the analysis of the complexity must allow knowing how many times the
functional units in DSP architecture are used in order to reduce the execution time for
the final implementation. First of all, structures of FIR filters, used in the polyphase
filter bank, are studied. Then, the structures of polyphase filter is described and
optimized. Finally, the best design solution is selected for the implementation.

28

Z-1

h0 h1

Z-1

h2

Z-1

h3

x(n)

y(n)

Figure 4.2.12: Block diagram for direct-form FIR filter, with 3 taps length.

h0 h1 h2 h3

x(n)

y(n)
Z-1 Z-1 Z-1

Figure 4.2.13: Block diagram for transpose-form FIR filter, with 3 taps length.

(4.2.11)

FIR Filters

FIR Filters use discrete convolution of the input and the frequency response of
the filter. The formula [4.2.11] shows the discrete convolution with the input x and the
filter coefficients h:

€

y(n) = h(k)x(n − k)
k= 0

M −1

∑

According to (4.2.11), the filter structure is designed in Figure [4.2.12]. This

structure is most commonly called direct-form. It consists of parallel multipliers and
accumulators (MACs). In this structure, each MAC computes the delayed input and
the corresponding coefficient of the filter. All the results accumulated produce the
output y(n).

However, this structure produces long delays through the accumulation way. It
appears to implement another structure of FIR that correspond better to computational
hardware. That is why the transpose-form FIR filter structure is chosen. The
representation of this structure is drawn in Figure [4.2.13]. It consists to change the
direction of the arrows of the direct form (Figure [4.2.12]), and exchange the input
with the output.

The most advantage of this structure is that it can have the accumulation way
pipelined to increase the performance, especially in terms of execution time.

29

Figure 4.2.14: The input commutator feeds the M-path Polyphase filter bank, operating
at M times the reduced time than the input sample frequency

Input C
om

m
utator (1-to-M

)

M-Path
Polyphase
Filter Bank

M-FFT

Input Data
sample at fs

Fs/M Fs/M

Channel 0

Channel 1
Channel 2

Channel M-1

M M

.

.

.

.

.

.

.

.

.

.

.

Polyphase Filter

The structure of polyphase channelizer used in this project is shown in Figure
[4.2.14]. The 1-to-M commutator deals the sample data to M-Path Polyphase Filter
Bank. Then, FFT block processes the down sampled data from the polyphase filters to
construct the individual channels before the last summation.

The commutator deals the data to each sub-filter in the polyphase filter bank.
Therefore, it loads data from the memory to registers. For the WLAN, according to
the simulation in the previous section, the order of the non-partitioned filter is 50. The
polyphase filter bank is composed of 5 channels (sub-filters). Each sub-filter has 10
coefficients. In the case of UMTS channelizer, the order of the non-partitioned filter is
2520. There are 210 sub-filters with a length of 12 coefficients. But an operation of
upsampling (by 10) is performed inside the channelizer. It means that only 1/10th of
the coefficients are used at time. The UMTS channelizer is composed of 21 channels
(sub-filters).

The complexity carried out on polyphase filters gives the number of
multiplication, addition and register access for the final implementation. For the

WLAN channelizer,

€

50
5

 multiplications,

€

50
5
−1 additions and

€

50 × 2 + 50
5

 register

accesses are necessary for each sub-filter. For the case of UMTS, multiplications,

 additions and

€

252 × 2 + 252
21

 register accesses are necessary for each sub-

filter. By multiplying all these operations by the number of sub-filters present in the
polyphase filter bank (UMTS and WLAN), the following complexity is obtained and
tabled in Table [4.2.15].

30

Table 4.2.15: Complexity analysis for the UMTS and WLAN polyphase filter banks for
the general form of polyphase filter.

4.2.16

 M Sub-filters

A1 B1 C1 D1

A2 B2 C2 D2

A2 B2 C2 D2

A1 B1 C1 D1

Figure 4.2.17: Symmetric polyphase filter bank. The first N/2 coefficients are the same as
the last N/2 coefficients but in the reverse order

Register access Multiplication Addition Load Store

WLAN (5 sub-filters) 50 45 100 50
UMTS (21 sub-filters) 252 231 504 252

However, some improvements are possible to obtain less operation for the final
implementation and therefore, reduce the execution time.

First of all, the structure of polyphase filter is symmetric. It means that for N
filter coefficients, the N/2 first coefficients are the same as the last N/2 coefficients
but in the reverse order. The formula (4.2.16) shows the symmetry of a filter. The
Figure [4.2.17] gives a preview of the polyphase filter bank structure considering this
symmetry.

This specification allows reducing the number of coefficient multiplication, thus
sharing the multiplication. The first sub-filters and the last sub-filters share the same
coefficient multiplication (A1, B1, C1, D1), the second and the one next to last share
the same coefficient multiplication (A2, B2, C2, D2) and so on. The input
commutator decimates now by M/2 instead of M. It is half the size for this type of
architecture. After dealing the first M/2 sub-filters from the bottom to the top sub-
filter, it changes the direction and deals the last M/2 sub-filters from the top to the
bottom. The Figure [4.2.18] explains the movements of it.

31

M/2

1 C
O
M
M
U
T
A
T
O
R

First feeding Second feeding

Figure 4.2.18: Input commutator (1-to-M/2) for the new structure of polyphase filter
bank. The commutator feeds the sample data from the bottom sub-filter and move up until

the top sub-filter. Then, it keeps feeding but in the other way (move down)

Figure 4.2.19: Optimization of the polyphase filter bank structure using sharing multiplication
method. The coefficient multiplications (h0, h1, h2, h3) are shared for the convolution inside the first

sub-filter and the last one. The results are on red output y(n) (respectively blue output y(n)) [18]

Registers

Adder

Figure 4.2.20: Optimization of the polyphase filter bank structure using sharing multiplication
and addition method. Coefficient multiplications (h0, h1, h2, h3) are shared for the convolution

inside the first sub-filter and the last one. Then, the required result is loaded from register,
additions are shared and results are on red output y(n) (respectively blue output y(n)) [18]

The Figure [4.2.19] shows the shared multiplication optimizations apply to the
first and the last sub-filters. A second optimization, which shares multiplications and
additions, is presented in Figure [4.2.20], always for the first and the last sub-filters.

32

Table 4.2.21: Complexity of optimized polyphase filter bank structure. The number of multiplications and
additions is strongly reduced by means of optimizations in opposition to the number of register accesses
(loading and storing). Furthermore, the clock speed doubles due to the change of the commutator length.

The complexity of these two optimizations is shown in Table [4.2.21] for
WLAN and UMTS channelizer. Multiplexers and demultiplexer in Figure [4.2.20]
correspond to register accesses. Moreover, clock speed is specifies. Indeed, the clock
speed is doubled because the size of the input commutator is divided by 2.

Register access Channelizer Optimizations Multiplication Addition
Load Store

Clock

Opt. 1 (Shared
Multiplication)

50/2
25 45 100 50 2*fs/5 WLAN

(5 sub-
filters)

Opt. 2 (Shared
Multiplication
and addition)

50/2
25

45/2
23

39*5
195

20*5
100 2*fs/5

Opt. 1 (Shared
Multiplication)

252/2
126 231 504 252 2*fs/21 UMTS

(21 sub-
filters)

Opt. 2 (Shared
Multiplication
and addition)

252/2
126

231/2
116

47*21
947

24*21
504 2*fs/21

These optimizations allow reducing time because multiply and logical unit are
used less time than the “basis” implementation (Table [4.2.15]). On the opposite, a lot
of accesses to register are done. For the optimization 1, 100 loads and 50 stores are
necessary: 50 coefficients and 50 data are loaded from memory for multiplication and
50 results of the accumulation are stored in memory.

According to the description of the architecture of the DSP in Appendix [B], it

is composed of two data paths. Each data path has 1 multiply, 1 logical (addition for
example) and 1 shift unit. Moreover, there are 16 32-bits registers. Although the
structure with optimization 2 (Shared Multiplication and addition) reduces the number
of computation, the DSP architecture does not allow implementing this structure.
Indeed, the DSP architecture is fixed and it appears complicated to implement it.

However, filters inside the polyphase filter bank are not all used at the same

time. On M sub-filters in the channelizer, M-1 are not used at all the time. Thus, the
polyphase filter bank can be implemented as a serial form. To realize this
implementation, Multiply and Accumulate (MAC) are used. They can be
implemented as two methods: serial form or parallel form. Firstly, the serial form is
studied for the serial implementation of the polyphase filter bank. The Figure [4.2.22]
shows a serial MAC. The set of data corresponding to each-filter in polyphase filter
bank is stored in memory. The position of the input commutator allows choosing the
good data at the good address as well as the corresponding coefficient multiplying this
data. The result of the multiplication is accumulated to have the final result at the
good time for the sub-filter. This process is performed to all the channels (sub-filters)
according to the input commutator.

33

Table 4.2.23: Complexity of serial MAC for a serial polyphase filter bank. The clock of the
system is the number of coefficients of each sub-filter (N) by the number of channels (sub-

filters)(M) at the sampling frequency.

Figure 4.2.24: Serial polyphase filter bank implemented with parallel MAC. The input data
(set of data corresponding to each sub-filters) are stored in memory. These data are multiplied

by the corresponding coefficients, added in parallel. Then, the output result is stored in
registers to be further processed by the DFT [12].

Input data (stored in
memory)

Filter coefficients
(stored in a memory)

Output data

Figure 4.2.22: Serial polyphase filter bank implemented with serial MAC. The input data
(set of data corresponding to each sub-filters) are stored in memory. These data are multiplied

by the corresponding coefficients, added and stored in the corresponding registers.

+

x

z-1

Data memory

Coefficients Memory

Incoming data

Output

Counter
x x

+ +

The complexity for polyphase filter bank using the serial MAC is tabulated in
Table [4.2.23]. N corresponds to the number of coefficients.

Register access Multiplication Addition
Load Store

Clock
Speed

Serial MAC
Implementation N N-1 2*N N N*fs/M

For the parallel MAC, the input data and the coefficients are multiplied in parallel, at
the same time. The clock is the same for the MAC operation as the clock for the input
data deliverance. DSP platform can processed 2 MAC in parallel. The Figure [4.2.24]
shows the parallel MAC implementation.

34

Table 4.2.25: Complexity of serial MAC for a serial polyphase filter bank. The clock of the
system is fs in this case. N is the numbers of taps of the non-partitioned filter whereas M is the

polyphase sub-filters. The parallel MAC uses more resources in terms of hardware than the
serial MAC, but the clock is lower than the other implementation.

The Table [4.2.25] gives the complexity of the parallel MAC implementation
for polyphase filter bank. According to [4.2.23] and [4.2.25], the serial MAC
implementation uses less resources in terms of hardware than the parallel one, but
needs a high clock speed, whereas the parallel MAC is clocked at fs.

Register access Multiplication Addition
Load Store

Clock
Speed

Parallel MAC
Implementation N/(2*M) (N/(2*M))

-1 2*N N fs

To conclude, simulations have been performed. Results respect almost the
specifications presented in chapter [2]. But some problems have to be resolved like
downsampling for WLAN channelizer and attenuation in the stopband for UMTS
application. The analysis complexity has been carried out on the polyphase filter bank
structure. Different solutions for the FIR implemetation have been tried as the general
form, the shared multipliers or shared multipliers and adders’ methods, the
implementation of serial or parallel MAC on a serial polyphase filter bank. According
to the Table [4.2.21], [4.2.23] and [4.2.25] giving the complexity of these different
structures and the architecture of the DSP, it results that the parallel MAC
implementation for a serial polyphase filter bank is the best choice in terms of time
constraints.

35

Figure 5.10: A3 model for project. Highlighted in red, the mapping on the
platform

DSP
TMS320C6713

Application

Algorithm

Architecture

Requirements
Iterate

SDR front-end for
SATCOM

handheld Receiver

Polyphase
channelizer

5 Algorithm to Architecture Mapping
5.1 Overview

In this chapter, the Algorithm to Architecture Mapping is presented. The three parts of
the polyphase channelizer (Commutator, FIR filters, DFT) are developed separately
for the architecture mapping. WLAN application is chosen (1 sub-channel) and
algorithms are mapped on the platform (DSP TMS320C6713). Then, optimizations
are carried out to improve the implementation. Functional Units of the DSP are
analysed, in terms of execution time (number of cycles). According to the A3 design
model, this section belongs to both algorithm and architecture domain, as illustrated in
Figure [5.10].

In the polyphase channelizer, WLAN polyphase filter bank has 5 sub-filters
each of length 10 taps [chapter 4]. Input Sample rate for the WLAN channelizer is
120MHz. 10 data samples are taken as a test signal and acquired in real time. Data are
real. Every time a data is fed in the input register, it is processed through the filter and
DFT operations before another one is acquired.

36

X

X

X

X

X

+

Figure 5.11: Structure of one channel of WLAN polyphase channelizer. Highlighted in red,
one sub-channel. Algorithm corresponding of this part is mapped on DSP processor.

Filter Bank DFT

The Figure [5.11] shows the part of the polyphase channelizer on which it has been
decided to focus.

5.2 Commutator

In this part of the channelizer, two different operations are done: feeding the input
array to compute the convolution later and shifting the data inside it for the next
operation. Input data are stored in the data memory due to limited number of CPU
registers. Operation consists in shifting the data inside the input array to allow the
convolution computation in second part of the channelizer. Instruction used is MVC.
Functional units L1 or L2 perform this task. By examining the architecture in
appendix [B], two arguments are passed to this instruction: source register (src2) and
destination register (dst) where data is moved. This operation is carried out by
instruction ADD where data that must been moved is added by value zero and stored
in destination register.

Example
 MV .L1 A0, A6

The L1 functional unit moved data from register A0 to register A6. By using
instruction ADD, data in register A0 is added by zero and stored in register A6. This
instruction requires one single cycle of the pipeline for the execution [19].

The instruction MV loads data from memory to register. As seen in appendix
[B], data are loaded through LD1a and LD1b (for data path A) while data path B uses
LD2a and LD2b. The instruction used to load data is LDW. This instruction allows
loading a word from memory to register. It receives two arguments: src that indicates
the source (memory) and dst which is the destination (register). D1 and D2 are
functional units used for this loading.

Example: LDW .D1 *A10, B1

37

Figure 5.20: Execution of Load instruction inside the pipeline.

Functional
Unit D

Register File

Memory Controller

Memory

Data

E1

E2 E3

E5

E4

Address

Figure 5.21: Execution of Store instruction inside the pipeline.

Functionnal
Unit D

Register File

Memory Controller

Memory

Data

E1

E2 E3

E2

Address

In this case, the D1 unit loads data at address pointed by A10 in the internal
memory in the register B1. This operation requires 5 cycles of the pipeline for the
execution [19]. Indeed, in the first stage (E1), the register file modified the pointer of
data address. The stage E2 sends the data address to the memory. Then, the memory
reads the address (E3). During the next stage, the data arrives at the CPU Core and
during E5, the data is stored in the corresponding register. The Figure [5.20]
summarizes these operations inside the pipeline.

Data are stored in memory after the shifting. The instruction STW is used to
carry out this operation. It stores a word to memory from register. Functional unit D1
and D2 are used to do this operation (appendix [B]).

Example: STW .D2 B4, *+ B6 [1]

In the example, data in the register B4 is stored at the address pointed by
register B6 with an offset of 1. The execution of this instruction requires 3 clock
cycles [19]. The Figure [5.21] shows the operation in the pipeline to perform it. While
the stage E1, the address where the data will be stored is computed. This address and
the data are sent to the memory during E2. Finally, the data is written (E3).

38

…

Input array
(memory)

10

Reg. A

Reg. B

L1 Unit

L2 Unit

Load

Load

Store

Store

Instruction MV

Instruction MV

D1 Unit

D2 Unit

Data fed

Figure 5.22: Data flow for the commutator. Firstly, data are shifted and then, new data is fed.

Table 5.23: Number of cycles for one input data fed in the commutator.

The Figure [5.22] shows the movement of data between memory and registers
for the shifting and feeding operation. The Table [5.23] summarizes the number of
clock cycle for the Commutator execution.

Data are shifted and fed in an input array. The length of the input array in the
external memory is 10. During the shifting, 10 data are loaded from memory to
registers to perform the shifting operation (instruction MV). Then, shifted data are
stored in the input array. These operations are executed in parallel (use of both data
paths). Finally, new input data is fed at the appropriate address.

Instruction Load Shift Store
Number of cycles 10*5/(2*2) 10/2 (10*3)/2

10 loads are carried out to shift the entire input array. Five clock cycles are
necessary to perform this instruction. Both data paths work in parallel and there are 2
load inputs for each. 10 shifts are performed in total and 3 cycles are necessary to
store data shifted into memory.

5.3 FIR Filter

After having fed and shifted data in input register, the second step of channelizer is
filtering the data. A FIR filter carries out this operation. It consists of a simple
convolution. All data inside input register are multiplied by filter coefficients and
accumulated. This operation, called MAC (multiply and accumulate) requires only one
single cycle. Architecture, described in appendix [B], is composed of two multipliers
(one into each data path). It means that two MACs are performed per cycle. Both are

39

Figure 5.30: Data path (red line) to
execute MAC instruction in one single cycle.

Table 5.31: Phase of data movement inside data
path (functional unit) for MAC instruction.

Table 5.33: Number of cycles for convolution computation.

executed in parallel. Therefore, 5 cycles are necessary to convolve 10 input data.
Figure [4.2.24], shown in section [4.2.3], describes the structure of parallel MAC
implementation. Figure [5.30] represents data path for a MAC operation through
multiplier and accumulator.

Two operands are loaded from register A to M unit with input src1 and src2.
Result of multiplication is on the output dst of the multiplier and is accumulated by
means of L unit. Table [5.31] shows the different phases of data movement through
the functional units.

For this application (WLAN), the length of one sub filter is 10 coefficients
(section [4.2.2]. Thus, 10 MACs operations are performed per data fed, or 5 clock
cycles are executed for this computation. Moreover, 10 data and 10 coefficients are
loaded from memory to registers to perform this convolution (in parallel). Then, the
two results of both data paths are added together to obtain the final result of the
convolution. This result is stored to register for further computation. The Table [5.33]
summarizes the number of clock cycles to execute convolution operation.

Instruction Load MAC Store
Number of cycles 10*5*2/(2*2) 10/2 + 1 -

The Figure [5.32] shows data movement between memory and data path. 10
data and 10 coefficients are loaded (5 cycles) in parallel through to 2 load inputs into
each data path. 2 MACs are performed in parallel. One last MAC is carried out to
obtain the final result of the convolution. Finally, result is stored into register instead
of memory to not use one store instruction.

Phase Functional Unit
1 Multiplication (M1)
2 Addition (L1)
3 Store (register file)

40

…

Input array
(memory)

10

Reg. A

Reg. B

L1, M1 Unit

L2, M2 Unit

Load

Load

Instruction MAC

Instruction MAC

D1 Unit

D2 Unit …

Coeff. array
(memory)

Output sub-filter
(register A)

Final Mac

Figure 5.32: Data flow for the FIR filter. Firstly, data and coefficients are loaded from
memory, MACs instructions are performed. The final MAC is carried out into data path A. Final

result is stored into register.

(5.40)

(5.41)

5.4 Discrete Fourier Transform

The last step of the channelizer process is coherent phase summation to extract the
down sampled data at baseband. To perform this operation, Discrete Fourier
Transform computation is done. The DFT operation is defined by formula [5.40]:

DFT computation requires

€

N 2 complex multiplications and

€

N 2 − N complex
additions. MAC instruction is used to compute DFT like the convolution developed
above. The difference is these operations are complex, thus the result is separate in
two parts: one for the real and one for the imaginary. Indeed, this exponential term
can be developed in a sum of cosine and sine shown in formula [5.41]:

Therefore, for one DFT, two output data are produced (real part and imaginary

part). The computation of DFT requires

€

4N 2 multiplications and

€

6N 2 − 3N additions.
In terms of execution, two MACs work in parallel to compute DFT (real and
imaginary part). One clock cycle is necessary to compute the multiplication of the
data by the exponential term and the accumulation. In the case of one sub-channel, N
= 1 thus there is no accumulation. Results of data paths are stored in 2-length array
(real and imaginary part) into memory. The Figure [5.42] shows the data movement

41

Output sub-channel
(memory)

2 Reg. A

Reg. B

L1, M1 Unit

L2, M2 Unit

Store Instruction MAC

Instruction MAC

D1 Unit

D2 Unit

Output sub-
filter
(register A)

Store

Figure 5.42: Data flow for DFT computation. Firstly, output sub-filter is moved from register
A to register B, MAC instruction is performed for real part (imaginary). Two results are stored

in memory.

Table 5.43: Number of cycles for DFT computation.

Table 5.44: Number of total clock cycles for one WLAN sub-channel. One date is fed at the
input sample rate (120MHz).

between memory and data paths. The Table [5.43] summarizes the number of clock
cycles to perform DFT computation.

Instruction Shift MAC Store
Number of cycles 1 2/2 2*3

Two loads are carried out in parallel (one for the real and one for the imaginary
part). 2 MACs instructions are also performed in parallel and 1 complex result is
stored into memory. The estimation of the computation of exponential term has not
been taken into account (computation of cosine and sine).

To summarize this analysis, Table [5.44] shows the number of clock cycles for

one sub-channel into the channelizer. One data is fed at a time; the sub-filter inside
the channelizer is 10 taps.

Part of sub-
channel

Commutator FIR filter DFT Total

Number of
cycles 33 31 8 72

The total number of clock cycles to process data in one WLAN sub-channel is
72. The clock frequency of the DSP is 225MHz. It means that the execution time is

€

72
225

= 320ns. The input sampling rate is 120MHz, so every

€

1
120

= 8.333ns, there is a

new data fed. Time constraints are not respected. The Figure [5.45] shows timing
constraints as well as the execution time of one data process through the channelizer.

42

…

t (sec) 0
€

T =
1

120MHz

Feeding
data 1

Feeding
data 2

Feeding
data 39

€

T =
72

225MHz
 1st data on output (performed

through 1 sub-channel)

Figure 5.45: Time processing of one data through one sub-channel (green). One data is fed in
the sub-channel every 1/120MHz (red).

It appears that first data is totally processed in a time when 39 data samples
have already been fed. It is necessary to optimize the code in order to reduce the
number of instructions, therefore reducing the execution time. The goal is to obtain an

execution time less than two input sample intervals (i.e.

€

1
120MHz

).

5.5 Optimizations

The previous sections ([5.2], [5.3], [5.4]) presented the implementation of the
algorithm without optimizations. This part develops implementation modifications in
order to reduce the number of cycles. Firstly, circular buffer is presented. Then,
deterministic complex terms optimizations is developed.

5.5.1 Circular Buffer

It has been seen in Commutator part of the channelizer that data have to be shifted
before feeding new input data. This shifting takes a lot of clock cycles. Indeed, 1
clock cycle is taken to shift one data from it actual place in memory to the next one.
10 cycles are necessary to carry out this operation into functional units for 10 data
inputs. The TMS320C6713 can perform linear or circular addressing. Circular
addressing is very interesting for the FIR computation because input data have to be
shifted before every data feed. This addressing mode is only possible with registers
A4-A7 and B4-B7 [19]. The Figure [5.50a-b] illustrates the behaviour of a circular
buffer in five consecutive memory locations.

43

Figure 5.50: Circular buffer with 5 samples. State of the buffer at one particular instant (a).
A new sample is acquired (b) and all the sample are shifted to the right (one step)

X[n-2] X[n-1] X[n] X[n+1] X[n+2]
Input data
(acquisition)

Output data
(shifting)

X[n-3] X[n-2] X[n-1] X[n] X[n+1]
Input data
(acquisition)

Output data
(shifting)

New data is acquired Previous data is discarded Data are shifted on the right

b)

a)

Table 5.51: Number of cycles for one data feed in the commutator, with circular buffer optimization.

In Figure [5.50a], there are five samples stored at one particular instant. The
Figure [5.50b] shows the changes when a new sample is acquired. All the data in the
buffer are shifted (one step) to the right. The last previous data of the buffer is
discarded (X[n+2] in our example).

Circular buffer is very efficient on the platform used on this project. Indeed, all
the data are shifted in only one single clock cycle. In comparison with the first
implementation, which used the instruction MV and that required one cycle to move
one sample from a register to another (10 clock cycles in total), the number of cycles
is reduced for each data acquired.

As seen before, this addressing mode is only possible on 8 registers (A4-A7 and
B4-B7). It means that only 8 data are shifted per cycle. Input array length in memory
is 10. Therefore, 2 cycles are necessary to shift all data before feeding a new input
sample. The new results for the commutator execution, in terms of number of cycles,
are tabled in Table [5.51].

Instruction Load Shift Store
Number of cycles 10*5/(2*2) 10/(2*2) (10*3)/2

The difference between the first (in section [5.2]) and the optimized
implementation is the reduction of clock cycles for the shift instruction. The number
of cycles is reduced by 2.

44

5.5.2 Deterministic Complex Terms

In the previous implementation of the DFT, the output of sub-filter (stored in register)

is multiplied by the exponential term. The exponential term

€

e
−2πik n

M is computed
inside functional units before the multiplication with data. It takes lot of instructions
to compute this term (cosine and sine). In order to reduce the number of computation,
deterministic complex terms optimization is applied. The DFT length is fixed.
Therefore, the exponential term is known before the DFT computation. It is stored in
memory. The number of instruction to compute all these exponential terms is reduced.
Only 1 load from the memory to registers is necessary to carry out MAC instructions
for DFT.

5.5.3 Building Optimizations

It has been found out some builds options on CCS to compile code in an optimized
way. These optimizations, presented in Appendix [B], allow reducing code size, using
pipeline and parallel architecture in an efficient way in order to reduce the number of
clock cycles. A general description of these optimizations is done in Appendix [B].
These optimizations are also implemented. They should allow reducing the execution
time in order to respect time constraints.

In conclusion on this chapter, the algorithm has been mapped on the
architecture. One date has been fed in the sub-channel and the number of instruction
cycles has been estimated. It has been seen that time constraints are not respected.
Indeed, execution time is higher than the input sample rate. In order to reduce this
time, some optimizations have been studied. It is difficult to know if these
optimizations can bring some improvements, due to the impossibility to give an
estimation (especially for building options and deterministic terms). The next chapter,
which treats the implementation, goes to allow knowing if these improvements can
reduce time in order to respect time constraints.

45

DSP
TMS320C6713

Application

Algorithm

Architecture

Requirements
Iterate

SDR front-end for
SATCOM

handheld Receiver

Polyphase
channelizer

Figure 6.10: A3 model for project. Highlighted in red, the implementation on
the platform

6 Implementation
6.1 Overview

This chapter puts in practice the theoretical analysis developed in chapter [4] and [5].
It contains the results of the first implementation of one sub-channel of WLAN
polyphase channelizer as well as the results of various optimizations applied to this
implementation. All these results are evaluated, compared and discussed. According
to the A3 design model, this section belongs to the architecture domain, as illustrated
in Figure [6.10].

6.2 Test Definition

The tests are carried out on the algorithm implemented on DSP platform. Firstly,
results are compared with MatLab ones to have a reference. Each result of parts of the
sub-channel (commutator, convolution and DFT) are analysed and confronted to
MatLab to check if the code is working well.

Then, various tests are performed. Profiler on CCS is used. By adding some
functions or piece of code, profiler gives some measures of the selected functions or
pieces of code while the execution of code. The first test is carried out on one sub-

46

Table 6.30: Execution time for each sub part of one WLAN sub-channel (commutator, FIR and
DFT). Results are displayed in number of instruction cycles and time (nsec). Furthermore, a

measurement of the execution time for the whole sub-channel is realized.

Table 6.31: Comparison of estimation and the practical results of the different parts of the sub-
channel. Results are in number of clock cycles. One data is fed and processed through the sub-

channel. Furthermore, the number of clock cycles for the whole sub-channel is presented.

channel of polyphase channelizer for WLAN application. Then, the different
optimizations developed in chapter [5] are applied to this sub-channel, to see the
potential improvements.

Two parameters are evaluated during these tests: execution time and number of
clock cycles. Measurement of the time and number of cycles is realized by the profiler
and is carried out on the function Commutator, FIR filter and DFT. The hardware
utilization in data paths is examined by using the option “mixed view C/ASM” on
CCS. ASM view allows seeing what are the instructions used in various functions.

6.3 Tests Results

6.3.1 One WLAN Sub-Channel

The Table [6.30] gives the results of the execution of one sub-channel of the
polyphase channelizer. The time to perform feeding, convolution and DFT are shown.
For each part of the sub-channel, execution time, when one data is fed, is measured.
Moreover, the measurement of the sub-channel execution is done. Measurements are
done in terms of number of instruction cycles and of time (nsec).

 Commutator Convolution
(FIR filtering) DFT Total sub-

channel
Number of
instruction

cycles for one
data fed

236 11000 458 11600

Time for one
data fed (nsec) 1180 55162 2290 58000

The results in the Table [6.30] are unexpected. Indeed, the results between the
theoretical analysis in chapter [5] (Table [5.44]) and the implementation (Table
[6.30]) are different. For instance, for the input commutator, expected result was 33
cycles and the practical result is 236 cycles. The estimation and the practical results
are tabled in Table [6.31].

 Commutator Convolution
(FIR filtering) DFT Total sub-

channel
Estimation 33 31 8 72
Practical
results 236 11000 458 11600

47

There are differences between the estimation and practical results. For example,
concerning DFT computation, there are two explanations to justify this difference:

- First of all, the estimation of DFT computation has not taken into account of
exponential term computation. Indeed, this estimation is consisted of:

1) Loading of data
2) Multiplication of data by exponential term

In this estimation, the computation of exponential term should have added.
Indeed, the computation of cosine and sine used lot of instructions: number of
clock cycles is 304 for cosine function whereas the sine function takes 260
clock cycles.

- Secondly, it has been said that the DFT was computed by using MAC

instructions. But for this case of implementation (N=1), there is no
accumulation. Only one multiplication is performed. Data is just multiplied by
the exponential term. The instruction used is not a MAC but MPYI. This
instruction required 9 clock cycles to be performed [19].

Moreover, it appears, on the sight of the assembly code, that the compiler, while

the declaration of a variable (int i = 2 for instance), affects the value 2 to a register
and then, stores the value of this register in the stack. As seen previously, the
instruction STW requires 3 clock cycles.

Time constraints are not respected. According to the theoretical analysis
developed in section [5], execution time to process 1 data was bigger than two input
sample intervals. Therefore, it is obvious to say that this implementation does not
respect time constraints because practical results are bigger than estimation.

The different optimizations developed in chapter [5] are necessary to try to
reduce the number of clock cycles in order to respect the timing. The next section
presents results of optimized code.

6.3.2 Results After Optimizations

Firstly, build options are changed in order to reduce and reorganize the source code.
In this way, the optimizer tries to fit the code well on the platform in order to use
efficiently the architecture of the DSP (parallelism, pipeline). The first optimizations

€

(−Ο0) enables register optimizations,

€

−Ο1 concerns local optimizations,

€

−Ο2 treats
functions whereas the last one

€

(−Ο3) performs files modifications. The Table [6.30]
summarizes results of these optimizations. It is noticed that these optimizations reduce
the number of clock cycles in comparison with the first implementation in section
[6.3.1]. The more the level of optimization is, the more is the reduction in execution
time decreased. By analysing the assembly code, with optimization, the code size is
reduced and the shift operation inside the commutator uses the parallel architecture

48

Table 6.3.1: Execution time for each part of one WLAN sub-channel (commutator, FIR and DFT) with
various compiling optimizations. Results are displayed in number of instruction cycles and time (nsec).

Table 6.3.2: Comparison of the estimation of execution time and various implementations (implementation
without optimizations, with compiling optimization). Execution time for each part of one WLAN sub-channel

(commutator, FIR and DFT). Results are displayed in number of instruction cycles and time (nsec).

well to shift all the data inside the input array. However, results are still bigger than
estimation, and thus also constraints. Table [6.3.2] regroups all these results.

Optimizations Measurements Commutator
Convolution

(FIR
Filtering)

DFT
Total sub-
channel

Number of
cycles

188 11034 452 11528
Opt. -O0

Time (nsec) (940) (55170) (2260) (57640)
Number of

cycles
161 10996 457 11419

Opt. -O1
Time (nsec) (805) (54981) (2285) (57095)
Number of

cycles
32 474 804 11207

Opt. -O2
Time (nsec) (160) (2370) (4020) (56036)
Number of

cycles
32 474 804 11207

Opt. -O3
Time (nsec) (160) (2370) (4020) (56036)

Execution Measurements Commutator
Convolution

(FIR
Filtering)

DFT
Total sub-
channel

Number of cycles 33 31 8 72
Estimation

Time (nsec) (146) (137) (35) (318)

Number of cycles 236 11000 458 11600 Execution
without Opt. Time (nsec) (1180) (55162) (2290) (58000)

Number of cycles 32 474 804 11207 Execution
with Opt. –

O3 Time (nsec) (160) (2370) (4020) (56036)

Table [6.3.2] shows that compiling optimization

€

−Ο3 reduced strongly the
number of clock cycles for commutator and FIR parts of the sub-channel in
comparison with the implementation. However, number of cycles for DFT
computation is always high with or without optimizations. Furthermore, timing
constraints are not respected yet. The total execution time for the optimized
implementation (level

€

−Ο3) is 11207ns whereas one data is fed every 8.33ns
(120MHz).

Now, implementation with the deterministic complex term optimizations is
carried out. Exponential terms of the DFT are stored in memory. Instead of compute
these term in data path, there are just loaded from memory to register to be multiplied
by data in the inner product of DFT. This optimization is performed in order to reduce

49

Table 6.3.3: Comparison of the estimation of execution time and various implementations (implementation
without optimizations, with compiling optimization –O3, deterministic terms and combination of the last both).
Execution time for each part of one WLAN sub-channel (commutator, FIR and DFT). Results are displayed in

number of instruction cycles and time (nsec).

number of clock cycles for DFT part of the sub-channel. Table [6.3.3] shows the
result of this optimization as well as the results of previous optimizations for
comparison. The number of cycles is reduced for DFT part when the implementation
is performed with the deterministic term optimization. As it has been said above, one
load is necessary to compute the inner product in DFT operation. The result of the
combination of compiling option

€

−Ο3 and deterministic term optimization is also
shown in Table [6.3.3].

Execution Measurements Commutator
Convolution

(FIR
Filtering)

DFT
Total sub-
channel

Number of
cycles

33 31 8 8
Estimation

Time (nsec) (146) (137) (35) (35)
Number of

cycles
236 11000 458 11600 Execution

without
Opt. Time (nsec) (1180) (55162) (2290) (58000)

Number of
cycles

32 474 804 11207 Execution
with Opt. –

O3 Time (nsec) (160) (2370) (4020) (56036)
Number of

cycles
236 11000 55 11351 Execution

with Deter.
Terms Time (nsec) (1180) (55162) (256) (56783)

Number of
cycles

32 474 55 10654 Execution
with Opt. –
O3 & Deter.

Terms Time (nsec) (160) (2370) (256) (47351)

The combination of the compiling option and deterministic terms gives satisfied
results in terms of execution time in comparison with the first implementation without
optimization. By comparing with the estimation, optimizations are better for the
commutator part. Only FIR and DFT is still higher. The Circular Buffer optimization
has not been implemented. Indeed, this kind of addressing mode requires coding in
Assembly code, especially to select the appropriate registers to perform it. But it
might guess that this optimization reduces the execution time for the Commutator
part.

Although improvements are performed in order to reduce the execution time,
time constraints are not respected yet. After having reflexion on this problem, it
appears that implementation of this algorithm is impossible at this sampling frequency
(120MHz). The interval between two data samples is too small to perform all the
process. This interval corresponds of 2 clock cycles of the DSP. It is not possible to
obtain data on the output of the sub-channel in only 2 clock cycles.

50

51

7 Conclusion & Perspectives
7.1 Conclusions

The goal of Software Defined Radio system is to be reconfigurable without changing
DSP processor, i.e. it must serve a wide variety of radio protocols in real time. In our
case, this is realized for multi standards receivers such as mobile phones, Global
Positioning System, etc. These receivers work for applications as satellite
communication, Bluetooth, ZigBee, WiMAX, etc. For this project, two standards have
been selected: UMTS and WLAN. To speed up the data process on these receivers,
special algorithm can be implemented. With processor platform especially designed
for signal processing, the speed can be improved as soon as the architecture is well
managed.

The goal of this Master Thesis ASPI project is to answer the problem defined in
section [1.3] as follow:

“Performance evaluation of a Digital Signal Processor implementation of a Multi-
Standard Digital Radio Receiver?”

First of all, an analysis of the design has been done to determine how the system

can process data received at the antenna. It appears that the use of polyphase
channelizer is the best way to process this application. Polyphase channelizer is
composed of three parts: Commutator, FIR filter and DFT. It has been discovered that
digital front-end (part before the polyphase channelizer) could not be performed on
DSP platform. The sampling frequency is higher than DSP platform. Some techniques
(filtering + heterodyning) in the analog domain have been tried in order to resolve this
problem, but without success. Therefore, it has been decided to focus only on the
polyphase channelizer survey.

By means of this analysis, the algorithm is simulated on MatLab to fit the
specifications of the application. The results of simulation allowed confirming that the
algorithm was well coded. A complexity analysis of the algorithm has been carried
out to determine what kind of implementation and which resources (in terms of
mathematical functions) are used on the architecture. Parallel MAC implementation
has been chosen for filter bank inside the channelizer.

Then, the architecture of the board has been studied as well as tool used for the
final implementation. The platform is a DSP from Texas Instruments. The target
platform is TMS320C6713. It is clocked at 225MHz and designed especially to
process floating point data. The algorithm is coded in C language and Code Composer
Studio is used to compile and load program on the board.

Before the final implementation, the mapping of the algorithm has been done to
see how the algorithm fit on the architecture. A theoretical analysis of the instructions
is realized to have an idea of results we should except. This analysis consists of the
estimation of number of clock cycles of instruction used to process the channelizer
(for instance, load filter coefficients from memory to registers). This theoretical
analysis does not respect time constraints. Indeed, theoretical execution time is bigger
than specifications time (time to process data through the channelizer is bigger than

52

time between 2 data samples). Therefore, some optimizations have been developed to
reduce the execution time. It has been discovered that the required specifications of
the application could not be obtained with the implementation on this processor.
Indeed, the clock frequency of the DSP is lower than the frequency specifications of
both standards (UMTS and WLAN).

However, the implementation on the platform has been performed and tests
have been done. Indeed, although this application cannot be performed on this DSP
platform, it allows seeing how this algorithm fit on this DSP architecture. The first
implementation has been carried out on only one WLAN sub-channel of the
polyphase channelizer. The fact to execute one sub-channel provides a preview of the
execution on the platform. The results, in terms of computation are the same as
MatLab. The measures have shown that the compiler used more instructions than the
ones developed in the theoretical analysis. The estimation for the execution of the
channel was 72 clock cycles whereas the practical result is 11600. Some
optimizations, like deterministic terms and compiling options, have been developed
and results have been improved, in terms of execution time. The combination of
deterministic term and compiling –O3 optimizations gives almost the same result as
the estimation. Although these optimizations, time constraints are not respected.

7.2 Perspectives

Firstly, some perspectives are possible in architecture point of view.

It has been seen that the clock frequency of the DSP was too low for this
application. The main problem is that the bandwidth of input signal is too wide.
Aliasing and overlapping problems appear after the sampling operation. The
implementation of standards is possible on DSP platform with a higher clock
frequency. Nowadays, DSPs typically run at 1 GHz. This type of platform may suit
for this application that requires an 840MHz-sampling frequency.

By keeping TMS320C6713 DSP, only one standard can be processed on it. For
a multi standard receiver, the use of several DSPs has to be done. The standards are
still received at 1 antenna, but filtered in analog domain before the conversion to
digital domain. There is thus only one DSP per standard.

Secondly, improvement can be done in terms of code. In this project, algorithm
has been coded in C-language but it has been seen in Appendix [B] that the Assembly
code is the last step of code flow development on CCS, especially for optimizations.
The fact that to code in Assembly allows directly manipulating registers, instruction,
etc. It will allow, for instance, developing Circular Buffer optimization. It is a low
level language that is the closest to the architecture. The problem is that for this kind
of application that requires a lot of code, the ASM is complicated and requires lot of
time to code.

53

Bibliography

[1] Enrico Buracchini, “The Software Radio Concept”, CSELT, in IEEE
communications Magazine, September 2000

[2] Fredric J. Harris, Chris Dick and Michael Rice, “Digital Receivers and
Transmitters Using Polyphase Filter Banks for Wireless Communications” in IEEE
transactions on microwave theory and techniques, Vol. 51, NO.4, April 2003

[3] S. K. Mitra, “Digital Signal Processing: A Computer Based Approach”, 2nd Ed.
New York: McGraw-Hill, 2001

[4] J. Wozencraft and I. M. Jacobs, “Principles of Communication Engineering”, New
York: Wiley, 1967, sec.7.2

[5] P. P. Vaidyanathan, “Multirate Systems and Filter Banks”, Englewood Cliffs, NJ:
Prentice-Hall, 1993

[6] Yannick Le Moullec, DSP Design Methodology, AAU 2007. Lectures notes for
mm1 of course in DSP Design Methodology, ASPI8-4 http://kom.aau.dk/ylm/aspi8-4-
part1-2007.pdf

[7] Axel Jantsch, Shashi Kumar, Ahmed Hemani, “The Rugby Meta-Model”, school
of engineering, Jönköping University, Jönköping, Sweden, March 21 2000

[8] Schafer & Buck, “Discrete Time Signal Processing”, OpenCourseWare 2006,
Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science

[9] Roger S. Meier, “Digital Decimating Filter For a Monolithic Sonar Receiver”,
http://www.the-meiers.org/professionalinfo/publications/msthesis/thesis/thesis.html,
visited the 21st of April 2009

[10] Emmanuel C. Ifeachor and Barrie W. Jervis, “Digital Signal Processing – A
Practical Approach”, Addison Wesley Publishers Ltd, 1993

[11] Nyquist-Shannon sampling theorem, http://en.wikipedia.org/wiki/Nyquist–
Shannon_sampling_theorem, visited the 3rd of March 2009

[12] Mehmood-Ur-Rehman Awan, Muhammad Mahtab Alam, “Design &
Implementation of FPGA-based Multi-standard Software Radio Receiver”, AAU
2007, Master Thesis Project, ASPI10-2007 – Gr. 1044,
http://projekter.aau.dk/projekter/retrieve/9933823?format=application/pdf.

[13] Fredric J. Harris, “Multirate Signal Processing for Communication Systems”,
2004 Pearson Education, Inc.

54

[14] “TMS C6000 Technical Brief”, Litterature Number: SPRU197D, February 1999
http://www.ee.ic.ac.uk/pcheung/teaching/ee3_Study_Project/C67x%20Technical%20
Brief(197d).pdf

[15] Andreas Popp, TMS320C6713 Workshop I, AAU 2007, Crash course,
http://kom.auc.dk/~anp/teaching/tms6713workshop2007/

[16] “TMS320C6713 DSP Description”, http://www.entegra.co.uk/c6713.htm,
visited the 25th of April 2009.

[17] “TMS320C6713 Floating Point Digital Processor”, SPRS 186L, November 2005
http://focus.ti.com/lit/ds/symlink/tms320c6713.pdf, visited the 27th of April 2009.

[18] Raghu Rao, Matthieu Tisserand, Mike Severa, Prof. John Villasenor, “FPGA
Polyphase Filter Bank Study and Implementation”
http://slaac.east.isi.edu/presentations/retreat_9909/polyphase.pdf

[19] “TMS320C67xx/C67x+ DSP, CPU and Instruction Set Reference Guide”,
http://www.diegm.uniud.it/~bernardi/Didattica/DSP-TI/spru733.pdf

55

Figure A.1: Conventional channelizer [2]

Figure A.2: Polyphase channelizer [2]

Appendix A: Polyphase Channelizer

The FDM signal is downconverted to baseband, filtered and subjected to a sample rate
reduction. A conventional channelizer, in Figure [A.1], can perform this task. It is
composed of down-converters, baseband filters and resamplers.

In the conventional channelizer, each channel needs individual channelizer and
these channelizers can perform only one channel. Another implementation that
performs the channelization is called Polyphase N-path filter bank, as shown in Figure
[A.2].

56

Figure A.3: kth channel for conventional channelizer [2]

Figure A.6: Bandpass filter, kth channel for channelizer [2]

(A.4)

(A.5)

It is capable of delivering all the required channels with only one channelizer.
The new channelizer offers more advantage than the previous channelizer shown in
[A.1] in terms of cost, due to reduction in system resources required to perform the
multichannel processing, and is more efficient when large sampling rate changes are
required.

Polyphase channelizer uses resampler, all-pass partition and FFT phase shifters.
The path between the conventional and polyphase channelizer is described below
now. First of all, the block diagram of one channel of the conventional channelizer is
shown in Figure. [A.3]. The output of the digital low-pass filter is a simple
convolution operation, as described in equation (A.4):

The summation in equation (A.4) is rearranged in order to the equivalency

theorem [4] which says that the operation of down-conversion followed by a low pass
filter is equivalent to an operation of a bandpass filter followed by a down-conversion.
This rearrangement is shown in (A.5) and the new version of the kth channel is shown
in Figure [A.6].

57

Figure A.7: Down sampled and down-converter bandpass, kth channel [2]

Figure A.8: Alias to baseband down sampled down-converter bandpass,
kth channel [2]

Moreover, during the sample rate conversion, there only is one retained sample
in every M samples. Therefore, there is no interest to downconvert all the output
samples from the filter. The next operation consists to interchange the down-converter
with the down sampler. In this case, only the retained samples are downconverted.
The following Figure [A.7] shows this transformation. The time series of the complex
sinusoid is also downsampled, hence the rotation rate now.

However, a problem of aliasing appears because of this change. Indeed, the fact
to bring the down-converter after the resampler downsamples the time series of the
complex sinusoid. The rotation rate of the sampled complex sinusoid is radians
per sample at the output of the resampler. A sinusoid at one frequency or phase slope
could be at another phase slope after have been resampled. A constraint is applied on
the sampled data center frequency. The center frequencies alias to zero conversion

(dc) as the result of the down sampling . It involves or .

This modification is seen in Figure. [A.8].

As the idea developed above (equivalency theorem) and seeing the Figure [A.8],
it appears useless to compute the output discarded samples from the passband filter.
Following the theorem of noble identity [4], the operations of down sampling are
done before the computation in the bandpass filter. According to the noble identity,
“The output from a filter followed by an M-to-1 down sampler is identical to
an M-to-1 down sampler followed by the filter .” The noble identity works in
our case but a rearrangement of the filter is necessary. For the moment, the Figure
[A.9] shows the M-path partition of a resampled digital filter.

58

Figure A.9: M-path filter with output
resampler [2]

Figure A.10: M-path filter with input
resamplers [2]

(A.11)

(A.12)

(A.13)

The representation is explained below, with a Z-transform description of the partition:

Anticipating the M-to-1 resampling, the summation in (A.11) is partitioned in a
summation of summation, as shown in (A.12)

This equation is easily rewritten in a compact form described after (A.13):

By means of the noble identity, the down sampling operation is executed before

the filter operation, as shown in Figure [A.10]. The effect of this change is that the
filter only operates on the retained output samples from the resampler. Moreover, all
the switches are closed at the same clock cycle. Therefore, when they close, the input

59

Figure A.14: M-path filter with delays and input resamplers replaced by the input commutator [2]

Figure A.15: M-path filter with commutator, down-converter [2]

signal delivered to the filter on the top path is the current sample. And for the
following path, this signal corresponds to the previous sample. The combination of
the delays and the resamplers is replaced by a commutator that delivers successive
samples to the successive M-path filter, as seen in Figure [A.14].

The last step of this change is the replacement of by or by

 to satisfy the constraint developed in Figure [A.8]. The complex scalar

 attached to each path of the M-path filter is placed after the down sampled path
filter segments , as shown in Figure [A.15]. In the formula (A.13), the phase
rotators are inserted and the new result is shown in (A.16).

60

(A.16)

(A.17)

(A.18)

The computation of the sum in Figure [A.15] is presented in (A.17).

The argument represents the down sampling operation. This argument
increments through the time index, delivering every Mth sample of the original series.
The variable is the nMth sample from the filter and is the nMth time
sample of the time series from the kth center frequency. Another notification on this
formula is that the sum is a Discrete Fourier Transform (DFT) of the Mth path outputs.

However, seeing deeply the operation of down sampling, it causes the M-to-1

spectral folding, translating the M-multiples of the output sample to baseband. The
alias terms in each M-path filters have a unique phase profiles due to their distinct
center frequencies and the time offsets that are the input delays in Figure [A.10]. Each
of the aliased center frequency has a phase shift shown in (A.18).

Examining (A.17), the phase shifters of the DFT perform phase coherent

summation and the alias with the particular matching phase profile as shown above in
(A.18).

The inputs of the M-path filter are not narrow band enough to delete the
undesired spectral contributions. To separate wide-bands signal with the unique phase
profiles (described before), an operation of time delay must be performed. The M-path
filters supply the required time delays. The M-path filters behave like all pass filters,
with in the channel bandwidth, equal ripple approximation to unity gain and the set of
linear phase shifts, providing the wanted time delays.

Another perspective is that the phase rotators following the filters perform phase
alignment of the band center for each aliased spectral band while the polyphase filters
perform the required differential phase shift across these same channel bandwidths.
When the polyphase filter is performing operations (down-conversion, down
sampling) on a single channel, the phase rotators are implemented as external
complex products. After these filter operations, a set of phase rotators is applied to the
filter outputs and summed to form each channel output. On the other hand, if the
number of channels is large (on the order of), and as the phase rotators
following the polyphase filter stages are the same as the phase rotators of a DFT, the
DFT can be performed instead of applied a set of phase rotators. Furthermore, the Fast
Fourier Transform (FFT) can compute DFT efficiency.

61

To summarize this section, the channelizer using polyphase filter banks is composed
of:

- The commutator performs an input sample rate reduction by commutating
successive input samples to selected paths of the M-path filter. However, it
causes some spectral regions residing at multiples of the output sample rate to
alias to baseband. Therefore, polyphase filter bank is implemented to obtain
the desired result.

- Polyphase filters perform down sampling and down-conversion’s operations.

62

63

Figure B.1: Block diagram of the TMS320C6713 [17]

Appendix B: DSP Architecture

B.1 Overview

The purpose of this appendix is to describe the architecture of the DSP platform used
to implement the algorithm describing the application of this project. First of all, a
general description is done about the TMS320C6713 platform. Then, the software
used for the project is presented. Description of data flow development and possible
optimizations are described.

B.2 The TMS320C6713

The TMS320C6713 has been chosen for our application because it has a high
performance architecture using a VLIW (Very Long Instruction Word) CPU (Central
Processing Unit). Furthermore, the TMS320C67x can process on floating point
whereas the previous generation (TMS320C62x) processed only on fixed point.
Theses specifications make that this platform is a good choice for multichannel and
multifunction applications [14].

The architecture of the TMS320C6713 is composed of three main parts: CPU,
memory and peripherals. The different parts are linked together by buses (data bus
and address bus). The block diagram of this architecture is presented in Figure [B.1].

64

Figure B.2: Representation of the data path inside the TMS320C67x [14]

CPU Description:

The platform is operating at 225 MHz. It can be deliver up to 1350 million of
operations per second (MFLOPS) and 1800 million instructions per second (MIPS).
The CPU core is composed of two data path with four functional units each (Logic,
Shift, Multiply and Data) and a register file. The representation of both of the data
paths is shown in Figure [B.2].

There are 32 32-bits wide registers. These registers can support 32 or 40 bits
wide data. For the 40 bits, 2 registers are used: in the first one are stored the 32 LSBs
(even register) whereas the 8 MSBs bits remaining are stored in the LSBs of the
following register (always odd register). This association also is very useful to store

65

floating values (64 bits wide). Among the eight functional units, six of them (L1, S1,
M1, L2, S2, M2) execute floating points instructions.

All the units have a single data bus connected to registers. Each data path
contains one multiplier, three ALUs (Arithmetic and logical Unit) and one register file
mentioned above. Four 32 bits paths (LD1 and LD2) allow loading data from the
memory to the registers simultaneously. The data-address paths (DA1 and DA2)
allow data addresses from the registers to store data to the memory (ST1 and ST2).

The Program Fetch, Instruction Dispatch and Instruction Decode, also present in
the CPU core, deliver up to eight 32 bits instruction (256 bits wide) from the memory
to the functional units per clock cycle.

The Control Registers perform linear or circular addressing (Addressing Mode
Register), control status bits (Control Status Register), command interrupts thanks to
Interrupt Clear Register...

Memory Description:

It exists two-level cache inside the platform: the first level is divided into 2
parts: the L1P for the program is a 4 K-Byte direct-mapped cache whereas the L1D
for the data is a 2-way set-associative cache with the same memory space (4 K-Byte).

The second level is a 256 K-Byte shared in 2 parts; 64 K-Bytes can be
configured as mapped memory, cache or unified cache /mapped RAM. The remaining
free space serves as mapped SRAM.

Peripherals Description:

The EDMA (Enhanced Direct Access Memory) allows movements from or to
memory, peripherals or external devices without the intervention of the CPU. These
movements can be read or write transfer data, frame or block transfer…the EDMA
has 16 independent channels, allowing 16 different contexts for operation.

The Host-Port Interface (HPI) is a 16 bit wide parallel port where a host
processor can be plug. The HPI can access to the memory or the peripherals and
functions as a master to the interface. A control register is used to configure the host
as an interface.

The EMIF (External Memory Interface) can be connected to memory like
asynchronous (SRAM, EPROM, flash) or synchronous (SBSRAM, SDRAM) devices.
The EMIF allows addressing 512 M-Bytes external memory space [16].

B.3 Code Composer Studio

Code Compose Studio is the software used to code, load and run the program on DSP
applications. It delivers all of the hosts tools and runtime software support for
TMS320 DSP and multimedia applications on mobiles phones based real-time
embedded applications. It includes C/C++ compiler, debugger and optimizations tools

66

Develop C code

Compile

Profile

Density
reqs. Met? Done

Compile with opt. options

Profile

Density
reqs. Met? Done

Yes

Yes

No

No

Tune C code

Compile

Profile

Density
reqs. Met? Done

Yes

No

Write linear assembly

Optimize assembly

Profile

Density
reqs. Met?

Done

Yes

No

Figure B.3: code development flow on CCS composed of 4 phases.

Phase 1

Phase 2

Phase 3

Phase 4

(developed in chapter [5]), linker, real-time analysis… the version uses for this project
is 2.20.05.

Development

Figure [B.3] shows the code development flow on CCS. This flow consists of
four phases. The first three phases focus on the optimizations whereas the fourth one
includes linear assembly code.

Phase 1 compile and profile the baseline C. The C source file describes the
application of the project.

67

Parser

Optimizer

Code Generator

C/C++ source
file

.if file

.opt file

.asm file

Figure B.4: execution flow of the compiler. Optimizer block is inserted between parser and
code generator to improve the execution of the code on the DSP.

Then, phase 2 involves some optimizations options for the compilation. Usually,
the code is improved in terms of code size and execution time. Four optimizations,
developed in following chapters, can be performed.

During the phase 3, different techniques are used to tune the C code for better
performance. The goal is to allow the compiler to schedule some instructions in
parallel.

Finally, the last phase is needed if the performance requirements are not met
yet, especially after the tuning phase.

Compiling optimizations

The C compiler on Code Composer Studio can perform different optimizations.
The compiler, usually composed of parser (to check correct syntax of source file) and
code generator (to generate code in assembly), integrates an optimizer to run faster the
code on the platform. The Figure [B.4] illustrates the execution flow inside the
compiler.

It exists four various optimizations, which do not optimize the code in the same
way. These optimizations are specified with

€

−Οn where n can take the values 0, 1, 2
and 3.

€

n values represent the level of optimization. Here it is a list of some
optimizations applied according to the level of optimization:

 Optimization

€

−Ο0 (register):
 Elimination of unused code
 Simplification of expressions and statements
 Allocation of variables to registers…

 Optimization

€

−Ο1 (local):
 Performs all

€

−Ο0 optimizations

68

 Eliminate local common expressions…

 Optimization

€

−Ο2 (function):
 Performs all

€

−Ο1 optimizations
 Performs software pipelining, loop optimizations
 Converts array references to incremented pointer form…

 Optimization

€

−Ο3 (file):
 Performs all

€

−Ο2 optimizations
 Reorders function declarations…

These various compiling optimizations are applied during the implementation.
Results are in Chapter [6].

