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Abstract 
 
This Master Thesis project for the 
“Applied Signal Processing and 
Implementation” specialization at Aalborg 
University is a study of polyphase 
channelizer for multi-standard radio 
receiver on DSP Platform. The project 
focuses on SATCOM handheld receiver, 
which require efficient FIR filters 
utilization to process data received. In our 
case, WLAN and UMTS applications are 
chosen. Bandpass sampling techniques at 
840MHz are used to alias both combined 
bands. The output channels are required at 
baseband and with a sampling rate of 
20MHz and 61.44MHz. Simulations are 
performed on MatLab. The prototype filter 
for WLAN standard is 150-taps length, 
partitioned in 5 sub-filters. In UMTS case, 
the length of the prototype filter is 2520 
taps, partitioned in 210 sub-filters.   
Polyphase filter bank structures are 
studied. Parallel MAC is selected for the 
final implementation. The estimation of 
number of cycles to process data for one 
WLAN sub-channel is done. This 
estimation does not respect time 
constraints (process time through the sub-
channel is bigger than 2 data sample 
intervals). Some optimizations are 
described to reduce the execution time 
without improvements to respect 
constraints. The implementation shows that 
the execution time is bigger than 
estimation. Optimizations developed 
before allow reducing considerably this 
time but it does not respect time constraints 
yet. It is concluded that it is not possible to 
implement this application on DSP 
TMS320C6713 due to frequency 
specifications of the application. 
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Abstract:

This Master Thesis of “Applied Signal Process-
ing and Implementation” specialization at Aalborg
University is an investigation of FFT algorithms in
OFDM receivers and the algorithms power usage on
customizable platforms.
The project focuses on mobile applications and co-
operative radios, wherein only a part of the received
frequency spectrum is needed. This can be ex-
ploited by special FFT algorithms to yield a lower
operations count and intuitively a lower power con-
sumption. However, what is not reflected in the op-
erations count is the power-consumption of the con-
trolling HW/SW. This thesis seeks to investigate the
possibilities and tradeoffs, with regards to power
usage, when computing a subset of the frequency
spectrum, as opposed to the full spectrum.
Initially, the concept of cooperative radio and a sig-
nal model for OFDM is defined. Afterwards, two
Fourier transform algorithms - a full Split-Radix
FFT and an FFT algorithm computing only a subset
of the spectrum (SFFT) - are examined and mapped
to a Cyclone III FPGA architecture. Next, the
power performance of each implementation is ex-
amined and an investigation into possible improve-
ments is performed. In conclusion the algorithms
are compared to a performance measure of com-
putational complexity traditionally used to theoreti-
cally evaluate FFT algorithms.
The test results shows that the SFFT is not feasible
with regards to power usage, without further im-
provements. These improvements include, among
others, an enhanced power-off mechanism when
subsystems are not in use. If a power-off state is
introduced it is predicted that the SFFT becomes
feasible and that computational complexity corre-
sponds to the power usage for this implementation.
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Preface 
 
 
 
 
 
 

This report is the documentation for the Master Thesis in Applied Signal 
Processing Implementation (ASPI), and is written by the group 09gr1044 at the 
Institute of Electronics Systems at Alborg University (AAU). This report, entitled “A 
Survey of Implementation Issues from a FPGA-based Multi-Standard Receiver for 
SATCOM Handheld Receiver on the TMS DSP Platform Application”, spans from 
February 1st, 2009 to June 3rd, 2009. Peter Koch, Associate Professor at AAU and 
Mehmood-Ur-Rehman Awan, PhD fellow at AAU, supervised it during this period. 

The introduction provides a general discussion on SDR, as well as the problem 
definition. Polyphase channelizer, for UMTS and WLAN, is examined in the second 
chapter. Model Design is applied on the application of this project. Simulations are 
performed and complexity algorithm is carried out. Then, the algorithm is mapped on 
the DSP processor and tests are carried out for the final implementation. Finally, the 
results are concluded. A CD is attached to the report. It contains the code and test 
material produced during the project as well as an electronic version of this report in 
pdf. 
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Figure 1.10: Ideal software radio receiver. The ADC is as close as possible to the Antenna. 

1 Introduction 
1.1 General Discussion on SDR 
 
Software Defined Radio (SDR) system is a radio communication system (composed 
of filters, amplifiers, modulators, etc) that is defined mainly by software instead of 
hardware. SDR is achieved on many applications using receivers or transmitters for 
handheld devices (cellular phone, laptop, Global Positioning Syst, etc). The flexibility 
of a software radio system is to be able to process on multiple applications, without 
being blocked by a particular standard. This system has to be compatible with any 
defined radio mobiles. It is reconfigurable, for example on Digital Signal Processor 
(DSP), which implement in real time radio interface and upper layer protocols. Two 
main goals have to be respect to develop a software radio system: 
 

- The Analog-Digital Conversion has to be as close as possible to the Antenna, 
in the Radio Frequency (RF) domain. 

- The Application Specific Integrated Circuits (ASICs) has to be replaced by 
DSPs for baseband signal processing, in order to define as many radio 
functionalities as possible in software. 

 
The ideal concept of a SDR system is to go through the digital domain as close as 

possible to the Antenna. The Figure [1.10] shows the scheme of an ideal software 
radio receiver. This ideal system is not completely realizable, due to the problem of 
sampling of the Radio Frequency (RF) signal. 
 
 
 
 
 
 
 
 
 
 
 
 

Indeed, it is impossible to build Antennas and LNAs on a bandwidth ranging 
from hundreds of megahertz to tens of gigahertz. Moreover, problem of time variation 
make A/D conversion at RF very difficult [2]. 
 

The possible solution to realize a software radio receiver is shown in Figure 
[1.11]. This architecture is composed of three stages: RF stage, Intermediate 
Frequency (IF) and Baseband (BB) stage. The RF stage is totally analog whereas 
digital conversion is done in IF one. 
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Figure 1.11: Possible solution for software radio receiver. It composes of three main 
stages: RF (totally analog), IF (where the digital conversion is done) and BB (where the 

DSP processes the data) [1]. 

Table 1.20: Specifications of UMTS and WLAN standards 

 
 
 
 
 
 
 
 
 
 
 
 

The RF stage is composed of Antenna, Bandpass Filter and Low Noise 
Amplifier. Then, by means of heterodyning, the frequency is reduced and the digital 
conversion is done in the IF domain. Finally, data are processed in BB domain (use of 
PDC and DSP). 
 

The motivations for the SDR are multiples. Firstly, commercial wireless 
communication industry is facing problems due to constant evolution of protocols 
standards. Indeed, these networks (from 2G to 3G, and 4G now) are different and 
some problems appear when a new generation of network is created, especially for the 
migration of the network from one generation to another one. 

 
Another motivation is the incompatibility of wireless network technologies 

between different countries. For instance, the main wireless network in Europe is 
GSM whereas in USA, CDMA2000 is used. It is a big problem for people who travel 
a lot from Europe to USA, and in general from one continent to another one. 
 

Then, problems in rolling out new services due to wide spread presence of 
legacy subscriber handsets motivate to develop SDR. 
 

1.2 Project subject 
 
The goal of this project is to implement an algorithm capable of receiving multiple 
standards and processing them (such as down-conversion and filtering operation). 
These standards can be Bluetooth, ZigBee, DVB, DAB, GSM, WiMAX, etc but it is 
limited to only two standards: WLAN and UMTS. Some specifications of UMTS and 
WLAN standards are summarized in Table [1.20]. 
 
 UMTS WLAN 
Frequency Band 1.920-1.980 GHz: UL 

2.110-2.170 GHz: DL 
2.4-2.4835 GHz 

Channel Bandwidth 3.84 MHz 16.6 MHz 
Receiver Sensitivity -117dBm -82 to -65 dBm 
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Figure 1.21: Block diagram of the whole system [12]. 

The block diagram of the system is shown in Figure [1.21]. Firstly, the signal is 
received on the Antenna and is passed through the LNA. This amplifier allows adding 
a low noise. Then, the bandpass sampling block samples the signal just after the LNA; 
therefore, at the output of this block, the signal is in the digital domain and at the 
intermediate frequency. The analog part is only composed of the Antenna and the 
LNA. A Band-select filter is used to select the complete band after the sampling 
(UMTS and WLAN information). There are two separate paths now for UMTS and 
WLAN. A Bandpass filter and the channelizer compose each path. The Bandpass 
filter is used to select the appropriate standards (UMTS or WLAN). The IF signal is 
downconverted, filtered and downsampled through the channelizer. On the output of 
the channelizer, each channel is at the desired sampling rate. It can be noticed that 
bandpass filter after the bandpass sampling is removed for the rest of the project. 
Indeed, bandpass filters in both paths (UMTS and WLAN) are sufficient to select the 
required passband of the input sampled signal to be processed later in the channelizer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To finish on the description of the project, the architecture where the algorithm 
is implemented has to be chosen. The purpose of the project is to examine the 
implementation of polyphase channelizer for UMTS and WLAN application on a 
DSP platform, i.e. TMS320C6713. The DSP platform is used in this project for: 
 

- Implementation of the algorithm. 
- Evaluation of the performance, in particular in terms of execution time. 

 
The DSP uses VLIW architecture [Appendix B], making excellent choice for 

the multi-channel and multifunction applications. It can execute up to maximum 8 32-
bit instructions per cycle. It composes of two data paths. Each data path contains 16 
32-bit registers, one multiplier and three ALUs. Both of these data paths can work in 
parallel, allowing optimized execution for computation. The Figure [1.22] shows the 
platform used for this project. 
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Figure 1.22: Picture on the DSP platform (TMS320C6713). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.5 Problem Definition 
 

The project problem specification is 
 

Performance evaluation of a Digital Signal Processor implementation of a Multi-
Standard Digital Radio Receiver 
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Figure 2.10: Spectral representation of UMTS and WLAN standards. 
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(2.11) 

2 Application Description 
 
In this chapter, the application is described. A quick description of multi-standard 
software radio receiver is done, in particular for WLAN and UMTS standards. Then, 
WLAN and UMTS polyphase channelizers are designed. Finally, a technical problem 
is found out and solutions are studied to resolve it. 
 

2.1 Project Specification 
 
The main idea of SDR is to carry out a lot of operations on an input signal in the 
digital domain, it means, for the study of a receiver (as this is the case of this project), 
the Analog-Digital Conversion (ADC) must be realize as near the antenna as possible. 
 

For the multi-standard software radio receiver studied in this report, UMTS and 
WLAN standards are chosen and it is required down-conversion to baseband 
separately. The spectral representation of these two standards is shown in Figure 
[2.10]. The UMTS bandwidth is 60 MHz with 12 channels for downlink whereas 
WLAN bandwidth is 83.5 MHz with 3 non-overlapped channels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Figure [2.10], the spectrum combining UMTS and WLAN signals 
has a bandwidth of 373.5 MHz. According to the Nyquist-Shannon sampling criterion 
[11], the sampling frequency must be superior or equal to the double bandwidth B 
(2.11). 
 
     
 

The bandpass sampling is thus 747 MHz. But, in the combined spectrum for 
UMTS and WLAN shown in Figure [2.12], there is an unused spectrum between 
them. To overlap this unused spectrum, the sampling frequency can be decreased. It 
has been hit and tried to reduce it at 676 MHz. 
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Figure 2.12: Combined Spectrum of UMTS and WLAN sampled at 676 MHz [12]. 

Figure 2.13: 12 UMTS channels of 5 MHz, down sampled at 61.44 MHz and 
downconverted to baseband. 3 WLAN channels of 24 MHz, down sampled at 20 MHz and 

downconverted to baseband as well [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to the specifications of UMTS and WLAN standards, UMTS 
bandwidth (WLAN) is 5 MHz (24 MHz) wide. It means the UMTS spectrum contains 
12 channels of 5 MHz with 5 MHz of spacing between each inter-channels carriers. 
For WLAN, 3 non-overlapped channels of 24 MHz with a space of 30 MHz between 
inter-channels carriers. The representation of all these channels is described in Figure 
[2.13]. The bandpass corresponds to the aliases of the two combined signals in the 
Nyquist-zone shown in Figure [2.12]. All the channels are downsampled and 
downconverted (to baseband). The target output sample rate is 20 MHz (61.44 MHz) 
for WLAN (UMTS). 61.44 correspond to the product of the UMTS bandwidth (3.84 
MHz) and the oversampled ratio of 16, which is taken into account in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A summary of the specifications for the UMTS and WLAN is shown in Table 
[2.14]: 
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Table 2.14: Specifications for UMTS and WLAN sample rates. 

(2.20) 

 
Standards UMTS WLAN 

Sampling rate after AD 
Conversion 676 MHz 676 MHz 

Sampling rate desired to 
separate the channels 61.44 MHz 20 MHz 

 
 

In order to downconvert and downsample the respective channels for UMTS and 
WLAN, we need to design the channelizer. 
 

2.2 System Design 
 
Now, polyphase channelizers described above are designed for UMTS and WLAN. 
This design covers the modifications to obtain the desired target-sampling rate 
respecting the different specifications to design the channelizers. 
 

Until now, Figure [2.13] has shown the UMTS and WLAN channels, as well as 
the downsampling and down-conversion to baseband inside the polyphase 
channelizer. To remind, for UMTS, the Nyquist-zone lie at (82-142) MHz, with 
channels centered at 84.5, 89.5, … and 139.5 MHz whereas, for WLAN, this zone lie 
at (220-304) MHz, with 3 channels centered at 232, 262 and 292 MHz. 
 

According to [13], the relation between the sampling frequency, the transform 
size (number of channels) and the channel spacing for the polyphase channelizer is 
(2.20): 
 
   
 

At 676MHz of sampling frequency, the number of channels for UMTS 
(WLAN) for a channel spacing of 5 (30) MHz is equal to 135.2 (22.53). But, always 
according to [13], there are two requirements that have to be met: 
 

- The transform size (number of channels) must be integer. 
- The channels that are downsampled and downconverted have to be centered 

on the multiples of the channel spacing. 
 

For those two constraints, polyphase channelizer doesn’t fit the UMTS and 
WLAN aliases as shown in Figure [2.21]. 
 

Channelization in these circumstances involves an offset after the 
downconversion operation to baseband as shown in Figure [2.22]. 
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Figure 2.21: 3 WLAN channels carriers (A) with 30 MHz spacing. 12 UMTS channels carriers (B) 
with 5 MHz spacing. This representation result of the downsampling operation at 676 MHz [12] 

Figure 2.22: 3 WLAN channels downconverted at 20 MHz (A) with 8 MHz offset (fs =20 MHz). 
12 UMTS channels down-converted (B) with 0.5 MHz offset (fs = 61.44 MHz)[12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are many possibilities to try to correct this offset. The first possibility is 
the change of the sampling frequency. The choice of the sampling frequency must be 
done such that the aliases of UMTS and WLAN channels satisfy the required 
demands. Furthermore, the frequency must not allow the overlap of the required 
aliases. Frequencies lower than 676 MHz are chosen but none of them satisfied the 
specifications described above. 

The second possibility is to correct the offset by heterodyning after the 
polyphase channelizer. It consists of multiplying the outputs of the channelizer by an 
oscillating and low-pass filtering them. It means this method uses an extra mixer and 
filter for each channel, requiring more hardware resources. 
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(2.24) 

Figure 2.24: The modified structure of the polyphase channelizer to compensate the offset 
after the down sampling and down-conversion operation. [12] 

(2.23) 

The best solution is to use the heterodyning method, but inside the polyphase 
structure. The equation of this structure is seen in (A.11). Then, this equation is 
developed. The term  is congruent to , and the selected frequency  aliased 

to zero in the polyphase partition.  can be replaced by  where s=0,1,2…d-1. 

With d=4, the equation becomes: 
 

  

 
The summation representing the polyphase always has a phase shift that varies 

with time index . The fact to take d=4 allows to compensate the offset during the 
channelization when the channels are centered on the multiple to the quarter of the 
channel spacing. This offset is also embedded in the phase rotators of each polyphase 
channel (first summation in 2.23). The Figure [2.24] shows the modified structure of 
the polyphase channelizer.  
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Figure 2.25: Combined spectrum of UMTS and WLAN sampled at 840MHz. [12] 

Figure 2.26: Representation of WLAN and UMTS channel carriers. WLAN channels have 30MHz 
spacing and are centered on multiple of 24MHZ, where the second and third carriers require an 

extra offset (one and two quarter of 24MHz) for the position of the carriers. For the UMTS carriers, 
they are centred on multiple of 5MHz, which is added two quarter of 5MHz[12] 

This modified structure is efficient. However, it works only for the offsets of the 
multiple of quarter of the channel spacing. When the number of channels is not an 
integer or if the offset is not the quarter sub-multiple of channel spacing, the offset is 
still present on the output of the channelizer. Another solution has to be found to 
compensate the offset in these cases. 
 

The solution to compensate this offset is to change the sampling frequency to fit 
the specifications of the polyphase channelizer. After different tries, a sampling 
frequency of 840MHz has been chosen. The new spectrum of UMTS and WLAN is 
shown in Figure [2.25]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For UMTS, the channel spacing still is 5MHz and there are 168 channels at this 
sampling frequency. For the case of WLAN, the number of channels is 35 for a 
channel spacing of 24MHz. The Figure [2.26] shows the carriers positions of the 
channels for UMTS and WLAN.  
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Figure 2.27: block diagram after modification. WLAN and UMTS path are resampled by M=7 
and M=8 before polyphase process. The input sampling frequencies for the polyphase channelizer 

are now 120MHz and 105MHz for WLAN, respectively UMTS. The number of channels is 5 (21) for 
WLAN channelizer (UMTS channelizer) [12] 

The first representation shows, for WLAN case, that the carriers are centered at 
position characterized by (k=2, 3, 4 and s=0, 1, 2). It means that for each channel, the 
parameter has to change. Thus, only one channel can be extract at one time. For 
UMTS (second graph), the carriers are centered at k=70, 71, 72, …, 81 and the 
parameter s doesn’t change (s=2). So, the polyphase channelizer can extract all the 
channels at the same time. 
 

To finish the system design of the polyphase channelizer, the sampling rate has 
to be changed on the output. The output-sampling rate for WLAN (UMTS) is 20MHz 
(61.44MHz). But an observation can be done before; the number of channels for 
WLAN (UMTS) is 35 (168), which require high clock speed and large memory to 
store all the coefficients during the filtering process. Furthermore, only twelve 
channels are used and extracted at one time in the case of UMTS, whereas for 
WLAN, three channels are used and one extracted at one time. The purpose is to 
reduce the sampling frequency as low as possible on the input of the polyphase 
channelizer, to not have overlap aliases and still meet the specifications of the 
channelizer. After different resampling factors have been tried, the choice has been 
done and WLAN is resampled by a factor 7 whereas UMTS is resampled by a factor 
8. It results that the input sampling frequency of the channelizer is 120MHz 
(105MHz) for WLAN (UMTS). The Figure [2.27] shows this modification. 
Moreover, the number of channels in the polyphase channelizer goes from 35 to 5 for 
WLAN and from 168 to 21 for UMTS, which reduce the requirements for the 
implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Now the signal has to be downsampled to the output rate (20MHz for WLAN 

and 61.44MHz for UMTS). It becomes obvious for WLAN path. Having an input 
sampling frequency of 120MHz, the signal is downsampled by a factor 6. For the case 
of UMTS, the factor to downsample from 105MHz to 61.44MHz is 1.7. It means the 
signal has to be first upsampled by 10 and then downsampled by 17. All these 
operations are realised by the input commutator. 
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Figure 2.30: General system of the application. The signal is received at the Antenna, passed 
through the LNA and bandpass sampled at 840MHz. Then, the signal is filtered and downsampled 
for the standards (UMTS and WLAN) before the DSP process. In order to downsampling an input 

frequency at 840MHz, operations have to be done before the platform. 

DSP Process 
Working at 
225MHz 

LNA ADC 

Signal sampled 
at 840MHz 

Antenna 

@ 840MHz 

The system design is now completed. The input signal of the block is sampled at 
840MHz. Then, this signal is filtered to separate the WLAN and UMTS spectrum. An 
operation of resampling is done in order to reduce the number of channels in the 
polyphase channelizer. The sub-filters inside the channelizer select the good channels, 
and a down-conversion to baseband is carried out. 
 

2.3 Technical problem 
 
The bandpass sampling after the LNA (Figure [1.21]) allows passing from the RF to 
the IF domain. The input signal is sampled at 840MHz. Output signal of the bandpass 
sampling is then process through a bandpass filter to select the band composed of 
WLAN and UMTS signal. After, the path is divided into two paths (one for WLAN 
and one for UMTS) and data are processed into the channelizer. Before the 
channelizer, data are resampled at 120MHz (WLAN) and 105MHz (UMTS). There 
are resampled in order to reduce the number of channels inside the channelizer. These 
frequencies have been chosen because there is no overlapping during this operation of 
resampling as seen in Appendix [A]. The clock frequency of the DSP platform is 
225MHz (Appendix [B]). The problem is that the DSP cannot manage to reduce the 
sampling rate from 840 MHz to 120 or 105MHz due to the low clock frequency. The 
changing of sample rate has to be done before the tasks perform on the DSP platform. 
The Figure [2.30] shows the general system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It has been found several solutions to perform this operation: all the operations 
are in the analog domain between the LNA and the ADC. 
 

The first solution consists in passing the input signal received at the Antenna 
through a mixer to bring the signal to a lower possible frequency. The signal, after the 
LNA, is filtered in two bandpass filters to select the spectrums (UMTS and WLAN). 
Then, heterodyne multiplies the selected band to bring it to the baseband. Finally, the 
Nyquist sampling technique is used. The result is sampled at 2*fmax to respect the 
Nyquist sampling theorem [11]. Figure [2.31] shows the spectral representation of all 
these steps while this operation. 
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Figure 2.31: Spectral representation of different steps of the operation to reduce the 
sampling frequency. 
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c) Input signal is brought to baseband by means of heterodyning. The spectrum 
occupation is now 144MHz. 
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d) Signal is now down sampled at 2*144MHz = 288MHz. 
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The Figure [2.32] shows the diagram of this operation. After these operations, 
the sampling frequency is 288MHz. The problem is therefore not resolved. 
 

Another solution is possible. Instead of filtering all the spectrum of standard, 
only one channel is selected among 3 channels for WLAN and 12 channels for 
UMTS. The idea is exactly the same as the previous solution but bandpass filter 
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Figure 2.32: Structure of one solution to reduce the input sampling frequency in order 
to process all the operations after the ADC on DSP clocked at 225MHz. 

specifications change. Indeed, it consists in changing value of passband. In the first 
solution, the passband for WLAN bandpass filter was 60MHz. WLAN is composed of 
three channels. The bandwidth of each channel is 24MHz. Therefore, the passband is 
24MHz now. In the UMTS case, 12 channels of 5MHz-bandwidth compose the 
spectrum. Instead of a passband of 84MHz, the new passband is 5MHz. By filtering 
only one channel for each standard, the bandwidth of combined channels is 29MHz at 
baseband after the heterodyne operation. The sampling frequency becomes 58MHz. 
Therefore, operations in the digital domain are performed on DSP.  

But there is one problem: the constraints on the analog filters are strong, 
especially for UMTS case. Indeed, filter has to process around 2GHz with a 5MHz 
passband and very strong band-edges to select only one channel. This filter is 
realizable, but the signal is deformed. Thus, this solution is also discarded. 
 
 
 
 
 
 
 
 
 
 
 
 
 

In conclusion, it has been that UMTS and WLAN standards are sampled at 
840MHz after reception at the Antenna. WLAN is consisted of 3 channels. The 
bandwidth of each channel is 24MHz. For UMTS case, it is composed of 12 channels 
and the bandwidth is 5MHz. They are processed through front-end and polyphase 
channelizer. The output sample rate is 20MHz (61.44MHz) for WLAN (UMTS). It is 
decided to perform the front-end on FPGA due to low clock frequency of DSP and 
therefore, to focus only on the polyphase channelizer for the rest of the project. 
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Figure 3.20: The”generic” A3 design methodology 

Comparison 

3 Design Methodology 
3.1 Overview 
 
The purpose of this chapter is to show the different methodologies that are used in the 
project work. First of all, the A3 Model is used and specifies the domains and the 
connections between them. Next, another methodology, the Rugby Meta-Model is 
presented. A brief conclusion is done to choose the appropriate model. 
 

3.2 The A3 Model 
 
The design of the A3-model [6] is divided in three parts: Application, Algorithm and 
Architecture. First of all, “generic” A3-model is shown in Figure [3.20]. Then, this 
model is applied to the project presented in this report, as shown in Figure [3.21].  

 
• Application: is a description of the system with specifications and constraints. 

It can be time, power, area problems… 
 

• Algorithm: is the mathematical description of the application. It can be 
existing algorithms or new algorithms. They are optimized on a purely 
mathematical point of view, i.e. the optimizations are done on the algorithm’s 
parts directly related to the application. 
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Figure 3.21: A3 model for project 

• Architecture: is the platform where the algorithms are mapped (DSP, FPGA, 
Cell-BE…). The results and the specifications/constraints of the application 
are compared and modifications are done in case of incompatibility.  

 
In the application domain, a presentation of SDR front-end for SATCOM 

handheld Receiver in section [2] is done. 
 

One algorithm is developed. First, an algorithmic survey is done based on 
Multi-rate DSP methodology. Then, an algorithm exploration is analysed by means of 
MatLab. Finally, polyphase channelizer algorithm is coded in C language. 
 

In the architecture domain, the platform used to implement the algorithms is 
analysed. Available hardware and system limitations are studied. Then, measurements 
in terms of resource utilisation, execution speed, etc are realized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 The Rugby Meta-Model 
 
The Rugby Meta-Model Methodology [7] is explained in this section. This model is 
based on the Y Chart [7], introduced in 1983 by Gajski and Kuhn but with some 
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Figure 3.30: The general Rugby Meta-Model, composed by the four domains Time, Computation, 
Communication and Data. The development time line proceeds from the left to the right whereas the 
abstraction levels (represented by the vertical lines) go from a high to low. The designer starts from 

an idea to arrive to a physical system. 

modifications due to the increase of the complex systems requiring concurrent 
processes (many activities on the same device). The rugby Meta-Model is composed 
of four domains: Time, Computation, Communication and Data with different 
abstraction levels for each domain as shown in Figure [3.30]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Time: is the domain concerned with the time relations between activities. At 
each levels of abstraction, the timing in the architecture is specified. For 
example, at the highest level, it is sufficient to consider the causality, whereas 
at the low level, delays appear on every port and signals and are essential. 

 
• Computation: it concerns the relation between input and output values. This 

domain describes the behaviour of the components at different levels of 
abstraction. For example, at high level, these components could be transmitter 
or receiver; on the other hand, at low level, they could be logic blocks or 
instruction set. 

 
• Communication: treats the connections between design elements. For instance, 

during the first steps of the development, it describes the protocols of 
communication between the functional blocks. At the low level software, it 
deals with the interaction between the storage and the computation part of a 
processor. For the hardware branch, the communication is concerned by the 
connections between logical ports. 

 
• Data: is the domain that informs the data types at every abstraction level. That 

could be real numbers like voltage for low level, Boolean or logic before this 
one or integer, real for high one. 
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Figure 3.31: The Rugby Meta-Model applied on this project, with domains and abstraction levels 
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Now, the Rugby Meta-Model is applied on the project, as presented in Figure 
[3.31]. Different abstraction levels are added according to the requirements of the 
project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the meta-model of this SatCom Handheld Receiver, the different abstraction 
levels are defined as following: 
 

-  The System Specification corresponds to the constraints and requirements for a 
multi standard receiver, which both UMTS and WLAN standards receive 
simultaneously on the same front-end. 

- The System Model and Global Architecture, where a survey of the given 
platform (DSP) is done as well as the application of the project (polyphase 
channelizer) 

- The Algorithm analysis, with a mathematical description and simulations on 
MatLab (floating point), is analysed and developed. Developing and 
debugging of the C code to prepare the implementation. 

- The Implementation and tests consist to download the program on the platform 
and carry out tests to satisfy the system specification. 

 



 

19 

In conclusion, the A3 model is chosen for this project. Indeed, this methodology 
is more general than Rugby Meta-Model that is applied on one specific application. 
Moreover, A3 model corresponds to our project. The project flow development 
follows this model. Application is studied, algorithm is simulated and implemented on 
the architecture. After comparison with the constraints, optimizations are developed in 
order to satisfy the specifications of the application. 
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Figure 4.10: A3 model for project. Highlighted in red, the analysis of the 
algorithm 

 

4 Algorithm Analysis 
4.1 Overview 
 
In this chapter, the analysis of filtering calculations is discussed to implement them 
later on the platform. First of all, different design filter methods are presented. Then, 
the chosen filter is applied to the polyphase channelizer and simulations are carried 
out. Finally, complexity analysis is studied. A short conclusion is done about the 
results of the different simulation on MatLab. According to the A3 design model, this 
section belongs to the algorithm domain, as illustrated in Figure [4.10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Algorithms 

4.2.1 Signal Theory 
 
A digital filter is a system that performs operations on sampled discrete signal to 
modify its characteristics. There exist two classes of digital filters: Infinite Impulse 
Response (IIR) and Finite Impulse Response (FIR) filter. The type of filter is chosen 
according to several criteria: complexity, computational speed, and required 
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Figure 4.2.1: Frequency response of a low pass filter used the equiripple method [9] 
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resources. The IIR filter is supposed to be unstable and is difficult to control in terms 
of phase [8]. But as mentioned in Appendix [A], the application requires least phase 
distortion; therefore FIR filter is the best choice, especially by means of its linear 
phase and its stability. Moreover, this type of filter is supported by purpose DSP that 
have Multiplier and Accumulator (MAC) that reduce the computational speed of 
higher order FIR filters. 
 

The filter has to be design, i.e. finding the coefficients from frequency 
specifications. There are three methods (the most commonly used) to design it: 
 

• Window design method 
• Frequency sampling method 
• Equiripple design 

 
In this section, the study is carried out only on the window and the equiripple 

design method. The “window design method” is the simplest method to design a FIR 
filter because it’s very easy to use and understand. The process to use it is described 
below: 
 

1) Specify the desired frequency response 
2) Calculate the IFFT which give lots of coefficients 
3) Truncate the filter coefficients 
4) Apply a window function to sharpen up the filter’s frequency 
response 

 
But this method has some limitations. Indeed, the truncation of filter 

coefficients introduces some ripples and overshoots called Gibb’s phenomenon. 
Another problem is that the stopband attenuation is fixed for a given window. Thus, 
for a given attenuation specification, the window has to fit perfectly the filter’s 
specifications. Moreover, this method is not flexible. This method is not optimal, 
hence another method called Equiripple. 
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(4.2.2) 

This method, created by Remez/Parks-Mclellan, uses an algorithm that iterates 
between the filter coefficients and the frequency response until it finds the filter that 
fits with the given specifications and with the lowest number of coefficients. This 
method just meets the specifications without over performing. On the other hand, 
many window methods design filter better than the specifications, hence wasting the 
performance. An example of the frequency response of a low-pass filter using the 
equiripple method is shown in Figure [4.2.1] 
 

By means of this method, the optimal filter is defined by the following 
specifications; sampling frequency, transition width , passband ripples  
and stopband attenuation . Then, the order of the filter is computed with the 
formula (4.2.2) and presented in [10]. 
 

  

 
Where  

 

  

 
 

     
       
 

And  is the transition width normalized to the sampling frequency. To finish, 
the ratio from the passband ripples to stopband ripples gives the weight for each band. 
 

To summarize, the choice of the design method must be done carefully. The 
different specifications of the filter impose us to design it with the optimal method, to 
obtain the minimum numbers of coefficients (therefore less resources to implement) 
and to fit perfectly to the requirements. 
 

4.2.2 Simulation 
 
In this section, the equiripple design method has been chosen for the polyphase 
channelizer simulations. These simulations are carried out by means of MatLab. For 
each standard (WLAN and UMTS), the prototype filter is shown as well as one 
channel on the output of the polyphase channelizer  
 

The filter specifications (developed in the previous chapter) have shown that the 
channel spectral distribution for WLAN and UMTS are 24 MHz, respectively 5 MHz. 
For WLAN, the passband bandwidth is 16.6 MHz and the transition bandwidth is 7.4 
MHz. For the case of UMTS, the passband bandwidth is 3.84 MHz whereas the 



 

24 

Figure 4.2.3: Filter specifications for WLAN channelizer. The passband is 16.6 MHz 
and the transition band is 7.4 MHz. The channel spacing is 24 MHz [12] 

Figure 4.2.4: Filter specifications for UMTS channelizer. The passband is 3.84 MHz 
and the transition band is 1.16 MHz. The channel spacing is 5 MHz [12] 

transition bandwidth is 1.16 MHz. The Figure [4.2.3] and [4.2.4] show these filter 
specifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First, the order of the filter has to be defined according to the specifications 
(cutoff frequencies, attenuation in the stopband). The MatLab function firpmord 
allows obtaining the approximate order of the filter. This function needs four 
parameters to determine the value; the vector of the frequencies band edges between 0 
and Fs/2 (Fs is the sampling frequency), the vector that defines the amplitude in the 
different bands, the vector specifying the desired attenuation in the stopband and 
finally the sampling frequency. 
 

With the order of the filter, the coefficients can be computed now. The function 
Firls is used. This function returns a row vector of N+1 coefficients of the n FIR filter 
whose approximately match the characteristics of the filter according to frequency 
and amplitude vector specified above in the description of firpmord function. The 
output coefficients are real and symmetric. 
 

The frequency response of the filter prototype is shown in Figure [4.2.5] for the 
WLAN channelizer and in Figure [4.2.6] for the UMTS channelizer. Frequency 
response of WLAN in Figure [4.2.5] and UMTS in Figure [4.2.6] respect 
specifications of the filters described previously (Figure [4.2.3] for WLAN and Figure 
[4.2.4] for UMTS). Filters are designed at baseband. 
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Figure 4.2.5: Frequency response of the 
prototype filter for WLAN channelizer. The 

passband is 16.6 MHz with ripple less than 0.5 dB 
whereas the transition band is 7.4 MHz. There is an 

attenuation of 60 dB in the stopband. 

Figure 4.2.6: Frequency response of the 
prototype filter for UMTS channelizer. The 

passband is 3.84 MHz with ripple less than 0.5 dB 
whereas the transition band is 1.16 MHz. There is 

an attenuation of 60 dB in the stopband. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the WLAN filter, the passband is 16.6MHz with a ripple less than 0.5dB. 
The transition-band is 7.4MHz and the stopband attenuation is 60dB. The MatLab 
function firpmod gives a length of 51 for non-partitioned WLAN filter. For the 
polyphase decomposition, the number of channels is 5. In order to have an integer 
number of coefficients for the sub filters inside the polyphase channelizer, the order of 
the filter is decreased to 50. Therefore, the length of sub filter is 10 taps. 
 
 

In the case of UMTS, the passband is 3.84MHz with a ripple less than 0.5dB. 
The transition-band is 1.16MHz and the stopband attenuation is 60dB. The filter is 
designed at 1050MHz. The length of the non-partitioned filter is 2521. The number of 
channels for the polyphase decomposition is 21. Like the WLAN applications before, 
the order of the non-partitioned is modified in order to have an integer number of 
coefficients. The new order is 2520. The length of each sub filters in the filter bank is 
120 taps. But in the UMTS polyphase channelizer, a down-conversion of 1.7 or 17/10 
is required (seen in section [2])(upsampling by 10 and downsampling by 17). This 
upsampling creates 10 copies of the signal. Thus, the number of taps is divided by 10. 
The length of the sub filters is 12 taps. 
 
 

Figure [4.2.7] and [4.2.8] show the test-signal generated for WLAN and UMTS 
standards. Indeed, signals from the bandpass filters are composed of only one 
standard. For this simulation, it was necessary to show all the channels of both 
standards. Therefore, these signals have been created to represent the channel carriers 
at the desired sampling frequency. They have been built by adding several 
exponentials together. 
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Figure 4.2.7: Input signal for WLAN channelizer 
sampled at 120MHz. 3 channels are centered at -42, 

-12 and 48MHz occupying a bandwidth of 
16.6MHz. 

Figure 4.2.8: Input signal for UMTS channelizer 
sampled at 105MHz. 12 channels are centered at 

15, 20, 25...70MHz occupying a bandwidth of 
3.84MHz. 

Figure 4.2.9: output spectrum of WLAN channelizer. 
The channel is centered at -12MHz, corresponding to 

k=4 and s=2. The signal is downconverted to baseband 
and downsampled at 20MHz. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data are fed into the polyphase channelizer by means of commutator. In the 
case of WLAN, data are dealt and shifted inside a two dimensional array (5 channels 
with 10 data samples each). Then, 6 data are fed at a time. The coefficient sets are 
stored in a two dimensional register (5 channels with 10 coefficients each). There are 
5 different states to feed the data inside the input register. This channelizer is non-
maximally decimated, i.e. output sampling rate and channel spacing are different. An 
offset appeared by feeding 6 data in 5 channels at a time. Therefore, the coefficients 
sets have to be rotated each time data are fed. The convolution is performed between 
data and coefficient sets. Finally, signal is downconverted to baseband and 
downsampled to the required sampling rate of 20MHz. The Figure [4.2.9] represents 
the output spectrum WLAN channel centered at -12MHz corresponding to variable k 
= 4 and s = 2. 
 
 
 
The result is unexpected. Indeed, 
the output signal does not 
correspond of the input channel in 
Figure [4.2.7]. It is supposed that 
the downsampling operation into 
the polyphase channelizer causes 
data loss in the initial signal, 
hence this kind of result. 
 
 
 
 
 



 

27 

Figure 4.2.10: the channel centered at 35MHz, which 
variable k=7 and s=2, corresponds to UMTS standard. 

The signal is downconverted to baseband and 
downsampled at 61.44MHz. 

For UMTS, the algorithm is a little bit different. Indeed, there is an operation of 
upsampling by 10 and an operation of down sampling by 17 to reduce the input 
sampling frequency at 105MHz to the output sampling frequency at 61.44MHz. Data 
are shifted and fed in a two dimensional register. Due to upsampling and 
downsampling, 9 zero packing are inserted between two data through the register in 
stride of length 17. Only 1 or 2 data are fed at a time. The same sequence of feeding 
repeats every 10 cycles; data are fed according to 10 states. Moreover, the filter has 
been designed at 1050MHz therefore one tenth of coefficients are used at a time. 
Then, convolution operation performs the filtering. The Signal is downconverted to 
baseband and downsampled to the output-sampling rate of 61.44MHz. In Figure 
[4.2.10], the output of one channel of UMTS channelizer is drawn. The channel 
centered at 35MHz, corresponds to k=7 and s=2. 
 
 
 
It appears that the attenuation is 
not 60 dB in the stopband. It is 
supposed that the successive 
up/downsampling operations cause 
this kind of problem. Indeed, these 
operations result in data loss; 
therefore the signal energy 
decrease and that the reason why 
the attenuation is only 40 dB. 
 
 
 
 
 
 
 
To summarize, the order of the WLAN filter is 50. It is divided in 5 sub-filters. 
Therefore, the polyphase channelizer is divided in 5 channels. 6 data are fed at a time 
and the signal is downconverted to baseband by means of DFT. The output-sampling 
rate is 20MHz. 

In the case of UMTS, the filter is composed of 2520 taps. It is divided in 210 
sub-filters. 1 or 2 data are fed at a time. The channelizer is divided in 21 channels and 
the signal is downconverted to baseband. The output-sampling rate is 61.44MHz. 
 

4.2.3 Complexity Analysis 
 

In this section, a particular attention is done on the design of polyphase filter 
bank. Indeed, the analysis of the complexity must allow knowing how many times the 
functional units in DSP architecture are used in order to reduce the execution time for 
the final implementation. First of all, structures of FIR filters, used in the polyphase 
filter bank, are studied. Then, the structures of polyphase filter is described and 
optimized. Finally, the best design solution is selected for the implementation. 
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Figure 4.2.12: Block diagram for direct-form FIR filter, with 3 taps length. 
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Figure 4.2.13: Block diagram for transpose-form FIR filter, with 3 taps length. 

(4.2.11) 

FIR Filters 
 

FIR Filters use discrete convolution of the input and the frequency response of 
the filter. The formula [4.2.11] shows the discrete convolution with the input x and the 
filter coefficients h: 
 

  

€ 

y(n) = h(k)x(n − k)
k= 0

M −1

∑  

 
According to (4.2.11), the filter structure is designed in Figure [4.2.12]. This 

structure is most commonly called direct-form. It consists of parallel multipliers and 
accumulators (MACs). In this structure, each MAC computes the delayed input and 
the corresponding coefficient of the filter. All the results accumulated produce the 
output y(n). 
 
 
 
 
 
 
 
 
 
 
 
 

However, this structure produces long delays through the accumulation way. It 
appears to implement another structure of FIR that correspond better to computational 
hardware. That is why the transpose-form FIR filter structure is chosen. The 
representation of this structure is drawn in Figure [4.2.13]. It consists to change the 
direction of the arrows of the direct form (Figure [4.2.12]), and exchange the input 
with the output. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The most advantage of this structure is that it can have the accumulation way 
pipelined to increase the performance, especially in terms of execution time.  
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Figure 4.2.14: The input commutator feeds the M-path Polyphase filter bank, operating 
at M times the reduced time than the input sample frequency 
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The structure of polyphase channelizer used in this project is shown in Figure 
[4.2.14]. The 1-to-M commutator deals the sample data to M-Path Polyphase Filter 
Bank. Then, FFT block processes the down sampled data from the polyphase filters to 
construct the individual channels before the last summation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The commutator deals the data to each sub-filter in the polyphase filter bank. 
Therefore, it loads data from the memory to registers. For the WLAN, according to 
the simulation in the previous section, the order of the non-partitioned filter is 50. The 
polyphase filter bank is composed of 5 channels (sub-filters). Each sub-filter has 10 
coefficients. In the case of UMTS channelizer, the order of the non-partitioned filter is 
2520. There are 210 sub-filters with a length of 12 coefficients. But an operation of 
upsampling (by 10) is performed inside the channelizer. It means that only 1/10th of 
the coefficients are used at time. The UMTS channelizer is composed of 21 channels 
(sub-filters). 
 

The complexity carried out on polyphase filters gives the number of 
multiplication, addition and register access for the final implementation. For the 

WLAN channelizer, 

€ 

50
5

 multiplications, 

€ 

50
5
−1 additions and 

€ 

50 × 2 + 50
5

 register 

accesses are necessary for each sub-filter. For the case of UMTS, multiplications, 

 additions and 

€ 

252 × 2 + 252
21

 register accesses are necessary for each sub-

filter. By multiplying all these operations by the number of sub-filters present in the 
polyphase filter bank (UMTS and WLAN), the following complexity is obtained and 
tabled in Table [4.2.15]. 
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Table 4.2.15: Complexity analysis for the UMTS and WLAN polyphase filter banks for 
the general form of polyphase filter. 

4.2.16 

 M Sub-filters 

A1 B1 C1 D1 

A2 B2 C2 D2 

A2 B2 C2 D2 

A1 B1 C1 D1 

Figure 4.2.17: Symmetric polyphase filter bank. The first N/2 coefficients are the same as 
the last N/2 coefficients but in the reverse order 

 
Register access  Multiplication Addition Load Store 

WLAN (5 sub-filters) 50 45 100 50 
UMTS (21 sub-filters) 252 231 504 252 

 
 
 
 

However, some improvements are possible to obtain less operation for the final 
implementation and therefore, reduce the execution time. 
 

First of all, the structure of polyphase filter is symmetric. It means that for N 
filter coefficients, the N/2 first coefficients are the same as the last N/2 coefficients 
but in the reverse order. The formula (4.2.16) shows the symmetry of a filter. The 
Figure [4.2.17] gives a preview of the polyphase filter bank structure considering this 
symmetry. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This specification allows reducing the number of coefficient multiplication, thus 
sharing the multiplication. The first sub-filters and the last sub-filters share the same 
coefficient multiplication (A1, B1, C1, D1), the second and the one next to last share 
the same coefficient multiplication (A2, B2, C2, D2) and so on. The input 
commutator decimates now by M/2 instead of M. It is half the size for this type of 
architecture. After dealing the first M/2 sub-filters from the bottom to the top sub-
filter, it changes the direction and deals the last M/2 sub-filters from the top to the 
bottom. The Figure [4.2.18] explains the movements of it. 
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Figure 4.2.18: Input commutator (1-to-M/2) for the new structure of polyphase filter 
bank. The commutator feeds the sample data from the bottom sub-filter and move up until 

the top sub-filter. Then, it keeps feeding but in the other way (move down) 

Figure 4.2.19: Optimization of the polyphase filter bank structure using sharing multiplication 
method. The coefficient multiplications (h0, h1, h2, h3) are shared for the convolution inside the first 

sub-filter and the last one. The results are on red output y(n) (respectively blue output y(n)) [18] 

Registers 

Adder 

Figure 4.2.20: Optimization of the polyphase filter bank structure using sharing multiplication 
and addition method. Coefficient multiplications (h0, h1, h2, h3) are shared for the convolution 

inside the first sub-filter and the last one. Then, the required result is loaded from register, 
additions are shared and results are on red output y(n) (respectively blue output y(n)) [18] 

 
 
 
 
 
 
 
 
 
 
 
 
 

The Figure [4.2.19] shows the shared multiplication optimizations apply to the 
first and the last sub-filters. A second optimization, which shares multiplications and 
additions, is presented in Figure [4.2.20], always for the first and the last sub-filters. 
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Table 4.2.21: Complexity of optimized polyphase filter bank structure. The number of multiplications and 
additions is strongly reduced by means of optimizations in opposition to the number of register accesses 
(loading and storing). Furthermore, the clock speed doubles due to the change of the commutator length. 

The complexity of these two optimizations is shown in Table [4.2.21] for 
WLAN and UMTS channelizer. Multiplexers and demultiplexer in Figure [4.2.20] 
correspond to register accesses. Moreover, clock speed is specifies. Indeed, the clock 
speed is doubled because the size of the input commutator is divided by 2. 
 

Register access Channelizer Optimizations Multiplication Addition 
Load Store 

Clock 

Opt. 1 (Shared 
Multiplication) 

50/2 
25 45 100 50 2*fs/5 WLAN 

(5 sub-
filters) 

Opt. 2 (Shared 
Multiplication 
and addition) 

50/2 
25 

45/2 
23 

39*5 
195 

20*5 
100 2*fs/5 

Opt. 1 (Shared 
Multiplication) 

252/2 
126 231 504 252 2*fs/21 UMTS 

(21 sub-
filters) 

Opt. 2 (Shared 
Multiplication 
and addition) 

252/2 
126 

231/2 
116 

47*21 
947 

24*21 
504 2*fs/21 

 
 
 
 

These optimizations allow reducing time because multiply and logical unit are 
used less time than the “basis” implementation (Table [4.2.15]). On the opposite, a lot 
of accesses to register are done. For the optimization 1, 100 loads and 50 stores are 
necessary: 50 coefficients and 50 data are loaded from memory for multiplication and 
50 results of the accumulation are stored in memory. 

 
According to the description of the architecture of the DSP in Appendix [B], it 

is composed of two data paths. Each data path has 1 multiply, 1 logical (addition for 
example) and 1 shift unit. Moreover, there are 16 32-bits registers. Although the 
structure with optimization 2 (Shared Multiplication and addition) reduces the number 
of computation, the DSP architecture does not allow implementing this structure. 
Indeed, the DSP architecture is fixed and it appears complicated to implement it.  

 
However, filters inside the polyphase filter bank are not all used at the same 

time. On M sub-filters in the channelizer, M-1 are not used at all the time. Thus, the 
polyphase filter bank can be implemented as a serial form. To realize this 
implementation, Multiply and Accumulate (MAC) are used. They can be 
implemented as two methods: serial form or parallel form. Firstly, the serial form is 
studied for the serial implementation of the polyphase filter bank. The Figure [4.2.22] 
shows a serial MAC. The set of data corresponding to each-filter in polyphase filter 
bank is stored in memory. The position of the input commutator allows choosing the 
good data at the good address as well as the corresponding coefficient multiplying this 
data. The result of the multiplication is accumulated to have the final result at the 
good time for the sub-filter. This process is performed to all the channels (sub-filters) 
according to the input commutator. 
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Table 4.2.23: Complexity of serial MAC for a serial polyphase filter bank. The clock of the 
system is the number of coefficients of each sub-filter (N) by the number of channels (sub-

filters)(M) at the sampling frequency. 

Figure 4.2.24: Serial polyphase filter bank implemented with parallel MAC. The input data 
(set of data corresponding to each sub-filters) are stored in memory. These data are multiplied 

by the corresponding coefficients, added in parallel. Then, the output result is stored in 
registers to be further processed by the DFT [12]. 

Input data (stored in 
memory) 

Filter coefficients 
(stored in a memory) 

Output data 

Figure 4.2.22: Serial polyphase filter bank implemented with serial MAC. The input data 
(set of data corresponding to each sub-filters) are stored in memory. These data are multiplied 

by the corresponding coefficients, added and stored in the corresponding registers. 
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The complexity for polyphase filter bank using the serial MAC is tabulated in 
Table [4.2.23]. N corresponds to the number of coefficients. 
 

Register access  Multiplication Addition 
Load Store 

Clock 
Speed 

Serial MAC 
Implementation N N-1 2*N N N*fs/M 

 
 
 
 
 
For the parallel MAC, the input data and the coefficients are multiplied in parallel, at 
the same time. The clock is the same for the MAC operation as the clock for the input 
data deliverance. DSP platform can processed 2 MAC in parallel. The Figure [4.2.24] 
shows the parallel MAC implementation. 
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Table 4.2.25: Complexity of serial MAC for a serial polyphase filter bank. The clock of the 
system is fs in this case. N is the numbers of taps of the non-partitioned filter whereas M is the 

polyphase sub-filters. The parallel MAC uses more resources in terms of hardware than the 
serial MAC, but the clock is lower than the other implementation. 

The Table [4.2.25] gives the complexity of the parallel MAC implementation 
for polyphase filter bank. According to [4.2.23] and [4.2.25], the serial MAC 
implementation uses less resources in terms of hardware than the parallel one, but 
needs a high clock speed, whereas the parallel MAC is clocked at fs. 
 

Register access  Multiplication Addition 
Load Store 

Clock 
Speed 

Parallel MAC 
Implementation N/(2*M) (N/(2*M)) 

-1 2*N N fs 

 
 
 
 
 

To conclude, simulations have been performed. Results respect almost the 
specifications presented in chapter [2]. But some problems have to be resolved like 
downsampling for WLAN channelizer and attenuation in the stopband for UMTS 
application. The analysis complexity has been carried out on the polyphase filter bank 
structure. Different solutions for the FIR implemetation have been tried as the general 
form, the shared multipliers or shared multipliers and adders’ methods, the 
implementation of serial or parallel MAC on a serial polyphase filter bank. According 
to the Table [4.2.21], [4.2.23] and [4.2.25] giving the complexity of these different 
structures and the architecture of the DSP, it results that the parallel MAC 
implementation for a serial polyphase filter bank is the best choice in terms of time 
constraints. 
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Figure 5.10: A3 model for project. Highlighted in red, the mapping on the 
platform 
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5 Algorithm to Architecture Mapping 
5.1 Overview 
 
In this chapter, the Algorithm to Architecture Mapping is presented. The three parts of 
the polyphase channelizer (Commutator, FIR filters, DFT) are developed separately 
for the architecture mapping. WLAN application is chosen (1 sub-channel) and 
algorithms are mapped on the platform (DSP TMS320C6713). Then, optimizations 
are carried out to improve the implementation. Functional Units of the DSP are 
analysed, in terms of execution time (number of cycles). According to the A3 design 
model, this section belongs to both algorithm and architecture domain, as illustrated in 
Figure [5.10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the polyphase channelizer, WLAN polyphase filter bank has 5 sub-filters 
each of length 10 taps [chapter 4]. Input Sample rate for the WLAN channelizer is 
120MHz. 10 data samples are taken as a test signal and acquired in real time. Data are 
real. Every time a data is fed in the input register, it is processed through the filter and 
DFT operations before another one is acquired. 
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Figure 5.11: Structure of one channel of WLAN polyphase channelizer. Highlighted in red, 
one sub-channel. Algorithm corresponding of this part is mapped on DSP processor. 

Filter Bank DFT 

The Figure [5.11] shows the part of the polyphase channelizer on which it has been 
decided to focus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Commutator 
 
In this part of the channelizer, two different operations are done: feeding the input 
array to compute the convolution later and shifting the data inside it for the next 
operation. Input data are stored in the data memory due to limited number of CPU 
registers. Operation consists in shifting the data inside the input array to allow the 
convolution computation in second part of the channelizer. Instruction used is MVC. 
Functional units L1 or L2 perform this task. By examining the architecture in 
appendix [B], two arguments are passed to this instruction: source register (src2) and 
destination register (dst) where data is moved. This operation is carried out by 
instruction ADD where data that must been moved is added by value zero and stored 
in destination register. 
 
Example 
  MV .L1 A0, A6 
 

The L1 functional unit moved data from register A0 to register A6. By using 
instruction ADD, data in register A0 is added by zero and stored in register A6. This 
instruction requires one single cycle of the pipeline for the execution [19]. 
 

The instruction MV loads data from memory to register. As seen in appendix 
[B], data are loaded through LD1a and LD1b (for data path A) while data path B uses 
LD2a and LD2b. The instruction used to load data is LDW. This instruction allows 
loading a word from memory to register. It receives two arguments: src that indicates 
the source (memory) and dst which is the destination (register). D1 and D2 are 
functional units used for this loading. 
 
Example:   LDW .D1 *A10, B1 
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Figure 5.20: Execution of Load instruction inside the pipeline. 
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Figure 5.21: Execution of Store instruction inside the pipeline. 
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In this case, the D1 unit loads data at address pointed by A10 in the internal 
memory in the register B1. This operation requires 5 cycles of the pipeline for the 
execution [19]. Indeed, in the first stage (E1), the register file modified the pointer of 
data address. The stage E2 sends the data address to the memory. Then, the memory 
reads the address (E3). During the next stage, the data arrives at the CPU Core and 
during E5, the data is stored in the corresponding register. The Figure [5.20] 
summarizes these operations inside the pipeline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data are stored in memory after the shifting. The instruction STW is used to 
carry out this operation. It stores a word to memory from register. Functional unit D1 
and D2 are used to do this operation (appendix [B]). 
 
Example:   STW .D2 B4, *+ B6 [1] 
 

In the example, data in the register B4 is stored at the address pointed by 
register B6 with an offset of 1. The execution of this instruction requires 3 clock 
cycles [19]. The Figure [5.21] shows the operation in the pipeline to perform it. While 
the stage E1, the address where the data will be stored is computed. This address and 
the data are sent to the memory during E2. Finally, the data is written (E3). 
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10 

Reg. A 

Reg. B 

L1 Unit 

L2 Unit 

Load 

Load 

Store 

Store 

Instruction MV 

Instruction MV 

D1 Unit 

D2 Unit 

Data fed 

Figure 5.22: Data flow for the commutator. Firstly, data are shifted and then, new data is fed. 

Table 5.23: Number of cycles for one input data fed in the commutator. 

The Figure [5.22] shows the movement of data between memory and registers 
for the shifting and feeding operation. The Table [5.23] summarizes the number of 
clock cycle for the Commutator execution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data are shifted and fed in an input array. The length of the input array in the 
external memory is 10. During the shifting, 10 data are loaded from memory to 
registers to perform the shifting operation (instruction MV). Then, shifted data are 
stored in the input array. These operations are executed in parallel (use of both data 
paths). Finally, new input data is fed at the appropriate address. 
 
Instruction Load Shift Store 
Number of cycles 10*5/(2*2) 10/2 (10*3)/2 
 
 
 

10 loads are carried out to shift the entire input array. Five clock cycles are 
necessary to perform this instruction. Both data paths work in parallel and there are 2 
load inputs for each. 10 shifts are performed in total and 3 cycles are necessary to 
store data shifted into memory. 
 

5.3 FIR Filter 
 
After having fed and shifted data in input register, the second step of channelizer is 
filtering the data. A FIR filter carries out this operation. It consists of a simple 
convolution. All data inside input register are multiplied by filter coefficients and 
accumulated. This operation, called MAC (multiply and accumulate) requires only one 
single cycle. Architecture, described in appendix [B], is composed of two multipliers 
(one into each data path). It means that two MACs are performed per cycle. Both are 
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Figure 5.30: Data path (red line) to 
execute MAC instruction in one single cycle. 

Table 5.31: Phase of data movement inside data 
path (functional unit) for MAC instruction. 

Table 5.33: Number of cycles for convolution computation. 

executed in parallel. Therefore, 5 cycles are necessary to convolve 10 input data. 
Figure [4.2.24], shown in section [4.2.3], describes the structure of parallel MAC 
implementation. Figure [5.30] represents data path for a MAC operation through 
multiplier and accumulator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two operands are loaded from register A to M unit with input src1 and src2. 
Result of multiplication is on the output dst of the multiplier and is accumulated by 
means of L unit. Table [5.31] shows the different phases of data movement through 
the functional units. 
 

For this application (WLAN), the length of one sub filter is 10 coefficients 
(section [4.2.2]. Thus, 10 MACs operations are performed per data fed, or 5 clock 
cycles are executed for this computation. Moreover, 10 data and 10 coefficients are 
loaded from memory to registers to perform this convolution (in parallel). Then, the 
two results of both data paths are added together to obtain the final result of the 
convolution. This result is stored to register for further computation. The Table [5.33] 
summarizes the number of clock cycles to execute convolution operation. 
 
Instruction Load MAC Store 
Number of cycles 10*5*2/(2*2) 10/2 + 1 - 
 
 
 

The Figure [5.32] shows data movement between memory and data path. 10 
data and 10 coefficients are loaded (5 cycles) in parallel through to 2 load inputs into 
each data path. 2 MACs are performed in parallel. One last MAC is carried out to 
obtain the final result of the convolution. Finally, result is stored into register instead 
of memory to not use one store instruction. 
 
 

Phase Functional Unit 
1 Multiplication (M1) 
2 Addition (L1) 
3 Store (register file) 
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Figure 5.32: Data flow for the FIR filter. Firstly, data and coefficients are loaded from 
memory, MACs instructions are performed. The final MAC is carried out into data path A. Final 

result is stored into register. 

(5.40) 

(5.41) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4 Discrete Fourier Transform 
 
The last step of the channelizer process is coherent phase summation to extract the 
down sampled data at baseband. To perform this operation, Discrete Fourier 
Transform computation is done. The DFT operation is defined by formula [5.40]: 
 

   

 
DFT computation requires 

€ 

N 2  complex multiplications and 

€ 

N 2 − N  complex 
additions. MAC instruction is used to compute DFT like the convolution developed 
above. The difference is these operations are complex, thus the result is separate in 
two parts: one for the real and one for the imaginary. Indeed, this exponential term 
can be developed in a sum of cosine and sine shown in formula [5.41]: 
 

   

 
Therefore, for one DFT, two output data are produced (real part and imaginary 

part). The computation of DFT requires 

€ 

4N 2  multiplications and 

€ 

6N 2 − 3N  additions. 
In terms of execution, two MACs work in parallel to compute DFT (real and 
imaginary part). One clock cycle is necessary to compute the multiplication of the 
data by the exponential term and the accumulation. In the case of one sub-channel, N 
= 1 thus there is no accumulation. Results of data paths are stored in 2-length array 
(real and imaginary part) into memory. The Figure [5.42] shows the data movement 
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Output sub-channel 
(memory) 
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L1, M1 Unit 

L2, M2 Unit 

 

 

Store Instruction MAC 

Instruction MAC 

D1 Unit 

D2 Unit 

Output sub-
filter 
(register A) 
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Figure 5.42: Data flow for DFT computation. Firstly, output sub-filter is moved from register 
A to register B, MAC instruction is performed for real part (imaginary). Two results are stored 

in memory. 

Table 5.43: Number of cycles for DFT computation. 

Table 5.44: Number of total clock cycles for one WLAN sub-channel. One date is fed at the 
input sample rate (120MHz). 

between memory and data paths. The Table [5.43] summarizes the number of clock 
cycles to perform DFT computation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instruction Shift MAC Store 
Number of cycles 1 2/2 2*3 
 
 
 

Two loads are carried out in parallel (one for the real and one for the imaginary 
part). 2 MACs instructions are also performed in parallel and 1 complex result is 
stored into memory. The estimation of the computation of exponential term has not 
been taken into account (computation of cosine and sine). 

 
To summarize this analysis, Table [5.44] shows the number of clock cycles for 

one sub-channel into the channelizer. One data is fed at a time; the sub-filter inside 
the channelizer is 10 taps. 
 
Part of sub-
channel 

Commutator FIR filter DFT Total 

Number of 
cycles 33 31 8 72 

 
 
 
 

The total number of clock cycles to process data in one WLAN sub-channel is 
72. The clock frequency of the DSP is 225MHz. It means that the execution time is 

€ 

72
225

= 320ns. The input sampling rate is 120MHz, so every 

€ 

1
120

= 8.333ns, there is a 

new data fed. Time constraints are not respected. The Figure [5.45] shows timing 
constraints as well as the execution time of one data process through the channelizer. 



 

42 

… 

t (sec) 0 
€ 

T =
1

120MHz
 

Feeding 
data 1 

Feeding 
data 2 

Feeding 
data 39 

€ 

T =
72

225MHz
 1st data on output (performed 

through 1 sub-channel) 

Figure 5.45: Time processing of one data through one sub-channel (green). One data is fed in 
the sub-channel every 1/120MHz (red). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It appears that first data is totally processed in a time when 39 data samples 
have already been fed. It is necessary to optimize the code in order to reduce the 
number of instructions, therefore reducing the execution time. The goal is to obtain an 

execution time less than two input sample intervals (i.e.

€ 

1
120MHz

). 

 

5.5 Optimizations 
 
The previous sections ([5.2], [5.3], [5.4]) presented the implementation of the 
algorithm without optimizations. This part develops implementation modifications in 
order to reduce the number of cycles. Firstly, circular buffer is presented. Then, 
deterministic complex terms optimizations is developed. 

5.5.1 Circular Buffer 
 
It has been seen in Commutator part of the channelizer that data have to be shifted 
before feeding new input data. This shifting takes a lot of clock cycles. Indeed, 1 
clock cycle is taken to shift one data from it actual place in memory to the next one. 
10 cycles are necessary to carry out this operation into functional units for 10 data 
inputs. The TMS320C6713 can perform linear or circular addressing. Circular 
addressing is very interesting for the FIR computation because input data have to be 
shifted before every data feed. This addressing mode is only possible with registers 
A4-A7 and B4-B7 [19]. The Figure [5.50a-b] illustrates the behaviour of a circular 
buffer in five consecutive memory locations. 
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Figure 5.50: Circular buffer with 5 samples. State of the buffer at one particular instant (a). 
A new sample is acquired (b) and all the sample are shifted to the right (one step) 

X[n-2] X[n-1] X[n] X[n+1] X[n+2] 
Input data 
(acquisition) 

Output data 
(shifting) 

X[n-3] X[n-2] X[n-1] X[n] X[n+1] 
Input data 
(acquisition) 

Output data 
(shifting) 

New data is acquired Previous data is discarded Data are shifted on the right 

b) 

a) 

Table 5.51: Number of cycles for one data feed in the commutator, with circular buffer optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure [5.50a], there are five samples stored at one particular instant. The 
Figure [5.50b] shows the changes when a new sample is acquired. All the data in the 
buffer are shifted (one step) to the right. The last previous data of the buffer is 
discarded (X[n+2] in our example). 
 

Circular buffer is very efficient on the platform used on this project. Indeed, all 
the data are shifted in only one single clock cycle. In comparison with the first 
implementation, which used the instruction MV and that required one cycle to move 
one sample from a register to another (10 clock cycles in total), the number of cycles 
is reduced for each data acquired. 
 

As seen before, this addressing mode is only possible on 8 registers (A4-A7 and 
B4-B7). It means that only 8 data are shifted per cycle. Input array length in memory 
is 10. Therefore, 2 cycles are necessary to shift all data before feeding a new input 
sample. The new results for the commutator execution, in terms of number of cycles, 
are tabled in Table [5.51]. 
 
Instruction Load Shift Store 
Number of cycles 10*5/(2*2) 10/(2*2) (10*3)/2 
 
 
 

The difference between the first (in section [5.2]) and the optimized 
implementation is the reduction of clock cycles for the shift instruction. The number 
of cycles is reduced by 2. 
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5.5.2 Deterministic Complex Terms 
 
In the previous implementation of the DFT, the output of sub-filter (stored in register) 

is multiplied by the exponential term. The exponential term 

€ 

e
−2πik n

M  is computed 
inside functional units before the multiplication with data. It takes lot of instructions 
to compute this term (cosine and sine). In order to reduce the number of computation, 
deterministic complex terms optimization is applied. The DFT length is fixed. 
Therefore, the exponential term is known before the DFT computation. It is stored in 
memory. The number of instruction to compute all these exponential terms is reduced. 
Only 1 load from the memory to registers is necessary to carry out MAC instructions 
for DFT. 
 

5.5.3 Building Optimizations 
 
It has been found out some builds options on CCS to compile code in an optimized 
way. These optimizations, presented in Appendix [B], allow reducing code size, using 
pipeline and parallel architecture in an efficient way in order to reduce the number of 
clock cycles. A general description of these optimizations is done in Appendix [B]. 
These optimizations are also implemented. They should allow reducing the execution 
time in order to respect time constraints. 
 

In conclusion on this chapter, the algorithm has been mapped on the 
architecture. One date has been fed in the sub-channel and the number of instruction 
cycles has been estimated. It has been seen that time constraints are not respected. 
Indeed, execution time is higher than the input sample rate. In order to reduce this 
time, some optimizations have been studied. It is difficult to know if these 
optimizations can bring some improvements, due to the impossibility to give an 
estimation (especially for building options and deterministic terms). The next chapter, 
which treats the implementation, goes to allow knowing if these improvements can 
reduce time in order to respect time constraints. 
 



 

45 

DSP 
TMS320C6713 

Application 

Algorithm 

Architecture 

Requirements 
Iterate 

SDR front-end for 
SATCOM 

handheld Receiver 

Polyphase 
channelizer 

Figure 6.10: A3 model for project. Highlighted in red, the implementation on 
the platform 

6 Implementation 
6.1 Overview 
 
This chapter puts in practice the theoretical analysis developed in chapter [4] and [5]. 
It contains the results of the first implementation of one sub-channel of WLAN 
polyphase channelizer as well as the results of various optimizations applied to this 
implementation. All these results are evaluated, compared and discussed. According 
to the A3 design model, this section belongs to the architecture domain, as illustrated 
in Figure [6.10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2 Test Definition 
 
The tests are carried out on the algorithm implemented on DSP platform. Firstly, 
results are compared with MatLab ones to have a reference. Each result of parts of the 
sub-channel (commutator, convolution and DFT) are analysed and confronted to 
MatLab to check if the code is working well. 

Then, various tests are performed. Profiler on CCS is used. By adding some 
functions or piece of code, profiler gives some measures of the selected functions or 
pieces of code while the execution of code. The first test is carried out on one sub-
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Table 6.30: Execution time for each sub part of one WLAN sub-channel (commutator, FIR and 
DFT). Results are displayed in number of instruction cycles and time (nsec). Furthermore, a 

measurement of the execution time for the whole sub-channel is realized. 

Table 6.31: Comparison of estimation and the practical results of the different parts of the sub-
channel. Results are in number of clock cycles. One data is fed and processed through the sub-

channel. Furthermore, the number of clock cycles for the whole sub-channel is presented. 

channel of polyphase channelizer for WLAN application. Then, the different 
optimizations developed in chapter [5] are applied to this sub-channel, to see the 
potential improvements.  

Two parameters are evaluated during these tests: execution time and number of 
clock cycles. Measurement of the time and number of cycles is realized by the profiler 
and is carried out on the function Commutator, FIR filter and DFT. The hardware 
utilization in data paths is examined by using the option “mixed view C/ASM” on 
CCS. ASM view allows seeing what are the instructions used in various functions. 
 

6.3 Tests Results 

6.3.1 One WLAN Sub-Channel  
 
The Table [6.30] gives the results of the execution of one sub-channel of the 
polyphase channelizer. The time to perform feeding, convolution and DFT are shown. 
For each part of the sub-channel, execution time, when one data is fed, is measured. 
Moreover, the measurement of the sub-channel execution is done. Measurements are 
done in terms of number of instruction cycles and of time (nsec). 
 

 Commutator Convolution 
(FIR filtering) DFT Total sub-

channel 
Number of 
instruction 

cycles for one 
data fed 

236 11000 458 11600 

Time for one 
data fed (nsec) 1180 55162 2290 58000 

 
 
 
 
 

The results in the Table [6.30] are unexpected. Indeed, the results between the 
theoretical analysis in chapter [5] (Table [5.44]) and the implementation (Table 
[6.30]) are different. For instance, for the input commutator, expected result was 33 
cycles and the practical result is 236 cycles. The estimation and the practical results 
are tabled in Table [6.31]. 
 

 Commutator Convolution 
(FIR filtering) DFT Total sub-

channel 
Estimation  33 31 8 72 
Practical 
results 236 11000 458 11600 
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There are differences between the estimation and practical results. For example, 
concerning DFT computation, there are two explanations to justify this difference: 
 

-  First of all, the estimation of DFT computation has not taken into account of 
exponential term computation. Indeed, this estimation is consisted of: 

 
1) Loading of data 
2) Multiplication of data by exponential term 

 
In this estimation, the computation of exponential term should have added. 
Indeed, the computation of cosine and sine used lot of instructions: number of 
clock cycles is 304 for cosine function whereas the sine function takes 260 
clock cycles. 

 
- Secondly, it has been said that the DFT was computed by using MAC 

instructions. But for this case of implementation (N=1), there is no 
accumulation. Only one multiplication is performed. Data is just multiplied by 
the exponential term. The instruction used is not a MAC but MPYI. This 
instruction required 9 clock cycles to be performed [19]. 

 
Moreover, it appears, on the sight of the assembly code, that the compiler, while 

the declaration of a variable (int i = 2 for instance), affects the value 2 to a register 
and then, stores the value of this register in the stack. As seen previously, the 
instruction STW requires 3 clock cycles. 
 

Time constraints are not respected. According to the theoretical analysis 
developed in section [5], execution time to process 1 data was bigger than two input 
sample intervals. Therefore, it is obvious to say that this implementation does not 
respect time constraints because practical results are bigger than estimation. 
 

The different optimizations developed in chapter [5] are necessary to try to 
reduce the number of clock cycles in order to respect the timing. The next section 
presents results of optimized code. 
 

6.3.2 Results After Optimizations 
 
Firstly, build options are changed in order to reduce and reorganize the source code. 
In this way, the optimizer tries to fit the code well on the platform in order to use 
efficiently the architecture of the DSP (parallelism, pipeline). The first optimizations 

€ 

(−Ο0) enables register optimizations, 

€ 

−Ο1 concerns local optimizations, 

€ 

−Ο2 treats 
functions whereas the last one 

€ 

(−Ο3) performs files modifications. The Table [6.30] 
summarizes results of these optimizations. It is noticed that these optimizations reduce 
the number of clock cycles in comparison with the first implementation in section 
[6.3.1]. The more the level of optimization is, the more is the reduction in execution 
time decreased. By analysing the assembly code, with optimization, the code size is 
reduced and the shift operation inside the commutator uses the parallel architecture 
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Table 6.3.1: Execution time for each part of one WLAN sub-channel (commutator, FIR and DFT) with 
various compiling optimizations. Results are displayed in number of instruction cycles and time (nsec). 

Table 6.3.2: Comparison of the estimation of execution time and various implementations (implementation 
without optimizations, with compiling optimization). Execution time for each part of one WLAN sub-channel 

(commutator, FIR and DFT). Results are displayed in number of instruction cycles and time (nsec). 

well to shift all the data inside the input array. However, results are still bigger than 
estimation, and thus also constraints. Table [6.3.2] regroups all these results.  
 

Optimizations Measurements Commutator 
Convolution  

(FIR 
Filtering) 

DFT 
Total sub-
channel 

Number of 
cycles 

188 11034 452 11528 
Opt. -O0 

Time (nsec) (940) (55170) (2260) (57640) 
Number of 

cycles 
161 10996 457 11419 

Opt. -O1 
Time (nsec) (805) (54981) (2285) (57095) 
Number of 

cycles 
32 474 804 11207 

Opt. -O2 
Time (nsec) (160) (2370) (4020) (56036) 
Number of 

cycles 
32 474 804 11207 

Opt. -O3 
Time (nsec) (160) (2370) (4020) (56036) 

 
 
 
 

Execution Measurements Commutator 
Convolution  

(FIR 
Filtering) 

DFT 
Total sub-
channel 

Number of cycles 33 31 8 72 
Estimation 

Time (nsec) (146) (137) (35) (318) 

Number of cycles 236 11000 458 11600 Execution 
without Opt. Time (nsec) (1180) (55162) (2290) (58000) 

Number of cycles 32 474 804 11207 Execution 
with Opt. –

O3 Time (nsec) (160) (2370) (4020) (56036) 

 
 
 
 
 

Table [6.3.2] shows that compiling optimization 

€ 

−Ο3 reduced strongly the 
number of clock cycles for commutator and FIR parts of the sub-channel in 
comparison with the implementation. However, number of cycles for DFT 
computation is always high with or without optimizations. Furthermore, timing 
constraints are not respected yet. The total execution time for the optimized 
implementation (level 

€ 

−Ο3) is 11207ns whereas one data is fed every 8.33ns 
(120MHz). 
 

Now, implementation with the deterministic complex term optimizations is 
carried out. Exponential terms of the DFT are stored in memory. Instead of compute 
these term in data path, there are just loaded from memory to register to be multiplied 
by data in the inner product of DFT. This optimization is performed in order to reduce 
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Table 6.3.3: Comparison of the estimation of execution time and various implementations (implementation 
without optimizations, with compiling optimization –O3, deterministic terms and combination of the last both). 
Execution time for each part of one WLAN sub-channel (commutator, FIR and DFT). Results are displayed in 

number of instruction cycles and time (nsec). 

number of clock cycles for DFT part of the sub-channel. Table [6.3.3] shows the 
result of this optimization as well as the results of previous optimizations for 
comparison. The number of cycles is reduced for DFT part when the implementation 
is performed with the deterministic term optimization. As it has been said above, one 
load is necessary to compute the inner product in DFT operation. The result of the 
combination of compiling option 

€ 

−Ο3 and deterministic term optimization is also 
shown in Table [6.3.3]. 
 

Execution Measurements Commutator 
Convolution  

(FIR 
Filtering) 

DFT 
Total sub-
channel 

Number of 
cycles 

33 31 8 8 
Estimation 

Time (nsec) (146) (137) (35) (35) 
Number of 

cycles 
236 11000 458 11600 Execution 

without 
Opt. Time (nsec) (1180) (55162) (2290) (58000) 

Number of 
cycles 

32 474 804 11207 Execution 
with Opt. –

O3 Time (nsec) (160) (2370) (4020) (56036) 
Number of 

cycles 
236 11000 55 11351 Execution 

with Deter. 
Terms Time (nsec) (1180) (55162) (256) (56783) 

Number of 
cycles 

32 474 55 10654 Execution 
with Opt. –
O3 & Deter. 

Terms Time (nsec) (160) (2370) (256) (47351) 

 
 
 
 
 
 

The combination of the compiling option and deterministic terms gives satisfied 
results in terms of execution time in comparison with the first implementation without 
optimization. By comparing with the estimation, optimizations are better for the 
commutator part. Only FIR and DFT is still higher. The Circular Buffer optimization 
has not been implemented. Indeed, this kind of addressing mode requires coding in 
Assembly code, especially to select the appropriate registers to perform it. But it 
might guess that this optimization reduces the execution time for the Commutator 
part. 
 

Although improvements are performed in order to reduce the execution time, 
time constraints are not respected yet. After having reflexion on this problem, it 
appears that implementation of this algorithm is impossible at this sampling frequency 
(120MHz). The interval between two data samples is too small to perform all the 
process. This interval corresponds of 2 clock cycles of the DSP. It is not possible to 
obtain data on the output of the sub-channel in only 2 clock cycles. 



 

50 

 
 
 
 



 

51 

7 Conclusion & Perspectives 
7.1 Conclusions 
 
The goal of Software Defined Radio system is to be reconfigurable without changing 
DSP processor, i.e. it must serve a wide variety of radio protocols in real time. In our 
case, this is realized for multi standards receivers such as mobile phones, Global 
Positioning System, etc. These receivers work for applications as satellite 
communication, Bluetooth, ZigBee, WiMAX, etc. For this project, two standards have 
been selected: UMTS and WLAN. To speed up the data process on these receivers, 
special algorithm can be implemented. With processor platform especially designed 
for signal processing, the speed can be improved as soon as the architecture is well 
managed. 

The goal of this Master Thesis ASPI project is to answer the problem defined in 
section [1.3] as follow: 
 

“Performance evaluation of a Digital Signal Processor implementation of a Multi-
Standard Digital Radio Receiver?” 

 
First of all, an analysis of the design has been done to determine how the system 

can process data received at the antenna. It appears that the use of polyphase 
channelizer is the best way to process this application. Polyphase channelizer is 
composed of three parts: Commutator, FIR filter and DFT. It has been discovered that 
digital front-end (part before the polyphase channelizer) could not be performed on 
DSP platform. The sampling frequency is higher than DSP platform. Some techniques 
(filtering + heterodyning) in the analog domain have been tried in order to resolve this 
problem, but without success. Therefore, it has been decided to focus only on the 
polyphase channelizer survey. 

By means of this analysis, the algorithm is simulated on MatLab to fit the 
specifications of the application. The results of simulation allowed confirming that the 
algorithm was well coded. A complexity analysis of the algorithm has been carried 
out to determine what kind of implementation and which resources (in terms of 
mathematical functions) are used on the architecture. Parallel MAC implementation 
has been chosen for filter bank inside the channelizer. 

Then, the architecture of the board has been studied as well as tool used for the 
final implementation. The platform is a DSP from Texas Instruments. The target 
platform is TMS320C6713. It is clocked at 225MHz and designed especially to 
process floating point data. The algorithm is coded in C language and Code Composer 
Studio is used to compile and load program on the board. 

Before the final implementation, the mapping of the algorithm has been done to 
see how the algorithm fit on the architecture. A theoretical analysis of the instructions 
is realized to have an idea of results we should except. This analysis consists of the 
estimation of number of clock cycles of instruction used to process the channelizer 
(for instance, load filter coefficients from memory to registers). This theoretical 
analysis does not respect time constraints. Indeed, theoretical execution time is bigger 
than specifications time (time to process data through the channelizer is bigger than 
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time between 2 data samples). Therefore, some optimizations have been developed to 
reduce the execution time. It has been discovered that the required specifications of 
the application could not be obtained with the implementation on this processor. 
Indeed, the clock frequency of the DSP is lower than the frequency specifications of 
both standards (UMTS and WLAN). 

However, the implementation on the platform has been performed and tests 
have been done. Indeed, although this application cannot be performed on this DSP 
platform, it allows seeing how this algorithm fit on this DSP architecture. The first 
implementation has been carried out on only one WLAN sub-channel of the 
polyphase channelizer. The fact to execute one sub-channel provides a preview of the 
execution on the platform. The results, in terms of computation are the same as 
MatLab. The measures have shown that the compiler used more instructions than the 
ones developed in the theoretical analysis. The estimation for the execution of the 
channel was 72 clock cycles whereas the practical result is 11600. Some 
optimizations, like deterministic terms and compiling options, have been developed 
and results have been improved, in terms of execution time. The combination of 
deterministic term and compiling –O3 optimizations gives almost the same result as 
the estimation. Although these optimizations, time constraints are not respected. 
 

7.2 Perspectives 
 
Firstly, some perspectives are possible in architecture point of view. 
 

It has been seen that the clock frequency of the DSP was too low for this 
application. The main problem is that the bandwidth of input signal is too wide. 
Aliasing and overlapping problems appear after the sampling operation. The 
implementation of standards is possible on DSP platform with a higher clock 
frequency. Nowadays, DSPs typically run at 1 GHz. This type of platform may suit 
for this application that requires an 840MHz-sampling frequency. 
 

By keeping TMS320C6713 DSP, only one standard can be processed on it. For 
a multi standard receiver, the use of several DSPs has to be done. The standards are 
still received at 1 antenna, but filtered in analog domain before the conversion to 
digital domain. There is thus only one DSP per standard. 
 

Secondly, improvement can be done in terms of code. In this project, algorithm 
has been coded in C-language but it has been seen in Appendix [B] that the Assembly 
code is the last step of code flow development on CCS, especially for optimizations. 
The fact that to code in Assembly allows directly manipulating registers, instruction, 
etc. It will allow, for instance, developing Circular Buffer optimization. It is a low 
level language that is the closest to the architecture. The problem is that for this kind 
of application that requires a lot of code, the ASM is complicated and requires lot of 
time to code. 
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Figure A.1: Conventional channelizer [2] 

Figure A.2: Polyphase channelizer [2] 

Appendix A: Polyphase Channelizer 
 
The FDM signal is downconverted to baseband, filtered and subjected to a sample rate 
reduction. A conventional channelizer, in Figure [A.1], can perform this task. It is 
composed of down-converters, baseband filters and resamplers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the conventional channelizer, each channel needs individual channelizer and 
these channelizers can perform only one channel. Another implementation that 
performs the channelization is called Polyphase N-path filter bank, as shown in Figure 
[A.2].  
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Figure A.3: kth channel for conventional channelizer [2] 

Figure A.6: Bandpass filter, kth channel for channelizer [2] 

(A.4) 

(A.5) 

It is capable of delivering all the required channels with only one channelizer. 
The new channelizer offers more advantage than the previous channelizer shown in 
[A.1] in terms of cost, due to reduction in system resources required to perform the 
multichannel processing, and is more efficient when large sampling rate changes are 
required. 
 

Polyphase channelizer uses resampler, all-pass partition and FFT phase shifters. 
The path between the conventional and polyphase channelizer is described below 
now. First of all, the block diagram of one channel of the conventional channelizer is 
shown in Figure. [A.3]. The output  of the digital low-pass filter is a simple 
convolution operation, as described in equation (A.4):  
 
 
 
 
 
 
 
 
 
 
 
   

   

 
The summation in equation (A.4) is rearranged in order to the equivalency 

theorem [4] which says that the operation of down-conversion followed by a low pass 
filter is equivalent to an operation of a bandpass filter followed by a down-conversion. 
This rearrangement is shown in (A.5) and the new version of the kth channel is shown 
in Figure [A.6]. 
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Figure A.7: Down sampled and down-converter bandpass, kth channel [2] 

Figure A.8: Alias to baseband down sampled down-converter bandpass, 
kth channel [2] 

Moreover, during the sample rate conversion, there only is one retained sample 
in every M samples. Therefore, there is no interest to downconvert all the output 
samples from the filter. The next operation consists to interchange the down-converter 
with the down sampler. In this case, only the retained samples are downconverted. 
The following Figure [A.7] shows this transformation. The time series of the complex 
sinusoid is also downsampled, hence the rotation rate  now. 
 
 
 
 
 
 
 
 
 
 
 

However, a problem of aliasing appears because of this change. Indeed, the fact 
to bring the down-converter after the resampler downsamples the time series of the 
complex sinusoid. The rotation rate of the sampled complex sinusoid is  radians 
per sample at the output of the resampler. A sinusoid at one frequency or phase slope 
could be at another phase slope after have been resampled. A constraint is applied on 
the sampled data center frequency. The center frequencies  alias to zero conversion 

(dc) as the result of the down sampling . It involves  or . 

This modification is seen in Figure. [A.8]. 
 
 
 
 
 
 
 
 
 
 
 
 

As the idea developed above (equivalency theorem) and seeing the Figure [A.8], 
it appears useless to compute the output discarded samples from the passband filter. 
Following the theorem of noble identity [4], the operations of down sampling are 
done before the computation in the bandpass filter. According to the noble identity, 
“The output from a filter followed by an M-to-1 down sampler is identical to 
an M-to-1 down sampler followed by the filter .” The noble identity works in 
our case but a rearrangement of the filter is necessary. For the moment, the Figure 
[A.9] shows the M-path partition of a resampled digital filter.  
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Figure A.9: M-path filter with output 
resampler [2] 

Figure A.10: M-path filter with input 
resamplers [2] 

(A.11) 

(A.12) 

(A.13) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The representation is explained below, with a Z-transform description of the partition: 
 

  

  
 
Anticipating the M-to-1 resampling, the summation in (A.11) is partitioned in a 
summation of summation, as shown in (A.12) 
 

  

 
This equation is easily rewritten in a compact form described after (A.13): 
 
  

  

 
By means of the noble identity, the down sampling operation is executed before 

the filter operation, as shown in Figure [A.10]. The effect of this change is that the 
filter only operates on the retained output samples from the resampler. Moreover, all 
the switches are closed at the same clock cycle. Therefore, when they close, the input 
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Figure A.14: M-path filter with delays and input resamplers replaced by the input commutator [2] 

Figure A.15: M-path filter with commutator, down-converter [2] 

signal delivered to the filter on the top path is the current sample. And for the 
following path, this signal corresponds to the previous sample. The combination of 
the delays and the resamplers is replaced by a commutator that delivers successive 
samples to the successive M-path filter, as seen in Figure [A.14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The last step of this change is the replacement of  by  or  by 

 to satisfy the constraint developed in Figure [A.8]. The complex scalar 

 attached to each path of the M-path filter is placed after the down sampled path 
filter segments , as shown in Figure [A.15]. In the formula (A.13), the phase 
rotators are inserted and the new result is shown in (A.16). 
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(A.16) 

(A.17) 

(A.18) 

 

  

 
The computation of the sum  in Figure [A.15] is presented in (A.17). 

The argument  represents the down sampling operation. This argument 
increments through the time index, delivering every Mth sample of the original series. 
The variable  is the nMth sample from the filter and  is the nMth time 
sample of the time series from the kth center frequency. Another notification on this 
formula is that the sum is a Discrete Fourier Transform (DFT) of the Mth path outputs. 
 

  

 
However, seeing deeply the operation of down sampling, it causes the M-to-1 

spectral folding, translating the M-multiples of the output sample to baseband. The 
alias terms in each M-path filters have a unique phase profiles due to their distinct 
center frequencies and the time offsets that are the input delays in Figure [A.10]. Each 
of the aliased center frequency has a phase shift shown in (A.18). 
 

 
 

 
Examining (A.17), the phase shifters of the DFT perform phase coherent 

summation and the alias with the particular matching phase profile as shown above in 
(A.18).  
 

The inputs of the M-path filter are not narrow band enough to delete the 
undesired spectral contributions. To separate wide-bands signal with the unique phase 
profiles (described before), an operation of time delay must be performed. The M-path 
filters supply the required time delays. The M-path filters behave like all pass filters, 
with in the channel bandwidth, equal ripple approximation to unity gain and the set of 
linear phase shifts, providing the wanted time delays. 
 

Another perspective is that the phase rotators following the filters perform phase 
alignment of the band center for each aliased spectral band while the polyphase filters 
perform the required differential phase shift across these same channel bandwidths. 
When the polyphase filter is performing operations (down-conversion, down 
sampling) on a single channel, the phase rotators are implemented as external 
complex products. After these filter operations, a set of phase rotators is applied to the 
filter outputs and summed to form each channel output. On the other hand, if the 
number of channels is large (on the order of ), and as the phase rotators 
following the polyphase filter stages are the same as the phase rotators of a DFT, the 
DFT can be performed instead of applied a set of phase rotators. Furthermore, the Fast 
Fourier Transform (FFT) can compute DFT efficiency. 
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To summarize this section, the channelizer using polyphase filter banks is composed 
of: 

- The commutator performs an input sample rate reduction by commutating 
successive input samples to selected paths of the M-path filter. However, it 
causes some spectral regions residing at multiples of the output sample rate to 
alias to baseband. Therefore, polyphase filter bank is implemented to obtain 
the desired result. 

- Polyphase filters perform down sampling and down-conversion’s operations. 
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Figure B.1: Block diagram of the TMS320C6713 [17] 

Appendix B: DSP Architecture 
 
B.1 Overview 
 
The purpose of this appendix is to describe the architecture of the DSP platform used 
to implement the algorithm describing the application of this project. First of all, a 
general description is done about the TMS320C6713 platform. Then, the software 
used for the project is presented. Description of data flow development and possible 
optimizations are described. 
 
B.2 The TMS320C6713 
 
The TMS320C6713 has been chosen for our application because it has a high 
performance architecture using a VLIW (Very Long Instruction Word) CPU (Central 
Processing Unit). Furthermore, the TMS320C67x can process on floating point 
whereas the previous generation (TMS320C62x) processed only on fixed point. 
Theses specifications make that this platform is a good choice for multichannel and 
multifunction applications [14]. 
 

The architecture of the TMS320C6713 is composed of three main parts: CPU, 
memory and peripherals. The different parts are linked together by buses (data bus 
and address bus). The block diagram of this architecture is presented in Figure [B.1]. 
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Figure B.2: Representation of the data path inside the TMS320C67x [14] 

CPU Description: 
 

The platform is operating at 225 MHz. It can be deliver up to 1350 million of 
operations per second (MFLOPS) and 1800 million instructions per second (MIPS). 
The CPU core is composed of two data path with four functional units each (Logic, 
Shift, Multiply and Data) and a register file. The representation of both of the data 
paths is shown in Figure [B.2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are 32 32-bits wide registers. These registers can support 32 or 40 bits 
wide data. For the 40 bits, 2 registers are used: in the first one are stored the 32 LSBs 
(even register) whereas the 8 MSBs bits remaining are stored in the LSBs of the 
following register (always odd register). This association also is very useful to store 
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floating values (64 bits wide). Among the eight functional units, six of them (L1, S1, 
M1, L2, S2, M2) execute floating points instructions. 

All the units have a single data bus connected to registers. Each data path 
contains one multiplier, three ALUs (Arithmetic and logical Unit) and one register file 
mentioned above. Four 32 bits paths (LD1 and LD2) allow loading data from the 
memory to the registers simultaneously. The data-address paths (DA1 and DA2) 
allow data addresses from the registers to store data to the memory (ST1 and ST2). 
 

The Program Fetch, Instruction Dispatch and Instruction Decode, also present in 
the CPU core, deliver up to eight 32 bits instruction (256 bits wide) from the memory 
to the functional units per clock cycle. 
 

The Control Registers perform linear or circular addressing (Addressing Mode 
Register), control status bits (Control Status Register), command interrupts thanks to 
Interrupt Clear Register...  
 
Memory Description: 
 

It exists two-level cache inside the platform: the first level is divided into 2 
parts: the L1P for the program is a 4 K-Byte direct-mapped cache whereas the L1D 
for the data is a 2-way set-associative cache with the same memory space (4 K-Byte).  
 

The second level is a 256 K-Byte shared in 2 parts; 64 K-Bytes can be 
configured as mapped memory, cache or unified cache /mapped RAM. The remaining 
free space serves as mapped SRAM. 
 
Peripherals Description: 
 

The EDMA (Enhanced Direct Access Memory) allows movements from or to 
memory, peripherals or external devices without the intervention of the CPU. These 
movements can be read or write transfer data, frame or block transfer…the EDMA 
has 16 independent channels, allowing 16 different contexts for operation. 
 

The Host-Port Interface (HPI) is a 16 bit wide parallel port where a host 
processor can be plug. The HPI can access to the memory or the peripherals and 
functions as a master to the interface. A control register is used to configure the host 
as an interface. 
 

The EMIF (External Memory Interface) can be connected to memory like 
asynchronous (SRAM, EPROM, flash) or synchronous (SBSRAM, SDRAM) devices. 
The EMIF allows addressing 512 M-Bytes external memory space [16]. 
 
B.3 Code Composer Studio 

 
Code Compose Studio is the software used to code, load and run the program on DSP 
applications. It delivers all of the hosts tools and runtime software support for 
TMS320 DSP and multimedia applications on mobiles phones based real-time 
embedded applications. It includes C/C++ compiler, debugger and optimizations tools 
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Develop C code 

Compile 

Profile 

Density 
reqs. Met? Done 

Compile with opt. options 
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Density 
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No 
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Tune C code 

Compile 

Profile 

Density 
reqs. Met? Done 
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No 

Write linear assembly 

Optimize assembly 

Profile 

Density 
reqs. Met? 

Done 

Yes 

No 

Figure B.3: code development flow on CCS composed of 4 phases. 

Phase 1 

Phase 2 

Phase 3 

Phase 4 

(developed in chapter [5]), linker, real-time analysis… the version uses for this project 
is 2.20.05. 
 
Development 
 

Figure [B.3] shows the code development flow on CCS. This flow consists of 
four phases. The first three phases focus on the optimizations whereas the fourth one 
includes linear assembly code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 1 compile and profile the baseline C. The C source file describes the 
application of the project. 
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Parser 

Optimizer 

Code Generator 

C/C++ source 
file 

.if file 

.opt file 

.asm file 

Figure B.4: execution flow of the compiler. Optimizer block is inserted between parser and 
code generator to improve the execution of the code on the DSP. 

Then, phase 2 involves some optimizations options for the compilation. Usually, 
the code is improved in terms of code size and execution time. Four optimizations, 
developed in following chapters, can be performed. 

During the phase 3, different techniques are used to tune the C code for better 
performance. The goal is to allow the compiler to schedule some instructions in 
parallel. 

Finally, the last phase is needed if the performance requirements are not met 
yet, especially after the tuning phase. 
 
Compiling optimizations 
 

The C compiler on Code Composer Studio can perform different optimizations. 
The compiler, usually composed of parser (to check correct syntax of source file) and 
code generator (to generate code in assembly), integrates an optimizer to run faster the 
code on the platform. The Figure [B.4] illustrates the execution flow inside the 
compiler. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It exists four various optimizations, which do not optimize the code in the same 
way. These optimizations are specified with 

€ 

−Οn  where n can take the values 0, 1, 2 
and 3. 

€ 

n  values represent the level of optimization. Here it is a list of some 
optimizations applied according to the level of optimization: 
 
 Optimization 

€ 

−Ο0 (register): 
  Elimination of unused code 
  Simplification of expressions and statements 
  Allocation of variables to registers… 
 
 Optimization 

€ 

−Ο1 (local): 
  Performs all 

€ 

−Ο0 optimizations 
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  Eliminate local common expressions… 
 
 Optimization 

€ 

−Ο2 (function): 
  Performs all 

€ 

−Ο1 optimizations 
  Performs software pipelining, loop optimizations 
  Converts array references to incremented pointer form… 
 
 Optimization 

€ 

−Ο3 (file): 
  Performs all 

€ 

−Ο2 optimizations 
  Reorders function declarations… 
 

These various compiling optimizations are applied during the implementation. 
Results are in Chapter [6]. 
 


