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Synopsis:

Dette projekt omhandler udvikling af et proof-of-
concept self-tuning system til et Mission OSTM

kedelsystem. Ydermere er der udviklet en
metode, der sikrer ren forbrænding, selv ved sa-
turering af aktuatorerne i brændstofsystemet.
Mission OSTM kedelsystemet er modelleret som
tre separate ulineære modeller; en model af Mis-
sion OSTM kedlen, fødevandssystemet og brænd-
stofsystemet. I forbindelse med design of SISO
regulatorer, er de komplekse ulineære modeller
simplificeret til integratormodeller. De komplekse
ulineære modeller og de simple integratormo-
deller er verificeret mod måledata fra kedelsy-
stemet. Regulatorerne er designet med henblik
p̊a anvendelse i det udviklede self-tuning sys-
tem, som er udviklet til at identificere model-
parametre under opstart af kedelsystemet. De
identificerede parametre omfatter karakteristik af
servomotorer, fødevandsventil, damptrykopbyg-
ning samt et kurveb̊and, der beskriver olie/luft
forhold, anvendt til iltregulering. P̊a baggrund
af disse parametre udregnes regulatorparametre,
inden kedelsystemet sættes i normal drift.
Regulering af brændstofsystemet til Mission
OSTM kedelsystemet inkluderer pulsbreddemodu-
leret (PWM) positionsregulering af olieventil og
luftspjæld. Opgaven at følge et kurveb̊and ved
aktuator saturering, er beskrevet som et minime-
ringsproblem. Minimeringsproblemet er løst ved
brug af et modelprædiktivt referencekorrektions-
system, der sikrer konstant iltniveau ved over-
holdelse af kurveb̊andet.
Endeligt er en Kalman estimator designet til
at estimere middelvandstand i kedlen og det
umålbare dampforbrug, med henblik p̊a at vur-
dere mulig forbedring af vandstandsreguleringen.

De udviklede metoder er verificeret gennem simu-

lering og viser tilfredsstillende resultater.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) m̊a kun ske efter aftale med

forfatterne.
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Abstract:

This project concerns development of a proof of
concept self-tuning system for a Mission OSTM

boiler system. Furthermore, a method to ensure
clean combustion, in case of fuel actuator satura-
tion, has been developed.
The Mission OSTM boiler system is modelled as
three separate non-linear models; a model of the
Mission OSTM boiler, the feed water actuator
system and the fuel actuator system. For de-
sign of SISO controllers, the complex non-linear
models are simplified to integrator models. Both
the complex non-linear models and the simple in-
tegrator models are verified using measurement
data from the boiler system. Controllers are de-
signed to comply with the developed self-tuning
scheme, capable of identifying model parameters
during the start-up phase of the boiler system.
The identified parameters includes fuel actuator
servo characteristics, feed water valve characte-
ristics, a curveband, describing the oil/air ratio,
used as oxygen level control and pressure build-
up characteristics. Based on these parameters,
controller parameters are calculated prior to ope-
rating the boiler.
Control of the fuel actuator system for the Mis-
sion OSTM boiler system includes Pulse Width
Modulation (PWM) position control of oil valve
and air damper. To comply with the curveband,
in case of PWM saturation, a constrained minimi-
sation problem has been derived and solved by a
model predictive reference correction scheme, en-
suring steady oxygen level by compliance of the
curveband.
Finally, to assess potential improvements of the
water level control, a Kalman estimator is de-
signed to estimate the mean water level and the
unmeasurable steam consumption.

The developed methods are verified by simulation

and shows satisfactory performance.

The content of this report is freely accessible, though publication (with reference) may only occur after permission

from the authors.





Preface

This report is written as a documentary proof of a long-term 9th and 10th master project made
by project group 1032 at Department of Electronic Systems, Section of Automation and Control
at Aalborg University in the period from the 1st of September 2008 through the 3rd of June
2009.

The theme of the project is ”Autonomous and Reliable Systems” and has its origin in a project
proposal specified by Aalborg Industries (AI), and Associate Professor Tom S. Pedersen and
Associate Professor Palle Andersen.

The target audience of the report is mainly the project supervisor, censor, fellow students
and others with interest in design of self-tuning controllers, estimation and modelling of boiler
systems. It is furthermore expected that the reader of this report has background knowledge
corresponding to the syllabus for a M.Sc.EE student at Department of Electronic Systems at
Aalborg University.

When referring to figures, tables and equations in the report, the reference carries numbers. The
standards ISO 31 and ISO 1000 are applied to number typography together with notation of
scientific units. The used units are all SI-units, unless other units are stated.

The bibliography is placed last in the main report. References to literature is made to maintain
the Harvard method. For instance ”page 23” in ”Feedback Control of Dynamic Systems” is
referred to using [Franklin et al., 2006, p. 23]. In the bibliography the authors full name, the
title of the literature, ISBN/URL, year of publication and note, if any, are shown. Literature
that is available online, relevant Matlab files and written S-function C-code, are enclosed on a
DVD-ROM.

Appendices are located after the main report and are named A, B, C etc. Furthermore each
appendix has its own pagination, e.g. pages in the first appendix are numbered as A1, A2 etc.

In the following pages the nomenclature of this report is outlined to ease the reading.

Hans Jørgen Uggerhøj

hansu@es.aau.dk

Mads Kronborg Agesen

madage@es.aau.dk
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Nomenclature

Roman

Symbol Unit Description

a Polynomial coefficient

b Polynomial coefficient

c J
kg·K Specific heat capacity

e Error

g m
s2

Gravity

h J
kg Specific enthalpy

m kg Mass

n Number of mole

p Pa Pressure

q J
s Energy flow

r m Radius

t s Time

w kg
s Mass flow

x Mole fraction

y Mass fraction

z mole
s Mole flow

A m2 Area

E J Internal energy

H J
kg Calorific value

L m Level

Q J Thermal energy transfer

R Pa·m3

mole·◦K Boltzmann constant

T ◦C Temperature

V m3 Volume

vii



Greek

Symbol Unit Description

θ % Valve/Damper position

ϑ W
m2·K

Heat transfer coefficient

ρ kg
m3 Mass density

τ s Time constant

η Efficiency

γps Steam pressure integrator gain

Subscripts

Symbol Description

a Air

b Boiler

f Furnace

fl Flue gas

fu Fuel

fw Feed water

i Input

m Metal

o Output

s Steam

sat Saturated

sb Steam bubbles

w Water

C Carbon

H Hydrogen

N Nitrogen

O2 Oxygen

0 (zero) Ambient

viii



Miscellaneous

Symbol Usage Description

ˇ w̌fw Measured feed water flow

ˆ ŵfw Estimated feed water flow

¯ p̄s Operating point for steam
pressure

∆
∆

p s Small signal gain for steam
pressure

˙ ẇfw The time derivative of the
feed water flow

˜ θ̃fw Normed value of the feed wa-
ter valve position

→ qw→sb Energy flow from water to
steam bubbles

ix



x



Contents

1 Introduction 1

2 System Description 3

2.1 The Mission OSTM Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Feed Water Actuator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Fuel Actuator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Sensors on the Mission OSTM Boiler System . . . . . . . . . . . . . . . . . . . . . 7

2.5 The Morpheus Control Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Start-up Sequence for the Boiler System . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Modelling of Boiler System 15

3.1 Boiler Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Boiler Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Preliminary System Assumptions . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Furnace and Flue Gas Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.4 Water and Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.5 Non-linear Model of the Boiler . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.6 Parameter Estimation and Verification of the Non-linear Boiler Model . . 29

3.2 Feed Water Actuator Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Valve Positioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Piping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Flow Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



Contents

3.2.4 Parameter Estimation and Verification of the Feed Water Actuator Model 37

3.3 Fuel Actuator Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Servo Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Piping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Flow Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Parameter Estimation and Verification of the Fuel Actuator Model . . . . 40

3.4 Modelling Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Controller Design 43

4.1 Inner-loop Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Feed Water Actuator Control . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Oil Valve Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Air Damper Position Control . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 PWM Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.5 Parameter Estimation and Verification of Inner-loop Controllers . . . . . 52

4.2 Outer-loop Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Steam Pressure Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Water Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Oxygen Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Simulation of Outer-loop Controllers . . . . . . . . . . . . . . . . . . . . . 64

4.3 Controller Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Self-tuning 71

5.1 Oil Valve/Air Damper Characteristics Identification . . . . . . . . . . . . . . . . 73

5.2 Feed Water Actuator Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Oil/Air Curveband Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Steam Pressure Integrator Gain Identification . . . . . . . . . . . . . . . . . . . . 83

5.5 Self-tuning Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Limitations of the Developed Self-tuning Scheme . . . . . . . . . . . . . . . . . . 88

xii



CONTENTS

6 Constrained Control of Fuel Valve and Air Damper 89

6.1 Fuel/Air Ratio Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Model Predictive Control Problem Formulation . . . . . . . . . . . . . . . . . . . 91

6.3 Model Predictive Control Scheme for Ratio-Constrained PWM Servo Positioning 93

7 Kalman Estimation 99

7.1 Linear Kalman Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.1 Linear Kalman Estimator Algorithm . . . . . . . . . . . . . . . . . . . . . 101

7.1.2 Simulation of Linear Kalman Estimator . . . . . . . . . . . . . . . . . . . 102

7.1.3 Evaluation of the Linear Kalman Estimator . . . . . . . . . . . . . . . . . 102

8 Conclusion 105

9 Discussion 109

Bibliography 111

A Boiler Dimensions A1

B Constants B1

C Parameter Estimation using Senstools C1

D Control Model Validation D1

E Linearisation using Taylor Series Expansion E1

F Derivation of Linear State Space Model F1

xiii





Chapter1
Introduction

Aalborg Industries A/S is the world’s leading supplier of marine boilers. They have a wide
range of different types of boilers used for different purposes in both the industrial and marine
world. The boilers can i.a. be steam boilers, heat exchangers or hot-water boilers and they are
typical oil fired. The boilers are used by many different consumers and for different purposes. A
steam boiler is used to produce steam for various services as generating electricity and heating.
Common for all consumers is to acquire a safe and reliable solution, which is the objective for
Aalborg Industries.

For this specific project the focus is on an oil fired steam boiler called a Mission OSTM boiler,
primary used on minor vessels. When a new boiler is installed on a vessel, there is a need to use
time and manpower to properly adjust the control of the boiler, in order to obtain satisfactory
performance. This is required because the piping system, the type of valves and other mechanics
varies from installation to installation.

The main objective of this project is to develop a proof of concept self-tuning system, capable of
analysing the newly installed boiler system and from this analysis is able to automatically adjust
the control of the boiler to perform satisfactory. Thereby Aalborg Industries can save time and
money when installing a new boiler. Another advantage of this self-tuning system might be,
that after many working hours, the boiler system slightly wears down. This could change the
characteristics of the valves and pumps, which affects the control of the boiler system. If the
self-tuning system in run regular, the boiler system always performs satisfactory.

Hence, the self-tuning system is developed to perform analytical tasks during the start-up se-
quence of the boiler system, in order to determine model parameters of a simplified model,
allowing for simple automatic controller tuning. The overall principle of the developed self-
tuning scheme is inherited from previous projects, carried out in cooperation between Aalborg
University and Aalborg Industries and further developed through this project.

An objective for Aalborg Industries is to maintain a clean combustion to minimize the energy
consumption and thereby save money and minimize CO2 emissions. Thus, a secondary objective
of this project is to develop a solution to cope with the challenge of ensuring a clean combustion.

Lastly, if the water level control of the Mission OSTM boiler is improved, a boiler of smaller
dimensions can perform equally to the existing boilers. Hence, the final objective for the project
is to investigate the benefits of introducing classic estimation techniques, in order to optimise
the control of the water level of the Mission OSTM boiler.

The following Chapter features a description of the Mission OSTM boiler system in order to
outline a specific problem description for this project.
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Chapter2
System Description

This chapter contains a description of the Mission OSTM boiler system used for the project.
The Mission OSTM boiler system consists of the Mission OSTM boiler, a fuel actuator system
and a feed water actuator system. Subsequently the sensors on the Mission OSTM boiler system
are listed and the Morpheus control platform is described. Finally the start-up procedure for the
Mission OSTM boiler system is explained before a problem description for this project is stated.

2.1 The Mission OSTM Boiler

The Mission OSTM boiler is a side fired boiler capable of producing up to 3 tons steam per hour.
Basically, the Mission OSTM boiler consists of two separate parts; the water/steam part and the
furnace/flue gas pipes part, as illustrated in Figure 2.1. The figure shows the most important
elements of the boiler, to understand the functionality. In appendix A a more detailed drawing
of the Mission OSTM boiler is given, along with some of the dimensions. The dimensions listed in
the appendix are used later, when modelling the boiler. The purpose of the boiler is to produce
steam, which is the output from the boiler and the inputs to the boiler are the feed water, fuel
and air.

Steam Feed Water

Steam

Water/steamFlue gas pipes

Furnace

Fuel

Air

Burner

Flue gas

Figure 2.1: Illustration of the Mission OSTM boiler. Inspired by [Andersen and Jørgensen, 2007].

The objective of the boiler system is to maintain a steam pressure of 8 bar and a steady water
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2 System Description

level. The upper and lower limits for the water level are defined as a deviation of 21 cm from
the normal water level, as illustrated in Figure A.1 in Appendix A. If the water level exceeds
the upper limit, feed water will flow into the steam pipes, which must be avoided. If the water
level exceeds the lower limit, the furnace/flue gas pipes part cannot dispose the heat to the
water/steam part, which eventually causes the furnace and flue gas pipes to deform. Thus, if
the steam pressure or water level deviates to much, the consequences can be fatal. Consequently
there are a number of safety valves on the boiler, e.g. to let out steam if the steam pressure is
too high.

To produce steam, a mixture of air and fuel is injected into the furnace through the burner. By
burning the mixture of air and fuel, heat is transfered from the furnace/flue gas pipes part to
the water/steam part of the Mission OSTM boiler via metal surrounding the furnace and flue
gas pipes. Transferring heat to the water leads to evaporation of the water and thereby steam
production to the consumer.

When steam is wanted, water is required. The feed water is led into the Mission OSTM boiler
simply by opening a feed water valve. When changing the feed water inflow or steam outflow
leads to a phenomenon called shrink and swell, which challenges the design of a water level
controller. Thus, the phenomenon is described in the following.

Shrink and Swell

The swell phenomenon is e.g. seen when the steam outflow is abruptly increased. Intuitively
the water level should drop. However, the pressure in the water/steam part decreases due to
the increased steam outflow. Thereby causing the boiling temperature of the water to decrease
and consequently a short-term increase of the water level arises, due to expansion of the steam
bubbles in the water. The long-term water level will however decrease due to the increase of
steam outflow. Abruptly decreasing the steam outflow leads to the reverse, namely shrink; a
short-term decrease of water level followed by a long-term increase.

ts

         Water level
         Feed water flow

Water level

Time

Feed water flow
h

m
3

s

i

[m]

[s]

Time [s]

Figure 2.2: Illustration of swell phenomenon caused by abruptly decrease of feed water flow. Red curve shows
the water level and the blue shows the feed water flow into the boiler.

Abruptly increasing the feed water inflow also leads to the shrink phenomenon. The feed water is
cold compared to the water in the boiler and thereby causing the water temperature to decrease.
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2.2. Feed Water Actuator System

Consequently the steam bubbles will shrink and the water level decrease. However, the long-term
water level will of course increase. Swell caused by decrease in feed water inflow is illustrated in
Figure 2.2. The decrease in feed water inflow is applied at time t = ts.

The boilers produced by AI, are generally resistant to the abruptly changes in the feed water
flow, but for abruptly changes in the steam outlet flow the shrink and swell phenomenon exists.

In order to operate the boiler, feed water, fuel and air is a necessity. The feed water system is
described in the following section.

2.2 Feed Water Actuator System

The feed water actuator system supplies feed water to the boiler, through some pipes and
valves. Figure 2.3 illustrates a simplified feed water actuator system. The water pump delivers
a constant feed water flow, wfw,f , at high pressure around 15 bar. The feed water pressure,
pfw,i, must be greater than the pressure inside the boiler, ps, in order to obtain a feed water
flow into the boiler.

fw

Feed water 

tank

Water pump

kfw;r

pfw;iwfw

wfw;r

wfw;f

ps

p0

Figure 2.3: Illustration of Mission OSTM feed water actuator system.

There are two important valves in the feed water actuator system; θfw and kfw,r. The valve
θfw is the feed water valve, used to control the feed water flow, wfw, into the boiler. This is the
controllable actuator in the feed water actuator system.
The feed water not fed into the boiler is returned to the water tank, through a return valve
kfw,r. The return valve is during operation adjusted to a fixed valve stroke, but by changing the
valve stroke, the range of the feed water flow, wfw, is changed due to a change in the pressure,
pfw,i.

In addition to the feed water actuator system, providing water to the boiler, a fuel actuator
system is required to supply the fuel and air to the boiler. The fuel actuator system is described
in the following.
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2 System Description

2.3 Fuel Actuator System

The fuel pump in the fuel actuator system delivers the fuel from a fuel tank, through a piping
system and some valves into a fuel atomiser inside the burner. The fuel atomiser injects the fuel
through a nozzle into the furnace. Furthermore an air fan is blowing an amount of air around
the fuel atomiser into the furnace. The amount of air is changed by an air damper and should
be adjusted to the fuel flow, in order to obtain an optimal combustion in the furnace.

A simplified diagram of the piping system, valves and burner is shown in Figure 2.4.

Fuel pump

6

5

3

1

Safety valves

Shutoff valve

pfu;i

wa

wfu;f

wfu;r

Fuel-lance

Burner

2

a

Nozzle

4

Fuel atomiser

Air fan

Fuel tank

0

fu

Figure 2.4: Illustration of Mission OSTM fuel actuator system.

Fuel piping system and valves
The bold lines in the figure represent the piping system in which the fuel flows. Besides the
piping system there are 7 valves in total, used for different purposes in the fuel piping system.
The valves θ2, θ3, θ4, θ5 and θ6 are magnet valves, implying they are on/off valves. The valve,
θ′fu, is an adjustable valve controlled by a servo motor and the valve, θ1, is a spring valve, also
adjustable. However, the spring valve, θ1, is not of interest, as it is not a part of the burner
system.

The fuel pump delivers a fuel pressure of approximately 28 bar, but in order to maintain a
constant fuel pressure, pfu,i, a spring valve θ1 is mounted. If the fuel flow changes in the piping
system, the spring valve stroke is automatically adjusted to obtain a stable fuel pressure, pfu,i.

The valves θ3 and θ4 are safety valves, implying that when these are closed, no fuel is led into
the burner. If the safety valves are closed, the fuel flows through the return valve θ2, to maintain
circulation of the fuel.

Valve θ5 is a shutoff valve and enables the fuel flow into the furnace through the fuel atomiser in
the burner, and thereby combustion in the furnace. For simplicity this is further illustrated in
Figure 2.5, where the orange colour illustrates the pipes where the fuel flows. When the shutoff
valve is closed, the fuel flows through the fuel atomiser but not into the furnace, as the fuel-lance
blocks the nozzle. When the shutoff valve is open, the valve θ6 is closed and thereby causing
the pressure to increase inside the back of the fuel atomiser, forcing the fuel-lance on the spring
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2.4. Sensors on the Mission OSTM Boiler System

5

3

5

3

4

Fuel atomiser Fuel atomiser

Nozzle
6

0

fu 46
0

fu

Figure 2.5: Illustration of how the fuel is injected into the furnace, by changing the valve stroke of the shutoff
valve, θ5.

backwards and the fuel flows through the nozzle into the furnace. The valve stroke of valve θ5
and θ6 is always opposite.

Looking at Figure 2.4, the fuel flow, wfu, into the furnace is controlled by the fuel valve θ′fu.
When the fuel valve opens, the fuel is led back to the fuel tank and reduces the fuel flow into
the furnace. Hence for convenience, the fuel valve position, θfu is defined as:

θfu = 1 − θ′fu, (2.1)

and will be used from now on when referring to the fuel valve position. The fuel valve is the
actuator, seen from a control point of view, to adjust the combustion and thereby the steam
pressure.

Air damper
Figure 2.4 also shows an air damper, θa, to adjust the air flow, wa, into the burner. When the air
damper opens, the air flow into the furnace increases. To obtain a sensible combustion, the oil
and air flow must be adjusted to obtain a constant oxygen level in the flue gas of approximately
5 % [Aalborg Industries, 2008].

The fuel and feed water actuator systems facilitates control of the steam production and control
of the water level in the boiler, but to obtain feedback control, various sensors are needed. The
sensors mounted on the Mission OSTM boiler are described in the following section.

2.4 Sensors on the Mission OSTM Boiler System

The Mission OSTM boiler at AI’s test center is used for test purposes only, and is for that reason
equipped with several and different sensors, i.e. not all sensors are used for control of the boiler.
The commercial available Mission OSTM boilers sold by AI is however not equipped by all these
sensors, but only the sensors needed to maintain the performance level of the specific boiler.
Thereby AI aims to use as few default inexpensive sensors as possible. The following contains a
description of used sensors in the boiler system.

There are various types of sensors on the boiler system, i.a. flow transducers (FT) and tem-
perature transducers (TT). Figure 2.6 illustrates all the sensors mounted on the Mission OSTM

boiler system in AI’s test center. Furthermore a list of the mounted sensors is provided in Table
2.1 to clarify the measured quantities. Table 2.1 also reveals which sensors there are mounted

7



2 System Description

on the Mission OSTM boiler system in AI’s test center and which sensors there are mounted on
the typical commercial Mission OSTM boilers.

As stated, not all sensors are used for control purpose. However, the used quantities are referred
to as in Figure 2.6 through the entire project report.

TT

OT

FT

PT

ws

·xo;O2
·Lw

·wfw

wfw

·Tfl

·ps

FT

·ws

LT
fw

Feed water 

tank

Water pump

kfw;r

pfw;i

·wfu;r

FT

·TfuTT

PT

·pfu

Fuel pump

5

3

1

pfu;i

wa
Burner

2

4

FT

·wfu;f

·
a

AT Fuel tank

6

·
fu

AT

Figure 2.6: Illustration of sensors mounted on the Mission OSTM boiler system in AI’s test center and their
placement.

Most of the sensor measurements are straight forward, except from the fuel flow and water level
measurements. It is not possible to mount a fuel flow transducer, that measures the actual fuel
flow, wfu, into the furnace, as the fuel vaporises through the nozzle. Instead another approach
has been taking.

Fuel Flow Sensor Measurements

The fuel flow, wfu, into the furnace is estimated by calculating the flow difference between the
measurements of the two fuel flow transducers:

ŵfu = w̌fu,f − w̌fu,r . (2.2)

A delay in the flow between the flow sensors, gives rise to a non-minimum phase system. This
will be treated later in the modelling of the boiler system.

In addition to the measuring of the fuel flow, the measuring and thus control of the water level
inside the boiler seems a difficult task [Solberg, 2008].
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Water/steam part

w̌fw Flow Transducer Measures the feed water flow into the boiler T

w̌s Flow Transducer Measures the steam flow out of the boiler T

p̌s Pressure Transducer Measures the steam pressure inside the boiler T C

Ľw Level Transducer Measures the water level inside the boiler T C

Furnace/flue gas pipes part

w̌fu,f Flow Transducer Measures the fuel flow into the burner T(C)

w̌fu,r Flow Transducer Measures the fuel flow out from the burner T(C)

θ̌a Attenuator Transducer Measures the air valve position T C

θ̌fu Attenuator Transducer Measures the fuel valve position T C

p̌fu Pressure Transducer Measures the fuel pressure in the fuel actuator system T

Ťfu Temperature Transducer Measures the fuel temperature in the fuel tank T C

x̌o,O2
Oxygen Transducer Measures the oxygen level in the flue gas T(C)

Ťfl Temperature Transducer Measures the flue gas temperature T C

Table 2.1: Table showing the sensors mounted on the Mission OSTM boiler. The right column indicates if the
sensor is mounted on the boiler in the AI test center ”T” and/or on the commercial boilers ”C”. Optionally
mounting is marked by parenthesis.

Water Level Sensor Measurements

When the water reaches the boiling temperature and steam bubbles are produced, it leads to
fluctuating water level measurements due to the steam bubbles breaking the water surface.

Furthermore there is a larger production of steam bubbles near the flue gas pipes, which gives
an uneven water surface and forms small waves. Alltogether this results in noisy steady state
measurements of the fluctuating water level, which challenges the control of the water level.

Figure 2.7 illustrates the water tending towards the flue gas pipes.

Figure 2.7: Illustration of the fluctuating water level near the flue gas pipes.

[Solberg, 2008] showed that by use of model predictive control, it was possible to improve the
control of the water level, but the shrink and swell phenomenon is unavoidable.
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2 System Description

In addition to the actual Mission OSTM boiler system, a control platform at AI’s test center has
been developed, to ease the development and test of new control systems for the boilers. The
Morpheus platform is described in the following.

2.5 The Morpheus Control Platform

To perform control of a boiler as the Mission OSTM a control platform, Morpheus, is developed
by AI in association with CISS Aalborg University, IO Technologies A/S and with contributions
from [Andersen and Jørgensen, 2006]. The Morpheus control platform is shortly presented in
this section. The structure of the Morpheus control platform is shown in Figure 2.8.

MatLab/
Simulink

Control
application

IO board

Actuators

Sensors

Boiler

Daemon

GUIDatabase

Developer

Operator

Power PC

Boiler system

CAN bus

Figure 2.8: Structural overview of the Morpheus control platform. Inspired by [Andersen and Jørgensen, 2006].

As seen, the platform mainly consists of three elements; a Power PC (PPC), an IO board and
a boiler system.

The software on the PPC is mainly divided into three parts; a control application, a database and
a graphical user interface, GUI, used as interface for the daily operator of the boiler system. All
communication between control application and the database passes through a daemon taking
care of database write locks etc.

The PPC is based on a linux kernel with the necessary packages to run the target application.
The target application is compiled to a binary file using Matlab

TM Real-Time Workshop
(RTW), and primary features the control application.

The PPC interacts with the boiler system through an IO board, developed by Prevas, using
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a CAN bus. An advantage gained using the Morpheus control platform, is the possibility to
connect different types of boiler systems; but only able to control one at a time.

The developer interfaces the boiler system through a Matlab
TM/Simulink application from

a PC. Using Simulink as interface for the developer makes it easy to implement controllers
developed using Matlab

TM/Simulink. Furthermore use of Simulink RTW allows the developer
to monitor the controller and set parameters in run time.

For the project of developing controllers, the parts of main interest is reduced to the control
application, the IO board and the boiler system of the Morpheus platform. The database will
be used when testing the boiler system, in order to obtain measurement data.

Apart from giving an introduction of the Mission OSTM boiler system and the Morpheus control
platform setup, it is relevant to understand the start-up sequence of the boiler system.

2.6 Start-up Sequence for the Boiler System

The start-up sequence of the boiler system is implemented as a state machine, by using a
Simulink Toolbox called StateFlow. In StateFlow it is possible to define the different states,
transitions between states, entry actions etc. Figure 2.9 illustrates the different states in the
start-up sequence for the Mission OSTM boiler system. Each state is associated to a status
label describing the progress of the start-up sequence. When the boiler system is powered up,
it always starts in the safety interlock state.

Safety
interlock

Wait for reset

OK

Start air fan

Prepurge

Ignition

Controller 
release

Alarm

Stop

Figure 2.9: Flow chart of the start-up sequence for the Mission OSTM boiler system at AI’s test center.

The states seen in Figure 2.9 are described below. The numbers written in parenthesis represents
the status label of the specific states.

Safety interlock (1) - The system checks whether any of the alarms are activated. If there is
an active alarm this must be taken care of. If no alarms are activated, a transition is performed
to the next state; wait for reset.

Wait for reset (2) - In this state the system waits for a reset from the operator, before entering
normal operation, the OK state.
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OK (3) - In this state the system waits for the operator to push the start button. When the
operator push start, a transition is performed to start air fan.

Start air fan (4) - Here the valves in the fuel actuator system are set to prepurge mode, the
air fan is turned on and the air damper is adjusted to 100 % open. When the air fan is at 98 %
open, a transition is performed to prepurge.

Prepurge (5) - In prepurge mode the burner and the piping near the burner are cleaned by the
air flow from the air fan. If there for some reason should be fuel remains in the burner or pipes
before igniting, an impending danger of blowing up the burner is present. After prepurging for
30 seconds the next state is entered.

Ignition (6) - First the oil and air valves are set to ignition position. Then an ignition-
transformer is turned on to create the sparks for ignition and the shutoff valve is opened to
inject fuel into the furnace. After ignition the flame stabilises for 10 seconds before the system
enters the final state.

Controller release (7) - In this state the oil and air flow is held constant until the steam
pressure reaches 1 bar. From 1 to 7 bar the steam controller takes over the control of oil and air
flow by increasing the steam pressure reference slowly toward 7 bar. When 7 bar is reached, the
controller is fully released, and the boiler system stays in this state unless the operator stops
the boiler system.

Stop - At any time the operator can stop the boiler system and the system goes into the stop
state, where the shutoff valve closes to put out the flame. Then a postpurge takes place before
the system performs a transition to the OK state; waiting for the operator to start up the boiler
system again.

Alarm - In all of the states it is appropriate to have a quality or stability check, in form of an
alarm system. If the boiler system enters a deadlock or livelock in some of the states, typically
a timer is used to remedy the lock and the system goes into the alarm state. From here the
system performs a transition to the safety interlock state and the alarm must be dealt with.

After giving a description of the Mission OSTM boiler system, the Morpheus control platform
and an explanation of the start-up sequence for the boiler system, the problem description for
this project is outlined.
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2.7 Problem Description

As mentioned in the introduction in Chapter 1, the main objective of this project is to develop
a self-tuning system, in order to reduce the costs when installing new boilers. Secondly, the
possibilities for developing a method to ensure clean combustion together with the benefits of
applying classic estimation techniques, in order to improve the control of the water level, are to
be investigated. In all this leads to a specific problem description, consisting of four objectives.

1. Is it possible to simplify a complex system model in order to design a model-based self-
tuning system, capable of determining model and controller parameters during the start-up
sequence of the Mission OSTM boiler system?

2. Is it possible to ensure a clean combustion by mixing fuel and air according to a specific
mixture proportion, by adjusting the oil valve and the air damper using a curveband?

3. How does the actuator characteristics influence the ability to follow a specified curveband,
and is it possible to develop controllers ensuring that the curveband is obeyed at any time?

4. Is it possible to gain improved water level control by applying classic estimation techniques?

Limitation

Aalborg Industries produces various types of boilers for various usage. However, to lower the
complexity of a developed self-tuning system and to ensure compatibility between developed
methods and the specific boiler system, a set of limitations are made for this specific project.

• The boiler system structure must be similar of that described in Chapter 2

• The boiler type must be similar to the Mission OSTM , entailing the behaviour of the boiler
can be described by the same model structure

• The surface area of the water inside the boiler must be known beforehand, e.g. specified
using the inner dimensions of boiler and the flue gas pipes.

• The oil valve, air damper and the feed water valve must be controlable

• The position of oil valve and the air damper and also the feed water flow must be measur-
able

• Tests are carried out with diesel as fuel type1

• The boiler system utilises SISO control

With the above stated problems and limitations, initially a model of the boiler system must
be derived, in order to design a model based controller and a self-tuning system to find the
controller parameters.

1The system is designed for use of both diesel oil and heavy fuel.
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Chapter3
Modelling of Boiler System

This chapter describes the entire modelling of the Mission OSTM boiler system consisting of
the boiler, the feed water actuator system and fuel actuator system. The models derived in this
chapter forms the basis for controller design, estimation as well as non-linear simulation of the
boiler system.
The content of this chapter covers initial assumptions to simplify the modelling of the boiler.
These assumptions together with an overall decomposition of the boiler, results in separation of
the boiler into a ”furnace/flue gas pipes part” and a ”water/steam part”. The ”furnace/flue gas
pipes part” is modelled as two separate models; a dynamic oxygen model based on the chemical
reaction of the combustion and a static efficiency model for the energy transfered from the furnace
to the water/steam part. The water/steam part model is derived, based on energy and mass
balances for three control volumes; water, steam bubbles and steam. The oxygen model, the
efficiency function and the model of the water/steam part together constitutes the non-linear
boiler model, which is represented as a state space model on descriptor form. Prior to verification
of the non-linear boiler model, some model parameters are estimated. Subsequently the feed water
actuator and the fuel actuator systems are modelled, having linear dynamics and non-linear
flow characteristics. As for the non-linear boiler model, the required model parameters for the
actuator systems are estimated and the feed water and fuel actuator models are verified. Finally
the chapter is ended by a short resume of the modelling of the boiler system.

Fuel 
actuator

Furnace/
flue gas 
pipes

Feed water 
actuator

Water/
steam

wfw

wfu

wa

Tfu

Ta

wfl

Tfl

xo;O2

Lw

ps

ws

Boiler

Metal

Tf

Tw

Tm

fw

fu

a

Figure 3.1: Block diagram of the boiler system.

Figure 3.1 illustrates a block diagram of the boiler system, which consists of the boiler, the
feed water actuator system and the fuel actuator system, as described in Chapter 2. In Figure
3.1, the fuel and feed water actuators are simplified to not include sensor dynamics and control
input signals. The block diagram also shows the inputs and outputs on the different blocks.
The black arrows indicate actual flows while the white arrows indicate measurable quantities.
In the following sections a model is derived for the boiler, the feed water actuator and the fuel
actuator, which together constitutes the model of the boiler system.
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3 Modelling of Boiler System

3.1 Boiler Modelling

In this section a non-linear model of the boiler is derived. To ease the modelling, the boiler is
decomposed into control volumes and based on previous projects and knowledge, assumptions
are made to further simplify the modelling. This results in a reduced number of control volumes,
on the basis of which a number of equations are derived to describe the dynamics of the boiler.

Figure 3.2 illustrates the inputs and outputs of the boiler. The main purpose of the boiler model
is to describe the water level, Lw, and steam pressure, ps, in terms of the feed water flow, wfw,
the fuel flow, wfu, and the air flow, wa. Furthermore, it is desirable to express the oxygen level,
xo,O2

, in the flue gas, from the fuel flow and air flow into the furnace of the boiler.

Furnace/
flue gas 
pipes

Water/
steam

wfw

wfu

wa

Tfu

Ta

wfl

Tfl

xo;O2

Lw

ps

ws

Boiler

Metal

Tf

Tw

Tm

Figure 3.2: Block diagram of the boiler with the furnace/flue gas pipes part, the water/steam part, the metal
between the two parts and the different inputs and outputs.

3.1.1 Boiler Decomposition

Prior to deriving the boiler model, the boiler is decomposed into control volumes to describe
the mass and energy flow through the boiler and thus to simplify the modelling of the boiler.
In Figure 3.3 a block diagram illustrates the control volumes of the boiler; furnace, flue gas,
metal, water, steam bubbles and steam. According to [Andersen and Jørgensen, 2007] this
decomposition has proved to be useful.

Furnace
The furnace converts the energy from combustion of fuel and air, to heat transferred to the
furnace jacket of metal and to the flue gas.

Flue gas
The energy in the flue gas is partly transfered to the flue gas pipes of metal. The rest of the
energy is lost to the surroundings, primary as air with higher temperature than the ambient
temperature. In the output from the flue gas pipes, the oxygen level, xo,O2

, is measured, and
used as feedback to obtain a more effective combustion in the furnace.

Metal
The energy in the metal, from the furnace and flue gas, is emitted to the water/steam part.
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Figure 3.3: Illustrates how the boiler is decomposed into control volumes.

Water
The energy from the feed water and the metal to the water, is transfered to the steam bubbles,
when the temperature reaches the boiling point.

Steam bubbles
The steam bubbles is a significant control volume, as this is the part where the shrink and swell
phenomenon exists. Furthermore this volume, together with the volume of water, defines the
water level in the boiler. The steam bubbles is the transition volume between water and steam.

Steam
The last of the five control volumes contains the output of the boiler system, i.e. the produced
steam.

3.1.2 Preliminary System Assumptions

After decomposing the boiler into control volumes, some assumptions are made to simplify the
modelling, without compromising the dominating dynamics of the system.

• The volume of the boiler is constant, V̇tot = 0, and the boiler is filled with water, steam
bubbles and steam; Vtot = Vw + Vsb + Vs. Furthermore this assumption implies stringent
divisioning between the control volumes, thereby neglecting potential water in the steam
part of the boiler and steam outlet.

• Due to the presence of both water and steam in the boiler, the water and steam is con-
sidered saturated with uniform temperature and pressure, with respect to place and not
time. The temperature of water, Tw, and steam, Ts, is dependent of the steam pressure,
ps, which dependents on time:

Tsat(ps(t)) = Tw(ps(t)) = Ts(ps(t)) . (3.1)

Hence the steam pressure, ps, is chosen as a state variable to reduce the complexity of a
system output equation.
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3 Modelling of Boiler System

The assumption of uniform pressure for water and steam can be verified by calculating the
pressure difference in the boiler. In the top of the boiler the pressure is 8 bar in steady
state. The pressure in the bottom of the boiler is calculated by adding the pressure of the
water amount as:

pbottom = ptop + ρwLwg · 1 · 10−5 = 8 + 997 · 4 · 9.82 · 1 · 10−5 = 8.39 [bar] , (3.2)

where Lw [m] is the height of the boiler, g [m
s2 ] is the gravity and the factor 1 · 10−5

[
bar
Pa

]

is the conversion from [Pa] to [bar].

This results in a difference of approximately 2.5 % which is smaller in practice, as the
water level will never reach 4 m.

• The energy transfer between furnace and metal consists of both convective and radiative
energy transfer. Modelling convective and radiative energy transfer, requires a higher
order transfer function [Andersen and Pedersen, 2007]. However, the temperature of the
metal, Tm, is assumed uniform and equal to the water temperature, Tw. This assumption
seems reasonable as the convective heat transfer coefficient from metal to water is very
large [Andersen and Jørgensen, 2007]. Hence the metal control volume in Figure 3.3 can
be neglected.

• All energy transferred from the combustion to the water/steam part is assumed to be
transferred to the water. Thereby neglecting the presence of super heated steam. This
assumption seems reasonable, as the amount of super heated steam is relatively small,
when present, compared to the total amount of steam.

• The energy loss of the boiler is only through the flue gas. To prove this, an estimate of
the energy loss through the metal jacket of the boiler is calculated:

qloss = Abϑb∆T , (3.3)

where Ab [m2] is the surface area of the boiler, ϑb [ W
m2 ◦C

] is the heat transfer coefficient
and ∆T [◦C] is the temperature difference between the inside and outside of the boiler.
The surface area of the boiler is estimated as:

Ab = 2πrbLb + 2πr2b = 2π(0.75 · 4 + 0.752) ≈ 22 [m2] , (3.4)

where rb is the radius of the boiler and Lb is the height of the boiler.
Due to good lagging of the boiler, the heat transfer coefficient is approximated to ϑb = 0.1.
The temperature difference ∆T is found as the saturation temperature of water at 8 bar
and subtracting the ambient temperature:

∆T = 170.41 − 20 ≈ 150 [◦C] , (3.5)

which gives an estimated energy loss of:

qloss ≈ 22 · 0.1 · 150 ≈ 330 [W ] . (3.6)

The main part of the energy inside the boiler originates from combustion of fuel and is
expressed by:

qfu = wfuHfu , (3.7)
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where wfu [kg
s

] is the fuel flow and Hfu [ J
kg

] is the calorific value.

The fuel flow is approximately 0.033 and the calorific value of the fuel is 40 · 106, see
Appendix B. This gives an energy of:

qfu ≈ 0.033 · 40 · 106 ≈ 1.32 · 106 [W ] . (3.8)

The energy loss in percent is by use of Equation (3.6) and (3.8) calculated to 0.025 %.

• The temperature of the inlet air, Ta, is constant and approximately equal to the ambient
temperature, T0. Also the feed water temperature, Tfw, and the fuel temperature, Tfu,
are considered constant.

• The steam bubbles are assumed to have physical properties similar to steam, i.e. same
mass density, ρsb = ρs and enthalpy hsb = hs.

Based on previous work by [Solberg and Hvistendahl, 2004] and [Andersen and Jørgensen, 2007],
the dynamics of the furnace and flue gas pipes can be neglected due to fast time response
compared to the closed loop boiler dynamics. They derived balance equations for the furnace
and obtained a time constant of 0.25 s. This is considerable faster than the time constant for
the water level and steam pressure control loops, which was found to be in the interval between
50 s and 150 s. Thus the furnace and flue gas pipes control volumes can be modelled as one
control volume, and the energy flow from the furnace/flue gas pipes to the water/steam part,
qf→w, can be modelled statically in form of an efficiency function.

This reduces the previous decomposition of the boiler to the control volumes shown in Figure
3.4.
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Figure 3.4: Illustrates the control volumes and the energy flows in the final decomposition of the boiler.

As illustrated in Figure 3.4 the water level, Lw, is defined as the height of both the water and
steam bubbles volumes, as previous described.

Some of the presented assumptions might not seem relevant yet. However, this will be clear
during the modelling. The models describing the dynamics of the boiler are in the next two
subsections derived, using the control volumes defined in Figure 3.4. In Subsection 3.1.3 the
furnace/flue gas pipes part is modelled and in Subsection 3.1.4 the water/steam part is modelled.
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The overall aim is, as mentioned, to derive one model expressing the steam pressure, ps, the
water level, Lw, and the oxygen level, xo,O2

, from the inputs to the boiler, wfw, wa and wfu.
The final non-linear boiler model is presented in Subsection 3.1.5.

3.1.3 Furnace and Flue Gas Pipes

For the control volume ”furnace and flue gas pipes” two models are derived. One describing
the dynamics of the combustion, in form of an oxygen model, and subsequently a static model
describing the energy transfer from the combustion to the water/steam part.

Oxygen Model

The oxygen model describes the oxygen level in the flue gas on the basis of the input mass flows of
fuel, wfu, and air, wa, assuming immediate combustion. Figure 3.5 illustrates a block diagram of
the oxygen model, which consists of two parts. The combustion describes the chemical reaction
and thereby the excess of oxygen, while the oxygen dynamics describes the change of oxygen
content over time. The output from the combustion, xi,O2

, denotes the mole fraction of oxygen.

Combustion
Oxygen

dynamics

wfu

wa

xo;O2
xi;O2

Figure 3.5: Block diagram of the oxygen model structure.

Combustion
The applicable fuel is diesel, which is assumed to have the chemical formula C15H32, as the rest
of the substances in diesel are poorly represented and thus neglected. It is assumed that the
combustion is complete, implying that all carbon, C, is transmuted into carbon dioxide, CO2,
and all hydrogen, H, is transmuted into di-hydrogen oxide, H2O, during the combustion process.

The input mole flows, z(·), from the diesel and air are described by:

zfu,C =
wfuyC

MC
(3.9)

zfu,H =
wfuyH

MH
(3.10)

za,O2
=

wayO2

MO2

(3.11)

za,N =
wayN

MN
, (3.12)

where yC , yH , yO2
and yN denotes the mass fractions for carbon, hydrogen, oxygen and nitrogen

respectively, and are given by:

yC = xC
MC

M̄fu

, yH = xH
MH

M̄fu

(3.13)

yO2
= xO2

MO2

M̄a

, yN = xN
MN

M̄a

. (3.14)
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MC and MH are the molar masses and M̄fu is the average molar mass of diesel, given by the
sum:

M̄fu = xCMC + xHMH , (3.15)

where the mole fractions are given by the composition of the chemical formula for diesel, C15H32:

xC =
15

15 + 32
, xH =

32

15 + 32
. (3.16)

Similar MO2
and MN are molar masses and M̄a is the average molar mass of air, given by the

sum:

M̄a = xO2
MO2

+ xNMN , (3.17)

where the mole fractions are given by:

xO2
=

21

21 + 79
, xN =

79

21 + 79
, (3.18)

assuming that the air consists of 21 % oxygen and 79 % nitrogen.

After defining the input mole flows, reaction schemes for the combustion are set up, to define
the amount of oxygen needed to obtain a complete combustion:

zfu,CC + zfu,CO2 −→ zfu,CCO2

zfu,HH + 1
4zfu,HO2 −→ 1

2zfu,HH2O .
(3.19)

From Equation (3.19) the required amount of oxygen for a complete combustion is defined as
the mole flow:

zfu,C +
1

4
zfu,H . (3.20)

An expression for the oxygen mole flow leaving the combustion, zi,O2
, is found, by subtracting

the amount of oxygen consumed in the combustion, from the input mole flow, za,O2
:

zi,O2
= za,O2

−
(

zfu,C +
1

4
zfu,H

)

. (3.21)

The input to the oxygen dynamics is according to Figure 3.5 the mole fraction, xi,O2
, which is

given by the oxygen mole flow, zi,O2
, relative to the total mole flow, zi, into the oxygen dynamics:

xi,O2
=
zi,O2

zi
=

za,O2
−
(
zfu,C + 1

4zfu,H

)

zi,O2
+ za,N + zfu,C + 1

2zfu,H

. (3.22)

In stead of expressing the mole fraction, xi,O2
, by mole flows, Equations (3.9)–(3.14) are in-

serted into Equation (3.22) to express the mole fraction by the mass flows wfu and wa. After
rearranging, the mole fraction is derived as:

xi,O2
=

xO2

M̄a
wa − xC+ 1

4
xH

M̄fu
wfu

xO2

M̄a
wa − xC+ 1

4
xH

M̄fu
wfu + xN

M̄a
wa +

xC+ 1

2
xH

M̄fu
wfu

=

xO2

M̄a
wa − xC+ 1

4
xH

M̄fu
wfu

xO2
+xN

M̄a
wa +

1

4
xH

M̄fu
wfu

. (3.23)
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Thereby Equation (3.23) is the model derived for the combustion in the furnace. In the following,
the oxygen dynamics is expressed from the oxygen mole fraction.

Oxygen dynamics
The change of the oxygen level can be expressed using a mole balance. The general mole balance
equation is given as:

ṅ = zi − zo , (3.24)

where n is the number of moles and zi and zo are the input and output mole flows respectively.

Using Equation (3.24), a mole balance for the oxygen is expressed using a backward difference
place discretisation, assuming complete and uniform mixing:

d(n · xo,O2
)

dt
= zi · xi,O2

− zo · xo,O2
, (3.25)

where xi,O2
and xo,O2

are the oxygen fractions of the input and output mole flows respectively.
Differentiating the left hand side gives:

nẋo,O2
+ xo,O2

ṅ = zi · xi,O2
− zo · xo,O2

. (3.26)

Inserting Equation (3.24) and rearranging, reduces the expression to a first order system:

ẋo,O2
=

1

τxo,O2

(xi,O2
− xo,O2

) , (3.27)

where the time constant is given by: τxo,O2
= n

zi
. This indicates the dynamics of the oxygen

model is varying in proportion to the input mole flow. To calculate an estimate of the time
constant, the number of mole, n, can be found using the equation for ideal gas: pV = nRT ,
assuming that the pressure and volume in the furnace remains constant

n =
pV

RT
=

1 · 105 · π · 0.62 · 2.1
8.314 · 443.56 ≈ 64.4 [mol] , (3.28)

where p is the pressure in steady state, V is the volume of the furnace (calculated from the
dimensions in Appendix A), R is the Boltzmann constant and T is the absolute temperature.
Also the input mole flow can be estimated, using the fuel flow in steady state and a constant
ratio between fuel flow and air flow, κfu = wa

wfu
:

zi = M̄fuwfu + M̄awa = 4.51 · 0.033 + 24.5 · 0.033 · 16.9 = 13.8 [mol/s] , (3.29)

where κfu is calculated using Equation (3.44). This gives an estimated time constant in steady
state of:

τxo,O2
=

64.4

13.8
≈ 4.7 [s] . (3.30)

The oxygen sensor on the Mission OSTM boiler is a Lambda probe, for which the response time
is given in the datasheet to maximum 2 s. To simplify the oxygen model to a first order system,
the sensor dynamics are neglected as they are faster than the oxygen dynamics. This entails
that the oxygen model consists only of the combustion model and the oxygen dynamics.
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3.1. Boiler Modelling

By inserting Equation (3.23) into Equation (3.27) and rearranging, the oxygen model can be
expressed as:

1
︸︷︷︸

j44

ẋo,O2
=

1

τxo,O2






xO2

M̄a

wa

wfu
− xC+ 1

4
xH

M̄fu

xO2
+xN

M̄a
wa +

1

4
xH

M̄fu
wfu






︸ ︷︷ ︸

l44

wfu −
1

τxo,O2
︸ ︷︷ ︸

l45

xo,O2
. (3.31)

Having derived the oxygen model, the efficiency of the furnace is examined.

Efficiency Function for Furnace and Flue Gas Pipes

The second model of the furnace/flue gas pipes control volume describes the amount of energy,
from the combustion of fuel and air, transfered to the water/steam part and thereby the efficiency
of the boiler. Looking at Figure 3.4 on page 19, an equation of the steady state energy balance
for the furnace/flue gas pipes volume can be derived as:

qf→w = qfu + qa − qfl . (3.32)

The efficiency, denoted ηfu, can be described as the energy transfered to the water, relative to
the energy from the fuel and air as:

ηfu =
qf→w

qfu + qa
. (3.33)

Inserting Equation (3.32) implies:

ηfu =
qfu + qa − qfl

qfu + qa
= 1 − qfl

qfu + qa
, (3.34)

where the energy flows are given by:

qfl = (wfu + wa)cfl(Tfl − T0) (3.35)

qfu = wfu(Hfu + cfu(Tfu − T0)) (3.36)

qa = waca(Ta − T0) , (3.37)

where T0 is the reference temperature for the enthalpy.

The energy flows given by Equations (3.35)-(3.37) can be simplified by using some of the as-
sumptions described in Subsection 3.1.2.

• The ambient temperature, T0, should not affect the efficiency function and can be neglected
by inserting the energy flows in Equation (3.32):

qf→w = wfu(Hfu + cfu(Tfu − T0)) +waca(Ta − T0) − (wfu + wa)cfl(Tfl − T0)

= wfuHfu + wfucfuTfu + wacaTa − (wfu + wa)cflTfl

− (wfucfu +waca − (wfu + wa)cfl)T0 . (3.38)

The last term dependent on T0 is neglected, assuming that the total heat capacity of fuel
and air is equal to heat capacity of the flue gas.
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• The specific heat capacity for the flue gas is approximately equal to the specific heat
capacity for air cfl ≈ ca.

• The fuel temperature, Tfu, is approximately constant, entailing that the fuel energy flow
can be approximated as a constant multiplied with the fuel flow:

qfu = βfuwfu , (3.39)

where βfu = Hfu + cfuTfu.

• Since the temperature of the air is approximately equal to the ambient temperature, the
energy from the air flow is much smaller compared to the energy from the fuel, qa << qfu,
and thus neglectable, qa = 0.
When neglecting the energy from the air, the air flow, wa, is approximated as a constant
factor of the fuel flow, wfu:

wa = κfuwfu . (3.40)

Inserting the reduced energy flows into Equation (3.34) gives a simplified expression for the
efficiency:

ηfu = 1 − (1 + κfu)caTfl

βfu

. (3.41)

To express qf→w relative to the energy input flow, which now is proportional to wfu, Equation
(3.39) and (3.41) is inserted in Equation (3.33) and rearranging gives:

qf→w = ηfuqfu

= ηfuβfuwfu

= [Hfu + cfuTfu − (1 + κfu)caTfl]wfu . (3.42)

In this expression κfu and Tfl are the only unknown. κfu is the relation between the fuel flow
and air flow and can thus be calculated from a desired oxygen content in the flue gas, using the
oxygen model derived previously in this subsection.

The flue gas temperature, Tfl, can be approximated by a first order linear function of the fuel
flow, Tfl = aflwfu + bfl [Andersen and Jørgensen, 2007, p. 54]. This gives the final efficiency
function:

qf→w = [Hfu + cfuTfu − (1 + κfu) ca(aflwfu + bfl)]wfu . (3.43)

The relationship between the fuel and air flow, κfu, is calculated using Equation (3.23) and the
constants in Appendix B. Given a desired oxygen level, xo,O2

, of 5 % , κfu is calculated to:

κfu|5% =
wa

wfu

= 16.9. (3.44)

To further simplify the efficiency function, the linear function describing the flue gas temperature
is examined. [Andersen and Jørgensen, 2007] approximated the linear function of the fuel flow
in an interval of [50; 200] [kg

h
]. In this interval the flue gas temperature approximately changes
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100 ◦C. By inserting the constants given in Appendix B into Equation (3.43) and changing the
flue gas temperature from 300 to 400 ◦C, the efficiency factor, ηfu, changes in the interval:

ηfu = [0.820; 0.865] , (3.45)

which is approximately a 5 % change of efficiency. By choosing the flue gas temperature, Tfl,
as the mean temperature in the given interval, the efficiency function reduces to an efficiency
factor:

qf→w = [Hfu + cfuTfu − (1 + κfu) ca350]wfu . (3.46)

Hereby the models of the furnace/flue gas pipes part are derived. The oxygen model is given by
Equation (3.31) and the efficiency factor is given by Equation (3.46). Remaining is to derive a
model for the water/steam part.

3.1.4 Water and Steam

The water and steam part consist of the last three control volumes; water, steam bubbles and
steam. To describe the dynamic behavior of the water and steam part, a number of balance
equations are derived and used in the final non-linear model of the boiler.

Energy Balance for the Water and Steam Part

The energy balance is used to express the change of energy in a control volume, and is given by
[Andersen and Pedersen, 2007]:

Ėtot = qi − qo +Q

= wi · hi − wo · ho +Q , (3.47)

where Etot is the total internal energy, qi and qo are the input and output energy flows respec-
tively, hi and ho are the enthalpy for the input and output energy flows respectively and Q is
the provided thermal energy.

An equation describing the energy balance for the boiler is derived by looking at Figure 3.6 as:

Ėtot = wfwhfw − wshs(ps) + qf→w , (3.48)

where qf→w is the effect transfered from the furnace/flue gas pipes and h(·) is the enthalpy. The
total energy, Etot, in the control volume is contained in the water, steam bubbles, steam and
metal:

Etot = mwhw(ps) +msbhs(ps) +mshs(ps) +mmcmTsat(ps) , (3.49)

where m(·) is the mass and Tsat = Tw = Tm according to the boiler assumptions in Subsection
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3.1.2. Differentiating Etot, according to Equation (3.48), by use of the chain rule gives:

Ėtot =
d(mwhw(ps))

dt
+
d(msbhs(ps))

dt
+
d(mshs(ps))

dt
+
d(mmcmTsat(ps))

dt

= ṁwhw(ps) +mw
∂hw

∂ps
ṗs

+ ṁsbhs(ps) +msb
∂hs

∂ps
ṗs

+ ṁshs(ps) +ms
∂hs

∂ps
ṗs

+ mmcm
∂Tsat

∂ps
ṗs . (3.50)

Inserting Equation (3.50) into Equation (3.48), using the assumptions V̇tot = 0 and ρshs = ρsbhsb,
and rearranging with respect to the state variables ps and Vw, gives:

(ρwhw − ρshs)
︸ ︷︷ ︸

j12

V̇w +

(

mw

∂hw

∂ps

+msb

∂hs

∂ps

+ms

∂hs

∂ps

+mmcm
∂Tsat

∂ps

)

︸ ︷︷ ︸

j11

ṗs

= hfw
︸︷︷︸

l12

wfw −hsps
︸ ︷︷ ︸

l13

ws + ηfuβfu
︸ ︷︷ ︸

l14

wfu , (3.51)

where ηfuβfu is the furnace efficiency factor given by Equation (3.46).

The unknown variables ṁw, ṁsb and ṁs in Equation (3.50) can be described by use of mass
balance equations.

wfw

ws

Water

Steam

bubbles

Steam

ww!sb

wsb!s

qf!w

Figure 3.6: Block diagram of the boiler with terms to describe the energy and mass balances for the water and
steam part.
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Mass Balance for the Water and Steam Part

The mass balance is used to express the change of mass in a control volume, and is given by
[Andersen and Pedersen, 2007]:

ṁ =
d (ρ · V )

dt

=
∑

wi −
∑

wo

= wi − wo , (3.52)

where ρ is the mass density, V is the control volume and w(·) is the mass flow. A mass balance
can be expressed for each of the control volumes by use of Figure 3.6, and by use of the chain
rule, as the mass density ρ(ps) is dependent on the pressure.

Mass balance for the water volume:

ṁw = Vw
∂ρw

∂ps
ṗs + ρw(ps)V̇w = wfw − ww→sb . (3.53)

Mass balance for the steam bubbles volume:

ṁsb = Vsb
∂ρs

∂ps
ṗs + ρs(ps)V̇sb = ww→sb − wsb→s . (3.54)

Mass balance for the steam volume:

ṁs = Vs
∂ρs

∂ps
ṗs + ρs(ps)V̇s = wsb→s −ws . (3.55)

At this point an energy balance equation and three mass balance equations are derived. However,
the number of unknown variables must be reduced.

Reducing the number of unknown variables
To eliminate some of the unknown variables, the mass flow wsb→s in Equation (3.54) and (3.55)
can be approximated by using the rise time, tsb, of air bubbles in fluids:

wsb→s ≈
1

tsb
msb =

1

tsb
ρsVsb . (3.56)

Equation (3.56) is derived by [Andersen and Jørgensen, 2007] based on [Davies and Taylor,
1949].

Furthermore by combining Equation (3.53) and (3.54), the mass flow ww→sb can be eliminated:

Vw
∂ρw

∂ps
ṗs + ρwV̇w + Vsb

∂ρs

∂ps
ṗs + ρsV̇sb = wfw −

�
�

��ww→sb +
�

�
��ww→sb −

1

tsb
ρsVsb , (3.57)

which by rearranging reduces to:

(

Vw
∂ρw

∂ps
+ Vsb

∂ρs

∂ps

)

︸ ︷︷ ︸

j21

ṗs + ρw
︸︷︷︸

j22

V̇w + ρs
︸︷︷︸

j23

V̇sb = 1
︸︷︷︸

l22

wfw − 1

tsb
ρs

︸ ︷︷ ︸

l21

Vsb . (3.58)
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According to the assumptions in Subsection 3.1.2, the volume of the boiler is constant, entailing:

Vtot = Vw + Vsb + Vs ⇒ Vs = Vtot − Vw − Vsb . (3.59)

Combining Equation (3.59), (3.56) and mass balance Equation (3.55) and rearranging gives:
(

(Vtot − Vw − Vsb)
∂ρs

∂ps

)

︸ ︷︷ ︸

j31

ṗs −ρs
︸︷︷︸

j32

V̇w −ρs
︸︷︷︸

j33

V̇sb =
1

tsb
ρs

︸ ︷︷ ︸

l31

Vsb −1
︸︷︷︸

l33

ws . (3.60)

Finally, all the necessary equations, for the different control volumes, to describe the non-linear
boiler model are derived, and the non-linear model is presented in the following.

3.1.5 Non-linear Model of the Boiler

The non-linear boiler model is in the following presented as a state space model on descriptor
form, given by the general expression:

Jẋ = Lb .

Using Equation (3.31) for the oxygen model, Equation (3.51) for the energy balance equation,
where the efficiency factor is included, and finally Equation (3.58) and (3.60) from the mass
balance equation, the non-linear model is given by:
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. (3.61)

The output equation is given by the general form:

y = Cx ,

where the output matrix is chosen, so that the water level, Lw, the steam pressure, ps, and the
oxygen level, xo,O2

, are outputs:






ps

Lw

xo,O2




 =






1 0 0 0

0 1
Aw

1
Aw

0

0 0 0 1




 ·









ps

Vw

Vsb

xo,O2









. (3.62)

By thoroughly examination of the expressions in Equation (3.61), the changes in steam pressure
and water and steam bubble volumes are described by an integrator effect. Even though this
might not seem obvious here, it is easy to see in Chapter 4, where control models are derived
for controller design.
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3.1.6 Parameter Estimation and Verification of the Non-linear Boiler Model

To verify the non-linear model of the boiler, the parameters κfu and tsb, expressing the relation
between fuel and air flow for a given oxygen level and the average rise time for steam bubbles
respectively, must be estimated. These two parameters in the boiler model are the only ones,
that are not determined by physical dimensions or possible to look up in thermodynamical
tables.
In addition to κfu and tsb, the time constant, τxo,O2

, in the oxygen model could be estimated, as
the time constant represents both the oxygen dynamics and the sensor dynamics. However, as
the time constant in the oxygen dynamics is varying in proportion to the input mass flows, wa

and wfu, this might not give an accurate estimate. Furthermore the air flow is unmeasurable
on the Mission OSTM boiler and thus it is practically impossible to estimate the time constant
of the oxygen model. Consequently the theoretical value of τxo,O2

in steady state is used.

One method to estimate the parameters, κfu and tsb, is by using Senstools by [Knudsen, 2004],
which is a toolbox for Matlab

TM. This estimation method is described in Appendix C.

The result of the estimation is shown i Table 3.1, where the theoretical and estimated values are
listed. The estimated values are found by calculating the mean values from eight measurement
series, with different input signals on steam flow, feed water flow and fuel flow.

Parameter Theoretical value Estimated value Unit

κfu 16.9 24.4

tsb 5 0.8 s

τxo,O2
4.7 s

Table 3.1: The theoretical and estimated parameters for the non-linear boiler model.

The relation between fuel flow and air flow, κfu, is from [Aalborg Industries, 2008] given as
approximately 20, which is close to both the theoretical and estimated value. The estimated
value for the rise time for steam bubbles, tsb, is somewhat smaller than the theoretical value.
However, this seem reasonable as the theoretical value is for bubbles with larger diameter and
under lower pressure and thus the steam bubbles in the boiler moves faster.

Verification of the Non-linear Boiler Model

To verify the boiler model, a new series of measurement data is collected and the non-linear
boiler model is implemented in Simulink as an S-function watersteam.c. Some measurement
data is available from previous projects, so not all measurement data are found necessary to
be collected again. In the following, a comparison of the measurement data and the simulated
output from the non-linear boiler model is outlined. The measurement data are step responses
for inputs in steam flow, feed water flow and fuel flow.

Step in steam flow
The steam flow step response is obtained by maintaining a steady steam flow and adjusting the
feed water flow and fuel flow to obtain steady state, with a water level of approximately 1.23 m
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and a steam pressure of approximately 8 bar. The step response reveals the dynamics in the
boiler and the result is shown in Figure 3.7.

[k
g/

h
]

Time [s]

0 100 200 300 400 500 600
50

100

150

200

(a) Fuel flow, wfu.

Time [s]

[k
g/

h
]

wfw ws

0 100 200 300 400 500 600
0

1000

2000

3000

4000

(b) Feed water flow, wfw, and steam flow, ws.

[m
3
]

Time [s]

0 100 200 300 400 500 600
3.35

3.4

3.45

3.5

(c) Water volume, Vw.

[m
3
]

Time [s]

0 100 200 300 400 500 600
0.05

0.1

0.15

0.2

0.25

(d) Steam bubbles volume, Vsb.

Time [s]

[m
]

Measured Simulated

0 100 200 300 400 500 600
1.15

1.2

1.25

1.3

1.35

(e) Water level, Lw.

Time [s]

[b
ar

]

Measured Simulated

0 100 200 300 400 500 600
7

7.5

8

8.5

9

9.5

(f) Steam pressure, ps.

Figure 3.7: Non-linear boiler model response, from a step in steam flow.

When the step in steam flow is applied, Figure 3.7b shows a slightly increase in the feed water
flow. This is caused by the decreasing steam pressure and thereby a larger pressure difference
over the feed water valve. Figure 3.7f shows how the steam pressure decreases, and the model
output is satisfactory similar to the boiler response. The change in water level is shown in Figure
3.7e, where it is seen that the step in steam flow causes the water level to increase. This is the
swell phenomenon caused by the expanding steam bubbles volume, shown in Figure 3.7d, as the
steam pressure drops. Also the water level from the model output is satisfactory similar to the
boiler response, and thus the model is considered acceptable for a step in steam flow.
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Step in feed water flow
Like the steam flow step response, the feed water step response is obtained by maintaining a
steady feed water flow and adjusting the steam flow and fuel flow to obtain steady state, with
a water level of approximately 1.23 m and a steam pressure of approximately 8 bar. The result
is shown in Figure 3.8.
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Figure 3.8: Non-linear boiler model response, from a step in feed water flow.

When the step in feed water flow is applied, the water level increases as shown in Figure 3.8e.
Here the shrink phenomenon is not particular visible, which is consistent to the description of
the shrink and swell phenomenon in Chapter 2. However, the model output is similar to the
boiler response. Because the feed water temperature is lower than the temperature inside the
boiler, the increased feed water flow causes the steam pressure to decrease, as shown in Figure
3.8f. Also here the model output is sufficient similar to the boiler response. The decreased
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steam pressure also induces a slightly decrease in steam flow, as shown in Figure 3.8b. The
model output from a step in feed water flow is similar to the boiler response, and thus the model
is considered acceptable.

Step in fuel flow
Finally the fuel flow step response is obtained by maintaining a steady fuel flow and adjusting
the steam flow and feed water flow to obtain steady state, with a water level of approximately
1.23 m and a steam pressure of approximately 8 bar. In Figure 3.9b the changing levels during
the first 150 s, concerns the stabilising of the steady state. The results from the step response
is shown in Figure 3.9.
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Figure 3.9: Non-linear boiler model response, from a step in fuel flow.

A step in fuel flow leads to an increase in steam pressure, shown in Figure 3.9f, as more water
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is converted into steam. The increased steam pressure leads to a slightly increase in steam flow
and a slightly decrease in feed water flow, as shown in Figure 3.9b. As more water is converted
into steam, the volume of steam bubbles should increase, but only slightly as the increased
steam pressure reduces the increase of steam bubble volume. The model output is very similar
to the boiler response for both the water level and the steam pressure, in Figure 3.9e and 3.9f
respectively.

Oxygen model verification
The derived oxygen model consists of a static part and a dynamic part. The static part is based
on the chemical composition of fuel and air and is thus less uncertain compared to the dynamics
of the oxygen model. In attempt to verify the model, measurements of fuel and air flow must be
available. However, as the air flow is unmeasurable, the air damper position is used to estimate
the air flow. By assuming a linear ratio between air damper position and air flow, this ratio can
be estimated using Senstools and the result is shown in Figure 3.10.
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Figure 3.10: Estimation of linear ratio between air damper position and air flow. Oxygen levels (a) and servo
positions (b).

Looking at the graphs, the dynamics of the oxygen model output is similar to the measured
response, except from a gain variation. This implies that the ratio between the air damper
position and the air flow is not linear; assuming the oxygen model is adequate. Looking at
Figure 3.10a and Figure 3.10b, the simulated oxygen level is too high at high fuel and air flows
and too low at low fuel and air flows. This indicates that instead of describing the air damper
position to flow ratio as linear, an affine ratio, wa = aa ·θa + ba, might improve the estimate and
thereby the ability to verify the oxygen model. The two parameters, aa and ba, are estimated
and the result is shown in Figure 3.11.

This gives a more accurate estimate, and the oxygen model is considered acceptable, even though
the inaccuracies potentially can be in both the oxygen model or in the estimated ratio between
air damper position and air flow.

On the basis of the unmeasurable air flow, the oxygen model is considered acceptable and thereby
the entire non-linear model of the boiler is verified, and can later be used for i.a. controller design
and non-linear simulation.

33



3 Modelling of Boiler System

Time [s]

[%
]

Measured Simulated

0 100 200 300 400
0

5

10

15

Figure 3.11: Estimation of affine ratio between air damper position and air flow.

3.2 Feed Water Actuator Modelling

This section describes how a model for the feed water actuator system is derived. The derived
feed water actuator model is based on [Andersen and Jørgensen, 2007], as the structure of the
actuator system is similar to the majority of boiler installations. Thus the focus in this section
is mainly on how the model is derived and not on the detailed derivation.

On the basis of the system description in Chapter 2, the feed water actuator model consists of
a valve positioner, a piping system and a flow sensor. A block diagram of this is illustrated in
Figure 3.12.

ps

Valve

positioner

ufw Piping

system

Flow

sensor

~
fw wfw ·wfw

Figure 3.12: Block diagram of the feed water actuator system.

Due to the valve characteristics, the derived feed water actuator model will be non-linear.

3.2.1 Valve Positioner

The valve positioner is used to adjust the feed water valve stroke, and thereby indirectly the feed
water flow. The valve positioner is controlled by pneumatic and has fast dynamics, compared
to the flow sensor. Thus the dynamics of the valve positioner is ignored and the valve positioner
consists only of a factor, that scales the control input signal, ufw, to a normed feed water valve
position: θ̃fw ∈ [0; 1].

3.2.2 Piping System

The piping system is somewhat complex, although it mainly consists of two valves and a feed
water pump. The feed water flow through the feed water valve is, according to Figure 2.3 on
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page 5, dependent on the following parameters:

• The position of the feed water valve, θfw

• The position of the return valve, kfw,r

• The pressure in the boiler, ps

• The pressure in the feed water tank, p0

• The pressure delivered by the feed water pump, pfw,i

To limit the number of dependent parameters, the pressure from the feed water pump is assumed
constant during operation. Also the position of the return valve in not changed during operation
and the pressure in the feed water tank is equal to the ambient pressure. Thus the feed water
flow can be described as a function of the remaining parameters; the feed water valve position
and the steam pressure:

wfw = f(θ̃fw, ps) . (3.63)

To derive an expression for the non-linear function, the feed water flow through the feed water
valve can be expressed as:

wfw = kfwf(θ̃fw)
√
pfw,i − ps , (3.64)

where kfw is the feed water valve gain and f(θ̃fw) and pfw,i are unknown quantities. The non-
linearity of the feed water valve, f(θ̃fw), can be expressed as an equal percentage characteristic,
given by:

f1(θ̃fw) = afw

(

1 − e−bfw θ̃fw

)

f2(θ̃fw) = Rθ̃fw−1

for

for

0 ≤ θ̃fw ≤ 0.1

0.1 ≤ θ̃fw ≤ 1 ,
(3.65)

where R is a valve specific constant.

From practical experiments it appears, that the equal percentage characteristic can be well
described by a second order polynomial [Andersen and Jørgensen, 2007].

An expression for the feed water pressure, pfw,i, can be derived from examining the feed water
pump and the return valve. Looking at Figure 2.3 on page 5, the pressure rise from the feed
water pump can be expressed as:

∆pfw,i = pfw,i − p0 . (3.66)

The pressure rise, ∆pfw,i, is generally described by the lift height of the pump and is defined as:

∆pfw,i = ρwg∆Lfw,p , (3.67)

where ρw is the mass density, g is the gravity and ∆Lfw,p is the lifting height, dependent on the
speed and flow capacity of the pump. Furthermore by using an expression for the flow through
the linear return valve:

wfw,r = kfw,r

√
pfw,i − p0 . (3.68)
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An expression for ∆pfw,i, can be derived as:

∆pfw,i =
−a1 −

√

a2
1 − 4 a2 a0

2 a2
, (3.69)

where

a2 =

(

1 +
pfw,i,max

w2
fw,f,max

(

k2
fw f

2(θ̃fw) + k2
fw,r

)
)2

− 4
p2

fw,i,max

w4
fw,f,max

k2
fw f

2(θ̃fw) k2
fw,r

a1 = 2

(

1 +
pfw,i,max

w2
fw,f,max

(

k2
fw f

2(θ̃fw) + k2
fw,r

)
)

·
(

pfw,i,max

w2
fw,f,max

k2
fwf

2(θ̃fw)(p0 − ps) − pfw,i,max

)

− 4
p2

fw,i,max

w4
fw,f,max

k2
fw f

2(θ̃fw) k2
fw,r(p0 − ps)

a0 =

(

pfw,i,max

w2
fw,f,max

k2
fwf

2(θ̃fw)(p0 − ps) − pfw,i,max

)

.

For a detailed derivation of ∆pfw,i, see [Andersen and Jørgensen, 2007, p. 28–29].

Substituting Equation (3.66) into Equation (3.64), the final equation describing the feed water
flow from the valve position and steam pressure, is given by:

wfw = kfwf(θ̃fw)
√

∆pfw,i + p0 − ps , (3.70)

where f(θ̃fw) and ∆pfw,i is given by Equation (3.65) and Equation (3.69) respectively.

3.2.3 Flow Sensor

The feed water flow sensor can be described by a first order transfer function:

w̌fw

wfw

=
1

1 + τfw s
, (3.71)

and has a time constant, τfw, of approximately 3 seconds according to the datasheet.

From these equations describing the feed water actuator system, a more detailed block diagram
is illustrated in Figure 3.13.

~
fw wfw

0:1
ufw

ps

f(~fw; ps)

·wfw 1

1+¿fws

Figure 3.13: Detailed block diagram of the feed water actuator system.

Compared to the previous block diagram of the feed water actuator system in Figure 3.12,
the sensor dynamics are placed in the feed back path. This implies that except from the non-
linearities, no dynamics are present from control input, ufw, to output flow, wfw. This is not
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3.2. Feed Water Actuator Modelling

exactly true as there is dynamics in the feed water valve, causing the feed water flow not to
be immediate. However, relatively to the measured feed water flow from the sensor, the valve
dynamics is neglectable as just described.

For the feed water actuator model it is necessary to determine the model parameters prior to
verifying the model. Some of the parameters are calculated and others are estimated.

3.2.4 Parameter Estimation and Verification of the Feed Water Actuator
Model

To verify the model of the feed water actuator system, the parameters kfw,r and τfw, expressing
the valve position of the return valve and the time constant for the feed water actuator respec-
tively, must be estimated. Prior to estimating the parameters, other constants in the feed water
actuator model are calculated. These are listed in Table 3.2.

Parameter Value Unit

afw 17.47

bfw 0.044

∆pfw,i,max 1.17·106 Pa

wfw,f,max 2.63 kg
s

kfw 0.0141
√

m · kg

R 40

Table 3.2: Constants for the feed water actuator model [Andersen and Jørgensen, 2007].

The parameters, kfw,r and τfw, are estimated using Senstools in Matlab
TM. The estimation

method is described in Appendix C, and the estimated values of the parameters are listed in
Table 3.3.

Parameter Estimated value Unit

kfw,r 0.62·10−3
√

m · kg

τfw 3.69 s

Table 3.3: Estimated parameters for the feed water actuator model.

Remaining is to verify the feed water actuator model with the estimated parameters.

Verification of feed water actuator model
New measurement data is obtained from AI’s test center. They are used in comparison to the
feed water actuator model output, and the responses are shown in Figure 3.14. Before the
measurements are retrieved, the boiler is brought into steady state, to obtain a steam pressure
of 8 bar.

Figure 3.14a shows the applied control input signal, ufw, to the feed water actuator, and Figure
3.14b shows the measured and simulated response. From this result it is easy to see the simulated
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Figure 3.14: Verification of feed water actuator model.

response is similar to the measured response. In spite of small gain variations, the feed water
actuator model with the estimated parameters is considered satisfactory. Figure 3.14c shows
the steam pressure, ps, which is around the operating point of 8 bar.

3.3 Fuel Actuator Modelling

This section describes the derivation of the model for the fuel actuator system, based on the
description of the fuel actuator system in Chapter 2. The derived fuel actuator model is based
on [Andersen and Jørgensen, 2007], as the structure of the actuator system is similar to the
majority of boiler installations. Thus the focus in this section is mainly on how the model is
derived and not on the detailed derivation.

As the structure of the oil and air actuators are similar, only a model for the oil actuator is
derived. However, the differences between the two actuators are subsequently pointed out.

The oil actuator consists of a servo motor, the piping system including the oil valve and the
fuel flow sensors. The servo motor, to adjust the valve stroke of the fuel valve, θfu, is controlled
by an input signal denoted ufu. The oil valve position results in a fuel flow, wfu, in the piping
system and the oil flow is measured by two flow sensors. A block diagram of the model structure
is illustrated in Figure 3.15.
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Figure 3.15: Block diagram of the oil actuator system.

As the piping system has non-linear characteristics, the model of the oil actuator will be non-
linear.

3.3.1 Servo Motor

The servo motor has two terminals, where an input at one of the terminals makes the servo
motor run clockwise (CW) and the other counter clockwise (CCW). When a control signal is
applied to any of the terminals, the servo motor runs at constant speed, making the change in
valve position constant. Thus the servo motor can be modelled as an integrator.
In stead of using a control signal for each of the terminals, the control input, ufu, is normed to
ũfu ∈ {−1, 0,+1}, where -1 corresponds to a change in the CCW direction and +1 corresponds
to a change in the CW direction. Thus the sign of the normed input signal indicates the sign of
integration. The traveling speed of the servo motor and thereby rate of change in valve stroke, is
determined by an integrator gain defined by a constant, Kfu. All together this gives the model
for the servo motor:

θfu(t) = θfu(t0) +Kfu

∫ t

t0

ũfu(τ)dτ for ũfu ∈ {−1, 0, 1} . (3.72)

3.3.2 Piping System

The significant parts in the piping system are the valves and the fuel atomiser. As these parts
are purchased from sub suppliers, the knowledge to the characteristics are limitted. Assuming
that the dynamics of the piping is fast, the piping system can be described by a static model.
Hence, a third order polynomial on the form:

wfu = f(θfu) = afu,3θ
3
fu + afu,2θ

2
fu + afu,1θ

1
fu + afu,0 , (3.73)

is sufficient to describe the piping system.

3.3.3 Flow Sensors

As previously mentioned, two flow sensors are used to estimate the actual oil flow, wfu. Each of
the sensors constitute a first order system, resulting in a second order flow sensor model. Due
to the small delay between the measurements of the fuel flow, the sensors are best modelled as
a second order nonminimum phase system:

w̌fu

wfu
=

1 − τfu,2 s

(1 + τfu,1 s)2
. (3.74)

Thereby the system has a zero in the RHP, causing a larger variation in the phase response.
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From the outlined equations of the oil actuator, a more detailed block diagram is illustrated in
Figure 3.16.
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Figure 3.16: Detailed block diagram of the oil actuator system.

As stated earlier, the air actuator is similar in structure. Hence a block diagram of the air
actuator system is illustrated in Figure 3.17.
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Figure 3.17: Detailed block diagram of the air actuator system.

As seen, the two systems are very similar, except from no flow sensor is present in the air
actuator system and thereby no sensor dynamics in the model. Also, the non-linearity and gain
of the oil valve, f (θfu) and Kfu are replaced by their counterpart for an air damper, namely
f (θa) and Ka.

The model of the fuel actuator system, including both oil and air actuators, is implemented in
Simulink and verified in the following subsection.

3.3.4 Parameter Estimation and Verification of the Fuel Actuator Model

The parameter estimation and verification for the fuel actuator model is divided in two; the oil
actuator model and air damper model.

Oil actuator model verification
For the oil actuator model there are many unknown parameters that must be estimated. This
includes the non-linear valve characteristic coefficients, the valve integrator gain and the two
time constants in the flow sensors.

Parameter Estimated value Unit

afu,3 -2.79·10−7 kg
s·%3

afu,2 5.37·10−5 kg
s·%2

afu,1 -2.61·10−3 kg
s·%

afu,0 0.045 kg
s

Kfu 15.17 %
s

τfu,1 3.56 s

τfu,2 1.96 s

Table 3.4: The estimated parameters for the oil actuator model.
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3.3. Fuel Actuator Modelling

In Table 3.4 the estimated parameters for the oil valve actuator model are listed.

Given these estimated parameters, the oil actuator model is verified against measurement data,
and the result is shown in Figure 3.18.

Time [s]

ufu CW ufu CCW

0 200 400 599 799

0

0.5

1

(a) PWM input signal, ufu.

Time [s]

[%
]

Measured Simulated

0 200 400 599 799
20

40

60

80

100

(b) Oil servo position, θfu.

Time [s]

[k
g/

h
]

Measured Simulated

0 200 400 599 799
0

50

100

150

200

(c) Fuel flow, wfu.

Figure 3.18: Verification of oil actuator model.

Figure 3.18a shows the input signal applied to the PWM servo motor. The resulting servo
position is shown in Figure 3.18b, where the model output and measured response is similar.
Furthermore the measured fuel flow is compared to the model output, and Figure 3.18c shows
that also this result is satisfactory. Hereby the oil servo actuator model is approved with the
estimated parameters.

Air actuator model
Also for the air actuator model there are parameters that needs to be estimated. The coefficients
of the non-linear valve characteristic and the air damper integrator gain. The integrator gain is
relative simple to estimate, but as it is not possible to measure the air flow in AI’s test center, it
is difficult to estimate the valve characteristic. However, relying on the oxygen model, the flow
characteristics can be estimated as described in the verification of the oxygen model in Section
3.1.6 on Page 33. Thereby the resulting flow characteristic is defined by an affine function on
the form:

wa = aa · θa + ba , (3.75)

and the estimated parameters are listed in Table 3.5.
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Parameter Estimated value Unit

aa 0.009

ab 0.168

Ka 15.17 %
s

Table 3.5: The estimated parameters for the air damper model.

At this point the entire Mission OSTM boiler system is modelled and the models are verified.
The following section contains a short resume of the derived models.

3.4 Modelling Resume

The boiler system has been modelled as three separate non-linear models; a boiler model, a feed
water actuator model and a fuel actuator model.

The non-linear boiler model was derived from a number of control volumes, where balance
equations were used to describe the boiler dynamics. To simplify the model some assumptions
were made and knowledge from previously projects was taking into consideration. The non-linear
boiler model was derived and presented as a state space model on descriptor form. Furthermore
the non-linear boiler model was implemented in Simulink as an S-function and a few parameters
were estimated, before the model was successfully verified.

The feed water actuator model was modelled as three parts; a valve positioner, the piping system
and a flow sensor. This resulted in a non-linear model, due to the non-linear valve characteristic.
The model parameters were estimated and the feed water actuator model verification showed a
satisfactory result.

The fuel actuator model consists of an oil actuator model and an air actuator model. The oil ac-
tuator was modelled as a servo motor, a piping system including valves and a flow sensor. As the
servo motor is PWM controlled with constant angular velocity, it was modelled as an integrator.
The piping system and valves have non-linear characteristics which was approximated by a third
order polynomial. The flow sensors was modelled as a second order nonminimum phase system,
due to a delay between the measurements of the forward and return flows. After estimating the
unknown model parameters, the oil actuator model was verified against measurement data, and
the model has similar dynamic behaviour as the physical response.
The air actuator model was modelled in the same way as the oil actuator model, except from
no flow sensor is included. Thus the verification of the actuator model was conducted relying
on the oxygen model.
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Chapter4
Controller Design

This chapter contains a description of the designed controllers for the Mission OSTM boiler
system. The overall task is to design and implement controllers to control the water level, the
steam pressure and the oxygen level. However, to optimize the performance, actuator controllers
are designed as well. The controllers are designed based on the models derived in Chapter 3,
and the controllers are all SISO controllers. The choice of designing SISO controllers facilitates
a simplified underlying basis for development and implementation of self-tuning of the Mission
OSTM boiler system, described in Chapter 5.
First, an overview of the existing and desired controller structure, consisting of inner and outer-
loop controllers, is given. Next the inner-loop controllers are designed and verified by simulation,
followed by a derivation of control models and design of the outer-loop controllers. Finally the
outer-loop controllers are verified by simulation and a resume of this chapter is given.

Figure 4.1 illustrates the controller structure for the Mission OSTM boiler system. In total, six
SISO controllers are to be designed. Three inner-loop controllers must be designed, to control
the feed water actuator, the oil valve and the air damper. In addition three outer-loop controllers
must be designed in order to control the water level, the steam pressure and the oxygen level.
The inner-loops are in Figure 4.1 marked by grey.
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Figure 4.1: Illustrates the controller structure for the Mission OSTM boiler system.

The controller structure is based on the existing control structure used by at AI, except from
the oxygen level controller and feed water actuator controller. Alternative to the oxygen level
controller, AI only uses a curveband, fitted for a specified oxygen level, as feed forward from the
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air damper position to oil valve position, resulting in an approximated relation between fuel flow
and air flow. In this controller structure the curveband is used opposite, as feed-forward from oil
valve position to air damper position. Furthermore, to fine-adjust the oxygen level, it is desired
to add the oxygen level feedback controller as depicted in Figure 4.1. In attempt to improve
the water level controller, a feed water actuator controller must be designed, to control the
feed water flow into the boiler. The existing water level control is designed somewhat simpler,
without an inner loop.

The remaining of this chapter first contains a description of how the inner-loop controllers are
designed, and subsequently how the outer-loop controllers are designed before the controllers
finally are verified.

4.1 Inner-loop Controller Design

The Mission OSTM boiler system features two actuator systems; the feed water actuator system
and the fuel actuator system. The control of each of these is described in the following sub-
sections. The inner-loop controller for the feed water actuator is designed to compensate for
the non-linearities in the system, whereas the controllers for the oil valve and air damper are
designed to facilitate position control of the oil valve and air damper. The position controllers
for the oil valve and the air damper are designed to achieve fast fuel actuator response.

4.1.1 Feed Water Actuator Control

To compensate for the non-linearities, f(θfw, ps), in the feed water actuator system, these non-
linearities must first be identified. It seems obvious that the valve characteristic is non-linear, but
the feed water flow also depends on the steam pressure in the boiler. [Andersen and Jørgensen,
2007] analysed the non-linearities of the feed water actuator system and concluded two things.
In a steam pressure interval between 7.6 and 8.4 bar, around the operating point, the non-
linearities only slightly varies and thus just slightly affects the feed water flow, wfw. Thereby
the non-linearity from a change in steam pressure is neglectable. To determine the non-linear

effect of the valve characteristic, the small signal gain,
d

∆
w fw

d
∆

θ fw

, is examined. The result of this

examination shows that the small signal gain varies a factor 14 and thus the non-linearity can
not be neglected and must be included in the controller design.

There are various known methods to control non-linear systems, like gain scheduling or back-
stepping, but a control strategy as illustrated in Figure 4.2 is advantageous to use. The idea is
to identify the non-linear characteristic of the valve and use the inverse characteristic as feed
forward. This entails a linearisation and thus a linear feedback controller, Cfw, can be used to
control the feed water flow.

Inverse non-linear function
Firstly by ignoring the feedback loop, the inverse non-linearity, f−1(θ̃fw), is derived. Based
on the analysis of the non-linearity, a second order polynomial is sufficient to approximate the
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Figure 4.2: Control strategy for the non-linear feed water actuator system, featuring feed-forward and feedback.

non-linearity of the valve. A general second order polynomial is given as:

f(θ̃fw) = afw,2θ̃
2
fw + afw,1θ̃fw + afw,0 . (4.1)

From Figure 4.2 it is seen that wfw = f(θ̃fw). By inserting this into Equation (4.1), the solution
to θ̃fw is given by:

θ̃fw =
−afw,1 +

√

a2
fw,1 − 4 afw,2 (afw,0 − wfw)

2 afw,2
, (4.2)

where θ̃fw is the input and wfw is the output.

To find the inverse of the solution, the input and output are interchanged and by looking at
Figure 4.2, the input and output to the inverse non-linearity is given by wfw,ref and ufw =
f−1(θ̃fw) respectively. This gives the solution of the inverse non-linear function:

f−1(wfw,ref ) =
−afw,1 +

√

a2
fw,1 − 4 afw,2 (afw,0 − wfw,ref)

2 afw,2
, (4.3)

which is used as feed forward to eliminate the non-linearity. Furthermore to compensate for
the norming factor in the feed water actuator, the inverse non-linear function is multiplied by a
factor 10. Remaining is to design the feedback controller for the feed water actuator system.

Feedback control
Assuming the inverse non-linear function completely cancel out the non-linearity in the feed
water actuator, the open loop system response is, according to Figure 4.2, given by the gain in
the feed water actuator and the sensor dynamics:

GOL(s) = Cfw

wfw

ufw

1

1 + τfw s
. (4.4)

Using the expression for the open loop response, the closed loop response is defined as:

GCL(s) =
wfw

wfw,ref

=
Cfw(s)

wfw

ufw

1 + Cfw(s)GOL(s)
. (4.5)

Using a Skogestad Internal Model Control scheme [Skogestad, 2002], a desired closed loop re-
sponse can be obtained:

(
wfw

wfw,ref

)

desired

= 1 . (4.6)
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This indicates, that the feed water flow will have an immediate response from the reference
signal, and the measured feedback signal contains the dynamics, as discussed in the modelling
in Section 3.2 on Page 36.

From the closed loop response, Equation (4.5), it is possible to derive an expression for the
feedback controller:

Cfw(s) =
1

wfw
ufw

„

wfw
wfw,ref

«

desired

−GOL(s)

. (4.7)

Using the desired closed response from Equation (4.6) and rearranging, the resulting feed back
controller reduces to:

Cfw(s) =
ufw

wfw

(

1 +
1

τfw s

)

, (4.8)

which is a PI-controller with proportional gain, kfw,p =
ufw

wfw
, and integrator time constant,

Tfw,i = τfw. The proportional gain can be calculated if the maximum feed water flow is known
and remembering the maximum value of the control signal is 10 V. Thus the only controller
parameter needed to find is the time constant for the feed water actuator, τfw.

Anti wind-up
When designing and implementing a PI-controller, it is necessary to consider the integrator
wind-up effect. If the actuator system introduces saturation, the PI-controller will still try to
eliminate the error, causing integrator wind-up. Thus it is relevant to design an anti wind-up
scheme, along with the design of the PI-controller. A tracking anti wind-up scheme has a good
trade off between complex implementation and efficiency [Bohn and Atherton, 1995], and is thus
chosen to implement. The tracking anti wind-up scheme is shown in Figure 4.3, and consists of
the PI-controller together with the tracking anti wind-up.

e
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u
0

u

+

¡

esat

PI-controller

Tracking anti wind-up

Figure 4.3: Generalised tracking anti wind-up scheme [Franklin et al., 2006, p. 671].

The parameter Tt is a free parameter and can be used as tuning parameter, to adjust the
performance of the tracking anti wind-up.
When u = u′ no saturation is present, and the saturation error is zero, esat = 0. Thereby the
tracking anti wind-up is passive, resulting in an ordinary PI-controller. Opposite when esat 6= 0,
the wind-up value is subtracted from the integrator part, and thereby integrator wind-up is
avoided. This can be expressed mathematically from Figure 4.3, where two equations can be
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derived:

ei = e
kp

Ti
− esat

1

Tt
(4.9)

u′ = e · kp + ei
1

s
. (4.10)

Assuming the system is saturated, the small signal gain of esat is equal to the small signal gain
of u′. Inserting esat = u′ into Equation (4.9) the transfer function from e to u′ is derived as:

u′

e
= kp

s+ 1
Ti

s+ 1
Tt

. (4.11)

It is obvious that if the tuning parameter, Tt, is chosen to be equal to the integrator parameter,
Ti, the tracking anti wind-up scheme reduces to a proportional controller, and integrator wind-up
is avoided whenever saturation is present.

At this point, a feed water flow controller is designed, to depend on the non-linear characteristic
of the valve, with parameters ψfw = [afw,2 afw,1 afw,0], the measurable feed water actuator time
constant, τfw and gain, kfw,p. The polynomial coefficients, the time constant and gain can be
found using well known methods as parameter estimation or as a part of a self-tuning algorithm.

4.1.2 Oil Valve Position Control

The fuel actuator system, described in Chapter 2, facilitates an oil valve controlled by a PWM
controller with position feedback. The controller is designed as a proportional controller and is
chosen as the system in itself facilitates an integrator.

A block diagram of the controlled oil valve is shown in Figure 4.4.

PWM
fu

+ ¡

fu;ref
R

Fuel actuator

kfu;p

Dead band

Kfu
dfu

CW

CCW
efu

f1; 0;¡1g

Figure 4.4: Oil valve control structure.

The PWM block features a normed periodic ramp signal with the period TPWM , which is
compared to the input signal, dfu, to generate an PWM output signal. This is illustrated in
Figure 4.5, where ufu is the PWM signal applied to either the CW or CCW terminal. The duty
cycle of the PWM output signal is calculated from the normed input, |dfu| whereas the output
terminal is determined based on the sign of the input, i.e. the oil valve is opened by a clock-wise
movement, when the input is greater than zero and vice versa.

Looking at the controller structure in Figure 4.4, the valve movement, ∆θfu, during the time
TPWM can be expressed as an integral as follows:

∆θfu =

∫ TPWMdfu

0
Kfudt for dfu ∈ [0, 1] . (4.12)
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tTPWMTsys

dfu;min

dfu

2TPWM

1

tTPWM 2TPWM

1

ufu

0

0

Figure 4.5: Illustration of PWM output generation.

To find the proportional gain, kfu,p, for the controller, the valve movement, ∆θfu, is expressed
by the valve position error, efu:

∆θfu = KfuTPWMkfu,pefu . (4.13)

To achieve fast positioning of the valve, a dead beat controller is designed to ensure that the
valve movement during TPWM equals the error, efu. Thus the proportional gain, kfu,p, can be
found by inserting ∆θfu = efu:

kfu,p =
1

TPWMKfu

. (4.14)

A time period of TPWM = 1 is found to be a good compromise between pulse with resolution
and high effective sample rate, hence the proportional gain is only dependent on the traveling
time of the oil actuator.

Dead band
To avoid limit cycles a dead band is introduced on the position error, efu. Looking at Figure

4.5, the minimum duty cycle is given by dfu,min =
Tsys

TPWM
, where Tsys is the system sampling

time. Hence, the minimum representable error is given by:

|efu,min| =
dfu,min

kfu,p
= KfuTsys . (4.15)

Finally, to ensure that limit cycles are avoided, a margin of 25 % is added to the minimum
representable error. Thus the dead band is given by:

|efu,db| = 1.25KfuTsys . (4.16)
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At this point, an oil valve position controller is designed, to depend only on the measurable
oil valve integrator gain, Kfu, and this integrator gain is also the only unknown parameter to
specify the dead band. The integrator gain can be found using well known methods as parameter
estimation or as a part of a self-tuning algorithm.

4.1.3 Air Damper Position Control

The air damper is controllable using the same principles as for the oil valve. The only difference
is that the oil valve is replaced by an air damper. In this way the controller parameters for the
air damper controller can be summarised as follows.

The proportional gain for the air damper controller, ka,p, is given by:

ka,p =
1

TPWMKa
. (4.17)

Dead band
As for the designed oil valve position controller, a dead band to avoid limit cycles is given by:

|ea,db| = 1.25KaTsys . (4.18)

At this point, an air damper position controller is designed, to depend only on the measurable
air damper integrator gain, Ka.

The controllers designed for the oil valve and the air damper leads to equal responses of the two
systems, when the PWM is not saturated. The equal responses for the oil valve and air damper
is desirable, to avoid large variation of the oxygen level. However, the use of PWM introduces
saturation issues which are described in the following section.

4.1.4 PWM Saturation

The nature of PWM introduces saturation when the duty cycle reaches 100 %, i.e. a value of 1.
The designed position controllers introduced a proportional control gain, inverse proportional
to the valve gain, K(·), and the PWM time period, TPWM :

k(·) =
1

TPWMK(·)
. (4.19)

With the introduced proportional gain the PWM saturation emerges when:

e(·) ≥ TPWMK(·) . (4.20)

For a valve gain of e.g. 0.05 and TPWM = 1, the PWM saturates when the error is greater than
5 %, implying that the valve travels at full speed when the error is greater than 5 %. Hence the
output is only modulated with an error less than 5 %.

A simulation of a step response with valve gains, kfu = 0.05 and ka = 0.02 is depicted in Figure
4.6.
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(d) Oil valve position control output, dfu.
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(f) Oil valve PWM signal, ufu,CW and ufu,CCW .

Figure 4.6: Oil valve and air damper response with step in reference at time, t = 300, without PWM saturation
compensation.

From the simulation results, it is obvious, that the PWM saturation causes the air damper to
reach the reference faster than the oil valve, simply because the air damper travels faster than
the oil valve, when saturated.

The PWM saturation and the fact that the air damper and oil valve can have unequal valve
gains, makes it less straightforward to design the position controllers for the oil valve and the
air damper to have equal responses.

For the fast valve to become as slow as the slow valve, the control output for the fast valve
must be limited. The saturation of the output of the proportional controller is for the fast valve
determined as the relation between the valve gains and for the slow valve equal to 1:

|d(·)| ≤
{

1 , for the slow valve
MIN(Ka,Kfu)
MAX(Ka,Kfu) , for the fast valve.

(4.21)
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With the duty cycle saturation compensation described above, the response for the air damper
and oil valve is depicted in Figure 4.7. Compared to Figure 4.6, the valves now have equal
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(a) Air damper position , θa.
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(b) Oil valve position, θfu.

Air position control output
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(c) Air damper position control output, da.
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(d) Oil valve position control output, dfu.
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(e) Air damper PWM signal, ua,CW and ua,CCW .
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(f) Oil valve PWM signal, ufu,CW and ufu,CCW .

Figure 4.7: Oil valve and air damper response with step in reference at time, t = 300, with PWM saturation
compensation.

responses, caused by the reduced duty cycle of the fast valve. This solution will of course result
in a new problem if the curveband is non-linear, because the one valve then must travel longer
than the other, within the same time span. This is not possible with this solution because the
valves have equal responses. Later in Chapter 6 a solution to this issue will be presented.

All the inner-loop controllers are now designed, but prior to designing the outer-loop controllers,
the inner-loop controller designs are verified by simulation in Simulink in Matlab

TM.
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4.1.5 Parameter Estimation and Verification of Inner-loop Controllers

In this subsection the designed inner-loop controllers are verified using simulations. The required
model parameters are found prior to implementing the models in Simulink together with the
designed inner-loop controllers.

Throughout the previous controller designs, only a few model parameters is required to design
the controllers and most of them are estimated in the respective modelling sections. However,
the derived models are verified against measurement data from a previous boiler setup, with
a different burner unit and other valves. Thus the parameters of the present boiler setup are
different and the present parameters are applied during the controller verification. The previous
estimated parameters and the present model parameters are listed in Table 4.1. The three

Parameter Estimated Value Present Value Unit

τfw 3.69 4 s

ψfw N/A [0.00024 0.009952 0.310675] -

Kfu 15.17 5.52 %
s

Ka 15.17 1.82 %
s

Table 4.1: Estimated and present model parameters used for inner-loop controller verification.

inner-loop controllers are verified in the following.

Feed Water Actuator Controller Verification

A simulation of the feed water actuator controller is shown in Figure 4.8 and includes both the
feed-forward and feedback controllers.
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(b) Zoom of a step response.

Figure 4.8: Simulation of feed water actuator controllers.

Figure 4.8a shows how the controllers perform from small and large changes in the reference, and
the result is satisfactory. To further examine the controller performance, Figure 4.8b shows a
zoom of a step response. The designed controllers leads to an overshoot, caused by the integrator
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in the PI-controller, because the dominating dynamics are in the sensor. It is the error from the
measured response and not the actual feed water flow, with a fast response, which is integrated,
and thus the overshoot is considered acceptable.
Besides the overshoot, the desired fast closed loop response is obtained with a time constant of
approximately 4 s as designed according to the sensor dynamics.

Oil Valve and Air Damper Controller Verification

A simulation of the oil valve and air damper controllers is shown in Figure 4.9.
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(d) Zoom of a step response.

Figure 4.9: Verification of oil valve and air damper position controllers.

As expected the two actuator loops have almost identical responses both for small and large
reference changes, in spite of the oil valve is three times faster as the air damper, as given in
Table 4.1. Looking at Figure 4.9b and 4.9d it is obvious that there is two minor deviations in
the two actuator responses.

Comparing the two figures, the slope of the controlled oil actuator position is slightly steeper
than the controlled air actuator position. This is the result of the chosen quantization in the
PWM and the normed constant duty cycle for the fastest valve, when saturated. If a higher
quantization in the PWM had been designed, a more accurate PWM signal would be generated,
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and the slopes of the oil valve and air damper positions would be identical.

The second deviation of the two actuator loops is the waving position of the oil valve. This is
again caused by the normed and constant duty cycle of the fast oil valve when saturated, as
opposed to the air valve duty cycle of 100 %.

All the inner-loop controllers show satisfactory performance according to the design. By use of
the feed water flow controller together with an oil valve and air damper position controller, the
inputs to the outer-loop controllers are better defined, which should improve the performance of
the outer-loop controllers. In the following section, the outer-loop controllers are designed and
verified.

4.2 Outer-loop Controller Design

This section describes the outer-loop controller design of the Mission OSTM boiler system.
According to [Solberg, 2008], the Mission OSTM boiler system is essentially linear. Thereby
for simplicity, a control model is derived as a linearized version of the non-linear model de-
scribed in Chapter 3. SISO control is applied to simplify self-tuning of the controllers. Fur-
thermore, the structure for steam pressure and water level control is chosen as proposed by
[Andersen and Jørgensen, 2007] and thus only shortly described in this section.

The control application is divided into the following; steam pressure, water level and oxygen
level control. Common for the steam pressure and water level controller designs is an analyt-
ical linearisation of the non-linear models. The oxygen level controller design is based on a
mathematical linearised oxygen model.

4.2.1 Steam Pressure Control

This subsection contains a derivation of a linear control model, followed by the steam pressure
controller design and finally the closed loop system response in shortly analysed.

Steam pressure control model
The steam pressure control model is derived from the energy balance, Equation (3.51) on page
26, and is repeated here:

(ρwhw − ρshs) V̇w +

(

mw
∂hw

∂ps
+msb

∂hs

∂ps
+ms

∂hs

∂ps
+mmcm

∂Tsat

∂ps

)

ṗs

= hfwwfw − hs(ps)ws + ηfuβfuwfu . (4.22)

The energy balance equation is simplified to a linearised steam pressure control model as follows.
From examining the first term (ρwhw − ρshs) V̇w, the ratio ρwhw

ρshs
is calculated, using the values

in Table B.2 in Appendix B. The ratio is calculated to 56, implying that the term ρshs is 56
times smaller than ρwhw and thus the term ρshsV̇w is neglected. The remaining part ρwhwV̇w

can be substituted using the overall mass balance equation:

d(mw +msb +ms)

dt
= wfw − ws . (4.23)
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In the mass balance the term mw is greater than msb +ms and thus Equation (4.23), multiplied
by hw, reduces to:

ṁwhw = wfwhw −wshw . (4.24)

Substituting this into Equation (4.22) and rearranging with respect to the output ṗs and the
inputs ẇfw, ẇs and ẇfu gives:

ṗs =
hs − hw

(

mw
∂hw

∂ps
+msb

∂hs

∂ps
+ms

∂hs

∂ps
+mmcm

∂Tsat

∂ps

)

(
hfw − hw

hs − hw

wfw +
ηfuβfu

hs − hw

wfu − ws

)

. (4.25)

In this expression the cross coupling from the feed water flow is examined. Again using the

values from Appendix B, the ratio
hfw−hw

hs−hw
is calculated to approximately -0.3. Even though

this is only a factor 3 smaller than the contribution from the steam flow, the cross coupling is
ignored and the term dependent on wfw is disregarded.

Finally the fuel flow is assumed to be linear dependent on the fuel valve position, and thereby
the final steam pressure control model is given as:

ṗs =
hs − hw

(

mw
∂hw

∂ps
+msb

∂hs

∂ps
+ms

∂hs

∂ps
+mmcm

∂Tsat

∂ps

)

︸ ︷︷ ︸

βps

( ηfuβfukfu

hs − hw
︸ ︷︷ ︸

αps

θfu − ws

)

ṗs = βps (αpsθfu − ws) . (4.26)

Equation (4.26) is shown as a block diagram in Figure 4.10.

+

¡fu
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®ps ¯ps

R ps_ps

Figure 4.10: Steam pressure control model.

By considering the steam flow, ws, to be an unmeasurable disturbance it can be set to zero.
Thus, the steam pressure control loop can be represented by the block diagram in Figure 4.11.
As the inner control loop is neglected, the steam controller is designed adequately slow, to
ensure that the oil valve position reference, determined by the steam pressure controller, can be
obtained by the inner-loop.

Gps
(s)

ps
Cps

(s)
fu

+
¡

ps;ref

Figure 4.11: Block diagram of the steam pressure control loop.
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The system transfer function for the linear steam pressure control model, Gps(s), equals:

Gps(s) =
γps

s
, (4.27)

where γps according to Figure 4.10 is given by:

γps = αpsβps . (4.28)

The derived linear steam pressure control model, given by Equation (4.26), is verified prior to
using the control model for controller design. Appendix D contains a description of parameter
estimation and a verification, that approves the steam pressure control model for controller
design.

Steam pressure controller design
The steam pressure controller is designed as a PI-controller on the form:

Cps(s) = kps,p

s+ 1
Tps,i

s
. (4.29)

This gives a second order open loop system, OL(s) = Cps(s)Gps(s), for which a stability criterion
can be expressed from magnitude and phase as [Franklin et al., 2006, p. 353]:

|OL(jωps)| = 1 (4.30)

6 OL(jωps) = −π + φps,m . (4.31)

Based on the stability criterion, the PI-controller is designed with control parameters as given
below:

Tps,i =
tan(φps,m)

ωps,c
(4.32)

kps,p =
ω2

ps,c

γps

√
1

T 2
ps,i

+ ω2
ps,c

, (4.33)

where the cross-over frequency, ωps,c, the phase margin, φps,m, and the integrator gain, γps , is
to be determined.

The cross-over frequency is chosen through a worst case consideration of the time constant for
the fuel actuator system. To ensure that the outer-loop is five times slower than the inner-loop,
the cross-over frequency can be expressed as:

ωps,c =
1

5τfu
, (4.34)

where τfu expresses the time constant for the fuel actuator system. As the fuel actuators are
PWM controlled and moves with constant speed, it is difficult to specify the time constant for
the closed loop fuel actuator. Thus τfu is chosen as the timespan, where the fuel valve travels
10 %. This seems reasonable, as the change in valve stroke is small during normal operation.
By using this definition of τfu to calculate the bandwidth of the steam pressure control loop, it
is the fuel actuator that defines the overall boiler performance. Thus the design choice of 10 %
might be reconsidered if the fuel actuator is either very fast or very slow.
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To ensure stability even if the real system differs from the control model, a phase margin of
60 degrees is suitable. However, the fact that the fuel actuator is five times faster than the
outer-loop system, gives rise to an influence on the outer-loop system, corresponding to a phase
change of 11 degrees. Thereby, the phase margin of the outer-loop steam pressure controller,
φps,m, is chosen to 71 degrees.

Steam pressure closed loop analysis
At this point, a steam pressure controller is designed, to depend only on the measurable steam
pressure integrator gain, γps , and the approximated time constant, τfu. The integrator gain
can be found using well known methods as parameter estimation or as a part of an self-tuning
algorithm.

Using the estimated parameters for the fuel actuator, listed in Table 3.4 on Page 40, and the
linear boiler model in Table D.1 on Page D1, the steam pressure controller parameters are
calculated to:

Tps,i = 9.572 and kps,p = 15 · 10−3 . (4.35)

This gives a closed loop system resulting in a step response and frequency response as shown in
Figure 4.12a and 4.12b respectively.
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Figure 4.12: Step and frequency response for the closed loop steam pressure control loop.

These responses show that a fast response is obtained with a closed loop bandwidth of ωps,CL =
0.385 rad/s and an overshoot of approximately 17 %.

4.2.2 Water Level Control

This subsection contains first a derivation of a linear control model, followed by the water level
controller design and finally the closed loop system response in shortly analysed.

Water level control model
The water level control model is derived from the mass balance equation for the water/steam
part. From the output equation for the non-linear boiler model, Equation (3.62) derived in
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Chapter 3, it is seen that the water level depends on the volume of water and steam bubbles,
described by the equations given below:

(

Vw
∂ρw

∂ps
+ Vsb

∂ρs

∂ps

)

ṗs + ρwV̇w + ρsV̇sb = wfw − 1

tsb
ρsVsb (4.36)

(

(Vtot − Vw − Vsb)
∂ρs

∂ps

)

ṗs − ρsV̇w − ρsV̇sb =
1

tsb
ρsVsb − ws . (4.37)

To simplify the non-linear equations, some of the terms are further analysed.

The partial fractions are calculated from values in a steam table [Schmidt, 1989, p. 32], resulting

in the ratio
Vw

∂ρw
∂ps

+Vsb
∂ρs
∂ps

ρw
≈ 0.0117 and thus the cross coupling from the steam pressure is

ignored. Likewise the ratio
(Vtot−Vw−Vsb)

∂ρs
∂ps

ρs
≈ 0.14 and thus the first terms in the equations

above can be neglected, and the equations reduces to:

ρwV̇w + ρsV̇sb = wfw − 1

tsb
ρsVsb (4.38)

−ρsV̇w − ρsV̇sb =
1

tsb
ρsVsb − ws . (4.39)

Generally the neglection of the cross coupling means that shrink and swell is not incorporated
in the linearised boiler model. An expression for the change in water volume can be derived, by
combining Equation (4.38) and Equation (4.39), which gives:

V̇w =
1

ρw − ρs
︸ ︷︷ ︸

βLw

(wfw − ws) . (4.40)

Remaining is to derive an expression for the steam bubbles volume contribution, to the water
level, Lw. To do this, the approximation of the mass flow from steam bubbles to steam, Equation
(3.56) on page 27, is examined:

wsb→s =
1

tsb
ρsVsb . (4.41)

In steady state, the mass flow from steam bubbles to steam equals the steam flow, wsb→s = ws.
Inserting this and rearranging gives the expression for the steam bubbles level, Lsb:

Lsb =
tsb
ρsAw
︸ ︷︷ ︸

αLw

ws . (4.42)

The total water level control model reduces to a state space model as follows:

V̇w =
[

βLw −βLw

]
[

wfw

ws

]

(4.43)

Lw =
1

Aw
Vw +

[

0 αLw

]
[

wfw

ws

]

. (4.44)

Equation (4.43) and (4.44) is shown as a block diagram in Figure 4.13.
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Figure 4.13: Water level control model.

Furthermore, the derived linear water level control model, given by Equation (4.43) and (4.44),
is verified prior to using the control model for controller design. This is likewise documented
in Appendix D, which contains a description of parameter estimation and a verification, that
approves the water level control model for controller design.

The water level control loop is based on the water level control model, Equation (4.43) and (4.44).
However, the model includes the steam flow, ws, which is seen as an unmeasured disturbance.
Thus, the placement of the disturbance is of no importance, and αLw is neglected. Thereby, the
water level control loop is represented by a block diagram as in Figure 4.14.

As the inner control loop is neglected, the water level controller is designed adequately slow, to
ensure that the feed water valve position reference, determined by the water level controller, can
be obtained by the inner-loop.

GLw
(s)

Lw

ws

+

¡

CLw
(s)

wfw

+
¡

Lw;ref

Figure 4.14: Block diagram of the water level control loop.

The system transfer function for the linear water level control model, GLw(s), equals:

GLw(s) =
βLw,1

s
, (4.45)

where

βLw,1 =
βLw

Aw
=

1

ρwAw
, (4.46)

and thus only dependent on the boiler dimensions.

Water level controller design
The water level controller is designed to have a structure similar to the steam pressure controller,
a PI-controller on the form:

CLw(s) = kLw,p

s+ 1
TLw,i

s
. (4.47)
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Based on the same stability criterion, as for the steam pressure controller given by Equation
(4.30) and (4.31), the PI-controller is designed with control parameters as given below.

TLw,i =
tan(φLw,m)

ωLw,c
(4.48)

kLw ,p =
ω2

Lw,c

βLw,1

√
1

T 2

Lw,i

+ ω2
Lw,c

, (4.49)

where the cross-over frequency, ωLw,c, and the phase margin, φLw ,m, is to be determined.

The cross-over frequency is chosen from a worst case consideration of the time constant for feed
water actuator system. To ensure that the outer-loop is five times slower than the inner-loop,
the cross-over frequency can be expressed as:

ωLw,c =
1

5τfw
, (4.50)

where τfw is the time constant for the feed water actuator system and the cross-over frequency,
ωLw,c, is in [rad/s].

To ensure stability even if the real system differs from the control model, a phase margin of 60
degrees is suitable. However, the fact that the feed water actuator is five times faster than the
outer-loop system, gives rise to an influence on the outer-loop system corresponding to a phase
change of 11 degrees. Thereby, the phase margin of the outer-loop water level controller, φps,m,
is chosen to 71 degrees.

Water level closed loop analysis
At this point, a water level controller has been designed to depend on the dimensions of the boiler
and the time constant of the feed water actuator. No consideration has been taking, regarding
the noisy measurements of the unavoidable fluctuating water level. The noisy measurements
might influence the bandwidth of the closed loop, resulting in an even slower water level con-
troller. Previously projects by [Andersen and Jørgensen, 2007] and [Solberg and Hvistendahl,
2004] treated a similar or the same Mission OSTM boiler system and documented, that due to
the fluctuating water level the maximum obtainable system response is with a time constant of
approximately 150 s.

Thereby the demand for the closed loop bandwidth of the water level control loop is redefined
as:

ωLw,c =
1

150
. (4.51)

Using the parameters for the linear boiler model, given in Table D.1 on Page D1, and the surface
area for the water in Table B.4 on Page B2, the water level controller parameters are calculated
to:

TLw,i = 435.6 and kLw,p = 5.68 . (4.52)

This gives a closed loop system resulting in a step response and frequency response as shown in
Figure 4.15a and 4.15b respectively.
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Figure 4.15: Step and frequency response for the closed loop water level control loop.

These figures show that the obtained response is slow compared to the steam pressure closed loop,
which is expected according to the design. The closed loop bandwidth is ωLw,CL = 0.0059 rad/s
and the overshoot is approximately 23 %.

4.2.3 Oxygen Level Control

The purpose of the oxygen level controller is to maintain a steady oxygen level in the combustion,
using a complementary feedback controller to a feed-forward curveband, as illustrated in Figure
4.16. The fuel actuator loops have already been designed, so it is assumed that the fuel and air
flows are well defined relative to the oil valve and air damper positions.
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level
controller
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Feed-
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Figure 4.16: Block diagram of oxygen control using a curveband as feed-forward from oil valve position to air
damper position and measured oxygen level as feedback.

The next two subsections contain a description of how the feed-forward and feedback controllers
are designed.
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Feed-forward Controller

The existing oxygen controller structure at AI consists only of a feed forward controller, or ratio
controller, expressing the ratio between oil valve and air damper positions at a specified oxygen
level. The ratio controller is referred to as a curveband. For each boiler system the curveband
is manually adjusted by AI as the curveband changes by small alterations in the boiler setup,
e.g. if a new burner unit is installed, valves are replaced or oil pressure is changed etc. Due to
these issues the same practical approach, for implementing the feed-forward controller, is taking
in this project.

The concept of determining the curveband is showed in Figure 4.17. When the boiler is operative,
the oil valve and air damper positions can be manually adjusted. This way several data sets of
oil valve and air damper positions is obtained and a polynomial can be fitted to a polynomial,
or curveband, at a desired oxygen level. The fitted polynomial is used as curveband to control
the oxygen level of the combustion.
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Figure 4.17: Curveband fitted to oil valve and air damper positions at a specified oxygen level.

The polynomial fit of the curveband in Figure 4.17 is a 3’th order non-linear polynomial, given
by the general form:

θa = f(θfu) = aO2,3 θ
3
fu + aO2,2 θ

2
fu + aO2,1 θfu + aO2,0 . (4.53)

The feed-forward curveband should ideally secure a steady oxygen level, but different impacts
could lead to a deviation of the oxygen level. Thus a feedback controller for the oxygen level is
desired.

Oxygen Level Feedback Controller

If for some reason the curveband is inadequate or another oxygen level, different from the fitted
curveband, is preferred, it is desirable to add a feedback controller as complementary to the feed-
forward controller. The inadequacy of the curveband could e.g. be caused by use of another
fuel type with a different viscosity resulting in another fuel flow or if the polynomial fit is not
sufficient in the entire operating range.
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4.2. Outer-loop Controller Design

Different from the steam pressure and water level controllers, the oxygen level controller is
chosen to be an I-controller. Due to the fast response through the curveband it is not necessary
to apply a proportional gain, but the integrator gain is required to eliminate any steady state
errors.

Oxygen level control model
In order to design the I-controller, the non-linear oxygen model is linearised using a first order
Taylor series expansion, which is shown in Appendix E, and the transfer function expressing the
linear oxygen model is given by Equation (E.5).
In addition to the linear oxygen model, the gain of the air damper actuator loop has to be
included, as illustrated in Figure 4.16. In the parameter estimation of the air damper, on Page
42, the gain is estimated to 0.009, which together with Equation (E.5) gives the final linear
transfer function:

∆

xo,O2

∆

wa

(s) =

0.009

(

k1k4w̄fu + k2k3w̄fu

k2
3w̄

2
a + k2

4w̄
2
fu + 2k3k4w̄aw̄fu

)

τxo,O2
s+ 1

, (4.54)

where the constants, k1...k4, are given in Appendix E.

Root Locus design method
As argumented the feedback controller is chosen as a simple I-controller on the form:

CO2
(s) =

KO2,i

s
. (4.55)

To determine the integrator gain, KO2,i, for the I-controller, the Root Locus design method is
used to obtain a desired closed loop response, on the basis of the open loop response given by:

GO2OL
= CO2

(s)

∆

xo,O2

∆

wa

(s) . (4.56)

By adjusting the integrator gain, KO2,i, the closed loop poles are moved and the desired dynamic
response can be obtained. Prior to determining the integrator gain, the desired closed loop
response needs to be defined. The bandwidth of the oxygen level control loop has to be lower
than the bandwidth of the oxygen model, defined by the time constant τxo,O2

. Hence, by choosing
the desired time constant of the closed loop oxygen level control to 5τxo,O2

, a relatively slow but
satisfactory closed loop response is obtained. From the designed margin with a bandwidth five
times lower than the oxygen model dynamics, a possible larger time constant for the oxygen
model is of less importance.

Oxygen level closed loop analysis
At this point, an oxygen level controller has been designed to depend on the relation between
fuel and air flow, in form of a curveband defined by the polynomial coefficients:

ψO2
= [aO2,3 aO2,2 aO2,1 aO2,0] , (4.57)

and the time constant, τxo,O2
, for the oxygen model, used to calculate the gain for the I-controller.

As mentioned, the curveband must be identified from a practical approach in form of a self-tuning
algorithm. The time constant for the oxygen model is however not possible to identify from self-
tuning due to the missing flow sensor, hence the theoretical value for τxo,O2

from Equation (3.30)
is used as reference.

63



4 Controller Design

Using Root Locus in Matlab
TM and adjusting the integrator gain until the desired system

response is obtained, the integrator gain becomes:

KO2,i = 20.27 . (4.58)

Using the calculated integrator gain the closed loop system, when ignoring the feed-forward
curveband, gives the step response and frequency response as shown in Figure 4.18a and 4.18b
respectively.
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Figure 4.18: Step and frequency response for the closed loop oxygen level control loop.

The figures show that the obtained closed loop response is satisfactory according to the design.
The closed loop bandwidth is ωO2,CL = 0.043 rad/s and there is no overshoot because the
obtained response is relatively slow.

Having designed all the outer-loop controllers their performance must be simulated to verify the
designs.

4.2.4 Simulation of Outer-loop Controllers

To evaluate the performance of the designed controllers, a simulation, using the non-linear model
to obtain the most reliable responses, is carried out.

The outer-loop controllers are simulated by a large step and a small step in steam flow, to
simulate two different scenarios from a sudden change of steam consumption. The simulated
closed loop system responses and the simulated inner-loop actuator responses are shown and
commented in the following.

In the simulation of the steam pressure and water level controller performance, weighted white
noise is added to the sensor measurements, to imitate the real system best possible. As previ-
ously discussed it is the water level measurements that limits the controller performance of the
water level. The added weighted white noise is an approximate replica from the actual sensor
measurements in the test center and specified as follows.
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4.2. Outer-loop Controller Design

Sensor noise specification
For the steam pressure measurements the noise is defined as a zero mean Gaussian distributed
random signal, N (0, 6.26 · 106). The white noise is passed through a low pass filter given by:

ps,lowpass(s) =
1

2π · s+ 1
. (4.59)

The white noise together with the low pass filter constitutes the sensor noise for the steam
pressure measurements.

For the water level measurements the noise is likewise defined as a zero mean Gaussian dis-
tributed random signal but with different characteristics, N (0, 0.0025). The white noise is
passed through a low pass filter given by:

Lw,lowpass(s) =
1

π · s+ 1
. (4.60)

The white noise together with the low pass filter constitutes the sensor noise for the water level
measurements.

Simulation of Steam Pressure Controller

The simulated steam pressure controller performance is depicted in Figure 4.19 and 4.20. From
the applied steps in steam flow, the simulated closed loop response of the steam pressure is
shown in Figure 4.19b. As seen, the steam pressure controller is capable of maintaining the
steam pressure within a very small deviation from the operating point, when a large step in
steam flow is applied. This result is achievable because the fuel actuator system is very fast, in
the non-linear simulation model, and thereby the steam pressure controller gives a corresponding
high performance.

Looking at the inner-loop fuel actuator duty cycle in Figure 4.20b, clearly the steam pressure
controller is not violating the oil valve and air damper controllers, as the duty cycle of the oil
valve and air damper never saturates. However, when the large step in steam flow is applied,
the duty cycle approaches the saturation limit. The resulting fuel actuator responses is shown
in Figure 4.20a and the result looks satisfactory.

Simulation of Water Level Controller

In Figure 4.21b the simulated closed loop response of the water level is shown. It is evident that
the water level controller is slower than the steam pressure controller, which is expected due
to the controller design, affected by the fluctuating water level measurements. The water level
controller is however able to keep the water level within a range of ±2 cm from the operating
point, when a small step in steam flow is applied. From the large step the water level deviates
approximately ±3 cm from the operating point, which is considered satisfactory. In Figure 4.21b
it is furthermore seen that the water level controller is unable to overcome the shrink and swell
phenomenon. When the steam flow increases the swell phenomenon can be seen as the water
level shortly rises before decreasing.
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Figure 4.19: Simulation of ps controller for a large and small disturbance variation.
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Figure 4.20: Simulation of actuator controllers for a large and small disturbance variation.

As for the steam pressure controller, the inner-loop feed water actuator response is also examined
and shown in Figure 4.22a.
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Figure 4.21: Simulation of water level performance for a large and small disturbance variation.
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Figure 4.22: Simulation of feed water actuator performance.

Clearly the noisy measurements affects the reference, wfw,ref , but compared to the feed water
flow, wfw, there is a satisfactory correlation. Thereby the water level controller is not violating
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the inner-loop controller, which is consistent to the design of the water level controller. In Figure
4.22a it is furthermore seen that the measured feed water flow, w̌fw, is delayed compared to the
actual feed water flow, which is caused by the dynamics in the flow sensor. Finally in Figure
4.22b the reference voltage for the feed water actuator is shown. Also here it is seen that the
water level controller is not violating the performance of the inner-loop, as the reference voltage
resembles the noisy measurements.

Simulation of Oxygen Level Controller

The oxygen controller, consisting of the curveband and I-controller, is also simulated to verify
the controller design. In Figure 4.23 the result from a simulation with only the curveband as
oxygen controller is shown. The valve positions of the fuel actuator together with the references
are shown in Figure 4.23a. The reference for the air damper is defined by a curveband which is
fitted for an oxygen level of 5 %. By looking at the resulting oxygen level in Figure 4.23b, it is
seen that the controlled oxygen level matches the reference very well.

Time [s]

[%
]

θfu,ref θfu θa,ref θa

2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750
20

40

60

80

(a) Position and references for the oil valve and air damper.

Time [s]

[%
]

Oxygen level Oxygen level ref.

2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750
4

4.5

5

5.5

6

(b) Resulting oxygen level.

Figure 4.23: Simulation of curveband as oxygen controller.

To illustrate the effect of the feedback controller together with the curveband, Figure 4.24 shows
another simulation.

Figure 4.24b shows how the controlled oxygen level still corresponds to the reference value. To
illustrate the effect of the I-controller, the different valve references and positions are shown
in Figure 4.24a. The curveband reference for the air damper is changed by an offset from the
feedback controller, resulting in a total reference for the air damper that is consistent with the
desired oxygen level. Thereby the purpose of the complementary feedback controller has the
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Figure 4.24: Simulation of curveband and oxygen feedback controller.

intended effect of correcting deviations from the curveband controller.

All the controllers have been designed and verified from non-linear simulation. In the following
section a short resume of this chapter is given.

4.3 Controller Resume

A control scheme of three inner-loop and three outer-loop controllers has been presented. The
inner-loop controllers are designed to control the feed water flow, the oil valve position and air
damper position, all with the purpose of optimising the conditions for the outer-loop controllers,
which are the steam pressure, water level and oxygen level controllers.

The feed water flow controller consists of a feed forward controller, to eliminate the non-linearities
in the feed water valve, and a PI-controller to obtain fast and accurate response to a given
reference. Furthermore a tracking anti wind-up scheme is designed to avoid integrator wind-up.
From simulation the feed water controllers show satisfactory performance, with a small overshoot
and a fast response.

The oil valve and air damper position controllers are designed in the same way due to similar
operation. The position controllers are designed as P-controllers due to an existing integrator
effect in the actuators. The actuators are PWM controlled, resulting in a saturation problem if
the oil valve and air damper have unequal traveling times. This problem is solved by slowing
the fast valve and thereby obtaining equal traveling times for the oil valve and air damper.
Furthermore a dead band is designed for each PWM controller to avoid limit cycles. The
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designed controllers show satisfactory performance but due to the PWM saturation solution,
another problem arises if the curveband is non-linear. This is treated in Chapter 6.

Prior to designing the steam pressure controller, the non-linear boiler model is linearised from
an analytically point of view. This results in a control model consisting of only an integrator.
Parameters for the simple control model are estimated and the control model is verified. Based
on the derived control model, the steam pressure controller is designed as a PI-controller based
on a stability criteria in the frequency domain. Apart from the stability criteria the steam
pressure controller is designed according to the inner-loop response.

The design of the water level controller is similar to the steam pressure controller design, and
includes an analytical linearisation of the non-linear boiler model, resulting in a integrator
control model. As for the steam pressure control model, the parameters for the water level
control model are estimated and the model is verified. A PI-controller is designed from the same
stability criteria but due to the fluctuating water level measurements, the controller design is
reevaluated, resulting in the final and slower water level controller.

The final designed controller is the oxygen level controller, consisting of a feed-forward controller
in form of a curveband and a slow feedback I-controller. The curveband is used to obtain a fast
response from the burner load and is found using a practical approach. The I-controller is
added to enable reference control and is designed using the Root Locus design method to obtain
a desired closed loop response.

A simulation of the steam pressure, water level and oxygen level controller performances showed
promising results. However, a final verification of the performance of the designed controllers
is yet to be conducted, due to an emerged defect in the Morpheus control platform, which is
still under development at AI. The next chapter describes a self-tuning scheme, designed to
automatically tune the controllers for a random Mission OSTM boiler system.
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Chapter5
Self-tuning

This chapter describes self-tuning of the controllers for the Mission OSTM boiler system. The
self-tuning mainly covers tuning of the controllers for the actuator systems, as the physical
dimensions of the boiler is well known. However, as not all of the input flows into the boiler
are measurable, the self-tuning will also cover tuning of the steam pressure controller. The self-
tuning is designed to be executed only during the start-up phase of the boiler system, and is thus
not used as an online adaptive tuning method.
The self-tuning described in this chapter is developed, based on considerations from a previous
project done by [Andersen and Jørgensen, 2007]. First, the parameters to identify are specified
together with a description of their implementation in the existing start-up sequence. Next the
specific algorithms to identify the specified parameters are described together with a verification of
each algorithm. Finally the developed self-tuning scheme is evaluated by non-linear simulation,
and limitations of the self-tuning scheme are presented.

During the project, the boiler setup at AI’s test center has been undergoing several modifications,
among others, replacement of burner units and servo motors. Hence the developed self-tuning
scheme is tested and verified on a system of same structure as described in Chapter 2 and
modelled in Chapter 3.1, but with different model parameters.

The general idea of the developed self-tuning scheme is to apply an input signal to a system,
making it possible to identify parameters for a control model, based on the system response.
The identified control model parameters are then used to generate parameters to a controller,
capable of controlling the system. The general self-tuning scheme used to self-tune the Mission
OSTM boiler system is illustrated in Figure 5.1.
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Figure 5.1: Illustration of the general self-tuning scheme.

When performing self-tuning of the Mission OSTM system, the above self-tuning scheme is
applied to both the inner and outer control loops.

In Chapter 4, the controllers have been designed based on physical measurable parameters, thus
enabling the control model parameters to be automatically identified.
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The control model parameters to be identified are listed below.

Inner-loop control model parameters

1. Oil valve gain, Kfu

2. Air valve gain, Ka

3. Feed water actuator time constant, τfw

4. Feed water non-linearity, second order polynomial coefficients, ψfw

Parameter 1 and 2 are related to valve characteristics of valves in the fuel actuator system and
are identified using Algorithm 5.1 in Section 5.1. Similar, parameter 3 and 4 are related to valve
characteristics of the feed water valve and are identified using Algorithm 5.2 in Section 5.2.

Outer-loop control model parameters

5. Curveband fitted for oil/air relationship, given by the polynomial coefficients, ψfu→a

6. Maximum and minimum load expressed in terms of maximum and minimum oil servo
position, θfu,max and θfu,min

7. Steam pressure integrator gain from oil valve position to steam pressure, γps

Parameter 5 and 6 are identified using Algorithm 5.3 in Section 5.3, and finally, parameter 7 is
identified using Algorithm 5.4 in Section 5.4.

All identification algorithms are implemented as S-functions written in C in Matlab
TM Simulink.

How and when the parameters are identified during the start-up sequence of the Mission OSTM

boiler system is in the following referred to as triggering. Triggering of the identification al-
gorithms is implemented in StateFlow together with the existing start-up burner sequence im-
plementation, as depicted in Figure 5.2, and a detailed view of the controller release procedure
in Figure 5.3. The placement of each self-tuning trigger block is described together with the
algorithms.

For each identification step, the status label is set to a number equal to or higher than 20,
to distinguish between the status for normal operation and the status during self-tuning, i.e.
during the first identification step, the status label is set to 20, during the next 22 and so forth.

In the following sections, each identification step is described and test results are presented.
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Figure 5.2: Illustration of burner start-up sequence including implementation of self-tuning triggering.
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Figure 5.3: Illustration of controller release procedure, including implementation of self-tuning triggering.

5.1 Oil Valve/Air Damper Characteristics Identification

Identification of the oil valve and air damper characteristics, denoting the positioning of the
valve, is described in general, due to similarity of the two actuators, and thereby the identifica-
tion.

When identifying the valve characteristics, only one parameter is of interest, namely the valve
gain, K(·).

The valve gain, K(·), is found as the average valve movement per second in the interval from 20
% to 80 % valve position, when the valve travels at full and constant speed from closed to open:

K(·) =
∆θ(·)

∆t
. (5.1)

The valve gains have to be found prior to operating the actuator systems. Thereby it is im-
portant, that the identification of the oil valve gain, Kfu, takes place when there is no oil flow
through the valve, to avoid filling oil into the furnace before ignition.

On the basis of the above, the identification of the valve gains must be performed as the first
part of the burner start-up sequence of the Mission OSTM boiler system. The triggering of the
identification is implemented in StateFlow as depicted in Figure 5.2.
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In the following, the algorithm for the identification, in a one-valve case, is outlined.

Algorithm 5.1 Algorithm for valve characteristic identification in a one-valve case.

1. Apply input signal to open the valve. Stop when a valve position of 98 % is reached.
During the valve travel, the valve position and time is logged when the valve position passes
20 % and 80 %.

2. Calculate valve gain, K(·), using Equation (5.1)

3. Using the valve position controller and the newly found parameters, close the valve.

4. Set output flag to indicate that the self-tuning algorithm is performed successfully.

The full algorithm for determining the characteristics for the oil valve and the air damper is writ-
ten as an S-function FindValveGains.c. Furthermore the designed controllers are implemented
in an S-function PDeadBand.c reading the identified parameters, utilising self-tuned control of
the oil valve and the air damper.

Algorithm Verification

In Figure 5.4, the oil valve and air damper positions, during the identification of the character-
istics of the valves mounted in the setup in AI’s test center, are shown as function of time.
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Figure 5.4: Oil valve and air damper positions as function of time during valve characteristic identification.

The oil valve and air damper controllers are designed in Subsection 4.1.2 on Page 47 and Sub-
section 4.1.3 on Page 49 respectively, as proportional controllers. The proportional gains are
calculated using Equation (4.14) and (4.17) together with the dead band for the respective
controllers. The model parameters obtained by self-tuning Algorithm 5.1 and the resulting
controller parameters are listed in Table 5.1.
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Ident. parameters Ctrl. parameters

Kfu 0.0552 kfu,p 18.12

efu,db 0.0035

Ka 0.0182 ka,p 54.95

ea,db 0.0011

Table 5.1: Identified oil valve and air damper gains, listed together with the calculated proportional control
parameters.

5.2 Feed Water Actuator Identification

As described in Section 4.1.1, the feed water actuator system is subject to non-linearities together
with a time constant. These are to be determined automatically prior to operating the boiler.
The identification of both the non-linearity and the time constant can be done using just one
input sequence; a step sequence applied to the feed water actuator starting at 0 % valve position
with stepwise increase of 10 % until the maximum valve position, 100 %, is reached. By logging
the steady state values of both input to and output from the feed water system, the non-linearity
can be determined.

The duration of each step depends on when a steady state feed water flow is reached, and thereby
the time constant of the feed water actuator. By assuming that the valve behaves as a first order
system, the steady state is reached after a time period of approximately 5τ . Obviously, the time
constant must be identified prior to applying a new step.

For the identification of the feed water actuator characteristics, the steam pressure in the Mission
OSTM boiler must be close to the operating point, i.e. 8 bar. However also the steam pressure
integrator gain must be identified close to the operating point. Thus it is chosen to identify the
feed water characteristics with a steam pressure of 6 bar. Thus the triggering of the identification
algorithm is implemented as depicted in Figure 5.3.

Identification of Feed Water Actuator Time Constant

To identify the time constant, τfw, for the feed water actuator, parameter estimation is used.
A method to obtain model parameters is by performing least squares estimation, where the
model output is fitted to a measured system response. This is done by minimising a quadratic
performance function, V (θ), [Knudsen, 1993, p. 32]:

V (θfw) =
1

2n

n∑

k=1

ǫ(k,θfw)2 , (5.2)

where θfw is a parameter vector. The estimation error ǫ(k,θfw) is given by:

ǫ(k,θfw) = w̌fw(k) − ˆ̌wfw(k,θfw) , (5.3)

where w̌fw(k) is the measured output and ˆ̌wfw(k,θfw) is the optimal prediction, estimated on
basis of the mathematical model. The optimal model prediction can be expressed on the form
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[Knudsen, 1993, p. 38]:

ˆ̌wfw(k,θfw) =
[

−w̌fw(k − 1) ufw(k − 1)
]
[

afw

bfw

]

(5.4)

= ϕT
fw θfw , (5.5)

where ϕfw is denoted a signal vector and θfw is the parameter vector.

To identify the elements, afw and bfw, of the parameter vector, the linear part of the feed water
actuator model:

Gfw =
Kfw

1 + τfws
, (5.6)

where Kfw =
wfw

ufw
, must be rearranged to the form given by Equation (5.4), by discretising

using backward Euler.

This gives the discretised model on the desired form:

w̌fw(k) − e
−

Tsys
τfw

︸ ︷︷ ︸

afw

w̌fw(k − 1) =

(

Kfw −Kfwe
−

Tsys
τfw

)

︸ ︷︷ ︸

bfw

ufw(k − 1) + wfw(k) , (5.7)

where wfw(k) ∈ N (0, σ2) is added stochastic noise.

In order to use Equation (5.2), a series of n measurements must be available.

For the specific use, the time constant must be identified prior to making a new step in valve
position and thus the required measurements are not obtainable. Thus, the identification of
the time constant for the feed water valve must be done recursively, which also reduces the
computational requirements for the PPC.

The recursive least square estimation (RLSE) algorithm can be derived from Equation (5.2),
and is given by [Knudsen, 1993, p. 65]:

P (k) =
1

λfw

[

P (k − 1) − P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λfw +ϕT (k)P (k − 1)ϕ(k)

]

(5.8)

θ̂fw(k) = θ̂fw(k − 1) + P (k)ϕ(k)
[

w̌fw(k) −ϕT (k) θ̂fw(k − 1)
]

, (5.9)

where P is a weighted covariance matrix and the expression in the square brackets in Equation
(5.9) is the estimation error. The parameter λfw ∈ [0; 1] is used as an exponential memory
factor, that weights the old predictions lower than the new predictions. For the value λfw = 1,
all predictions are weighted equal.

The initial values for the RLSE can be calculated using the following equations:

P (k0) =

[
k0∑

s=1

λk0−s
fw ϕ(s)ϕT (s)

]−1

(5.10)

θ̂fw(k0) = P (k0)

k0∑

s=1

λk0−s
fw ϕ(s) w̌fw(s) . (5.11)
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5.2. Feed Water Actuator Identification

However, to calculate the initial values, a series of measurement data is needed and the amount
of measurement data must be least the number of parameters in the parameter vector θfw.

For the specific use, the measurement data for calculating initial values is not obtainable. Thus,
the initial values are determined based on a rule of thumb by [Knudsen, 1993, p. 66]:

The parameter vector, θfw, should be initialised as zero:

θfw =







0
...

0






, (5.12)

whereas P should be initialised with a diagonal matrix:

P =







p
. . .

p






, (5.13)

with p ∈ [1, 100].

The RLSE algorithm is written as a C-function rlse.c and used by Algorithm 5.2.

Identification of Feed Water Actuator Non-linearity

To identify the non-linearity, the steady state values of the feed water flow, wfw, is logged
at each step, making it possible to fit a polynomial using the least-squares method. Thereby,
the polynomial describes the non-linearity of the feed water actuator; the feed water flow as a
function of the feed water valve position.

A second order polynomial is chosen based on considerations made by [Andersen and Jørgensen,
2007, p.31-33] concerning the non-linearity in the feed water actuator system.

The algorithm containing both identification of the time constant and the non-linearity is out-
lined in Algorithm 5.2.

The above algorithm is implemented as an S-function FindFWNonLin.c. The inner-loop feed
water flow controller is implemented in Simulink, with controller parameters calculated in an
embedded Matlab

TM function, reading the identified non-linearity and the time constant for
the feed water actuator.

Algorithm Verification

To verify the developed algorithm, the input sequence together with the resulting feed water
flow are depicted in Figure 5.5.

The measurement data shown in the figure, is obtained with feed water valve position increments
of 5 %, due to a saturation in the output signal from the flow sensor, when the feed water valve
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Algorithm 5.2 Algorithm for identification of feed water actuator characteristics.

1. Initialize feed water valve to 0 %.

2. Increase the feed water valve position by e.g. 10 %.

3. Estimate the time constant, τfw, using a recursive least square estimator implemented in
the C-function rlse.c.
When the time corresponding to five times the estimated time constant has passed, the feed
water valve position is logged together with the steady state value of the feed water flow. A
new step in feed water valve position is initiated. Step 2 and 3 of the algorithm is repeated
until 100 % valve position is reached.

4. Fit a polynomial to the logged feed water valve position and feed water flow, using the
C-function polyfit.c.

5. Save the polynomial coefficients together with the time constant.

6. Set output flag to indicate that the self-tuning algorithm is performed successfully.

Time [s]

wfw [kg/s]
Input voltage [V]
Status x 0.1

0 50 100 150 200 250 300
0

2

4

6

Figure 5.5: Illustration of input sequence for feed water valve characteristics identification and resulting feed
water flow.

exceeds 50 % of full open. Such limitations or defects in the instrumentation is comprehensive
to include into a self-tuning scheme, and is not taken into consideration in this self-tuning
algorithm. Further limitations for the self-tuning scheme is presented in Section 5.6 on page 88.

For the feed water actuator system in AI’s test center, the logged data points are shown in
Figure 5.6a together with the determined second order polynomial fit.

The feed water flow controller is designed in Subsection 4.1.1 on page 44 as a PI-controller with
feed-forward.

The feed-forward features the inverse non-linear valve characteristics and is fitted as a second
order polynomial using Algorithm 5.2. The resulting feed-forward is determined by Equation
(4.3) on page 45 with the coefficients listed in Table 5.2 and implemented in the controller in
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(a) Feed water non-linearity identification.
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(b) Feed water time constant identification.

Figure 5.6: Result of feed water actuator characteristics identification.

Simulink as an embedded Matlab
TM function.

The feed water time constant and gain is calculated from the RSLE of the afw and bfw estimates,
using the following equations:

τfw =
−Tsys

real(log(afw))
(5.14)

Kfw =
bfw

1 − e
−Tsys

τfw

, (5.15)

derived from Equation (5.7).

The PI-controller for the feed water actuator is designed with a proportional gain equal to the
inverse estimated gain, Kfw, and the integrator time constant is equal to the estimated time
constant, τfw, for the feed water actuator, also found using Algorithm 5.2. The calculation of
controller parameters is implemented in Simulink using an embedded Matlab

TM function.

Ident. parameters Ctrl. parameters

τfw 6.63 Tfw,i 6.63

Kfw 0.28 Kfw,p 3.6

ψfw [0.00024 0.009952 0.310675]

Table 5.2: Results of feed water actuator system identification.

5.3 Oil/Air Curveband Identification

The oil/air curveband is used as feed-forward for the oxygen level control to remove the non-
linearities, caused by saturation in airflow and valve/damper characteristics.

When identifying the oil/air curveband, it is important that the oxygen level is held as constant
as possible around 5 % to ensure a clean combustion during the identification. To avoid impure
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5 Self-tuning

combustion and thereby soot, it is preferred, that the oxygen level does not move below 5 % .
A way to ensure that the oxygen level allways stays above the level, is to adjust air prior to oil
when increasing the oil flow and vice versa when decreasing the oil flow.

Identification of the oil/air curveband can take place after identification of oil and air valve
characteristics and just after the ignition state, as depicted in Figure 5.2.

The basic idea of the identification is to step-wise increase the air valve position, θa, and adjust
the oil valve position, θfu, to gain an oxygen level of 5 % . However, to obtain a curveband for
an interval as large as possible, it is necessary to step-wise decrease the oil servo position, θfu,
and adjust the air servo position, θa, until a lower bound of e.g. 10 % for either θa or θfu is
reached. When the lower bound is reached, the air valve position is step-wise increased, until
an upper bound is reached for either oil valve or air damper, to find the curveband.

In order to adjust the oil valve and air damper during the identification of the curveband, two
conservative controllers must be designed. These controllers are only used during the identifica-
tion of the curveband.

Design of Conservative Oxygen Level Controllers

As described in Chapter 4, the oxygen control model is simplified to a first order linear system.
Assuming linear valve characteristics for the oil valve, a transfer function from oil valve position
to oxygen level is given as:

Gfu,O
2
(s) =

xi,O2

θfu
=

KO2

τxo,O2
s+ 1

. (5.16)

Similar, the transfer function from air valve position to oxygen level is given by the same, but
negative signed, transfer function, by assuming that the influence from oil and air servo is the
same:

Ga,O
2
(s) = −xi,O2

θa
= − KO2

τxo,O2
s+ 1

. (5.17)

Introducing an oxygen level reference and feedback control, a close loop system is obtained as
shown in Figure 5.7.

xo;O2

CO2
(s)

+
¡

xo;O2;ref

GO2
(s)

Figure 5.7: Oxygen feedback controller.

A simple controller to remove steady state error is an integrator, obtained by introducing a pole
in origo and adjust the integrator gain, Ki,O2

.
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5.3. Oil/Air Curveband Identification

Thus the controller is given by:

CO
2
(s) = Ki,O2

1

s
. (5.18)

The closed loop transfer function is then given by:

CLO
2
(s) =

KO2
Ki,O2

τO2
s2 + s+KO2

Ki,O2

=
1

τO2

KO2
Ki,O2

s2 + 1
KO2

Ki,O2

s+ 1
. (5.19)

Prior to identifying the curveband, it must be assumed, that only the time constant is known.
Thus the controller design must be very conservative, consequently a controller design that
guarantees no overshoot is made. To avoid overshoot the poles in the closed loop system must
be real. This can be ensured by examining the denominator:

τO2
s2 + s+KO2

Ki,O2
= 0 (5.20)

sp =
−1 ±

√
1 − 4τO2

KO2
Ki,O2

2τO2

. (5.21)

For the solution to become real, the curveband oxygen control gain, Ki,O2
, is expressed in terms

of the time constant:

Ki,O2
≤ 1

4τO2
KO2

. (5.22)

Remembering the similarity for oil and air valve, the gain, Ki,O2
, can be used both when ad-

justing oil and air valve position:

Ki,O2,fu =
1

4τO2
KO2

(5.23)

Ki,O2,a = − 1

4τO2
KO2

. (5.24)

Having derived the above controller, the algorithm of finding the curveband is outlined in Algo-
rithm 5.3.

The logged oil and air servo positions are fitted to a polynomial from oil servo position to air
servo position and used as a curveband to maintain the desired oxygen level.

The algorithm is implemented in Simulink using an S-function OilAirOxygen.c, which together
with the S-function curveband.c constitutes the self-tuned curveband.
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5 Self-tuning

Algorithm 5.3 Algorithm for identification of oil/air curveband.

1. Step oil servo position down, step size e.g. 5 %.

2. Adjust air servo position using the designed controller.
Repeat 2-3 until a specified minimum oil servo position is reached. If minimum air servo
position is reached before minimum oil servo position, the oil servo position is adjusted, so
none of the lower bounds are violated.

3. Step air servo position up, step size e.g. 5 %.

4. Adjust oil servo position using the designed controller.
Repeat 4-5 until a specified maximum air servo position is reached and save oil servo
position, air servo position and oxygen level at each step. If maximum oil servo position
is reached at any time, the air servo position is adjusted.

5. Fit polynomial to the oil and air servo position data points using the C-function polyfit.c.

6. Set output flag to indicate that the self-tuning algorithm is performed successfully.

Algorithm Verification

The algorithm is tested in AI’s test center, showing a system response as seen in Figure 5.8.

Time [s]
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θa Air damper position
θfu Oil valve position
xo,O2

Oxygen level
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Figure 5.8: System response during oil/air curveband identification showing oil and air servo positions and
oxygen level. Step size for both oil and air servo is 5 %.

The obtained oil and air servo positions are fitted as depicted in Figure 5.9.

Finally, the polynomial coefficients obtained from identification of the curveband are listed in
Table 5.3 together with the determined load limits.

The derived polynomial is only valid within the operation of the valves during the identification,
i.e. θfu ∈ [50.13; 94.75] and θa ∈ [5.88; 94.47]. The interval for the oil servo position is used as
saturation limits for the steam pressure controller output saturation.
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Figure 5.9: Curvebands fitted to obtained oil and air servo positions.

Identified parameters

Curveband polynomial, ψfu→a [-0.0005 0.1008 -4.9010 65.8333]

Minimum burner load, θfu,min 50.13

Maximum burner load, θfu,max 94.75

Table 5.3: Results of curveband identification.

5.4 Steam Pressure Integrator Gain Identification

For the outer-loop steam pressure control, the control model was reduced to an integrator from
oil valve position to steam pressure. Due to dependency on the steam pressure, ps, the steam
pressure integrator gain, γps , has to be found as close to the operation point of 8 bar as possible.

The integrator gain from oil valve position, θfu, to steam pressure, ps, is found by measuring
the time, ∆t, to raise the steam pressure, ∆ps, at a given constant oil valve position, θfu,∆t:

γps =
∆ps

∆t · θfu,∆t
, (5.25)

using SI units.

The steam pressure integrator gain is chosen to be identified in the time interval, when the steam
pressure raises from 7 to 8 bar, i.e. one bar from the operating point. When the integrator gain
is identified, the controller is released, as depicted in Figure 5.3 on page 73.

The algorithm for the identification is outlined in Algorithm 5.4.

The identification algorithm is implemented as an the S-function FindGamma.c, which together
with the designed outer-loop steam pressure controller, implemented in Simulink as an embedded
Matlab

TM function, constitutes a self-tuned steam pressure controller.
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5 Self-tuning

Algorithm 5.4 Algorithm for identification of steam pressure integrator gain.

1. Fix oil and air valve positions.

2. Log the oil valve position together with the time and steam pressure.

3. Let the steam pressure increase to the operating point (8 bar).

4. Log the oil valve position together with the time and steam pressure.

5. Calculate the integrator gain, γps , using Equation (5.25).

6. Set output flag to indicate that the self-tuning algorithm is performed successfully.

Algorithm Verification

In Figure 5.10, the steam pressure is shown as function of time at a given constant oil and air valve
position. It is seen, that the slope of the steam pressure curve is approximately constant and
that the control model is adequate when the integrator gain is identified close to the operating
point.

Time [s]

Steam pressure [Bar]
Oil valve position x 0.1
Status x 0.1
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0
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Figure 5.10: Measured steam pressure as function of time at a given constant oil and air valve position.

The steam pressure controller is in Subsection 4.2.1 on Page 54 designed as a PI-controller.
Both the proportional gain and integrator gain, are calculated from the time constant for the
fuel actuator and the steam pressure integrator gain, as in Equations (4.32)–(4.34) on Page 56.

The fuel actuator time constant is estimated from the valve gains, obtained by self-tuning
Algorithm 5.1 and the steam pressure integrator gain is obtained by self-tuning Algorithm 5.4.
The identified integrator gain and the resulting controller parameters are listed in Table 5.4.

Ident. parameters Ctrl. parameters

γps 13 kps,p 5.3 · 10−3

Tps,i 39.89

Table 5.4: Calculated steam pressure controller parameters, obtained from self-tuning.

84



5.5. Self-tuning Evaluation

5.5 Self-tuning Evaluation

In this section, the developed self-tuning scheme is evaluated based on both the previous verifi-
cations of each identification algorithm and general reflections regarding the performance of the
developed self-tuning scheme.

To evaluate the developed self-tuning scheme a non-linear simulation of the controller perfor-
mance is carried out. The parameters used for the non-linear simulation are the ones found
during the various identification steps. Hence, the non-linear simulation will be a simulation of
the final closed loop self-tuned system performance.

The simulation is carried out as the simulation of the designed controllers in Section 4.2.4 on Page
64. Hence, the outer-loop controller performance is simulated by a large step and a small step
in steam flow, to simulate two different scenarios from a sudden change of steam consumption.
Furthermore noise is added in accordance with the specifications in Section 4.2.4.

Simulation of Steam Pressure Controller

From the applied steps in steam flow, the simulated closed loop response of the steam pressure
is shown in Figure 5.11b. As seen, the steam pressure controller is capable of maintaining the
steam pressure within a deviation of approximately 0.02 bar from the operating point, when
a large step in steam flow is applied. The minor step in steam flow results in a even smaller
deviation and the steam pressure controller is considered acceptable.

Through the verification of the identification algorithms, the oil valve and air damper integrator
gains was found to be small compared to the present actuator system, during verification of
the system model in Section 3.3. This implies larger traveling times for both servos. The fact
that the outer-loop steam pressure controller is designed with a bandwidth determined by the
inner-loop oil and air actuator controllers, emerges as a slow outer-loop steam pressure control
compared to the simulation in Section 4.2.4. However, the controller performs satisfactory taking
the slow fuel actuator system into account. Furthermore, by looking at Figure 5.11c, it is seen,
that the inner-loop actuator controllers are saturated for a short period of time, when the large
step in steam flow is applied. Hence a transient deviation emerges in the oxygen level, depicted
in Figure 5.11d. The transient is caused directly by the saturation of the fuel actuator.

In attempt to cope with fuel actuator saturation, a model predictive servo control scheme is
presented in Chapter 6.

Simulation of Water Level Controller

In Figure 5.12b the simulated closed loop response of the water level is shown. It is evident that
the water level controller is slower than the steam pressure controller, which is expected due to
the controller design, affected by the fluctuating water level measurements. The results of the
simulation of the water level controller performance is very similar to the simulation presented in
Section 4.2.4 on Page 64 due to a very small deviation between the estimated model parameters
and the parameters identified by the self-tuning scheme.
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Time [s]

[%
]

Oxygen level Oxygen level ref.

2000 2500 3000 3500 4000 4500 5000 5500 6000
4

4.5

5

5.5

6

(d) Oxygen level.

Figure 5.11: Simulation of ps controller and actuator controllers from a large and small disturbance variation.

The water level controller is however able to keep the water level within a range of approximately
±3 cm from the operating point, which is considered satisfactory.

With the presented simulation of the self-tuned controllers, the benefits from the developed self-
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(b) Water level response from disturbance.

Figure 5.12: Simulation of outer-loop water level performance from a large and small disturbance variation.

tuning scheme shows to be auspicious. However, a final test and verification of the outer-loop
controllers are yet to be conducted in order to verify the complete self-tuning scheme.

As seen from the verification of the self-tuning identification algorithms, the self-tuned controller
for the inner-loop fuel actuator system has showed good performance regarding tracking of
the reference servo positions. However, actuator saturation and assumptions regarding linear
curveband affects the oxygen level controller in an unfavorable manner. As previously mentioned,
a solution to cope with the constraints introduced by the curveband, and actuator saturation
limits, is presented in Chapter 6.

In the following section, a short review of potential limitations for the developed self-tuning
scheme is presented.
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5.6 Limitations of the Developed Self-tuning Scheme

The designed self-tuning algorithms are designed as a proof of consept. Thus some limitations in
the developed self-tuning scheme exists. In this section, some of the most conspicuous limitations
are presented, without leaving out the existence of others.

1. Instrumentation
The self-tuning algorithms generally do not take any malfunctioning of the instrumentation
into consideration. E.g. the flow sensor for the feed water in the test center is saturated
above a valve position of 70 %. As a result, the feed water valve characteristics are faulty
identified and the controller is incorrectly tuned.

2. Error checking
The designed self-tuning algorithms are designed as a proof of consept. Thus, the degree of
error checking is almost non-existing. However an a simple and efficient method for error
checking can be implemented in state flow together with the triggering of each algorithm.
This way, dead locks can be escaped i.e. using a timer. Faulty error handling or missing
error handling can however be fatal by e.g. causing water overflow or too high steam
pressure during identification.

3. Initial burner position The initial burner position defines the position of both oil valve
and air damper position. The initial burner position must be known prior to performing
the selftuning on the Mission OSTM boiler system in order to ignite the fuel supplied
at ignition. However, as the identification of the curveband takes place as the first step
shortly afterwards the ignition, the servo positions are rapidly adjusted to ensure a clean
combustion.

4. PWM saturation
The pulse width resolution defined by TPWM

Tsys
limits the inner-loop oil and air servo con-

trollers ability to ensure equal servo traveling times. Thereby, the best performance of is
obtained with servos manufactured to have same travel speed. The performance is lowered
concurrently with the deviating traveling time for the two servos.

A self-tuning scheme has been developed and successfully tested using non-linear simulation.
The developed self-tuning scheme is capable of identifying simple model parameters and using
the parameters to calculate controller parameters. However, during the development of the self-
tuning scheme, the importance of following the curveband was clarified. In order to follow a
non-linear curveband, a generic solution is desired.

In attempt to develop a generic method for controlling the oil and air servos, to ensure that
a non-linear curveband is obeyed, the problem is described as a constrained model predictive
control problem in the following chapter.
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Chapter6
Constrained Control of Fuel Valve and Air

Damper

This chapter contains a description of a method of constrained control, developed to cope with
the task of following a non-linear curveband regardless of fuel actuator saturation. First, the
problem of oil/air ratio mismatch is outlined by a case study and a model predictive control
problem formulation, to describe the constrained minimisation problem, is outlined. Finally, a
simple method of reference correction, to solve the discrete minimisation problem, is developed
and the method is verified through a case study.

When performing control of a fuel consuming process, the oxygen level in the exhaust gas must
be constant. The task of ensuring constant oxygen level can be a challenge, in particular if the
burner load is changed momentarily from one load to another. An easy methods to achieve
this objective is to ensure uniform flow and servo characteristics for the air damper and the fuel
valve. However this method relies on the mechanical design and the method is often impractical.
Traditionally, to compensate for the difference in flow characteristics, a curveband is used to de-
fine the ratio betwen oil valve and air damper position [Aalborg Industries, 2008]. Thus only the
servo characteristics influence the dynamic behaviour of the consumption. When introducing the
curveband, the phenomenon of fuel/air ratio mismatch can occur. This phenomenon is described
and analysed in the following section, followed by a model predictive problem formulation and
an algorithmic scheme to cope with the phenomenon.

6.1 Fuel/Air Ratio Mismatch

The phenomenon of fuel/air ratio mismatch occurs when the burner load is momentary changed.
In Subsection 4.1.4 on page 49, a solution for PWM saturation was presented. However, the
presented method relies on linear and one-to-one fuel/air servo ratio and is applicable when equal
traveling times is desired for the two servos. The presented method is however not capable of
solving the problem of non-linear servo ratio constraints. To ease the understanding of the
phenomenon, a case study is carried out.

Case Study

As an example, the oil valve and the air damper has integrator gains, Kfu = 0.05 and Ka = 0.015
respectively and the burner load is defined to be an interval [0; 1] mapping θfu linear to the
interval [0.05; 0.98]. Furthermore, a curveband defining the air damper position as a function of
the oil valve position is given by the 2. order polynomial, θa = −0.21θ2

fu + 0.44θfu + 0.16. The
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curveband is depicted in Figure 6.1.
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Figure 6.1: Curveband defining the air damper position as a function of the oil valve position.

A curveband, as depicted in Figure 6.1, shows that the air intake is oversized compared to the
fuel intake, based on the intervals for the servos. Furthermore, the curveband is non-linear
caused by e.g. low fuel pressure or simply a non-linear fuel valve.

In order to maintain constant oxygen level, the curveband must be followed at any time. However
rate constraints for the position of the air damper and the oil valve causes the two actuators not
to follow the specified curveband at any time. An example is given in Figure 6.2, where a step
change in the reference is applied, causing the two servos to vary their respective positions freely.
Thereby the phenomenon of fuel/air ratio mismatch, during the change of position toward the
new set point, occurs.
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(a) Servo positions and references (dashed).
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(b) Air servo position deviation from curveband.

Figure 6.2: Air damper and oil valve position as a function of time with unconstrained control.

As seen in Figure 6.2a, the servo positions, θfu and θa, are changing by constant slope. Hence
their respective references are reached at different time and clearly the servo positions do not
follow the curveband in the timespan, from changing their reference to the reference is reached,
for both servos. Figure 6.2b shows a worst case deviation from the curveband of approximately
5 %. Clearly the phenomenon is caused by constraints in the system, leading to describe the
problem as a model predictive control problem.
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6.2 Model Predictive Control Problem Formulation

For the use of model predictive control to formulate the problem, a linear discrete-time state
space system model is derived for the fuel/air actuator. The derivation is based on simple
integrator models, as described in Section 3.3 on page 38 during modeling of the fuel actuator
system:

[

θfu (k + 1)

θa (k + 1)

]

=

[

1 0

0 1

]

·
[

θfu (k)

θa (k)

]

+

[

KfuTs 0

0 KaTs

]

·
[

dfu (k)

da (k)

]

. (6.1)

The input vector, u =
[

dfu da

]T

represents the duty cycle for the PWM part of the actuator

system and is defined in the interval, u ∈ [−1; 1]. Positive duty cycle represents CW servo
rotation and negative duty cycle represents CCW servo rotation.

The air damper and oil valve introduces range linear constraints on the controlled variables, i.e.
servo positions, in the form:

0 ≤ θfu ≤ 1 (6.2)

0 ≤ θa ≤ 1 , (6.3)

defining the outer position limits of the servos. Furthermore, the servos introduces constraints
on slew rates of the controlled variables as follows:

−Kfu ≤ ∆θfu ≤ Kfu (6.4)

−Ka ≤ ∆θa ≤ Ka . (6.5)

These slew rate constraints can however easily be transformed to linear input constraints by
realising, that the maximum slew rate of the controlled variables is obtained with a PWM duty
cycle of 1. Thus the constraints becomes:

− 1 ≤ dfu ≤ 1 (6.6)

−1 ≤ da ≤ 1 . (6.7)

The curveband introduces an equality constraint:

θa = f (θfu) , (6.8)

which might be non-linear.

Finally, by introducing a feedback oxygen controller, correcting the air damper position by ∆θa,
the equality constraint (6.8) simply becomes:

θa = f (θfu) + ∆θa , (6.9)

and thereby changing by time.
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6 Constrained Control of Fuel Valve and Air Damper

To recapitulate, the constrained problem can be written as a constrained linear minimisation
problem as follows:

min
da,dfu

|θfu − θfu,ref |

s.t. 0 ≤ θfu ≤ 1

0 ≤ θa ≤ 1

−1 ≤ dfu ≤ 1

−1 ≤ da ≤ 1

θa = f (θfu) + ∆θa .

(6.10)

By rewriting the performance function θfu−θfu,ref using the system model from Equation (6.1)
the discrete performance function is given by:

θfu − θfu,ref = θfu (k) +KfuTsdfu (k + 1) − θfu,ref (k + 1) . (6.11)

Similar, the constraints given by Equation (6.2) and (6.3) are rewritten to:

−θfu(k)

KfuTs
≤ dfu (k + 1) ≤ 1 − θfu(k)

KfuTs
(6.12)

−θa(k)

KaTs
≤ da (k + 1) ≤ 1 − θa(k)

KaTs
. (6.13)

Finally, the last constraint given by (6.9) is rewritten to:

θa (k) +KaTsda (k + 1) = f (θfu (k) +KfuTsdfu (k + 1)) + ∆θa (k + 1) . (6.14)

Thereby, the minimisation problem is expressed in terms of the controlled variables, dfu and da,
as given below:

min
da(k+1), dfu(k+1)

|θfu (k) +KfuTsdfu (k + 1) − θfu,ref (k + 1) |

s.t.
−θfu(k)
KfuTs

≤ dfu (k + 1) ≤ 1−θfu(k)
KfuTs

−θa(k)
KaTs

≤ da (k + 1) ≤ 1−θa(k)
KaTs

−1 ≤ dfu (k + 1) ≤ 1

−1 ≤ da (k + 1) ≤ 1

da (k + 1) =
f(θfu(k)+KfuTsdfu(k+1))

KaTs
− θa(k)−∆θa(k+1)

KaTs
.

(6.15)

Hence, some of the constraint depends on the current oil valve and air damper positions and are
thus varying over time.

To ease the understanding of the minimisation problem, an example of the minimisation con-
straints is illustrated Figure 6.3, with ∆θa = 0 for simplicity. The figure illustrates the con-
strained value space for the duty cycles, dfu and da. Furthermore, the time variation is illustrated
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Figure 6.3: Value space for dfu and da including the constraints for dfu (k + 1) (green) and da (k + 1) (blue).
Furthermore, the varying constraint given by the curveband is included (red). The desired solution to the minimi-
sation problem is marked by ∗.

by toning the color of the time varying quantities, i.e. low toning represents the samples of the
past and normal toning represents the current sample.

As depicted in Figure 6.3, the constraint related to the curveband varies over time. As seen,
both duty cycles converges toward the origin, (0, 0), corresponding to servo positions converging
toward the given references. Furthermore, it is seen that non of the linear unequality constraints
are violated.

To lower the computation load, a reference correction control scheme is proposed to cope with
the constrained problem, based on the given minimisation problem. This control scheme is
described in the following section.

6.3 Model Predictive Control Scheme for Ratio-Constrained PWM
Servo Positioning

The objective for the control scheme is to cope with the both linear and non-linear constraints
of the fuel actuator system, by correcting a common reference to ensure that no constraints are
violated.

In Figure 6.4, the principle of a common control scheme is outlined.

The ratio-constrainted dual-servo positioner is to be designed to facilitate fast PWM servo
control and comply with the servo ratio specified by the non-linear constraint, i.e. the curveband.

By treating the curveband purely as the ratio, the curveband is used to define the air servo
position reference, θa,ref , as a function of the oil servo position, θfu,ref . Thus only one input
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Plant

PWM

PWM

Ratio-

constrainted

dual-servo
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fu;ref

d0

fu

d0

a

fu

a

Figure 6.4: Block diagram illustrating the context of the servo positioning control scheme.

reference for the burner system is present, namely the reference to the oil servo position, θfu,ref .

As described in Chapter 4, a suitable valve position controller is a P-controller with control gain
inverse proportional to the specific valve gain. For PWM with a frequency of 1 Hz, this gives
the following two control gains:

kfu,p =
1

Kfu
(6.16)

ka,p =
1

Ka
. (6.17)

Thus the corresponding PWM duty cycles are defined by:

dfu =
(
θfu,ref − θ̌fu

)
kfu,p (6.18)

da =
(
θa,ref − θ̌a

)
ka,p . (6.19)

However, the constraints (6.6) and (6.7) causes the controller to enter a state of output satu-
ration, where the saturated valve travels at full speed when the duty cycle is saturated. When
the output of the controller is saturated, the non-linear constraint is violated. To avoid output
saturation, the valve position references can be corrected based on system knowledge as depicted
in Figure 6.5.

Controller Sat [-1;1] PWM

Controller Sat [-1;1] PWM

 Model-based
correction

fu;ref
0

fu;ref dfu

da d
0

a

d
0

fu

+

+ ¡

¡

0

a;ref

+

¡

¢fu

¢a

Curve-
band

Figure 6.5: Block diagram illustrating the principle of the servo positioning control scheme with reference cor-
rection.
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By inspection of the block diagram in Figure 6.5, the reference correction can be considered as
an anti-saturation scheme, correcting the reference when the output is saturated, to ensure that
the two involved servos follows the specified curveband.

A fundamental quantity of the model-based correction is the specific amount of saturation, here
defined as ∆dfu = dfu−d′fu and ∆da = da−d′a for the two servos respectively. These quantities
combined with knowledge to the system and the controllers are used in order to determine the
correction of the common reference, θfu,ref . The corrected reference is denoted θ′fu,ref .

Regarding the amount of saturation, ∆dfu and ∆da respectively, it is important to notice the
properties listed in Table 6.1.

Saturation difference, ∆d Duty cycle, d Common reference correction

∆dfu ≥ 0 dfu ≥ 1 θ′fu,ref ≤ θfu,ref

Fuel ∆dfu ≤ 0 dfu ≤ −1 θ′fu,ref ≥ θfu,ref

∆dfu = 0 −1 ≤ dfu ≤ 1 θ′fu,ref = θfu,ref

∆da ≥ 0 da ≥ 1 θ′a,ref ≤ θa,ref

Air ∆da ≤ 0 da ≤ −1 θ′a,ref ≥ θa,ref

∆da = 0 −1 ≤ da ≤ 1 θ′a,ref = θa,ref

Table 6.1: List of ∆d properties.

By inspection of the properties listed in Table 6.1, the correction of the common reference can
only contribute by decreasing |dfu| and |da|. Hence, the order of correction is of no importance
and the model-based correction is chosen to first avoid saturating the air servo duty cycle, defined
by constraint (6.6).

For the air servo constraint, the correction of the common reference is defined by:

∆θfu,ref |∆da
= f−1

(
∆θa,ref |∆da

)
, (6.20)

where ∆θa,ref |∆da
defines the correction of θa,ref in order to avoid violating the constraint.

The function f−1 defines the inverse curveband function, i.e. the function that maps air servo
position, θa, to oil servo position, θfu. By mapping the air servo correction, ∆θa,ref |∆da

, using the
inverse curveband, the correction, ∆θfu,ref |∆da

, specifies the correction of the common reference,
θfu,ref , needed in order to avoid violating the constraint in duty cycle for the air servo, da.

For the remaining constraint (6.7), the correction, ∆θfu,ref |∆dfu
, is simply defined as a further

correction of the newly corrected reference θfu,ref −∆θfu,ref |∆da
, without need for any mapping

function, as the correction is given directly as the needed correction of the common reference.

By recalling that the servo position controller is designed as a proportional controller, the two
reference corrections can be expressed as linear dependent on the controller gain and thereby
the model parameters, as given below:

∆θa,ref |∆da
=

1

ka,p
∆da = Ka∆da (6.21)

∆θfu,ref |∆dfu
=

1

kfu,p
∆dfu = Kfu∆dfu . (6.22)
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6 Constrained Control of Fuel Valve and Air Damper

With the above definitions clarified, a two step algorithm for correcting the reference is presented
in Algorithm 6.1.

Algorithm 6.1 Algorithm capable of correcting a common reference in order to avoid PWM
saturation.

1. Correct common reference with respect to first constraint (6.6)

(a) Calculate duty cycle, da, to reach reference θa,ref = f (θfu,ref):

da = ka,p

(
f (θfu,ref) − θ̌a

)

(b) Calculate duty cycle saturation, ∆da:

∆da = da − d′a

(c) Calculate correction, ∆θa,ref |∆da
, of θa,ref needed in order to avoid saturation:

∆θa,ref |∆da
= Ka∆da

(d) Using the inverse curveband, map the correction to the common reference:

∆θfu,ref |∆da
= f−1

(
∆θa,ref |∆da

)

2. Further correct common reference with respect to second constraint (6.7)

(a) Calculate duty cycle, dfu, to reach corrected reference, θfu,ref − ∆θfu,ref |∆da
:

dfu = kfu,p

(
θfu,ref − ∆θfu,ref |∆da

− θ̌fu

)

(b) Calculate duty cycle saturation, ∆dfu:

∆dfu = dfu − d′fu

(c) Calculate correction, ∆θfu,ref |∆dfu
, of θfu,ref needed in order to avoid saturation:

∆θfu,ref |∆dfu
= Kfu∆dfu

By applying Algorithm 6.1, the corrected common reference is given by:

θ′fu,ref = θfu,ref − f−1
(
∆θa,ref |∆da

)
− ∆θfu,ref |∆dfu

. (6.23)

Reverting to the case study in Section 6.1, the result of a simulation, applying the developed
reference correction scheme, is presented in Figure 6.6.

As seen in Figure 6.6a, the references for the two servos are corrected to avoid violating the
duty cycle constraints. Hence, the reference correction scheme complies with the non-linear
ratio constraint specified by the curveband. As seen in Figure 6.6b, the worst case percentage
deviation from the specified curveband is, in the case study, by use of the reference correction
scheme, reduced to the restrictions introduced by the dead band designed in Chapter 4.

To verify, that the developed method is capable of keeping the duty cycle within the limits
specified by the constraints, the duty cycle for both the oil and the air servo is depicted in
Figure 6.7.

From Figure 6.7 it is easy to verify, that the method corrects the references to ensure that none
of the two constraints are violated.

Referring to the non-linear simulation of the performance of the self-tuned controllers in Section
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(a) Servo positions and references (dashed).
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(b) Air servo position deviation from curveband.

Figure 6.6: Air damper and oil valve position as a function of time with constrained control scheme.
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Figure 6.7: Duty cycle for oil and air servo, during reference correction for a step from minimum to maximum
burner load.

5.5 on page 85, the developed reference correction scheme aims to improve the oxygen level
control. To examine the benefits by applying the developed reference correction scheme, a non-
linear simulation is carried out. The resulting oxygen level, both with and without reference
correction scheme, is depicted in Figure 6.8.

As seen in Figure 6.8, the reference correction scheme entails a more steady oxygen level. Hence
by using the developed reference correction scheme, the minimisation problem described by
Equation (6.15) is solved using a simple correction approach.

Referring to the objectives for the project, listed in the problem description in Chapter 2, the
following chapter contains an analysis of the potential benefits of applying classic estimation
techniques, in attempt to improve the control of the water level.
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(a) Oxygen level without servo reference correction scheme.
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(b) Oxygen level with servo reference correction scheme.

Figure 6.8: Simulation comparing oxygen level with and without servo reference correction scheme.
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Chapter7
Kalman Estimation

This chapter contains a description of the potential benefits by the employment of classic esti-
mation techniques in order to estimate i.a. the unmeasurable steam flow. Furthermore a linear
Kalman estimator is designed, capable of both providing smoothened estimates of the mean water
level and estimates of the unmeasurable steam flow. The performance of the designed Kalman
estimator is simulated and the chapter is ended, by an assessment of the usage of the designed
estimator, in order to improve the control of the water level in the Mission OSTM boiler.

The use of Kalman estimation originates from the objective, of obtaining an estimate of the
mean water level and thereby achieve better control of the water level. The water level controller
design in Chapter 4, was initially designed to have a bandwidth in relation to the inner-loop
controller. However, the bandwidth was further reduced due to the degree of noise in the water
level measurements, caused by a fluctuating water level.

By use of a linear Kalman estimation, existing sensor information can be filtered according to
the system model and new information can be estimated by use of simple state augmentation.
The objective for designing a linear Kalman estimator is to filter the water level measurements,
to obtain a mean water level and to estimate the unmeasurable load disturbance, i.e. the steam
flow.

Prior to designing the Kalman estimators a state space model of the Mission OSTM boiler is
required. Appendix F contains a derivation, parameter estimation and verification of a linear
state space model on the form:

x(k + 1) = Φx(k) + Γu(k) + w(k)

y(k) = Hx(k) + v(k) , (7.1)

suitable for Kalman estimation. The use of a linear state space model implies the use of linear
Kalman estimation. In the case of a non-linear state space model, the use of Extended Kalman
estimation or Unscented Kalman estimation would be beneficial.

The remaining of this chapter contains a description, design and verification of the linear Kalman
estimator.

7.1 Linear Kalman Estimation

Kalman estimation, or Kalman filtering, is a mathematical tool usefull in many control related
problems. The overall principle of the Kalman estimator is to combine knowledge from the
system model and noisy sensor measurements, to give a statistical estimate of the system states,
and possible non-measurable states, which thereby facilitate better control of the system. Hence
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7 Kalman Estimation

the Kalman estimator works as a recursive filter. The Kalman estimator is a state observer
including statistical noise information to optimise the estimates, by propagating the probability
distribution of the states through the filter. In case of a linear system with e.g. Gaussian
probability distribution, the propagated probability distribution will also be Gaussian.

Figure 7.1 illustrates the general concept of the Kalman estimator. From a given input, u, the

x̂
+

u x̂
¡System

model

Sensor

model

Correction

ŷ

y

Prediction

Correction

Figure 7.1: Block diagram of the Kalman estimator principle.

system states are predicted from the system model, and the predicted states, x̂− = x̂ (k|k − 1),
are further used to predict the measured output from the sensor model. Finally the estimated
states and estimated output, ŷ, are corrected, using the sensor measurements, y, resulting in
an estimate of the current state of the system, x̂+ = x̂ (k|k). In brief, the Kalman estimator
consists of a prediction step and a correction step, where the underlying calculations are based
on probability theory.

The discrete state space model, derived in Appendix F, is derived from the control models in
Chapter 4 and the resulting state space model is given by Equation (7.2) and (7.3).






ṗs

V̇w

ẇs




 =






0 0 −βps

0 0 −βLw

0 0 0




 ·






ps

Vw

ws




+






γps 0

0 βLw

0 0




 ·
[

θfu

wfw

]

(7.2)

[

ps

Lw

]

=

[

1 0 0

0 1
Aw

αLw

]

·






ps

Vw

ws




 , (7.3)

which is on the form of Equation (7.1). In the state space model, the state vector is augmented
to also include the steam flow, ws, which is a necessity in order to estimate the unmeasurable
steam flow using Kalman estimation. The state augmentation is described in Appendix F.

Looking at the parameters in Equation (7.2) and (7.3), most of them are already known or
identified during the self-tuning of the Mission OSTM boiler system. Only the parameter βps is
unknown. However, βps is by definition dependent on the mass of water, steam bubbles, steam
and the metal of the boiler. Thus a qualified estimate of βps is obtainable by evaluation of βps

in the operating point of the boiler. Hence, a Kalman estimator, based on the linear model, has
potential to be tuned as a part of the self-tuning scheme for the Mission OSTM boiler system.
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7.1.1 Linear Kalman Estimator Algorithm

Referring to the notation of Equation (7.1), the Kalman estimator is given by Algorithm 7.1
[Grewal and Andrews, 2001, p. 121] and shortly described in the following.

Algorithm 7.1 Linear Kalman estimator.

1. Prediction step:

x̂−(k) = Φx̂+(k − 1) + Γu(k − 1) (7.4)

ŷ(k) = Hx̂−(k) (7.5)

P−(k) = ΦP+(k − 1)ΦT +Q (7.6)

2. Correction step:

K(k) = P−(k)HT
(
HP−(k)HT +R

)−1
(7.7)

x̂+(k) = x̂−(k) +K(k) (y(k) − ŷ(k)) (7.8)

P+(k) = (I −K(k)H)P−(k) . (7.9)

The prediction step consists of three steps. The first two steps is simply the discrete state space
model, used to estimate the a priori states, x̂−(k), and outputs, ŷ(k). The last step in the
prediction step is the calculation of the covariance matrix, P−(k), expressing the probability
distribution of the states, corresponding to the uncertainty of the estimated states.

The correction step also consists of three steps. First the Kalman gain is calculated from the
covariance and sensor model. Secondly the Kalman gain and prediction error is used to correct
the estimate of the system states. Finally the covariance matrix is corrected, also by using the
Kalman gain. Compared to an ordinary state observer, the Kalman gain corresponds to the
observer gain, but the Kalman observer gain is calculated using the stochastic properties of the
disturbance and measurement noise.

In the recursive Algorithm 7.1, the steps of calculating the Kalman gain and covariance matrix
can be considered unnecessary, as the values of the Kalman gain and covariance matrix converges
after relatively few computations. Alternatively the Kalman gain can be found from testing
the Kalman estimator in advance, and use the obtained gain as a constant factor to ease the
computations of the algorithm. However, if the Kalman estimator is used in a self-tuning scheme,
the update of the Kalman gain and covariance matrix must be included.

The two matrices, Q and R, in Algorithm 7.1 are covariance matrices for the model or process
noise, w, and sensor noise, v, respectively. These are the only design parameters in the Kalman
estimator and are used to weight whether the model output or the noisy measurements are to be
trusted the most. The design of the matrices Q and R are in this project based on the following
considerations.

There are three states, x = [ps Vw ws], in the state space model. From previously tests at
AI’s test center the steam pressure measurements are known to be sufficiently smooth and thus
the sensor measurements are trusted a bit more than the model. For the water volume the
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model is trusted over the measurements, as the water level measurements are known to be quite
fluctuating. The last state is the unmeasurable steam flow, and because no measurements are
available, the model has the dominating weight. This gives the following matrices:

Q =






0.001 0 0

0 0.001 0

0 0 1 · 10−12




 R =

[

0.01 0

0 1

]

, (7.10)

which are used in the linear Kalman estimator.

7.1.2 Simulation of Linear Kalman Estimator

Simulating the designed Kalman estimator in Matlab
TM , using the m-file linearKalmanaug.m,

gives the results shown in Figure 7.2.

As expected, the steam pressure measurements and estimated steam pressure in Figure 7.2a are
very alike, due to the choice of weights in Q and R. The figures of most interest are Figure 7.2c
and 7.2e, showing the results of the last two states, the water level and steam flow.

Looking at Figure 7.2c the estimated water level is clearly smooth, compared to the measured
water level, which is the purpose of the designed Kalman estimator. Thereby the Kalman
estimator facilitates possible improved control of the water level.

The second purpose of the linear Kalman estimator is to estimate the steam flow, as shown
in Figure 7.2e. The estimation shows a very satisfactory result, where the Kalman estimator
is tracking the measured steam flow. On AI’s commercial boilers no flow sensor is present to
measure the steam flow. However, the measurements are obtained in AI’s test center, where a
steam flow sensor is mounted, as described in the system description in Chapter 2.

The remaining subfigures in Figure 7.2 show the estimation error for the respective states.
Common for the estimation errors is a larger variation whenever a step is executed, but generally
the estimation error is low. To further examine the effectiveness of the Kalman estimator, the
error of the estimated steam flow is of particularly interest whenever a step is executed. Besides
from a desired low estimation error, the tracking time is relevant for the effectiveness. Figure
7.2g shows that approximately 7 seconds after an applied step, corresponding to 14 samples in
this simulation, the Kalman estimator has tracked the steam flow again.

7.1.3 Evaluation of the Linear Kalman Estimator

Conclusively, the linear Kalman estimator shows satisfactory results for both smoothening the
water level measurements and estimating the unmeasurable steam flow. In order to improve
the 7 seconds tracking time of the unmeasurable steam flow, requires a re-evaluation of either
the uncertainty model, describing the steam flow, or another weight factor in the Q matrix. If
the model is trusted less, compared to the above example, the tracking time is reduced at the
expense of a generally larger estimation error. The generally larger estimation error is caused
by the noisy water level measurements, which are propagated back to the steam flow in the
augmented state space model, given by Equation (7.2) and (7.3).
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Figure 7.2: Simulation results from Kalman estimator.

In brief, the performace of the Kalman estimator depends on the choice of uncertainty model
and design of the weight matrices, chosen on basis of the purpose of the Kalman estimator.

In the following, an assessment of the benefits of applying the designed Kalman estimator is
carried out.
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7 Kalman Estimation

By smoothening the water level measurements, the fluctuation, caused by e.g. waves and air
bubbles breaking the water surface, is smoothened in order to obtain the mean water level. The
use of the estimated mean water level, as input to the water level controller, enables the design
of a water level controller with higher bandwidth and thereby facilitates better level control.
However, when designing the water level controller, it is important to realise that the water
level deviates from the estimates.

In steady state, the feed water flow, wfw, must equal the steam flow, ws, in order to maintain
a constant water level. As a result, the unmeasurable steam flow is of special interest when
controlling the water level. On the basis of the evaluation of the designed Kalman estimator,
the steam flow can however be estimated. Estimating the unmeasurable steam flow facilitates
the possibility to use the information e.g. as feed forward to the water level controller. However,
the feed forward should not be used without a feedback controller, as the estimated steam flow
might deviate from the actual consumption. Hence, combining the estimate of the mean water
level and the estimated steam flow, constitutes a solid basis for obtaining a better control of the
water level.

.
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Chapter8
Conclusion

The main objective for this project was to develop a proof of concept self-tuning system, based
on a simplified system model, capable of automatically tuning the controllers, prior to operating
the Mission OSTM boiler system. Other objectives were to ensure a clean combustion using a
curveband, specifying the relation between oil valve and air damper positions, and to design the
actuator controllers to obey the curveband at any time. The final objective for the project was
to assess the benefits of using classic estimation techniques, in attempt to improve the control
of the water level in the Mission OSTM boiler. To comply with the objectives for this project,
it was necessary first to derive a model of the entire Mission OSTM boiler system.

The Mission OSTM boiler system was modelled as three separate non-linear models; a model
of the Mission OSTM boiler, the feed water actuator system and the fuel actuator system. The
purpose of the non-linear Mission OSTM boiler model was to express the steam pressure, water
level and oxygen level, based on the input flows from the actuator systems, i.e. fuel, air and
feed water.

To derive the non-linear boiler model, a number of control volumes were identified and the
model was divided in two parts. One part describing the dynamics of the furnace and the other
describing the dynamics of the water/steam. For the furnace an oxygen model was derived,
based on the chemical reaction during combustion, together with an efficiency factor, describing
the energy transferred from the furnace to the water/steam part. By use of energy and mass
balance equations, the dynamics of the water/steam part was described. The resulting boiler
model was presented on descriptor form and implemented in Simulink for verification, which
showed satisfactory similarities compared to obtained measurements data.
The feed water actuator system was modelled as a non-linear function, describing the feed water
flow as a function of steam pressure and input voltage to a valve positioner. Thereby neglecting
the dynamics of the actuator and considering the flow sensor dynamics as dominating. The fuel
actuator model consists of an oil actuator model and an air actuator model. The two actuators
were similar of structure and thus also similar modelled, as integrators. For the oil actuator, a
flow sensor was modelled as a second order nonminimum phase system, due to delay between
forward and return oil flow. The flow characteristics of the oil actuator was modelled as a
static third order polynomial. Parameters for both actuator models were estimated and the
models were verified against measurement data. The models had similar dynamic behaviour as
the actuator system responses. Thereby the entire non-linear Mission OSTM boiler system was
successfully modelled, verified and applicable for controller design.

A control scheme of three inner-loop and three outer-loop SISO controllers were presented. The
inner-loop controllers were designed to control the feed water flow, the oil valve position and air
damper position, all with the purpose of optimising the conditions for the outer-loop controllers
for steam pressure, water level and oxygen level.
The feed water flow controller was designed using feed-forward, to eliminate the non-linearities
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8 Conclusion

of the feed water valve, and a PI-controller to obtain a fast response and eliminate steady state
errors.
The servos for controlling the oil valve and the air damper were Pulse Width Modulation (PWM)
controlled, and two position controllers were designed as P-controllers. The two position con-
trollers were designed to facilitate equal response time, even in case of unequal native servo
travelling times.
Prior to designing the steam pressure and water level controllers, the non-linear boiler model
was reduced to a simple integrator model, which was verified using obtained measurement data.
Both the steam pressure and water level controllers were designed as PI-controllers, based on a
stability criteria in the frequency domain and the bandwidth of the actuator systems. Further-
more, the water level controller was designed taking the fluctuating water level into account.
To obtain a steady oxygen level, an oxygen level controller was designed, utilising both a curve-
band and an slow feedback controller to eliminate steady state errors.
A common goal for the controller designs was to facilitate self-tuning of the controllers, by sim-
ple model parameter identification. Finally, the performance of the designed controllers was
simulated, using the derived non-linear simulation model, and showed satisfactory results.

An objective was to design a self-tuning system capable of determining system parameters and
automatically tune the designed controllers. To accomplish this, four self-tuning algorithms were
implemented during the start-up sequence of the Mission OSTM boiler system.
The first algorithm identified the traveling times for the oil valve and air damper, and from
these the proportional gains were calculated for the fuel actuator controllers. Furthermore, the
traveling times were used to determine a dead band, for the respective actuators, to avoid limit
cycles. Finally, the bandwidth of the steam pressure control loop was determined using the
identified parameters.
The second algorithm was used to identify the curveband for the oxygen controller, by automa-
tically adjusting the oil valve and air damper positions, to obtain a desired oxygen level, in the
entire range of the servos.
The third algorithm analysed the feed water actuator and estimated the non-linear ratio between
valve position and feed water flow, used as feed-forward. Furthermore the time constant of the
feed water actuator was estimated and used to calculate the PI-controller parameters for the
feed water actuator controller.
The last self-tuning algorithm was designed to identify the steam pressure integrator gain, by
maintaining a fixed oil valve position, used to calculate the steam pressure controller parameters.
From tests at Aalborg Industries A/S, the self-tuning algorithms showed promising results,
regarding identification of the control model parameters, and the self-tuned controllers were
verified by non-linear simulation. The simulation showed an overall satisfactory performance.
However, the chosen oil valve and air damper position controller design, causes PWM saturation
in case of a non-linear curveband or sudden changes in burner load. To cope with PWM
saturation, and thereby avoiding transient variation in the oxygen level, a method utilising
constrained control was developed.

In attempt to solve the PWM saturation issue, a case study was carried out to proper describe
the problem. Through the case study, the issue was analysed and found to be solved by a
minimisation problem, constrained by the saturation limits of the fuel actuator system and the
curveband. Hence, a model predictive control scheme was developed to resolve the problem
using reference correction. The developed reference correction scheme was verified to solve
the minimisation problem, and thereby defeat the problem of curveband violation during PWM
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saturation. Using the developed method, the performance of the steam pressure controller might
be reduced by the compliance of the curveband. However, the method ensures a steady oxygen
level, and thereby a clean combustion.

Finally, a study of the benefits of using classic estimation techniques was carried out. A linear
Kalman filter was designed to estimate the mean water level and the unmeasurable steam flow.
A verification of the designed Kalman estimator showed satisfactory performance and thus forms
a solid basis for improvement of the water level control.

Altogether, a model of the Mission OSTM boiler system, including actuator systems, has been
derived and simplified to form a basis for a developed self-tuning scheme, capable of identify-
ing model parameters during the start-up phase of the boiler system. Furthermore, a model
predictive control scheme has been developed to comply with the curveband, implying a clean
combustion. Finally, the designed Kalman estimator showed ability to estimate a mean water
level and the unmeasurable steam flow, facilitating improved water level control.
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8 Conclusion
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Chapter9
Discussion

This chapter contains a discussion of future work, on the basis of the work and developed schemes
during the project.

Further Development of the Designed Self-tuning Scheme

The self-tuned controller performance is verified by non-linear simulation, and showed satisfac-
tory performance. However to finally verify the self-tuning scheme, a real-life test using the
Mission OSTM boiler system must be carried.

During the development of the self-tuning scheme, several limitations were made to simplify
the design. Two of the limitations is of interest, regarding future work, namely error checking
during the identification and the assumption of functioning instrumentation. When relying on
a self-tuning scheme, the necessity of fully operating hardware is important, and faults can be
fatal for the performance of the system. Hence, it is evident to design a fault detection scheme,
to deal with possible hardware errors.

Another possibility for further development of the self-tuning scheme, is to inherit the ideas
of the developed self-tuning scheme to an online adaptive controller structure. Thereby, it is
possible to adjust the controller parameters to the actual state of the boiler system.

Finally, it is of interest to examine the opportunities of self-tuning a Kalman estimator, used in
order to improve the water level control.

State Estimation Using Kalman

A Kalman estimator was designed in this project, to estimate the mean water level in the boiler
and the unmeasurable steam consumption. The purpose was to assess the potential benefits of
applying the estimated quantities, to improve the water level control.

In continuation of the assessment, a future task is to design a control structure, using the
estimated states, in order to achieve better water level control. It is evident to use the estimated
steam flow as feed forward to the feed water, and use the estimated mean water level as feedback,
to eliminate steady state errors, caused by e.g. a small steam flow estimation error. Furthermore,
the use of Kalman estimation in order to filter various sensor inputs, is assessed to be beneficial.

Further use of Kalman estimation can also encompass inverse Kalman filtering, in order to
estimate the covariance of sensor inputs. This information can e.g. be included in a more
advanced self-tuning scheme, in order to avoid actuator stress.
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9 Discussion

Advanced Controller Types

The existing controllers on the Mission OSTM boiler system mainly consists of classic PI-
controllers, which is an advantage for the developed self-tuning scheme. However, the use
of more advanced controller types has through previous projects shown to beneficial. [Solberg,
2008] developed MIMO controllers for a boiler system, and thereby included the cross coupling
between water level and steam pressure. Hence, self-tuning of MIMO controllers might further
improve the overall performance of a self-tuned boiler system.

During the project, the non-linearities have been remedied by use of feed-forward controllers.
However, non-linear control might be beneficial to use, as the main part of the boiler system
reveals non-linear behavior.
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AppendixA
Boiler Dimensions

Figure A.1 shows a drawing of the Mission OSTM boiler. Furthermore some of the dimensions
of the boiler is illustrated, which are used for calculating different volumes of the Mission OSTM

boiler. The notation N.W. in the figure indicates the normal water level.

Figure A.1: Drawing of the Mission OSTM boiler and some of the dimensions. Inspired by [Aalborg Industries,
2008].
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AppendixB
Constants

This appendix contains various tables with useful coefficient values, used for different purposes
throughout the report.

Operating Point Values

Table B.1 shows the operating point values for different loads in the steam flow and the corre-
sponding input mass flows. The input flows are calculated as the mean value over a time period
of 1200 seconds in steady state, during a simulation with noise added to the steam pressure and
water level measurements.

State/input ws = 0.33kg
s ws = 0.403kg

s ws = 0.472kg
s Unit

Vw 1.385 1.370 1.357 m3

Vsb 0.063 0.077 0.091 m3

wfw 0.327 0.401 0.471 kg
s

wfu 0.027 0.033 0.038 kg
s

wa 0.453 0.553 0.648 kg
s

Table B.1: Operating point values for different steam loads at the operating point; ps = 8 bar, Lw = 1.23 m,
xo,O2

= 5 %.

Steam Table Coefficients

Table B.2 contains coefficients from a steam table, used as operating point values in the control
model derivation and thereby controller design.

Constant Value Unit

hw 720.94 J
kg

hs 2767.5 J
kg

hfw 105 J
kg

ρw 896.86 kg
m3

ρs 4.16 kg
m3

Table B.2: Steam table coefficients at 8 bar, 170.41 ◦C, [Schmidt, 1989, p. 32], except hfw.
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B Constants

Oxygen Model

Table B.3 contains coefficient values used for the oxygen model. The coefficients are mass
fractions and molar masses for different elements of the periodic table.

Constant Value Unit

xC 15/47 -

xH 32/47 -

xO2
21/100 -

xN 79/100 -

MC 12.01 g
mole

MH 1.007 g
mole

MO 15.999 g
mole

MN 14.01 g
mole

Table B.3: Coefficients used for oxygen model calculation.

Non-linear Boiler Modelling

In Table B.4 the coefficients used in the modelling of the non-linear boiler system and their
values are listed.

Constant Value Unit

Hfu 40e3 J
g

cfu 2+0.003*(Tfu-100) J
g·C

ca 1.005 J
g·C

Tfu 10/283.15 ◦C/◦K

To 20/293.15 ◦C/◦K

Tfl 350/623.15 ◦C/◦K

κfu 16.9 ·
Lb 4 m

rb 0.75 m

Aw 1.6389 m2

Table B.4: Coefficients used for non-linear boiler model calculation.
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AppendixC
Parameter Estimation using Senstools

This appendix describes how model parameter values, for the Mission OSTM boiler model derived
in Chapter 3, are estimated from measurements obtained in AI’s test center. The Matlab

TM

toolbox Senstools, developed by Professor Morten Knudsen, is used for the parameter estimation
in this project. Thus a short introduction to Senstools is given in the following.

Senstools

Generally seen, parameter estimation is a part of experimental modelling of dynamical systems,
which can be divided into the following five steps [Knudsen, 2004, p. 2]:

1. Model structure determination
The model structure is determined by use of physical laws and empirical considerations.

2. Experiment design
An appropriate input signal is chosen for the specific system. The frequency of the input
signal is chosen in the range, where the accuracy of the model is most important, that
is the crossover frequency. If the model is considered linear, the amplitude of the input
signal is not important.

3. Experiment
The system is actuated by the chosen input signal, and the input and output sequences
are saved for use during the parameter estimation.

4. Parameter estimation
The parameters for estimation are adjusted until a weight of the error, between the model
output and the output of the system, is at a minimum. This is where Senstools is used.
In short terms, Senstools minimizes a performance function with the use of Gauss-Newton
method, when adjusting the parameters.

5. Model validation
The derived model and the estimated parameters are evaluated. This is most often done
by comparing system response and model output, using new measurement data.

In this appendix, only parameter estimation is of interest. The procedure for parameter estima-
tion is illustrated by the blockdiagram in Figure C.1 and shortly described in the following.

An input signal, u(t), is applied to the system, resulting in a system response, y(t). With a given
frequency, the input signal is sampled and used as input for the simulation model. The model
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C Parameter Estimation using Senstools

System

Simulation
model

u(t) y(t)

+

¡

y(k)

u(k)

²(k)

Parameter
adjustment

ym(k)

Figure C.1: Blockdiagram of the parameter estimation procedure.

output is compared to the sampled system response, y(k), and the model error, ǫ(k), leads to
an adjustment of the model parameters.

The parameter estimation procedure is performed offline, meaning the input signal and system
response is obtained beforehand.

Sentools estimates the model parameters by minimizing the performance function given by:

P (θ) =
1

2N

N∑

k=0

ǫ2(k, θ) . (C.1)

As mentioned previously, Senstools uses the Gauss-Newton method when minimizing the per-
formance function. The Gauss-Newton method is iterated until the relative parameter update of
each parameter is less than 0.1 %. When finished, mainest.m returns the estimated parameters,
the normed root mean square output error and a plot of the measured output versus the model
output. The root mean square error is defined as:

ERRN =

√
∑N

k=0(y(k) − y(k, θ))2
∑N

k=0 y(k)
2

. (C.2)
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AppendixD
Control Model Validation

This appendix contains a validation of the linear boiler model consisting of the steam pressure
and water level control models. These models have been analytically linearised in Section 4.2 in
order to use linear controller design methods. Hence, the parameters of the linear model must
be estimated and the resulting linear boiler model is simulated, to compare the linear model
response with measurement data.

Parameter Estimation

From the linear steam pressure and water level control models, only three parameter values
needs to be estimated, and βLw is calculated from values in a steam table. The linear control
models are implemented in Simulink and using Senstools the parameter values are estimated.
The parameters and the obtained parameter values are listed in Table D.1.

Parameter Estimated value Unit

αps 0.0069 kg
s·%

βps 2767.6 Pa
kg

αLw 0.15 m·s
kg

β∗Lw
1.11 · 10−3 m3

kg

Table D.1: The estimated (∗calculated) parameter values for the linear boiler model.

The parameter values are calculated as a mean value from several measurement series with
steps in the different flows. Using the estimated parameter values, a simulated boiler response is
compared to measurement data from the test center at AI. The result is shown and commented
in the following.
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D Control Model Validation

Step in steam flow

Figure D.1 shows a comparison of the linear model response and the measured response from a
step in steam flow, ws.
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Figure D.1: Response of linear boiler model, from a step in steam flow.

Figure D.1a and D.1b shows the input flows and in Figure D.1c and D.1d the resulting simulated
and measured responses are shown. Both the simulated water level and simulated steam pressure
shows satisfactory similarity to the measurements. This result is expected as the steam flow
affects both the water level and steam pressure control models.
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Step in feed water flow

Figure D.2 shows a comparison of the linear model response and the measured response from a
step in feed water flow, wfw.
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Figure D.2: Response of linear boiler model, from a step in feed water flow.

Figure D.2a and D.2b shows the input flows and in Figure D.2c and D.2d the resulting simu-
lated and measured responses are shown. The simulated water level response is similar to the
measurements, but the simulated steam pressure shows greater variation. However, as the linear
steam pressure control model does not encompass the cross coupling from the water/steam part,
the simulated response is expected and considered acceptable.
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Step in fuel flow

Figure D.3 shows a comparison of the linear model response and the measured response from a
step in fuel flow, wfu.
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Figure D.3: Response of linear boiler model, from a step in fuel flow.

Figure D.3a and D.3b shows the input flows and in Figure D.3c and D.3d the resulting simulated
and measured responses are shown. Both the simulated water level and simulated steam pressure
shows satisfactory similarity to the measurements. In spite of the water level control model
encompass no cross coupling from the steam part, the water level response is dependent on the
steam flow, which gives the resulting characteristics.

Conclusion

From the comparison of the linear boiler model response and the measurement data, it is obvious
that the linear control models are well suited for controller design. Conclusively the non-linear
boiler system can easily be modelled by two simple integrators without loosing the essential
dynamic behaviour.
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AppendixE
Linearisation using Taylor Series Expansion

This appendix describes how first order Taylor series expansion is applied to linearise the non-
linear oxygen model and thereby facilitating the use of linear controller design.

Non-linear Oxygen Model

The non-linear oxygen model, derived in Subsection 3.1.3 on page 23, is repeated here and the
constant terms are replaced by k(·):

ẋo,O2
=

1

τxo,O2






xO2

M̄a
wa − xC+ 1

4
xH

M̄fu
wfu

xO2
+xN

M̄a
wa +

1

4
xH

M̄fu
wfu




− 1

τxo,O2

xo,O2

=
1

τxo,O2

(
k1wa − k2wfu

k3wa + k4wfu

)

− 1

τxo,O2

xo,O2
. (E.1)

Equation (E.1) can also be represented on a more general form, as a function of the input
variables:

ẋo,O2
= f(wa, wfu, xo,O2

) . (E.2)

First Order Taylor Series Expansion

The non-linear model can be linearised using a first order Taylor series expansion, where the
small signal model is given by:

∆

ẋo,O2
=

∂f(wa, wfu, xo,O2
)

∂ wa

∣
∣
∣
∣
wa=w̄a

· ∆

wa

+
∂f(wa, wfu, xo,O2

)

∂ wfu

∣
∣
∣
∣
wfu=w̄fu

· ∆

wfu

+
∂f(wa, wfu, xo,O2

)

∂ wa

∣
∣
∣
∣
xo,O2

=x̄o,O2

· ∆

xo,O2
, (E.3)

where w̄fu and
∆

wfu denotes the operating point value and small signal value respectively.

By calculating each partial derivative term in Equation (E.3) and reducing the expression, the
linearised small signal model for the oxygen model becomes:
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E Linearisation using Taylor Series Expansion

∆

ẋo,O2
=

(k1k4w̄fu + k2k3w̄fu)
∆

wa − (k2k3w̄a + k1k4w̄a)
∆

wfu

τxo,O2

(

k2
3w̄

2
a + k2

4w̄
2
fu + 2k3k4w̄aw̄fu

) − 1

τxo,O2

∆

xo,O2
. (E.4)

Laplace Transformation

By Laplace transforming the linearised small signal model and assuming constant oil flow,
∆

wfu=
0, a transfer function from air flow to oxygen level is given by:

∆

xo,O2

∆

wa

(s) =

(

k1k4w̄fu + k2k3w̄fu

k2
3w̄

2
a + k2

4w̄
2
fu + 2k3k4w̄aw̄fu

)

τxo,O2
s+ 1

. (E.5)

Linear Oxygen Model Verification

To verify the derivation of the linear oxygen model (E.5), the response is compared to the
non-linear model response, as showed in Figure E.1.
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Figure E.1: A comparison of the non-linear and linear oxygen model response.

As expected the responses are very alike close to the operating point of 5% oxygen level. However,
the similarity of the responses is decreased when moving away from the operating point. Thus
the linear oxygen model (E.5) is considered suitable for linear controller design.
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AppendixF
Derivation of Linear State Space Model

This appendix describes the derivation and analysis of a linear state space model of the Mission
OSTM boiler, used for Kalman estimation.

Linear State Space Model

The state space model is outlined from the control models, derived in Chapter 4, and are repeated
here:

ṗs =
hs − hw

(

mw
∂hw

∂ps
+msb

∂hs

∂ps
+ms

∂hs

∂ps
+mmcm

∂Tsat

∂ps

)

︸ ︷︷ ︸

βps

( ηfuβfukfu

hs − hw
︸ ︷︷ ︸

αps

θfu − ws

)

(F.1)

V̇w =
1

ρw − ρs
︸ ︷︷ ︸

βLw

(wfw −ws) (F.2)

Lw =
1

Aw
Vw +

tsb
ρsAw
︸ ︷︷ ︸

αLw

ws . (F.3)

These three equations are rearranged into a state space form as given below:

ẋ(t) = Ax(t) +Bu(t) +Ed(t) + w(t)

y(t) = Cx(t) +Du(t) + Fd(t) + v(t) ,

where w(t) and v(t) are uncorrelated zero mean white noise. The disturbance d(t) is here
regarded as the steam flow, which is only measurable in AI’s test center. A block diagram of
the state space model is illustrated in Figure F.1.

Using Equations (F.1)–(F.3) gives the linear state space model:
[

ṗs

V̇w

]

=

[

0 0

0 0

]

·
[

ps

Vw

]

+

[

γps 0

0 βLw

]

·
[

θfu

wfw

]

+

[

−βps

−βLw

]

· ws (F.4)

[

ps

Lw

]

=

[

1 0

0 1
Aw

]

·
[

ps

Vw

]

+

[

0 0

0 0

]

·
[

θfu

wfw

]

+

[

0

αLw

]

· ws . (F.5)

Here the added white noise is omitted and the steam flow, ws, is considered as an unknown
disturbance as input to the system model and output model.
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F Derivation of Linear State Space Model
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Figure F.1: Block diagram of the linear state space model of the Mission OSTM boiler.

Linear State Space Model Verification

To verify the linear state space model, the model is discretised using the Matlab
TM function

c2d() and the discrete model parameters are fitted using Senstools. For the verification of the
model, also the steam flow is measured. A plot of the measured output and the model output
is shown in Figure F.2, and the result is satisfactory.
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Figure F.2: Verification of the linear state space model.

Linear State Space Model Augmentation

In order to estimate the steam flow, ws, the disturbance must be relocated to the state vector,
equivalent to augmenting the state vector. This requires a model of the steam flow and by
assuming the steam flow can be modelled as a constant, the following augmented state space
model is obtained:
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(F.6)

[

ps

Lw

]

=

[

1 0 0

0 1
Aw

αLw

]

·






ps

Vw

ws




 , (F.7)

where the parameter values of the augmented state space model are given in Table F.1.

Element Value

βps 3251

βLw 0.00157

γps 46016

αLw 0.1052

Aw 1.6389

Table F.1: Parameters for the augmented linear discrete state space model.

A more accurate disturbance model for the steam flow could probably be used, but this would
require an extensive analysis of the steam consumption on different vessels. This is considered
too comprehensive for this objective, as the designed Kalman estimator in Chapter 7 shows
satisfactory results.

Observability of Augmented State Space Model

In order to use the discrete linear state space model for Kalman estimation, the system must be
observable. From the augmented discrete state space form:

xa(k + 1) = Φaxa(k) + Γaua(k) + w(k)

y(k) = Haxa(k) + v(k) ,

the obervability can be examined from the canonical observability matrix, O, given by [Franklin et al.,
2006, p. 502]:

O =









H

HΦ
...

HΦn−1









. (F.8)

In order for the system to be observable, the observability matrix must have full column rank.
The column rank is verified using the Matlab

TM function rank(), which is 3 and hence all the
states are observable. Equations (F.6) and (F.7) are the augmented linear discrete state space
model used for Kalman estimation in Chapter 7.
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