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Preface

This project has been created as documentation for the work done by Karsten Rasmussen
and Tuan Kieu, studying at Aalborg University Esbjerg. The project has been developed
during 9th and 10th semesters of the IRS (Intelligent Reliable Systems) masters, and as
such it is a master thesis.

The project has been made in cooperation with Danfoss - which also offered the original
project proposal. During the project we have visited Danfoss to learn the system and
to keep the project on track. Our guidance and help has come from Roozbeh Izadi-
Zamanabadi, Danfoss and Zhenyu Yang, Aalborg University Esbjerg. We would like to
express our thanks for their interest in the project, and their help along the way.

The language in the report is kept as non-technical as possible to appeal to a wide range
of readers. With this said, it should be noted that some sections and chapters may
require previous knowledge of modeling and fault detection terms. The report should
require no previous knowledge of refrigeration-systems, but the subject can have a steep
learning curve. As this is the case, anyone who wants to learn more about refrigeration
should read the book [Din03] or if a shorter more precise description is sufficient, one
could visit the website [WRE].

The report has 3 main chapters, namely Chapter 2 (Thermodynamic Principles), 3 (Mod-
eling) and 4 (Fault Detection and Isolation). These main chapters have their own table
of contents, chapter overview and introduction. Obviously all chapters will be based on
the previous ones, but the chapter overview and table of contents will help any reader
who wishes to read specific chapters instead of the report as a whole. The remaining
chapters are structural elements of the report.

References are used where specific comments or formulas need to be documented. In
these cases, a square bracket box will appear in the text, holding a key, which is a
reference to an element in the bibliography in the back of the report (as can be seen
above in the reference to refrigeration material).

Accompanying the report is a CD - or in the case of the online digital version, a zip-file
with the CD’s contents. This CD or file holds all data, which has been found relevant
to the project hand-in. Mainly this is MATLAB, Simulink and Dymola files, a LATEX-
version of the report, and finally the report as a PDF and some of the referenced material.
When something is referred to on the CD, square brackets are used to indicate the folder
where it can be found, i.e.: [CD/Data/M-Files].
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1
Introduction

This project was selected based on a proposal from Danfoss. The focus of the project
proposal was to develop, test and implement methods to detect and isolate faults in a
supermarket refrigeration system. Furthermore it needs to fit to the different scenarios
that such a system will go through in normal operation - primarily the operation in, and
shift between night- and daytime.

As many display cases in stores hold very expensive goods (meat especially), it is evident
that fault detection in refrigeration systems can save a store from a large economical loss
in case of a failure. If no system exists to detect faults, the only way to verify that
the system is running correctly, is by manually checking temperature gauges (assuming
they show the correct temperature). As most stores have many display cases and the
employees are occupied elsewhere, a fault can go unseen for a long time. When detected,
the goods may very well be permanently damaged as the low temperatures are used for
conservation of food items.

By implementing a method to detect faults in the refrigeration system, an early warning
can be given so that the goods may be moved to a cold-storage or another display case
before they are damaged. If the fault is not only detected, but also isolated, a repair-man
will know what to bring - or the store themselves could perhaps solve the problem. In
this way the loss will be minimal, and the problem can be solved quickly.

As a basis for the project, is a model which is created by Danfoss for the purpose
of simulating a refrigeration plant. The model, which is described in Section 3.1, is
universal and should be adaptable to most store-based refrigeration systems by adjusting
the parameters. Because of the simplicity of some elements of the model (this will be
described later) and to limit the size of the project, the scope has been narrowed down
to focus on creating a fault detection and isolation system for a single display case. The
different versions of the display case model which have been used for this project is
described in the subsections of Section 3.2. The developed method can be fitted to all
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display cases in a store to check for local faults, or perhaps implemented in a larger FDI
(Fault Detection and Isolation) setup.

To test the FDI methods, Danfoss have provided a model of a normal setup for use with
Dymola, a piece of simulation software. The development- and simulation software used
throughout this project is the Simulink-Toolbox within MATLAB, and MATLAB itself
for specific calculations. As the interface between Dymola and Simulink, is a Simulink-
block which enables communication between the two programs. The main reason for
not reproducing the model in Simulink is the fact that the model uses some refrigerant
equations, released under the name RefEqns. These have been implemented into, and
included with the Dymola model from Danfoss, and will require implementation into
MATLAB/Simulink in case the model was reproduced here. Unfortunately RefEqns has
only been developed for a prior version of MATLAB/Simulink and as such they do not
work with the used version of MATLAB/Simulink. Based on this, it is a requirement
either to install Dymola or develop a MATLAB/Simulink model to be able to replicate
some of the experiments in this report. To allow the reader some freedom for testing, a
series of models which use logged measurements instead of a direct Dymola link has been
supplied on the CD, in the subfolders of [CD/Models/Simulink], and un-edited data is
available as well [CD/Data/From Dymola].

As Danfoss already have controllers for refrigeration systems this project will not focus
on anything within control. The plant model in Dymola needs some kind of control,
so Danfoss has provided a simple hysteresis controller for the display case valve, and a
similar hysteresis controller has been developed for the compressor. Appendix B gives a
description of the compressor controller, and the changes to the original Dymola model
in general.

The success criteria for the developed FDI method will be the ability to detect normally
occurring faults within a display case and adaptability to change between night- and
daytime operation. The faults which are considered in this project are described in
Section 4.1 on page 35, and the difference between night- and daytime will be described in
the modeling chapter, and tested in Section 4.6.2. Obviously, as this project is developed
in cooperation with Danfoss, it will be a bonus if the FDI solution is easily adaptable to
a real display case.



2
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2.1 Fundamental Knowledge . . . . . . 4
2.1.1 Thermodynamic Terms . . . . . . . 4
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2.3.1 Multiplex Direct Expansion . . . . . 10
2.3.2 Supermarket Display Cases . . . . . 11

Chapter Overview:
This chapter consists of three main sections. The first section goes over the fundamental
terms and the first and second law within thermodynamics which are essential for un-
derstanding the rest of the report. Concepts such as heat, enthalpy and heat capacity
is introduced and described. The second section gives a description of how refrigera-
tion systems in general work with a focus on the Vapor-Compression cycle which is the
most used method for refrigeration. The Pressure-Enthalpy diagram is described fol-
lowed by the third section. The final section describes the use of refrigeration systems
in supermarkets and gives a description of the most frequently used display cases.
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Before building a fault detection and isolation system, or even starting to model, it is
necessary to have the basics of thermodynamics in place. This chapter is written to give
a short overview of the basics on which the refrigeration system is based on. Depending
on the readers prior knowledge, the section might be either surplus or insufficient. The
reason for not covering every piece of knowledge used is that the field of thermodynamics
is huge and generally very complex.

2.1 Fundamental Knowledge

Refrigeration systems can be quite complex in their dynamics, especially as they are
primarily based on thermodynamical laws. Thereby some introduction to the primary
terms used in the report is required, and so is an introduction to the basic laws on which
the system is based.

2.1.1 Thermodynamic Terms

There are some common terms used in refrigeration system, such as latent heat (L),
heat transfer (Q̇), specific enthalpy (h), and specific heat capacity (Cp). These terms are
important in design and performance of vapor-compression refrigeration systems, and is
described briefly in this section.

Latent Heat

Latent heat is the amount of heat content of a refrigerant, which is used for absorbing or
discharging heat during a phase change from one state to another. During the change,
the temperature and pressure do not change. The phase change of the refrigerant in the
refrigeration system takes place during evaporation or condensation process and thereby
gives or takes heat to/from the refrigerant. By definition the latent heat is energy divided
by mass as in the following equation:

L =
Q

m

where L is latent heat for a particular substance in [ Jkg ]. Q is the amount of energy
released or absorbed during the change of phase of the substance in joules and m is the
mass of the substance.

Enthalpy

Enthalpy is defined as the total energy available within a refrigerant, that is used for
conversion into heat at the refrigerants current pressure and temperature. The enthalpy
is used to determine the difference in energy between two process states. The calculation
of the enthalpy (H) of the system is defined as

H = U + P · V

where H is total heat content, U is internal energy, P is the pressure, and V is volume.
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In order to determine the specific enthalpy (h) for a particular refrigerant, the enthalpy
is divided by mass.

h =
H

m

Specific Heat Capacity

Specific heat capacity (Cp) of a substance is a measurement of how much energy required
for increase the temperature of the substance by 1 degree. The subscript p in Cp indicates
that this is the specific heat capacity measured under constant pressure.

Cp =
∆Q

m ·∆T
where ∆Q is heat added to the substance, m is the mass of the substance, Cp is the

specific heat capacity measured in
[

J
kg·K

]
and ∆T is the temperature difference.

Heat Transfer

As discussed above, the two types of latent heat in a refrigeration system are: Absorption
of latent heat during evaporation Q̇e and discharge of latent heat during condensation
Q̇c. Refrigerant R-134a is most often used, and serves well as a heat transfer medium in
a refrigeration system. It absorbs heat in the evaporator and transfers that heat to the
condenser.

Refrigerant R-134a

As mentioned the refrigerant is the heat transfer medium, which allows heat transfer
from a hot medium to a cold medium. The main use of the refrigerant is in refrig-
erators/freezers and air-conditioning systems. R-134a is the refrigerant used in most
supermarket refrigeration system. It has been selected for use in refrigeration systems
because of inherent advantages that we will notice below:

• R-134a is less ozone depleting, while the other refrigerant such as R-12 contributes
to the ozone depletion.

• R-134a is noncorrosive, that is fit for the components used for compressor, piping,
evaporator and condenser.

• the refrigerant has a relative high boiling point (−26.6oC) at a pressure of 1 bar.

In order to analyze the vapor-compression refrigeration cycle, lets begin with some basic
concepts of thermodynamics laws. The first-law (conservation of mass and energy) and
the second-law of thermodynamics or entropy. These laws are discussed below.

2.1.2 First Law of Thermodynamics

The first law of thermodynamics is applied to each of the components of the vapor-
compression cycle (the description of the cycle will be given later in this chapter). It
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should be noted that each component in the vapor-compression cycle is considered as
a steady-state, steady-flow process. For an ideal vapor-compression cycle, the following
relationships are derived:

• Compression: Ẇ = ṁref · (h2 − h1)

• Condensation: Q̇c = ṁref · (h2 − h3)

• Expansion: h3 = h4

• Evaporation: Q̇e = ṁref · (h1 − h4)

The mass flow rate in the system can be calculated by the refrigerant capacity divided
by the specific enthalpy. The mass flow rate is calculated as

ṁref =
Q̇e

h1 − h4

2.1.3 Second Law of Thermodynamics

The second-law states that there exists a state variable entropy (S). The entropy is
the measurement of the dispersal of energy at a specific temperature, i.e. the change
of entropy (dS) between two states of the vapor-compression process is given by the
heat transfered (dQrev) divided by temperature (T). The change of entropy is defined
by equation

dS =
dQrev
T

where T is temperature and the subscript rev indicates to the system where process are
reversible.

The change of entropy is indicated as heat absorbed in the evaporator when dQrev is
positive, tends to the entropy (S) increases, or heat discharged in condenser when dQrev
is negative, tends to the entropy (S) decreases.

2.2 Refrigeration Principles

The basic principles of a refrigeration system is to exchange heat between a cold and a
hot zone. Generally, it can be stated that refrigeration systems hold both an evaporator,
which is cooled down and a condenser which is heated up. As the term refrigeration is
used, it is obvious that the main interest is to cool down an area, even though the same
theory can be used for heat pumps, where the hot zone is of interest. The heat exchange
is created by using a refrigerant (liquid, gas or both) as a medium for transporting the
heat-energy around a closed system.

One method which is frequently used is known as the vapor-compression cycle. By
moving the refrigerant into different pressure-zones, the temperatures for the bubble
point and dew point are altered, and a change in state of the refrigerant either consumes
heat-energy from the environment, or disspells it. Evaporation occurs at a low pressure
and temperature, and consumes energy in the form of heat from the environment, where
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condensation occurs at a high temperature and high pressure. Consequently it is possible
to transfer heat from a cold display case to the surroundings.

2.2.1 Vapor-Compression Cycle

The Vapor-compression system consists of four main components:

• Compressor

• Condenser

• Expansion valve

• Evaporator

Figure 2.1 shows a diagram of a general vapor-compression cycle. The vapor-compression
cycle is divided up into two pressure zones, a low pressure evaporating side (blue), and
a high pressure condensing side (red). After the expansion valve, mainly inside the
evaporator, the low-pressure liquid expands, absorbs heat, and evaporates, changing to
a low-pressure vapor at the outlet of the evaporator.

Figure 2.1: Diagram of a simple vapor-compression refrigeration cycle

The compressor takes this gas from the evaporator and raises its pressure and thereby its
temperature and discharges it to the condenser. In the condenser, heat from the discharge
is transfered to ambient air or to cooling water, causing the refrigerant to change back
into a liquid state. The high-pressure liquid refrigerant then passes through an expansion
valve to the evaporation side, where the pressure, and therefore the temperature is lower.
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The cycle restarts, and the low-pressure liquid refrigerant enters the evaporator, where
it again absorbs heat from the refrigerated zone, cooling it further.

To control the process, two actions can be taken. The first method is to control the
compressor (on/off or variable), and the other method is to open and close the expansion
valve - again either by on/off-control or by using a variable expansion valve.

2.2.2 Pressure-Enthalpy Diagram

Figure 2.2 on the facing page illustrates a vapor-compression cycle on a pressure-enthalpy
diagram. The diagram shows the state of the refrigerant at any combination of pressure
and enthalpy. The horizontal axis of the diagram has units of specific enthalpy and the
vertical axis in units of absolute pressure.

The area underneath the curve, is an area where the refrigerant is a mixture of liquid and
vapor. In the area above the curve, and to the left of the critical point (the absolute top
of the diagram), the refrigerant is in liquid form, and saturated, and as such there will be
no vapor in this area also called Sub-Cooled (SC). In the area to the right of the critical
point (still outside the curve), the refrigerant is entirely in a saturated gas-state, also
referred to as SuperHeat (SH). The line represents the values of pressure and enthalpy
for the states designated the ”Bubble point” (left of the critical point) and ”Dew point”
(to the right of the critical point) respectively.

In the mixture region (underneath the curve) there are horizontal lines indicating that
change of phase takes place under constant pressure at constant temperature. Likewise,
expansion of the vapor takes place at constant enthalpy. Starting at the compressor
suction line, each phase of the refrigeration cycle will be described with reference to the
following P-h diagram.

Compression (Going from state point 1 to 2)

The vaporized refrigerant comming from the evaporator is slightly superheated and at
a low pressure. When it enters the compressor, the refrigerant is compressed, and dis-
charged into the high-pressure zone. The compression is a reversible adiabatic compres-
sion process. The work done by the compressor is required for performing an isentropic
compression process and is given by:

Ẇ = ṁref · (h2 − h1) (2.1)

where ṁref is refrigerant massflow rate, and h1 and h2 is the specific enthalpy at points
1 and 2.

Condensation (Goint from state point 2 to 3)

Assuming the refrigerant comming into the condenser is hotter that the condenser itself,
which in term is hotter than the ambient air, the refrigerant is cooled down. Energy Q̇c
is released to the condenser and thereby the air, and the refrigerant condenses.

Q̇c = ṁref · (h2 − h3) (2.2)
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Figure 2.2: Pressure enthalpy diagram for refrigerant R-134a

To ensure no refrigerant passes through the valve in gaseous form, point 3 must be
outside the vapor-mix area. In other words the liquid is cooled below its bubble point
temperature. If vaporized refrigerant enters the expansion valve, the pressure difference,
and thereby flow rate, will suffer significantly.

Expansion (Going from state point 3 to 4)

The refrigerant is now a liquid at high pressure. While it flows through the expansion
valve, the pressure is dropped from the condensing pressure to the evaporation pressure,
which also entails a drop in refrigerant temperature. The pressure drop, and relatively
higher temperature causes the refrigerant to instantly start evaporating. The refrigerant
exits the valve at the state 4 as a two-phase liquid-vapor mixture.

Evaporator (Going from state point 4 back to 1)

After the expansion, the refrigerant enters the evaporator. Here, it is assumed that the
refrigerant is colder than the evaporator, which in term is colder than the surrounding
air. Based on this, the refrigerant will absorb heat from the evaporator and thereby
the air. The evaporation itself also consumes energy in the form of heat, cooling the
evaporator further.

Q̇e = ṁref · (h1 − h4) (2.3)
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Point 1 is needs to be superheated, that is, heated above the dew point temperature.
The superheating ensures no liquid will enter the compressor, which would cause damage.
Unfortunately, the heat transfer coefficient is smaller for gas than for liquid. Therefore
efficiency decreases the more superheated the refrigerant becomes. A balance has to
be found between protecting the compressor (high superheat) and system efficiency (no
superheat).

After evaporation, the low pressure, superheated gas is ready for compression again and
the cycle repeats itself.

2.3 Supermarket Refrigeration

There are many different equipment technologies offered in the supermarket today, such
as, multiplex direct expansion (DX), distributed, secondary-loop, and advanced self-
contained refrigeration systems. The multiplex direct expansion has become the most
common technology employed for the supermarket refrigeration. The multiplex DX
system will be briefly described in this section.

2.3.1 Multiplex Direct Expansion

As seen in Figure 2.3, the layout of the multiplex system consists of three main compo-
nents, display case, compressor rack and condenser unit. In this design each display case
in the sale area is connected to a suction- and liquid manifold located remotely near the
compressor rack.

Figure 2.3: Multiplex direct expansion refrigeration system [Lar07]
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The condenser unit is mounted outside the building, for example on the rooftop. The
condenser unit for the multiplex system is typically air-cooled, where heat is dispelled
to the atmosphere by using a dry coil and a rotating fan.

By placing the condenser unit and compressor rack outside the sales area allows for easy
to maintance, help to reduce noise level, and better heat rejection.

2.3.2 Supermarket Display Cases

There are many different types of supermarket display cases, the two most common types
of display cases used for store goods in the supermarket are single-deck refrigerator
for frozen goods, and multi-deck dairy refrigerator for non-frozen goods. Figure 2.4
illustrates these types.

Figure 2.4: Cross view of a single-deck and a multi-deck display case [DH01]

A general overview block diagram of a display case is shown in Figure 2.5, where the
evaporator is located below the display case. As the fan rotates, the air is being circulated
from the open display case and moved into the evaporator. Inside the display case, a
colder air leaves the coil area and creates a flow of chilled air over the goods inside the
case.

Figure 2.5: Cross section of a display case [LIZW]
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Chapter Overview:
The modeling chapter gives a description of the entire refrigeration plant based on the
model given by Danfoss. There is also a description of some concerns related to using the
model for FDI and possible improvements. Finally there is a more detailed description
of the display case, including the specific models used for the different FDI methods.
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To be able to detect errors and/or faults, it is necessary to either work directly with
the plant or have a model of the system. Using a model and not the system has a lot
of advantages; no need to be physically near the system, no need to wait for real time
execution, no possibility of unrecoverable damage and so forth. As Danfoss has supplied
a complete model of a refrigeration system within Dymola, there is no need to replicate
the model in Simulink which could also give some problems in relations to the RefEqns
software. With this said, it is still necessary to create a model in Simulink for the display
case as many of the available FDI schemes are model-based and the tool used throughout
this project is Simulink.

3.1 The Complete Danfoss model

As the development team at Danfoss also use models, it was possible to acquire a model
from them. Unfortunately some elements are not ideally suited for fault detection and
isolation. The concerns about the model and their effect are described in section 3.1.5.

The model of the plant can be seen as a group of sub-models based on the separate
elements of the system. This gives separate sub-models for the compressor, condenser,
evaporator and expansion valve. As the focus of the Danfoss model is the display case
the evaporator and the expansion valve has been combined into a single unit called the
display case. The expansion valve acts as an actuator and affects the evaporator directly,
while none of the other elements have a direct impact on the display case.

As most supermarket refrigeration systems accommodate several compressors and dis-
play cases, a suction manifold is included in the Danfoss model. This acts as a combined
container for all the refrigerant coming from the display cases, and as a source of re-
frigerant for all active compressors. In other words, it can be perceived as a reservoir
between the display cases and compressors.

An illustration of a supermarket refrigeration system can be seen in Figure 3.1 on the
facing page.

3.1.1 The Display Case

The dynamics of the display case are affected by multiple items. As mentioned it holds
the evaporator and expansion valve, but it also contains both air and goods inside the
case, and the walls between the evaporator and display-area. The display case can be
described by four states, three temperatures and one mass-flow. It should be noticed
that a temperature sensor is normally placed in a display case, but obviously not in the
goods. The sensor measures the air-temperature inside the case, but the temperature of
the goods will affect the air temperature which is why it is included in the model.

The description of the variables used for the model equations are as can be seen in
Table 3.1 on the next page. Notice that all used units are SI-units, and are taken from
[LIZW].
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Figure 3.1: Illustration of Refrigeration-Setup

Variable Unit Description
Tsub C The temperature of the goods, air or wall determined by the

subscript sub.
Mrefrig kg Mass of refrigerant in the evaporator.
Psuc bar Pressure reading the suction manifold.
Vp N/A Position of expansion valve, 0=closed, 1=open.

Qairload J Heat Flow from ambient air.
Msub kg The mass of the element denoted by the subscript sub.
CPsub

J
kg·K The specific heat capacity of the element denoted by the

subscript sub.
UAsuba→subb

J
s·K The heat transfer coefficient from element suba to subb.

Q̇suba→subb
J
s Power/Watt/Heat flow rate from suba to subb.

Table 3.1: Model Equations Legend

Tgoods

It is assumed the primary cooling of the goods is done by the air inside the case, and that
any direct heat transfer between the display case and goods can be neglected. Based on
this assumption, the following equality can be stated for the goods:

Ṫgoods =
−Q̇goods→air
MgoodsCPgoods

(3.1)

where Q̇goods→air can be described by:

Q̇goods→air = UAgoods→air (Tgoods − Tair)



16 CHAPTER 3. MODELING

Tair

The temperature of the air inside the display case is affected by the goods, the wall and
obviously the air inside the store, which can be written as the equation

Ṫair =
Q̇goods→air + Q̇Airload − Q̇air→wall

MairCPair

(3.2)

where Q̇Airload should be seen as a value representing the heat flow rate from the ambient
air to the air in the display case. This value changes during normal operation, primarily
as a function of the temperature of the ambient air. The change is most dramatic when
the display cases are covered up for the night and when the store is closed. Q̇air→wall is
described by the following formula:

Q̇air→wall = UAair→wall (Tair − Twall)

Twall

The wall obviously transfers heat between the air and the evaporator. If we name the
evaporator-energy Q̇e the equation will be:

Ṫwall =
Q̇air→wall − Q̇e
MwallCPwall

(3.3)

and Q̇e is described by the following formula:

Q̇e = UAwall→refrig (Mrefrig) (Twall − Te)

Here, Te is the evaporation temperature, which is a function of suction pressure (Psuc)
in relation to which refrigerant is used. This value can, given the pressure, be calculated
by using RefEqns [REQ], or estimated by the function:

Te = −4.3544 · P 2
suc + 29.2240 · Psuc − 51.2005

UAwall→refrig (Mrefrig) is not a constant as the other values with the UA prefix. In this
case, it is a function of the mass of the remaining refrigerant inside the evaporator, and
can be described by the formula:

UAwall→refrig (Mrefrig) = UAwall→refrigmax

Mrefrig

Mrefrigmax

where UAwall→refrigmax is the heat transfer coefficient with the evaporator filled up, and
Mrefrigmax is the total mass of the full evaporator.

Mrefrig

The final state was as mentioned the mass flow of refrigerant through the evaporator.
As the state is dependant on the position of the valve, several equations need to be
introduced. The formula from [LIZW] is

Ṁrefrig =


Mrefrigmax−Mrefrig

τfill
, if valve = 1

−Q̇e

∆hlg
, if valve = 0 and Mrefrig > 0

0, if valve = 0 and Mrefrig = 0

(3.4)
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but Danfoss has later corrected the discription to

Ṁrefrig =


Mrefrigmax−Mrefrig

τfill
− Q̇e

∆hlg
, if valve = 1

−Q̇e

∆hlg
, if valve = 0 and Mrefrig > 0

0, if valve = 0 and Mrefrig = 0

(3.5)

where τfill is a constant describing the filling time of the evaporator with the valve
open and ∆hlg is the specific latent heat of the remaining liquified refrigerant in the
evaporator, which can be calculated using the RefEqns [REQ] again, or described as a
nonlinear function of the evaporation pressure by the function:

∆hlg =
(
0.0217 · P 2

suc − 0.1704 · Psuc + 2.2988
)
· 105

Unfortunately, a lot of development was completed before the corrected matrix was
presented to us. Thereby it would require a lot of work to be re-done if the change was
implemented in the Dymola model. Based on this, it was decided to move along with
the old description. As equation 3.4 is not suited for use in modelling (because it has
multiple equations), it needs to be rewritten in the correct form. The equation will then
be:

Ṁrefrig = Vp ·
(
Mrefrigmax −Mrefrig

τfill

)
+ (Vp − 1)

(
Q̇e

∆hlg

)
(3.6)

where Vp is the position of the valve which will be ”1” for open, and ”0” for closed.

3.1.2 The Suction Manifold

The suction manifold dynamics are relatively simple, and can be modelled by a single
state. The interesting element of the suction manifold is the pressure, which is dependant
on the flow in from the display cases, the flow out through the compressor and the volume
of the suction manifold. The mass balance can be written as:

Ṗsuc =
Ṁin−suc + Ṁref,const − V̇comp · ρsuc

Vsuc · dρsuc

dPsuc

where

• Ṁin−suc is the total mass flow rate in from the display cases.

• Ṁref,const is a constant flow into the suction manifold originating from unmodeled
refrigeration units (ie. cold storages).

• V̇comp is the volume flow out produced by the compressor.

• ρsuc is the density of the refrigerant inside the manifold and can be approximated
by ρsuc = 4.6073 · Psuc + 0.3798.

• Vsuc is the volume of the suction manifold

• and dρsuc

dPsuc
is the pressure derivative of the density which can be approximated by

dρsuc

dPsuc
= −0.0329 · P 3

suc + 0.2161 · P 2
suc − 0.4742 · Psuc + 5.4817.

As previously mentioned, SI-units have been used.
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3.1.3 The Compressor

The compressor is, like the suction manifold, represented by a single function. Here, the
flow through the compressor is the interesting part, and is described by:

V̇comp,i = Compi ·
1

100
· Vsl · ηvol

where i denotes the compressor-number, Compi is the i’th compressors capacity, Vsl
is the total displacement volume and ηvol is the constant volumetric efficiency. As the
equation is only for a single compressor, the flow from all compressors must be summed
up to give Vcomp.

V̇comp =
∑

Vcomp,i i = 1, 2 · · · , n

where n is the total amount of compressors.

3.1.4 The Condenser

The condenser has no dynamics in the Danfoss model. It is assumed to be ideal, and is
modelled to give a fixed output (temperature, pressure, flow). This is one of the concerns
mentioned in the following section.

3.1.5 Concerns About The Model

Before mentioning the concerns related to the model, it should be underlined that it was
built to simulate a working system at the operating point, while keeping it reasonably
linear. For this purpose the model is ideal and it cannot be faulted. Unfortunately, the
operating-terms for this project are not ideal, as it deals with faults. This leads to some
problems that should be known, or even better, solved.

Even though the given model represents the systems behavior quite well in the defined
work-area, it has some issues which make it inconvenient for more precise modeling,
especially outside the desired operating-point. This is evident when modeling system
errors, as these will usually make the system deviate from the designated work-area.

The impacts of any and all of the used simplifications are not researched in relation to
this project. If one wishes to use the model to simulate normal operation, Danfoss have
verified the dynamics to resemble a real refrigeration plant. The concerns in this project
are purely related to the lack of detail in faulty conditions.

An extreme example of the problems with this models ability to be used for error-
detection is a compressor failure, which is described in Table 3.2. This is due to many
issues of which the majority is described in this section. The erroneous behavior of
this has been confirmed by fixing the compressor speed to zero in the model, and then
running the simulation.

General issues

Often, the real system has both temperature and pressure sensors in a lot of places.
This is because both temperature and pressure changes all the way through the system.
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Real System Modeled System
Pressure Pressure at each side of the

expansion valve equalizes given
enough time.

Pressure fixed at high pressure
side, pressure rising to extremes
at low pressure side.

Flow Will fall until both sides are at
equal pressure, then stop.

No change in flow.

Temperature Will stabilize at ambient tem-
perature over time.

High pressure side constant in
temperature, low pressure side
including goods stabilize at over
100 degrees.

Table 3.2: Example of total compressor failure - Expansion valve assumed open.

The model only calculates these values once for each side of the refrigeration system
(high- and low pressure zones) and then feeds those forwards, which does not give a
precise interpretation of the system. Another general issue, is the fact that enthalpy is
not calculated - and therefore not used - anywhere in the model. Instead temperature is
used, which holds no value relating to the amount of heat-energy in the refrigerant.

The Compressor

The model of the compressor is not based on any real compressor dynamics, but instead
an efficiency parameter, a theoretical maximum and a value representing at which speed
the compressor is running. The values are multiplied and the result is a mass flow rate
which is linear, but appears not to be specific for any type of compressor.

The Condenser

One of the four main elements of the refrigeration system, namely the condenser, is
actually not a dynamic model at all. Its functionality is just assumed to be ideal and
in the operating point at all times. It has no dependencies on the other elements of
the system, and thereby actually breaks the system loop. Given a known condensation
temperature, and a desired sub-cooling degree, the pressure is calculated using refrigerant
equations. Any input to the condenser is ignored, and the output will be the same at
any given time.

The Display Case

The display case is the most extensive part of the model. It holds two of the main
elements, and is obviously important when modeling the goods temperature, which the
model was made for. The display case is base for several concerns. One concern is
the fact that the ambient airs effect on the air inside the display case is a fixed load,
and not temperature-related. Furthermore the flow through the expansion valve is not
pressure-related, but again just a fixed value depending on how much the valve is opened.

As a final note to the display case, it should be noticed that it is assumed that the goods
have no heat transferred from the walls themselves, and that the flow of refrigerant
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into the display case is created as an intuitive filling-time formula, and not by using
thermodynamic laws.

3.1.6 Possible Improvements

To improve the model for use in FDI, several modifications could be made, but it should
be noted that each improvement will likely make the model increasingly non-linear.
Before solutions are suggested, it should be emphasized that the suggested solutions
are exactly that - suggestions. The impacts of the concerns have as mentioned not been
verified in relation to this project, and the solutions have not been tested or implemented
in any way. Some may not affect the model sufficiently to justify implementation and
other problems may have been overseen completely.

A way to improve the model would be to calculate the enthalpy. This should ideally be
the main variable of the model, as it should influence the system dynamics. By including
this, it is possible to ”input” energy into the refrigerant and ”remove” it again.

To solve the problems with the condenser it obviously is necessary to create a model
that is dynamic and not static. Assuming the above mentioned enthalpy improvement
has also been implemented, the condenser should lower the enthalpy in the refrigerant,
while dynamically calculating pressure based on the flow in and out of the condenser,
and temperature based on ambient air temperature and -flow and consumed heat-energy
from the refrigerant.

The compressor model should be verified to resemble a real compressor, or better yet,
be modeled with the applicable thermodynamic laws and formulas to resemble a real
system compressor more precisely. This will also enable the option of simulating specific
errors in the compressor - i.e. a broken impeller-blade.

Finally, the display case could be improved regarding the airload- and flow-values. The
airload should not be a fixed value, but again based on thermodynamic laws, and give
a dynamic load depending on the temperature of the ambient air. Another important
fix, is changing the flow through the expansion valve to be dynamic, and dependant on
the pressure in the evaporator and the condenser, or more precisely, before and after the
valve.

On the included CD the Dymola model from Danfoss can be found in two versions
[CD/Models/Dymola]. The original one from Danfoss, and the final version used in
this project with small adjustments to enable fault-introduction. For an overview of the
changes in the model, see Appendix B.

3.2 The Display Case Model

As there is a working interface between Dymola and MATLAB and the focus is on the
display case, there is no reason to build a model of the complete system in Simulink.
Instead a connection is made between the two programs, and then the Dymola-model
will play the role of the plant/system. With this approach chosen, only models for
fault detection and isolation are needed, as many schemes are model-based. The Linear
Kalman Filter needs a linear model, the Extended Kalman Filter uses the non-linear
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Variable Value Unit Variable Value Unit
Mgoods 200 kg CPgoods

1000 J
kg·K

Mair 50 kg CPair 1000 J
kg·K

Mwall 260 kg CPwall
385 J

kg·K
Mrefrigmax 1 kg τfill 40 s

UAgoods→air 300 J
s·K UAair→wall 500 J

s·K
UAwall→refrigmax 4000 J

s·K

Table 3.3: Established values for the used refrigeration plant [LIZW]

model, and the Unknown Input Observer uses a reduced order (Tair, Twall and Mgoods)
linear model.

For the display case model simulated in Dymola, there are several variables. These
range from the mass of the goods to the heat transfer coefficient between the air and the
evaporator wall, and can (for this specific setup) be seen in Table 3.3.

3.2.1 Continuous Non-linear Model

The non-linear model, is essentially just the difference equations described in section
3.1.1. It is used for the Extended Kalman Filter, as this is based on a non-linear model.
For good measure, the equations will be reformatted into a structure where the states
are isolated where possible.

First, Tgoods, based on equation 3.1:

Ṫgoods =
−UAgoods→air (Tgoods − Tair)

MgoodsCPgoods

Ṫgoods = −
UAgoods→air
MgoodsCPgoods

Tgoods +
UAgoods→air
MgoodsCPgoods

Tair

Now Tair which is based on equation 3.2:

Ṫair =
UAgoods→air (Tgoods − Tair) + Q̇airload − UAair→wall (Tair − Twall)

MairCPair

Ṫair =
UAgoods→air
MairCPair

Tgoods −
UAgoods→air + UAair→wall

MairCPair

Tair

+
UAair→wall
MairCPair

Twall +
Q̇airload
MairCPair
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Twall, based on equation 3.3:

Ṫwall =
UAair→wall (Tair − Twall)− UAwall→refrigmax

Mrefrig

Mrefrigmax
(Twall − Te)

MwallCPwall

Ṫwall =
UAair→wall
MwallCPwall

Tair −
UAair→wall + UAwall→refrigmax

Mrefrig

Mrefrigmax

MwallCPwall

Twall

+
UAwall→refrigmax

Mrefrig

Mrefrigmax

MwallCPwall

Te

The value Te can be inserted to give:

Ṫwall =
UAair→wall
MwallCPwall

Tair −
UAair→wall + UAwall→refrigmax

Mrefrig

Mrefrigmax

MwallCPwall

Twall

+
UAwall→refrigmax

(
−4.3544P 2

suc + 29.2240Psuc − 51.2005
)

MwallCPwall
Mrefrigmax

Mrefrig

Mrefrig, from equation 3.6:
Here the unlinearities block the possibility of uniquely isolating the states. Therefore it is
not modified much, but ∆hlg, which as mentioned can be described by

(
0.0217P 2

suc − 0.1704Psuc + 2.2988
)
·

105, can be inserted which results in:

Ṁrefrig = Vp

(
Mrefrigmax −Mrefrig

τfill

)

+ (Vp − 1)

 UAwall→refrigmax

Mrefrig

Mrefrigmax
(Twall − Te)

(0.0217P 2
suc − 0.1704Psuc + 2.2988) · 105



Finally, Te can be inserted to give:

Ṁrefrig = Vp

(
Mrefrigmax −Mrefrig

τfill

)
+ (Vp − 1)

·

UAwall→refrigmax

Mrefrig

Mrefrigmax

(
Twall + 4.3544P 2

suc − 29.2240Psuc + 51.2005
)

(0.0217P 2
suc − 0.1704Psuc + 2.2988) · 105



With the continuous non-linear model presented, it can now be linearized.

3.2.2 Continuous Linear Model

Normally, to create a linear model, one would just linearize an existing non-linear model
around a working point, assuming the nonlinearities close to the working point are small
enough. In case the nonlinearities are a driving force around the working point, it might
be necessary to create several models to cover the entire operational range of the system.
The problem with creating several models is that the complexity increases exponentially.
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Assuming two models are required to describe a system, all model-based methods will
require twice the amount of filtering/fault detection systems. An example of this could
be a bank of discrete linear Kalman filters, where one would usually create a Kalman
filter for each measurement. In case there are two base-models and two measurements,
a total of four Kalman filters and a selection logic is required, as opposed to two in case
the system could be described sufficiently using only one model. Fortunately, the display
case dynamics can be described using a single model, even though some changes are
necessary.

The Kalman filter and Unknown Input Observer are both based on linear models in a
state-space form. The Kalman filter uses the discrete version, which will be described
next, and the UIO uses a reduced order version of the continuous linear model. Just as
a note, the linearization is obviously based on the continuous non-linear model.

The general structure of the state space representation is described by

ẋ (t) = Ax (t) +Bu (t) + Ed (t)
y (t) = Cx (t) +Du (t)

where x is the states, u is the input and d is the disturbance, which can be written as

x =


Tgoods
Tair
Twall
Mrefrig

 u =
[

Vp
Psuc

]
d =

[
Qairload

]

Knowing that the only measurable states are Tair and Twall, the total setup will be


Ṫgoods
Ṫair
Ṫwall
Ṁrefrig

 = A


Tgoods
Tair
Twall
Mrefrig

+B

[
Vp
Psuc

]
+ E

[
Qairload

]

[
Tair
Twall

]
= C


Tgoods
Tair
Twall
Mrefrig

+D

[
Vp
Psuc

]

Starting backwards, the output will not be directly affected by the inputs, so the D-
matrix is a 2x2 and holds only zeros, while the C-matrix is a 2x4 matrix which feeds the
two measurable states right through.

C =
[

0 1 0 0
0 0 1 0

]
D =

[
0 0
0 0

]
To fill out the elements of the A- and B-matrix, each difference equation is differentiated
by the system states and the results are put into the A-matrix at their respective places.
The first two difference equations, Tgoods and Tair are both linear, and therefore require
no linearization.
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Tgoods:

dṪgoods
dTgoods

= −
UAgoods→air
MgoodsCPgoods

dṪgoods
dTair

=
UAgoods→air
MgoodsCPgoods

dṪgoods
dTwall

=
dṪgoods
dMrefrig

=
dṪgoods
dVp

=
dṪgoods
dPsuc

=
dṪgoods
dQairload

= 0

Tair:

dṪair
dTgoods

=
UAgoods→air
MairCPair

dṪair
dTair

= −
UAgoods→air + UAair→wall

MairCPair

dṪair
dTwall

=
UAair→wall
MairCPair

dṪair
dQairload

=
1

MairCPair

dṪair
dMrefrig

=
dṪair
dVp

=
dṪair
dPsuc

= 0

The third difference equation, Twall, has several non-linearities, and must therefore be
linearized in several places and fixed work-points are introduced. The fixed values and
their origin are described later in this section.

Twall:

dṪwall
dTair

=
UAair→wall
MwallCPwall

dṪwall
dTwall

= − UAair→wall
MwallCPwall

−
UAwall→refrigmax ·

Mrefrig,0

Mrefrigmax

MwallCPair

dṪwall
dMrefrig

= −
UAwall→refrigmax ·

(
Twall,0 + 4.3544P 2

suc,0 − 29.2240Psuc,0 + 51.2005
)

MwallCPwall
Mrefrigmax

dṪwall
dPsuc

=
UAwall→refrigmax·Mrefrig,0

(−8.7088Psuc,0 + 29.2240)
MwallCPwall

Mrefrigmax

dṪwall
dTgoods

=
dṪwall
dVp

=
dṪwall
dQairload

= 0

where all variables with a subscript ending with ”, 0” is a fixed workpoint value for that
variable.

The final difference equation that needs to be linearized is Mrefrig, but the result of such
a linearization would have some problems. The non-linear state has relations to Twall,
Mrefrig, Psuc and Vp, but needs to be able to stabilize at zero when the valve is closed. If
a non-zero relation exists with Twall and/or Psuc, the system will never stabilize as these
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values change all the time. Given a negative relation to itself, the system will always
stabilize when no other parameters affect the state. As it is necessary to be able to fill
up the evaporator as well, a positive relation to Vp will ensure that whenever the valve
is open (Vp = 1), the evaporator will fill up, and when the valve is closed (Vp = 0) there
will be no other elements affecting the massflow, than the massflow itself.

Based on this, an intuitive linearization has been made, using initial guesses for the
values. This could easily seem un-scientific, but as the model will go though a parameter
estimation, it is not necessary to know the exact values, as these will be discovered by
the estimation process. All the found values, including the guesses from Mrefrig can be
inserted into the A, B and E matrices

A =


− UAgoods→air

MgoodsCPgoods

UAgoods→air

MgoodsCPgoods
0 0

UAgoods→air

MairCPair
−UAgoods→air+UAair→wall

MairCPair

UAair→wall
MairCPair

0

0 UAair→wall
MwallCPwall

a33 a34

0 0 0 −0.05



B =


0 0
0 0
0 b32

0.1 0

 E =


0
1

MairCPair

0
0


where

a33 = − UAair→wall
MwallCPwall

−
UAwall→refrigmax ·

Mrefrig,0

Mrefrigmax

MwallCPwall

a34 = −
UAwall→refrigmax ·

(
Twall,0 + 4.3544P 2

suc,0 − 29.2240Psuc,0 + 51.2005
)

MwallCPwall
Mrefrigmax

b32 =
UAwall→refrigmax·Mrefrig,0

(−8.7088Psuc,0 + 29.2240)
MwallCPwall

Mrefrigmax

The estimated values are found by calculating the average during normal operation. The
specific parameters have been logged for 36000 samples (settled system), summed up and
then divided by the total amount of samples. The values can be seen in Table 3.4.

Variable Value
Twall,0 -4.2442
Mrefrig,0 0.0669
Psuc,0 1.2999

Table 3.4: Calculated averages

By inserting the values used in Dymola, which are described in the introduction to
section 3.2 combined with estimates for the ”, 0”-values, an initial guess for the state
space representation can be found. To make the model work for the linear Kalman filter
and parameter estimation, B and E need to be combined (as the KF does not support
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an E matrix), which will make Qairload be seen as an input instead. Calculating the
matrices, they will be

A =


−0.0015 0.0015 0 0
0.0060 −0.0160 0.0100 0

0 0.0050 −0.0077 −0.6524
0 0 0 −0.05

 B =


0 0 0
0 0 2 · 10−5

0 0.0479 0
0.1 0 0


The values that are inserted into matrices above should only be seen as initial guesses, as
especially the linearization might have given bad estimations of the correct value. To get
the model to fit to the plant dynamics better, a grey-box parameter identification has
been applied in MATLAB. The method uses the ”PEM” function with two parameters,
namely a datamodel built on real data from the plant and the initial guesses given
above. The C and D matrices have been fixed to the initial values, while in the A- and
B-matrices, all zeros are locked, and the structure of the model is therefore locked. It
should be noted that all four states have been used to find the best fitting model, and
thereby a 4x4 identity matrix in the place of the C-matrix. The complete state space
model including the results of the parameter estimation is

A =


−0.0015 0.0015 0 0
0.0059 −0.0161 0.0100 0

0 0.0085 −0.0084 −0.4634
0 0 0 −0.0677



B =


0 0 0
0 0 2.0074 · 10−5

0 −0.0129 0
0.0454 0 0



C =
[

0 1 0 0
0 0 1 0

]
D =

[
0 0 0
0 0 0

]
As the D-matrix will not change to anything other than zeros, it will not be mentioned
any further.

The final model has been compared to measured data in MATLAB by using the compare
function and some newly generated data from the plant (with Tair and Twall measure-
ments, starting at different temperatures). As the plant has two built-in controllers, the
inputs (Psuc and Vp) are controlled automatically, and as such, the comparison is only to
illustrate the correctness of the linear model. The result, which can be seen in Figure 3.2
on the facing page, is very good with a fit of more than 90% for the three temperatures,
and a fit of 80% of the mass flow. Even though the changes made by the parameter
estimation are generally quite small, as a comparison, if ”compare” is called with the
model before parameter estimation, all four states will have a negative fit.

3.2.3 Sampling Time

To determine the required sampling speed for the discrete versions of the model, the just
established linear continuous model can be used to determine the system bandwidth. By
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Figure 3.2: Comparison between Linear model and measured data

using the m-file supplied on the cd [CD/Data/M-Files] named bodeplot (also illustrated
in Appendix D), the plots can be reproduced. The bodeplot illustrating the fastest
dynamics is illustrated in Figure 3.3, while all the bodeplots from each input to each
output have also been plotted and can be found in Appendix A, Figure A.1.

Figure 3.3: Bodeplot - Vp to Twall

In the figure, the -3 dB point is marked which is the base for determining the system
bandwidth. The highest frequenzy (which is the one illustrated in Figure 3.3) is 0.0906.
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By dividing this with 2π, it is translated into HZ.

0.0906
2π

= 0.0144

As can be seen from the system bandwidth, the system has quite slow dynamics. Gener-
ally it is said that sampling must be at least 10 times faster than the system bandwidth,
and preferrably at least 20-30 times faster. By multplying the discovered system band-
width with 30, the minimum sampling rate is 0.4326. By taking the inverse of the
sampling rate, the sampling time is disovered, which is the time (in seconds) between
each sample.

1
0.4326

= 2.3117

As can be seen, a sample every 2 seconds is more than sufficient to get the full dynamics
of the plant. Even though this is the case, to be sure the sampling is fast enough, and
to make the following calculations easier, a sample time of 1 second is used.

3.2.4 Discrete Non-linear Model

The discrete version is used for the Extended Kalman Filter and discretization is done
by using Euler’s method [FPW98] (page 59, equation 3.2), which is

ẋ (k) ∼=
x (k + 1)− x (k)

T

where x(k) is the value of x at time tk, k is an integer indicating the step-number, and
T is the sampling time (the inverse of the sampling rate). As the sampling time is set
to 1 for this project, the function can be reduced to

ẋ (k) ∼= x (k + 1)− x (k) (3.7)

By combining equation 3.7 with the difference equations for the four states, the discrete
non-linear version will appear.

Tgoods:

Tgoods (k + 1)− Tgoods (k) = −
UAgoods→air
MgoodsCPgoods

Tgoods (k) +
UAgoods→air
MgoodsCPgoods

Tair (k)

Tgoods (k + 1) =
(

1−
UAgoods→air
MgoodsCPgoods

)
Tgoods (k) +

UAgoods→air
MgoodsCPgoods

Tair (k)

Tair:

Tair (k + 1)−Tair (k) =
UAgoods→air
MairCPair

Tgoods (k)−
UAgoods→air + UAair→wall

MairCPair

Tair (k)

+
UAair→wall
MairCPair

Twall (k) +
Q̇airload (k)
MairCPair
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Tair (k + 1) =
UAgoods→air
MairCPair

Tgoods (k) +
(

1−
UAgoods→air + UAair→wall

MairCPair

)
Tair (k)

+
UAair→wall
MairCPair

Twall (k) +
Q̇airload (k)
MairCPair

Twall:

Twall (k + 1)− Twall (k) =
UAair→wall
MwallCPwall

Tair (k)

−
UAair→wall + UAwall→refrigmax

Mrefrig

Mrefrigmax

MwallCPwall

Twall (k)

+
UAwall→refrigmax

(
−4.3544P 2

suc + 29.2240Psuc − 51.2005
)

MwallCPwall
Mrefrigmax

Mrefrig (k)

Twall (k + 1) =
UAair→wall
MwallCPwall

Tair (k)

+

1−
UAair→wall + UAwall→refrigmax

Mrefrig

Mrefrigmax

MwallCPwall

Twall (k)

+
UAwall→refrigmax

(
−4.3544P 2

suc + 29.2240Psuc − 51.2005
)

MwallCPwall
Mrefrigmax

Mrefrig (k)

Mrefrig:

Mrefrig (k + 1)−Mrefrig (k) = Vp (k) ·
(
Mrefrigmax −Mrefrig (k)

τfill

)

+ (Vp − 1)

 UAwall→refrigmax

Mrefrig(k)
Mrefrigmax

(Twall (k)− Te (k))

(0.0217P 2
suc (k)− 0.1704Psuc (k) + 2.2988) · 105



Mrefrig (k + 1) = Mrefrig (k) + Vp ·
(
Mrefrigmax −Mrefrig (k)

τfill

)

+ (Vp − 1)

 UAwall→refrigmax

Mrefrig(k)
Mrefrigmax

(Twall (k)− Te (k))

(0.0217P 2
suc (k)− 0.1704Psuc (k) + 2.2988) · 105



3.2.5 Discrete Linear Model

To discretizise the linear model is, for this specific setup, very easy. As was seen from
the discretization of the continuous model, the only real change, was the addition of each
state to its own equation. For a liniear system, the approach will be the same, and can
thereby intuitively be solved by

A (discrete) = I +A (continuous)
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This method can be used on all stages of the A-matrix, but will in this report only be
done for the final version described in the previous section. The result will be

A =


0.9985 0.0015 0 0
0.0059 0.9839 0.0100 0

0 0.0085 0.9916 −0.4634
0 0 0 0.9323



B =


0 0 0
0 0 2.0074 · 10−5

0 −0.0129 0
0.0454 0 0

 C =
[

0 1 0 0
0 0 1 0

]

Faulty Discrete Linear Models

To isolate faults, models describing other scenarios are also needed (for more information,
see the Kalman Filter section in Chapter 4). They have been found in the same way
as the model (using parameter estimation) which was just described, so the process will
not be re-written here. The models only change for the A and B matrix, and consist of
three scenarios. The matrices are presented with only three decimals to be able to keep
them within the width of the page, but in Simulink and MATLAB all decimals from the
calculations are used.

Scenario 1: Non-full display case (Mgoods = 25 kg), UAair→wall normal:

A1 =


0.994 0.006 0 0
0.005 0.987 0.008 0

0 0.009 0.992 −0.430
0 0 0 0.942

B1 =


0 0 0
0 0 1.66 · 10−5

0 −0.012 0
0.042 0 0


Scenario 2: Full display case (Mgoods = 200 kg), UAair→wall at 250 (faulty):

A2 =


0.998 0.002 0 0
0.006 0.989 0.005 0

0 0.004 0.994 −0.216
0 0 0 0.970

B2 =


0 0 0
0 0 2.01 · 10−5

0 −0.024 0
0.028 0 0


Scenario 3: Non-full display case (Mgoods = 25 kg), UAair→wall at 250 (faulty):

A3 =


0.994 0.006 0 0
0.005 0.991 0.004 0

0 0.010 0.990 −0.223
0 0 0 0.972

B3 =


0 0 0
0 0 1.66 · 10−5

0 −0.058 0
0.027 0 0



3.2.6 Reduced Order Models

The Unknown Input Observer needs a reduced order version of the continuous linear
model. The Tgoods state is taken out of the model, and will instead be a disturbance to
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the system. The reason for the change will be discussed in the relevant section, namely
where it is used, in Section 4.4.2.

Basically the model is almost identical to the full order version except that the some
rows and columns must be removed. In the A-matrix the first row and column must be
removed, and likewise the first column of C and the first row of B. The resulting matrices
can be seen below, with one difference. The element a11 in the A matrix includes a
parameter related to the Tgoods state, which must be eliminated as well. Furthermore,
the B matix is again divided into two seperate, the B and E matrix.

A =

 a11 0.0100 0
0.0085 −0.0084 −0.4634

0 0 −0.0677

B =

 0 0
0 −0.0129

0.0454 0



C =
[

1 0 0
0 1 0

]
E =

 2.0074 · 10−5

0
0


where a11 is

a11 6= −
UAgoods→air + UAair→wall

MairCPair

a11 = −UAair→wall
MairCPair

= 0.01

In the same way as for the full order model, a parameter estimation is run to make sure
the model fits well. The value in E must now represent both Tgoods and Qairload, but
as the dynamics of the disturbance are assumed unknown for the UIO, the combined
result can be changed to 1. After running the pem function, the complete model can be
described by

A =

 −0.0139 0.0090 0
0.0110 −0.0090 −0.6004

0 0 −0.1049

 B =

 0 0
0 −0.0168

0.0570 0



C =
[

1 0 0
0 1 0

]
E =

 1
0
0



Faulty reduced order models

Faulty models are required in the UIO section to isolate faults. The faulty versions are
found in the same way as the above, with the difference that the data which is used for
estimation comes from simulations where the faults have been introduced. The fault in
this case, is a change of the UAair→wall value from 500 to 450, 375 and 300 which is made
before the simulation is started. The reason for using the specified values is discussed
in the UIO section of the FDI chapter. Again the A and B matrices change, and they
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become

A450 =

 −0.0143 0.0086 0
0.0054 −0.0050 −0.3962

0 0 −0.1784

 B450 =

 0 0
0 −0.0025

0.1229 0


A375 =

 −0.0129 0.0073 0
0.0045 −0.0042 −0.4841

0 0 −0.1776

 B375 =

 0 0
0 −0.0027

0.0925 0


A300 =

 −0.0096 0.0051 0
0.0765 −0.0389 −0.6789

0 0 −0.0353

 B300 =

 0 0
0 −0.2935

0.0305 0





4
Fault Detection and Isolation

4.1 Refrigeration System Faults . . . . 35
4.2 The Kalman Filter . . . . . . . . . . 37
4.2.1 Kalman Theory . . . . . . . . . . . 37
4.2.2 Implementation . . . . . . . . . . . 41
4.2.3 Fault Detection . . . . . . . . . . . 42
4.2.4 Fault Isolation . . . . . . . . . . . . 47
4.2.5 Complete FDI System . . . . . . . . 55
4.2.6 Conclusion . . . . . . . . . . . . . . 55

4.3 Extended Kalman Filter . . . . . . 56
4.3.1 EKF Theory . . . . . . . . . . . . . 56
4.3.2 Implementation . . . . . . . . . . . 58
4.3.3 Fault Detection . . . . . . . . . . . 58
4.3.4 Fault Isolation . . . . . . . . . . . . 61
4.3.5 Complete FDI System . . . . . . . . 65
4.3.6 Conclusion . . . . . . . . . . . . . . 66

4.4 Unknown Input Observer . . . . . . 66
4.4.1 UIO Theory . . . . . . . . . . . . . 66
4.4.2 Implementation . . . . . . . . . . . 68
4.4.3 Fault Detection . . . . . . . . . . . 70

4.4.4 Fault Isolation . . . . . . . . . . . . 71
4.4.5 Complete FDI System . . . . . . . . 74
4.4.6 Conclusion . . . . . . . . . . . . . . 74

4.5 Parametric Estimation Method . . 74
4.5.1 PEM Theory . . . . . . . . . . . . . 75
4.5.2 Implementation . . . . . . . . . . . 76
4.5.3 Fault Detection . . . . . . . . . . . 76
4.5.4 Fault Isolation . . . . . . . . . . . . 76
4.5.5 Complete FDI System . . . . . . . . 78
4.5.6 Conclusion . . . . . . . . . . . . . . 78

4.6 Comparison of Above Methods . . 78
4.6.1 Detection And Isolation . . . . . . . 78
4.6.2 Night Time and Load . . . . . . . . 80

4.7 Multiple Method FDI . . . . . . . . 83
4.7.1 Detecting Faults . . . . . . . . . . . 84
4.7.2 Isolating Faults . . . . . . . . . . . 84
4.7.3 Implementation . . . . . . . . . . . 85
4.7.4 Testing the Method . . . . . . . . . 86
4.7.5 Conclusion . . . . . . . . . . . . . . 88

Chapter Overview:
The goal of this chapter is to develop a method to detect and isolate faults. The chapter
defines the faults and then continues on to the Kalman Filter and Extended Kalman
Filter. The Unknown Input Observer follows and then the Parametric Estimation, which
is included as a proof-of-concept but not completed. The final two sections enable the
reader to compare the developed methods and present a method where several methods
are combined into a fully operational FDI system.



34 CHAPTER 4. FAULT DETECTION AND ISOLATION

Fault detection schemes can in general be divided into two different categories; Model
based and Data/Signal based. In this project it has been decided to use model based
methods, as a model of the system is available. The general structure of a model based
FDI system is seen in Figure 4.1. The basic idea of the model based FDI is to use a
model to estimate how the system will evolve, and then compare it to measurements
from the plant. The difference between the two is referred to as the residual, and can
be used (either directly, or transformed into a fault indicator) to detect and isolate
faults, depending on how the models are set up. In a non-faulty system, assuming

Figure 4.1: General structure of model based FDI

ideal conditions, the residual will be zero when no fault has occurred. Under realistic
operating conditions, the residual should be a zero-mean normal distributed signal, which
is due to the noise in the system and (especially) sensors. There is a lot of terminology
being used by different literature within fault detection and isolation. Not all of the
terms are yet well defined, which can make the area somewhat confusing. To eliminate
confusion the terms used throughout this project are described here, and are primarily
taken from [TRM] which is a row of suggestions for standard terms within Supervision,
Fault Detection and Safety for Technical Processes based on the paper [IB97].

• Fault
An unpermitted deviation of at least one characteristic property or parameter of
the system from the acceptable, usual or standard condition.

• Failure
A permanent interruption of a systems ability to perform a required function under
specified operating conditions

• Fault detection
Can be seen as a binary decision. Either the system works properly or it does not
work properly

• Fault isolation
This is in some texts referred to as identification. The purpose is to determine the
location of the fault. It could for example be a malfunctioning sensor or actuator
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In this project, it is assumed that the supermarkets have no employees with sufficient
knowledge to determine if a fault-warning is a false alert, early warning of a pending
error or a full failure. Based on this assumption, it is important that false alarms are
nonexistent, or at least extremely infrequent. With this in mind, the objective of the
fault detection and isolation scheme is to be able to tell the employees at the supermarket
when a fault has occurred, how critical the problem is, and what actions should be taken.

4.1 Refrigeration System Faults

As the focus of the report is to detect and identify faults within the refrigeration system,
it is necessary to establish both the type and nature of the faults for which detection is
desired. For the purpose of this project, in cooperation with Danfoss, two types of faults
have been chosen:

• Sensor Faults

– Tair - Drift, offset, freeze and hard-over.

– Twall - Drift, offset, freeze and hard-over.

• Plant (parametric) faults.

– UAair→wall drop (related to ice/dirt buildup on the evaporator).

The system will not only have faults, but also disturbances which will also change the
dynamics of the system but should not generate a fault. The main disturbance to the
system is the value Qairload, but the mass and heat capacity of the goods, and the heat
transfer coefficient between goods and air can also be seen as disturbances. Any change
in these values should be ignored, and considered a disturbance.

The two types of faults are described in the two following subsections. As these two types
of errors (sensor and plant/parametric) will themselves provide a challenge to detect, it
has been decided not to look for the third common type of faults, namely actuator faults.
Furthermore, as the project has not dealt with control for the refrigeration system, it
would seem out of place to consider FTC (Fault Tolerant Control). Therefore the focus
has been kept on detecting faults, and if possible isolating them. Solving any arisen fault
will then be up to the supervisor or repairman.

Sensor Faults

The different types of sensor faults may not seem obvious from a single word, so here is
a description of each fault:

1. Sensor Drift.
A drifting sensor will often over time converge to a specific value (i.e. zero or a
sensor minimum or maximum). An example is a pressure sensor where the sensor
has a small leak which lets the pressure on one side slip into the other side. The
drift fault can be hard to detect as the dynamics only change marginally. The
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slope of the drift determines how hard it is to detect and isolate. In Simulink it
has been simulated as a ramp with a small slope which is added to the measured
signal.

2. Sensor Offset.
The offset error adds or subtracts a fixed value or percentage of the real value
to all measurements. The offset fault can be hard to detect, just like the drift
fault, because the dynamics are similar to the one of a non-faulty system. In this
project it is simulated as a constant which is added to - or subtracted from the
measurement. The fault is introduced abruptly in Simulink, but may also be an
effect of bad calibration or the above mentioned drift.

3. Sensor Freeze.
When a sensor freezes it stops making new measurements at any given point,
often because of mechanical restriction. An example could be a sensor which is
mechanically hindered from moving, and therefore gives the same measurement at
all samples. Some types of sensors are more prone to freeze than others, and even
though temperature sensors are often non-mechanical sensors and therefore seldom
affected by this type of error, it can still occur. It differs from hard-over in that
it happens within the working range, and there is no abrupt change in the value
of the measurement. As the dynamics change drastically when a sensor freezes, it
should be quite easy to detect. On the other hand, the lack of abrupt change could
fool some methods. In Simulink, the sensor freeze is simulated by repeating the
last given signal (unit delay loop).

4. Sensor Hard-Over.
The hard-over fault has some resemblance to the freeze fault, but instead of stop-
ping within the working range, it jumps to an extreme value. This will usually be
the lower or upper boundary of the measurable range of the sensor or zero. The
fault could come from a sensor dropping out, a short circuit, sensor power-loss and
many similar problems. The abrupt and large change in dynamics should make
this fault easy to detect. The fault is simulated by exchanging the measured signals
by a given constant.

After the signal has been introduced to its fault (if any) noise is added. The noise comes
from a white noise block with a power of 0.25. The noise makes the faults harder to
detect, and as the faults are introduced as constant faults (not intermittent), the test
scenarios are more comparable. Intermittent faults are harder to distinguish - as they
may be a result of a low-budget sensor or related to a disturbance. Other times they
may be an early warning of a defect sensor.

Parametric Fault

The UAair→wall parameter governs the heat transfer between the air inside the display
case, and the evaporator wall. If this parameter changes, it will be caused by a fault.
Two regularly occurring faults that will change the UAair→wall parameter are:

1. Freeze-over.
This happens when the refrigeration system has been running for some time. The
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surface of the evaporator is prone to condensation, which combined with the low
temperatures, will build up ice on the surface of the evaporator. When the sur-
face of the evaporator is full of ice, the surface area gets smaller and thereby less
efficient. Furthermore, there will be a delay in transferring the heat from the re-
frigerant to the air, as the heat transfer now needs to go through another medium.
Freeze-over is usually solved by holding the valve shut while heating the evapora-
tor with electrical wires until the ice has melted. This is done manually in some
systems, while it happens regularly during the normal operating routine of other
refrigeration plants.

2. Dirt build-up.
As a lot of air from the shop passes through the evaporator, given enough time,
it will be covered in dust and dirt. As the surface is covered more and more,
the airflow through the evaporator will be increasingly limited. The combination
of less air flowing through the condenser and the extra medium (the dirt) which
needs to be overcome, results in a reduced heat transfer coefficient. The normal
way to solve this is by taking the display case out of operation and then cleaning
the evaporator.

In the same way as the sensor fault, the parametric fault is only simulated as a constant
error, as this will be the case for true faults. Under normal operating conditions it will
grow larger over a long time. In Simulink it has been simulated simpler by adding a
slope to the parameter.

4.2 The Kalman Filter

Originally, the Kalman Filter was developed as exactly that - a filter. The filter required
prior knowledge of how a given system would develop over time. The more precise the
knowledge (model) was, the better the filter would work. The filter is extremely usefull
for isolating system behaviour in noisy conditions, but requires that the system can be
described reasonably well by a linear model. When the Kalman Filter was developed, the
estimated states were the interesting part, as they could be used as a reliable estimate
of the states instead of the noise-filled measurements. Furhtermore the Kalman Filter
could be used when some states of a system were not measureable. For use in Fault
Detection and Isolation the states them selves are not that interesting - but the residuals
(the difference between the measured and estimated states) are.

4.2.1 Kalman Theory

The Kalman Filter recursively calculates the estimated states for the system. All state
estimates x̂ (k) (where k indicated the current sample) are based on a weighting of the
measured state, and an initial estimation which is based on a linear description of the
state development with the previous input u (k − 1) and state x̂ (k − 1) inserted. The
estimated states are then used recursively when calculating the next state estimate.

By using knowledge of how the system is supposed to behave in the form of a model, it
is possible to filter out a large amount of noise, disturbances and small faults. As the
faults are the focus for this project the difference between the measured states and the
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estimated state, also known as the residual, is not only used to correct the estimate, but
also used to determine if a fault has occurred.

The Kalman filter model assumes the true state at time k is evolved from the state at
(k − 1) according to

x (k) = Ak · x (k − 1) +Bk · u (k − 1) + wk

y (k) = Ck · x (k − 1) + vk

where wk is the process noise and vk is the observation noise. They are assumed to be
independant (of each other), white and with normal probability distributions

p (wk) ≈ N (0, Qk)
p (vk) ≈ N (0, Rk)

The term Qk is hard to determine, as there is no specific way to determine how much
the estimated states deviates from the measured states. For this specific project, the
covariance of the observation noise Rk is defined in Simulink, and has been set to 0.25.
As the noise dynamics are assumed identical for all samples, the subscript k is unnec-
cessary, and can be removed. For real systems, the R-matrix can be found by looking at
datasheets for the sensors, or by testing the sensor at a fixed temperature, where R will
be the variance for the measurements.

The Kalman filtering can in general be divided into two separate actions; the predic-
tion/estimation and the correction/update. Figure 4.2 on the facing page shows the two
different processes with the update procedure divided into two sections. Other works
using the Kalman Filter may give alternative descriptions for the equations in the two
processes, especially in relation to the equations in the Pre-Update phase, but basically
they will all be the same. The specific equations here, come from [WB06] and [WKF].
The equations will be described in the following sections, but an important thing to no-
tice here, is the distinction between x̂ and x̂−, like P and P− which are not the same. The
superscript − indicates an a priori estimate, while the others are a posteriori estimates.
The meaning of these terms are introduced when relevant.

Estimation

The estimation process consists of two equations. The first step is estimating what all
states should be for the current sample. The result is written x̂− (k), where x̂ is the
estimated state-vector and k is the sample, while the minus (as mentioned) denote that
it is the a priori estimate. The a priori term means that it is calculated with knowledge
up to, but not including, the current sample. In practice this means that measurements
of the current state of the system are not used to predict the current state estimate.
Instead the previous estimate x̂ (k − 1) and input u (k − 1) are used to estimate where
the system states will be at the current sample by using the model. This can be illustrated
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Figure 4.2: Kalman filter operation

by the first equation of the Kalman filter:

x̂− (k) = Ak · x̂ (k − 1) +Bk · u (k − 1)

where Ak and Bk are the system matrices. In case the model cannot be described linearly,
the Kalman filter can use several system and noise models, with different variables for
each sample k. This is illustrated by the use of subscript k. As the refrigeration system
can be described sufficiently with a single model, the subscript k will no longer be
included for this equation. A final thing to note is, that for the first iteration, it is
necessary to have an initial guess for x̂ (k − 1) = x̂ (0).

The second equation within the Kalman estimation is the prediction uncertainty. This is
referred to as the predicted estimate covariance P− (k). The covariance is an estimated
accuracy of the results of the first equation. The formula for calculating P− (k) is:

P− (k) = Ak · P (k − 1) ·AT k +Qk

Q is, as mentioned previously, the covariance of the process noise. As before (due to the
assumption that the noise features will not change) the subscript k is unnecessary so it
will be left out from here on.

In the same way as the first equation, it is necessary to have an initial guess of P− (k).
The value should be in the form of a diagonal matrix, with the values on the diagonal
representing the uncertainty of the initial guesses supplied to the first equation. In case
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the initial value x̂ (0) is known to be 100% precise, the values on the diagonal of P− (0)
should all be 0. The more uncertain one is of the initial condition the higher the values
of the diagonal should be. A high value diagonal will allow the model to quickly adjust
itself to the measured states.

Update

The update process consists of five equations of which three are described as pre-update
in this report. Some sources do not calculate these equations explicitely, but rather as
a part of the update equations. As the residual and the residual covariance are needed
for further calculations, the equations are split up. The pre-update equations are: the
residual (also known as the innovation)Res (k), the residual (or innovation) covariance
S (k) and the Kalman gain K (k). The true update equations are the a posteriori state
estimate x̂ (k) and finally the updated estimate covariance P (k). To understand the
update process, a few terms need to be understood. First of all, there is the term a
posteriori. Opposed to the a priori estimate, the a posteriori state estimate uses all
knowledge, including the current measurements to make its estimate.

The first equation in the update process calculates the residual, which as mentioned is
used to detect faults. The result of the equation is the difference between the measured
and estimated output.

Res (k) = y (k)− Ck · x̂− (k)

The second equation is the residual covariance. Note the Rk value, which is a main part
of the noise and fault filtering.

S (k) = Ck · P− (k) · CkT +Rk

After the residual covariance has been found, the optimal Kalman gain is calculated,
which is used to correct the a priori state estimate. The larger the Kalman gain is,
the more the residual will affect the a posteriori state estimate. If K (k) is zero, the
a posteriori state estimate will be equal to the a priori state estimate. K (k) can be
calculated by:

K (k) = P− (k) · CT k · S (k)−1

The optimal Kalman gain is then multiplied with the residual, and added to the a priori
state estimate, which results in the a posteriori estimate:

x̂ (k) = x̂− (k) +K (k) ·Res (k)

The final calculation in the update process is the estimate covariance, which needs to be
updated. This is done with the following equation:

P (k) = (I −K (k) · Ck) · P− (k)

where I is the identity matrix. After the update has been completed, the process is
repeated as another sample is taken. As Res (k) will be very noise-filled, a fault indicator
based on the residual can be used to detect faults instead. This can be found by using
the equation:

ek = ResT (k) · S−1 (k) ·Res (k)
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(a) Kalman Filter (Main Model) (b) Prediction (Submodel)

(c) Update (Submodel) (d) Fault I.

Figure 4.3: Kalman filter including sub-models

4.2.2 Implementation

As fault detection and identification requires different methods, this section describes how
the Kalman filter is implemented generally. In the detection and isolation sections, some
elements are added and/or changed within the kalman filter, which will be described in
the relevant documentation. For a complete description of the Simulink implementation,
check Appendix C. The Simulink model can be seen in Figure 4.3, where subfigure
4.3a is the Kalman Filter itself, and subfigure 4.3b and 4.3c are the submodels within.
Subfigure 4.3d is the fault indicator, which is a submodel of the update process. By
checking the model, it is possible to verify that the results are in agreement with the
equations described in Section 4.2.1. The places where initial conditions are required
can be identified by the unit delay. The unit delay is used three places, to feed back
the a posteriori state estimate and prediction error covariance and finally to delay the
input signal. The input signal and state estimate are initialized at zero, as it is not
possible to know exactly what these values will be at any given time, without making a
measurement. As the initial state is unknown, the initial value for the prediction error
covariance is set to be the identity matrix. This should allow the estimation to correct
itself quickly.

The A, B and C matrices are taken from the discrete linear model derived in section
3.2.5. The R matrix is as mentioned the observation noise covariance (for this scenario
0.25 for both measurements) and is therefore I ·0.25 as the measurement noise is assumed
uncorrelated. The Q matrix is initially set to be identical to R, and then tweaked in the
following sections to give the desired result. Generally Q is not a value to tweak, but as
it can be hard to determine, some adjustment is allowed. The y and u signals are taken
from the Dymola interface.
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4.2.3 Fault Detection

Detecting a fault in a system using the Kalman Filter, is as mentioned done by checking
the size of the residual. In case an error occurs during normal plant operation, it should
be evident by the residual, depending on the magnitude and nature of the fault. Un-
fortunately, as measurements can be very noisy, it can be hard to detect changes in the
model, and even harder to establish a way for automatic detection. A way to improve
the detectability is to use a fault indicator based on the residual instead. This should
improve chances of detecting a fault.

In practice, detection is done by comparing the residual (or the fault indicator) to a
pre-determined border. In the ideal situation, where no noise exists, and the model is a
perfect description of the system the residual (and obviously the fault indicator) will, at
all times, be zero. When a fault is introduced to the measurements of the plant or the
plant itself, the residual will be non-zero. As an example, if the temperature sensor of
Tair suddenly has an offset of plus one degree, the residual for Tair will jump to 1. The
residual for the next iteration will then be somewhere between 0 and 1, depending on
the size of Q in relation to R. This is because the Kalman Filter seeks to adjust itself so
the residual becomes zero. In case the fault is constant, the residual will never return to
zero, but will always have a small steady state error. This will also be the case for the
Twall measurement (as one affects the other, an error in one state will propagate itself
to the others).

The problem with the mentioned method is that the measurements are not noise-free
in the real world, and the total plant dynamics are rarely completely described in the
model and are subject to small changes due to disturbances. This implies that the
residual will never stabilize at zero, but instead be a product of model uncertainty and
noisy measurements. In case the model is reasonably well described, the mean of the
residual will be close to zero with the main part of the white noise propagated directly
into the residual.

In case faults are hard to detect it might indicate that Q is too small. By making Q
smaller the model is trusted more as less of the residual is assumed to be due to a bad
model. With the correct values for R and Q, the residual will hopefully show a spike
when a fault occurs, and the fault indicator should indicate the fault clearly.

The main problem with Q becoming too small is that model errors will also be much
more visible in the residual. This will cause problems for systems where the plant is
poorly modeled. It is visible that the Kalman Filter methods works best for situations
where a good plant model exists, or where faults change system dynamics drastically.

The simplest way to detect a fault is to compare the fault indicator of a faulty signal
to one with no errors and then determine a ”threshold” where a fault is claimed. By
selecting a border which is less than the fault indicator in case of fault, but larger (and
preferrably with a margin) when no fault is introduced, a fault can be claimed. A more
reliable method, is using ”CUSUM” (Cumulative Sum), which will be described later.

The Q matrix is, as mentioned, initially defined as being a diagonal matrix with 0.25 in
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all places. By using trial and error (to make faults more visible), Q has been corrected.

R =
[
0.25 0

0 0.25

]
Q =


0.25 · 10−3 0 0 0

0 0.25 · 10−3 0 0
0 0 0.25 · 10−3 0
0 0 0 0.25 · 10−3


The above mentioned Q and R matrices give a clearer result. The reason for R being a
2x2 matrix, and Q a 4x4, is that R is related to the measurements (Tair and Twall) while
Q is related to the states. Both Q and R should always fit to the system (depending
on noise levels, model uncertainty, faulty scenarios etc.). The used values for Q and R
indicate that the state estimates are trusted to be very reliable while the measurements
are less reliable. A problem that can arise from trusting the model to much, is that
disturbances and model uncertainty will also be claimed as faults, and the system will
take a long time to stabilize.

Now that Q and R have been determined, the faults can be applied to the system. Section
4.1 described the faults, which for the Kalman Filter are implemented in the following
way:

• Sensor Drift
Implementation: Add a ramp with a slope of +0.001 ◦C per second/sample.

• Sensor Offset
Implementation: Add a fixed value of 2.5 ◦C to each measurement.

• Sensor Freeze
Implementation: Repeat the previous signal.

• Sensor Hard-Over
Implementation: Replace measured signal by a fixed value of 25 ◦C.

• Dirt/Ice buildup (UAair→wall drop)
Implementation: Steady drop in UAair→wall from 500 at time t=6000 to 250 at
time t=16000.

In Figure 4.4 and 4.5, the fault indicators can be seen for faults introduced to the Tair-
and Twall-sensor respectively. Each figure consists of four plots, while Figure 4.6 is the
dirt/ice buildup fault. Each figure shows a five hour simulation (18000 samples - sampling
at 1 Hz), and after 2.5 hours (9000 samples) the faults are introduced to their respective
simulation.

As can be seen from the three figures, some of the faults generated are almost impossible
to detect by using a simple detection border. It is especially hard to distinguish between
faults and normal operation for drift and offset faults. To detect these faults, a CUSUM
(Cumulative Sum) method can be used. CUSUM for a signal can be calculated as:

Z (k) = Z (k − 1) + (e (k)−mean) (4.1)
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Figure 4.4: Tair sensor faults

Figure 4.5: Twall sensor faults

Figure 4.6: UAair→wall drop (Dirt/Ice)
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where mean is the mean value of the signal in nominal operating conditions and Z (0) =
0. The problem with using this method, is that if the dynamics change even marginally,
the cumulative sum will given enough time rise above/below any given detection border.
Another method which can be found at [WCU] is

Z (k) = max (0, Z (k − 1) + (e (k)− ωn)) (4.2)

where ωn is weights, and Z (0) = 0 again. This method will only detect positive changes,
and will therefore require a similar function where ”max” is exchanged with ”min” if
negative changes are also important to detect. For this case, as e (k) is a normalized
signal, negative changes are not important, as they will mean the model is more correct.

Comparing equation 4.1 with 4.2, they will be identical for positive faults if ωn is assumed
to be the mean. To solve the problem of small dynamical changes being detected as faults,
the weight ωn can be set to the mean plus a deadzone. Using this approach, the signal
has to overcome the deadzone for Z to grow. The deadzone should be small enough
not to hinder detection, but large enough to filter out small allowable changes in the
dynamics.

The Dymola simulation has been run with a non-faulty scenario and the mean of the
e (k) signal has been found to be 1.9661. The deadzone has been set to 0.1 by trial and
error. The results can be seen in Figure 4.7 and 4.8 on the next page for sensor faults,
while a non-faulty scenario and the parametric fault is shown in Figure 4.9. As can be

Figure 4.7: CUSUM for Tair sensor faults

seen from the figures, faults are easily detectable using this method. A detection border
is needed for this method as well. By checking the graphs it seems a border of 200 should
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Figure 4.8: CUSUM for Twall sensor faults

Figure 4.9: CUSUM for nominal and UAair→wall drop (Dirt/Ice)
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be ideal. It should be noted that the mean, deadzone and detection (border) values need
to be recalculated for other systems.

4.2.4 Fault Isolation

When a fault has been detected, isolating the fault will be the next task. To be able to
localize where any given fault has occurred, there are a few methods available using the
Kalman Filter. The general approach is to expand the amount of available knowledge
of the fault, often by creating a bank of Kalman filters. In other words, several Kalman
filters are run in parallel with different conditions. One method is based on splitting
the measured plant outputs up, and feeding them to identical Kalman Filters with C-
matrices matching the used sensor. This approach is ideal for spotting sensor faults, and
will be described further in the next subsection.

Another method is based on generating multiple system models - usually one for each of
the faulty scenarios and one for nominal operation. The models are then used in parallel
Kalman Filters, and the residual of each filter is used to determine which model fits
the current scenario best. This method will allow detection of several types of problems,
especially parametric faults, but unfortunately it will in most cases require a large amount
of models as there are often many theoretical scenarios. This method will be described
in the subsection Isolation of parametric faults on page 49.

Isolation of sensor faults

Usually when splitting the measured signals into smaller groups, one of two methods are
used:

• using only one sensor per Kalman Filter, or

• using all except one sensor for each Kalman Filter.

Figure 4.10 illustrates the two above mentioned methods. In the example the plant has
three outputs (The red, green and blue line). If one sensor is used per KF, then the
faulty sensor will trigger a fault on the KF attached to that sensor. The advantage is,
that two or more sensors can fail, and they can still be isolated by this method. On the
other hand, using all except one sensor for every kalman filter will only have one KF
with the correct result in case a sensor fails. The advantage here is robustness to plant
devations (harder to generate a sensor fault) but the disadvantage is the limitation to
only a single sensor fault, as multiple sensor faults will make all KF’s claim a fault. As
an example, if the red line in Figure 4.10 represents a faulty sensor, the ”One sensor”
approach will claim a fault on Kalman Filter 1, while the other method will claim a fault
on all KF’s, except Kalman Filter 3.

For this project, the two methods will be identical though, as there are only two mea-
surements. The Kalman filter bank will therefore consist of two Kalman filters, one for
each of the measurements Tair and Twall. By using several Kalman Filters with different
signals, if any sensor is faulty or completely fails, the Kalman filter using that sensor as
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Figure 4.10: The two split-measurements KF Bank methods

input will generate larger residuals, while the filter using the healthy sensor will conti-
nously have small residuals. If only a single Kalman filter is used, it can be hard (or
even impossible) to identify which sensor is defect in the fault-scenarios shown in Figure
4.7 and 4.8 on page 46.

Figure 4.11: Simulink Implementation: KF Bank - Split Sensors

As the Kalman filters are identical to the one described in section 4.2.3, the implementa-
tion will look like seen in Figure 4.11. The matrix Q and the detection border established
for the CUSUM (Cumulative Sum) in section 4.2.3 are re-used, as they provided good
results for detection. The R matrix is reduced to a scalar (R = 0.25), as each model
only uses one plant output in this setup. To check isolation properties, all faults have
been introduced to the system again, and the CUSUM results can be seen in Figures
4.12 to 4.14 on pages 49–50. As e(k) has changed, new mean values must be calculated.
They are 0.9821 and 0.9957 for the Kalman Filter using the Tair sensor and Twall sensor
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respectively. The first figure illustrates faults on the Tair sensor, the second illustrates
faults for Twall and the final figure shows plots for a non-faulty situation and the param-
eter fault again. In all figures the green line is the residual from the first Kalman filter
(using Tair as input), and the blue line is from the second Kalman filter (using Twall as
input).

Figure 4.12: CUSUM for Tair sensor faults

As can be seen from Figure 4.12 and 4.13 on the next page, sensor freeze and hard-over
are quite easy to detect. Unfortunately, the sensor offset only passes the detection border
briefly for one of the scenarios, and not at all for the other. Sensor drift isolation is on
the other hand close to impossible, at least for small changes in temperature. The drop
in UAair→wall will also trigger a detection with the assumption it is based on sensor
fault. Based on the above results, the standard KF is not good enough to use for sensor
fault isolation.

Isolation of parametric faults

As mentioned earlier, the main problem with using multiple models is the amount of
models that are required to cover all scenarios. If some scenarios are not covered, their
occurance may result in a non-faulty conditions to be mistaken for a faulty one, and
vice versa. As the amount of goods are allowed to change during operation, a change in
Mgoods must not be seen as a fault. The remaining parameters should not change under
normal operating conditions, especially not the UAair→wall parameter. Based on this, a
total of four models are needed.

Initially, two models can be created using the nominal heat transfer between air and wall
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Figure 4.13: CUSUM for Twall sensor faults

Figure 4.14: CUSUM for nominal situation and UAair→wall drop (Dirt/Ice)
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(UAair→wall = 500), one for a full display case (200 Kg goods), and one which is close
to empty (25 Kg). For each of the two models representing different amounts of goods
within the case, another model needs to be created where the heat transfer coefficient is
reduced to 250. This gives a total of four models, which are:

1. Nominal model (Mgoods = 200 and UAair→wall = 500).

2. Non-full case, no fault (Mgoods = 25 and UAair→wall = 500).

3. Full case, dirt/ice-over (Mgoods = 200 and UAair→wall = 250).

4. Non-full case, dirt/ice-over (Mgoods = 25 and UAair→wall = 250).

The models have all been found in the modeling chapter, and have for identification
purposes been named xyyyzzzz, where x identifies the matrix (x=A for the A-matrix
etc.), yyy is the UAair→wall parameter and zzzz is either ”Half” or ”Full”, where ”Half” is
used as ”Non-Full”. The nominal model matrices have been named by the same standard
as well. The setup can be seen in Figure 4.15.

Figure 4.15: KF: Multiple Model Adaptive Estimator

To be able to reliably select the the most likely scenario, a method referred to as MMAE
(Multiple Model Adaptive Estimation) has been used. This method calculates the prob-
ability of each model being true, based on the residual (Res (k)) and the residual covari-
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ance (S (k)). The equation for calculating the probability is:

p (i|k) =
l (i|k) · p (i|k − 1)∑N
j=1 l (i|k) · p (i|k − 1)

where N is the total amount of models, and l (i|k) is the likelihood that the i’th model
is correct at sample k, described by:

l (i|k) =
1

|2πSi (k) |
1
2

· exp
[
−1

2
·ResiT (k) · Si−1 (k) ·Resi (k)

]

where it should be noted that |2πSi (k) |
1
2 is the square root of the determinant of

2πSi (k).

Figure 4.16: Likelihood Function in Simulink

Implementationwise, the likelihood is calculated locally within each Kalman filter in a
submodel which is illustrated in Figure 4.16. As can be seen from the figure, Res (k) and
S (k) are the only inputs, and the block gives the likelihood (l (i|k)) as output. A block
was created for the purpose of finding the determinant of a 2x2 matrix. As with the
remaining Simulink setup, Appendix C has a description of the determinant block. When

Figure 4.17: Possibility Function in Simulink

all likelihoods have been calculated, they are combined in another submodel to form the
probability. This submodel can be seen in Figure 4.17. The model holds a saturation-
block, that is necessary to make sure the probabilities do not lock themselves. In case
any single probability (e.g. p (s|k) for s) reaches zero, then it is locked to a probability
of zero, as p (s|k − 1) = 0 is multiplied with the new likelihood in the numerator. By



4.2. THE KALMAN FILTER 53

setting a lower border of 0.01 and no upper limit for all probabilities, the freedom for
the probability calculator is still very high.

To verify that the MMAE approach can actually detect when a fault occurs without
giving fake warnings, two scenarios have been tested. For the following three figures,
it should be noted, that the first few hundred samples show an unsettled system and
Kalman Filters. Both scenarios have a drift in UAair→wall which is introduced at time
t=6000 with a downward slope of -250/10000. At time t=16000 the slope is removed,
and the value is stable at 250 for the remaining time.

The difference between the two scenarios, is the amount of goods inside the display case.
For the first scenario, Mgoods is fixed at 200 kg, while it is fixed at 25 for the other
scenario.

The plant and Kalman filter should have more than enought time to stabilize at the
beginning - and to adjust the prediction to the new scenario at the end of the change
in mass. The probability outputs can be seen in Figure 4.18 and 4.19 on the following
page, where

1. Blue Line: Nominal model (Mgoods = 200 and UAair→wall = 500).

2. Green Line: Non-full case, no fault (Mgoods = 25 and UAair→wall = 500).

3. Red Line: Full case, dirt/ice-over (Mgoods = 200 and UAair→wall = 250).

4. Cyan Line: Non-full case, dirt/ice-over (Mgoods = 25 and UAair→wall = 250).

The mathematical description of the development in the two figures is

1. UAair→wall =


500 for t < 6000
500− (t− 6000) · 0.025 for 6000 ≤ t ≤ 16000
250 for t > 16000

Mgoods = 200 kg
For Figure 4.18 on the next page

2. UAair→wall =


500 for t < 6000
500− (t− 6000) · 0.025 for 6000 ≤ t ≤ 16000
250 for t > 16000

Mgoods = 25 kg
For Figure 4.19 on the following page

As can be seen, the MMAE method does not give a clear result, but it gives a good
estimate at the correct model. Based on the results of the above tests, it can be seen in
Figures 4.18 and 4.19 on the next page that the system can detect when the evaporator
is either iced over or built up with dirt given normal daytime operational conditions. As
the Qairload value is an input to the system, the model should fit well under night-time
operation as well, assuming the input is changed when the display case is covered. This
will be checked for in Section 4.6.
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Figure 4.18: KF-MMAE: Mgoods=200, Drift in UAair→wall

Figure 4.19: KF-MMAE: Mgoods=25, Drift in UAair→wall
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Another method referred to as IMM (Interactive Multiple Model), could theoretically
give better results for fault isolation, but as the KF has some shortcommings, it has been
decided not to spend time developing this method.

4.2.5 Complete FDI System

As a FDI system consists of several types of isolation used in conjunction with a detection
method, it is necessary to determine how they should interact. If processing power is
an issue, it is an advantage only to have the detection system active when running in a
nominal situation, and then only activating the isolation algorithms in case of a fault.
Unfortunately some faults are detectable but not possible to isolate using the Kalman
Filter.

Based on this, it is not possible to create a complete FDI system using the Kalman
Filter that can actually isolate all faults. As was visible from the split measurements
approach, faults that follow the systems dynamics (drift and offset) are impossible to
isolate. Complete sensor malfunction (freeze and hard-over) can be detected, and the
sensor isolated - and so can parametric changes with the MMAE approach. Given the
relative good results here, there is a chance the MMAE could also detect the problematic
sensor faults. Unfortunately this would require several added models, as both models for
a positive and a negative offset are required for each of the two sensors. If it is assumed
that no faults occur simultaneously, and that the dynamics related to the goods inside the
display case will not affect the model, four added models are sufficient. With that said,
there is a good chance that false alerts will be generated, or that faults are not detected
based on the uncertainty related to the linearization, model uncertainty in general, and
the fact that the changes are relatively small. Finally, as changes related to the goods
will probably affect the model, and the fact that the airload can change during the day,
the chance of correctly isolating a small deviation in temperature is marginal.

The MMAE method for isolation of parametric faults on the other hand seems relatively
good. Unfortunately, if the sensors are faulty in any way, the probability calculation is
no longer reliable. Figure 4.20 illustrates the probabilities in an example where the Tair
sensor freezes at time 9000. As can be seen from the figure, the sensor freeze fault makes
the MMAE isolate the fault as being a parametric fault related to the UAair→wall value
for periods of time. Based on the mentioned problems, it has been decided to move on
to other FDI methods, and stop development on the Linear Discrete Kalman Filter.

4.2.6 Conclusion

Detection based on the linear Kalman Filter is possible, but the results are not impressive.
The model is trusted a factor 1000 more than the measurements, which in the worst case
could result in model uncertainty triggering a false detection. Unlike fault detection,
isolation was a failure. The implementation using split measurements to a bank of
Kalman Filters can only detect complete failure of the sensors, and no fault where the
dynamics are intact to some degree. The MMAE approach works quite well when no
sensor faults are present, and could theoretically be used to detect and isolate ice-over and
dirt-buildup in cases where the sensors are known to be non-faulty. By adding sensor
fault charectaristics to additional models, the MMAE (or even IMM) approach could
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Figure 4.20: KF-MMAE: Tair Sensor Freeze

theoretically be used exclusively for fault isolation, and thereby eliminate the problems
with the split measurements KF bank. Unfortunately this would require a large amount
of models, and an equal amount of Kalman Filters in a bank. This approach has not
been tested, but it should be noted that it could require substantional computational
power and the models may be to identical for the MMAE method to actually determine
the most reliable.

4.3 Extended Kalman Filter

The linearized KF (Kalman Filter) described in the previous section can be used to
detect most faults but not always isolation. By using a more precise model, it should be
possible to get better results for detecting and especially isolating faults. A way to gain
a more precise model, is by using the Extended Kalman Filter.

As the EKF (Extended Kalman Filter) is an extension of the KF, the two methods share
a lot of theory. For some theory, the description lies in the Kalman Filter section.

4.3.1 EKF Theory

In the same way as the KF, an initial (a priori) estimate is created, which combined with
the prediction covariance creates the base for an update/correction procedure. The main
difference is, that the EKF can overcome the uncertainty related to the linearization, by
using a non-linear a priori estimation and a prediction covariance based on running local
linearization.
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Estimation

The basic theory of the estimation phase is the same for the KF and the EKF. The first
step is to create an a priori state-estimate, but as mentioned the EKF uses a nonlinear
model, described by

x (k) = f (x (k − 1) , u (k − 1) , wk−1) (4.3)
y (k) = h (k (k) , vk) (4.4)

The estimation can then be described by

x̂− (k) = f (x̂ (k − 1) , u (k − 1) , 0) (4.5)
ŷ (k) = c (k (k) , 0) (4.6)

where x̂ (k − 1) is obviously the a posteriori state estimate from the previous sample, and
u (k − 1) is the input to the same sample. By using this method, the state estimation
does not get affected by linearization problems, and a more precise estimate can be
generated, not only within the bounds of a working-point.

The second step of the estimation, is calculating the predicted estimation covariance,
which is described by:

P− (k) = Ak · P (k − 1) ·AT k +Wk ·Q ·Wk
T

The equation is nearly identical to the one used in the KF, but two things have changed.
The KF uses a pre-generated linearized version of the A matrix, where the EKF linearizes
the matrix recursively around the previous sample as a Jacobian matrix. The other thing,
is the addition of the Wk matrix. This is also an Jacobian matrix of partial derivatives
of f with respect to w (the process noise, as described in the KF section). We can write
a set of equations that linearize an estimate around equations 4.5 and 4.6.

x (k) ≈ x̂− (k) +A (x (k − 1)− x̂ (k − 1)) +Wwk−1

y (k) ≈ ŷ (k) +H
(
x (k)− x̂− (k)

)
+ V vk

where

A[i,j] =
δf[i]

δx[j]
(x̂ (k − 1) , u (k − 1) , 0)

W[i,j] =
δf[i]

δw[j]
(x̂ (k − 1) , u (k − 1) , 0)

C[i,j] =
δh[i]

δx[j]

(
x̂− (k − 1) , 0

)
V[i,j] =

δh[i]

δv[j]

(
x̂− (k − 1) , 0

)
As it can be hard to determine the specific dynamics of the noise in any given system,
the Wk and Vk matrices are assumed to be the identity matrix for all samples, and the
C matrix is linear and therefore fixed as well. Thereby the only dynamic part left is the
A-matrix. The equations 4.3 and 4.3 can thereby be seen as
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x (k) = f (x (k − 1) , u (k − 1)) + wk−1

y (k) = h (k (k)) + vk)

Update

Theoretically the update phase of the EKF is identical to the KF with two exceptions.
The first exception is that the C matrix is calculated recursively for each sample. As
the C matrix for this model has no nonlinear elements it will never change and therefore
will be identical for all samples, and be identical to the KF. The second exception is the
addition of a Vk matrix in the calculation of the residual covariance, S (k). This is the
Jacobian matrix of partial derivatives of C with respect to v (the observation noise, as
described in the KF section). In the same way as Wk, this is also assumed to be the
identity matrix. The equations are:

Res (k) = y (k)− C · x̂− (k)

S (k) = C · P− (k) · CT + Vk ·R · VkT

K (k) = P− (k) · CT · S (k)−1

x̂ (k) = x̂− (k) +K (k) ·Res (k)
P (k) = (I −K (k) · C) · P− (k)

The final equation which must be mentioned, is the fault indicator, which is identical to
the one used for the Kalman Filter.

ek = ResT (k) · S−1 (k) ·Res (k)

Now that the theory is in place, the implementation is described as it is a little different.

4.3.2 Implementation

The implementation in Simulink can be seen in Figure 4.21, and is in general quite similar
to the implementation of the KF. There are again two seperate submodels containing
the estimation (Prediction) and update (Correct) procedures respectively. As there are
several levels of models for the estimation phase, it is not described here. To find a
description, see Appendix C. The update submodel only differs from the KF version in
that the Vk matrix is added. Theoretically it is not necessary as long as it assumed to
be the identity matrix, but is included in case Vk needs to be changed.

4.3.3 Fault Detection

The fault detection procedure uses one instance of the EKF. By checking the size of
the fault indicator (e(k)), or better yet the CUSUM based on the fault indicator, it is
possible to detect if the measured signal dynamics fit with the model-based estimation.
This filters out the main part of the noise, but if a fault occurs, the signal will change
based on the dynamics of the fault. As the model is more precise when using an EKF for
a nonlinear system, it is more reasonable to assume deviations are due to noise or faults
as linearization errors are eliminated. By checking the magnitude of the fault indicator
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(a) EKF (Main Model) (b) Prediction (Submodel)

(c) Correct (Submodel)

Figure 4.21: Extended Kalman filter including primary sub-models

or CUSUM, it is possible to detect if a fault has occurred. By setting a maximum border
for the signal, a fault can be claimed if the signal becomes larger than the border. As
for the KF, this method is not robust enough

Similar to the KF, it is necessary to use a Q and R matrix. R is the same as before, as
the manually added sensor noise is identical to the one which is used for the KF. Q was
initially assumed to hold the same values, but it has been adjusted to give more reliable
results.

R =
[
0.25 0

0 0.25

]
Q =


0.01 0 0 0

0 0.01 0 0
0 0 0.01 0
0 0 0 0.01


With the given Q and R implemented, the different faults can now be introduced to find
the fault-detection border.

• Sensor Drift
Implementation: Add a ramp with a slope of +0.001 ◦C per second/sample.

• Sensor Offset
Implementation: Add a fixed value of 2.5 ◦C to each measurement.
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• Sensor Freeze
Implementation: Repeat the previous signal.

• Sensor Hard-Over
Implementation: Replace measured signal by a fixed value of 25 ◦C.

• Dirt/Ice buildup (UAair→wall drop)
Implementation: Steady drop in UAair→wall from 500 at time t=6000 to 250 at
time t=16000.

Figure 4.22 and 4.22 shows the CUSUM of e(k) (the fault indicator) for Tair and Twall.
Each figure consists of four sub-figures, plotting a five hour simulation. Figure 4.24 on
the next page shows the signal for the nominal (non-faulty) condition and a parametric
fault on UAair→wall, also for a five hour period. All scenarios are non-faulty until sample

Figure 4.22: CUSUM for Tair sensor faults

Figure 4.23: CUSUM for Twall sensor faults

9000, where each fault is introduced respectively. The figures clearly show that all faults
are easy to detect with the EKF. All types of faults generate large values using the
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Figure 4.24: CUSUM for nominal and UAair→wall drop (Dirt/Ice)

CUSUM method. By using a detection border of 200 again, all faults will be identified,
without giving false alerts (based on the test-scenarios). To illustrate when a fault will
be claimed, the border has been drawn as a red line on the previous figures.

4.3.4 Fault Isolation

When a fault has been detected, it needs to be isolated. Just like the KF, the isolation
procedure can be divided into two sections. The first is isolation of sensor faults, the
other is isolation of parametric faults.

Isolation of sensor faults

To isolate a sensor fault the measured outputs from the plant are split up, and fed to
two different EKF’s. By using this approach, if one sensor fails, the fault indicator signal
(and thereby the CUSUM) for that sensor will claim a fault while the fault indicator for
EKF with the good sensor as input will be fine. In this way, it is possible to see that
one sensor is faulty, and the system itself is not. The faulty sensor is then isolated, and
a warning is given to the operator, so the sensor can be changed or repaired as fast as
possible. The described setup can be seen in Figure 4.25 on the following page. The
basic setup is identical to the one used for the KF, and in the same way the R matrix
is reduced to a single scalar of 0.25. The Q matrix is identical to the EKF used for
detection. Figure 4.26 and 4.27 on the next page show the CUSUM output for all four
sensor faults for Tair and Twall respectively. Figure 4.28 shows the nominal non-faulty
scenario and a scenario with a drop in UAair→wall going from 500 up until time 6000
down to 250 at time 16000 and on.

From the three figures it can be seen that all faults, both sensor and parametric, are
easily detected by using a border of 200, which is again marked by a red line. If the
signal goes above this border, a fault can be claimed.
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Figure 4.25: split measurement implementation for EKF

Figure 4.26: CUSUM for Tair sensor faults

Figure 4.27: CUSUM for Twall sensor faults
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Figure 4.28: CUSUM for nominal and UAair→wall drop (Dirt/Ice)

Isolation of Parametric Fault

Isolating a parametric fault is similar to the linear Kalman Filter based on Multiple
Model Adaptive Estimation (MMAE). Again the parameters related to the goods are
allowed to change, but not the remaining parameters, especially UAair→wall. A change
in this value indicates a buildup of dirt or ice on the evaporator. To differ between
allowable changes and faulty scenarios, a total of four models have been used. They are:

1. Nominal model (Mgoods = 200 kg and UAair→wall = 500).

2. Non-full case, no fault (Mgoods = 25 kg and UAair→wall = 500).

3. Full case, dirt/ice-over (Mgoods = 200 kg and UAair→wall = 250).

4. Non-full case, dirt/ice-over (Mgoods = 25 kg and UAair→wall = 250).

The same likelihood and probability submodels which were used for the KF has been
re-used for the EKF. These are described in the KF section, and in Appendix C, so only
the overall setup will be illustrated here, and can be seen in Figure 4.29 on the following
page. The implementation of faulty models was done just by changing the values in the
equations. Q and R are re-used from the detection section. The same two scenarios that
were tested on the KF are tested here as well:

1. UAair→wall =


500 for t < 6000
500− (t− 6000) · 0.025 for 6000 ≤ t ≤ 16000
250 for t > 16000

Mgoods = 200 kg
For Figure 4.18 on page 54

2. UAair→wall =


500 for t < 6000
500− (t− 6000) · 0.025 for 6000 ≤ t ≤ 16000
250 for t > 16000

Mgoods = 25 kg
For Figure 4.19 on page 54
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Figure 4.29: MMAE implementation for EKF

Figure 4.30: EKF-MMAE: Mgoods=200, Drift in UAair→wall
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Figure 4.31: EKF-MMAE: Mgoods=25, Drift in UAair→wall

The MMAE for the EKF detects the true scenario in all cases with a much better result
than the KF, even though it some times takes some time to adjust itself to the right
scenario. The MMAE for the EKF is thereby successful.

4.3.5 Complete FDI System

To use the EKF as a complete FDI system, it must be able to detect and isolate faults.
As was illustrated, detecting faults is no problem for the EKF, and fault isolation has
been successful as well, but there is still a problem. When introducing a sensor fault, the
MMAE approach will in most cases claim a faulty scenario as the most likely. In other
words, p(i|k) will regularly be higher for a faulty model, even though the parameter has
not changed.

The problem also exists when a parametric fault has occured where the split signal
method will also claim a fault. This problem makes it impossible to distinguish between
the two types of fault.

To illustrate the problem, Figure 4.32a on the next page shows the CUSUM of the
fault indicator for the Split Signal approach with a parametric fault introduced, while
Figure 4.32b on the following page illustrates the MMAE output when a sensor fault
occurs. The parametric fault is identical to the one used elsewhere in the report. At time
t=6000 the parameter UAair→wall starts to drop until time t=16000 where it stabilizes
at 250. The sensor fault is the standard offset fault, where a fixed value of 2.5 is added
to the measurements. The figures clearly illustrate that it is not possible to determine
what kind of fault has happened. Developing a method using the EKF exclusively has
based on this problem been abandoned.
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(a) Split measurement residual output, parametric fault

(b) MMAE output, sensor freeze

Figure 4.32: False fault isolation problems

4.3.6 Conclusion

Detection using the EKF gives good results, and so does the isolation. The difference
between nominal condition and faulty is larger, and even relatively small faults can be
detected, and isolated as well. Unfortunately, the EKF has problems isolating the type
of fault, as it cannot determine of a fault is parametric or a sensor fault. If one of the
two scenarios could somehow be ruled out, a complete FDI system could be made using
only the EKF.

4.4 Unknown Input Observer

The Unknown Input Observer (UIO) is primarily used when a dominating unknown
input exists, for instance a disturbance. The general thought behind this method, is
that states that are affected by disturbances are decoupled from the unknown input
(disturbance). By defining Qairload as an unknown input, its effect does not need to
be modeled, and it can change freely without affecting the model. Futhermore, to use
the UIO for the refrigeration plant model used in this project, it is necessary to detach
Tgoods (an explanation of this will be given later in this section). Tgoods will thereby also
become a disturbance. This is by all means an advantage, as any change in the goods
dynamics will not make the system give false alerts.

4.4.1 UIO Theory

The formal definition of an Unknown Input Observer is
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An observer is defined as an UIO for the system described by

ẋ (t) = Ax (t) +Bu (t) + Ed (t)
y (t) = Cx (t) + fs (4.7)

if its state estimation error vector e (t) approaches zero asymptotically; regardless of the
presence of the unknown input (disturbance) in the system.

Equation 4.7 is the standard state space representation of a dynamic system without
direct relationship between in- and output. The final state space variables in each line
(Ed (t) and fs) are not always used and are thereby introduced; d (t) is the unknown
disturbance input vector goverened by the matrix E and fs is an additive bias signal
from the sensor which can be considered as a sensor fault. It should be noted that the
term Ed (t) is described as an additive disturbance and can relate to different kinds of
modelling uncertainties (e.g. noise, non-linear terms, linearization, approximation errors
and parameter variations). Another thing to notice about the definition, is the term
”unknown input”, which is obviously a main part of the Unknown Input Observer.

A full-order UIO structure is described by

ż (t) = Fz (t) + TBu (t) +Ky (t)
x̂ (t) = z (t) +Hy (t) (4.8)

where z (t) is the state of the UIO, x̂ (t) is the estimate of the state vector x (t), and F ,
T , H and K are matrices to be designed. The UIO can be seen visualized as a block-
diagram in Figure 4.33. A method to design H, T , F and K matrices has been proposed

Figure 4.33: The structure of UIO [CPZ96]

in [CPZ96]. The method starts by looking at the state estimation error, which is defined
as e (t) = x (t)− x̂ (t). By inserting 4.8 and 4.7 the result is:

ė (t) = [A−HCA−K1C] e (t) + [F − (A−HCA−K1C)] z (t)
+ [K2 − (A−HCA−K1C)] y (t) + [T − (I −HC)]Bu (t)

+ (HC − I)Ed (t)

where

K = K1 +K2 (4.9)
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If the following relations hold true

(HC − I)E = 0
T = I −HC (4.10)
F = A−HCA−K1C (4.11)
K2 = FH (4.12)

then the state estimation error will be ė (t) = Fe (t). This means that if the eigenvalues
of the F matrix are stable, ė (t) will approach zero asymptotically, x̂ → x. Hence, the
observer described by equation 4.8 on the preceding page is an UIO for the system in
equation 4.7 according to the definition for an UIO.

Two conditions that must be met before an UIO can exist are

1. rank (CE) = rank (E)

2. (A1, C) must be a detectable pair

where

A1 = A−HCA (4.13)

H =E
[
(CE)T CE

]−1
(CE)T (4.14)

If these conditions are met, then there exists a solution for the matrix H illustrated
above.

4.4.2 Implementation

This section provides an overview of the implementation of the UIO, where the tech-
nique and algorithms are based on the UIO theory in the previous section. The UIO is
implemented according to the block diagram in Figure 4.34, which can be confirmed by
comparing it to the implementation illustrated in Figure 4.33 on the previous page.

Figure 4.34: Block diagram for UIO implementation

As can be seen from the figures, y and u are taken as input and the state estimation
is the only output. To create the F , T , K and H matrices, a model of the system is
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necessary. This is established in the modeling chapter, and is reduced by a single state
to become a three state model. The reason for a reduction in states, is the fact that the
unknown input (Qairload) is related to the Tair state, and when calculating A1 for the four
state setup, the Tgoods state is disconnected from the remaining states, and is thereby
unobservable. As the Tgoods state only affects Tair, and the goods are unimportant in
relation to fault detection in the display case, the dynamics related to the goods can be
eliminated from the model and will become a part of the dynamics of the disturbance
affecting Tair. In this way, there is a single disturbance to the system which only affects
Tair, and is actually a combination of Tgoods and Qairload. The relevant model matrices
from the modeling chapter are reintroduced below.

A =

 −0.0139 0.0090 0
0.0110 −0.0090 −0.6004

0 0 −0.1049

 B =

 0 0
0 −0.0168

0.0570 0

 (4.15)

C =
[

1 0 0
0 1 0

]
E =

 1
0
0

 (4.16)

The first thing to do when creating an Unknown Input Observer, is verifying that one
actually exists for the system. The first condition is as mentioned, that rank(C ∗ E) =
rank(E). The other condition is that (A1, C) is a detectable pair.

The rank of E is obviously 1, and the rank of CE is

rank

[ 1 0 0
0 1 0

] 1
0
0

 = rank

([
1
0

])
= 1

Thereby the first condition is met. To verify that the second condition is also met,
the observer canonical form of A1 and C must have full column rank. First, by using
equations 4.14 and 4.13 H and A1 are calculated.

H =

 1 0
0 0
0 0

 A1 =

 0 0 0
0.0110 −0.0090 −0.6004

0 0 −0.1049


Now that A1 has been calculated, the observability matrix for (A1, C) can be found

 C
CA1

CA1
2

 =



1 0 0
0 1 0
0 0 0

0.0105 −0.0090 −0.4941
0 0 0

−0.0001 0.0001 0.0480


The observability matrix already suggest that it is observable, but to be sure, the function
rref in MATLAB can be called with the above result as an argument, which will give the
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reduced row echelon form of the observable matrix (A1,C)

rref (obs) =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 (4.17)

As can be seen the rank of the observable matrix (A1,C) is 3, so the system is fully
observable.

Now that is has been verified that an UIO exists, it can be designed. The matrix F
must be able to stablilize the fault, which can be achieved by selecting the values of K1.
The poles can be any randomly selected poles which keep F stable (poles in the left half
plane). The poles for A1 can be found by using the function eig(A1), which results in

eig(A1) =
[
−0.0090 0 −0.1049

]
(4.18)

The system is marginally stable, but as it needs to be completely stable, three new stable
poles are selected. By selecting poles that are relatively close to the ones of A1 the gains
of K1 are kept relatively small. The selected poles are

poles =
[
−0.001 −0.01 −0.1

]
(4.19)

With MATLAB, the gain matrixK1 is calculated by using the functionK1 = (place(A1′, C ′, poles))′,
whereafter T , F , K2 and finally K can be calculated by using equations 4.10, 4.11, 4.12
and 4.9 respectively.

K1 =

 0.0025 0.0005
0.0511 −0.0054
0.0034 −0.0008

K2 =

 −0.0025 0
−0.0401 0
−0.0034 0

K =

 0 0.0005
0.0110 −0.0054

0 −0.0008


F =

 −0.0025 −0.0005 0
−0.0401 −0.0035 −0.6004
−0.0034 0.0008 −0.1049

T =

 0 0 0
0 1 0
0 0 1


With the matrices determined, the UIO can be implemented.

4.4.3 Fault Detection

The main advantage of the UIO-setup, is that both Qairload and Tgoods are now consid-
ered as disturbances, and a change in their dynamics (which can happen during normal
operating conditions) will not trigger a false fault detection. Only the fixed part of the
dynamics is modeled, which makes the setup much more robust against false detection.

To detect faults, a single UIO is used, where a fault indicator (r(k)) is compared to an
upper bound (a threshold). The fault indicator is actually just a normalization, and is
calculated recursively by the following formula

r (k) = e (k)T · e (k) where e(k) = x(k)− x̂(k)
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To determine the bound, faults have to be introduced to the system, and the size of
the residual will determine when a fault should be claimed. The faults are described in
Section 4.1, and will not be discussed further in this section. The effect of the faults can
be seen in Figure 4.35 and 4.36 on the following page for Tair and Twall sensor faults
respectively, and finally Figure 4.37 for a fault in UAair→wall. All faults are introduced
after 9000 samples, except for the parametric fault which is nominal up to time t=6000
where a downward slope is added until time t=16000 where UAair→wall stabilizes at 250.

Figure 4.35: Tair sensor faults

As can be seen from Figures 4.35 to 4.37 on pages 71–72, all faults are easily detectable.
Based on these results, the CUSUM (Cumulative Sum) method is not necessary. Even
with small faults, the residual changes dramatically, so a suggested border/threshold of
10 is included in Figures 4.35 to 4.37 to illustrate when a detection would occur.

4.4.4 Fault Isolation

In the same way as the Kalman filter and EKF, it is possible to use a bank of UIO’s.
The two previously used methods were split sensor, and a method based on multiple
models. The split sensor method will not work for the UIO, as the Tair measurement
is required for the UIO to work. Furthermore, if the Twall measurement is ignored, the
residual could easily get quite large, as Tair is allowed to change due to disturbances.

Using multiple models will allow detection of parametric faults (ice-over and dirt buildup),
but not detection of sensor faults. Obviously it is necessary to create new models for
each UIO, and thereby theoretically also new values for H, K, T and F . In reality, only
F and K change, so the remaining two can be re-used. Three new models are created
with values of 450, 375 and 300 for UAair→wall. The model creation is specified in the
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Figure 4.36: Twall sensor faults

Figure 4.37: Dirt/Ice buildup (UAair→wall drift)

modeling chapter, and the matrices are as follows

Ff1 =

 −0.0100 5.8 · 10−5 0
2.3 · 10−4 0.0774 −0.3962
6.9 · 10−5 0.0351 −0.1784

 Kf1 =

 0 −5.8 · 10−5

0.0054 −0.0823
0 −0.0351


Ff2 =

 −0.0099 −1.5 · 10−4 0
−0.0084 0.0765 −0.4841
−0.0021 0.0283 −0.1776

 Kf2 =

 0 1.5 · 10−4

0.0045 −0.0807
0 −0.0283


Ff3 =

 −0.0085 4.6 · 10−4 0
0.0486 −0.0672 −0.6789
−0.0014 −0.0031 −0.0353

 Kf3 =

 0 −4.6 · 10−4

0.0765 0.0283
0 0.0031


where the subscript denotes the faults

• f1: UAair→wall = 450

• f2: UAair→wall = 375
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• f3: UAair→wall = 300

By comparing the three fault indicators at each sample and selecting the smallest value,
it can be used for isolation. With an isolation border of 50, it can be assumed that
when at least one of the models have a fault indicator below 50, the fault is related to
the UAair→wall parameter, and thereby the fault can be isolated. It has been decided
that values for UAair→wall below approximately 250 should no longer be thought of as
parametric fault, but instead something more severe. This is based on a test with an
UAair→wall value of 200 which made the dynamics of the plant change drastically. Figure
4.38 illustrates a test where UAair→wall is gradually taken down from 500 to 250 in steps
of 50, lasting an hour (3600 seconds) each after a 3600 second stabilizing period at the
beginning. The isolation border of 50 has also been illustrated, where a parametric fault
on UAair→wall will be claimed if the fault indicator is below. If all the fault indicators
go above the border, the fault is no longer assumed to be due to ice/dirt buildup and
can be passed on to some other isolation procedure.

Figure 4.38: UIO: Dirt/Ice buildup fault isolation

From Figure 4.38 it can be seen that if UAair→wall drops to 250 it is isolated as not being
a parametric fault. From 300 up to 500 (both inclusive), the fault is assumed to be due
to a parametric fault in UAair→wall. To verify that a sensor fault will not be claimed
as a parametric fault, two tests have been made with the system in nominal operating
conditions. The first is a drift fault on Twall with a slope of 0.001, while the other is an
offset fault on Tair of +2.5 degrees, both beginning at time t=9000. These faults have
been confirmed to trigger a detection, and from Figure 4.39 on the next page it is evident
that these faults are not isolated as parametric faults.
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Figure 4.39: UIO: Sensor Faults in Parametric isolation

4.4.5 Complete FDI System

As the UIO cannot isolate sensor faults, it is not possible to create a complete FDI
solution using only UIO. The UIO method can be used for fault detection but not for
fault isolation, unless it is in cooperation with another method.

4.4.6 Conclusion

In comparison with the Kalman filter and EKF, the UIO performs equally good or even
better at detecting faults. The ratio between faulty residual and non-faulty residual is
very high, so even small faults are easily detectable using the UIO. Another advantage is
that Tgoods and Qairload are seen as disturbances, which means that any change in type,
amount and heat parameters for the goods will not affect the model. Likewise, it is not
necessary to know when the display cases are during their day- or night cycle or room
temperature, as it is part of the disturbance, and thereby filtered out.

For fault isolation, the UIO performs very well when trying to isolate parametric faults.
Unfortunately the UIO cannot isolate sensor faults, as it is not possible to create a split
sensor approach. If used in conjunction with another method that can isolate parametric
faults, the UIO might be a good basis for fault detection and isolation.

4.5 Parametric Estimation Method

By using a parametric estimation method, it is possible to recursively verify that the
variables in the linear model (ie. the A and B matrix) are correct. By using logged input
to, and output from the plant, one of several parametric estimation methods can be
used. Unfortunately many of the methods require a SISO (Single Input, Single Output)
system, or at best a MISO (Multiple Input, Single Output) and are based on transfer
functions. Based on this, it has been decided to use an offline parameter estimation
method recursively, by which it can be perceived as an online method. The method
is the ”PEM” function from MATLAB, which has also been used for estimation in the
modeling chapter.

Another restriction in the current implementation is that all four states must be used
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for the estimation to work. By developing the parameter estimation, and perhaps using
another method, there is a chance this might not be necessary in a final version. In
case the last states are still required, they can be estimated using a simple estimator
or one of the methods developed in this report. With this said, the effect of using
such an estimation, especially when a fault occurs, should be researched before any
implementation.

4.5.1 PEM Theory

The PEM function needs at least two arguments when called; ”DATA” and ”Mi”. The
”DATA” argument must be the data for which the estimation is to be made - for example
as an iddata object, and ”Mi” is the model structure. By adjusting the free parameters
of the model, the PEM function tries to minimize a cost-function which is calculated
recursively. The larger the difference between the measurements and the estimation
using the model, the higher the cost will be.

An ”idss” object (state space model) is created in MATLAB, with the established model
from Chapter 3 and then the PEM function is called the PEM function with a set of
measured data. The model will need the matrices A, B, C, D and K and the vector X0
plus a predefined structure of the matrices. The initial A, B, C and D matrices are as
mentioned given in the modeling chapter. Theoretically both the continous and discrete
versions can be calculated, but the continous version has been chosen. The K-matrix is
a disturbance matrix, but as Qairload is modeled as an input, the K-matrix will consist
of only zeros. The vector X0 is the x-vector a single step before the first measurement,
which can be estimated quite well by taking the first measurement used for estimation
(as mentioned, all states are required for the current setup).

The structure of the model to be estimated will determine which parameters are free for
the PEM function to tweak. The more free parameters, the higher are the chances that
faults will ascribed to multiple parameters - some of which may have nothing to do with
the fault. This is especially evident when some states are not sufficiently excited, and
where model deviation exist (for example non-linearities described in a linear model).
Based on this, it is wise to lock down as much of the model as possible. The D and K
matrix should not change and can be locked to their initial values. The B and C-matrix
could theoretically be allowed to change, but as the faults described in section 4.1 have
no relation to the parameters in the B-matrix, and most sensor faults will not simply
affect the C-matrix, both matrices will be locked as well.

The final element is the A-matrix, where it has been decided that all elements that
are initially zero should be locked, as the structure of the matrix should not change.
Regarding the remaining elements, there are two options; they can all be left to change
during the parameter estimation, or all elements except the four central values can be
locked. The motivation for leaving the four central elements free, and only them, is to
freeze everything not related to the parametric fault which is saught for. The advantage
is that when the parameters start to drift, the estimation process will not ascribe it to
some other elements, but the disadvantage is that the PEM function will assume all
deviations can be fixed by correcting the four central elements, which might make them
very unstable. For the tests in this report, all elements (except zeros) of the A-matrix
has been left free.
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4.5.2 Implementation

Based on restrictions in time at the end of the project period, the parameter estimation
has not been implemented in Simulink, but only as an M-file in MATLAB. The file
can use ”true” measurements where only the two measured states are available or it can
use all four state measurements (ie. by using an estimator). The mfile, which is called
”onlineparamest”, takes the input arguments described in table 4.1, and is included in the
CD [CD/Data/M-Files] and illustrated in Appendix D, with some used sub-functions.

Argument Description
ydata An array of measurements from the plant, either 2xN or 4xN (where N

is the number of samples) depending on how many measurements are
measured.

udata An array of inputs to the plant, 3xN (where N is the number of samples).
ts Sample-time for the above mentioned arrays of data.

RO Stands for Reduced Order. This element determines if only Tair and
Twall are used as plant outputs (RO=1) or if all four states are available
as measurements (RO=0).

Window The amount of prior samples which should be used for each estimation.
Wait The amount of samples to wait before the parametric estimation is run

again.
Stop As processing large arrays of data can take several hours, there is in-

cluded a ”Stop” parameter which makes the estimation stop when the
process reaches that point.

Table 4.1: Parameter Estimation Implementation

When using the reduced order version (RO=1) the results become quite unpredictable.
To solve this, it is (as mentioned) necessary to have data from all four states available.
As this is obviously not possible for normal situations, the two remaining states (Tgoods
and Mrefrig) could theoretically be found by an estimator. Unfortunately there has
been no time to develop this, so the results obtained in this report are based on the
”measurements” of Tair and Twall, while the states Tgoods and Mrefrig are taken directly
from Dymola. Based on this, the results here might very well be somewhat better than
for a real scenario, and should therefore only be seen as a test of the concept.

4.5.3 Fault Detection

The parameter estimation technique using the PEM function has a high computational
load, and is therefore not favourable to use as a detection method. Based on this, it has
been decided not to develop a detection method using this technique. With this said,
parameter estimation using a method with a lower computational load could yield good
results.

4.5.4 Fault Isolation

As the dynamics and the magnitude of the sensor faults always will be unknown, it can
be quite hard to isolate a sensor fault using the parameter estimation. Additive faults
like offset and to some degree the drift fault should theoretically be possible to isolate,
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but this would require that the elements of the C matrix were free. As mentioned earlier,
many free parameters will make the estimated parameters more unstable, which some
initial tests have verified. Thereby the estimation is not robust enough to actually trust.
Based on this, is has been decided not to use the parameter estimation technique for
detecting sensor faults.

Detection of parametric faults on the other hand, is where parameter estimation tech-
niques are brilliant. Not only will the parametric estimation be able to isolate where
the fault has occured, but it can also be used for establishing the magnitude of the
problems, and thereby be used for controller reconfiguration. By using the established
method, the estimated parameters from a simulation with a parametric fault can be seen
in Figure 4.40. The function call used, was ”onlineparamest(ydata,udata,1,0,1800,10)”
which calculates the parameters each 10 seconds, using 1800 samples from ydata and
udata.

Figure 4.40: Parameters of A-matrix in parametric fault scenario

As can be seen, the changes in the parameters are clearly visible, even though some
parameters not directly related to the changing parameter also change. In other words,
if more than one parameter was allowed to change, it could easily be hard to determine
which parameter was faulty.
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Regarding sensor faults, there is no reason for testing the method. As mentioned, the two
un-measurable states are taken directly from Dymola, so if a sensor fault is introduced,
the remaining three states will still be correct (with or without noise) - which would
not be the case if an estimator had been used. Furthermore, the development of the
Parametric estimation method has been done in the very last of the project period, and
there has not been enough time to evolve the method to one which is usefull. On these
grounds, it has been decided not to go further with this approach.

4.5.5 Complete FDI System

As the parameter estimation technique used in this project is not developed enough,
there is no reason for creating a Complete FDI System. Based on the results it would
seem that a better estimation technique could give good results, especially for isolation
purposes.

4.5.6 Conclusion

Parameter estimation used as fault detection is in general a very interesting appoach, not
least because it not only allows detection and isolation, but also more detailed knowledge
about the faults and their magnitude. This knowledge can be used to fit control efforts
to the faulty system and perhaps to detect faults before they become a real problem.

The method used here is by no means developed enough to give any good results, and
is thereby no success. On the other hand, the result was no complete failure, and has
indicated that a good parameter estimation technique could be valuable for use with the
refrigeration system.

4.6 Comparison of Above Methods

The different methods that have been developed each have their own advantages and
disadvantages. To make it easier to compare the different methods, this section can
give an idea of how good the methods are at detecting faults in comparison with each
other and how much computational power they will require. Some of the methods are
clearly inappropriate for some tasks while other properties can be harder to compare.
The isolation times have not been compared, as they depend on many factors, and most
of the methods have problems distinguishing between parametric and sensor faults.

4.6.1 Detection And Isolation

The main criteria for a good FDI method, is obviously the ability to detect and isolate
faults. By comparing which method can be used for what, and how long it takes the
different approaches to detect a fault, it is easier to choose the best method for further
use.
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Detection ability and time

For the Kalman Filter, Extended Kalman Filter and the Unknown Input Observer, it has
been verified that detection is possible for all the faults mentioned in Section 4.1. The
Parametric Estimation technique on the other hand, has not been testet for detection as
it requires further development to be of any real use.

Table 4.2 illustrates the detection time for all methods and faults, presented in seconds.
The times are based on the detection borders described in their respective sections, and
all faults are introduced identically for each scenario, conforming to the following:

• Sensor Faults, all starting at time t=9000.

– Drift: +0.001 Degree per sample.

– Offset: +2.5 Degrees each sample.

– Freeze: Ignore measurement, output same signal.

– Hard-Over: Ignore measurement, output +25 Degrees.

• UAair→wall Drift

– Time t=0→6000: UAair→wall = 500

– Time t=6000→16000: UAair→wall = 500− 0.025(t− 6000)

– Time t=16000→18000: UAair→wall = 250

As the parameter estimation function has not been tested for detection, no times will be
given for PEM.

Fault\Method KF EKF UIO PEM
Tair Drift 2277 474 1408 N/A
Tair Offset 8 11 219 N/A
Tair Freeze 274 172 245 N/A
Tair Hard-Over 1 1 13 N/A
Twall Drift 3050 1079 1414 N/A
Twall Offset 101 10 2 N/A
Twall Freeze 128 153 110 N/A
Twall Hard-Over 1 1 1 N/A
UAair→wall Drift 4474 569 567 N/A

Table 4.2: Detection Time (in seconds) Comparison

As can be seen, all tested methods can detect all tested faults. The detection time ranges
from a single second up to more than an hour (4474 seconds). Based on the times, it can
still be a little hard to select any specific method as being noticably better than the rest,
but to give a better comparison base, the combined detection times can be calculated.
The results can be seen in Table 4.3.

It is evident that the KF is no way near as effective as the EKF and UIO. The EKF has
the fastest combined time but the UIO is also quite good. By including a CUSUM for



80 CHAPTER 4. FAULT DETECTION AND ISOLATION

KF EKF UIO
10314 2470 3979

Table 4.3: Combined Detection Time (in seconds)

the UIO as well, there is a chance the detection times would be reduced somewhat, to
make the UIO more competitive in comparison with the EKF.

Isolation ability

As mentioned, the time it takes to isolate an error cannot be compared reliably as the
main part cannot distinguish between sensor- and parametric fault. Table 4.4 thereby
only holds an indication of which algorithm can be used for which type of isolation. For
a true comparison, the methods will need to be combined in some way to rule out other
faults.

Fault\Method KF EKF UIO PEM
Tair Drift - +1 - -
Tair Offset - +1 - -
Tair Freeze +1 +1 - -
Tair Hard-Over +1 +1 - -
Twall Drift - +1 - -
Twall Offset - +1 - -
Twall Freeze +1 +1 - -
Twall Hard-Over +1 +1 - -
UAair→wall Drift +2 +2 + +

Table 4.4: Isolation Ability Comparison

In Table 4.4,”+” indicates that the fault can be isolated using that method, while ”-”
indicates the opposite. The superscripts refer to:

1. A parametric fault might be identified as a sensor fault. Therefore, parametric
faults must be ruled out before the method is used.

2. A sensor fault might be identified as a parametric fault. Therefore, sensor faults
must be ruled out before the method is used.

Generally, all the methods can detect and isolate a parametric fault, but the only method
which is able to isolate sensor faults reliably for all scenarios is the EKF. With this in
mind, if a multiple-method approach is developed, the EKF is needed for isolation of
sensor faults, while all methods can be used for parametric faults.

4.6.2 Night Time and Load

Two other important ways to compare the results are, the ability to adapt to night-
operation, and the load of each process. These two are tested for in the following two
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subsections.

Night Time Operation

In the introduction, it was specified that the FDI system could only be seen as successful
if is could adapt to both night and day time operation, and any change between the
two. As all tests to this point has been based on day-time operating conditions, a few
different night-time scenarios have been tested for the FDI methods.

1. Simple night time test, 5 hours (18000 samples), Qairload = 1500 and known.

• A: Nominal run without faults.

• B: Twall Sensor Offset fault (+2.5 C) at time t=9000

2. Full 24 hour (86400 samples) test run with night/day change.

• A: Store open 9.00 (t=32400) - 20.00 (t=72000), Qairload known.

• B: Same as above, but faulty timer indicates store open 10.00 - 21.00.

Scenario 2B is tested by giving the models that need Qairload the signal delayed by an
hour. In other words, when the store opens at 9.00, the display case still thinks the
display case is covered, and at 10.00 the model is told it has been uncovered. Plots
showing how the systems handle the scenarios are illustrated in Appendix A, in Figures
A.2 to A.13. A success-chart of the results can be seen in Table 4.5.

KF EKF UIO
A B A B A B

Scenario 1 + + + + +1 +1

Scenario 2 + - + - +1,2 +1,2

Table 4.5: Ability to operate in night-time

The ”+” indicates a success, while ”-” indicates a failure. For scenario 1A a success is
if no fault is detected, while 1B is succesfull if the Sensor Offset fault is detected. For
scenario 2A and 2B the FDI must not detect a fault when the system changes from day
to night time and vice versa. The UIO has an advantage here, as Qairload is a disturbance
while the other models require a correct estimate of Qairload.

The superscripts in Table 4.5 represents:

1. New detection threshold required.
The UIO model does not fit as well for night time operation as daytime. With this
said, the magnitude of the signal is noticably larger for nominal operation during
night-time, but the ratio between a faulty signal and a non-faulty signal is still
good. The solution could be either fixing the model to fit better, or to use a higher
detection threshold.
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2. No difference in results.
As the UIO does not have any elements describing Qairload (it is an unknown input),
there is no difference between these two scenarios.

Based on this, it is evident that the UIO has a clear advantage if the system has no clear
way of knowing if the display case is covered up. The UIO is thereby also more robust
in scenarios where the airload can change more dynamically thoughout the day. Having
said that, if the system has access to precise knowledge of whether it is covered or not,
the results for both the KF and EKF are good as well.

Computational Load

Another very interesting element, is the computational load. As this can be quite hard
to measure, all three fault detection algorithms (PEM not included as it is not used
for detection) have been tested in the same scenario, namely a 10 hour simulation with
all variables at their nominal values (Qairload fixed at 3000). The Simulink models
are stripped down to contain only the necessary elements (Dymola and data conversion
blocks) and a single detection algorithm for each method. The execution time is measured
with the ’tic-toc’ function in MATLAB and rounded, and the fastest time is set as index
1, as the specific time is not of interest (as it is based on the test-computers specific
hard- and software setup). Based on the execution time, the load cannot be determined,
but a feeling of the relation between the different methods can be established. As the
results are not completely reliable (not real time and based on a Microsoft Windows XP
PC) three tests are made for each scenario and an average is calculated. The results are
given in Table 4.6.

KF EKF UIO
Test 1 1.13 1.47 1
Test 2 1.2 1.47 1
Test 3 1.2 1.47 1
Average 1.18 1.47 1

Table 4.6: Execution Time Comparison With Dymola

These tests were made with the Dymola link active. To eliminate any effect by Dymola,
a similar test has been run with a much larger amount of data and both detection and
isolation systems active. It is a total of 10 consecutive simulations with a combined
simulation time of 128 hours (2x24 hours, 8x10 hours) where all scenarios are simulated
independantly. As before, the numbers are converted to an index and given in Table
4.7. The Dymola block is replaced with a block which reads logged data from the
workspace. All used files can be found on the CD in [CD/Data/From Dymola] and
[CD/Models/Simulink] including sub-folders.

KF EKF UIO
3.22 19.34 1

Table 4.7: Execution Time Comparison Without Dymola
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As can be seen from the tables, there is a large difference in whether the Dymola block
is included or not. The EKF now takes far longer than the two other methods, which is
due to the fact that the model is non-linear and based on a large amount of additions and
multiplications in order to give a prediction. Meanwhile, the KF and UIO are liniear,
and are based on a state space equation where the most of the calculations have been
made pre-simulation.

As a comparison it can be said that the 128 hour UIO non-Dymola test took approxi-
mately two times the time as the 10 hour UIO simulation with Dymola. As the Dymola-
link is not going to be used in any implementation, there is no need to examine the
effect of this delay. It should be noted, that the current implementation of the param-
eter estimation would take several hours to do the same simulation. Knowing how the
methods compare, it is possible to create a complete FDI system combining the different
methods.

4.7 Multiple Method FDI

As all the described methods have different problems with isolating one or more faults,
a multiple-method approach can be developed instead of using a single method for de-
tection and isolation. As was seen in Section 4.6, the Kalman Filter generally has too
poor results in comparison with the remaining methods to be of any use. The Extended
Kalman Filter and Unknown Input Observer on the other hand perform quite well and
have their own distinct advantages. The parametric estimation has not been developed
to a level where it is thought usefull for implementation, but is considered as it could
theoretically be used as well.

The detection system should at all times be active, and should be quite robust against
disturbances while sensitive to faults. To save computational power, there is no reason
for having the isolation process active while no fault has been detected. The isolation
system should obviously be able to locate where the fault has occured, but this can be
handled in several ways. One approach is to have a single method (generally multiple
model) that based on the measured signals can determine which fault is the reason for
any given faulty behaviour. Another method is to have several parallel isolators that will
only trigger a fault in case the fault fits to the specific fault which each isolator is built
to detect. A third option, is a serial isolation routine, where faults are ruled out and
then passed to the next isolator which then evaluates if the fault fits its own parameters.

The only developed method which is theoretically able to isolate both sensor and para-
metric faults is the MMAE (Multiple Model Adaptive Estimator) used for both the
Kalman filter and the Extended Kalman Filter. Unfortunately this approach will require
a substancial amount of models to describe faulty sensors as they can fail in several ways
with different dynamics to follow. This would require a large amount of development,
not to mention fitting to new systems and computational load, which all together makes
the MMAE a bad choice. Using parallel isolation methods is not possible either, as all
the different faults are visible in the output of the main part of the developed isolation
approaches. This leaves the serial method, which is used, and described in Section 4.7.2.
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4.7.1 Detecting Faults

The Kalman Filter, as mentioned, has too poor results to be of any use. Even though it
can be used for detection, the combined detection time calculated in Section 4.6 indicate
that it is far to slow. The parametric estimation could theoretically detect faults, but
the computational load using the developed method is extremely high, and therefore a
poor choice as a detection method.

Both the Extended Kalman Filter and the Unknown Input Observer generally have good
results for fault detection, but the UIO has the upper hand for this task. Even though
the EKF is generally faster at detecting faults, in the UIO both goods and airload are
decoupled as disturbances. Changes in these parameters can thereby not trigger a fault
detection, which makes the fault detection more robust to disturbances and other faults.
Furthermore, the large difference between faulty and non-faulty signals (with only a
normalization) makes it ideal for detection.

4.7.2 Isolating Faults

As mentioned, the isolation procedure is based on a serial approach where a fault, when
it has been detected, is ruled out as being of each known kind iteratively. As there
is two types of fault (parametric and sensor), one of them must initially be ruled out.
The parametric fault can be ruled out by using some of the developed methods. The
parameter estimation technique can be used to determine if any of the parameters have
drifted away from the expected values. Relatively small changes could indicate that is
a parametric fault, for example a change in UAair→wall which could be brought on by
ice or dirt on the evaporator. Large changes on the other hand, will most likely indicate
some other fault, which can then be assumed to be a sensor fault.

Theoretically the split signal EKF could be used with the assumption that both fault
indicators, and thereby their CUSUM, will indicate a fault if the parameter drifts. Then
if both signals indicate a fault, it can be assumed that the fault is parametric. Unfortu-
nately, this method is not feasible, as the assumption does not hold.

Some faults will be large enough to make one CUSUM grow, while the other does not
change. This was also visible in Figure 4.32a, where UAair→wall drops to 250 over some
time and only one of the two signals is claiming a fault at the beginning.

What seems to be the best approach is to use the UIO again, but with multiple models
based on different values of UAair→wall. By verifying that at least one of the models fits
reasonably, it can be assumed that the fault is due to a parametric change. By having
models for UAair→wall = 450, 375 and 300, the ice/dirt build-up fault should be possible
to isolate, as the value should not drop below 300 in normal operation. This method
was developed and tested in Section 4.4.4 and can be re-used here.

In case all the isolation-models for the UIO claim they do not fit, it can be assumed that
the fault is not due to a drop in UAair→wall. As the remaining faults considdered for this
project are sensor faults, the next step is to isolate which sensor is faulty. The only good
method developed for this, is the EKF split signal, which can then be inserted after the
multiple models.
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(a) Kalman Method (Main Model)

(b) Fault Identifier (Submodel) (c) Fault Isolator (Sub-Submodel)

Figure 4.41: Multiple Method FDI Implementation

In case both CUSUM’s from the EKF split signal are below or above the border at the
same time, the data does not fit with the expected faults, and an ”unknown” fault must
be claimed.

4.7.3 Implementation

The detailed implementation of the multiple method approach can be found in Appendix
C, while this section gives a short description. As the UIO setup used for detection is
identical to the one described in Section 4.4.3, it will be described no further. The output
signal from the UIO is sent to a subsystem called ”Fault Identifier” which generates the
ID signal. As the UIO has not changed, the detection border of 10 can also be re-used.
The top level of the setup can be seen in Figure 4.41a.

The insides of the ”Fault Identifier” block is illustrated in Figure 4.41b. The purpose of
the ”Hold Fault” subsystem is to keep the isolation system active in case of a non-stable
fault indicator signal. For some faults, the fault indicator from the UIO can be very
unstable, so by ”holding” the isolation subsystem active for 7.5 minutes after the last
fault detection, it is not continuously turned on and off for small or intermittent faults.
The used time was selected by introducing the different faults, and verifying that the
fault was detection was continuously enabled.

The output of the ”Hold Fault” subsystem is connected to the ”enable” input of the fault
isolation subsystem which is illustrated in Figure 4.41c, which also takes the input and
output from the plant (y = [Tair Twall]

T and u = [Vp Psuc]
T ). Inside the subsystem is

the fault isolation routine from the UIO chapter, and two EKF’s in a single subsystem
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using the split input method. As the EKF also uses Qairload as input, this is added to the
input signal as a fixed value. Qairload can be estimated for night- and day-time operation
and the change between the two values can be made automatically by knowing when the
store closes.

The remaining blocks in the isolation subsystem create a logic which can be described
by

Case:

1. Claim parametric fault if Multiple UIO has a fit for at least ”wait” seconds.
In other words, a fault is only claimed to be parametric if it has fitted underneath
the border for ”wait” consecutive seconds. The reason for including a wait-timer
is that some faults will for short periods of time generate signals that are close to
the expected. If the wait-period was excluded the isolation procedure would be
undecisive for this type of fault. The ”wait” integer has as mentioned earlier been
defined to 450 seconds (7,5 minutes) for testing purposes, which has yielded good
results.

2. If one EKF claims to be faulty, claim a fault for that sensor.
If the fault is not claimed as parametric and one (and only one) EKF model claims
to be faulty, it can be assumed the specific sensor is faulty. In case of a faulty
sensor, only one EKF will generate a fault while the other will fit.

3. If nothing else fits, claim unknown fault.
If both sensors claim to be faulty, or none of them claim to be faulty while the
multiple UIO does not fit, none of the known scenarios fit to the fault. Therefore
an ”unknown” fault should be claimed.

4.7.4 Testing the Method

By testing all faulty scenarios described in Section 4.1, it can be checked if the system
can detect and isolate all the faults correctly. Furthermore, a few other faults have been
tested on the system, to check how the system will respond. The signal illustrated in
the figures below is the fault descision which is an integer corresponding to:

0. No fault found.

1. Dirt or Ice buildup on evaporator.

2. Tair Sensor is faulty.

3. Twall Sensor is faulty.

4. An unknown fault has been discovered.

The first faults which are shown in Figure 4.43 are all four sensor faults for Tair. The
faults are all introduced at time t=9000, and (at the latest) detected approximately
1000 seconds later. Isolation takes a little longer, and (for the slowest) takes around
3000 seconds.
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Figure 4.42: Multiple Methods - Fault identifier - Tair sensor faults

The next figure, Figure 4.43 is the sensor faults for Twall. Again the faults are introduced
at time t=9000 and all are detected within approximately 900 seconds, and the last is
isolated after around 1800 seconds.

Figure 4.43: Multiple Methods - Fault identifier - Twall sensor faults

Figure 4.44 shows four other scenarios.

• Top Left Graph.
This graph shows nominal operation, which in other words is no fault. As can be
seen no fault is detected during nominal operation.

• Top Right Graph.
A drift in UAair→wall from 500 to 250 starting at time t=6000 and ending at time
t=16000. As can be seen, when the parameter goes below approximately 275, the
fault is no longer claimed to be parametric, but instead unknown. This is not a
bad decision, as a value of below 250-300 for UAair→wall is most likely not due to
ice or dirt buildup.
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• Bottom Left Graph.
Similar to the one mentioned above, but the value goes from 500 to 450 instead.

• Bottom Right Graph.
A drift identical to the one in the top right graph, with a sensor offset fault (+2.5
C) added at time t=9000.

Figure 4.44: Multiple Methods - Fault identifier - parametric faults

As can be seen, the fault is detected for the three faulty scenarios but no fault is detected
for the nominal situation. The fourth sub-graph with a combination of sensor and
parametric fault makes the isolation unreliable, but the detection is still very useful.

4.7.5 Conclusion

The multiple method approach has very good results. By using multiple methods in
different setups, it is possible to detect and isolate faults within few minutes of the faults
occurance. The results seem to be quite robust as all faults are isolated after a few
minutes, and continue to be so. Another thing noticable from the tests, are that the
speed in the lack of a fault are substancially higher that after a fault has been detected.
This indicates that the computational load is low for detection, and somewhat higher
for isolation, which is very acceptable.

On the other hand, the approach requires a lot of setup, and assumes that faulty scenarios
can be tested on the display case to give the faulty models. Based on this, the multiple
method approach would probably be most useful as a part of a complete system, and
not as an ”install and setup” solution for existing refrigeration systems.
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Conclusion

The objective of the project was to create a fault detection and isolation system that
could be implemented into new display cases, and perhaps added to existing systems.
With the multiple method approach given in Section 4.7, the objective was fulfilled, but
the system can become better. The main way to improve the performance would be to
replace the multiple method UIO with a approach that was easier to implement. But
there are also other ways to improve the final solution.

The basis of any good work within model-based fault detection schemes, is obviously the
model of the plant itself. The model used as a basis for this project is generally very
good, but has some issues specifically related to FDI methods. Because the model was
originally created for controller optimization/creation in a plant which is assumed to be
ideal, the potential for introducing faults to the plant was not considdered. The lack of
detail makes it hard to impose realistic faults on the system, and thereby test how the
plant and any developed FDI method will respond.

The three main methods developed in the project are very different in their results and
requirements. Generally, the EKF and UIO outperform the KF with a large margin. The
Kalman Filter and Extended Kalman Filter both need the Qairload value as an input and
have the goods as part of their dynamics. Thereby they are not robust to unknown
changes in the dynamics of the goods (for example a change in type or amount of goods
in the display case), or to changes in the effect of the ambient air. On the other hand,
by knowing the air temperature in the store (a simple temperature sensor outside the
display case) and knowing when the display case is covered up (a simple contact where
the cover is fitted) a good estimate of the Qairload value should be available at all times.
Based on this, and the fact that the EKF generally performs quite well and is faster at
detecting the faults than any of the other methods, the Extended Kalman Filter cannot
be ruled out.

The Unknown Input Observer on the other hand, does not need any knowledge of Qairload
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to estimate the states - and does not get affected by changes in the goods. Even with
this lack of information, the detection is generally still very fast, so if one method was
to be selected as the best for FDI in a supermarket display case, based on this project,
it would have to be the Unknown Input Observer. Having said that, the initial tests
with the parameter estimation also provided some good results, and aided by its ability
to draw out the parameters of the system, it could prove an important element in a
FDI-implementation.

The developed multiple method FDI approach generally performs well for the faults
that have been tested on it. Using the UIO for detection, it should be able to detect
the vast majority of faults without generating false alerts. The main disturbances are
disconnected while the important dynamics are kept intact, which should make the
UIO detect all faults that not only affect Tair directly (as these will be ignored as a
disturbance).

For implementation, the isolation system should be adjusted based on what kind of
faults it must be able to isolate. By developing a true online parameter estimation,
it should be able to take the place of the multiple UIO. The reason for preferring the
parameter estimation over the UIO, is that the Unknown Input Observer method will
require several models that are only obtainable if the faults can be testet on the plant.
The parameter estimation on the other hand does not require any prior knowledge other
than the structure of the model, and an initial guess. Furthermore, the parameter
estimation can be used when the FDI system must be fitted to a new plant. By enabling
the parameter estimation with an initial guess, the true parameters can be extracted and
used for the EKF and UIO, which would make the fitting process to any given plant an
easy task.
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Figure A.1: Bode plot of the linear continous model



93

Figure A.2: Kalman Filter - Scenario 1A - Night operation, No fault

Figure A.3: Kalman Filter - Scenario 1B - Night operation, Twall sensor offset
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Figure A.4: Kalman Filter - Scenario 2A - 24 hour run, Correct Qairload values

Figure A.5: Kalman Filter - Scenario 2B - 24 hour run, 1 hour delay in Qairload
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Figure A.6: Extended Kalman Filter - Scenario 1A - Night operation, No fault

Figure A.7: Extended Kalman Filter - Scenario 1B - Night operation, Twall sensor offset
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Figure A.8: Extended Kalman Filter - Scenario 2A - 24 hour run, Correct Qairload values

Figure A.9: Extended Kalman Filter - Scenario 2B - 24 hour run, 1 hour delay in Qairload
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Figure A.10: Unknown Input Observer - Scenario 1A - Night operation, No fault

Figure A.11: Unknown Input Observer - Scenario 1B - Night operation, Twall sensor
offset
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Figure A.12: Unknown Input Observer - Scenario 2A - 24 hour run, Correct Qairload
values

Figure A.13: Unknown Input Observer - Scenario 2B - 24 hour run, 1 hour delay in
Qairload



Appendix B
Dymola Documentation

In the original Dymola model, there has been made some small changes to adapt it
for use in this project. The model ”Supermarket system 2d2c matlab” from the file
”Refrigeration HYCON.mo” has been used as a basis. The changes are:

• General small changes - See section B.1.

• UAair→wall changes to be an input - See section B.2.

• Compressor Controller - See section B.3.

B.1 General small changes

There are three small changes made to the Dymola model given from Danfoss

1. As all four states (Tgoods, Tair, Twall, Mrefrig) are needed for some simulations in
Simulink, all four states have been set as outputs from each display case.

2. It is assumed that all display cases will run with identical upper and lower limits,
so the inputs to the two display cases are combined.

3. There is included an option to force the expansion valve of display case two open.
This was included as the second display case changes the dynamics of the first
display case before for compressor controller was implemented.

B.2 UAair→wall as an input

To be able to impose the parametric fault on the Dymola model, it was necessary to be
able to control the UAair→wall parameter from Simulink. This was acheived by creating
an extra input to the display cases, and then using the input in the place of the value
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UAair→wall. It only required a small change in the source code, where the input ’fault’
is used.

Qair wa l l = UAair wal l ∗( T air−T wall ) ; <− Old code
Qa i r wa l l = f a u l t ∗( T air−T wall ) ; <− New code

B.3 Compressor Controller

In the Dymola implementation from Danfoss, there is a hysteresis controller built in for
the Expansion Valve which is based on the air temperature of the display case. As it
is important that the suction pressure lies within the range for which it is linearized, a
simple compressor controller has been created. The controller has an upper pressure limit
of 1.45 and a lower limit of 1.25. If the pressure goes over the top limit, the compressor
is set to 100% (corresponding to two compressors running at full speed). If the pressure
goes below the lower limit, the compressor is set to 0%. Both extremes (0 and 100%)
are kept until the suction pressure is again right between the top and bottom limit (1.35
bar). The funtionality is in Dymola described by:

block CompHysteresis

input Modelica . Blocks . I n t e r f a c e s . RealInput Psuc ;
output Modelica . Blocks . I n t e r f a c e s . RealOutput CompSpeed ;

Boolean high ( s t a r t=f a l s e ) ;
Boolean low ( s t a r t=f a l s e ) ;

equat ion
low = Psuc<1.25 or pre ( low ) and Psuc <= 1 . 3 5 ;
high = Psuc>1.45 or pre ( high ) and Psuc >= 1 . 3 5 ;

i f high then
CompSpeed = 100 ;

e l s e i f low then
CompSpeed = 0 ;

e l s e
CompSpeed = 50 ;

end i f ;
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As there are a lot of blocks that are re-used in the implementation, the description of
the blocks might seem somewhat unorganised. The used approach is to start describing
from one end. When a block is used that has already been described earlier, the previous
version is just referred to, and thereby no block is described more than once.

C.1 The Kalman Filter

Figure C.1: KF: Main Window

Figure C.1 illustrates the top-model view of the Kalman implementation. Starting from
top left to bottom right

• Three constants; ’Upper Air Temp’, ’Lower Air Temp’ and ’On/Off’
These three constants determine the upper and lower bound of the display case
hysteresis controller, and determine if the second display case should be enabled
respectively.

• ’UAairwall’ block
This block generates the UAair→wall value, and is described in Section C.1.1.
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• Dymola Interface
The link to the Dymola software is obtained using this block. The used model has
been selected within, and compiled. No values have been changed, and therefore
there is no further description of this block.

• Data Conversion Block
As the data from the Dymola model needs to be structurized, this block is added,
which generates the y (k) and u (k) signals, and gives the true states out for com-
parison if needed. The block is described in Section C.1.2.

• KF - Detection
This block represents the detection system for the Kalman filter, and is followed
by a scope where the result can be seen. A description of the block can be found
in Section C.1.6.

• KF Bank - Split Signal
Two parallel Kalman filters are inside this block, each getting only one of the two
measured signals from the plant. A description of the block can be found in Section
C.1.11.

• KF Bank - MMAE
This block is the Multiple Model Adaptive Estimator bank. A description of this
block can be found in Section C.1.12.

• CUSUM and CUSUMx2
The final elements to be described are the CUSUM blocks. As they are identical
(CUSUMx2 just has 2 CUSUM inside), so only one description is given, which can
be found in Section C.1.18.

C.1.1 UAair→wall Builder

Figure C.2: UAair→wall Builder

The purpose of the UAair→wall Builder, is obviously to create the UAair→wall signal for
the Dymola model. The block consists of three elements. A fixed value which can be
set to any desired value (is set to 500 in the figure, as this is the nominal value), and
two slopes. The intention of having two, and not just one, is the option to ’counter’ the
addition by the first slope, which will give the option of stopping the change in the value.

C.1.2 Data Conversion Block

The Data conversion block is used to arrange the simulated data from the Dymola model,
including the introduction of noise and faults. The four states related to each display case
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Figure C.3: Data Conversion Block

are combined into a mux. The resulting signal is an output from the block, holding the
true states in case they are needed. Tair and Twall are isolated and sent with the signal
from the ’Sensor Faults’-block (described in Section C.1.3) into the ’yz-builder’. The ’yz-
builder’ (where z is a integer representing the display case number) block is described in
Section C.1.4, while the ’uz-builder’ block, which takes the two plant inputs, is described
in Section C.1.5.

C.1.3 Sensor Faults

Figure C.4: Sensor Faults

The sensor faults block is used to select sensor faults, their starting time, and their
dynamics if relevant. The desired fault is selected by defining the constant at the top
and the dynamics in the block related to the fault. In this way, the next simulation will
have a sensor fault introduced. The constants represent the following faults:
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1. No fault is introduced.

2. A drift fault is introduced to the sensor. By altering the ’start time’ and ’slope’
parameters of the ramp-block, the behaviour of the fault can be defined.

3. Offset fault. Defining ’Step Time’ and ’Final Value’, the dynamics of the offset
fault can be specified.

4. The ’Step Time’ parameter can be adjusted to the time where a sensor freeze is
desired.

5. The Hard-Over fault will make the sensor jump to the parameter ’Final Value’ at
time ’Step Time’.

The selected sensor fault is then sent on to the ’yz-builder’ described in Section C.1.4.

C.1.4 yz-builder

Figure C.5: yz-builder

The ’z’ in the name ’yz-builder’ defines what display case it is for. For instance, ’y1-
builder’ will generate the y-signal, that is the simulated measurements, from display case
1, including faults and noise. The sensor input is taken from the Dymola block and is
introduced to noise, and based on the scenario selected in the sensor faults block, faults
as well. The white noise (noise power=0.25) is added just before the signals are combined
into the y-signal, and will therefore be present no matter what fault is introduced. The
faults are introduced using the case-block, which for the first scenario is just the simulated
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signal. For the two next scenarios (drift and offset), the fault is added to the simulated
signal, while the freeze fault uses an unit delay block, so the signal will be the same at
all times. The final fault is created by checking the value of the signal from the sensor
faults block. As soon as it is no longer zero, the simulated value is ignored, and the fixed
value is used as a measurement instead.

C.1.5 uz-builder

Figure C.6: uz-builder

The ’uz-builder’ (’z’ is again the display case number) is similar to the ’yz-builder’, but
instead of creating the measured outputs, it creates the inputs. There are three inputs
to each display case, the suction pressure, the valve position and the airload. The valve
position is a digital on/off (1/0) value, and is assumed noise-free (as a filter should be
reasonably good at filtering such values) while the Psuc has noise introduced as well,
with a power of 0.05. Qairload is actually not a real input, but a disturbance, which for
the case of the Kalman Filter is introduced as an input with white noise added (noise
power=250).

C.1.6 KF - Detection

Figure C.7: KF - Detection

The Kalman filter is implemented both as detection and isolation. The detection part
consists of several submodels, which are also described shortly in the report itself. The
detection block is actually just a Kalman filter block with defined inputs. The A, B, C, R
and Qkfd (kfd=kalman filter detection) matrices are defined in the MATLAB workspace,
and therefore only needs to be referred to from Simulink. y (k) and u (k) are taken as
input, while the fault indicator e (k) is the only output. The Kalman filter block, is
described in section C.1.7.
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Figure C.8: Kalman Filter for Detection

C.1.7 Kalman Filter for Detection

In agreement with the theory for the Kalman Filter, the implementation has two sub-
models containing the prediction (described in Section C.1.8) and update (described
in Section C.1.9) procedures respectively. As the plant input used for calculation is
u (k − 1), the signal is sent through a unit delay. The remaining elements should be
self-explanatory.

C.1.8 Kalman Filter for Detection - Prediction

Figure C.9: Kalman Filter for Detection - Prediction

In agreement with the theory relevant to the Kalman filter, an a priori estimate is made
of the states based on the previous a posteriori estimate. Afterwards, the predicted
estimation covariance is calculated, which can also be verified against the Kalman theory.

C.1.9 Kalman Filter for Detection - Update

Figure C.10: Kalman Filter for Detection - Update
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The calculations here are, again, based on the equations relevant for the Kalman filter.
As this is the case, they will not be described, as this has already been done in the
FDI chapter. A simple visual inspection is sufficient to verify that the calculations are
correct. The fault indicator submodel is described in Section C.1.10.

C.1.10 Kalman Filter for Detection - Fault Indicator

Figure C.11: Kalman Filter for Detection - Fault Indicator

The fault indicator function is based on the Kalman theory, and is not furhter described
here.

C.1.11 KF Bank - Split Signal

Figure C.12: KF Bank - Split Signal

The split signal bank of kalman filters, uses two of the kalman filters described in Section
C.1.7, including all submodels. The only difference is the inputs to the filters. For the
split signal setup, each filter has its own C-matrix, while R1 and Qkfss (kfss=kalman
filter split signal) is used instead of R and Qkfd. The reason for including the transpose
blocks for Cair and Cwall, is that Simulink assumed the values to be a column-vector
and not a row-vector.

C.1.12 KF Bank - MMAE

The MMAE block contains four Kalman filters that are almost identical to the ones
used for detection and split signal, with the differences described in section C.1.13 and
a probability block described in Section C.1.17. The C, Q and R matrices are identical
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Figure C.13: KF Bank - MMAE

for all models, but the A and B matrix are different, depending on the scenario for the
specific model.
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C.1.13 Kalman Filter for MMAE

Figure C.14: Kalman Filter for MMAE

The Kalman filter used in the MMAE is almost identical to the one used for detection and
split signal. The only real difference is the update procedure now generates a likelihood
function, and not a fault indicator. Therefore, the prediction process is the same, and
the description of it can be found in Section C.1.8. The update process is described in
Section C.1.14.

C.1.14 Kalman Filter for MMAE - Update

Figure C.15: Kalman Filter for MMAE - Update

The update process is identical to the one described in Section C.1.9 with the exception
that the fault indicator calculation has been exchanged with the likelihood calculation,
and obviously, so has the output. The likelihood calculation can be seen in Section
C.1.15.

C.1.15 Kalman Filter for MMAE - Likelihood

Figure C.16: Kalman Filter for MMAE - Likelihood

The likelihood is calculated based on the equations described in the FDI chapter, and
needs to calculate a determinant of a matrix. As Simulink has no built in method of
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calculating this (there only is a 3x3 determinant) a simple block has been created, which
is described in Section C.1.16. The remaining elements can be visually verified to be in
agreement with the used equations.

C.1.16 Kalman Filter for MMAE - Determinant

Figure C.17: Kalman Filter for MMAE - Determinant

The determinant is calculated by taking the first element of the first row multiplied with
the second element of the second row, and then subtracting the second element of the
first row multiplied with the first element of the second row. This is agreement with
what can be seen in Figure C.17.

C.1.17 Probability for MMAE

Figure C.18: Probability for MMAE

For the probability calculation the implementation is in complete agreement with the
equations used, with one addition, namely the saturation block. As the MMAE can lock
itself down when using digital numbers (with a limit to the amount of decimals), it is
necessary to limit how low any single probability can go. By adding a saturation with a
lower border of 0.01 and a maximum of 1, the system cannot lock itself.

C.1.18 CUSUM (Cumulative Sum)

Figure C.19: CUSUM (Cumulative Sum)

The final block to be described for the Kalman filter, is the CUSUM. This block is used
to increase the robustness of the fault indicator, by cumulating the sum. The block
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is just a direct implementation of the equation for CUSUM, which can be verified by
comparing the two.

C.2 The Extended Kalman Filter

Figure C.20: EKF: Main Window

Figure C.20 illustrates the top-model view of the Kalman implementation. Starting from
top left to bottom right

• Three constants; ’Upper Air Temp’, ’Lower Air Temp’ and ’On/Off’
These three constants are identical to the ones used for the KF. They determine
the upper and lower bound of the display case hysteresis controller, and determine
if the second display case should be enabled respectively.

• ’UAairwall’ block
This block generates the UAair→wall value, and is described in relation to the
Kalman filter, in Section C.1.1.

• Dymola Interface
The link to the Dymola software is obtained using this block. The used model has
been selected within, and compiled. No values have been changed, and therefore
there is no further description of this block.

• Data Conversion Block
The data conversion block, which is identical to the one used for the KF, generates
the y (k) and u (k) signals, and gives the true states out for comparison if needed.
The block is described in Section C.1.2.

• EKF - Detection
This block represents the detection system for the Extended Kalman filter, and is
followed by a scope where the result can be seen. A description of the block can
be found in Section C.2.1.

• EKF Bank - Split Signal
Identical to the KF, two parallel Extended Kalman filters are inside this block,
each getting only one of the two measured signals from the plant. A description of
the block can be found in Section C.2.9.
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• EKF Bank - MMAE
A description of the Multiple Model Adaptive Estimator bank block can be found
in Section C.2.10.

• CUSUM and CUSUMx2
These are identical to the ones used for the KF and is thereby described in Section
C.1.18.

C.2.1 EKF - Detection

Figure C.21: EKF - Detection

The Extended Kalman filter is implemented both as detection and isolation. The de-
tection part consists of several submodels, more than is the case for the KF. The A
and B matrices are not used for the EKF, but C, R and Q2 matrices are defined in the
MATLAB workspace, and therefore only needs to be referred to from Simulink. y (k)
and u (k) are taken as input, while the fault indicator e (k) is the only output, just like
the KF. The Prediction block is described in Section C.2.2 and the Correction (another
word for Update) block is described in Section C.2.8.

C.2.2 EKF for detection - Prediction

Figure C.22: EKF for detection - Prediction

In contrast to the Kalman filter, the calculation of the a priori estimate of the states
in the EKF is not that simple. There are several steps, as the calculation is based on
the non-linear model. The Unlinear State Estimation is described in Section C.2.3 and
the Online Linearization is described in Section C.2.5. Finally, the generation of the
predicted estimate covariance is illustrated in Section C.2.7.
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Figure C.23: EKF - Unlinear State Estimation

C.2.3 EKF - Unlinear State Estimation

The Unlinear State Estimation consists of four seperate ’calculators’ that determine what
their specific state will be at the next sample, (k), whereafter they are combined to the
a priori state estimate, written as x̂-(k). The ’calculators’ share several variables and
use the previous estimates and input. The four blocks are illustrated in Section C.2.4,
from Figure C.24a to C.24d on the next page.

C.2.4 EKF - State Estimation Calculators

The calculators are not described as this would be cumbersome. If one wants to verify
that they are true, they can be compared to the equations for the model, defined in the
Modeling Chapter.
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(a) Tgoods calculator

(b) Tair calculator (c) Twall calculator

(d) Mrefrig calculator

Figure C.24: EKF - State Estimation Calculators

C.2.5 EKF - Online Linearization

Figure C.25: EKF - Unlinear State Estimation

In the same way as the State Estimation Calculators, the Online Linearization has been
divided into four submodels. The submodels can be seen in Figures C.26a to C.26d on
the facing page as a part of Section C.2.6.

C.2.6 EKF - Online Linearization of States

Again, it would seem cumbersome to describe how each submodel works, as they are
built up of simple blocks, and it can easily be verified to be correct.
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(a) Tgoods Linearization (b) Tair Linearization

(c) Twall Linearization (d) Mrefrig Linearization

Figure C.26: EKF - Online Linearization of States

C.2.7 EKF - Prediction Estimate Covariance

Figure C.27: EKF - Prediction Estimate Covariance

The Prediction Esimate Covariance can be calculated as shown in Figure C.27. W is
a identity matrix of 2x2 as described in the report. The remaining elements are self-
explanatory.

C.2.8 EKF - Correction/Update procedure

Figure C.28: EKF - Correction/Update procedure
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The correction procedure of the Extended Kalman filter is almost identical to the update
procedure of the Kalman filter described in Section C.1.9. The only difference is that for
the EKF, V and VT is multiplied with R, which can be seen from the figure. Even the
fault indicator calculation is identical, and can therefore be seen in Section C.1.10.

C.2.9 EKF Bank - Split Signal

Figure C.29: EKF Bank - Split Signal

The split signal bank of Extended Kalman Filters uses two of the Extended Kalman
Filters described in Section C.2.1, including all submodels. The only difference is the
inputs to the filters. For the split signal setup, each filter has its own C-matrix, while
R1 and Q2 are re-used.

C.2.10 EKF Bank - MMAE

Figure C.30: EKF Bank - MMAE

The MMAE bank has four seperate Extended Kalman Filters that are almost identical
to the one described in Section C.2.1. An example of one of these is shown in Section
C.2.11. The probability calculation is identical to the one for the Kalman filter, which
was described in Section C.1.17.

C.2.11 Extended Kalman Filter for MMAE

As mentioned, the Extended Kalman Filters used here are close to identical to the ones
described in Section C.2.1. The only difference is that now Rekf and Qekf is used
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Figure C.31: Extended Kalman Filter for MMAE

instead of R and Q2, and the likelihood is calculated instead of the fault indicator.
The calculation of the likelihood is identical to the one for the Kalman Filter, and the
description can therefore be found in Section C.1.15. Obviously the four models need
to be different to simulate different scenarios. This is achieved by changing the values
Mgoods and UAairwall shown in Figures C.26a to C.26d on page 115 and C.23. The
values used are

• Model 1: Mgoods=200, UAairwall=500

• Model 2: Mgoods=25, UAairwall=500

• Model 3: Mgoods=200, UAairwall=250

• Model 4: Mgoods=25, UAairwall=250

which are implemented in the same order as shown in Figure C.31.

C.3 The Unknown Input Observer

Figure C.32: UIO: Main Window

Figure C.32 illustrates the top-model view of the Unknown Input Observer implemen-
tation, which as almost identical to the two previous. Starting from top left to bottom
right
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• Three constants; ’Upper Air Temp’, ’Lower Air Temp’ and ’On/Off’
These three constants are identical to the ones used for the KF and EKF. They
determine the upper and lower bound of the display case hysteresis controller, and
determine if the second display case should be enabled respectively.

• ’UAairwall’ block
This block generates the UAair→wall value, and is described in relation to the
Kalman filter, in Section C.1.1.

• Dymola Interface
The link to the Dymola software is obtained using this block. The used model has
been selected within, and compiled. No values have been changed, and therefore
there is no further description of this block.

• Data Conversion Block
The data conversion block generates the y (k) and u (k) signals, and gives the true
states out for comparison if needed. The block is a little different from the one
used for the KF and EKF, and is described in Section C.3.1.

• UIO - Detection
This block represents the detection system for the Unknown Input Observer, and
is followed by a scope where the result can be seen. A description of the block can
be found in Section C.3.3.

• UIO - Isolation
The isolation procedure for the UIO is somewhat different from the two other
approaches, as is described in the FDI chapter. A description of the isolation block
can be found in Section C.3.5.

C.3.1 Data Conversion Block

Figure C.33: Data Conversion Block

The Data conversion block is used to arrange the simulated data from the Dymola model,
including the introduction of noise and faults. The three states Tair, Twall and Mrefrig

are used for the UIO and are combined into a mux. The resulting signal is split into two,
one which holds the true states in case they are needed and one where Tair and Twall
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are isolated and sent with the signal from the ’Sensor Faults’-block (identical to the one
described for the Kalman filter in Section C.1.3) into the ’yz-builder’. The ’yz-builder’
(where z is a integer representing the display case number) block is described in Section
C.1.4 (as it has not changed), while the ’uz-builder’ block, which has been changed a
little, is described in Section C.3.2.

C.3.2 uz-builder

Figure C.34: uz-builder

The only difference in the uz-builder (compared to the one used for KF and EKF de-
scribed in Section C.1.5), is that Qairload has been removed. This is because it is now a
disturbance, or unknown input.

C.3.3 UIO - Detection

Figure C.35: UIO - Detection

The detection block of the Unknown Input Observer is quite simple. The calculated
matrices K, H, T and F are introduced in gain blocks, and the complete setup can be
verified visually to comply with the relevant equations. The only sub-model is the ’e (k)
calc’ block, which generates a fault indicator. The block is described in Section C.3.4.

C.3.4 UIO - Fault Indicator

Figure C.36: UIO - Fault Indicator

The fault indicator block takes two inputs. The first is the measurements from the
system, while the other is the estimated states. By multiplying the C matrix with the
estimated states, the estimated output can be found. Subtracting the estimated states
from the measured states, will give the residual. By multiplying the residual vector
transposed with itself (not transposed), the result is a scalar which can be used for fault
detection. The scalar is then sent on as an output.
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C.3.5 UIO - Isolation

Figure C.37: UIO - Isolation

The isolation block consists of three UIO blocks identical with the detection block shown
in Figure C.35 with only a few small exceptions. Instead of referring to K and F in the
gain blocks, the values KXXX and FXXX are used (where XXX is either 300, 375 or
450 for each of the models) which represent the scenarios where UAair→wall is faulty.

C.4 The Multiple Method Approach

Figure C.38: Multiple Method: Main Window

Figure C.32 illustrates the top-model view of the Multiple Method implementation, which
as almost identical to the other setups, and actually re-uses several of the previously
described blocks. Starting from top left to bottom right

• Three constants; ’Upper Air Temp’, ’Lower Air Temp’ and ’On/Off’
These three constants are identical to the ones used for the the other methods.
They determine the upper and lower bound of the display case hysteresis controller,
and determine if the second display case should be enabled respectively.

• ’UAairwall’ block
This block generates the UAair→wall value, and is described in relation to the
Kalman filter, in Section C.1.1.

• Dymola Interface
The link to the Dymola software is obtained using this block. The used model has
been selected within, and compiled. No values have been changed, and therefore
there is no further description of this block.

• Data Conversion Block
The data conversion block generates the y (k) and u (k) signals, and gives the true



C.4. THE MULTIPLE METHOD APPROACH 121

states out for comparison if needed. The block is identical to the one used for the
UIO, and is thereby described in Section C.3.1.

• UIO - Detection
This block represents the detection system for the Multiple Method approach. As
the block is identical to the one used in the UIO section, a description of the block
can be found in Section C.3.3.

• Fault Identifier
The Fault Identifier is a block which based on the ’UIO - Detection’ block and some
internal blocks gives an output representing the current fault-scenario. Section
C.4.1 gives a description of the blocks contents.

C.4.1 Multiple Method - Fault Identifier

Figure C.39: Multiple Method - Fault Identifier

As mentioned, the Fault Identifier block gives an output which can be used to determine
if a fault has occurred, and in that case, which fault it is. To do this, it uses the
’Hold Fault’ block described in Section C.4.2 and the ’Multiple Method Isolation’ block
described in Section C.4.3. The functionality of the block is first to check if the detection
signal goes above 10, as a fault will then be claimed. Hereafter, the signal is put into the
’Hold Fault’ block which keeps the detection signal live for 5 minutes since last detection.
At the left side is a selector, which gives a zero as output when no fault is detected. If
a fault is detected, the output signal from the isolation block is given as output instead.

C.4.2 Multiple Method - Hold Fault

Figure C.40: Multiple Method - Hold Fault

The block actually just acts as a timer giving out a output of 1 that resets each time a
high (1) signal is received on the e(k) input. When a low (0) signal is input, it starts
counting down for ’Wait’ samples, which for this setup is seconds. After the time has
passed by, the output is set to 0.
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Figure C.41: Multiple Method - Isolation

C.4.3 Multiple Method - Isolation

Starting from the top left, the UIO isolation system can be seen, using multiple models,
described in Section C.3.5. Underneath is an Extended Kalman Filter block using the
split sensor setup described in Section C.2.9. As the EKF model needs Qairload as input,
it is added just before the block. After the EKF block, the CUSUM is used, which is
described in Section C.1.18. The signals from the two isolation methods are compared
the their respective borders and the UIO isolator is sent though a ’Hold Fault’ block,
which was described in Section C.4.2. Finally the signals are sent on to the ’Locator’
block, which is described in Section C.4.4.

C.4.4 Multiple Method - Locator

Figure C.42: Multiple Method - Locator

The ’Locator’ is actually just some logic which determines which fault to claim based
on the input signals. This time starting from right to left, the first block is a selector
which, if a parameter drift is determined, gives a 1 as output. If the parameter drift is
not determined, the output signal instead comes from another selection block which, if
both or none of the EKF’s claim a fault at the same time, gives out a 4, an indication
of an unknown fault. In case one (and only one) of the EKF filters are claiming a fault,
depending on which sensor is faulty, either a 2 or a 3 is given as output.
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D.1 File: bodeplot.m
A=[−0.00150059361782129 ,0.00149834614470013 ,0 ,0 ;

0 .00587807061053345 ,−0.0160509598641797 ,0 .00997931089551525 ,0 ;
0 ,0.00854458281472063 ,−0.00837466657679920 ,−0.463434255739900;
0 ,0 ,0 , −0 .0677419514798366 ; ] ;

B=[0 ,0 ,0 ;0 ,0 ,2 .00744285953520 e−05 ;0 , −0 .0129282632891503 ,0 ;0 .0454110728662820 ,0 ,0 ; ] ;
C=[0 1 0 0 ; 0 0 1 0 ; ] ;

f o r m=1:3
Bnew=B( : ,m) ;
f o r n=1:2

Cnew=C(n , : ) ;
BaseModel=i d s s (A,Bnew ,Cnew , 0 ) ;
s e t (BaseModel , ’ t s ’ , 0 ) ;
FBModel=feedback (BaseModel , unity ) ;
switch n

case 1
s e t (FBModel , ’OutputName ’ , ’ Tair ’ ) ;

case 2
s e t (FBModel , ’OutputName ’ , ’ Twall ’ ) ;

end ;
switch m

case 1
s e t (FBModel , ’ InputName ’ , ’Vp ’ ) ;

case 2
s e t (FBModel , ’ InputName ’ , ’ Psuc ’ ) ;

case 3
s e t (FBModel , ’ InputName ’ , ’ Qair load ’ ) ;

end ;
p l o t (FBModel ) ;

end ;
end ;

D.2 File: onlineparamest.m
f unc t i on [A B mA]=onl ineparamest ( ydata , udata , ts ,RO,Window , Wait , Stop )

%O f f l i n e ve r s i on o f on l i n e parameter e s t imat ion . By g iv ing a l a r g e array
%of input and output data as ydata and udata r e s p e c t i v e l y ( i n c l ud ing the
%sampling time t s ) , a r e c u r s i v e parameter e s t imat ion i s run . By s e t t i n g
%RO (Reduced Order ) to zero , a 4x4 c−matrix i s used . I f RO i s one (1) , i t
%w i l l be assumed that only Tair and Twall are measurable . The va r i ab l e
%’Window ’ t e l l s how many samples should be used f o r the est imat ion , whi le
%’Wait ’ d e f i n e s how o f t en the parameter e s t imat ion should be run . As an
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%example , i f Wait=1, the parameter e s t imat ion w i l l be run f o r each sample
%and i f Wait=10, i t i s run once f o r every 10 samples . The f i n a l parameter
%ca l l e d ’ Stop ’ i s introduced to be ab le to stop the proce s s a f t e r a g iven
%number o f samples . I f ’ Stop ’ i s not def ined , the c a l c u l a t i o n s are run
%t i l the end o f the data .

[N b]= s i z e ( ydata ) ;

i f narg in==7 && Stop<=N
N = Stop ;

end ;

%I n i t i a l i z a t i o n
k=1;
A=[−0.0015 0.0015 0 0 ; 0 .0059 −0.0161 0.0100 0 ;

0 0 .0085 −0.0084 −0.4634; 0 0 0 −0 .0677 ; ] ;
B=[0 0 0 ; 0 0 2.074∗10ˆ(−5) ; 0 −0.0129 0 ; 0 .0454 0 0 ; ] ;
BaseA=[NaN NaN 0 0 ; NaN NaN NaN 0 ; 0 NaN NaN NaN; 0 0 0 NaN ; ] ;
BaseA (4 ,4 )=A(4 ,4 ) ; %Fix Mref value
%BaseB=[0 0 0 ; 0 0 NaN; 0 NaN 0 ; NaN 0 0 ; ] ;
BaseB=B; %This makes the B−matrix f i x ed .

i f RO
C=[0 1 0 0 ; 0 0 1 0 ; ] ;
D=[0 0 0 ; 0 0 0 ; ] ;
K=[0 0 ; 0 0 ; 0 0 ; 0 0 ; ] ;
X0=[3.5 0 0 0 ] ’ ;

e l s e
C=[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 1 ; ] ;
D=[0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 0 ; ] ;
K=[0 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ] ’ ;

end ;

%Actual Process
whi le k<=N

k=k+1;
i f k>(Window+1) && mod(k , Wait )==0

DataModel=iddata ( ydata ( ( k−Window) : k−1 , :) , udata ( ( k−Window) : k−1 , :) , t s ) ;
i f RO

X0( 2 : 3 , 1 )=ydata (k−(Window+1) , : ) ;
e l s e

X0=ydata (k−(Window+1) , : ) ’ ;
end ;
PrePem=id s s (A( : , : , k−1) ,B( : , : , k−1) ,C,D) ;
s e t (PrePem , ’ t s ’ , 0 ) ; %Using the cont inous model !
s e t s t r u c (PrePem , BaseA , BaseB ,C,D,K,X0) ;
PostPem=pem(DataModel , PrePem) ;
A( : , : , k )=PostPem .A;
B( : , : , k )=PostPem .B;
d i sp l ay (k ) ;

e l s e
A( : , : , k )=A( : , : , k−1) ;
B( : , : , k )=B( : , : , k−1) ;

end ;
end ;
p l o t f unc s (A) ;
mA=meanify (A,(1−1/600) ) ;
p l o t f unc s (mA, 4 ) ;

end

D.3 File: meanify.m
f unc t i on [mA]=meanify ( data , f a c t o r )
%The meanify func t i on ( i gnore the name) uses a method s im i l a r to an IIR
%f i l t e r to f i l t e r out high frequenzy changes , which are caused by no i s e .
%The value ’ f a c to r ’ determines how high a weight the ’ old ’ data w i l l have
%and the new measurement w i l l have an e f f e c t o f (1− f a c t o r ) .

[ a b N]= s i z e ( data ) ; %Find the s i z e o f the array

mA( : , : , 1 :N)=data ( : , : , 1 :N) ; %Pre−a l l o c a t e memory

f o r n=2:N %Star t from 2 , so the f i r s t value i s r e a l data .
mA(1 ,1 , n)=f a c t o r ∗mA(1 ,1 , n−1)+(1− f a c t o r )∗data (1 ,1 , n) ;
mA(1 ,2 , n)=f a c t o r ∗mA(1 ,2 , n−1)+(1− f a c t o r )∗data (1 ,2 , n) ;
mA(2 ,1 , n)=f a c t o r ∗mA(2 ,1 , n−1)+(1− f a c t o r )∗data (2 ,1 , n) ;
mA(2 ,2 , n)=f a c t o r ∗mA(2 ,2 , n−1)+(1− f a c t o r )∗data (2 ,2 , n) ;
mA(2 ,3 , n)=f a c t o r ∗mA(2 ,3 , n−1)+(1− f a c t o r )∗data (2 ,3 , n) ;
mA(3 ,2 , n)=f a c t o r ∗mA(3 ,2 , n−1)+(1− f a c t o r )∗data (3 ,2 , n) ;
mA(3 ,3 , n)=f a c t o r ∗mA(3 ,3 , n−1)+(1− f a c t o r )∗data (3 ,3 , n) ;
mA(3 ,4 , n)=f a c t o r ∗mA(3 ,4 , n−1)+(1− f a c t o r )∗data (3 ,4 , n) ;
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end ; %Obviously , only the un−l ocked va lues are c a l cu l a t ed .
end

D.4 File: plotfuncs.m
f unc t i on [ ]= p l o t f unc s (A, o f f s e t )
%This func t i on i s made f o r p l o t t i n g the parameters f o r the four s t a t e s
%when us ing the r e c u r s i v e parameter e s t imat ion . The matrix A must hold
%the A−matrix (4 x4 ) o f parameters from the f i r s t i t e r a t i o n ( : , : , 1 ) to
%the f i n a l i t e r a t i o n ( : , : , I ) .
%
%The o f f s e t parameter i s used to make sure the func t i on does not use
%the same f i g u r e s more than once in case s e v e r a l c a l l s are made to t h i s
%funct ion , or other f i g u r e s are to be protec ted . I f o f f s e t i s s e t to 4 ,
%the f i r s t used f i gu r e−numer w i l l be 5 .

StateNames={ ’ Tgoods ’ ’ Tair ’ ’ Twall ’ ’ Mre f r ig ’ } ;

i f narg in==1
o f f s e t =0;

end ;

[ a b I ]= s i z e (A) ;

f o r n=1:4
f i g u r e ( o f f s e t+n) ;
f o r m=1:4

subplot (4 ,1 ,m) ; %Plot 4 rows , 1 column
p lo t ( reshape (A(n ,m, : ) , I , 1 ) ) ;
V = AXIS ;
ax i s ( [ 0 I V(3) V(4) ] ) ;
i f m==1

t i t l e ( StateNames (n) )
end ;
y l ab e l ( StateNames (m) ) ;

end ;
end ;
end
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