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Preface 

This report is created at Aalborg University’s graduate study “Electro-Mechanical System Design” (EMSD). 

The project is devised according to the current regulations governing the education as stated in the study 

programme. The theme for this semester is Electro Mechanical System Design. The title of this project is 

Adaptive control with self-tuning for center-driven web winders. 

Figures, tables and equations are numbered continuously throughout each chapter. E.g. Fig. 2.5 refers to 

the fifth figure in the second chapter. (4.6) refers to the sixth equation in the fourth chapter. The 

references are stated using the APA-method (Author, year) and further details about each source can be 

found in the back of the report. The report also contains a series of appendixes and attachments, which will 

be referred to throughout the report. The report is made to be read independent but the appendixes 

contain additional calculations and experiments. 

Attached to the report is also a CD containing the report, appendixes, attachments, used MATLAB files, 

Simulink models and experiment data. 
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1. Nomenclature 

 

Symbol Description Unit 
  Vector of the parameters in the transfer function - 

F  Filtered prediction error - 

()L  Filter operator - 

  Prediction error - 

̂N  Estimated parameter - 

NZ  Corresponding input and output - 

 ,NV  Cost function - 

ˆ( )y t  Estimated output - 

T

 
Regression vector - 

^ Estimated value - 
_1 Parameter related to unwinder - 
_2 Parameter related to winder - 
A Area m2 

a1 Discrete simplified model constant relation to z1 - 
a2 Discrete simplified model constant relation to z0 - 
APID Adaptive PID-controller - 
b1 Discrete simplified model constant relation to z1 - 
b2 Discrete simplified model constant relation to z0 - 
Bd Viscous friction of dancer N∙s/m 
BM2, Bm Viscous friction constant of winder motor Nm∙s/rad 
C Damping ration of material Pa/s 
D Dancer position m 
D(z) Charataristic equation - 
D1, 2, 3 Disturbance to the system - 
df Filtered dancer position m 
dinterval Dancer position by interval method m 
dref Dancer reference m 
ds Simulated dancer position m 
E Error signal - 
E Young’s modulus Pa 
Fini Initial force N 
Ft,1 Tension force in unwinder N 
G Gear ratio - 
G1..4 System - 
Gsys The linear system - 
H1, 2, 3 Feedback - 
JM2, Jm Rotor and coupling inertia of winder motor Kg∙m2 

K0 Adjustable gain - 
Kcr Critical gain - 
Kd Spring constant in dampersystem N/m 
KD Derivative gain relating to PID controllers - 
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KI Integral gain relating to PID controllers - 
KP Proportional gain relating to PID controllers - 
L Length of un deformed material m 
Lc Constant length m 
LTI Linear time-invariant system - 
LTV Linear time-varying system - 
Lv Variable length m 
Lw Length of web between un- and rewinder roll m 
M Motor - 
Md Mass of dancer Kg 
N Number of timesteps - 
NG, Ng Gearing ratio - 
p0,1 Parameter for PP controller - 
Pcr Critical period S 
PE Persistent excitation - 
PEA Parameter Estimation Algorithm - 
PID1 Manual tuned PID-controller - 
PID2 Model based PID-controller - 
PP Adaptive pole placement-controller - 
Q Forward shift operator - 
q0,1 Parameter for PP controller - 
R Reference - 
r* Reference after K0 - 
RLS Recursive Least Square - 
S Laplace operator - 
T Torque Nm 
T0 The systems sample time Z 
Td Derivative time s 
Ti Integral time s 
Tm Torque available to accelerate the motor inertia Nm 
TML Torque minor loop - 
TR Rise time s 
Ts Settling time s 
U Controller output - 
V1 Speed of unwinding m/s 
Vd Speed of dancer m/s 
VLT Frequency converter - 
W Winder - 
Α Angular acceleration rad/s2 

ε1 Strain in unwind material - 
Λ Parameter estimation forgetting factor - 
Λ Pole - 
Ρ Density of un deformed material Kg/m3 

ρ1 Density of unwind material Kg/m3 

ς1 Stress in unwind material Pa 
Τ torque Nm 
τcou Coulomb friction Nm 
τref Torque reference Nm 
ωcr Critical frequency rad/s 

 

 



 Adaptive Control With Self-Tuning For Center-Driven Web Winders  EMSD10 

  Page 3  

2. Introduction 

Many industries require manufacturing with a continuous long piece of material.  An example of this is 

the manufacturing of our daily newspaper. Here a long string of paper is feed to a rotating printing 

press. The paper is often unrolled from a large roll of paper and distributed through series of rollers and 

winders. The distributed paper is known as a web. 

To produce the newspaper two processes are needed. One process is converting the web in the printing 

press and the other is handling the web. It is desirable to maximize the throughput of these combined 

processes and still maintaining the quality of the newspaper.  

A certain tension in the web material is required to avoid slippage on the rollers and to avoid getting a 

blurry or otherwise unreadable text from printing process. 

Other examples of web handling can be found in textile, plastic and steel industries. Common for all is 

that the tension in the web must be kept within certain threshold values. This raises the question on 

how to control the web handling process. 

 

Fig. 2.1 Sketch of a web handling system with sensors and actuators included 

A sketch of a web handling system is shown in Fig. 2.1. Here the speed of the combined process is 

determined by the master drive. To keep a certain tension in the upstream part the unwind drive is 

controlled with feedback from a load cell. Depending on the required accuracy this controller has to be 

altered due to changes in the unwind rolls diameter. A follower arm is used to measure the change in 

diameter. The control of tension downstream from the slave drive uses the same principle as explained 

for the upstream part. The process is just mirrored and uses different sensors.  
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The initial problem for this project can be stated as: 

What influences the control of the web winder system? 

The next step is to present the specific web winder system, then a model of the system is deduced and it 

is investigated, what parameters are decisive for the design of a given controller. 

2.1 Project Objective 

This thesis will focus on the tension control of the web material the from the slave drive to the winder.  

In this project is no sensor is used to measure the changing roll diameter. A changing roll diameter will 

change both gearing and inertia felt by the actuator that turns the roll. This means that the transfer 

function from actuator to web tension changes. 

Therefore the objective of this thesis is to develop an adaptive control which should be able to 

automatically determine the changing parameters of the web handling system and use this information 

to update the actuator control.  
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3. Problem Analysis 

The purpose of this analysis is to describe and model the test bench, analyze the possible approaches to 

control the web. This will give the basis of the further control design and insights into the plants 

behavior. 

3.1 Plant Description 

The test bench used in this project is a downscaled center driven web winder delivered by Danfoss 

Drives. A picture of the web winder is shown in Fig. 3.1. 

 

Fig. 3.1 Test bench 

A sketch of the web handling system of this model is shown in Fig. 3.2. This system consists of an 

unwinder, two idle rollers, a dancer and a winder. 

In this case the unwinder represents the slave drive on Fig. 2.1. 

Two encoders are used, one for measuring the speed of the web and one for measuring the angular 

velocity of the motors rotor. A potentiometer is used to measure the position of the dancer. 
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Fig. 3.2 Sketch of the web handling system 

A known spring is attached to the dancer arm. This way an estimate of the tension in the web is 

available.  

Each winder is connected to an induction motor through a transmission shown with a sketch in Fig. 3.3.  

Compound gear

Secondary 

belt

Center winder axle

Primary 

belt

Motor

Encoder

 

Fig. 3.3 Transmission from motor to winder roll 

The transmission from motor to unwinder and motor to winder has a gearing ratio of 9.0:1 and 10.5:1 

respectively. Both motors are from ATB and have a rated power output of 560 Watt. 

The hardware set-up for the motor control is shown in Fig. 3.2    

 

Fig. 3.4 Hardware setup for motor control 
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The motors are connected to two frequency converters (FC 302) delivered by Danfoss Drives. This type 

of converters is capable of controlling either speed or torque on the motor shaft with either scalar or 

field oriented control (FOC). This control can be done either with or without feedback depending on the 

desired accuracy.  

Scalar speed control is used on the motor which drives the unwinder, because high precision is not 

required on this reel. But high precision is required on the winder. Therefore the winder motor is 

controlled with feedback from the encoder which measures the rotor position.  

The feedback enters a programmable unit (MCO 305) which is attached and connected with FC 302. 

With MCO 305 it is possible to generate a set-point to the position or speed controller and calculate the 

reference to FC 302.  

However in this project the set point generation and control will be done using a dSpace system. MCO 

305 is only used as a link between the encoder and FC 302. 

The dSpace system is a development environment, which enables fast implementation of MATLAB and 

SimuLink models in physical systems. This is achieved by a real-time processor (DS1103) communicating 

with the host PC and a connecting interface board (CP1103). 

The work procedure is to develop a suitable Simulink model, using dSpace toolboxes. This enables a 

simple addressing of I/O ports on the connected interface board. When the model is ready for real-time 

implementation it is compiled to C-code using dSpace conversion libraries. This C-code is then 

downloaded to the real-time processor using the dSpace software called ControlDesk. 

ControlDesk is also used to interface with the Simulink model as it runs on the real-time system. It is 

possible to create virtual instruments in ControlDesk which can change or display variables used in the 

model. ControlDesk is also used to record variables over time and hereby acting as a data acquisition 

system.  

An in-depth explanation of the physical setup is described in appendix B, which includes port 

assignments, electrical diagrams and considerations about the setup. 

3.2 Nonlinear Web Winder Model 

The purpose of this section is to develop a model of the web winder that can be used for designing and 

testing controllers.  

In Fig. 3.5 a sketch of the web winder is shown with the symbols used in the development of the model. 

The suffix 1 denotes the unwinding web material and the suffix 2 denotes the stretched and winding 

web material. The web material between the winders has an initial length (L) and a cross sectional area 

(A) which also constitutes a control volume. 
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Fig. 3.5 Sketch of web winder. Suffix 1 and 2 denotes the unwinding web material and the winding stretched web material 
respectively. 

When omitting the unwinder drive train the web winder consist of three subsystems. 

 The web material 

 The dancer 

 The winder drive train 

These systems are modeled separately before they are combined to form the complete combined 

model. 

3.2.1 Assumptions 

The following assumptions are used during the development of the model: 

1. The paper velocity from the unwinder is constant 

2. The cross section area of the web is uniform 

The web material on the test bench is a uniform roll of paper. 

3. The strain is the length change divided by the unchanged length of the material and the strain 

<< 1 

The definition of strain is normal and only small deformation is expected. 

4. The deformation of the web material is elastic 

This assumption is used because plastic deformation is unwanted during the winding 

process and quite difficult to model.   

5. The density of the web is unchanged 

6. The speed of the dancer is negligible compared to the speed of the web Vd<<V1 

7. The web material is very stiff, hence V1≈V2 

If assumption 6 is correct and the material is stiff the unwinder paper speed and the 

winder paper speed is approximately the same. 
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8. The dancer movement is negligible compared to the length of the web between the unwinder 

and the winder. 

9. The dancer is only moving vertical 

The dancer is actually moving in a small arc but it is expected that the Dancer movement 

is small compared to the arc length. 

10. The velocity of the dancer is the time derived of the displacement of the dancer 

11. The tension in the previous section is constant. 

12. The change of roll radius does not change the web length between the winders  

As one radius is increasing the other is decreasing therefore the changing radius is 

estimated to only having little influence on the web length and is therefore neglected. 

13. The time delay caused by the time constants of the electrical circuits of the VLT can be 

neglected. 

3.2.2 Web Material  

The purpose in modeling the web material is to find an expression for the tension force development in 

the web material located between the winders. This requires a physical interpretation on how stress 

arises in the web material and how the stress is related to the winders tangential velocities V1 and V2.  

In the following the Voigt model is used to explain arising stress and with the before mentioned 

assumptions, control volume analysis and continuum mechanics it is shown how the stresses are related 

to V1 and V2 

The Voigt model consists of a viscous damper and an elastic spring in parallel as shown in Fig. 3.6 

 

Fig. 3.6 Voigt model 

With this model the stress in the web material is expressed as shown in ( 3.1 ) 

tFd
E C

dt A


     

( 3.1 ) 

The Laplace transformation of ( 3.1 ) the result can be seen in ( 3.2 ) 
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 

 

t

t

t

F AE AC s

F AE ACs

F

AE ACs

 





 

  




 

( 3.2 ) 

In order to relate the strain to the winder tangential velocities the following definitions are needed. 

The definition of mass continuity states that stretching the material does not change mass of the 

stretched material. This is expressed as ( 3.3 ). 

s s sA L A L       

( 3.3 ) 

Where the suffix s denotes the stretched web material. With assumption 5 ( 3.4 ) is rewritten as shown 

in ( 3.4 ). 

s sA L A L    

( 3.4 ) 

The strain is defined by ( 3.5 ). 

1s sL L L

L L



    

( 3.5 ) 

By inserting ( 3.4 ) in ( 3.5 ) we get ( 3.6 ). 

1
s

A
A





 

( 3.6 ) 

With assumption 3 ( 3.6 ) is rewritten in ( 3.7 ). 

 1sA A     

( 3.7 ) 

The definition of mass conservation states that the change in mass of the control volume equals the 

difference between the mass entering and exiting the control volume. This is expressed in ( 3.8 ). 

  1 1 2 2 21

d
A L A V A V

dt
           

( 3.8 ) 

With assumption 5 ( 3.8 ) is rewritten as seen in ( 3.9 ) 
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  1 2 21

d
A L A V A V

dt
      

( 3.9 ) 

By inserting ( 3.7 ) in ( 3.9 ) we get ( 3.10 ). 

      2 1 2 21 1 11

d
AL A V A V

dt
             

( 3.10 ) 

The length L of the web is influenced by the movement of the dancer and the chancing radius of the 

winder rolls. With assumption 12 ( 3.10 ) is rewriting and is shown in ( 3.11 ). 

        

   

2 1 1 2 2

2 2 2 1 1 1 2 2 2

2 2 1 1 1 2 2

2 1 1 1

2 2 2

2 2 2

c

d d c

c r d d

d
L d V V

dt
V V d L V V V V

L d V V V V V V

  

    

  

        

       

        

 



 

( 3.11 ) 

By Laplace transformation of ( 3.11 ) and inserting ( 3.2 ) in ( 3.11 ) we get ( 3.12 ). 

 
   

 
 

 

 

 

 
 

 

,2 ,1 ,2
2 1 1 1

2 2 1 1 2 2

2 2 2 1 ,1 2
,2 1 2

1

2 2 2

2
2

2 2 2

t t t
c d d d

d t
t d

c d c d c d

F F F
L L s V V V V V V

A E A Cs A E A Cs A E A Cs

V V A E A Cs V F A
F s V V V

L L L L L L A

        
  

   
             

 

( 3.12 ) 

With assumption 6,7 and 8 (LN ≈Lc-2Ld and V1≈V2-2Vd)  ( 3.12 ) can rewritten as shown in ( 3.13 ). 

  1 ,11 2 2 2
,2 1 2

1

2 t
t d

N N N

V FV A E A Cs A
F s V V V

L L L A

  
        
 

 

( 3.13 ) 

The input is considered to be (-V1+V2-2Vd) and the output is Ft,2. The term at the outmost right in ( 3.13 ) 

is a constant due to assumption 11. This static contribution is omitted in further modeling of the web 

material and added later as an initial force. The transfer function for the tension force development in 

the web material is now expression for can be seen in ( 3.14 ). 

,2

11 2 2
t N N

d

n

CA EA
s

F L L

VV V V s
L




  



 

( 3.14 ) 

The block diagram of the transfer function ( 3.14 ) is shown in Fig. 3.7. 
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Fig. 3.7 Block diagram of tension force dynamics 

Thus a model of the tension force related to the tangential velocities is accomplished. 

3.2.3 Dancer 

The mechanical model of the dancer is shown in Fig. 3.8. 

 

Fig. 3.8 Dancer as a mass-damper-spring system 

The Dancer works as a pulley block. Therefore the constant Ft,1 and the varying Ft,2 are multiplied with 2. 

The Dancer movement is modeled with Newton’s second law of motion as shown in ( 3.15 ). 

 ,2 ,12 t t d d d d d d

F M a

F F M g M a B V K d

 

        


 

( 3.15 ) 

The Laplace transformation of ( 3.15 ) is expressed as seen in ( 3.16 ). 

   2
,2 ,12 t t d d d dF F M g M s B s K d      

( 3.16 ) 

 The block diagram of ( 3.16 ) is shown in Fig. 3.9. 
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Fig. 3.9 Block diagram of dancer dynamics 

Thus a model of Dancer position related to the tension force is accomplished. 

3.2.4 Winder Drive Train 

The drive train consists of the motor and a gearing which transmit the angular rotation of the motor 

rotor to web velocity.  

With assumption 13 the motor can be modeled as only consisting of the mechanical part. This is done 

with Newton’s second law of motion as seen in ( 3.17 ). 

cou

m m

m m m m m

J

B J

 

   

 

  
 

( 3.17 ) 

By Laplace transformation of ( 3.17 ) we get ( 3.18 ). 

 cou

cou

1

m m m m

m

m m m

J s B

J s B

  



 

   


 

 

( 3.18 ) 

The inertia consists of the rotor inertia, the transmission inertia and the winded paper roll inertia. A 

calculation of the inertia is found in attachment A. 

The gearing is modeled as ( 3.19 ). 

2

m g

V R

N
  

( 3.19 ) 

The block diagram of the motor and gearing is shown in Fig. 3.10 

 

Fig. 3.10 Block diagram of drive train 
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Thus a model of Dancer position related to the tension force is accomplished. 

3.2.5 Complete Web Winder model 

By combining the block diagrams from Fig. 3.10, Fig. 3.9 and Fig. 3.7 we get the complete model of the 

web winder. 

 

Fig. 3.11 The complete system of the web winding process 

When combining the model the torque input is subtracted by the torque used for creating the tension 

force Ft,2.Hereby a complete model of the system consisting of the drive train, the web material and a 

dancer system.  

3.3 Validation of Nonlinear Model  

The reason for validating the web winder model is partly to find system parameters which are used as a 

starting point for further control design, partly to find out if the structure of the model is correct, and 

partly to debug the test bench setup. 

3.3.1 Model Parameters 

In Table 3.1 the model parameters are summarized.  

Symbol Value Unit Source 

Jm 3.1 e-3 Kg·m2 Calculated 

Bm 0.55 e-3 Nm·s/rad Estimated 

τcou 85 e-3 Nm Estimated 

E 4 e9 Pa Estimated 

A 4.35 e-6 m2 Estimated 

LN 0.61 m Measured 

R 57.3 e-3 m Measured 

N 10.5 - Measured 

Kd 1131 N/m Measured 

md 0.69 Kg Measured 

Bd 500 Nm·s/m Estimated 

Fini 12 N Estimated 
Table 3.1 Model parameters 

The inertia (Jm) is calculated in attachment A.  

LN is calculated in appendix J. 
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The coulomb and viscous friction (τcou u , Bm) are estimated from spin down test as shown later.  

The Young modulus of the paper is normally between 2 and 6 GPa (University of Cambridge, 

Department of Engineering). An estimate of 4 GPa therefore seems reasonable.  

The cross sectional area is found by multiplying the known width of the paper by a measured average of 

the thickness.  

The viscous friction of the Dancer and the initial load force is estimated during simulation of the web 

winder model. 

3.3.1.1 Spin down test 

The spin down test was done by accelerating the winder motor to a high speed (1400 RPM) and then 

switching off the VLT. The VLT is switched off by opening the connection between port 13 and 37 which 

acts as emergency switch off. This opens all the switches in the VLTs H-bridge. The motor will hereafter 

act as if all phase wires were cut simultaneously.  

The experiment was repeated 3 times from 1400 RPM to standstill. By comparing with the theoretical 

model of the system an estimate of the two parameters should be possible. The model of the rotor is 

stated in equation ( 3.20 ) 

coum m mJ B       

( 3.20 ) 

The model is implemented in Simulink as shown in Fig. 3.12. 

 

Fig. 3.12 SimuLink model of the rotor dynamics 

By fitting the two parameters (B and F) manually through trial-and-error the result in Fig. 3.13 is 

obtained. The figure also contains an error graph showing the difference between the simulated and the 

measured values. 
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Fig. 3.13 Comparison between measured and simulated spin down experiments 

Similar waveforms, and errors in the same range, were achieved with the two other experiments as 

well. The relative small deviation from the measured waveform is accepted as within the tolerable 

range. 

3.3.2 Simulation and Test Bench Comparison 

The purpose of this section is to investigate how well the model of the web winder corresponds with the 

test bench presented in section 3.1. The complete model of the test bench is represented in Fig. 3.14 

Overview of the complete modelFig. 3.14.  

 

Fig. 3.14 Overview of the complete model 

It is assumed that the damping is much smaller than the Young’s modulus of elasticity E. Therefore the 

damping C is equaled 0 (Liu, 1998). 

The preferable approach to validate the model is to isolate the subordinate transfer functions like the 

drive train, the web material block and the dancer block and compare each of them with the setup.  

But because of difficulties measuring the tension force the web material and dancer are tried validating 

together. This is done by using measured shaft velocity from the setup as input to the model and then 

comparing the dancer position. 
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The comparison is shown in Fig. 3.13. 

 

Fig. 3.15 Comparison of dancer position 

Fig. 3.15 shows a well correspondence between the setup and the modeled web material and dancer. 

The modeled drive train has been validated in the spin test. Here some slight deviation between the 

model and the test bench is shown. This possibly affects the overall system behavior as shown in Fig. 

3.16. Here the measured torque step is applied to the complete model and the shaft velocity and dancer 

position are compared.  
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Fig. 3.16 Comparison of shaft velocity and dancer position 

In Fig. 3.16Fig. 3.16  it is seen that the simulation approximately corresponds with the measured data.  

There exits though a few differences. Firstly, from the data of the dancer position it seems that the 

simulation has less damping than the setup. The simulated dancer position rises faster and higher than 

the setup. Secondly, it seems that the friction in the simulation is too large since the dancer does not 

return to its original position when the torque is removed. A better fit could be achieved if the friction 

were corrected but this would not correspond to the spin down tests.  

In appendix G is it investigated how well the simulated and measured data could fit if the viscous and 

coulomb frictions are changed. In this appendix the altered spindown test are also shown. 

Thirdly, from the shaft velocity it seems that the setup possesses some unmodeled dynamics. The 

reason for this could be that the setup is moved from standstill were a difference between sticktion and 

coulomb friction exist. When the web winder is operating this will not be an issue and is therefore at 

first neglected. 

 

 



 Adaptive Control With Self-Tuning For Center-Driven Web Winders  EMSD10 

  Page 19  

3.4 Linear Web Winder Model 

The purpose of this section is to deduce a linear model from the web winder model, to use for initial 

control design. 

A parameter variation analysis is furthermore done to determining the most significant model 

parameters and to estimate how the web winder dynamics is expected to change as the paper is 

winding. 

3.4.1 Transfer Function of the Web Winder Model 

The complete web winder model from Fig. 3.11 in section 3.2.5 is represented in Fig. 3.17. 

 

Fig. 3.17 Web winder model rewritten 

Where each transfer function is substituted as in ( 3.21 ). 
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   

 

( 3.21 ) 

The disturbances D1, D2 and D3 are neglected in the linear model. This is assumed right because the 

disturbances only contribute with an offset. The disturbances are also placed within a feedback loop 

which also minimizes theirs effect on the overall system behavior.  

The linear model is expressed with the block diagram shown in Fig. 3.18. 

 

Fig. 3.18 Linear web winder model 
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In appendix F the loops are closed and ( 3.21 ) is inserted. This results in the linear transfer function of 

the web winder shown in ( 3.22 ). 

 

     

                       

2
2 2 21 1

2

2 22

N
Total

g g

g m g m g m g m d d d m m

N N N g N

REA

L
G

N NV V R EA REA
N J s N B N J s N B m s B s K J s B s

L L L N L R R

 

( 3.22 ) 

From Fig. 3.18 and ( 3.22 ) it is seen that the linear web winder model consists of two second order 

system with a second order system in feedback. 

The bodeplot of the linear model is shown in Fig. 3.19. This plot is made by using the parameters from 

Table 3.2. 

Symbol Value Unit 

Jm  3.1 10-3  Kg·m 

Bm  0.55 10-3   Nm·s/rad  

E  4 109 Pa  

A  4.35 10-6 m2 

LN  0.61  m  

R  57.3 10-3 m  

Ng 10.5  -  

Kd  1131  N/m  

md  0.69  Kg  

Bd  500  Nm·s/m  
Table 3.2 Values used for the linear model 
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Fig. 3.19 Bode plot of linear system 

The bode plot is made by multiplying ( 3.22 ) with the inverse of the steady state gain. 

The steady state gain of the linear web winder model is found as the limit for s→0. The steady state gain 

is found in ( 3.23 ). 


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( 3.23 ) 

When the values found in the nonlinear model is implement in ( 3.23 ) it can be seen that the second 

term in the numerator is much larger the first term there for the steady state gain can be simplified to ( 

3.24 ). 
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( 3.24 ) 

The nonlinear mode is reduced to a linear model and a steady state gain is found. 
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3.5 Validation of Linear Model 

The linear web winder model is validated by a comparison with the nonlinear web winder model. The 

comparison is done in an operation point were the nonlinear model has settled to steady state after 

receiving a step input. 

The parameter values used in the linear model are the same as used in the nonlinear model. The 

disturbance values used in the nonlinear model are shown in Table 3.3 

Disturbance Value 

Fcou 85 10-3 Nm 

mdg+Fini 18.8 N 

V1 0.2 m 
Table 3.3 Disturbance values 

At the operation point the linear and nonlinear model receives the same step. The step size is of 0.01 

Nm. 

 

Fig. 3.20 Nonlinear and the linear model with small step 

From the validation it is concluded that the linear model is a good approximation. There may be some 

nonlinear effects at startup where the linear model is not validated. 

3.5.1 Parameter Variation Analysis 

In this analysis it is investigated how variation in each parameter influence the natural frequency and 

damping of the linear model.  

The parameters of interest are summarized in Table 3.4. 
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Description Symbol 

Radius R 

Inertia Jm 

Motor iscous friction Bm 

Young’s modulus E 

Dancer spring constant Kd 

Dancer mass md 

Dancer viscous friction Bd 
Table 3.4 Parameter of interest 

All parameters except the radius are varied +/- 10 % from the value found in appendix E. The radius is 

varied from 13mm to 75mm which is the minimum and maximum value of the reel on the test bench. 

3.5.1.1 Influence of Radius 

In Fig. 3.21 it is seen that an increase in radius has a more significant impact on the linear model at the 

lower frequencies than at the higher frequencies. Thus, the change of radius influences the behavior of 

the dominant second order system. 

 

Fig. 3.21 Bode diagram while increasing the radius 

In Fig. 3.22. the movement of one of the dominating complex poles is shown. The axis at the top and 

right represents the damping and natural frequency respectively.  
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Fig. 3.22 Pole movement as radius increases 

In Fig. 3.22 it is seen that as the radius increases both the natural frequency and damping of the 

dominant second order system. 

3.5.1.2 Influence of Inertia  

In attachment A the inertia is calculated to change only about 1.5 % though. But in the following the 

inertia is changed +/- 10 %. Uncertainties when modeling the inertia is in this way accounted for. 

In Fig. 3.23 the inertia is changed from 90 % to 110 %. It is seen in Fig. 3.23 that the change in inertia has 

more impact on the linear model at the lower frequencies than at the higher frequencies. 

 

Fig. 3.23 Bode diagram while increasing inertia 

In Fig. 3.24 the movement of one of the dominating complex poles is shown. 
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Fig. 3.24 Pole movement as inertia increases 

Fig. 3.24 shows that as increasing the inertia decreases both the natural frequency and damping of the 

dominant poles 

Comparing the influence of changing inertia with the influence of changing radius, it is seen that the 

change in inertia is insignificant. 

But the significance of changing inertia would greatly increase if the width and diameter of the paper 

were several times larger. If this was the case the pole would move towards the imaginary axis and 

thereby reduce the stability of the system. 

3.5.1.3 Influence of Motor Viscous Friction  

Same analysis as above is done in appendix E for changing motor viscous friction. Here it is shown that 

the motor viscous friction has a larger influence at lower frequencies than at higher frequencies. The 

change in natural frequency and damping of the dominating poles is approximately 1 % when changing 
+/- 10 %. This is properly because of the constants small value. 

3.5.1.4 Influence of Elasticity  

Same analysis as above is done in appendix E for changing elasticity. Here it is shown that the elasticity 

has a larger influence at higher frequencies than at smaller frequencies. The change in natural frequency 

and damping is less than 1 % when changing +/- 10 %. 

3.5.1.5 Influence of Dancer Spring  

Same analysis as above is done in appendix E for changing dancer spring constant. Here it is shown that 

the changing spring constant has a larger influence at lower frequencies than at the higher frequencies. 

Changing the spring constant from 90 % to 110 % reduces the damping of the dominating poles with 50 

% and increasing the natural frequency of the dominating poles with more than 100 %. 

3.5.1.6 Influence of Dancer Viscous Friction  

Same analysis as above is done in appendix E for changing dancer viscous friction. Here it is shown that 

the changing dancer viscous friction has equal influence at all frequencies. Changing the dancer viscous 

friction from 90 % to 110 % increases the damping of the poles with 20 % and decreasing the natural 

frequency of the poles with 8 %. 
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3.5.1.7 Influence of Dancer Mass  

Same analysis as above is done in appendix E for changing dancer mass. Here it is shown that the 

changing dancer mass has larger influence at higher frequencies than lower frequencies. Changing the 

dancer mass from 90 % to 110 % decreases the damping of the faster poles with 10 % and decreasing 

the natural frequency of the faster poles with 10 %. 

3.5.1.8 Summary 

The influences of the changing parameters on the slower dominating poles are summarized in Table 3.5.  

Increased Parameter Symbol Natural frequency Damping 

Radius R Increasing Increasing 

Inertia Jm Decreasing Decreasing 

Motor viscous friction Bm No significant effect No significant effect 

Young’s modulus E No significant effect No significant effect 

Dancer spring constant Kd Increasing Increasing 

Dancer viscous friction Bd Decreasing Increasing 

Dancer mass Md No significant effect No significant effect 
Table 3.5 Main points from parameter variation 

The tendencies from Table 3.5 are later used for obtaining a conservative tuned PID control.  

From the analysis it is concluded that the most influential parameter is the changing radius. The analysis 

shows that the natural frequency is expected to increase at least 600 % and that the damping is 

expected to double as paper is winded. 

3.6 Simplified Web Winder Model 

The linear model and the nonlinear model have several parameters that influence the systems dynamic 

behavior, to reduce the amount of parameters that have to be estimated a simpler model is preferred. 

In (Liu, 1999) the model of the web material and the dancer can be estimated as shown in ( 3.25 ). 

 2 1

1

2

d

V V s



 

( 3.25 ) 

From (Liu, 1999) it is found that ( 3.25 ) is sufficient to describe  the dynamic behavior of dancer and 

web system in most industrial applications. 

An intuitive understanding of ( 3.25 ) could be to see the equation a mass continuity equation. This is 

more obvious if ( 3.25 ) is rewritten as shown in ( 3.26 ). 

2 1 2V V d s     

( 3.26 ) 

From ( 3.26 ) it can be seen that a difference between the paper entering the web handling system (V1) 

and the paper leaving the web handling system (V2) will result in a change in dancer velocity. The reason 

why the dancer velocity is multiplied by 2 is due to the web winders pulley-arrangement. It is hereby 

assumed that the dynamic of the dancer is much faster than the dynamics of the drive train. 
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From section 3.5.1 it is shown that the system contains 2 conjugated complex poles with a low 

bandwidth, and 2 complex conjugated poles with a high bandwidth, this supports the claim that the 

system contains two systems with large difference in bandwidth. In section 3.5.1 it is also found that the 

bandwidth of the slow dominating poles are affected by the inertia of the system, but the mass of the 

dancer have no significant effect, this implies that the slow poles originates primarily from the drive 

train. The simplified model ( 3.25 ) of the system  is hereby found plausible. 

When ( 3.25 ) is combined with the model of the drive train, the simplified on Fig. 3.25 is achieved 

 

Fig. 3.25 Simplified model of the system 

The simplify model of the system is hereby deduced, and will later be employed as foundation for the 

parameter estimation. 

3.7 Control Approach 

With the web handling system described above it is possible to set up 2 different control approaches.  

 

Fig. 3.26 Torque regulated position controlled 

The first approach is shown in Fig. 3.26. Here the tension is torque regulated position controlled. This 

means that a torque reference is determined by the position control and feed to the torque minor loop 

(TML) on the FC302. Additionally when accelerating the web inertia and friction compensation is 

needed.  
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Fig. 3.27 Speed regulated position controlled 

The second approach is shown in Fig. 3.27. Here the tension is speed regulated position controlled. This 

means that the position control and the measured web speed determine a speed reference which is 

feed to the speed control which determines the correct torque. Also here inertia and friction 

compensation is needed when accelerating the web. 

The second approach has experienced high control performance when the inertia of the system is 

limited. By high performance it means that the control approach give fast tension and speed responses 

and thus have high response to load change or other disturbances. But as the inertia increases the speed 

loop bandwidth decreases. This results in poorer performance(Liu, 1999). 

Better performance for systems with high inertia is achieved with the first approach (Liu, 1999).   
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4. Problem Statement 

In the problem analysis it is found that the web winder model can be explained by a 4th order system of 

type 0. This system has two dominating poles. This knowledge and the assumption that the motor is the 

dominating subsystem are used to simplify the system to a 2 order system of type 1.  

The most influential parameter is the radius which dramatically increases natural frequency by more 

than 600 % and doubles the damping. The inertia has less importance on the test bench. But in other 

systems with potential for much larger increase in inertia the system could destabilize. 

Since the inertia does not change significant a suitable control strategy for the test bench is the speed 

regulated position control. 

For better performance this control needs to adapt to the changing system caused by the changing 

radius. This problem analysis leads to the following problem statement: 

How is it possible to utilize adaptive control for the given web winder system ? 

4.1 Field of Interest 

The interest of this thesis is to investigate how indirect adaption could be used. This means how to 

develop an algorithm that automatic estimate the changing system parameters and uses these 

estimates to adapt the control law. 

The aim is to develop an algorithm that is also suitable to other web winders with larger inertia 

influence.  

Two controller structures are investigated, a PID-controller and a pole placement-controller. The 

performance of these controllers with and without adaption are evaluated by their ability to hold a 

dancer position reference while the web winder is subjected to disturbances  

4.2 Limitation     

Several different parameter estimation methods exist. In this thesis only the recursive least square 

method is investigated. 

As mentioned above the speed regulated position controlled approach fits the test bench. However in 

development of the adaptive control the torque regulated position controlled approach is used because 

it is found easier or faster to test, implement and evaluate. 

 Inertia and loss compensation is not investigated. 

 Other web materials are not considered.  

 The limit on torque input is set to +/- 1 Nm. 

 The default reference for position control is set to 35 mm.  

 The systems sample time is set to 0.01 s. 
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4.3 Procedure 

The remaining of the thesis is approached by the procedure shown in Fig. 4.1.  

 

Fig. 4.1 Thesis structure 

Each step in Fig. 4.1 is explained in the following. 

4.3.1 Parameter Estimation  

This step presents the parameter estimation principle and how recursive least square originates from 

this principle. While doing this the derivation of the method is done and the conditions for convergence 

are discussed.   

The algorithm is tested in a simulation both on an ideal system and with data from the test bench. 

4.3.2 Control Design 

For comparison reasons a conservative non-adaptive PID controller is derived and tested both in 

simulation.  

If the parameter estimation system seems plausible then the adaptive controllers are designed. Based 

on the estimation an algorithm is derived for determining the controller parameters for both the PID 

and the pole placement controller. The adaptive controllers are tested in simulation on an ideal system.  

4.3.3 Control Comparison 

Each controller’s performance is finally evaluated using the test bench.   

 

Comparison

Control Design

Controller derivation Controller test 

Parameter Estimation

Algorithm derivation Algorithm test
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5. Parameter Estimation 

To achieve the adaptive controllers stated in the problem statement, this chapter has the purpose of 

determine a suitable parameter estimation algorithm. This algorithm will serve as the basis for the later 

adaptive controllers being derived in the next chapter, by continuously estimating the plants behavior. 

In Fig. 5.1 the structure of adaptive control with parameter estimation is shown. Here the process input 

and output is feed to an algorithm which estimates the parameters that characterizes the process 

dynamics. The parameters are then feed to an algorithm which designs a control that meets certain 

requirements. 

 

Fig. 5.1 Control structure of adaptive control with parameter estimation 

This chapter explains the estimation principle, the used estimation method and how this method is 

implemented on the test bench. The theory explained in this chapter is based on  (Ljung, 1999) and 

(Ljung, et al., 1983). 

5.1 Estimation Principle 

The guiding principle of parameter estimation is that given a set of past corresponding inputs and 

outputs (ZN), selects the systems parameters ( ) in order to minimize the difference between the 

models predictions ( ˆ( )y t  ) and the systems output ( ( )y t ) as much as possible. 

This principle can be expressed with the following expression. 

      ˆ ˆ arg min ,N N
N N NZ V Z  

( 5.1 ) 

Where  , N
NV Z  is the cost function or the structure of how the difference between predictions and 

systems output is minimized. This function is expressed with. 
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( 5.2 ) 

Where     ,F t  is the norm which can be chosen in many ways. Obviously the task is to find a norm 

that enables a reasonable estimate within a certain time span.  

 ,F t   is the filtered error between the model prediction and the systems output. The error is 

expressed with the following two equations.   

         , ,F t L q t  

( 5.3) 

     ˆ, ( ( ) ( ))t y t y t  

( 5.4 ) 

The filter  L q  can be used to enhance or suppress signals in certain frequency ranges. For example it 

could counteract slow drift terms, high frequency noise or enhance signals in the systems bandwidth.  

5.1.1 Model Prediction 

In appendix A is the discrete expression of the simplified model is derived. The linear difference 

equation of this expression is given by. 

         1 2 1 21 2 1 2y t a y t a y t b u t b u t          

( 5.5) 

With ( 5.6 ) the predicted output ˆ( )y t  is found with Auto Regression with eXogenous variables (ARX).   

The regression vector is given by.  

         1 2 1 2
T

t y t y t u t u t             

( 5.6 ) 

And the parameter vector is given by. 

 1 2 1 2   
T

a a b b   

( 5.7 ) 

The model prediction is now expressed with ( 5.8 ). 

ˆ( )y t  =  T t   

( 5.8 ) 

By using the ARX model it is assumed that the measurement noise in system, which it is applied to, is 

white noise with zero mean. 
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5.1.2 Least Squares Method 

A commonly used estimation method is the Least Square Method (LSM). With this method the norm is 

given by ( 5.9 ) (Ljung, 1999). 

         21
, ,

2
F Ft t  

( 5.9 ) 

Inserting ( 5.9 ) in ( 5.2 ) and disregarding filtering, by letting  L q equal 1, ( 5.10 ) is found. 
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( 5.10 ) 

Then to find the minimum we equal the derivative of ( 5.10 ) with zero, shown in ( 5.11 ) to derive the 

final estimate θ̂N. 
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( 5.11 ) 

If the inverted matrix    
1

1

N
T

t

t t 





 
 
 
  exists then the parameters can be found analytically. 

The procedure for parameter identification given in ( 5.11 ) is also called batch or offline identification.  

5.1.3 Recursive Least Square 

In order to obtain online identification a recursive algorithm of the least squares method is derived from 

the offline least square estimation presented in section 5.1.2.  

This estimate is represented in ( 5.12 ). 
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( 5.12 ) 
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The derivation starts with denoting ( 5.13 ). 

     
1

t
T

k

R t k k 


  

( 5.13 ) 

Inserting ( 5.13 ) in ( 5.12 ) and sum up to (t-1) ( 5.14 ) is found. 
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( 5.14 ) 

From ( 5.13 ) is ( 5.15 ) found. 

       1
T

R t R t t t     

( 5.15 ) 

With ( 5.13 ) to ( 5.15 ); ( 5.12 ) can be rewritten as ( 5.16 ). 
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( 5.16 ) 

The expression ( 5.16 ) is a recursive estimate of the parameters when using least squares. This 

expression is often not suited for computation, since the matrix  R t  needs to be inverted in each time 

step. Therefore we define the following. 

   1P t R t  

( 5.17 ) 

By inserting ( 5.17 ) in ( 5.15 ) is ( 5.18 ) found. 

        
1

1 1
T

P t P t t t 


    

( 5.18 ) 
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To rewrite the expression ( 5.18 ) we use the following lemma (Ljung, et al., 1983). 

Let A, B, C and D be matrices of compatible dimensions, so that the product    

BCD and the sum A + BCD exist. Then, 

   
11 1 1 1 1 1A BCD A A B DA B C DA
          

( 5.19 ) 

By defining A =  P t , B =  t , C = 1 and D =  
T

t ( 5.20 ) is found 
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( 5.20 ) 

With ( 5.20 ) only the inverse of a scalar now needs to be computed. The algorithm for estimating with 

recursive least square is summarized with two equations in ( 5.21 ).  
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( 5.21 ) 

The initial values for P  and ̂  can be calculated from ( 5.17 ), ( 5.13 ) and ( 5.12 ) at the time step 

 0 dimt  or by choosing  0P C I   where C is a constant, I is the identity matrix and 

  g0 Initial uess  . 

5.1.4 Weighting and Forgetting Factor 

With ( 5.11 ) and ( 5.21 ) the estimated parameter
 
is based on observed data from the first time step. If 

the parameters in the system changes with time, the data from the earlier time steps would give a 

wrong picture of the present system. It is therefore discussed, how the estimating algorithm should 

neglect data from earlier time steps. This feature is referred to as forgetting. 

The minimizing criterion with a forgetting profile is given by ( 5.22 ). 

     2

1

, , ,
N

N
N

t

V Z N t t   


  

( 5.22 ) 

A common choice for the forgetting profile  ,N t  given by ( 5.23 ). 
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 , N tN t    

( 5.23 ) 

With 1   but close to 1, ( 5.24 ) is applied. 

     ln ln 1 1 1t t tt e e e
  


    

    

( 5.24 ) 

This gives an exponential-decay time of T0 time steps as shown in ( 5.25 ). 

0

1

1
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



 

( 5.25 ) 

Which means that values older than 0T  samples get a weight less than 1 37%e   of present values. By 

using ( 5.23 ) and performing the steps from ( 5.9 ) to ( 5.21 ) is ( 5.26 ) found. 
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( 5.26 ) 

Where  t    

From ( 5.26 ) it is seen that smaller values of λ(t) increases the gain of the present predicted error. 

Therefore the choice of the forgetting factor λ(t) becomes a tradeoff between tracking ability and noise 

sensitivity.  

If the frequency range of the system is known then some of the noise disturbance can be reduced with a 

filter as presented in ( 5.3).  

5.1.5 Persistent Excitation 

The estimated parameters in equation ( 5.26 ) or ( 5.21 ) will only converge if the input signal excites all 

modes of the system and that the excitation is detectable in the output. This condition is known as 

persistent excitation (PE).   

The definition of PE corresponds to the requirement of no singularity mentioned in section 5.1.2.  

When the system has 2n parameters then it has n possible modes of excitation. Therefore the input 

signal should at least possess n distinct frequencies. This could be achieved with superposing the input 

signal with n sinusoids, a pulse function or a pseudo random binary sequence (PRBS).  

As mentioned above the superposed input signal needs to have a detectable influence on the output. 

Therefore the superimposed input signal needs to be larger than noise input and the influence on the 

output has to be detectable from the measurement noise.  
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Normally the amplitude of the sinusoids or a pulse function is at least as large as the noise variance. And 

the frequency of the sinusoids or the pulse function is around the systems bandwidth. 

5.2 Testing the Parameter Estimation Algorithm 

This chapter has the purpose of evaluating whether the recursive least square algorithm is suitable for 

estimation of the web winders system parameters. This will be examined through simulations the first 

half of this chapter before, if successful, being implemented in the actual system in the last part of the 

chapter. The algorithm is tested through the steps outlined here. 

 Model definition 

 Offline test based on Simulink 

o Test of parameter convergence against ideal model 

o Test of parameter convergence against ideal model with injected noise 

o Test of parameter convergence against varying model 

o Test of parameter convergence against varying model with injected noise 

 Online test performed on the web winder machine 

o Test with various estimation filters 

o Test with different excitation signals 

The argumentation for choosing theses steps is to gradually test the estimation algorithms ability to 

estimate accurate. Each of these steps will be discussed through the chapter. The recursive least square 

algorithm will through the chapter commonly be referred to as the parameter estimation algorithm 

(PEA).  

Through this chapter the word test will refer to the testing of an overall system modification, e.g. the 

implementation of a filter. Each test may be divided into several experiments which refers to either 

practical experiments with the actual web winder in the laboratory or simulations in Simulink. In either 

case is experiments used to either support or discard proposed tests. 

5.3 Definition of the model  

This chapter will derive the model used for the least square algorithms estimations. The model is based 

upon the simplified model explained in chapter 3.6, and will discussed how the system model is revised 

and interpreted by the estimation algorithm. The simplified model links torque input to the system, with 

the dancer position as shown in Fig. 5.2. 

 

Fig. 5.2 Block diagram of the simplified model 

As shown on Fig. 5.2, is the simplified model primarily governed by the motor model, the gearing ratio, 

and the velocity of the paper as it comes of the unwinder roll (V1). The difference in paper velocity is 

related to the dancer position through an integrator block.  
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It poses a problem that the model, from torque input to dancer position, is not linear due to the 

subtraction of paper speed (V1).  If the change in V1 is assumed slow compared to the speed of the 

estimation algorithm, the subtraction of V1 can be seen as a constant which causes an offset in the 

estimation. This assumed constant offset will have no influence on the estimation of the systems 

dynamic behavior and will therefore be neglected. Based on this assumption a collected model from 

input torque to dancer position (d) is given by ( 5.27 ). 

 
      2 2(2 2 )G M G M

R
d

S N J S N B
 

( 5.27 ) 

The continuous model in ( 5.27 ) is through appendix A transformed into a discrete model which is given 

by ( 5.28 ). 


 

 
  

1 2
2

1 2

b z b
d

z a z a
 

( 5.28 ) 

To test if the found discrete model represents the continuous model, a step response comparison is 

shown in Fig. 5.3. The comparison is based on the found system parameters from the model validation 

section in chapter 3.3. And the discrete model constants are calculated on basis of the Z-transformation 

of the model in appendix A. The discrete sample time is by the project group selected to 0.01 s. this 

sample time will be used for all further analysis and implementation in the test bench.  

 

Fig. 5.3 Step response comparison between continuous and discrete model 

The step comparison shows identical behavior between the two models whereby the discrete model is 

found to represent the continuous model. 

From ( 5.28 ) it is  seen that the discrete model contains two numerator constants (b1 and b2) and two 

changing denominator constants (a1 and a2). By following the recursive least square algorithm explained 

in section 5.1.3 this renders a 4x1 θ-vector ( 5.29 ), a 4x4 covariance matrix P ( 5.30 ) and a 1x4 ϕ vector 

( 5.31 ). 
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( 5.31 ) 

 

The recursive least square algorithm contains a forgetting factor which enables the algorithm to weight 

new estimates higher than older, or weigh all estimates equal depending the setting of the forgetting 

factor λ.  Equation ( 5.32 ), also explained in section 5.1.4, relates the lambda factor to the amount of 

samples remembered by the estimation algorithm. 





0

1

1
T  

( 5.32 ) 

The forgetting factor is iteratively set by the project group on basis of initial testing. The selection is a 

weighting between relative slow and stable estimation (large λ) and fast adaptation to changes (low λ). 

The project group has found a values of 0.999 suitable, which by ( 5.32 ) enables the algorithm to weight 

the last 1000 estimations highest and base its new estimations on this memory. With a system sample 

time of 0.01 s, this will be equivalent to 10 s of memory. Data older than 10 s will be exponential 

decayed. 

In order to determine whether the PEA is working plausible a set of success criteria is employed from 

which the results can be compared. The project group has chosen the following criteria on basis of initial 

intuitive testing: 

 3% tolerance on estimated numerator constants b1 and b2 

o The estimated parameters have to be within an acceptance band of +/- 3 % of ideal value 

to keep estimated models response at acceptable amplitude and phase shift. 

 1‰ tolerance on estimated denominator constants a1 and a2 
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o The estimated parameters have to be within an acceptance band of +/- 1‰ of the ideal 

values for the estimated models response to be of the correct type. 

 Parameters has to settle within 10 seconds 

o The system algorithm should be fast, therefore correct estimation values should be 

found quickly. Especially for the LTI systems. A parameter is found settled if its value 

enters the acceptance band and stays within this band. 

 10 % tolerance on natural frequency and zero placements 

o With the parameters sufficiently exact it, is also important to check that the dynamic 

behavior of the estimated parameters also are within in a acceptance band of +/- 10 %. 

The criteria are chosen by the project group as a base for comparison of multiple simulations. The 

criteria will primarily be used for the simulation tests where the correct parameters are known. The 

comparison method for later test bench experiments will be explained in section 5.8. 

As a discrete model representing the system is found in this section, it is possible to test whether the 

least square algorithm can estimate the parameters sufficiently enough to be used as parameter 

estimation in the final system. 

5.4 Simulation Test with LTI Model 

The principle of this test is to validate whether the least square algorithm works and is able to estimate 

parameters in a model as shown in Fig. 5.4. To achieve this, two sets of constants is employed. First the 

constants found in the model validation chapter 3.3. These constants are assumed to represent the 

actual system and referred to as the ideal constants in this section. The second set of constants is 

chosen in the vicinity of the ideal constants by the project group to make them deviate from the ideal 

constants. These chosen constants will act as the least square algorithms initial values.  

The goal is having the least square algorithm estimate the correct values (ideal constants) of this LTI 

system on basis of the chosen initial values. If this succeeds it is plausible that the algorithm can 

estimate the actual parameters on basis of the constants found in the validation chapter (Chapter 3.3). 

Table 5.1 contains both the set of ideal constants and the set of chosen initial constants. 

 Ideal (s) Chosen (s) 

Jm2 0.0031 0.0025 

Bm2 5.5·10-4 5·10-4 

R 0.0573 0.06 

NG 10.5 10.5 

 Ideal (z) Chosen (z) 

a1 -1. 999822 -1.998001 

a2 0. 999822 0.998001 

b1 4. 414902·10-7 5. 710478·10-5 

b2 4. 414640·10-7 5. 706672·10-5 

Table 5.1 Ideal and chosen parameters used for the estimation test 

The chosen constants are within a reasonable range from the ideal parameters, in order to emulate the 

deviation between the ideal parameters and the actual physical parameters found in the web winder 

test bench. The z-parameters in Table 5.1 are the discrete representation of the continuous S-function 

made from the S-parameters in Table 5.1. The model which is sought estimated is shown on Fig. 5.4  
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Fig. 5.4 

The inputs to the parameter estimation block are motor torque (τ) and the dancer position (d). The first 

step is to see how well the guessed system represents the ideal system. This is compared on Fig. 5.5. In 

order to achieve this, a square wave input is used as τ, which also is shown on Fig. 5.5. This input is 

chosen for its similarity to steps, which can be used to excite as much dynamic behavior as possible. The 

signal is also chosen to have a mean value of 0, whereby both positive and negative signals occurs. This 

is chosen as the ideal system is of type 1 and therefore would rise fast and positively, negative signals 

will help to keep the response low and induce a response more similar to a type 0 systems step 

response. As the least square algorithm should converge fast, a 10 seconds simulation is chosen as 

sufficient. 

  

Fig. 5.5 Position comparison between system with ideal and chosen constants 

The guessed system does not represent the ideal system very well seen from the comparison. This can 

be seen in the two graphs divergent behavior. This is obviously anticipated as the chosen system 

deliverable is selected to be a bit off.  

The next step is to let the recursive least square algorithm estimate the parameters on basis of the 

guessed values. The simulation is again run for 10 seconds and the found parameters are shown in Table 

5.2. 
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Parameter a1 a2 b1 b2 

Estimated value -1.998002 0.998001 4.539611·10-5 4.548749·10-5 

Deviation <1‰ <1‰ -2.9% -3.1% 
Table 5.2 Estimated parameters after 10 s simulation 

By comparing the results with the ideal parameters, it can be seen that the parameters are estimated 

closely but with deviations of up to 3.1%. But that does not exclude the parameters from still 

representing the system. Therefore a simulation is run where the found estimated parameters (shown 

in Table 5.2) does constitute an estimated model and the behavior is compared with the ideal system as 

shown on Fig. 5.6 based on the same input signal mentioned earlier. 

 

Fig. 5.6 Response comparison between ideal and estimated system when both are excited with the same square wave input 

The response comparison shows that the estimated system with the found parameters behaves as the 

ideal system with small deviations in the order of 0.01 m, measured as the difference between the 

lowest and highest error. the response and accuracy is found acceptable but further analysis of the 

parameter accuracy is performed. 

By analyzing the found parametera, and the parameters sought it can be seen that the numerator 

parameters are very small, in the order 10-5. This suggest that any errors between the found and the 

ideal parameters also are very small. As this error is squared, it is plausible that it becomes so small that 

numerical rounding errors in MATLAB have influence.  To get bigger parameters it is therefore examined 

if a gain of 1000 inserted on the estimation signal can give plausible results. The principle is shown on 

Fig. 5.7. 
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Fig. 5.7 Sketch of estimation system with inserted gain and downscaling of the θ-parameters 

The output from the system is hereby scaled by 1000 but the input to the parameter estimation block is 

not, this gives larger outputs and hereby larger estimated parameters in the numerator, which 

previously contained very small numbers. Due to the system being linear the estimated numerator 

parameters will be 1000 times larger, is afterwards downscaled to have the correct values. The value of 

1000 is chosen by the project group to test whether higher gains enhances the estimation performance. 

A 10 second simulation is again run and the estimated parameters are shown in Table 5.3. 

Parameter a1 a2 b1 b2 

Estimated value -1.998214 0.998214 4.407705·10-5 4.366071·10-5 

Deviation <1‰ <1‰ 1‰ 9‰ 
Table 5.3 Estimation results after 10 s of simulation 

By comparing with the ideal values in Table 5.1, it is clear that the higher gain-solution has improved the 

results and that these parameters are very close to the ideal. A simulation with the estimated 

parameters is run and the result is compared to the ideal systems as shown on Fig. 5.8. 

 

Fig. 5.8 Response comparison between ideal and estimated system when estimated using a gain of 1000 

From Fig. 5.8 it is not possible to distinguish the two position graphs, same results as before the gain 

was implemented, and the response error is still in the range of 0.01 m. The main difference is more 

accurate parameters with deviations of only up to 9 ‰, which is considered a success. 
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The next step is to see if the parameters during simulation converge against a fixed value or if they cycle 

and the found solution only fits by accident. A plot of the θ-parameters is shown on Fig. 5.9. 

 

Fig. 5.9 Developments of the θ-parameters though the estimation simulation 

From Fig. 5.9 it can be seen that all parameters have fixed values after 2.5 seconds. It can therefore be 

concluded that the system converges and find constant parameter values for the LTI system, which is 

also expected. It can also be concluded that the parameters need to be of a certain size or the signals 

need to be large, in order to achieve better accuracy. This is emulated by addition of the 1000 gain. The 

recursive least square algorithm seems plausible on basis of this simple test. 

5.5 Simulation Test with LTI Model and Added Noise 

As seen previous, the system converges fast and accurately to the ideal LTI system. But as the system 

also should work in a practical application, the next step is to test whether the system still converges 

when noise is present. 

To simulate realistic noise in the simulation, a section of noise is recorded from the dancer signal, which 

is the primary source of noise in the system. This recording is made while the two motors both run at 

400 RPM and the shielding around the dancer cable is connected to the earth potential as described in 

appendix B. The recording is made while the dancer is kept stationary at a position of 35 mm as stated in 

the project limitations. The measured signal is shown in Fig. 5.10. 
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Fig. 5.10 Snip of measured dancer signal with dancer at 35 mm 

In order to isolate the noise, the mean value (the dancer position) is calculated and subtracted the 

signal. The resulting signal has a zero bias with respect to zero, by moving the noise from the 35 mm 

position down to 0 mm position. This noise signal can later be added to other signal as a source of noise. 

By comparing the noise levels in Fig. 5.10 with the total range of the dancer (0 – 72 mm) it is clear the 

noise levels are very large with peaks of +/- 15 mm.  But to check whether the estimation algorithm still 

can estimate even though noise is present, the simulation sketched in Fig. 5.11 is conducted. 

 

Fig. 5.11 Simulation of parameter convergence with injected noise and signal scaling of 1000 

The reason why the noise is added to both estimation signals is derived from Fig. 5.12 which shows the 

test bench’s position loop. The zero bias noise found earlier, is on Fig. 5.12 added to the dancer signal to 

indicate this signal as being the main source of noise. 
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Fig. 5.12 Illustration of the noise’s influence on the system 

If noise is added, to the presumably ideal system, the noise will of course first influence the dancer 

signal. If the position loop reference (dref) in this derivation is assumed constant and zero; the noise will 

influence the error signal (e) to the controller. The purpose of this project is to continuously find a 

suitable controller, therefore it is not possible to determine the controllers influence on the error signal 

other than the noise must be changed and presumable be larger. But in this analysis it is assumed as 

equivalent to the noise added at the dancer signal. The estimation algorithm might estimate the 

behavior of the noise signal if the same signal is added to both the τ- and the d signal. The noise added 

to the τ signal is therefore delayed slightly to avoid correlation. 

The system estimated is this test is the same LTI system as in the previous section 5.4, and the d signal is 

still multiplied by a 1000 as seen earlier improving the algorithm. The measured zero biased noise is 

then added to the parameter estimation input signals. 

The section has the purpose of testing whether the algorithm still can estimate the parameters even 

when noise is present. The noise measured and explained earlier is added to the estimation signals as 

explained on Fig. 5.11. This is done through a simulation and the results are presented in Fig. 5.13 which 

shows the algorithms capability to estimate the parameter after 25 seconds. The simulation time is 

elongated from 10 seconds to 25 seconds due to the disturbance from the noise creates longer 

parameter settling time. The model is excited by at square wave signal with amplitude of +/- 0.25 Nm 

and a period of 2 seconds. The square wave signal is chosen to excite as much dynamic behavior as 

possible. 
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Fig. 5.13 Plot of estimated parameter values through simulation with injected noise 

It seems at first sight, that the system converges and that b1 and b2 is estimated after 15 seconds. But as 

Table 5.4 shows, the algorithm does not converge to the right values. Table 5.4 contains the found 

estimates and the respectively deviation from the ideal values in percent. 

Parameter a1 a2 b1 b2 

Estimated value -0.464003 -0.536207 -3.242398·10-3 0.355021·10-3 

Deviation 77 % 154 % 7450 % -700 % 
Table 5.4 Estimation results after 25 s of simulation 

These deviations are very large and unacceptable, which is also being underlined by a comparison plot 

on Fig. 5.14 which compares the ideal models response to the estimated systems response to the same 

square wave input. 

 



EMSD10 Adaptive Control With Self-Tuning For Center-Driven Web Winders 

Page 48  

 

Fig. 5.14 Position comparison of the estimation results after introduction of noise in the estimation system 

As the only difference between this test and the previous LTI test is the injected noise, the noise must 

be the cause for the bad convergence. The following section will therefore explore various means to 

reduce the noise to a level where, if possible, the algorithm can converge. 

5.5.1 Measures to Reduce Noise 

There are different ways to perform noise reduction. One possibility is to shield the cables and make 

sure these cables does not run near noise sources. This have been implemented on the machine in such 

a way that the signal cables shielding is connected to the earth potential and the signal wire is wound 

with the neutral wire. The cables are placed as far from the motors as possible. And an analog anti 

aliasing filter is implemented as described in appendix B. But the noise shown in Fig. 5.10 is still present. 

An experiment is run using the model in Fig. 5.11 to see how much the noise should be reduced if the 

algorithm where to converge. The reduction is made by scaling the noise using a scalar stated in the 

Gain-column in Table 5.5 The parameters accuracy is calculated and stated in Table 5.5 as well. 

Gain a1 a2 b1 b2 Settles? 

0.1 
-1.643772 0.643725 -0.689866 0.837858∙10-5 

No 
21 % 55 % -106 % 95 % 

0.02 
-1.979976 0.979974 9.393016∙10-6 8.166813∙10-5 

No 
9 ‰ 2 % 370 % 46 % 

0.01 
-1.993625 0.993624 3.644893∙10-5 5.237780∙10-5 

No 
2 ‰ 4 ‰ 21 % -15% 

0.002 
-1.998036 0.998036 4.416304∙10-5 4.399803∙10-5 Yes 

18 sec <1‰ <1‰ <1‰ 2‰ 

0.001 
-1.998173 0.998173 4.423981∙10-5 4.390863∙10-5 Yes 

9 sec <1‰ <1‰ 2‰ 4‰ 
Table 5.5 Estimation results after 25 s of simulation with scaled noise introduced in the estimation system 

The “Settles?” column tells whether the values enter the acceptance band and stays within it until the 

end of the simulation or whether the parameter diverges or cycles. The time stated for those who settle 

are the time from the simulations start and until the parameters cross the acceptance limits for the last 

time before staying within these limits. 
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From Table 5.5 it can be concluded that a noise reduction of a factor 500 is needed to make the system 

estimate within the acceptance band. But the convergence is first settled at around 18 seconds. This is a 

long time for the system compared to the success criteria. But a reduction factor of a 1000 is needed 

just to get the settling time under 10 seconds. But at noise reduction of a factor 1000 is not realistic as 

the system is presented today where the signal cables already are shielded and kept as far away from 

the motors and frequency converters as possible. 

Therefore a physical solution does not seem plausible. Instead it seems interesting to test filters. 

Especially as the noise consists of a small portion of what seems to be white noise and a few large 

spikes. These spikes can be drastically reduced by implementing a low pass filter on the signal. 

It is therefore chosen to implement a second order low pass filter on the noise before adding it to the 

model as earlier. A second order filter is chosen as it has a steeper frequency response decline above 

the filter frequency. The same comparison table is made with filters in steps of 2 Hz. 

Filter frq. a1 a2 b1 b2 Settles? 

2 Hz 
-1.998226 0.998226 4.412269∙10-5 4.404194∙10-5 Yes 

4 sec <1‰ <1‰ <1‰ 1‰ 

4 Hz 
-1.998192 0.998192 4.420150∙10-5 4.409126∙10-5 Yes 

4 sec <1‰ <1‰ -2‰ <1‰ 

6 Hz 
-1.998087 0.998087 4.427191∙10-5 4.405289∙10-5 Yes 

4.5 sec <1‰ <1‰ -3 ‰ 1‰ 

8 Hz 
-1.997994 0.997994 4.428383∙10-5 4.390360∙10-5 Yes 

6 sec <1‰ <1‰ -3‰ 4‰ 

10 Hz 
-1.997921 0.997922 4.417993∙10-5 4.378377∙10-5 Yes 

12 sec <1‰ <1‰ -1 ‰ 7‰ 

12 Hz 
-1.997842 0.997842 4.382761∙10-5 4.384178∙10-5 

No 
<1‰ <1‰ 7‰ 6‰ 

14 Hz 
-1.997738 0.997738 4.307943∙10-5 4.422909∙10-5 

No 
<1‰ <1‰ 2 % -2‰ 

16 hz 
-1.997599 0.997599 4.181150∙10-5 4.509408∙10-5 

No 
<1‰ <1‰ 5 % -2 % 

Table 5.6 Estimation results after 25 s of simulation with added noise being filtered 

From this table it is clear that, the lower filter frequency is, the better the algorithm convergences and 

the settling time reduces. It can be seen that a filter of at least 10 Hz is needed to make the system 

settle at a constant value. But with a 10 Hz filter this takes 12 seconds. The obvious choice would be to 

select the lowest possible filter, but this has consequences as a lower filter gives a higher phase shift or 

delay in the signal, which could be a problem later in the control part as the signal is artificial delayed. 

Therefore the best choice of filter must be a balancing between settling time and phase shift. The 

project group therefore chooses the filter with the highest frequency while settling under 5 seconds. 

The filter which can achieve this seems to be the 6 Hz filter. This filter is therefore chosen for the further 

analysis. 

Fig. 5.15 shows the parameters convergence based on simulation with the 6 Hz filter implemented. 
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Fig. 5.15 Plot of estimated parameter values through simulation with injected noise filtered at 6 Hz 

The scaling of the plot in Fig. 5.15 is especially made in such a way that if a parameter moves outside the 

acceptance limits it would show as a change in the graph, any changes within the acceptance band 

would only show as a straight line. In this way it is visually possible to see that the parameters converges 

and keeps at constant values, with respect to the tolerance limits. 

Fig. 5.16 shows the noise before and after the filtering using the 6 Hz filter. This filtered noise signal is 

then added both τ and d signals to the PEA. The second graph on Fig. 5.16 shows the original models 

response compared to the models response based on the estimated parameters found and the square 

wave input signal. 
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Fig. 5.16 Top graph displaying the added noise signal. Bottom graph dispaying the position comparison and the input signal 

It is clear that the two responses are very much alike and is a better fit than the comparison made in Fig. 

5.14. To further investigate the accuracy of the estimation, the estimated systems natural frequency and 

the placements of the systems zeros are calculated using MATLABs damp and zero functions and the 

result is compared with the ideal models properties. The zeros are in all cases, due to the models 

structure, placed on the real axis. The comparison is therefore based on the zeros location compared to 

the ideal systems on the real axis.  

A comparison of the two models natural frequency as the simulations is run is shown on Fig. 5.17. 

 

Fig. 5.17 Comparison of natural frequency between the ideal and the estimated system 



EMSD10 Adaptive Control With Self-Tuning For Center-Driven Web Winders 

Page 52  

The comparison shows large deviations peaks the first 5 seconds which gradually decreases as the 

simulation develops. The peaks are coincident with the input square waves rising and falling edges, but 

the deviations are immediately detected by the algorithm and suppressed. 

 

Fig. 5.18 Comparison of zero placements between the ideal and the estimated system 

Fig. 5.18 compares the zero placements which shows the same tendencies as the natural frequency 

comparison. This tendency is relatively large deviation peaks at start which is gradually reduced as the 

estimation is getting better. 

It can therefore be concluded that the algorithm seems plausible, as long as the noise in the system is 

reduced. This could for instance be done by the application of a 6 Hz filter on the dancer signal. 

5.6 Simulation Test with LTV Model 

The next step is to investigate how the algorithm estimates changing parameters. This will be examined 

by varying the ideal models parameters realistic over time and compare the estimation result to 

determine if the estimation algorithm detects the changes as they actually are made. The system is 

sketched on Fig. 5.19, where the arrows across the motor and gearing model indicates that these 

models have time changing behavior in this test. 

 

Fig. 5.19 Model of the estimation system with time varying parameters and scaling of d 

Table 5.7 shows the physical parameters which constitute the time varying ideal model. This model is 

sought estimated as correctly as possible during the simulation. The table also contains the variations of 

the parameters from start simulation and until finish. The simulation is run for 15 minutes as this is a 

realistic time for the paper to be winded from one reel to another. 
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 Start value at t=0 s End value at t = 900 s 

R 13 mm 72 mm 

JM2 0.00309 0.00325 (+5 %) 

NG 10.5 10.5 

BM2 0.00055 0.00055 (sine +/- 25%) 
Table 5.7 start and end values for time varying parameters 

All the parameters change linearly except the friction BM2, which is varied using a sine function in such a 

manner that the value will have changed +/- 25 % at the end of the simulation (1 sine cycle).  A sine 

pattern is chosen for this parameters as it is the only which cannot be determined wheter rises or falls 

during experiments. The radius and inertia on the other hand is known to rise as more paper is wound 

and time progresses. 

Fig. 5.20 shows the new discrete ideal model parameters as they vary over time. These parameters are 

calculated continuously based on the changes in Table 5.7 and employing the discretazation of the 

model in appendix A. The goal is to estimate these as exact as possible using the recursive least square 

estimation algorithm implemented in Simulink. 

 

Fig. 5.20 development of ideal model parameters during the experiments 

The next step is to test whether the PEA can estimate these changing parameters without noise present. 

This will test if the algorithm ideally can estimate the parameters acceptable. Fig. 5.21 shows the 

comparison between the ideal parameters (also shown on Fig. 5.20) and the estimated parameters 

found through the simulation. 
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Fig. 5.21 Comparison between ideal (blue) and estimated (green) parameters during simulation 

By looking at the graphs in Fig. 5.21 it seems that the algorithm converges fast and continuously 

estimates the correct values. But to quantify the results Table 5.8 has been made. This table shows the 

largest peak deviation and the mean deviation throughout the simulation. The first 5 seconds is ignored 

as the algorithm initially settles here, this is also supported by the results presented in Table 5.6. 

 a1 a2 b1 b2 

Peak <1‰ <1‰ 4% 5% 

Mean <1‰ <1‰ 1.8 % 1.9% 
Table 5.8 Parameter deviation through estimation simulation 

The deviation can be analyzed graphically by observing Fig. 5.22 which shows the instant deviation 

between the ideal parameters and the estimated parameters as the simulation is progressing. 
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Fig. 5.22 Instantaneous deviation between ideal and estimated parameters in percentage. 

To check the dynamic behavior of the system, the ideal systems natural frequency is compared to the 

estimated systems. This is shown on Fig. 5.23. The comparison is made using MATLABs damp and zero 

functions. 

 

Fig. 5.23 Deviation in natural frequency compared to ideal system 

From this comparison it seems that even though the parameters are estimated very correctly the system 

still experiences relatively high deviations in natural frequency of up to 8 %. A comparison of the 

systems zero-placement is shown on Fig. 5.24. 

 

Fig. 5.24 Deviation in zero-placement compared to ideal system 

The zero-placements only deviate by up to 1 %. Based on this analysis it seems that the algorithm can 

estimate the parameter sufficiently but may experience minor deviation peaks in the estimation results. 

It also seems that even though the parameters are closely estimated, the natural frequency still deviates 

up to 8 %. This can have influence on the systems dynamic behavior.  
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5.7 Simulation Test with LTV Model and Added Noise 

This final test has the purpose of examining whether the algorithm converges when the system 

parameters changes and noise is present. The same parameter wave forms are employed as in the last 

test, and the noise is again filtered using the second order low pass filter.  

 

Fig. 5.25 Estimation system with time varying model parameters and added filtered noise 

The test is only run up to 8 Hz as earlier tests shown that higher filter frequencies deteriorates the 

algorithms performance. The results of the tests are shown in Table 5.9. 

Filter frq.  a1 a2 b1 b2 

2 Hz 
Peak <1‰ <1‰ 4.5 % 5% 

Mean <1‰ <1‰ 1.8 % 1.9 % 

4 Hz 
Peak <1‰ <1‰ 6.5 % 6.5 % 

Mean <1‰ <1‰ 1.5 % 2 % 

6 Hz 
Peak <1‰ <1‰ 11 % 11 % 

Mean <1‰ <1‰ 1.1 % 2.4 % 

8 Hz 
Peak <1‰ <1‰ 14 % 14.5 % 

Mean <1‰ <1‰ 0.7 % 2.8 % 
Table 5.9 Parameter deviation comparison through the simulation 

The mean deviation is calculated over the time interval of 5-900 seconds. From Table 5.9 it is again clear 

that the denominator parameter a1 and a2 are precisely found, but the numerator parameters b1 and b2 

have larger deviations. This test actually shows the 8 Hz filter having one of the smallest mean 

deviations. But the 8 Hz filter also has the largest peak deviations. The 6 Hz filter is again chosen for 

further analysis, as being the one with the best performance and highest filter frequency, hence lowest 

phase shift. It should be noted that in these simulations, only the mean deviation can be kept within the 

acceptance band. 

The further analysis will focus on the 6 Hz filter. Fig. 5.26 shows the parameter deviation as it develops 

through the simulation. 
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Fig. 5.26 Parameter deviation in % through simulation with added noise, filtered at 6 Hz 

On notable thing is that it seems the deviations are getting smaller as the simulation run, even though 

the noise is the same repeated signal throughout the simulation, and the ideal parameters change  

uniformly.  Fig. 5.27 shows the parameter estimation plotted against the ideal values. 

 

Fig. 5.27 Parameter estimations plotted with ideal parameters for comparison. The added noise is filtered with a 6 Hz filter 

The estimation does seem to follow the ideal parameter very well but also seems very noise and 

changing. In order to quantify whether this estimation is accurate; the estimated system and the ideal 

systems natural frequency is compared on Fig. 5.28.   
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Fig. 5.28 Deviation in natural frequency compared to ideal system 

 

The comparison is made in percentage and tells how big a deviation the estimated system has at a 

certain point in time. It seems the estimation at multiple points have deviations of up to 18 %. But the 

mean deviation of the graph (5-900 secods) is  <1 ‰. The same comparison is made to check the 

systems zero-placement. This comparison is made as the zero placements are important for the system 

response also. 

 

Fig. 5.29 Deviation in zero placement compared to ideal system 

 

Again peaks of up to 15 % is present while the graph only has a mean deviation of <1 ‰. To examine 

whether these large peaks are acceptable and to make a visual representation, the two systems 

response is plotted against each other in Fig. 5.30. 

 

Fig. 5.30 Comparison of dynamic behavior using two plot methods 



 Adaptive Control With Self-Tuning For Center-Driven Web Winders  EMSD10 

  Page 59  

Fig. 5.30 also contains a square waveform. This waveform determines how the estimated systems 

response is plotted as described in Table 5.10. 

Signal state Plot method 

High Value The system is plotted using the equation: 
 

            1 2 1 2
ˆ ˆ ˆ( ) ( ) ( 1) ( ) ( 2) ( ) ( 1) ( ) ( 2)d t b t t b t t a t d t a t d t  

 
Hereby is the next estimated position a function of the last 
calculated position, the estimated parameters in the θ-vector and 
the excitation inputs. Hereby is the dynamic behavior tested. If the 
system has the same response during a longer interval the found 
parameters can be seen as representing the ideal system 
sufficiently. 

Low value The system is plotted using the equation: 
 

            1 2 1 2
ˆ( ) ( ) ( 1) ( ) ( 2) ( ) ( 1) ( ) ( 2)d t b t t b t t a t d t a t d t  

 
Hereby is the next estimated position a function of the last ideal 
systems position (d), the estimated parameters in the θ-vector and 
the excitation inputs (τ). This plot method check whether the θ-
values are correct estimated. 
Table 5.10 Plot methods used to examine dynamic behavoir 

Both equations in Table 5.10 are derived from the simplified discrete model presented in ( 5.28 ). The 

input signal is the same square wave input signal as used in previous simulations. 

As both graphs on Fig. 5.30 follow each other very close despite the change between the plot methods it 

must be concluded that the deviation in natural frequency is acceptable. It can therefore be concluded 

that noise in the dancer signal will disturb the algorithm too much to find suitable parameters. But a 6 

Hz (or less) second order low pass filter seems plausible to make the algorithm converge. 

The systems bandwidth is earlier found to 2 rad/s, at this frequency the 6 Hz filter will have a phase shift 

of -4 degrees which is found acceptable. 

5.8 Estimation Tests with Web Winder 

This section has the purpose of testing the RLS algorithm when implemented on the web winder. The 

algorithm is implemented in the dSpace system as illustrated on Fig. 5.31. In order to make the web 

winder function a controller needs to be implemented, which in these tests are done using a PID 

controller with the following gains: 

 kP = 20  

 kI = 2 

 kD = 2 

This controller aims to wind the paper with a constant tension throughout the experiments. The gains 

are found by manually tuning the PID in such a way that it is able to regulate the winder through a full 

roll of paper. The manually tuned regulator does not necessarily have good performance, because this is 
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not the goal in this test, the goal is to validate whether the parameter estimation algorithm can 

converge sufficiently accurate. Therefore the PID regulator tuning will not be discussed further. In all the 

experiments the winder contains at least 200 meters of paper. The amount may vary above 200 meters 

due to paper replacements following paper failures.  The experiments are run at a constant reference of 

35 mm, while the unwinder accelerates from 50 RPM to 1000 RPM at 2 RPM/s.  

The sections is based on the Simulink implementation of the parameter estimation algorithm as 

sketched on Fig. 5.31. 

 

Fig. 5.31 Sketch of Simulink implementation in dSpace 

The figure contains two unknown block elements, the excitation block and the filter blocks inserted on 

the estimation signals. The contents of these blocks will be the subject of the further analysis. 

A 6 Hz second order low pass filter is also inserted, to filter the dancer position. This choice is based on 

the analysis in section 5.5 which found that a noise reduction is needed. It was found that a 6 Hz filter is 

necessary to make the system converge. It is also found that this filter gives a small and acceptable 

phase shift. This filtered position labeled df on Fig. 5.31 will in this section be referred to as the dancer 

position. The estimation filters are implanted on both the df and the τ signal as any noise present in the 

df also is assumed be present in the τ signal, due to the controllers P-term and if the reference is kept 

constant, which is the case through all the experiments.  

The purpose of the following sections is to test various combinations of parameter estimation input 

filters, labeled Filter on Fig. 5.31, and excitation signals, labeled Excitation on Fig. 5.31, to find a 

combination which makes the parameter estimations as accurate as possible. 

The estimation result will be refered to as estimed parameters or the θ-vector, which contains the four 

estimated parameters a1, a2, b1 and b2. 

The results of the experiments are compared on basis of deviation between the measured dancer 

position (df) and the estimated position based upon the estimated model parameters. The df signal and 

the τ signal are therefore logged along with the estimated parameters during each experiment. When 

the experiment is finished, the parameters are evaluated offline.  

The parameters are used to construct a time varying linear system which is excited with the measured τ 

signal from the experiment using Simulink. The comparison is made using the following three methods: 
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 Continuous method 

o Compares the position error when the parameters are updated continually 

o Tests the algorithms ability to estimate the position correctly based on the measured τ 

and df signal. This position error is equivalent to the parameter estimation error e. 

 

Fig. 5.32 graphical illustration of continuous method, X marks θ updates. 

 Interval method 

o Compares the position error when the θ-parameters are sampled every 10 seconds and 

held constant until next sample. 

o Tests the algorithms ability to estimate the position correctly based on the measured τ 

signal and its own output during 10 seconds intervals. This method can generate excess 

errors if the parameters are sampled simultaneously with a deviation in the parameter 

estimations when the next 10 seconds is based on this value.  

 

Fig. 5.33 graphical illustration of the interval method, X marks θ updates. 

 Interval method with mean 

o Compares the position error when the parameters are sampled every 10 seconds, based 

on a 5 seconds mean value, and held constant until next sample  

o The method does essentially the same as the previous but calculates a mean values 

based on the 5 seconds before the parameters are sampled and held. This should 

remove the problem with unfortunate parameter samples. 

 Largest oscillation 

o When signal excitation is employed the system is disturbed by this signal which in some 

cases is large enough to make the dancer oscillate. As oscillations are unwanted this 

comparison show much the excitation disturbs the system.  

 

 If the estimated parameters are correct, the deviation should be zero. If the parameters are wrong, and 

the estimated model is excited with the same input signal as the winder is, the estimated position 

should deviate largely. 
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5.9 Estimation Test with Various Filters 

The test has the purpose of evaluating whether the web winders dynamic behavior can be estimated 

correctly using the parameter estimation algorithm and various filters. Ideally should the algorithm work 

without filters but based on the experience gathered in section 5.7 the system suffers from noise in the 

dancer measurements which disturbs the estimation.  The filters are implemented as illustrated on Fig. 

5.34, where the arrows across the filter blocks, indicates that the filters are varied between each 

experiment. 

 

Fig. 5.34 Sketch of estimation test with varying filters 

The test is divided into 4 experiments with 4 different filters. First a test without filters, then three 

experiments with second order low pass filters with filter frequencies of 2, 4 and 6 Hz. The four 

experiments are stated in Table 5.11. 

 Filter Continuous Interval Interval with mean Osc. 

  RMS [%] Peak [%] RMS [%] Peak [%] RMS [%]  [mm] 

Exp1 No filter 4  ‰ - - - - - 

Exp2 2 Hz <1 ‰ 20/-18 2.9 20/-19 2.9 1.5 

Exp3 4 Hz <1 ‰ 17/-17 3 17/-17 3.1 1.5 

Exp4 6 Hz <1 ‰ 68/-56 7 52/-52 7 1.5 
Table 5.11 Estimation results with different estimation filters 

Experiment 1 does not converge at all and produces extreme deviation, which renders this solution not 

working. The three filter experiments agrees that the lower filter frequency, the lower RMS deviation. 

The peak deviations are also small for the 2 and 4 Hz filter compared to the 6 Hz filter. The deviation of 

1.5 mm is normal for the web winder and is mainly consisting of filtered noise signals.  

The 2 Hz filter is chosen for further analysis as this is the filter which generates the smallest deviations 

while still having a good dynamic performance. This is concluded by comparing the three filter 

experiments which is shown in appendix H. 

The results from the 2 Hz experiment is commented in the following, starting by displaying the 

estimated θ-parameters on Fig. 5.35. 
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Fig. 5.35 Estimated parameters (blue) and sampled parameters (green) during experiment 2. 

Other than the estimated θ-parameters, Fig. 5.35 also display the sampled θ-parameters used to the 

interval comparison. This comparison is made to show that these two set of parameters does not 

deviate from each other. The θ-parameters used for the interval comparison with mean is left out as 

these parameters are very close to the plotted interval-parameters.  

To show whether the estimated parameters seem correct, is the deviation between the output from the 

interval comparison and the measured dancer position plotted in percentage in Fig. 5.36. 

 

Fig. 5.36 Dancer position deviation based on the interval method, in percentage during experiment 2 

The comparison on Fig. 5.36 has small deviations but it should be noted that this comparison method 

only compares the actual dancer position with the theoretical position based on the estimation values. 
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This test does only partly indicate whether the dynamic behavior is accurate. It is also seen that the 

position deviation is small at e.g. 50 s. but the θ-parameters at this point is not at their settled level yet.  

The red vertical lines indicates the section within which the RMS and peak deviation results in Table 5.11 

are determined. The sections before and after are neglected as the algorithm needs time to converge at 

start, and that not all experiments takes equal time to conduct. Therefore are these limits introduced to 

create an equal comparison basis between experiments. 

 

Fig. 5.37 Dancer position comparison made using the interval method during experiment 2 

Fig. 5.37 shows the comparison between estimated dancer position and the measured dancer position. 

This comparison is essentially the same as the on Fig. 5.36, istead of percentage it is compared in dancer 

position, which enables graphical comparison of the dynamic behavior for the reader. 

 

Fig. 5.38 Shows a zoomed comparison of dancer position using the interval method 
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To better estimate the dynamics visually, a zoom comparison is made on Fig. 5.38 where zoomed 

section of the data already displayed in Fig. 5.37 is displayed. The plot is divided into two subplots, the 

top plot is the section of the experiment which the project group estimates as the best fit. The bottom 

graph is the section which the project group finds most diverting. 

At first glance does the zoom comparison does seem good, with accurate signal frequency, phase and 

amplitude. But with the exception of large spikes, and some sections offset errors in the worst case plot.  

But it should be noted that the theory in section 5.1.5 states the estimation algorithm should estimate 

poorly when the system is in steady state, as no signals excites the system dynamic behavior. This is the 

case in this experiment as the system is in steady state with the dancer held at a constant position. The 

only signals present to excite the dynamics is the induced noise and the PID controllers attempts to 

counter act noise and disturbances.  

With this in mind the zoomed comparison actually only shows the algorithms ability to correctly 

estimate the systems steady state gain and the dynamics of its noise. It is therefore too early to 

conclusively decide whether the algorithm works. But these experiments show that the smaller filter 

frequencies the smaller errors. But dynamic behavior in the range of +/- 1.5 mm around the reference 

could as easily be noise as actual dancer movement. 

5.10 Estimation Test with Added Square Wave Signal 

This test has the purpose of testing whether the addition of an excitation signal can improve the 

estimation accuracy by exciting the systems dynamics. From section 5.1.5 it is suggested that excitation 

is necessary in order to make the algorithm estimate the system dynamic behavior correctly. A square 

wave signal is chosen because this signal excites maximum dynamic behavior. 

Fig. 5.39 shows a sketch of the estimation system as implemented in dSpace. The square wave 

excitation signal is added between the PID controller and the estimation algorithms τ-measurement 

point. The found filter value of 2 Hz is implemented before the parameter estimation block. 

 

Fig. 5.39 Sketch of the dSpace program 

The experiment is run at a constant reference, while the unwinder accelerates from 50 RPM to 1000 

RPM at 2 RPM/s. the PID controller is the same as used in previous experiments with kP = 20, kI = 2 and 
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kD = 2. Every experiment is stopped after at least 180 meters of paper has been wound. The complete 

roll contains 200 meters of paper but 10 meters at each end is used as buffer, so the paper does not roll 

off the unwinder roll.  

Nine experiments are conducted based on 3 different square wave amplitudes and 3 different periods. 

The square wave period is the time from one rising edge and until the next. 

In order to compare the different test result numerically a result table has been made, shown on Table 

5.12 which also shows the excitations signals period and amplitude in each experiment. The three 

periods and amplitudes are estimated by the project group on basis of initial tests which showed these 

intervals interesting. 

 Signal Continuous Interval Interval with mean Osc . 

 Period [s] Amp [Nm] RMS [%] Peak [%] RMS [%] Peak [%] RMS [%] [mm] 

Exp5 1s 0.025 <1 ‰ 55/-60 8.8 85/-84 9.5 1.5 

Exp6 1s 0.05 <1 ‰ 32/-73 6.5 32/-73 6.4 1.5 

Exp7 1s 0.075 <1 ‰ 34/-111 8.8 27/-106 8.3 2 

Exp8 2s 0.025 <1 ‰ 180/-177 16.7 112/-152 12.7 7 

Exp9 2s 0.05 <1 ‰ 85/-140 10 65/-120 8.9 10.5 

Exp10 2s 0.075 <1 ‰ 56/-85 11.4 73/-95 12.4 22 

Exp11 3s 0.025 <1 ‰ 185/-153 14.7 151/-72 10.4 5 

Exp12 3s 0.05 <1 ‰ 39/-133 12.2 37/-135 12 10 

Exp13 3s 0.075 <1 ‰ 58/-108 11.5 57/108 11.3 12 
Table 5.12 Excitation signal properties and experiment results 

From the table, the following relations can be observed: 

 Longer excitation period produces larger RMS deviations 

 Higher deviations in general compared to no excitation 

From the deviations point of view, this excitation signal is not improving the estimation as the RMS 

deviations is higher than the deviation in the unexcited experiments. But in fact, as later discussed at 

Fig. 5.43, the dynamic behavior is improved. 

Based on the results in Table 5.12 no clear detectable pattern is found, the best results is therefore 

based on the interval test method to detect which excitation signal gives the best estimation result.  

Appendix H contains all the experiment plots which is the foundation for this experiment. If a true 

pattern where to be detected a lot more experiments where to be conducted, but as the purpose of this 

test is to show that excitation in fact improves the estimation performance experiment 6 is chosen as 

the best excitation signal using square waves.  

To see how much the excitation improves the estimation, the experiment with the worst result 

(experiment 12) is displayed. Later will the best experiment (experiment 9) be displayed to show how a 

variation of the excitation signals period and amplitude affect the estimation results. 

Fig. 5.40 shows the development in θ-parameters during experiment 12. Besides the θ-parameters is the 

sampled θ-parameters used for the interval comparison also plotted in order to show that these does 

not deviate largely from the original θ-values. The θ-parameters used for the interval comparison with 

mean is left out as these parameters are very close to the interval-parameters. 
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Fig. 5.40 Estimated parameters during experiment 12. Blue indicates the estimated values, green is the sampled and held 
values. 

Fig. 5.40 shows the parameters being stable and over all continuous, but with small glitches or spikes. 

These spikes are unwanted as they later will cause the adaptive regulators to act as if the system 

suddenly changes behavior.  

 

Fig. 5.41 Dancer position deviation based on the interval method, in percentage during experiment 12 

Fig. 5.41 shows the comparison between the estimated dancer position based on the interval method 

and the actual measured dancer position. The interval method is based on sampling the found θ-values 

every 10 seconds and using these as parameters in the system model. The model with these parameters 

is then excited with the measured torque input which the Web winder also experienced during the 

experiment. The peak error and RMS error in Table 5.12 is based on Fig. 5.41. 
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The first 40 seconds and the data beyond 600 seconds are discarded in the comparison. The reason for 

this is the estimation algorithms need to initial settle, and the variation in unwinder speed in 

comparison to later experiments making later experiments shorter. Therefore data beyond 600 seconds 

is discarded to make the comparison most fair. 

 

Fig. 5.42 Comparison between dancer position and estimated dancer position using interval method during experiment 12 

Fig. 5.42 compares the estimated dancer position using the interval method with the actual dancer 

position. This plot essential shows the same comparison as Fig. 5.41 but in position instead of 

percentage. In this plot is possible to estimate the accuracy of the estimated systems dynamic behavior.  

Fig. 5.43 shows zoomed sections of the data presented on Fig. 5.42 for better visual comparison. 

 

Fig. 5.43 Zoomed dancer position comparison using the interval method, during experiment 12 
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The top graph of Fig. 5.43 shows a portion of the experiment where the dancer position is best 

estimated. The bottom graph show a portion where the estimated behavior is worst. The sections are 

chosen by the project group. The vertical lines indicate where the θ-values are sampled and renewed.  

I should be noted that the frequency and phase shift fits in both best and worst case. But the amplitude 

is deviating multiple places. In the following is the same graphs presented for experiment 9 for 

comparison. Experiment 6 is the experiment in the square wave test with the smallest deviation. 

 

Fig. 5.44 Estimated parameters during experiment 9. Blue indicates the estimated values, green is the sampled and held 
values. 

The estimated parameter looks like the parameters from experiment 12 in the sense that they keep a 

steady level but experiences glitches and sudden changes. 

 

Fig. 5.45 Dancer position deviation based on the interval method, in percentage during experiment 9 
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The position deviation is smaller than experiment 12, with exception of an error at around 420 seconds. 

But the experiment still has the lowest RMS deviation in the test. 

 

 

Fig. 5.46 Comparison between dancer position and estimated dancer position using interval method during experiment 9 

From the position comparison on Fig. 5.46 it seems that the algorithm estimates most like the measured 

data if the dancer position experiences large oscillations, as the case is from 200 to 300 seconds. 

 

Fig. 5.47 Zoomed dancer position comparison using the interval method during experiment 6 

Fig. 5.47 shows zoomed sections of the dancer position comparison. The top graph is the best case the 

bottom case shows a portion of the data which the project group has chosen as the worst case. Both 

best and worst case sections have matched the frequency and phase shift in the dancer signal almost 

perfectly. In the best case the amplitude is correct except for the time immediately following the last 
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three θ-updates. The worst case has general amplitude problems throughout the graph. But in each case 

the model quickly converges against the actual behavior. 

Over all does the excitation using square waves improve the parameter excitation as the estimated 

dynamic behavior is improved in comparison to the unexcited tests performed in section 5.9. But the 

estimated parameters seem to suffer from sudden changes and glitches. And the deviations have large 

peaks. It is therefore tested if other signals might improve the performance further. 

5.11 Estimation Test with Added Sine Signal 

This section has the purpose of testing whether a sine signal does improve the performance of the 

parameter estimation algorithm. A sine signal is chosen for its simplicity and being a continuous signal. 

This may be an advantage as the estimation signals (df and τ) both are being filtered before the 

estimation block as shown on Fig. 5.48. A sine signal will have the same form after passing the filters 

whereas the square wave signal will experience “ramping”.  And hereby will the estimation algorithm 

and the web winder receive significant different signals. 

 

Fig. 5.48 Sketch of the dSpace program with added excitation 

This test is divided into two sections. First is 4 different sine signals tested, by adding them as the 

excitation signal as shown on Fig. 5.48. Each of the four signals has the same frequency but different 

amplitudes as shown in Table 5.13. The best amplitude will be chosen for at later test where the 

amplitude is held constant and the frequency is varied. 

A set of initial test is conducted by the project group in order to asses 4 rad/s as a good initial frequency 

for the amplitude test. The results of the tests are shown in Table 5.13. 

 Excitation Continuous Interval Interval with mean Osc. 

 Freq Amp 1 ‰ Peak RMS Peak RMS  

Exp14 4 rad 0.5 1 ‰ 37/-37 3.1% 46/-46 3.1 13 mm 

Exp15 4 rad 0.03 1 ‰ 14/-21 2.8 14/-21 2.8 8.5 mm 

Exp16 4 rad 0.02 1 ‰ 14/-17 2.6% 14/-17 2.6 6 mm 

Exp17 4 rad 0.01 1 ‰ 13/-12 2.6% 12/-12 2.5 3 mm 
Table 5.13 Results from experiments with different sine amplitudes added as excitation signal 
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The comparison is made on basis of the same three methods as the square wave signal. The continuous 

plot method which tests the estimated dancer accuracy on basis of the estimated θ-parameters, and the 

df and τ signal measured during the experiment. The interval plot method; which samples the θ-values 

every 10 seconds and plots the estimated response and plot the estimated dancer position on basis of 

these estimated θ-values and the τ signal measured during the experiment. The interval plot method 

with mean; this method is essentially the same as the interval method, the only difference is that a 

mean θ-values is calculated on basis of 5 seconds preceding data. 

And finally the largest position deviation from the reference is stated in the results table to indicate how 

much the added signal disturbs the system. 

By first comparing the results in Table 5.13 with the results found from using square wave signal as 

excitation (Table 5.12) it appears that the sine signal has reduced both the deviation peaks and the RMS 

errors significant. 

From Table 5.13, a relation between higher amplitude and larger error can be observed, which makes an 

amplitude of 0.01 Nm preferable, but by comparing the dynamic behavior graphically (see appendix H) 

experiment 17 has tendencies resembling the tests without excitation stated in section 5.9. Here the 

position error was shown to be small but the dynamic behavior was governed by noise. This indicates 

that 0.01 might be too small a signal to influence the estimation positively, as it does not create 

significant dancer output. 

An amplitude of 0.02 is therefore chosen for further analysis. Experiment 16, which tests this amplitude, 

has the smallest error and still an acceptable estimation of the dynamic behavior. This is also the 

experiment with the smallest oscillations as seen from Table 5.13. The results from experiment 16 are 

shown on Fig. 5.49, Fig. 5.50, Fig. 5.51 and Fig. 5.52. 
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Fig. 5.49 Estimated parameters during experiment 16. Blue indicates the estimated values, green is the sampled and held 
values 

The sine signal has, compared to the square wave signal, drastically reduced the glitches in the 

parameters. The parameters now seem to change smoother. 

 

 

Fig. 5.50 Dancer position deviation based on the interval method, in percentage during experiment 16 

The position deviation is also very small and without large peaks. 
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Fig. 5.51 Comparison between dancer position and estimated dancer position using interval method during experiment 16 

The position plot on Fig. 5.51 indicates good estimates from around 90 seconds and until the end.  But 

the system does not seem to estimate correct from 40 seconds and up to 90 seconds. A zoomed 

comparison is made on Fig. 5.52 

 

Fig. 5.52 Zoomed dancer position comparison using the interval method during experiment 16 

The top graph in Fig. 5.52 show the portion of the comparison with the best accuracy. The bottom graph 

shows the section with the worst accuracy. Both intervals are chosen by the project group. 

Both graphs on Fig. 5.52 have correct frequency and phase. The amplitude on the top graph deviates 

only slightly from the measured data. But the amplitude on the bottom graph seems to suffer from 

small offsets, but the estimate is still exact and found acceptable. The amplitude of 0.02 is therefore 

chosen for the further analysis of varying excitation frequency.   
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Table 5.14 contains 5 experiments with the same amplitude of 0.02 Nm but varying frequency in steps 

of 2 rad/s. 

 Excitation Error Error with 5 s mean Osc. 

 Freq Amp Peak RMS Peak RMS  

Exp18 2 rad 0.02 23/-34 4.5 23/-34 4.5 8 mm 

Exp19 4 rad 0.02 27/-30 4.6 27/-30 5 5 mm 

Exp20 6 rad 0.02 15/-17 2.9 15/-18 2.9 2.2 mm 

Exp21 8 rad 0.02 15/-25 4 23/-29 4.3 1.5 mm 

Exp22 10 rad 0.02 12/-15 3.2 12/-15 3.3 1.5 mm 
Table 5.14 Results from experiments with different sine frequencies added as excitation signal 

The experiments are compared in the same way as the previously excitation tests.  

From Table 5.14 the lowest RMS and peak deviation occur at 6 rad/s, but the smallest dancer oscillation 

occurs at 8 and 10 rad/s.  

By analyzing experiment 21 and 22 it is found that the dynamic behavior is poorly estimated, as seen 

earlier in the unexcited experiments. 6 rad/s and 2 Nm is therefore found as the best excitations signal 

in this badge of tests. A small amount of dancer oscillation will be accepted in favor of better estimation 

of dynamic behavior.  

The rest of the analysis will concern the test results from experiment 20. 

 

 

Fig. 5.53 Estimated parameters during experiment 20. Blue indicates the estimated values, green is the sampled and held 
values 
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The estimated parameters seem to fluctuate a bit more than in experiment 16 but still seem more 

continuous than when excited with square wave signals. 

 

Fig. 5.54 Dancer position deviation based on the interval method, in percentage, during experiment 20 

The positions deviations are very small which is also reflected in the low RMS value in Table 5.14 

 

Fig. 5.55 Comparison between dancer position and estimated dancer position, using interval method, during experiment 20 

From Fig. 5.55 it can be seen that unwanted oscillations are reduced. The estimation lags though at the 

start and until 80 seconds into the experiment. This section is plotted on Fig. 5.56 for further analysis. 

The estimation seems to follow the measurements acceptable over all but with deviations at 360 

seconds and 500 seconds. 
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Fig. 5.56 Zoomed dancer position comparison using the interval method during experiment 20 

The zoomed comparison on Fig. 5.56 is as previously divided into a best case, the upper graph, and a 

worst case, the lower graph. In both cases is the frequency of the compared signals correct. But the 

worst case lags correct amplitude and offset at some section. But overall is the estimation accepted 

because this experiment is the one which induces the smallest dancer oscillation while still estimating 

the dancers’ dynamics very closely. 

5.12 Summary of Parameter Estimation 

This chapter has proposed a parameter estimation algorithm and it is found working in both simulations 

and practical implementation. The PEA is based on the recursive least square method. It Is found that 

persistent excitation is needed for accurate parameter estimation. A forgetting factor fo 0.999 was also 

found suitable.  

 The recursive lest square algorithm was first tested to be able to estimate the parameters in a LTI 

system using Simulink. It was found that a gain of 1000 improves the estimation accuracy. 

Noise resembling the actual noise in the Web Winder was introduced which caused the algorithm to fail. 

Measures were made to reduce this noise, it was first tested whether simple noise reduction was 

plausible but this would require an unrealistic reduction of a factor 1000.  

Filters were therefore introduced and it was found that a second order low pass filter of 6 Hz is 

plausible. But the lower filter frequency is, the better response, unless it would cause too high phase 

shift or signal distortion. 

The same experiments were conducted with a time varying system in Simulink. It was found that a gain 

still is necessary to improve the accuracy. Noise was introduced and a filter was found necessary based 

on the conclusion from the LTI tests. Again a filter frequency of 6 Hz was found plausible. 
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With the algorithm found plausible theoretically, both ideal and with added noise, the algorithm was 

implemented in the actual web winder and tests were performed. 

It was found that filters are essential because of the signal noise. But with only filters the dynamics were 

not estimated plausible. Excitation was therefore introduced and tested with both a square wave signals 

and sine signals. 

The square wave signal improves the estimation of θ-parameters. These parameters are found 

representing the test bench dynamics, but suffer from large deviation peaks and sudden changes in 

estimation parameters. A sine signal is tested and found reducing the deviation peaks, smoothing the 

estimation parameters and reducing the dancer oscillations. 

From the experiments it seems that the dancer needs to be disturbed and oscillate unwanted in order to 

make estimation of the dynamic behavior correct. This is also anticipated from the theory. It should be 

noted that all the practical experiments were conducted with a PID controller implemented which is 

manually tuned to be used throughout the whole paper roll. A more aggressive controller might reduce 

the oscillations from the excitation signal. 

Another experience from conducting the experiments in praxis using the test bench is that the 

estimation algorithm seems to converge faster at higher paper speeds. This is observed when the 

unwinder roll is started at higher speeds and may explain why many of the experiments require around 

80 seconds before finding acceptable estimates. This fits with all the previous experiments are based on 

a slow rising unwinder speed ramp. 

But overall the recursive least square algorithm is found working, it does perform acceptable results in 

both theoretical and practical situation. But for successfully implementing in the web winder, noise 

filters and excitation signals is found necessary. 
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6. Controller Design 

This chapter has the purpose of describing and dimensioning suitable controllers for the web winder. 

The controller is a key component in the web winder as it seeks to keep a constant tension in the web 

through operation. The previous chapter sought to develop an algorithm which could determine the 

web winders model parameters at each instant. This is a power full feature as it enables the possibility 

of change the controller as the plant changes behavior. This chapter will aim to develop a controller 

algorithm which uses the estimated systems to online adapt its behavior.  

But before the introduction of adaptive controllers, traditional controllers based on constant 

parameters will be discussed. The four different controllers which the project group has chosen to 

explore are: 

 Manual tuned PID controller (PID1) 

 Model based PID controller (PID2) 

 Adaptive PID controller tuned via parameter estimation (APID) 

 Pole placement controller tuned via parameter estimation (PP) 

The manually tuned PID controller is found by changing the PID parameters intuitively during multiple 

tests until a suitable result was obtained. The manually tuned PID controller does share structure with 

the calculated PID controller (PID2) but does inherently not contain any derivation concerning its 

parameters. 

The PID2 will be tuned by utilizing the knowledge about the stability of the system describe in chapter 

3.5.1, and the purpose is to design a conservative controller that is able to function as the system 

changes characteristics during the winding process. This will be achieved by showing how the PID is 

designed for the worst case scenario and it performance in this parameter region. The tuning strategy 

that is used is Ziegler-Nichols method. 

The APID and the PP controller are different from the PID1 and PID2 by the fact that these continually 

are updated with new estimates of the systems behavior. To test if these controllers work, a linear time 

varying (LTV) model will be employed. The same model as in chapter 5.6. The model emulates the actual 

systems changing behavior over time. The advantage by using a model is that the controllers’ 

performance can be estimated in Simulink using model simulations. The time varying model parameters 

will be referred to as the θ-values where θ is the vector containing the a1, a2, b1 and b2 parameters. The 

LTV model will in each test be fed the same known time varying parameters. The θ-parameters sent to 

the controller will be changed according to the three stages detailed below. 

1. The controller is fed the known time varying parameters 

2. The controller is fed estimated parameters found using the parameter estimation algorithm 

3. The controller is fed estimated parameters found using the parameter estimation algorithm but 

noise is added to emulate the actual web winder 

The philosophy behind the stages is to start simple and gradually add to the complexity of the tests until 

the controller is found acceptable for implementation in the machine. Stage 1 is illustrated in Fig. 6.1. 
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Fig. 6.1 Stage 1 LTV-system with design via the parameters in the LTV system 

The first stage shows the controllers ability to control the system with varying parameters if the 

estimation of the system is perfect. The excitation is in all 3 stages a sine signal with a frequency of 6 

rad/s and a amplitude of 0.02. Stage 2 is illustrated in Fig. 6.2 

 

Fig. 6.2 LTV system with design via the estimated parameters in the LTV system 

The purpose of the second stage is to test if the system is able to control the output of the system when 

the system parameters are estimated using the parameter estimation algorithm (PEA).  Stage 3 is shown 

in Fig. 6.3. 
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Fig. 6.3 LTV-system with design via the estimated parameters in the LTV system and with noise added 

The third stage is to show how the system is able to cope with noise added on the output of the LTV-

system; this is done to show the robustness to noise in the system. The stage is otherwise identical to 

stage two. 

The PID1 and PID2 controllers are not tested to the same degree. PID1 is designed manually and 

therefore inherently will be working. PID2 is tested on the nonlinear model of the system and is not 

dependant on the estimation of the parameters as the case with APID and PP. 

The basis for the comparison of the simulated controllers will be an initial step on the reference from 0 

mm to 35 mm. From this initial step the overshoot, the rise time, the settling time and steady state error 

will be compared. The tolerances of the settling time are +/- 5% of the reference.  

6.1 Manual Tuned PID-controller 

The main purpose of this controller is to make a functioning controller in such way that it is possible to 

conduct an entire winding process without changing the control parameters. This controller will act as a 

base line which represents the performance achievable by simply changing the controller intuitively 

through trial and error. This controller was used during the test of the parameter estimation algorithm 

in chapter 5.  

This controller is tuned by changing the parameter in a PID controller, shown in Fig. 6.4, until a satisfying 

result is achieved.  

 

Fig. 6.4 PID controller as implemented in Simulink 
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The controller parameters are found as in Table 6.1 

KP 20 

KI 2 

KD 2 
Table 6.1 Manual tuned PID parameters 

Further variation of the control parameters might have revealed a better controller, but this setup is 

able to conduct an entire winding process. It will later in chapter Fejl! Henvisningskilde ikke fundet. be 

shown that the controller is robust against large disturbances. 

6.2 Model Based PID-controller 

On the basis of chapter 3.4 will a PID controller be designed to work in the whole range of the system. It 

will be designed using the Ziegler-Nichols tuning rules (Ogata, 2002). 

The most conservative values for all the parameters are chosen to make the controller function in all 

operation points. This means that the controller will be designed using the smallest paper radius, 

because it was found to be the most significant changing parameter during operation. The inertia does 

also change during operation but only a little compared to the radius, which changes approx. a factor 

5.5.The effect of the varying parameters can be found in chapter 3.5.1. The different value for the 

parameters are shown in Table 6.2. 

Symbol Value Unit Deviation from 
validated value 

JM2  3.1 10-3  Kg·m 0 

BM2  0.55 10-3 Nm·s/rad  0 

E  4 109 Pa  0 

A  4.35 10-6 m2 0 

LN  0.61  m  0 

R  13 10-3 m  -77% 

NG 10.5  -  0 

Kd  1018  N/m  -10% 

md  0.69  Kg  0 

Bd  450  Nm·s/m  -10% 
Table 6.2 Parameters used for worst case 

The PID-controller will act as position control of the dancer. The structure is shown in Fig. 6.5. A PI and a 

P controller will besides the PID controller also be tested for comparison. 

 

Fig. 6.5 Control structure for the static PID 

The dancer position, d, is another way to express the tension in the web in steady state. Therefore the 

desired tension can be converted into a desired position of the dancer if desired, but the position will be 

used as reference in this chapter. 
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The position controller will be implemented in dSpace, where the controller output is a torque reference 

that is sent to the winder VLT. The VLT has internal control structures, which it utilizes to get the motor 

to deliver the wanted torque. The internal torque control is based on feedback flux-orientated control. 

Torque from the motor is then actuating the rest of the plant with rotor inertia, paper, dancer etc. 

6.2.1 The Ziegler-Nichols Method 

When the plants critical gain (Kcr) and the critical period time (Pcr) are found using the root-locus, the 

parameters for the P, PI and PID-controller can be determined by means of Table 6.3 (Ogata, 2002). 

Controller type Kp Ti Td 

P 0.5 Kcr ∞ 0 

PI 0.45 Kcr 1/1.2 Pcr 0 

PID 0.6 Kcr 0.5 Pcr 0.125 Pcr 

Table 6.3 Ziegler-Nichols tunings rule based on critical gain Kcr and critical period Pcr 

The critical gain and the critical period are determined by Routh’s stability criterion. This criterion 

investigates if there are unstable roots in the characteristic equation of transfer function, without having 

to solve the equation. This is done by examine the constants in front of the different orders of S. The 

constants have to fulfill different condition this is clarified in appendix C, the result is shown in Table 6.4. 

System Kcri[-] Pcri [s] 

Gsys 802 0.5927 
Table 6.4 The critical values for the two systems 

This operation point is selected to have the lowest bandwidth. The Ziegler Nichols tuning method can be 

used for P, PI and PID controllers. Depending on the controller different controller constants can be 

calculated using ( 6.1 ). This calculation gives the controller constants displayed in Table 6.5. 

 
p

I D p d

i

K
K K K T

T
 

( 6.1 ) 

Type of controller KP KI KD 

P 401 0 0 

PI 360.9 730.7 0 

PID 481.2 974.3 35.65 
Table 6.5 Values for the controllers. 

These values are implemented and tested on the linear model to investigate if they have appropriate 

properties. 

6.2.2 Implementation in Model 

The controller structure is implemented in the system as shown in Fig. 6.6. 
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Fig. 6.6 Structure of the PID-regulator 

A simulation result of the implementation with the linear model as plant is shown in Fig. 6.7. The 

simulations are run using a reference (dref) of 0.035 m and a initial dancer position of 0 m at the time 0. 

 

Fig. 6.7 Comparison of different regulators based on the ZN method 

From Fig. 6.7 it can be seen that the parameters found from the Ziegler-Nichols tuning rules for the P- 

and the PI-controller is performing poorly. The P-controller has a very long settling time and the PI-

controller is unstable. This result is in accordance with (Liu, 1999) where it is pointed out, that some 

difficulties occur with the use of a PI-controller. A PID-controller or a lead compensator is needed. 

It should be noted that the Ziegler-Nichols tuning method only gives an estimate of suitable controller 

parameters. The P- and the PI-controller are improved by iteration and the new value values are shown 

in Table 6.6. There was not found new values for the PID-controller since the iteration did not improve 

the performance of the system. With the P-regulators proportional gain of 60 the steady state value is 

within 2% of the value.  
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Type of controller P I D 

P 60 0 0 

PI 50 2 0 

PID 481.2 974.3 35.65 
Table 6.6 The improved values for P- and PI-controllers 

A new simulation was run using the parameters from Table 6.6 and the results are compared in Fig. 6.8 

 

Fig. 6.8 Improved regulators in the linear model 

From Fig. 6.8 it can be seen that the system with the PI-regulator is stable now, this is because the 

oscillation decays to a level around the reference. The P-controller is improved but the steady state 

error is bigger than with the Ziegler-Nichols parameters but still within 5 %. The best controller is found 

to be the PID-controller since it is much faster to find the steady state than the others, but there might 

be some problems with implementing in the real system due to the use of the time derivative which can 

make the controller noise sensitive.  

The values from the manual tuned PID controller was smaller than the parameters found in Table 6.1 

this indicates that this controller based on the linear model is much too aggressive to work properly. A 

practical test showed that the paper broke repeatedly during start-up and therefore no more testing 

was conducted. It was decided to design a new controller based on the nonlinear model because this 

should be able to handle some of the nonlinearities better, and therefore the controller would 

supposedly have a better performance. This is supported by the knowledge that it is during the start-up 

that the nonlinearities are very determining of the behavior of the system. 

6.2.3 Design Based on the Nonlinear Model 

High controller parameters were initially found using the non-linear model also. When this phenomenon 

occurred it was decided to introduce noise in the position feedback in order to emulate the actual 

system as closely as possible. The test was also made because it earlier has been found that high 

amounts of noise in the position measurements poses a problem.  The noise is introduced as it is done 

in the parameter estimation chapter 5.5, by adding noise measured on the actual web winder. This 

noise is then filtered using a 6 Hz second order low pass filter as found suitable in the estimation chapter 

5.7 before adding it to the models feedback. 
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With the noise implemented in the feedback from the dancer the gain in a P-controller is increased until 

the system have a sustained oscillation. This resulted in a smaller gain than without noise. 

Under normal circumstances a critical gain would be found by raising the gain until the system 

experiences a sustained oscillation, and where a larger gain would result in an unstable system. 

A problem observed is that the nonlinear model have a large overshoot even with low gains, when this 

large initial overshot is completed, the system still have some sustained oscillations but at a lower 

amplitude than the first overshoot. When these sustained oscillations are emerged, the gain can be 

raised further without the system becomes unstable; the amplitude just becomes larger. The lowest 

gain, where the oscillation is sustained, is 40 as it can be seen from Fig. 6.9 which show a step reference 

test at 0.035 m with only a P-regulator implemented. Fig. 6.10 show a zoomed section of the simulation 

for better comparison and observation of critical period. 

 

Fig. 6.9 The step response of the nonlinear system 

 

Fig. 6.10 Zoom on the step response of the non-linear system 

The critical gain is chosen to 40 because this is the lowest proportional gain where there is a sustained 

oscillation is achieved. The critical period is approx 3 s. The values for the different controllers are 

calculated using Table 6.3 and ( 6.1 ). The found parameter constants are displayed in Table 6.7.  
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 KP KI KD 

P 20 0 0 

PI 18 7.2 0 

PID 24 9 16 
Table 6.7 Controller parameters from the nonlinear model 

A PID controller is chosen as the PI controller previously is described as not giving good results and as 

the PID controller eliminates possible steady state errors, a capability the P-controller lacks. It is chosen 

only to test the PID controller on the nonlinear model. The controller will later be tested on the test 

bench also. A step response of the nonlinear model with the found PID controller is shown in Fig. 6.11, 

the step size is 0.035 m. 

 

Fig. 6.11 A step response of the nonlinear model with PID controller 

It can be seen from Fig. 6.11 that the step response of the system settles after 5 s, the rest of the 

oscillation is due to noise from the feedback, if the same controller is used and the noise is removed 

from the simulation, the position is maintained at the reference. Based on this analysis is the static PID 

controller found plausible and will be used for further testing on the actual web winder. 

6.3 Adaptive PID-controller 

The purpose of this section is to discuss and determine a suitable PID controller algorithm which can be 

updated as the web winder changes behavior. The adaptive PID controllers main purpose is therefore to 

continuously be able to control the plants output based on a desired referece, a feedback 

mearuements, and knowledge about the system gained from the parameter estimation algorithm 

earlier discussed. 

As the estimated parameters constitutes a discrete transfer function which is assumed adequate 

representing the actual web winders behavior, it is reasonable to keep the further analysis in the 

discrete domain. 

The design plan for this section is as stated below: 

 Derive a discrete equivalent model of the PID controller 
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 Adapt a tuning method which on basis of the systems parameters can dimension the controller 

parameters 

 Test whether the found solution seems plausible through simulation tests 

When all the sections are completed, it should be possible to estimate whether the solution seems 

plausible for implementation in the actual web winder machine. 

6.3.1 Discrete PID-controller 

This section derives the discrete PID structure which will be used for later implementation of the 

algorithm. The derivation is based on theory from (Ogata, 1995). The general control structure is shown 

in Fig. 6.12.  

 

Fig. 6.12 Generel control structure 

The PID controller in the Laplace domain is given by ( 6.2 ). 
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( 6.2 )

 The discrete PID controller is initially derived by approximating the integral term with trapezoidal 

summation and the derivative term with a two point difference, which gives ( 6.3 ). 
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( 6.3 ) 

With the constants defined in ( 6.4 ) it is possible to revise the controller to the form given in ( 6.5 ). 

      ,             ,       
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( 6.4 ) 
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( 6.5 ) 

Equation ( 6.5 ) is commonly referred to as the position-form PID. With this form each part of the 

controller is multiplied with the error signal. 

When the process is starting up or changed from manual to automatic the reference signal changes 

rapidly and therefore the output of the proportional and derivative part often becomes larger than the 
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saturation limit. This is commonly known as the kicking phenomena. To avoid the kicking phenomena 

the velocity-form PID is used (Ogata, 1995). 

 
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( 6.6 ) 

Hereby is two discrete PID structures proposed. The structure in ( 6.6 ) will be used for further analysis 

due to its better performance in adaptive environments as the case is in this project. The structure of 

the selected adaptive PID controller can be seen in Fig. 6.13. 

 

Fig. 6.13 The implementation of the adaptive PID 

The type of PID controller is selected and it is prepared for implementation in the web winder system. 

The next step is to tune the different gains in the controller by means of the estimated parameters. 

6.3.2 Tuning of a Discrete PID-controller 

The purpose of this section is to determine the discrete PID controllers parameters, as the system 

parameters changes during operation. One design approach is to determine the critical gain Kcr and the 

critical period Tcr. When these two parameters are found;  a modified Ziegler-Nichols tuning algorithm 

for discrete systems can be employed as the case with the static PID. The theory stated in this section is 

adapted from (Bobal, et al., 1999). In a continuous system the critical gain and period is found when the 

systems poles are placed on the imaginary-axis of the s-plane. In a discrete system the critical poles is 

placed on the unit circle. There are two possible places the poles can be placed on the unit circle to 

make the system unstable: 

1. There is a pair of complex conjugate pole z1,2=α±jβ. 

2. There are real poles α=-1,β=0, for α=1 there will not be a oscillation of the system. 
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Fig. 6.14 Placements of critical poles on the unit circle 

A simple SISO system will have the structure in discrete domain as shown in ( 6.7 ) 
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( 6.7 ) 

Where Y(z) and U(z) are the z-transforms of the controller output  and the process output. d is the time 

delay as a multiple of the sample period. A and B are n-degree polynomial defined by ( 6.8 ) 
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( 6.8 ) 

The structure of the system with the controller can be seen in Fig. 6.15. 

 

Fig. 6.15 The controller and the plant 

The controller in the system is at this point a pure P-controller, the idea is to find the critical gain by 

raising the value of the gain until the system becomes unstable. The P-controller have the structure 

shown in ( 6.9 ) 

 
 

 c p

U z
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E z
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( 6.9 ) 

Where E(z)= R(z)-Y(z) is the z-transform of the error. R(z) is the Z-transform of the reference signal. With 

a combination of the controller and the system the discrete transfer function will have the form of the 

closed loop  system as shown in ( 6.10 ).  
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( 6.10 ) 

The characteristic polynomial D(z) of ( 6.10 ) is ( 6.11 ). 
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( 6.11 ) 

To have complex conjugated poles on the unit circle, D(z) must contain a quadratic three-term as shown 

( 6.12 ) 

2
1 2 1C z z    

( 6.12 ) 

To have real poles at α=-1, D(z) must include  j-terms as shown in ( 6.13 ). 
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( 6.13 ) 

The idea is to separate D(z) in components consisting of terms made of complex poles and terms made 

of real poles. The complex poles are found in ( 6.14 ) and the real poles are found in ( 6.15 ). 
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( 6.15 ) 

There are basically three and two unknown parameters in each of the equations Kp , α and ei  in 

equation ( 6.14 ) and Kp and fi in equation ( 6.15 ). The solutions to the real roots are simpler, than the 

solution of the complex roots.  

A pole at α=-1, which is the only unstable real pole, forms a unstable component which corresponds to a 

continuous function cos(π/T0)t with critical period Tcr=2T0. This is due to the definition of z in the z-

transform: 

   0

0 0cos sinj Tz e T j T      

( 6.16 ) 
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For z=-1 the critical frequency can found as ωcr=2π/Tcr(T0)= π/Tcr. And the maximum gain in the open 

loop is given by ( 6.17 ). 
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( 6.17 ) 

The term in ( 6.12 ) have a denominator with z2-2cos(ωT0)z+1 of the Z-transform of the harmonic 

functions cos(ωt) or sin(ωt) the real component of the pole can then be expressed as shown in ( 6.18 ). 
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( 6.18 ) 

When the real component is know, the critical period can be derived as shown in ( 6.19 ) 
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The next step is to investigate how this theory can be utilized on the simplified discrete plant model, 

shown in ( 6.20 ). This model is a second order model, which parameters should be continuously 

updated using the estimation algorithm. 
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( 6.20 ) 

The method to find the ultimate gain is described in (Bobal, et al., 1999). If there is no time delay in the 

system the characteristic polynomial can be written as ( 6.21 ). 
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( 6.21 ) 

By comparing ( 6.21 ) to ( 6.14 ) it is possible to find any complex poles. With n=2 and d=0 inserted ( 6.14 

) equation ( 6.22 ) is found. 
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( 6.22 ) 

To solve this equation the coefficient with the same power of z is compared: 
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( 6.23 ) 

By solving the equation relating to z0 it is possible to determine the ultimate gain as shown in ( 6.24 ) 
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The real part of the complex conjugated poles can be found by combining ( 6.24 ) and the equation for 

z1 as shown in ( 6.25 ). 
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From this real part the critical period can be calculated by means of ( 6.19 ). 

To find the critical gain if the system has 2 real poles ( 6.15 ) is used with n=2,d=0 and j=1 it becomes ( 

6.26 ). 
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( 6.26 ) 

As in ( 6.23 ) the coefficient in front of the same powers of z compared and ( 6.27 ) is arised. 
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( 6.27 ) 

By substituting the expression for f1 found in the equation for z0 in the equation for z1 we get ( 6.28 ). 
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( 6.28 ) 

To ensure the there are complex conjugated poles when the equation is solved the discriminant from ( 

6.21 ) has to be negative. This is tested in ( 6.29 ). 
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( 6.29 ) 

The complete controller design process is summerazied in Fig. 6.16. Where the algorithm is shown as it 

later wille be implemented in the controller software. 

 

Fig. 6.16 Flow diagram for a second order system 

When the critical gain and period is found these can be utilized in a modified Ziegler-Nichols design 

approach to find suitable controller parameters. Hereby is an algorithm found which on basis of the 

found system parameters (a1, a2, b1 and b2) can find the critical gain and period which is needed to tune 

the controller using a modified Ziegler-Nichols method. 

When using a discrete plant the control parameters has to designed in another matter than in the 

continuous case (Bobál, 2005). Due to this the Ziegler-Nichols method have to be modified, the modified 

equation for the different gains are shown in ( 6.30 ). 
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( 6.30 ) 

Here by it is possible to implement the velocity PID describe ( 6.6 ) and use the estimated parameters to 

calculate the controller parameters. 
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6.4 Simulation Test Of Adaptive PID-controller 

The adaptive PID controller is the first adaptive controller that is tested. The performance of the 

controller is evaluated through three stages as detailed in this chapter’s introduction. Each stage is 

represented by a separate Simulink model, which can be found on the attached CD. The known θ-

parameters in each experiment are the same as being used in the parameter estimation chapter.  

6.4.1 Stage 1 

In this stage the controller will be tested with the known system parameters, as input to the calculation 

of control parameters. A reference step test is conducted with a reference of 0.035 m at t=0, and an 

initial dancer position of 0 m. The result of the test with the implemented adaptive controller is shown 

on Fig. 6.17. 

 

Fig. 6.17 The first 10 seconds of the step response 

To quantify the results for better comparison with later experiments Table 6.8 is presented.  

 Value 

Overshoot [mm] 2.17 

Settling time [s] 4.51 

Rise time [s] 2.17  

Steady state error [mm] 0 
Table 6.8 The characteristic for the first stage 

Table 6.8 shows the results for the first 10 s which covers the initial start-up response. But the LTV 

model changes behavior over a significant longer time span in which the controller also should be able 

to hold the reference value. Fig. 6.18 shows the output of the system over a longer time span. 
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Fig. 6.18 System response throughout the simulation 

In Fig. 6.18 it can be seen that the amplitude actually grows in size. The maximum error is though within 
+/-5 %. From Fig. 6.18 it can be difficult to see that the amplitude is oscillating with the same frequency 

of 6 rad/s as the sinusoidal signal used for excitation. Fig. 6.19 show the output from the PID controller 

to the plant through the simulation. 

 

Fig. 6.19 The torque reference from the controller 

It can be seen from Fig. 6.19 that the controller only does a large control effort in the beginning. But this 

descends fast to a level around +/- 0.05 [Nm]. A zoom of the reference torque signal is shown in Fig. 

6.20. 
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Fig. 6.20 The torque reference from the controller in the interval from 50 to 60 s. 

The added sinusoidal excitation signal have amplitude of 0.02 Nm, which is a smaller than the size of the 

torque reference signal shown in Fig. 6.20 but the frequency of the excitation signal and the controllers 

output signal is approximately the same. This indicates that it is the excitation signal which creates the 

oscillations.  

To test whether the estimation algorithm can estimate the system parameters correctly with a PID 

controller in the system, the output from the estimation block is examined. This is already found 

plausible in the practical estimation experiments in chapter 5.6, but is again tested in this ideal 

simulation.  This comparison can be seen in Fig. 6.21 and Fig. 6.22. 

 

Fig. 6.21 The estimations error of a1 and a2 

It can be seen in Fig. 6.21, that the system with this controller implemented is able to estimate a1 and a2 

with in very small tolerances within 1.5%. This is not the case for b1 and b2 as it can be seen in Fig. 6.22. 
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Fig. 6.22 The estimation of b0 and b1 for the hold periode 

From Fig. 6.22 it can be seen that b1 and b2 have and error of approx. 800 %, after 150 s, this could imply 

that the estimation of the systems dynamics becomes wrong even with the added sinusoidal signal.  

By comparing the dynamics of the found parameters, see Fig. 6.23, it can be seen that the found 

parameters deviates from the sought but the solution is still valid. This can be seen by the parameters in 

dynamic comparison is able to closely mimic the behavior of the dancer. This indicates that the found 

parameters still represents the system even though the exact sought parameters are not achieved. This 

might indicate that the PEA simple have found a different solution. 

The dynamic behavior of the estimated θ-values are tested by means of the interval method described 

in chapter 5.8. 

 

Fig. 6.23 The dancer position 

Fig. 6.23 shows large deviations in the beginning. The large deviation disappear when the parameters 

for b1 and b2 is settled. This would imply that the parameters found in the estimation displays the same 

dynamic behavior. To show the difference to a time period where the parameters are settled, a zoom is 

shown on Fig. 6.24. 
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Fig. 6.24 A zoomed interval comparison of the dancer position 

The top graph of Fig. 6.24 show a period where the parameters are settled, it can be seen that the 

frequency and amplitude of the signal is correct, but some of them have ascending value besides the 

fast over-laying frequency. But the overall behavior is very alike. 

The bottom graph of Fig. 6.24 show a period from the beginning of the test, where the estimation have 

not found a settling point. It can be seen that the estimated parameters (dinterval) gives the same the 

same dancer position but only at the first peaks. Then the dancer position based on the interval method 

(dinterval) will be very diverging from the simulated dancer position (ds). 

Due to the coherence between the estimated parameters and the dynamic of the simulated LVT system, 

it is concluded that the values found by the estimation algorithm describe the system sufficient to be 

able to be used to design a controller. This test also indicates that the PEA-solution is not unique, as a 

different solution provides a response very alike the ideal LTV systems. 

The controller parameters found in the APID simulation is shown in Fig. 6.25. 
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Fig. 6.25 The parameters for the PID-controller 

All the parameters in Fig. 6.25 decreases through the simulation, this is function of the critical gain 

which also decreases as shown on Fig. 6.26. As the critical gain has influence on the control parameters 

these will also decrease.  

The controller parameters for the APID are is not directly comparable to the controller parameters for 

the PID1 and PID2 because these are designed and implement as continuous controllers, whereas the 

APID is designed on basis of discrete model parameters. 

 

Fig. 6.26 The critical gain and critical period 
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As it can be seen does the critical gain decreases with time which implies that the system become more 

unstable as radius of the winder reel is increases. This is contradicting the observations made in chapter 

3.5.1, where it is shown that and increase in radius would increase the damping of the system which 

should make it relatively more stable. 

This is affecting all the 3 parameters KP, KI and KD to decrease. The critical period of the system is 

oscillating slowly. This oscillation properly origins from the method used to simulate the system, as the 

simulated systems damping of the motor is also oscillating with one cycle/900 s as shown in chapter 5.6 

on Fig. 5.20. 

6.4.2 Stage 2 

In this stage the controller will be tested by its ability to control the LVT system. But in this test is the 

system parameters fed to the controller is found via the parameter estimation algorithm. This test is 

primary conducted to estimate whether this loops might create unwanted phenomena.  If this test 

proves successful the adaptive algorithm is one step closer implementation. A reference step is again 

tested and display on Fig. 6.27. 

 

Fig. 6.27 The first 30 seconds of the step response 

The step has an amplitude of 0.35 m at t=0 the results from the test is quantified in Table 6.9. 

 Value 

Overshoot [mm] -1211 

Settling time [s] 17.34 

Rise time [s] 17.91 

Steady state error 0 
Table 6.9 The characteristic for the second stage 

Table 6.9 represent the result of the first 30 s. The large overshoot is a result of the PEA not having 

estimated suitable system parameters, which renders a bad controller performance.  

Fig. 6.18 show the output of the system as the LTV model changes parameters. 
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Fig. 6.28 A close up of around the reference in the hole period 

From Fig. 6.28 it can be seen that the oscillating phenomena for the previous stage also occurs in this 

test. Though at this experiment the oscillations are larger, but still within 5% for the main part of the 

experiment, with exception of the period around 190 s. As shown later in Fig. 6.31, does the estimation 

algorithm also make large deviations at this point. It is difficult to determine whether it is the 

estimations which initialize a deviation which affects the controller or whether it is the controller which 

suddenly outputs a large peak and throws off the estimation. The debugging is difficult due to the closed 

loop nature of the estimation algorithm and controller block.   

 

Fig. 6.29 The torque reference from the controller 

It can be seen from Fig. 6.29 that the control effort still is small in the system, except for the period 

around 190 s. 
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Fig. 6.30 The torque reference from the controller in the interval from the 50 to the 60 s. 

It can be seen from Fig. 6.30 that there still is an oscillation in the control signal. It is still larger than the 

added sinusoidal signal but a lot smaller than in stage 1. 

 

Fig. 6.31 The estimations error of a1 and a2 

The error of the estimates for a1 and a2 can be seen in Fig. 6.31. the estimation is better than the 

estimates in stage 1, here the error of a1 and a2 is within +/- 0.2 %, with the exception of around 190 s 

and at the beginning. The bad estimates in the beginning could explain why the controller have a large 

overshoot, the estimates of the system is not good enough to make a reasonable controller to the 

system. 
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Fig. 6.32 The estimations error of b1 and b2 

Fig. 6.32 shows the estimation of the parameters b1 and b2 are just as poor as the estimation in stage 1. 

But it is noteworthy that the estimates are very alike the estimates from stage 1. This indicates that the 

combination of adaptive PID controller and parameter estimation does have a positive influence on each 

other. This can be seen from the a-parameters are found better, and the b-parameters are found with 

similar deviation compared to stage 1. The exception is the large error at 190 s. The parameters reach a 

level of around 800 % over and under the correct value.  

 

Fig. 6.33 The parameters for the PID-controller 

The gains for the PID-controller shown on Fig. 6.33 finds a level for the first 70 seconds, when this period 

is completed all the parameters drops to a level below the values found in stage 1. The ratio between 

the found values are 1:3 between stage 2 and stage 1. It can also be noted that in stage 1 the 

parameters for the controller was decreasing steady, but here in stage 2 after approx 350 s the 

parameters begins to oscillate. 
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Fig. 6.34 The critical gain and critical period 

From Fig. 6.34 it is seen that the critical period does not display the sinusoidal behavior as in stage 1. It 

has a tendency to maintain a constant level for a period e.g. from 190 to 250 s. The critical gain also 

experiences almost flat level from 190 s to 350. 

From stage 2 it can be seen that system does not perform as wanted all the time, but it is able to handle 

large deviation from the correct parameters. 

6.4.3 Stage 3 

In this stage the controller will be tested in the same way as stage 2, by controlling a system which 

parameters are continuously being estimated, but with noise introduced into the output of the LTV 

system.  The concept is displayed in the introduction to this chapter. This is to show that the system is 

able to control the system even when it does not use the correct parameters due to noise added to the 

system. The noise employed is the same as used in the parameter estimation chapter to investigate the 

PEAs robustness. 

 

Fig. 6.35 The first 30 s of the step response 
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 Value 

Overshoot [mm] -825.6 

Settling time [s] >30 

Rise time [s] 16.82 

Steady state error 0 
Table 6.10 The characteristic for the third stage 

It should be noted that the high settling time is a result of the noise, on the signal as it can be seen in 

Fig. 6.35 the noise is visible as small peaks on the position. It is difficult to find a settling time due to the 

fact that the measurements are larger than 5 % of the reference. 

 

Fig. 6.36 The whole signal of the first 30 s of the step response 

In Fig. 6.36 it can be seen that the system have a large overshoot but it is able to have 0 steady state 

error. 

 

Fig. 6.37 The whole period of the step response 

Fig. 6.37 the system is unstable in some periods e.g. approx 190 s. This is nearly the same time as in 

stage 2 here the large step in position occurred after 186.4 s. In stage 3 a similar error occurs after 188.5 

s. This could imply that the system have an unstable behavior in this region. But the error at this point is 

less extreme and is faster reduced in stage 3 compared to stage 2. 
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Fig. 6.38 The torque reference from the controller 

Fig. 6.38 shows that opposed to stage 2, the torque demanded through the experiments has large 

peaks, some of them are reaching the limitation of the system. 

 

Fig. 6.39 The torque reference from the controller in the interval from 50 to 60 s 

The torque signal in Fig. 6.39 seems to consist of only a few peaks that have the high values and a 

smaller signal just above 0. The sinusoidal excitation disturbance is also less obvious than in stage 2 and 

can hardly be seen.  
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Fig. 6.40 The estimations error of a1 and a2 

Fig. 6.40 shows the estimation error of the a1- and a2-parameters. The errors has a maximum values of 

11.3, but is kept at a level of approx. 9 % for a1 and approx. 4 % for a2 through most of the simulation. 

This error is larger than in stage 2, but the error peak at around 190 s is reduced. 

 

Fig. 6.41 The error of b1 and b2 

The estimation error of b1 and b2 has a large peak error around 90 s, but the error is for the most 

approximately 1000 %  as seen in Fig. 6.41. This is approximate the same size as in stage 2 and stage 1. 

The difference in the estimation between stage 1,2 and 3 is, that stage 3 has high error values of 20000 

% whereas the error in stage 1 and 2 is about 1000 % before the errors levels out. 
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Fig. 6.42 The parameters for the PID-controller 

By studying Fig. 6.42 it can be seen that the controller parameters first find a tendency after the error 

peak around 190 s. This effect can also be seen in Fig. 6.43 where the critical gain and period is shown. 

 

Fig. 6.43 The critical gain and critical period 
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6.4.4 Summary of APID-controller simulations 

The characteristic for the step respond for the 3 different stages are shown in Table 6.11. 

 Stage 1 Stage 2 Stage 3 

Overshoot [mm] 2.17 -1211 -825.6 

Settling time [s] 4.51 17.34 >30 

Rise time [s] 0.0216 17.91 16.82 

Steady state error [mm] 0 0 0 
Table 6.11 The characteristic for the 3 step resonses 

From Table 6.11 it can be seen that controller shown poor performance when the controller parameters 

is determined by the estimated parameters, this is properly because the estimation is very poor in the 

beginning where the step is executed. It is found that the controller is able to handle some noise in the 

system. The noise have some positive effect on the system because the estimation of the parameters do 

not have large steps in the values. Over all does the performance of the regulator not seem convincing, 

as the dancer oscillates and the system parameters are poorly estimated. But this should be seen in the 

light of the regulation being constantly disturbed by the excitation signals which induces the oscillations. 

It should also be remarked that the system parameters aren’t estimated as anticipated, but as test 

shows, do they still represent the systems dynamics good.  

Tendencies to positive synergy can also be detected from stage 2 where the parameter estimation was 

improved by the controller-estimation feedback loop. The adaptive PID controller should therefore be 

implemented in the real system, but the parameter estimation should be allowed to estimate for some 

time to find good estimates, before the APID controller is allowed to run the web winder. 

6.5 Pole Placement Controller 

This section will describe how a pole placement controller is designed and implemented in the web 

winder system. Starting with some general consideration on how to design a system with a pole 

placement controller, later it is shown how the theory is applied to the web winder system and how the 

specific discrete transfer function for the system is applied.  

The idea of a pole placement controller is to move the poles of a system to a desired location where the 

system performance will be better. This could e.g. be achieved by changing the damping or the 

bandwidth of the system. The fundamental basis of arbitrary pole placement is exact knowledge about 

the systems transfer function. This is assumed known through the application of the PEA algorithm. 
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The closed loop poles of a given system can be found as the roots in the characteristic polynomial. If the 

open loop transfer function is changed, this will also affect the closed loop system. The principle of the 

controller is to change the systems transfer function until the wanted poles are obtained. The theory 

applied in this section is based upon (Cheok). 

The controller has the structure shown in ( 6.31 ), for a discrete second order system, used to represent 

the web winder . 

 

 

 

 


 


1 2

1 2

E z Q z q z q

U z P z p z p
 

( 6.31 ) 

When the order of the system is raised the order of the controller also has to be raised to be able to 

control all the poles. 

The controller Q(z)/P(z) and the system B(z)/A(z) is illustrated in Fig. 6.44. 

 

Fig. 6.44 The system with feedback 

When the system and the controller is combined the transfer function from r to y can be seen in ( 6.32 ). 

 

   
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( 6.32 ) 

The characteristic polynomial will be as shown in ( 6.33 ) 

         A z P z B z Q z D z   

( 6.33 ) 

The characteristic equation is determining the behavior of the closed loop system. The characteristic 

equation has the structure shown in ( 6.34 ), where λ is a pole. 

       

 

1 2 3

1 2 0
0 1 2

n

n n n
n
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   

 

    

  




 

( 6.34 ) 

For n=3 in this systems case, the three poles will give the equations in ( 6.35 ) for d0 to d1. 
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( 6.35 ) 

By comparing the power of z in ( 6.33 ) in combination with right side of ( 6.34 ) as shown in ( 6.36 ) it is 

possible to determine d1 to d3. 

     2 3 2
1 2 1 2 1 2 1 2 0 1 2 3z a z a p z p b z b q z q d z d z d z d           

( 6.36 ) 

By selecting the wanted poles λ1 to λ3 it is possible to calculate d1 to d3 by means of ( 6.35 ). To make the 

calculation of p1, p2,q1 and q2 more transparent equation ( 6.36 ) can be rewritten into the matrix form  

shown in ( 6.37 ). 

1 0

1 1 2 1

2 1 2 1 1 2

2 2 2 3

1 0 0 0

1 0

0 0

p d

a b p d

a a b b q d
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     
     
     

 

( 6.37 ) 

With exception of p1=d0=1 the rest of coefficients will be found using Cramer’s rule, this is shown in 

appendix D. The result of the calculations for p1 to q2 can be seen in ( 6.38 ). Equation ( 6.38 ) is 

expressed as fractions with several constants instead of matrix equations. This form is chosen for its 

simplicity to later implementation in non-matrix compatible hardware on the test bench 
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( 6.38 ) 

These equations are the basis for calculating the pole placement regulator parameters illustrated on Fig. 

6.44. 

6.5.1 Adjustable Gain 

The systems characteristic equation changes when using a pole placement controller, there is therefore 

a risk that the steady-state gain also changes. To compensate for effect, a adjustable gain K0 can be 

implemented on input to the system as shown in Fig. 6.45 (Ogata, 1995). 
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Fig. 6.45 The system with adjustable gain implemented 

K0 will be selected to be the inverse of the steady-state gain of the closed loop with the controller and 

model. The steady-state gain can be found by substituting z with 1 in the transfer function for the closed 

loop, shown in ( 6.39 ). 
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( 6.39 ) 

By selecting K0 =1/Gcl for z=1 it is possible to have unity gain from input to output. This gain has to be 

adjusted each iteration. By adjusting the gain every iteration the system is able to take care of the 

change in the systems DC-gain as the radius of the reel is increased during the winding process. The 

complete controller function and gain is shown in Fig. 6.46. 

 

Fig. 6.46 Complete PP controller with adjustable gain 

To be able to vary the controller parameters, the implementation cannot be as a simple transfer 

function in Simulink. These are rewritten in ( 6.40 ) to become a function of z-1. 
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( 6.40 ) 

The controller will be implemented as illustrated in Fig. 6.47 with output saturation limits of +/- 1 Nm. 

The parameter for p1 is 1 and is implemented as a gain. 
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Fig. 6.47 The implementation of the pole placement controller 

It is described how it is possible to implement a pole placement controller, consisting of a parameter 

calculation in ( 6.38 ) a DC-gain compensator and how the controller is implemented in Fig. 6.47. 

6.5.2 The Selection of Poles 

The wanted poles can be found by selection a damping ratio ζ and a bandwidth ω of the system. The 

poles with a given bandwidth and damping ratio can be found via a root locus. 

When selecting new poles for the system, it should be considered how much power the new poles 

require (Ogata, 2002). If the new poles are much faster than the old problems could occur with actuator 

limitation, which would demand larger actuators. The effect of different poles location in the Z-plane 

can be seen in Fig. 6.48. The bandwidth of the system is written on the periphery of the unit circle, and 

the damping ratio is written as number from 0.1 to 0.9 inside the unit circle, the dotted line is in both 

cases the curve of the given bandwidth or damping ratio. 

 

Fig. 6.48 The effect of placement of different poles 
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A given pole’s damping and bandwidth in the Z-plane can be found by means of ( 6.41 ) and ( 6.42 ) if 

the pole is given in modulus and argument form.  

0 nTe  
  

( 6.41 ) 

2
0 01n dT T        

( 6.42 ) 

The desired pole-values for the pole placement controller are initially chosen as in Table 6.12, with 

corresponding damping and bandwidth. 

Pole Damping ratio [-] Bandwidth [Rad/s] 

0.9 1 10.54 

0.9 1 10.54 

0.6 1 51.08 
Table 6.12 Values for selected poles 

The bandwidth of the system is found to be down to 2.3 in chapter 3.5.1, this is lower than the 

bandwidth selected here, this might become a problem because the increase in bandwidth would cause 

a large control effort. If the bandwidth should be decreased the desired pole location should be moved 

closer to 1 in the Z-plane. The risk of having poles near 1 is that if the estimation is incorrect, this could 

cause the systems poles to be moved outside the unit circle, which would make an unstable system. The 

problem is to find balance between the risk of having an unstable system due to actuator saturation, or 

due to poles moving outside the unit circle. The poles listed in Table 6.12 is thought to be a compromise 

between these two evils. 

It is shown how the pole placement controller is designed and implemented in Simulink and values for 

the wanted poles have been selected. The next step is to test the controller by means of simulations to 

test is whether it is suitable for implementation in the test bench. The test method is described in the 

introduction to this chapter. 

6.6 Simulation Test of Pole Placement Controller 

The test of the PP-controller will happen in three stages, the same as the APID and as detailed in the 

start of this chapter.  

The first stage tests whether the PP controller performs acceptable when fed ideal model parameters. 

The second stage tests if the controller performs acceptable when fed estimated parameters from the 

PEA algorithm. The third stage is like stage 2 except noise is introduced in the system. 

All simulation tests are based on a time varying LTV model which emulates the actual web winder. The 

simulations are also made using excitation signals to get better parameter estimates from the PEA. 

6.6.1 Stage 1 

In this stage the controller will be tested with the ideal system parameters as input to the calculation of 

control parameters. Fig. 6.30 show the dancer position during initial reference step up. 
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Fig. 6.49 The first 10 seconds of the step response 

The step has an amplitude of 0.035 m at t=0. The results are quantified in terms of overshoot, settling 

time, rise time and steady state error in Table 6.13. 

 Value 

Overshoot [mm] 9.5 

Settling time [s] 1.3 

Rise time [s] 0.69  

Steady state error [mm] 0 
Table 6.13 The characteristic for the first stage 

Table 6.13 shows the result for the first 10 s. As time progresses the behavior of the LTV system 

changes. To examine the controllers ability to keep the reference during changing model behavior Fig. 

6.18  is made. Fig. 6.18 shows the systems output over a longer span of time. 

 

Fig. 6.50 A close up of around the reference in the hole period 

Fig. 6.18 shows a slightly oscillating response. The maximum error is though within +/-1 %.This is less 

than the 5 % for the APID controller. Fig. 6.18 shows the control signal to the plant. It can be seen, that 

the control effort is small as the case for the APID controller were. 
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Fig. 6.51 The torque reference from the controller to the plant 

Fig. 6.19 show the controller only has to do a large control effort in the beginning, hereafter the level 

descends fast to the level shown in Fig. 6.20 

 

Fig. 6.52 The torque reference from the controller in the interval from 50 to the 60 s. 

The injected sinusoidal excitation signal has an amplitude of 0.02 Nm, this is more than the amplitude of 

the torque signal in Fig. 6.20. This indicates that the controller is compensating for the added excitation 

signal. This might be a problem since the excitation signal is added to improve the PEAs estimates. 
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Fig. 6.53 The estimations error of a1 and a2 

It can be seen from Fig. 6.21, that the system with this controller implemented is able to estimate for a1 

and a2 within tolerances of 1.5% of the ideal values. This is not the case for b1 and b2 as it can be seen 

from Fig. 6.22. 

 

Fig. 6.54 The estimation of b1 and b2 for the whole period 

Fig. 6.22 shows b1- and b2-errors of approx. 800 %, after 150 s, this indicates that the estimation 

algorithm might be disturbed by the addition of this controller. 

This simulation indicates that the PP controller is able to keep the position output within 1 % of the 

reference, assumed the PP controller is fed ideal system parameters. Simulation also indicates that the 

PEA is disturbed by the controller, since the estimates are very inaccurate. But this does not necessary 

make the estimation wrong as discussed in the simulation test of the APID controller. 

6.6.2 Stage 2 

In this stage the controller will be tested by using the LVT-model as plant, as in stage 1. The controller is 

in this stage fed the estimated θ-parameters instead of the ideal. 

 This is to show that the system is able to control the system even when it does not use the ideal 

parameters. This also closes the estimation loop between the PEA and the PP controller, and makes it 

possible to assess whether the two blocks have positive or negative influence on each other. 
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Fig. 6.55 shows the initial start up where the reference is set to 0.035 m and the dancer is starting in 

d=0. The parameter estimation is starting from its initial guesses. 

 

Fig. 6.55 The first 10 seconds of the step response 

The start shows shows a small over shoot but at relative long rise time compared to the APID. The 

results for the start up simulation is shown in Table 6.14. 

 Value 

Overshoot [mm] -1.91 

Settling time [s] 1.59 

Rise time [s] 1.4 

Steady state error 0 
Table 6.14 The characteristic for the second stage 

 Fig. 6.18 shows the rest of the controllers ability to keep the reference throughout the rest of the 

simulation. 

 

Fig. 6.56 Dancer position throughout stage 2 

Fig. 6.28 show the dancer is oscillating as in stage 1 but the amplitude is rising through the simulation. 

But the dancer is still within 1 % of the reference from 3 s and to the end of the simulation. 
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Fig. 6.57 The torque reference from the controller 

Fig. 6.29 show that the control effort is small throughout the test, except for the start. Fig. 6.30 show a 

portion of the torque signal. This test shows that the PP controller as in stage 1 is reducing the 

disturbance from the excitation signal. 

 

Fig. 6.58 The torque reference from the controller in the interval from 50 to 60 s. 

in Fig. 6.31 show the error in percentage between the ideal a-parameters and the estimated parameters 

from this simulation. 
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Fig. 6.59 The estimations error of a1 and a2 

The a1- and a2-errors from Fig. 6.31 is alike the estimated values from stage 1, in both cases the a-

parameters deviate up to 1.3% before the values drops to around +/- 0.1%. 

 

Fig. 6.60 The estimations error of b1 and b2 

Fig. 6.32 compare the estimation of the parameters b1 and b2 with the ideal parameters. The 

comparison shows the same tendencies as in stage 1, where the parameters reaches a level of around 

800 % over and under the correct value. 

The inaccuracy in the parameter estimation is accepted because of the controllers’ ability to keep the 

position deviation beneath 1% during the simulation. Deviating estimates not necessary mean a bad 

controller performance as discussed in stage 1. This test has shown that the PP-controller in simulations 

can control the output acceptable when fed estimated system parameters. 

6.6.3 Stage 3 

This test is essentially like stage 2 except for the addition of measurement noise in the simulation. This 

test will show the PP-controllers performance when noise is disturbing the feedback signal and the PEA. 

The test method is in detail described in the start of this chapter. 
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Fig. 6.61 The first 10 s of the step response 

Fig. 6.35 shows the systems response in the first 10 s of the simulation. The response is compared to 

stage 2 more fluctuating, due to the added noise. But the output is kept close to the reference after 2 

seconds, despite the addition of noise. 

 Value 

Overshoot [mm] 7.9 

Settling time [s] >10 

Rise time [s] 1.31 

Steady state error 0 
Table 6.15 The characteristic for the third stage 

As for the APID controller tests 3rd stage, it is not possible to determine a settling time because the 

position movements are larger than the tolerance selected to determine the settling time. Fig. 6.36 is 

made to examine the controllers ability to control the systems output when the model changes 

behavior. 

 

Fig. 6.62 The whole signal of the first 30 s of the step response 

Fig. 6.36 shows periods e.g. around 190 s, 220 s and 430 s where the position is relative more unstable 

than the rest of the simulation. The APID controller was also unstable Around 190 s. but the other 

unstable sections have no relation to previous observations. 
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Fig. 6.63 The torque reference from the controller 

Fig. 6.38 shows the torque signal to the plant. It can be seen that opposed to stage 1 and 2, the torque 

demanded cycles between the limits through almost the entire simulation. This is not a good thing 

because it indicates actuator saturation if the system experiences significant noise. This makes the 

system unable to cope with possible disturbances. 

 

Fig. 6.64 The torque reference from the controller in the interval from the 50 to the 60 s. 

The saturation in Fig. 6.39 becomes easier to analyze with the last second enlarged as shown on Fig. 

6.65. 
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Fig. 6.65 The torque reference from the controller in the interval from the 59 to 60 s. 

It can be seen from Fig. 6.65  that torque signal reaches the limitations almost every sample time. Table 

6.16 contains a account of the saturation problem. 

Modes Number of times in each mode 

Upper saturation 36 

No saturation 27 

Lower saturation 37 
Table 6.16 Number of times in saturation. 

Table 6.16 shows the system is in saturation 73 % of the time examined. This is not a desired controller 

behavior; it would be preferable to have a lower value for longer periods instead of having saturation all 

the time. 

 

Fig. 6.66 The estimations error of a1 and a2 

Fig. 6.40 compare the estimation of a1- and a2-parameters against the ideal values throughout the 

experiment. The estimation has deviations of maximum 14 % for a2, and a maximum of 7% for a1. There 

is no level where system holds a steady value, the error is changing all the time. The deviations are also 

larger than in stage 2. Compared with stage 3 for the APID controller, the errors are more oscillating but 

are having approx. the same average value.  
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Fig. 6.67 The error of b1 and b2 

The estimation of b1 and b2 in Fig. 6.67 has a large percentage error with many smaller peaks. The errors 

never drop to the level of stage 1 and 2, which was the case for the APID controller. As in the estimation 

of a1 and a2, the estimation never settles at a specific percentage error, but is changing all the time. 

This test shows that the PP-controller has a plausible behavior, but saturation occurs when noise is 

introduced to the system. The noise makes the actuator cycle between its limits while creating large 

deviations in the position output. 

6.6.4 Summary of PP-controller Simulations 

The characteristics of the PP-controllers step responses for the 3 different stages are shown in Table 

6.11. 

 Stage 1 Stage 2 Stage 3 

Overshoot [mm] 9.5 1.91 7.9 

Settling time [s] 1.3 1.59 >10 

Rise time [s] 0.69 1.40 1.31 

Steady state error [mm] 0 0 0 
Table 6.17 The characteristic for the 3 step responses 

From Table 6.11 the controller gives reasonable result in all 3 stages. The over shoot for stage 2 and 3 

are smaller than the large peaks experienced with the APID-controller. The settling time is also reduced, 

if stage 3 is left out in both cases, as either the PP- or APID-controller settles in stage 3 tests. The rise 

time is also improved in both stage 2 and stage 3 tests.   

But the PP-controller suffers from saturation problems through the simulations when noise is 

introduced. Stage 3 did also show sections where the system became relative unstable. Based on these 

observations good performance cannot be anticipated from this controller. 
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6.7 Summary of Controller Design 

This chapter has found four controllers based on different methods and approaches. The first two 

controllers are static PID-controllers. One manually tuned (PID1) and one tuned on basis of the 

nonlinear model with added measurement noise (PID2). 

The last two controllers are adaptive controllers which change controller behavior based on estimated 

model parameters. The first adaptive controller is the adaptive PID-controller (APID), derived using a 

discrete PID structure and tuned using Ziegler-Nichols method. The last adaptive controller is the 

adaptive pole placement controller (PP), derived on basis of the discrete plant model and continuously 

updated. 

The two adaptive controllers have been through extensive testing to evaluate its performance in 

combination with the PEA and noise. Through this testing it was observed that, even though the PEA 

does not find the anticipated system parameters, its solution does still represent the systems behavior 

acceptable. 

The APID controller was found to have poor initial performance. This controller does relay on good 

initial system estimates. If these are not available it should first be used when the estimates are good. 

The controller is able to keep the reference within acceptable values as the system changes behavior, 

but the noise simulations reveals a vibrating output. 

The PP-controller was found to have good initial performance and has fast settle time and reduced 

overshoot compared to the APID-controller. The simulation test showed good ability to keep the desired 

reference, better than the APID-controller. But when noise is introduced to the system, its performance 

is reduced and the output is deviating more than with the APID. Sections of relative unstable behavior 

are observed. 

On basis of this analysis it is chosen to implement all four regulators, even though the PP-controller 

shows poor performance. This is chosen to examine if the anticipated behavior is realized, and to 

compare the actual performance. 



 Adaptive Control With Self-Tuning For Center-Driven Web Winders  EMSD10 

  Page 127  

7. Controller Comparison 

In this chapter the 4 different controllers, PID1, PID2, APID and PP, are implemented on the test bench 

and their performance is described. 

The performance is tested by changing the speed of the unwinder. This is equivalent to changing V1 

which acts as a disturbance. 

7.1.1 Disturbance Planning 

The disturbances are planned as a function of the winded paper length. This is shown in Table 7.1.  

Winded paper [m] 50-60 70-80 90-100 110-120 130-140 150-160 

Step size[RPM] 50 150 450 450 450 450 
Table 7.1 Step size on speed reference at different paper length 

The step size on the speed reference to the unwinder motor is made with consideration of the speed 

limit on the winder motor. 

 

Fig. 7.1 Speed dependencies and roll diameter 

From Fig. 7.1 it is seen that at the start and end of the winding process the speed difference between 

the winding motors are quite large.  

Therefore the unwinder is initially ramped up from 100 to 500 RPM. The ramping takes 160 seconds 

because of a chosen slope of 2.5 RPM per second. 

The speed reference to the unwinder motor during the entire winding process is shown in Fig. 7.2.  
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Fig. 7.2 Speed reference to unwinder motor during entire winding process 

The unwinder motors speed response is limited by a speed ramp limit built in the VLT. This ramp limit is 

1400 RPM per second. 

7.1.2 Performance Criteria 

In the following 4 definition are made for evaluating the performance of the controllers. The definitions 

are based on the dancer response from a disturbance. They do not necessarily have the exact some 

meaning as the conventional interpretation but are defined as shown in Fig. 7.3 and explained below. 

 

Fig. 7.3 The response to a step in unwinder speed 

The explanation of the definitions is given in Table 7.1. 

Name Explaination 

Overshot Maximum deviation from the reference 

Settling time, Ts Time for the dancer returning to the reference 

Rise time, TR Time for the dancer settling within the tolerance band 

Steady state error Steady state deviation from reference 

Tabel 1 Performance definitions 

It should be noted that the overshoot is measured with sign e.g. overshoot in Fig. 7.3 will have a 

negative value. The steady state error is defined as the deviation from the reference if the dancer 

position keeps within +/- 5% given value. 
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7.2 Manual tuned PID 

First an overview of the entire winding process is presented and afterwards a more detailed 

presentation of the performance is done.  

In the following the data is presented in respect to time. The relation between time and web length is 

shown in Table 7.2. 

 First test Second test 

Web length Step up Step down Step up Step down 

50-60 m 198.9 s 225.6 s 195.8 s 223.3 s 

70-80 m 256.3 s 280.8 s 252.7 s 277.1 s 

90-100 m 314.2 s 332.8 s 310.3 s 328.8 s 

110-120 m 369.8 s 390.7 s 365.4 s 386.2 s 

130-140 m 432.8 s 457.2 s 427.8 s 451.8 s 

150-160 m 507.6 s 537.9 s 501.7 s 531.4 s 
Table 7.2 Relation between time and web length 

Two tests are done.  Fig. 7.4 shows that the winding motor response is similar for both tests. Therefore 

only plots are shown of one of the tests. 

 

Fig. 7.4 Angular velocity of the winder motor 

The unwinder speed reference and the dancer movement are shown in Fig. 7.5. 
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Fig. 7.5 The top graph shows the dancer position, the bottom graph shows the speed reference to the unwinder motor 

The winder motor the dancer becomes oscillatory at the third step up as shown in Fig. 7.5. This is 

because of the speed limit on 1400 RPM on the winder and no anti wind up on this controller.  

 

Fig. 7.6 Dancer position for the first test with disturbance at 50 m and 60 m 

In Fig. 7.24 the Dancer position is shown for the first step and step down of the disturbance. The green 

vertical line implies a step up in speed reference and the red vertical line implies a step down. The 

horizontal lines imply the tolerance band. 

In Fig. 7.24 it is seen that the dancer is constantly oscillating. However the amplitude of the oscillation 

falls to the same as before the disturbance after approximately 15 seconds. 

The performance for the first disturbance is presented in Table 7.2 
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 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -5.8 4.7 -6.4 4.8 

Settling time [s] 7.9 6.1 7.6 5 

Rise time [s] 1.1 1 1.1 1 

Steady state error [mm] 0 0 0 0 
Table 7.3 Performance for disturbances at 50 m and 60 m 

The response from the second disturbance is seen in Fig. 7.7. 

 

Fig. 7.7 Dancer position for the first test with disturbance at 70 m and 90 m 

Comparing the second and first disturbance same tendencies in the dancer response is observed. 

However a larger disturbance step causes greater amplitudes. 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -12.65 11.28 -12.9 12.5 

Settling time [s] 9.6 3.9 13 7.6 

Rise time [s] 1 1 1 1 

Steady state error [mm] 0 0 0 0 
Table 7.4 Performance for disturbances at 70 m and 80 m 

 

 

Fig. 7.8 Dancer position for the first test with disturbance at 90 m and 100 m 

In Fig. 7.26 the dancer is unable to return within the tolerance band between the two steps. However 

the dancer is able to settle after more paper is winded. 
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 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -29.6 27.14 -31.0 16.0 

Settling time [s] >18 9.6 >18 7.5 

Rise time [s] 1.2 1.1 1.2 1 

Steady state error [mm] - 0 - 0 
Table 7.5 Performance for disturbances at 90 m and 100 m 

The performance at the rest of the disturbances is presented in Table 7.6 to Table 7.8.  In appendix I the 

plots of the dancer position are shown. 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -26.0 23.6 -27.0 23.6 

Settling time [s] 11.7 7.5 9.7 9.6 

Rise time [s] 1  1 1 0.9 

Steady state error [mm] 0 0 0 0 
Table 7.6 Performance for disturbances at 110 m and 120 m 

 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -20.5 20.8 -21.8 19.0 

Settling time [s] 10.7 6.6 8.2 7.7 

Rise time [s] 1 0.9 1 1 

Steady state error [mm] 0 0 0 0 
Table 7.7 Performance for disturbances at 130 m and 140 m 

 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -16.7 14.7 -17.5 14.3 

Settling time [s] 9 4.8 6.4 7.3 

Rise time [s] 1 0.9 0.9 1 

Steady state error [mm] 0 0 0 0 
Table 7.8 Performance for disturbances at 150 m and 160 m 

Larger overshot and settling time is experienced when the disturbance is step up compared to step 

down. 

The PID controller has a relative long settling time compared to the rise time. This could properly be 

improved with knowledge about the plant.  
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7.3 Model based PID 

First an overview of the entire winding process is presented and afterwards a more detailed 

presentation of the performance is done.  

In the following the data is presented in respect to time. The relation between time and web length is 

shown in Table 7.2. 

 First test Second test 

Web length Step up Step down Step up Step down 

50-60 m 198.2 224.6 198.8 225.4 

70-80 m 254.9 279.3 255.9 280.5 

90-100 m 312.4 330.8 313 332.4 

110-120 m 367.5 388.2 369.2 390.1 

130-140 m 429.9 454 432.1 456.4 

150-160 m 503.7 533.4 506.9 537.1 
Table 7.9 Relation between time and web length 

Two tests are done.  Fig. 7.21 shows that the winding motor response is similar for both tests. Therefore 

only plots are shown of one of the tests. 

 

Fig. 7.9 Angular velocity of the winder motor 

Comparing Fig. 7.21 with Fig. 7.4 it is seen in that between the disturbances the model based PID 

controller causes the angular velocity of the winder motor to oscillate more than the manual tuned PID.  

This tendency is also seen when by comparing the following plots of the dancer position with plots of 

the dancer position from section 7.2. 

The unwinder speed reference and the dancer movement are shown in Fig. 7.5. 
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Fig. 7.10 The top graph shows the dancer position, the bottom graph shows the speed reference to the unwinder motor 

 

 

Fig. 7.11 Dancer position for the first test with disturbance at 50 m and 60 m 

In Fig. 7.24 it is seen that the dancer position quickly returns back to the tolerance band after the 

disturbance as also the performance expresses in Table 7.10. The effects of the disturbance are almost 

nondetectable. 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -2.8 3.83 -2.4 2.8 

Settling time [s] 1 0.3 0.6 3.1 

Rise time [s] 0.6 0.7 0.7 0.9 

Steady state error [mm] 0 0 0 0 
Table 7.10 Performance for disturbances at 50 m and 60 m 
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In Table 7.5 it is seen that there is a relatively large difference between the first and second step down. 

But this is properly caused by the noise.    

 

Fig. 7.12 Dancer position for the first test with disturbance at 70 m and 80 m 

At the second disturbance the dancer position also returns quickly to the tolerance band. This time the 

impact of the disturbance is easier to detect from the noise. 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -6.6 6.1 -7.4 6.0 

Settling time [s] 1.9 0.9 3.5 5.2 

Rise time [s] 1.8 1.5 1.5 1.1 

Steady state error [mm] 0 0 0 0 
Table 7.11 Performance for disturbances at 70 m and 80 m 

From Table 7.24 it is seen that the settling time is quite larger in the second test compared to the first.  

 

Fig. 7.13 Dancer position for the first test with disturbance at 90 m and 100 m 

In Fig. 7.26 it is seen that the step up disturbance gives larger overshot than step down.  

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -15.4 11.3 -12.9 11.7 

Settling time [s] 4.7 2.5 3.6 1.2 

Rise time [s] 1.7 1.6 2.5 1.7 

Steady state error [mm] 0 0 0 0 
Table 7.12 Performance for disturbances at 90 m and 100 m 
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The performance at the rest of the disturbances is presented in Table 7.13 to Table 7.8. In appendix I the 

plots of the dancer position are shown. 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -11.5 9.2 -10.9 9.2 

Settling time [s] 3.9 1.1 4.8 1.5 

Rise time [s] 1.8 1.8 1.4 1.9 
Table 7.13 Performance for disturbances at 110 m and 120 m 

 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -8.2 6.9 -10.0 7.6 

Settling time [s] 1.3 1.7 1.7 3.8 

Rise time [s] 1.5 1.8 1.5 1.7 

Steady state error [mm] 0 0 0 0 
Table 7.14 Performance for disturbances at 130 m and 140 m 

 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -7.4 7.6 -7.4 5.7 

Settling time [s] 4.8 1.5 1.1 3.3 

Rise time [s] 1.6 0.6 1.5 1.7 

Steady state error [mm] 0 0 0 0 
Table 7.15 Performance for disturbances at 150 m and 160 m 

 

The model based PID has proven better performance than the manual tuned PID. Less overshot, settling 

time and rise time is achieved at all disturbances. 

7.4 Adaptive PID-controller 

To shown the performance of the APID controller there is conducted 3 tests. The reason for the third 

test is because the first and second test has bad correlation. In the first test the controller is only able to 

handle the first disturbance. At the next disturbance the winder paper speed falls too far back of the 

unwinded paper speed and the test have to be aborted. Same thing happens in the next test at the 

fourth disturbance.  The third test is able to complete the entire winding process. 

In the following the data is presented in respect to time. The relation between time and web length is 

shown in Table 7.22. 
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 The first test The second The third test 

 Rising edge Falling edge Rising edge Falling edge Rising edge Falling edge 

50-60 m 197.8 s 232.1 s 200.7 s 227.5 s 200 s 227.6 s 

70-80 m 262.8 s - 258.3 s 282.9 s 258.3 s 283 s 

90-100 m - - 316.3 s 334.9 s 316.3 s 335 s 

110-120 m - - 372 s - 372.1 s 393.1 s 

130-140 m - - - - 435.3 s 459.5 s 

150-160 m - - - - 510.9 s 543.9 s 
Table 7.16 Relation between time and web length 

In Fig. 7.21 the winder motor respones for all three test are shown. 

 

Fig. 7.14 Angular velocity of the winder motor 

It is seen in Fig. 7.21 that the second and third test has approximately the same behavior at the 2nd and 

3rd disturbance.  

It is shown in  

Table 7.17 at what time instance the adaptive controller is activated. 

 

Table 7.17 The time of the engagement of the adaptive controller 

The reason for activating the controller at these time instances is that the controller requires better 

parameters than the estimation has initially found.  

 First test Second test Third test 

Time [s] 56.21 96.85 88.06 
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It is seen that when the APID is activated the dancer position becomes unstable for a short period this is 

shown in Fig. 7.22. 

The overall response of the dancer to the changes in web speed can be seen in Fig. 7.22. 

 

Fig. 7.15 The top graph shows the dancer position, the bottom graph shows the speed reference to the unwinder motor 

In Fig. 7.22 it is seen that the dancer in the first step reaches the lower limitation of dancer which means 

that the paper is not tighten when it is winded. It is seen that after a few seconds the winder begin to 

tighten the paper e.g. move the dancer . When the 2nd step in the test emerges the CDWW is not able to 

tighten the paper and there is a buildup of paper between the two reels. The same problem emerged in 

the second test but first at the 4th disturbance. 

The third test completes an entire reel and therefore only the dancer response from this test is 

presented in this section. The dancer response from the first and second test is found in appendix I. 
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Fig. 7.16 Dancer position and speed reference to unwinder motor 

The dancer response of the first disturbance is shown in Fig. 7.24.  

 

Fig. 7.17 Dancer position for the first test with disturbance at 50 m and 60 m  

In Fig. 7.24 it is seen that the first disturbance has only little affect on the dancer response near the step 

up and step down. This is similar to the model based PID. But between the steps the dancer suddenly 

starts an oscillation. The dancer settles though shortly afterwards.   

This could be either that the disturbance affects the parameter estimation or because of lack of 

excitation.  

The performance at the first disturbance is seen in Table 7.23 for all three tests with APID. 
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 First test Second test Third test 

 Step up Step down Step up Step down Step up Step down 

Overshoot [mm] -51.2 3.6 -5.2 3.7 -3.5 4.6 

Settling time [s] >35 0.8 2.8 3.8 2.4 2.4 

Rise time [s] 33.2 1.2 4.9 1.4 0.8 1.4 

Steady state error [mm] - 0 0 0 0 0 
Table 7.18 Performance for disturbances at 50 m and 60 m 

It is seen in Table 7.23 that there is a large difference between the overshoot of the three tests. The 

settling time in the first test is more than 35 seconds because the dancer is not settled between step up 

and step down.  

The dancer response from the second disturbance is Fig. 7.12. 

 

Fig. 7.18 T Dancer position for the first test with disturbance at 70 m and 90 m 

In Fig. 7.12 it is seen that the dancer response at step up is similar to the model based dancer response 

at the same disturbance. The dancer response at step down reaches its limit. The dancer is at its 

maximum position in a period of 1.5 s. This could burst the paper. 

The performance at the second disturbance is seen in Table 7.19. 

 First test Second test Third test 

 Step up Step down Step up Step down Step up Step down 

Overshoot [mm] -51.2 - -13.3 33.5 -12.37 34.7 

Settling time [s] - - 7.6 8.7 2.2 7.9 

Rise time [s] - - 1.6 4 1.5 6.9 

Steady state error [mm] - - 0 0 0 0 
Table 7.19 Performance for disturbances at 70 m and 80 m 

The first test has a large overshoot and is aborted because of paper build up.  The second and third test 

both has a large overshoot at step up and step down. The sizes of the overshoots are approximately the 

same. There is though a divergence between the settling times at step down. 
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Fig. 7.19 Dancer position for the first test with disturbance at 90 m and 100 m 

Fig. 7.19 shows the dancer response of the third disturbance. It is seen that the dancer reaches the 

maximum limit a few seconds after the step up has occurred. It stays at the limit for 3 s. The response 

after step down reaches the minimum limit of the dancer but returns to the tolerance limit faster than 

at step up. 

 First test Second test Third test 

 Step up Step down Step up Step down Step up Step down 

Overshoot [mm] - - 33.8 36.1 34.2 -38.1 

Settling time [s] - - 14.3 16.7 17.7 18.2 

Rise time [s] - - 1.2 1.4 1.6 1.4 

Steady state error [mm] - - 0 0 0 0 
Table 7.20 Performance for disturbances at 90 m and 100 m 

The performance at the third disturbance is shown in Table 7.20 Performance for disturbances at 90 m 

and 100 m.  At the disturbances described above the overshoot is negative at step up and positive at 

step down.  But at the third disturbance this is opposite. This is also the last step the second test is able 

to manage before paper builds up in.  

The reason that the step down in the third test is able to reach a larger negative than positive value is 

because the limitations of the dancer allow larger movement below 35 mm than above. This is because 

the 0 of the dancer position is measured from a point where the spring in the system is tightened, 

because of this, it is possible for the dancer also to have negative values.  

 

Fig. 7.20 Disturbances at 110 m and 120 m 

The dancer response from the fourth disturbance is shown in Fig. 7.20. The dancer never comes within 

the 5 % of the reference after the step up therefore it is not possible to determine the settling time. 
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 At step up of the fourth disturbance in the second step the dancer moves to far down and causes paper 

build up and the test is aborted. Therefore only the performance of the third test is shown in Table 7.21. 

Third test 110-120 m 130-140 m 150-160 m 

 Step up Step down Step up Step down Step up Step down 

Overshoot [mm] -37.62 -45 35.3 -43.7 -52 13.4 

Settling time [s] >21 30.1 >24 35.8 10.8 4 

Rise time [s] 1.5 1.5 1.5 1.9 2.8 1.1 

Steady state error [mm] - 0 - 0 0 0 
Table 7.21 Performance for disturbances at 110 m and 160 m 

From Table 7.21 it is seen that the dancer response has large overshoots at the last three disturbances.  

The dancer never settles between step up and step down at the fourth and fifth disturbance. However 

the settling time is drastically reduced in the last step. 

There are problems with the consistency of the three tests with the APID. The first test could only 

handle the smallest disturbance before the experiment was aborted. The second test could only handle 

the three first disturbances and in the third test could complete the entire winding process. 

The test of the adaptive PID controller shows that there are uncertainties concerning the stability of the 

controller. This could be because of lack of excitation.  

7.5 Pole Placement Controller 

The pole placement controller is implemented in dSpace and this section shows how it performs on the 

actual web winder system. The controller is tested two times to test its consistency. Each test is 

conducted as described in this chapter’s introduction. As the unwinder velocity steps are a function of 

time, the different steps are quantified in terms of time in Table 7.22. 

Paper length The first test The second test 

 Rising edge Falling edge Rising edge Falling edge 

50-60 212.9 239.9 200.9 227.4 

70-80 270.7 295.3 258.1 282.6 

90-100 328.6 347.5 315.9 334.4 

110-120 384.6 405.6 371.1 391.9 

130-140 448.2 472.8 433.8 458.1 

150-160 524.1 554.9 508.3 538.4 
Table 7.22 The point in time of rising and falling edge in the two tests 

Fig. 7.21 shows the angular velocity of the winder motor during the experiments. it is seen that the 

behavior of the two experiments are very alike. 
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Fig. 7.21 The angular velocity of the winder motor 

It can be seen that the motor in both cases is kept within the systems limitation of 1400 RPM. It is also 

seen that even though the velocity of the unwinder motor is kept constant the velocity of the winder is 

decreasing. This is obviously a function of the changing unwinder radius. It is also seen in Fig. 7.21 that 

the velocity is oscillating which is a result of the controller continuously trying to keep the output close 

to the reference.  

The general response of the system to the changes in web speed can be seen in Fig. 7.22, the reference 

is 0.035 m in both cases. Fig. 7.22 shows the dancers position throughout the experiment, and the 

corresponding steps in unwinder speed reference. 
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Fig. 7.22 The top graph shows the dancer position, the bottom graph shows the speed reference to the unwinder motor 

In the first test the PP-controller is first applied after 40 s, this is the reason for the large deviation in the 

beginning. In the second test the PP-controller is engaged at the beginning of the experiment. In both 

cases successful. This behavior is supported by the simulation test in chapter 6.6 which also showed the 

PP-controller being able to start up by itself. 

 Only the dancer position from the first tests is shown Fig. 7.22. It can be seen that the position is kept at 

a fairly constant level until the third step up. It never reaches a constant level hereafter, every time 

there is disturbance the dancer position quickly returns to the vicinity of the reference and then slowly 

approaches the reference. There are peaks in the position where the speed reference is changed for the 

unwinder motor. The peaks go under the reference when unwinder speed steps up. And opposite when 

the unwinder speed is stepped down.  

The simulation test chapter 6.6 showed risk of actuator saturation when using the pole placement 

controller, this phenomena is examined in Fig. 7.23 where the controller output can be seen. 
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Fig. 7.23 The torque reference to the VTL 

The behavior of the rest of the experiment is alike the torque reference shown in Fig. 7.23. The 

controller is often in either positive or negative saturation. This changes for each sample period and 

controller output never finds a steady state. The reason to this high amount of saturation is properly 

because the poles are placed with a bandwidth of 10 rad/s. A better result could, according to the 

theory in (Ogata, 1995), be accomplished by selecting a pole smaller than 10 rad/s. This would give a 

smaller increase in bandwidth and hence the control effort would be reduced. 

Even though the controller has problems with the saturation, it is still described how it is performing. 

The first step up in the first test is shown in Fig. 7.24, the vertical green line indicates the step up in 

unwinder motor velocity, the vertical red line indicates the step down. The horizontal dotted black lines 

are the +/- 5% tolerances for the system. 

 

Fig. 7.24 Dancer position for the first test with disturbance at 50 m and 60 m  

From Fig. 7.24 it can be seen that the first step have very little effect. The change in dancer position is 

not bigger than what the rest of the vibrations in signal. The system never comes within the tolerances 

of 5 %. The rise time of the system is very different in the two tests. This can be observed from Table 

7.23, which shows the performance of the first disturbance.  
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 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -3.6 -3.6 -4.4 -4.5 

Settling time [s] >27 >31 >27 >31 

Rise time [s] 6.5 11.3 0.3 0.3 

Steady state error [mm] 2 2 2 2 
Table 7.23 Performance with disturbance(1) at 50 m and 60 m 

The size of the settling time cannot be determined before the next step appears. Fig. 7.25 shows the 

dancer movement when the second disturbance occurs at 70 m and steps down again at 80 m. 

 

Fig. 7.25 Dancer position for the first test with disturbance at 70 m and 80 m 

In this step is both the effect of the step up and the step down visible. The increase in angular velocity of 

the unwinder, allows the dancer to fall suddenly before the winder motor tightens the paper again. The 

opposite is happening when unwinder is stepped down. Here the dancer raises due to the sudden 

slowing of the paper which is getting too tight. The measured parameters is seen in Table 7.24. 

 

 First test Second test 

 Step up Step down Step up Step down 

Overshoot [mm] -8.3 -5.61 -6.9 -5.3 

Settling time [s] >25 >33 >24 >33 

Rise time [s] 8.3 0.5 3.4 0.5 

Steady state error [mm] - - - - 
Table 7.24 Performance with disturbance(2) at 70 m and 80 m 

From Table 7.24 it it is seen that the rise time of the step down case is the same for both tests. The size 

of the overshoot in the two step downs are approximately the same, but the overshoot at the step up in 

the first test is 1.4 mm larger. It is not possible to determine if there is a steady state error because the 

system is not found settled. 
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Fig. 7.26 Dancer position for the first test with disturbance at 90 m and 100 m 

Fig. 7.26 show the third disturbance at 90 m and until 100 m. it is notable that the overshoot after the 

step up is higher than the overshoot after the step down. This is also shown in Table 7.25. 

 

 First test Second test 

 Rising step Falling step Rising step Falling step 

Overshoot [mm] -15.2 14 -17.3 13.4 

Settling time [s] >19 >37 >19 >37 

Rise time [s] 14 1 11.8 1.2 

Steady state error [mm] - - - - 
Table 7.25 The Performance with disturbance(3) at 90 m and 100 m 

The largest overshoot in the entire experiment is at the third disturbance. Here is over shoots of above 

15 mm present. The system is still having problem with reaching its reference of 35 mm. The settling 

time of the system is again found to be larger than the time interval between two steps. 

The graphs for the 4th, 5th and 6th steps are shown in Appendix I, as the controller displays similar 

behavior for the rest of the steps. The result of the analysis is though shown in Table 7.26 to Table 7.28. 

 

 First test Second test 

 Rising step Falling step Rising step Falling step 

Overshoot [mm] -10.3 14.3 -11.1 12.8 

Settling time [s] >21 >43 >20 >42 

Rise time [s] 7.4 1.2 14.7 1.2 

Steady state error [mm] - - - - 
Table 7.26 Performance with disturbance(4) at 110 m and 120 m 

Table 7.26 shows a similar behavior between the two tests, as the overshoots in the two tests have 

similar sizes. But the rise time at step up are almost doubled from the first test to the second.  
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 First test Second test 

 Rising step Falling step Rising step Falling step 

Overshoot [mm] -8.5 7 -7.9 9.24 

Settling time [s] >24 >52 20 >50 

Rise time [s] 3.7 0.6 6 0.8 

Steady state error [mm] - - 0 - 
Table 7.27 Performance with disturbance(5) at 130 m and 140 m 

Opposite to the previous steps, does the 5th step have highest rise times at its rising edges instead of its 

falling edges. It should be noted is that the system in the second test comes within the tolerances i.e. 

and has a settling time. 

 First test Second test 

 Rising step Falling step Rising step Falling step 

Overshoot [mm] -7.6 5 -7.3 6.3 

Settling time [s] >30 7.1 24.4 >52 

Rise time [s] 6.6 1 7.1 0.7 

Steady state error [mm] - - 0 - 
Table 7.28 Performance with disturbance(6) at 150 m and 160 m 

The rise time in the 6th step, shown in Table 7.28, has similar behavior in both two tests.  In this step it is 

only the second test that is able to meet the requirements of having a 0 mm steady state error.  

Both test shows that the sizes of the systems overshoot have decreased during the last four steps. This 

is in agreement with chapter 3.5.1 that showed an increase in radius would result in an increased 

damping ratio, and thereby reduced the tendency to overshoot. 

The pole placement controller is through these experiments shown able to work in praxis. It is 

implemented and it is shown that it is able to control the reference through these experiments. It is also 

shown that the PP-controller is able to start the web winder from the beginning of the tests unlike the 

APID-controller which needed good estimates before being able to control satisfactory. It is also seen 

that the controller in praxis behaves much as anticipated from the simulation in chapter 6.6. 

 But the experiment also shows that the controller is unable to keep the dancer within 5% of reference, 

with the exception of two cases. The result of the controller test could be improved by selecting, poles 

with a smaller bandwidth, which should reduce the saturation problem. It was found that the system 

with the pole placement controller generally has a long settling time. But it is shown that the designed 

controller is able to control the web winder system. 
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7.6 Summary of Controller Comparison 

The manual tuned PID controller results in a dancer response with large overshoot and long settling 

time when subjected to a disturbance. This is naturally not desirable but the controller is able to 

maintain the dancer at its reference position during an entire winding process when no disturbance is 

applied.  

Better performance is experienced with the model based PID controller. This controller gives a dancer 

response with small overshot and short settling time when subjected to a disturbance. On the test 

bench this controller obtains the best performance.  

The adaptive PID controller causes dancer responses with the largest overshoot and is responsible for 

occasional breakdown. However the controller also shows occasional better performance than the 

manual tuned PID. But this controller type seems to be very sensitive to deviation between correct 

system parameters and estimated parameters. 

The next best performance on the test bench is achieved with the adaptive pole placement controller. 

This controller results in similar overshot and oscillation as the model based PID. However the dancer 

position settles just below the tolerance band of 5 % and the controller output is often at the set 

saturation limits. 

The comparison shows that the adaptive pole placement controller is capable of starting the web 

winder from stand still and is also capable of keeping suppressing the disturbances. This shows that 

adaptive control is possible to implement on the web winder but the performance is poor, as a better 

performance than the model based PID was anticipated. The noise in the system is again found to 

disturb the adaptive controller algorithms, as indicated in the simulation tests. 
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8. Conclusion 

The objective of this project is to utilize adaptive control to control the tension of the web material in a 

center driven web winder. The web winder system is found to have large changes its system parameters 

during the winding process. An adaptive pole placement control algorithms is therefore introduced and 

through simulations and experiments found working on the test bench. But its performance would be 

greatly improved by reduction of the systems measurement noise.  

The project started by deriving a model of the web winder system to investigate how the machines 

physical changes affect the models response. Three models in total are derived; a nonlinear model, a 

linear model and a simplified model. The nonlinear and the linear model are validated through 

experiments and simulation. The simplified model is found valid by means of argumentation. 

A parameter variation is conducted to show the effects of the models uncertainties and to show the 

effect of the changing parameters during the winding process. It is found that the bandwidth of the 

system increases 600% as the radius of the winder reel is changed between its minimum and maximum 

value. The damping ratio is doubled during this variation. The other parameters influence is found 

insignificant in comparison. This implies that if a fixed controller is to be used; it would not achieve ideal 

performance through the entire winding. 

To be able to observe the changes in system parameters during the winding process, a parameter 

estimation is introduced. The recursive least square algorithm is selected as being suited and the 

equations for the algorithm is described. The parameter estimation via recursive least square are tested 

in various stages to investigate the algorithms ability to estimate correctly. 

During the design phase of the parameter estimation it was found that a scaling of 1000 to the output of 

the system and into the parameter estimation, had an significant effect of the estimation accuracy of 

the b1- and b2-parameters. 

Measurement noise in the dancer signal has proven a significant factor in the system and is found to 

significant disturb the parameter estimation algorithm and the controllers performance. 

Several filters are implemented in the system to reduce the effects of the noise problem. A 6 Hz second 

order low pass filter is implemented on the dancer signal, and two 2 Hz second order low pass filters are 

implemented on the estimation algorithms input signals. The specific filter frequencies are determined 

empirical through several experiments. 

It is found that the dynamic behavior of the estimated parameters needs to be evaluated to determine if 

the found solution is valid. As the parameter estimation algorithm might find alternate solutions. 

Four different controllers are designed in this thesis; a manual tuned PID controller, a model based PID 

controller, an adaptive controller and a pole placement controller. The controllers are simulated in 

different stages, with the exception of the manual tuned PID controller.  

The result of the simulation test shows that the model based PID-controller tuned by means of the 

nonlinear model in a conservative operation point has a overshoot of 15 mm and a settling time of 5 s. 
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The simulation of the adaptive PID controller showed that the system has problems with controlling the 

system when the estimated parameters are far from the correct value. The simulation of the pole 

placement controller showed that it has problems with achieving the reference value within 5 %. This 

could be related to noise from the measurement of the dancer position or the often output of the 

controller at saturation limit. 

 The controllers are tested in the web winder system by means of a specified unwinder velocity 

reference with known steps to emulate disturbances. The overshoot, settling time, rise time and steady 

state error are compared for 4 controllers. It is found that the best controller is the model based PID 

controller. But a close second is the PP-controller which shows similar performance. The PP-controller is 

shown able to initialize the web winder from stand still and is able to cope with large disturbances. 

Unfortunately it lacks the model based PID-controller ability to have zero steady state error. The 

adaptive controllers suffer primary from bad system estimation due to the large noise present in the 

system.  

Thus it is shown how the web winder system can be modeled and how it can be controlled. It is possible 

to make a PID controller that is able to regulate the system through an entire winding process based on 

a nonlinear model of the system in a worst case operation point, but this require that all the parameters 

in the system is known. The designed adaptive pole placement controller have the potential to simply be 

implemented in any given web winder system, and because of this it is of interest for further studies of 

adaptive control of web winder systems. 
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10. Appendices and Attachments 

All appendices are made by the project group to examine different aspect, support a claim or to 

document practical experiments which takes up too much space in the thesis. 

Some appendices are due to their size located on the attached CD-rom. The appendices on CD-ROM has 

a corresponding reading guide here also.  

Appendix A Z-transformation of the simplified model 
Appendix B dSpace setup and anti aliasing filter 
Appendix C Critical gain via Rouths stability criteria 
Appendix D Appendix for pole placement 
Appendix E Appendix to parameter variation 
Appendix F Appendix to Linear model 
Appendix G Simulation test with different parameters 
Appendix H on CD Test bench experiments with PEA 
Appendix I on CD Test bench experiments with controllers 
Appendix J Paper length 

 

The appendices can be found on the last pages of the thesis. 

10.1 Attachments 

  

Attachment A on CD Calculation of Jm inertia 
 
From: 
J. S. Larsen, P. K. Jensen. Adaptive control with self-tuning for center-
driven web winders, 2007. 
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11. Abstract 

Many industries require manufacturing with a continuous long piece of material, a so-called web. An 

example of this is the manufacturing of our daily newspaper. Here a long string of paper is feed to a 

rotating printing press. The paper is often unrolled from a large reel of paper and distributed through 

series of rollers and winded to another reel. This leads to the thesis initial problem stated as: 

What influences the control of the web winder system? 

A nonlinear model is derived for the system and it is validated partly by experiments with the winder 

motor by itself and later by test with the entire system. 

A linear model is derived on basis of the non-linear model, and it is found that the two models are in 

agreement.  A parameter variation analysis is made on basis of the validated linear model. The result of 

this analysis is that the radius of the winder reel is of great importance to the dynamic behavior of the 

system.  

A simplified model with fewer parameters is presented, to ease the task of parameter estimation in the 

system. 

From the problem analysis it is concluded that a given controller should be able to adapt to the system 

due to the changes in radius. The problem is stated as: 

How is it possible to utilize adaptive control for the given web winder system ? 

To be able to adapt the controller to the web winders changing behavior its model parameters have to 

be estimated. It is chosen to use the recursive least square algorithm. The main principle of the least 

square algorithm is described.  

To ensure that the parameter estimation have a satisfying performance it is tested by means of 

simulation in MATLAB Simulink. To mimic the real web winder system noise is added, when the noise is 

added to the simulation is concluded that filters are necessary to meet the requirements for proper 

estimation. 

The estimations algorithm is implemented in the web winder system by means of dSpace, different 

excitations methods are tested and it is found that a sine signal is best suited. 

Four different controllers are implemented in the system two non adaptive and two adaptive. The non 

adaptive controllers are both PID controller, one is based on iterative manual tuning, the other is model 

based. The two adaptive controllers are an adaptive PID and an adaptive pole placement controller. 

The four controllers are tested through simulation and on the web winder system. Good relation 

between the simulations and the actual behavior is found. It is also found that the adaptive pole 

placement controller is able to control the web winder, the performance is though exceeded by the 

model based PID. The reason for this is found to be governed by the amount of measurement noise in 

the given system. 


