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Abstract:

In many signal processing applications it is of in-
terest to separate a number of mixed signals. Of-
ten the knowledge of the sources and the mix-
ing model is very limited making the separation
”blind”. This report focuses on the feasibility of
implementing a real time Blind Source Separation
(BSS) of speech signals using higher order statis-
tics (HOS) on an NVIDIA GPU.

Intially a two input two output (TITO) model
is presented and the BSS problem is reduced to an
estimation of the filters in this model. A method
for estimating the filters based on HOS is pre-
sented and subsequent simulations show that a
signal to interference ratio of 10 dB is obtain-
able. Following the simulations the complexity of
the method is examined and it is shown that the
trispectra estimates used to estimate the filters
are the most complex. Using the initial complex-
ity and assuming that the NVIDIA GPU can be
utilized fully, it is calculated that the BSS method
needs to run 130 times faster to execute in real
time. As a consequence the trispectra estimates
are examined further to lower their complexity.
By taking advantage of how the trispectra esti-
mates are used in the BSS method, it is possi-
ble to reduce the complexity by a factor of 263.
Part of the method is then implemented using
the CUDA programming language. Following an
optimization of the implementation an execution
time is measured and it is estimated that a filter
update rate of 1.19 times per second is achiev-
able.

The conclusion is that the achievable update
rate is not sufficient for a real time execution on
the platform with the current implementation, as
an update rate of 25 times per second is the tar-
get.
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Preface

This report is the documentation for the 9th and 10th semester ASPI Master Thesis concerning
”Real-time Blind Source Separation Feasibility Study using CUDA” at the Institute of Electron-
ics at Aalborg University (AAU).

The report is prepared by group 09gr1042 and spans from the 1st of September 2008 to 3rd
of June 2009.

The original project proposal for BSS was presented by Kjeld Hermansen, Associate Profes-
sor at AAU. Kjeld Hermansen and Alexandre David, Associate Professor at AAU, functioned
as supervisors for this project.

The report is split into four parts. The introduction where the project objectives are described.
The theory part where the theory behind blind source separation is presented. The simulations
and verification part where the before mentioned theory is simulated to verify its functionality.
And the implementation part, where the feasibility of a real time execution of the blind source
separation is examined.

The accompanying CD contains a copy of this report, MATLAB implementations used in the
simulations and the software implementations of the CUDA program.

The notation used for mathematical expression and an explanation of abbreviation can be found
in appendix C and D.

Søren Reinholt Søndergaard Martin Brinch Sørensen
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Chapter 1

Introduction

1.1 Motivation

In many of todays signal processing applications a signal consisting of several mixed signals may
appear. Typically it is the source signals that are of interest and the problem is that these
signals are not always available in the demixed form. In existing applications many methods
are employed to avoid mixing the signals or mixing them in specific ways that allow easy sep-
aration. In telecommunications, for instance, it is widely known that different bands of the
frequency spectrum are assigned to specific applications such as television, AM and FM broad-
casts etc. The separation of the signals is then done via bandpass filters attenuating all the
unwanted frequencies. Another method is time division. Instead of using different frequencies
several transmitters can transmit at the same frequency, but only one at a time. Time slots of a
specified length are then assigned to the transmitters which will take turns transmitting. Both
methods can also be combined to allow division between a multiple signals as is the case in GSM
systems. These three methods are also known as signal separation by domain separation and
are very common ways of solving the signal separation problem.

The real separation problem arises when it is not possible to control the mixing of the source
signals. To make matters worse the source signals may also be subject to changes from the
channel, making it harder to find the source signals even if it is possible to separate the signals.
If the source signals could be found from the mixed signal this would have many uses in practical
application beyond the ones exemplified above. For instance it would be possible to use only
one microphone to record a meeting or an interview with several speakers and then separate
each speaker from the mixed signal. It could also be used in hearing aids to allow their users to
distinguish several speakers from each other and thus focus on one particularly speaker - more
commonly known as the cocktail party problem - or separating signals in a electromyogram
(EMG)/electroencephalogram (EEG).

The process of separating source signals when these are not known is also known as blind
source separation (BSS). The only assumption made about the source signals is that these are
statistically independent. Methods to address the BSS problem have been developed, but it is
still a field of ongoing research to improve current methods or create new ones.

3
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Most research papers present the general mixing channel, where there are N sources, sn, that
are received by an array of M sensors, xm. In the channel between the sources and the sensors
the sources are mixed in a way that can be modelled by equation 1.1 [5, p. 2].

xm(t) =

N∑
n=1

K−1∑
k=0

hmnk · sn(t − k) + vm(t) (1.1)

The mixed signal is a linear combination of filtered versions of the original source signals. Where
hmnk describes the filter coefficients and vm(t) is additive sensor noise. In this model hmnk is as-
sumed to be stationary, but this is not always the case as for the cocktail party problem. It is
more likely that the sources and the sensors are not stationary in the room and therefore the
filters for the room are often assumed to be quasi-stationary. Also the filters may be infinitely
long, but in practice they are assumed to be of finite length.

For the general model there are four assumptions that are often used in published papers:

• Instantaneous mixing: hmnk is assumed to be a constant value with no delay. This results
in what is known as instantaneous mixing.

• Delayed sources: hmnk is assumed to be a delay filter only.

• Convolved mixing: hmnk is an abitrary filter, this is the most common model.

• Over- and under-determined sources: It is normally assumed that the number of sources is
equal to or less than the number of sensors. This type of system can be solved using linear
methods. However, BSS methods that deal with separating under-determined systems,
where the number of sources exceeds the number of sensors also exist.

One system model that is often used in research papers is the Two Input Two Output mixing
model (TITO) which is illustrated in figure 1.1.

h12

h21

s1(t)
Σ

+

+ x1(t)

s2(t)
Σ

+

+ x2(t)

Figure 1.1: Two-channel version of the signal model presented in [5, p. 7]. The recorded signal at each sensor is
a superposition of the primary signal and a number of secondary signals.

And the following system equations are used for the TITO model:

x1(t) = s1(t) +h12 ∗ s2(t) (1.2)
x2(t) = h21 ∗ s1(t) +s2(t) (1.3)

4
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For this system model there are a number of common assumptions:

• The filters are FIR, meaning that they are finite in length.

• The system is not under-determined so it can be solved by linear methods.

• Convolved mixing for the filters h12 and h21 and instantaneous mixing for h11 and h22 (not
depicted in figure 1.1)

The TITO model is used in most research papers concerning BSS and is therefore also used as
a system model in the project, as are the above mentioned assumptions.

To recover the source signals the channels must be demixed by the use of the inverse model.
Finding the inverse TITO model is a solvable problem, but stability problems may arise if not
done properly and these must be taken care of. The problem is then reduced to estimating the
unknowns in the TITO model, i.e. the filters h12 and h21 and this is the problem most research
papers are focused on when presenting different BSS methods.

Many different methods exists for solving the BSS problem and they typically have different as-
sumptions about the mixing model. The sparseness method for estimating the filters is normally
employed when the system is assumed to be under-determined. Some of the sparseness meth-
ods also require that the sources do not overlap in the time-frequency domain. The sparseness
methods generally only work well when only delay filters are present in the systems. However,
when reverberation is present the time frequency representation of the signal becomes less sparse
and the sparseness methods become less than optimal to use. If the reverb is more mild the
methods can be combined with Inter Component Analysis (ICA) to get better results [5, pp.
12-13]. Other BSS methods use the concept of clustering where the system model is determined
by clustering data with respect to amplitude and delay.

The TITO model is, however, not under-determined and as such there are other and better
methods for solving this system. Many of these are based on the statistical properties of the
source signals, mainly that the source signals are independent or at least uncorrelated. Some
of these methods use second order statistics (SOS) to solve the BSS problem, but these also
requires some assumptions about the system in order to be utilized for BSS. Such assumption
could be that the filters are minimum phase. If this is the case it is then possible to estimate
the filter coefficients in the TITO model according to [5]. Unfortunately it is not reasonable to
assume that the filters are minimum phase. Methods that allow for non-minimum phase system
are therefore more reasonable alternatives.

One way to handle the non-minimum phase problem is to move away from SOS to higher
order statistics (HOS). Going from the power spectra of SOS to the bispectra and trispectra of
HOS adds phase information to the system. The only assumptions about the system when using
HOS methods are that the sources are independent and non-Gaussian.

Normally it is enough to use third order statistics to preserve phase information, but one problem
arises as the third order cumulant spectrum describes the deviation from a non-symmetric PDF.
As a lot of distributions have symmetric PDFs their 3 order spectrum would simply be zero and
this is generally not acceptable in most application. Because of this, fourth order statistics are

5
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normally used instead in BSS. The problem with using fourth order statistics is that it is rather
computational intensive compared to using SOS.

One method for solving the BSS problem using fourth order statistics is presented by Sham-
sunder and Giannakis in [8]. The method uses slices from the auto- and cross-trispectra of the
output signals, x1 and x2, to estimate the filters in the system model. As this method was the
initial focus for the project and it produces results with around 10 dB signal to interference ratio
(SIR) restoration of the original signals, this method for doing the BSS is used in this project.

6



Chapter 2

Scope of the Project

This project is done as part of the Applied Signal Processing and Implementation (ASPI) special-
ization. Because of this the weight of the project is on taking an existing algorithm, optimizing
it and implementing it to run on a specific hardware platform. The project is therefore divided
into parts that reflect this.

The first part is concerned with the mathematical theory behind the the existing algorithm
presented by Shamsunder and Giannakis in [8]. This gives the basis for doing the initial imple-
mentation and computational optimization on the algorithm.

The second part is verifying the theory by implementing it in a high level language, in this case
MATLAB, and running simulations of this implementation. This gives a baseline to compare any
optimizations that are performed, either for speed, numerical precision or resource consumption.

The third part is the implementation of the algorithm on a hardware platform. First the com-
plexity of the algorithm is analyzed and the algorithm is modified to reduce the complexity. Next
the algorithm is implemented in a low level language to run on the hardware platform. The plat-
form used in this project is an NVIDIA Graphic Processing Unit (GPU) and the programming
language used is the CUDA, a framework developed by NVIDIA for running applications on
their GPUs.

The overall goal of this project can be summarized to the following:
To investigate if it is possible to make a BSS on speech signals using HOS that can
run in real time on an NVIDIA GPU.

The cocktail party problem is used as the reference application for evaluating the real time
implementation, i.e. the sources are speech signals.

7
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2.1 Assumptions and Limitations of the system model

For this project the following assumptions/limitations are applied to system model:

• Two Input Two Output (TITO) system model: This limitation is mainly to reduce the
problem size. The algorithms can be extended to larger system models if necessary [8, p.
521], but only the TITO model is used in the project.

• The signals are additive: This is a needed assumption about the model in order to make
it possible to find the inverse system.

• Quasi-stationary filters: The filters in the TITO model must be stationary for the time it
takes to estimate them.

• The sources are non-Gaussian: This assumption is related to the trispectra of the signals.
If the sources are Gaussian their trispectra would be zero and and it would not be possible
to estimate the filters in the TITO model.

• No additive noise added in the channel/mixing model: This limitation is due to the weight
of the algorithm being on the BSS and not reduction of additive noise. Numerical noise
will still be present due to finite word length of the implementation.

• The sources are independent: This assumption is necessary to be able to estimate the
filters - the multilinearity property can not be applied if the sources are not independent.

8
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Chapter 3

Inverting the TITO model

As the problem for doing the BSS was divided into two parts. Inverting the system model and
estimating the filters in the system model. The first part is handled in this chapter, and it is
assumed that the filters are known. In the introduction the TITO (two input two output) mixing
model, was introduced. And it was decided to use this model to describe the mixing process of
two source signal, that then needs to be separated using BSS. The first question is if it is at all
possible the separate the signals again if everything is known about the mixing process.
In the time domain model of the mixing system can be described as equation 3.1 and 3.2.

x1(t) = s1(t) + h12 ∗ s2(t) (3.1)
x2(t) = s2(t) + h21 ∗ s1(t) (3.2)

These equations can be rewritten into matrix form to give equation 3.3, that describes the mixing
process. [

x1(t)
x2(t)

]
=

[
1 h12

h21 1

]
∗

[
s1(t)
s2(t)

]
(3.3)

Reconstructing the signals s1 and s2 from equation 3.3 in the time domain is rather problematic,
because of the convolution between the filter and the source signals. But by using the convo-
lution theorem the convolution can in the frequency domain be performed as a multiplication.
Performing a Fourier transform on equation 3.3 gives equation 3.4.[

X1(ω)
X2(ω)

]
=

[
1 H12(ω)

H21(ω) 1

]
·

[
S 1(ω)
S 2(ω)

]
X̄(ω) = ¯̄H(ω) · S̄ (ω) (3.4)

The original source signal can now be reconstructed from x1 and x2 by inverting the matrix ¯̄H(ω)
as described by 3.5

S̄ (ω) = ¯̄H(ω)−1 · X̄(ω) (3.5)

As the matrix for ¯̄H only contains 2x2 elements the inverse can be calculated as:

¯̄H−1(ω) =
1

1 · 1 − H12(ω) · H21(ω)

[
1 −H12(ω)

−H21(ω) 1

]
(3.6)

An equivalent solution model can be made for equation 3.6 for demixing the TITO model. This
solution model can be seen in figure 3.1.

11
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1
1 − H12(ω) · H21(ω)

H12(ω)

Σ
+

−

x1(t) ŝ1(t)

1
1 − H12(ω) · H21(ω)

H21(ω)

Σ
+

−

x2(t) ŝ2(t)

Figure 3.1: Solution model for demixing the TITO mixing model

Figure 3.1 can be simplified to figure 3.2

G(ω)

H12(ω)

Σ
+

−

x1(t) ŝ1(t)

G(ω)

H21(ω)

Σ
+

−

x2(t) ŝ2(t)

Figure 3.2: Simplefied solution model for making the inverse

One criterion for this model to function is that all the filters in figure 3.2 must be stable. The
filters H12 and H21 are assumed to stable. The problem is the filter G, therefor steps needs to
be taken in order to ensure that this filter is indeed stable. The transfer function for G is listed
in equation 3.7, where it’s inverse filter K is also defined.

G(ω) =
1

1 − H12(ω) · H21(ω)
(3.7)

K(ω) =
1

G(ω)
(3.8)

= 1 − H12(ω) · H21(ω) (3.9)

If the inverse of G(ω) K(ω) is evaluated, then it would always be stable under the assumption
that H12 and H21 are stable (eqn. 3.9). Now that a stable filter K(ω) has been established
the question is whether the inverse filter G is stable. In general there are three types of filters
minimum, maximum and none-minimum phase (none-minimum phase being a combination of
a minimum and maximum). Figure 3.3 illustrates examples of zero pole plots for a minimum,
maximum and none-minimum phase filters.

12
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Figure 3.3: Zero pole plots of a minimum, maximum phase and non-minimum filter

The maximum or none-minimum phase filters have zeros located outside the unit circle. These
zero becomes a problem when trying to create the inverse filter of a maximum or none-minimum
phase filter, as the zeros would have to be converted into poles making the inverse filter unsta-
ble. The solution for making this inverse filter stable is based on that all non-minimum and
maximum phase filters can be divided into a minimum phase filter and an all pass filter. The
next part describes how this is possible, and how this helps in inverting the filter.

Consider the filter in equation 3.10.

H(z) =
1 + 3z−1

1 + 1
2 z−1

(3.10)

The filter described by equation 3.10 is a maximum phase filter, which can be seen from the fact
that the zero is not located inside the unit circle in zero pole plot in figure 3.4. The idea is to
use the all pass part of the filter to move the zero located outside the unit circle into the unit
circle, thereby creating a minimum phase filter that is invertible.
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Figure 3.4: Zero pole plot of the H(z) example filter

The filter in equation 3.10 is in equation 3.11 described by a minimum phase filter and an all
pass filter:

H(z) = Hmin(z) · Hap(z) (3.11)

In order to add the zero outside the unit circle the Hap(z) filters pole must be located at -3, and
in order to preserve an magnitude of one it’s zero must located at at the inverse of the pole at
-1

3 . So the filter Hap(z) would have a zero pole plot as illustrated in figure 3.5.
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Figure 3.5: Zero pole plot of the all pass filter.

This zero pole plot would have a transfer function for Hap(z) as in equation 3.12.

Hap(z) =
1 + 3z−1

1 + 1
3 z−1

(3.12)

The remaining Hmin(z) filter would then have a zero pole configuration as in figure 3.6 and a
transferfunction described by equation 3.13.
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Figure 3.6: Zero pole plot of the minimum phase filter.

Hmin(z) =
1 + 1

3 z−1

1 + 1
2 z−1

(3.13)

Writing the original filters as a function of the allpass in equation 3.12 and equation 3.13 for the
minimum filter gives equation 3.14.

H(z) = Hmin(z) · Hap(z)

=
1 + 1

3 z−1

1 + 1
2 z−1

·
1 + 3z−1

1 + 1
3 z−1

=
1 + 3z−1

1 + 1
2 z − 1

(3.14)

This division of filter into a allpass and minimum phase filter can also shown mathematically

14
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by dividing the filter into an AR and an MA process as in equation 3.15.

H(z) =
1 + 3z − 1
1 + 1

2 z − 1

=
1

1 + 1
2 z − 1

·
(
1 + 3z−1

)
(3.15)

The idea is to divide the MA process with it’s inverse thereby creating the all pass-filter, which
is performed in equation 3.16 and 3.17.

H(z) =
1

1 + 1
2 z − 1

·
(
1 + 3z−1

)
·

1 + 1
3 z−1

1 + 1
3 z−1

(3.16)

=
1 + 1

3 z−1

1 + 1
2 z − 1

·
1 + 3z−1

1 + 1
3 z−1

(3.17)

Giving the same result as constructing the filters from the zero pole plots.

The next step is to find the inverse filter of H(z), this is now matter of finding the inverse
of Hmin and Hap. The Hmin is done by replacing the poles with zeros and zeros with poles, effec-
tively inverting the fraction in equation 3.12. The Hap is more complicated, the magnitude and
the phase characteristics of the filters can be seen in figure 3.7
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Figure 3.7: Magnitude phase plot of the all pass filter

Taking the inverse of this is a matter of inverting the magnitude plot and shifting the sign of
the phase so the inverse Hap would have a phase magnitude plot as illustrated in figure 3.8.
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Figure 3.8: Magnitude phase plot of the inverted all pass filter

The problem is that it is not possible to construct a inverse all pass filter that is stable, because
a positive phase implies that the output from the filter would be growing exponentially.
However if the filter is made none-causal by introducing a delay filter prior to the the all pass
filter, the negative phase from the delay filter would cancel the positive phase of the inverted all
pass filter and it would then become stable. This means that the inversion of the H(z) becomes
a function of Hmin and Hap and a delay filter Hd f , which produces a stable filter if the delay in
the delay filter is large enough to counteract the positive phase from the inverted allpass filter.

H−1
stable(z) = H−1

min(z) · H−1
ap (z) · Hd f (z) (3.18)

Now one thing to notice is that dividing the filter into a all pass and a minimum phase part is
no longer necessary as the unstable all pass filter is stabilized by the delay filter. Therefore the
stable inversion of the H(z) filter can be written as a inversion and a delay filter to make the
inversion stable, as show in equation 3.19.

H−1
stable(z) = H−1(z) · Hd f (z) (3.19)

Returning to the solution model it can be shown that the filter G(ω) can be made stable by
adding a delay filter to it, this of course means that the system is not going to be causal but this
is however acceptable, where a non stable system is not. Adding the delay filters to the original
solution model 3.2 gives a system model illustrated in figure 3.9.

The delay filters are also added to the filters h12 and h21, as they would need the same delay to
ensure that the demixing is done correctly.

Adding the delay filters to equation for G(omega) of the system gives equation 3.20

G(ω) =
Hd f (ω)

1 − H12(ω) · H21(ω)
(3.20)

16
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Figure 3.9: Simplefied solution model for making the inverse

Going back to the solution equation for the TITO model it can now be rewritten to equation
3.21.

S̄ (ω) =
Hd f (ω)

1 − H12(ω) · H21(ω)

[
1 −H12(ω)

−H21(ω) 1

]
· X̄(ω)

S̄ (ω) = ¯̄H(ω)−1 · Hd f (ω) · X̄(ω) (3.21)

Which is stable for a large enough delay. Now that it has been proven mathematically that it is
possible to demix the signals if a delay is added to the system. It is possible to move on to the
estimation of the h12 and h21 filters.

17
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Chapter 4

Estimating the Filters in the TITO
model

This chapter contains the estimation of the filters in the TITO model which would make it
possible to invert the mixing of the source signals. A method for estimating this is proposed in
[8] while some details and procedures are described in other papers referred to from [8]. As this
method uses higher order spectra’s for the estimation, the reader is encouraged to read appendix
A ,which covers the basic theory of HOS, theory that is used in this chapter.

The system equations for the TITO model is in the frequency domain defined as:

X1(ω) = S 1(ω) + H12(ω) · S 2(ω) (4.1)
X2(ω) = S 2(ω) + H21(ω) · S 1(ω) (4.2)

Because of the multilinearity properties of spectra discussed in appendix A the following equa-
tions holds true for the n-th order spectra for the TITO model:

Cxn
1
(ω̄) = Csn

1
(ω̄) + Mhn

12
(ω̄) ·Csn

2
(ω̄) (4.3)

Cxn
1
(ω̄) = Csn

2
(ω̄) + Mhn

21
(ω̄) ·Csn

1
(ω̄) (4.4)

where:
ω̄ = ω1, ω2, . . . , ωn−1.

Similarly the cross spectrum of the (n − 1)th order polyspectra of x1 and the first order spectra
of x2 can be defined as:

Cxn−1
1 x2

(ω̄) = Mhn−1
11 h21

(ω̄) ·Csn
1
(ω̄) + Mhn−1

12 h22
(ω̄) ·Csn

2
(ω̄) (4.5)

This can also be done for the reverse case, the cross spectrum between the (n− 1)th polyspectra
of x2 and the first order spectra of x1:

Cxn−1
2 x1

(ω̄) = Mhn−1
22 h12

(ω̄) ·Csn
2
(ω̄) + Mhn−1

21 h11
(ω̄) ·Csn

1
(ω̄) (4.6)

Equations 4.3, 4.4 , 4.5 and 4.6 gives four equations with four unknowns, s1, s2, h12 and h21 (h11
and h22 are equal to one).
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The next step is to determine the order, n, of the cumulant spectra to solve the equations.
In order to reconstruct the true phase at least the bispectrum (n = 3) must be used. If the
bispectrum of x1 is used in equation 4.5 and x2 in 4.6 the resulting order of the cross spectra will
be n = 4, also it was noted in the introduction that the bispectrum (n = 3) has problem related
to the PDF of the source signals, that are not allowed to be symmetric PDF if the bispectrum
is used.

Using the trispectrum for the system equations gives the equations in 4.10:

Cx4
1
(ω̄) = Cs4

1
(ω̄) + Mh4

12
(ω̄) ·Cs4

2
(ω̄) (4.7)

Cx4
2
(ω̄) = Cs4

2
(ω̄) + Mh4

21
(ω̄) ·Cs4

1
(ω̄) (4.8)

Cx3
1 x2

(ω̄) = Mh3
11h21

(ω̄) ·Cs4
1
(ω̄) + Mh3

12h22
(ω̄) ·Cs4

2
(ω̄) (4.9)

Cx3
2 x1

(ω̄) = Mh3
22h12

(ω̄) ·Cs4
2
(ω̄) + Mh3

21h11
(ω̄) ·Cs4

1
(ω̄) (4.10)

where:
ω̄ = ω1, ω2, ω3.

From appendix A it is know that a moment spectrum can be written as a product of the
Fourier transforms of its operands. If this is done for the trispectra of the filters in equations
4.7 to 4.10 the following can be obtained:

Cx4
1
(ω̄) = Cs4

1
(ω̄) + H12(ω1) · H12(ω2) · H12(ω3) · H∗12(ω1 + ω2 + ω3) ·Cs4

2
(ω̄) (4.11)

Cx4
2
(ω̄) = Cs4

2
(ω̄) + H21(ω1) · H21(ω2) · H21(ω3) · H∗21(ω1 + ω2 + ω3) ·Cs4

1
(ω̄) (4.12)

Cx3
1 x2

(ω̄) = H11(ω1) · H11(ω2) · H21(ω3) · H∗11(ω1 + ω2 + ω3) ·Cs4
1
(ω̄) +

H12(ω1) · H12(ω2) · H22(ω3) · H∗12(ω1 + ω2 + ω3) ·Cs4
2
(ω̄) (4.13)

Cx3
2 x1

(ω) = H22(ω1) · H22(ω2) · H12(ω3) · H∗22(ω1 + ω2 + ω3) ·Cs4
2
(ω̄) +

H21(ω1) · H21(ω2) · H11(ω3) · H∗21(ω1 + ω2 + ω3) ·Cs4
1
(ω̄) (4.14)

If ω3 is set to zero, the fourth order moment spectra of the filter can be reduced to the third
order moment spectra of the filter multiplied with the DC amplification of the filter (H(0)).
Remembering that H22(ω) and H11(ω) are equal to one, the equations in 4.11 to 4.14 can be
reduced to:

Cx4
1
(ω̄) = Cs4

1
(ω̄) + H12(ω1) · H12(ω2) · H12(0) · H∗12(ω1 + ω2) ·Cs4

2
(ω̄) (4.15)

Cx4
2
(ω̄) = Cs4

2
(ω̄) + H21(ω1) · H21(ω2) · H21(0) · H∗21(ω1 + ω2) ·Cs4

1
(ω̄) (4.16)

Cx3
1 x2

(ω̄) = H21(0) ·Cs4
1
(ω̄) + H12(ω1) · H12(ω2) · H∗12(ω1 + ω2) ·Cs4

2
(ω̄) (4.17)

Cx3
2 x1

(ω̄) = H12(0) ·Cs4
2
(ω̄) + H21(ω1) · H21(ω2) · H∗21(ω1 + ω2) ·Cs4

1
(ω̄) (4.18)

where:
ω̄ = ω1, ω2, 0.
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Which can be rewritten to:

Cx4
1
(ω̄) = Cs4

1
(ω̄) + Mh3

12
(ω1, ω2) · H12(0) ·Cs4

2
(ω̄) (4.19)

Cx4
2
(ω̄) = Cs4

2
(ω̄) + Mh3

21
(ω1, ω2) · H21(0) ·Cs4

1
(ω̄) (4.20)

Cx3
1 x2

(ω̄) = H21(0) ·Cs4
1
(ω̄) + Mh3

12
(ω1, ω2) ·Cs4

2
(ω̄) (4.21)

Cx3
2 x1

(ω̄) = H12(0) ·Cs4
2
(ω̄) + Mh3

21
(ω1, ω2) ·Cs4

1
(ω̄) (4.22)

The next step is to eliminate the trispectra’s of the sources (Cs4
1
(ω̄) and Cs4

2
(ω̄)) from the equa-

tions and derive expressions for Mh3
12

(ω1, ω2) and Mh3
21

(ω1, ω2).

Isolating Cs4
1
(ω) in equations 4.19 to 4.22 gives:

Cs4
1
(ω̄) = Cx4

1
(ω̄) − Mh3

12
(ω1, ω2) · H12(0) ·Cs4

2
(ω̄) (4.23)

Cs4
1
(ω̄) =

Cx4
2
(ω̄) −Cs4

2
(ω̄)

Mh3
21

(ω1, ω2) · H21(0)
(4.24)

Cs4
1
(ω̄) =

Cx3
1 x2

(ω̄) − Mh3
12

(ω1, ω2) ·Cs4
2
(ω̄)

H21(0)
(4.25)

Cs4
1
(ω̄) =

Cx3
2 x1

(ω̄) − H12(0) ·Cs4
2
(ω̄)

Mh3
21

(ω1, ω2)
(4.26)

Setting the right hand sides equal to each other (equation 4.23 to 4.25 and 4.24 to 4.26) eliminates
Cs4

1(ω) and isolating Cs4
2(ω) the equations can be reduced to:

Cx4
1
(ω̄) − Mh3

12
(ω1, ω2) · H12(0) ·Cs4

2
(ω̄) =

Cx3
1 x2

(ω̄) − Mh3
12

(ω1, ω2) ·Cs4
2
(ω̄)

H21(0)
m

Cs4
2
(ω̄) =

Cx3
1 x2

(ω̄) − H21(0) ·Cx4
1
(ω̄)

Mh3
12

(ω1, ω2) · (1 − H12(0) · H21(0))
(4.27)

Cx4
2
(ω̄) −Cs4

2
(ω̄)

Mh3
21

(ω1, ω2) · H21(0)
=

Cx3
2 x1

(ω̄) − H12(0) ·Cs4
2
(ω̄)

Mh3
21

(ω1, ω2)

m

Cs4
2
(ω̄) =

Cx4
2
(ω̄) − H21(0) ·Cx3

2 x1
(ω̄)

1 − H12(0) · H21(0)
(4.28)

Setting equations 4.27 and 4.28 equal to each other eliminates Cs4
2(ω) and an expression for

Mh3
21

(ω1, ω2) can be found as:

Cx4
2
(ω̄) − H21(0) ·Cx3

2 x1
(ω̄)

1 − H12(0) · H21(0)
=

Cx3
1 x2

(ω̄) − H21(0) ·Cx4
1
(ω̄)

Mh3
12

(ω1, ω2) · (1 − H12(0) · H21(0))

m

Mh3
12

(ω1, ω2) =
Cx3

1 x2
(ω1, ω2, 0) − H21(0) ·Cx4

1
(ω1, ω2, 0)

Cx4
2
(ω1, ω2, 0) − H21(0) ·Cx3

2 x1
(ω1, ω2, 0)

(4.29)
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The procedure for Mh3
21

(ω1, ω2) is the same as for Mh3
12

(ω1, ω2), by first isolating Cs4
2
(ω) and then

isolating Cs4
1
(ω) resulting expression for Mh3

21
(ω1, ω2) as:

Mh3
21

(ω1, ω2) =
Cx3

2 x1
(ω1, ω2, 0) − H12(0) ·Cx4

2
(ω1, ω2, 0)

Cx4
1
(ω1, ω2, 0) − H12(0) ·Cx3

1 x2
(ω1, ω2, 0)

(4.30)

Similar equations can also be made for a minimum phase system where the powerspectrum of
the filters are estimated instead of the bispectrum. However the problem with symmetric PDF’s
and non-minimum phase filters, makes these equations only usable under these conditions. The
equations are described in equations 4.31 and 4.32.

Mh2
12

(ω1) =
Cx2

1 x1
(ω1, 0) − H21(0) ·Cx3

1
(ω1, 0)

Cx3
2
(ω1, 0) − H21(0) ·Cx2

2 x2
(ω1, 0)

(4.31)

Mh2
21

(ω1) =
Cx2

2 x1
(ω1, 0) − H12(0) ·Cx3

2
(ω1, 0)

Cx3
1
(ω1, 0) − H12(0) ·Cx2

1 x2
(ω1, 0)

(4.32)

The only unknowns in the derived equations for estimation of the bispectra of the filters are
H12(0) and H21(0), i.e. the DC components (ω = 0) of the Fourier transforms of the filters. An
approach to estimate these DC components is derived in the next section.

4.1 Estimation of ¯̄H(0)

In this section a method for estimating ¯̄H(0) is derived, the method is presented in [8].
If the powerspectrum of the output is evaluated in ω = 0, it would be an estimator of what the
DC component is in the mixed signals x(t) are. If all possible power spectra’s and cross spectra’s
of the mixed signals are constructed, it would give the matrix in equation 4.33.

 Cx2
1
(ω) Cx2 x1(ω)

Cx1 x2(ω) Cx2
2
(ω)

 =

[
X∗1(ω) · X1(ω) X∗2(ω) · X1(ω)
X∗1(ω) · X2(ω) X∗2(ω) · X2(ω)

]
(4.33)

The power spectrum of x(t) can be expended into a function of h and s(t).By using equations 4.1
and 4.2 from the TITO system model the first element in equation 4.33 can be rewritten into
equation 4.34:

Cx2
1
(ω) = X∗1(ω) · X1(ω) = 〈S ∗1(ω) + H∗12(ω) · S ∗2(ω)〉 · 〈S 1(ω) + H12(ω) · S 2(ω)〉

= S ∗1(ω) · S 1(ω) + S ∗1(ω) · H12(ω) · S 2(ω) + H∗12(ω) · S ∗2(ω) · S 1(ω)

+H∗12(ω) · S ∗2(ω) · H12(ω) · S 2(ω) (4.34)

Equation 4.34 can be written in a matrix form as equation 4.35:[
Cx2

1
(ω) $

$ $

]
=

[
1 H12(ω)
$ $

]
·

[
S ∗1(ω) · S 1(ω) S ∗2(ω) · S 1(ω)
S ∗1(ω) · S 2(ω) S ∗2(ω) · S 2(ω)

]
·

[
1 $

H∗12(ω) $

]
(4.35)

where:
$ can be any value.
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Similarly the elements Cx2
2
(ω) Cx1 x2(ω) and Cx2 x1(ω) in 4.35 can be expanded in matrix form

as: [
$ $
$ Cx2

1
(ω)

]
=

[
$ $

H21(ω) 1

]
·

[
S ∗1(ω) · S 1(ω) S ∗2(ω) · S 1(ω)
S ∗1(ω) · S 2(ω) S ∗2(ω) · S 2(ω)

]
·

[
$ H∗21(ω)
$ 1

]
(4.36)[

$ Cx2 x1(ω)
$ $

]
=

[
1 H12(ω)
$ $

]
·

[
S ∗1(ω) · S 1(ω) S ∗2(ω) · S 1(ω)
S ∗1(ω) · S 2(ω) S ∗2(ω) · S 2(ω)

]
·

[
$ H∗21(ω)
$ 1

]
(4.37)[

$ $
Cx1 x2(ω) $

]
=

[
$ $

H21(ω) 1

]
·

[
S ∗1(ω) · S 1(ω) S ∗2(ω) · S 1(ω)
S ∗1(ω) · S 2(ω) S ∗2(ω) · S 2(ω)

]
·

[
1 $

H∗12(ω) $

]
(4.38)

Combining equations 4.35 to 4.38 gives equation 4.39: Cx2
1
(ω) Cx2 x1(ω)

Cx1 x2(ω) Cx2
2
(ω)

 =

[
1 H12(ω)

H21(ω) 1

]
·

 Cs2
1
(ω) Cs2 s1(ω)

Cs1 s2(ω) Cs2
2
(ω)

 · [ 1 H∗21(ω)
H∗12(ω) 1

]
¯̄Cx2(ω) = ¯̄H(ω) · ¯̄Cs2(ω) · ¯̄HH(ω) (4.39)

From equation 4.33 it can be seen that ¯̄Cx2(0) is equal to its own conjugate transpose, so ¯̄Cx2(0)
is hermitian, therefore the eigenvalue decomposition of ¯̄Cx2(0) can be defined as in equation 4.40.

¯̄Cx2(0) = ¯̄U ·
[
λ1 0
0 λ2

]
· ¯̄UH (4.40)

where:
¯̄U is a orthogonal matrix that contains the the eigenvectors of ¯̄Cx(0)
λ is the eigenvalues of ¯̄Cx(0)

Comparing equation 4.39 to equation 4.40 it is seen that the right hand sides have similar struc-
ture provided the anti diagonal of ¯̄Cs2(0) is zero. This is reasonable to assume as the sources
s1 and s2 are independent, cf. section 2.1, and as such the cross spectra, Cs1 s2(ω) and Cs2 s1(ω),
are zero. This means λ1 and λ2 are scaled versions of Cs2

1
(0) and Cs2

2
(0), respectively, while ¯̄U is

some transformation of ¯̄H(0). Using this similar structure it may be possible to estimate ¯̄H(0).

Consider the transformation matrix ¯̄T defined in equation 4.41.

¯̄T =

 1√
λ1

0
0 1√

λ2

 · ¯̄UH (4.41)

This transformation would make the matrix ¯̄Cx2(0) into identity ¯̄I as defined in equation 4.42.

¯̄Cy2(0) = ¯̄T · ¯̄Cx2(0) · ¯̄T H

= ¯̄T · ¯̄U ·
[
λ1 0
0 λ2

]
· ¯̄UH · ¯̄T H

=

 1√
λ1

0
0 1√

λ2

 · ¯̄UH · ¯̄U ·
[
λ1 0
0 λ2

]
· ¯̄UH · ¯̄U ·

 1√
λ1

∗ 0

0 1√
λ2

∗


=

 1√
λ1

0
0 1√

λ2

 · [ λ1 0
0 λ2

]
·

 1√
λ1

0
0 1√

λ2


= ¯̄I (4.42)
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This is interesting because if the same is applied to 4.39 for ω = 0 it would. It would also turn
into identity if applied to equation 4.39.

¯̄I = ¯̄T · ¯̄H(0) · ¯̄Cs2(0) · ¯̄HH(0) · ¯̄T H (4.43)

If it is assumed that the source signal are uncorrelated, ¯̄Cs2(0), would only have values on the
diagonal and these values would be the DC-component for the individual source signals. What
the transformation matrix ¯̄T does is to scale the DC-component int source signals to one. So if
a new matrix ¯̄G(0) is defined as in equation 4.44:

¯̄G(0) = ¯̄T · ¯̄H(0) (4.44)

Then ¯̄G(0) would be a ”filter” that turns the source signals DC-component into identity and if
it is possible to estimate this ¯̄G(0), it would be possible to possible to estimate ¯̄H(0) as:

¯̄H(0) = ¯̄T−1 · ¯̄G(0) (4.45)

The ”filter” ¯̄G(0) has some special proberties. If ¯̄G(0)H and ¯̄G(0)−H is applied to equation 4.43, it
results in equation 4.46.

¯̄I = ¯̄G(0) · ¯̄Cs2(0) · ¯̄GH(0)
¯̄GH(0) · I · ¯̄G−H(0) = ¯̄GH(0) · ¯̄G(0) · ¯̄Cs2(0) · ¯̄GH(0) · ¯̄G−H(0)

¯̄I = ¯̄GH(0) · ¯̄G(0) · ¯̄Cs2(0)
¯̄C−1

s2 (0) = ¯̄GH(0) · ¯̄G(0) (4.46)

So by multiplying ¯̄G(0) hermitian with itself the result is the inverted ¯̄Cs2(0). As ¯̄C−1
s2 (0) only

contains elements on the diagonal, it can be shown that the column vectors in ¯̄G(0) are actually
orthogonal to each other which is proven in equation 4.47 to 4.51.

¯̄C−1
s2 (0) =

[
G∗11(0) G∗21(0)
G∗12(0) G∗22(0)

] [
G11(0) G12(0)
G21(0) G22(0)

]
(4.47) C−1

s2
1

(0) 0

0 C−1
s2

2
(0)

 =

[
ḠH

1 (0)
ḠH

2 (0)

] [
Ḡ1(0) Ḡ2(0)

]
(4.48)

⇓

0 = ḠH
1 (0) · Ḡ2(0) (4.49)

0 = ḠH
2 (0) · Ḡ1(0) (4.50)

⇓

Ḡ1(0) ⊥ Ḡ2(0) (4.51)

It can also be shown from equations 4.52 to 4.59 that G11(0) and G22(0) only contains real values
and G12(0), G21(0) are the complex conjugated of each other.

G11(ω) = G∗11(ω) (4.52)
G∗1(ω) ·G1(ω) = (G∗1(ω) ·G1(ω))∗ (4.53)

G22(ω) = G∗22(ω) (4.54)
G∗2(ω) ·G2(ω) = (G∗2(ω) ·G2(ω))∗ (4.55)

G12(ω) = G∗21(ω) (4.56)
G∗1(ω) ·G2(ω) = (G∗2(ω) ·G1(ω))∗ (4.57)

G21(ω) = G∗12(ω) (4.58)
G∗2(ω) ·G1(ω) = (G∗1(ω) ·G2(ω))∗ (4.59)
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In order to estimate ¯̄G(0), the cross trispectrum of the transformed signal y(t) is evaluated,
the first step is the create the transformed signal y(t) from x(t) which can be done using the
transformation matrix as in equation 4.60

[
Y1(ω)
Y2(ω)

]
= ¯̄T ·

[
X1(ω)
X2(ω)

]
(4.60)

In order to estimate ¯̄G(0) it can according to [8, p. 522] be done by evaluating the ”average”
cross trispectrum of y(t) at ω = 0. The ”average” cross trispectrum is defined in equation 4.61.

Cy4
avg

(0, 0, 0) =

 Cy4
1
(0, 0, 0) + Cy2

2y2
1
(0, 0, 0) Cy3

1y2
(0, 0, 0) + Cy2

2y1y2
(0, 0, 0)

Cy2
1y2y1

(0, 0, 0) + Cy3
2y1

(0, 0, 0) Cy2
1y2

2
(0, 0, 0) + Cy4

2
(0, 0, 0)

 (4.61)

=

[
Cavg11 Cavg12

Cavg21 Cavg22

]
(4.62)

From the multilinearity properties of cumulant spectra’s (se appendix A.7.1) it is possible to
rewrite equation 4.61 to a function of Cs4(0, 0, 0) and G(0)

Cavg11 = G∗11 ·G11 ·G11 ·G11 ·Cs4
1

+ G∗12 ·G12 ·G12 ·G12 ·Cs4
2

+

G∗21 ·G21 ·G11 ·G11 ·Cs4
1

+ G∗22 ·G22 ·G12 ·G12 ·Cs4
2

(4.63)

Cavg12 = G∗11 ·G11 ·G11 ·G21 ·Cs4
1

+ G∗12 ·G12 ·G12 ·G22 ·Cs4
2

+

G∗21 ·G21 ·G11 ·G21 ·Cs4
1

+ G∗22 ·G22 ·G12 ·G22 ·Cs4
2

(4.64)

Cavg21 = G∗11 ·G11 ·G21 ·G11 ·Cs4
1

+ G∗12 ·G12 ·G22 ·G12 ·Cs4
2

+

G∗21 ·G21 ·G21 ·G11 ·Cs4
1

+ G∗22 ·G22 ·G22 ·G12 ·Cs4
2

(4.65)

Cavg22 = G∗11 ·G11 ·G21 ·G21 ·Cs4
1

+ G∗12 ·G12 ·G22 ·G22 ·Cs4
2

+

G∗21 ·G21 ·G21 ·G21 ·Cs4
1

+ G∗22 ·G22 ·G22 ·G22 ·Cs4
2

(4.66)

From equation 4.48 it was show that the column vector of ¯̄G(0) multiplied with its hermitian is
the inverse of Cs2 .

Cavg11 =
(
G∗11 ·G11 + G∗21 ·G21

)
·G11 ·G11 ·Cs4

1
+(

G∗12 ·G12 + G∗22 ·G22
)
·G12 ·G12 ·Cs4

2

=

 1
Cs2

1

 ·G11 ·G11 ·Cs4
1

+ 1
Cs2

2

 ·G12 ·G12 ·Cs4
2

(4.67)
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If this is done for all the equations from 4.63 to 4.66 they would reduce to equations 4.68 to
4.71.

Cavg11 =
Cs4

1

Cs2
1

·G11 ·G11 +
Cs4

2

Cs2
2

·G12 ·G12 (4.68)

Cavg12 =
Cs4

1

Cs2
1

·G11 ·G21 +
Cs4

2

Cs2
2

·G12 ·G22 (4.69)

Cavg21 =
Cs4

1

Cs2
1

·G21 ·G11 +
Cs4

2

Cs2
2

·G22 ·G12 (4.70)

Cavg22 =
Cs4

1

Cs2
1

·G21 ·G21 +
Cs4

2

Cs2
2

·G22 ·G22 (4.71)

If equations 4.68 to 4.71 is written into matrix the result can be reduced into equation 4.76.

¯̄Cy4
avg

(0, 0, 0) =


Cs4

1
Cs2

1

·G11 ·G11 +
Cs4

2
Cs2

2

·G12 ·G12 ,
Cs4

1
Cs2

1

·G11 ·G21 +
Cs4

2
Cs2

2

·G12 ·G22

Cs4
1

Cs2
1

·G21 ·G11 +
Cs4

2
Cs2

2

·G22 ·G12 ,
Cs4

1
Cs2

1

·G21 ·G21 +
Cs4

2
Cs2

2

·G22 ·G22

 (4.72)

=
Cs4

1

Cs2
1

·

[
G11 ·G11 G11 ·G21
G21 ·G11 G21 ·G21

]
+

Cs4
2

Cs2
2

·

[
G12 ·G12 G12 ·G22
G22 ·G12 G22 ·G22

]
(4.73)

¯̄G(0) =

[
G11 G12
G21 G22

]
=

[
Ḡ1(0) Ḡ2(0)

]
(4.74)

¯̄Cy4
avg

(0, 0, 0) =
Cs4

1

Cs2
1

· Ḡ1(0) · Ḡ1(0)T +
Cs4

2

Cs2
2

· Ḡ2(0) · Ḡ2(0)T (4.75)

=

2∑
i=1

Cs4
i

Cs2
i

· Ḡi(0) · Ḡi(0)T (4.76)

The result for the ”averaged” trispectrum in equation 4.76 is now evaluated, if an eigenvalue
decomposition of ¯̄Cy4

avg
(0, 0, 0) is performed it can be written as equations 4.77 and 4.78.

¯̄Cy4
avg

(0, 0, 0) = ¯̄U · ¯̄λ · ¯̄UH (4.77)

=

[
U11 U21
U12 U22

]
·

[
λ1 0
0 λ2

]
·

[
U11 U12
U21 U22

]
(4.78)

Equation 4.78 can be expended into equation 4.79.

¯̄Cy4
avg

(0, 0, 0) =

[
λ1U2

11 + λ2U2
21 λ1U11U12 + λ2U21U22

λ1U12U11 + λ2U22U21 λ1U2
12 + λ2U2

22

]
(4.79)

As it is known that the column vectors in ¯̄G(0) are orthogonal and the column vectors of ¯̄U also
are orthogonal. Then when comparing equation 4.72 to 4.79, it becomes obvious that ¯̄G(0) is

given as the eigenvectors of ¯̄Cy4
avg

(0, 0, 0) with some constant that depends on λi and
Cs4

i
Cs2

i

. This

scaling ambiguity ki can be solved by the knowledge that the diagonal of ¯̄H(0) is one. From
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equation 4.45 the relation between ¯̄H(0) and ¯̄T and ¯̄G(0) is as follows:

¯̄H(0) = ¯̄T−1 · ¯̄k · ¯̄G(0) (4.80)[
1 h12

h21 1

]
=

[
T−1

11 T−1
21

T−1
12 T−1

22

]
·

[
k1G11(0) k2G12(0)
k1G21(0) k2G22(0)

]
(4.81)

The scaling can from the diagonal be solved as:

k1 =
1

T−1
11 G11(0) + T−1

21 G21(0)
(4.82)

k2 =
1

T−1
12 G12(0) + T−1

22 G22(0)
(4.83)

The next problem to handle is the shuffling of the eigenvectors from ¯̄Cy4
avg

(0, 0, 0), as there is

no unique way of assigning them to columns of ¯̄G(0). The way they are assigned to ¯̄G(0) is
also dependent on the matrix ¯̄T . Which again is dependent on how the eigenvalues from the
eigenvalue decomposition of ¯̄Cx2(0) is assigned. Giving a total of four different results dependent
on how the eigenvectors are organized from the two eigenvector decompositions. But there is
only one correct organization of the columns of ¯̄G(0), but this cannot be determined, without
knowing something about the filters.

There is therefore two ways of constructing the ¯̄G(0) matrix ( ¯̄G1 and a flipped version ¯̄G2)
as well as two ways of constructing ¯̄T named ( ¯̄T1 and ¯̄T2). The connection between ¯̄G1 and a
flipped version ¯̄G2 is stated in equation 4.84 and 4.85.

¯̄G1 =

[
G11 G12
G21 G22

]
(4.84)

¯̄G2 =

[
G12 G11
G22 G21

]
(4.85)

Also the connection between ¯̄T1 and ¯̄T2 can from equation 4.41 be derived as equation 4.87 and
4.89, that shows what happens if the if the eigenvalues and the eigenvectors are swapped.

¯̄T1 = ¯̄λ
− 1

2
1 ·

¯̄UH
1

=

 1√
λ1

0
0 1√

λ2

 · [ U∗11 U∗21
U∗12 U∗22

]
(4.86)

=


U∗11√
λ1

U∗21√
λ1

U∗12√
λ2

U∗22√
λ2

 =

[
T11 T12
T21 T22

]
(4.87)

¯̄T2 = ¯̄λ
− 1

2
2 ·

¯̄UH
2

=

 1√
λ2

0
0 1√

λ1

 · [ U∗12 U∗22
U∗11 U∗21

]
(4.88)

=


U∗12√
λ2

U∗22√
λ2

U∗11√
λ1

U∗21√
λ1

 =

[
T21 T22
T11 T12

]
(4.89)

The consequence of swapping the eigenvalues and the eigenvectors for ¯̄T is that the rows of ¯̄T are
going to be swapped. If this swapped transformation matrix is applied to x̄(t), it would result
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in the rows of ȳ(t) being swapped as well, effectively swapping y1(t) and y2(t). This swapping of
the output vectors would then result in the two filters in ¯̄H(0) being swapped. So placing the
swapping the eigenvectors in ¯̄T would change the swap the places of H12(0) and H21(0) in the
¯̄H(0) matrix. The last thing to investigate is the effect of the columns of ¯̄G being swapped. As

the effect on ¯̄H is evaluated the first thing is to establish is the inverse of the matrix ¯̄T , which is
derived in equation 4.91.

¯̄T−1
1 =

1
T11T22 − T12T21

[
T22 −T12
−T21 T11

]
(4.90)

=
1

det(T )

[
T22 −T12
−T21 T11

]
(4.91)

Now ¯̄H can be derived using equation 4.80. As there is two different scenarios ( ¯̄G1 and ¯̄G2 ). ¯̄G1
where the columns are not swapped is the first to be evaluated, which is done in equation 4.92
and 4.93.

¯̄T−1
1 ·

¯̄k · ¯̄G1 =
1

det(T )

[
T22 −T12
−T21 T11

]
·

[
k1G11 k2G12
k1G21 k2G22

]
(4.92)

=
1

det(T )

[
k1(T22G11 − T12G21) k2(T22G12 − T12G22)

k1(−T21G11 + T11G21) k2(−T21G12 + T11G22)

]
(4.93)

As the diagonal in ¯̄H(0) is know to be one, k1 and k2 in equation 4.93 are scaled to achieve this.

¯̄H11 =

 1 (T22G12−T12G22)
(−T21G12+T11G22)

(−T21G11+T11G21)
(T22G11−T12G21) 1

 (4.94)

The same procedure is now performed on ¯̄G2 where the columns are swapped.

¯̄T−1
1 ·

¯̄k · ¯̄G2 =
1

det(T )

[
k1(T22G12 − T12G22) k2(T22G11 − T12G21)

k1(−T21G12 + T11G22) k2(−T21G11 + T11G21)

]
(4.95)

Scaling k1 and k2 so there is one on the diagonal gives:

¯̄H12 =

 1 (T22G11−T12G21)
(−T21G11+T11G21)

(−T21G12+T11G22)
(T22G12−T12G22) 1

 (4.96)

Comparing equation 4.96 with equation 4.94, it can be concluded that if the columns of ¯̄G(0)
are swapped the filters in the output are going to be inverted.

The conclusion from the ambiguity when organizing the eigenvalues/eigenvectors is the that
the estimated DC-coefficients for the filters can be swapped with each other and/or inverted,
giving a total of four possible solutions for the DC-coefficient of the filters. If no information
about the DC-coefficients are know priori then there is no way of solving this problem. If how-
ever it is know priori that the DC-coefficient is smaller then one, which would be reasonable to
assume for most channel models, the inversion of the filters can be handled and there is only
two possible solutions. Both solutions could be tried and the one with the lowest correlation
between the two sources would most likely be the correct solution.

If the estimated DC-coefficient for ¯̄H can be assign to a filter it is now possible from equa-
tion 4.30 to estimate the bispectrum of the filters. The last step would therefore be to recover
the filter coefficient from these bispectrum.
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4.2 Reconstruction of the Filter

As the algorithm presented in [8] does not provide the impulse response of filters, but the third
order moment spectrum of the filters, it is necessary to reconstruct the impulse response from
these. In the paper from [8, 520] it is suggested to use an algorithm presented by [4] to derive
this impulse response.

The algorithm in [4] works by reconstructing the phase response and the magnitude response
from third order momentspectrum sepratly. These two estimates are then combined to create the
frequency responce of the filter. The last step is therefor to apply the inverse Fourier Transform
to derive the impulse response of the filter.

4.2.1 Estimation of the Phase Response

The third order moment spectra of the filter can in the frequency domain be calculated as
equation 4.97:

C3H(ω1, ω2) = H(ω1) · H(ω2) · H∗(ω1 + ω2) (4.97)

The derivation of this can be seen in appendix A.3 and appendix A.7.1. Consequently the phase
for the spectrum in equation 4.97 is derived as equation 4.98.

φ3h(ω1, ω2) = φh(ω1) + φh(ω2) − φh(ω1 + ω2) (4.98)

Equation 4.98 can be rewritten to make it into matrix form, but several simplifications are
applied first. First simplification is the first entry of φh (ω = 0) is the DC component and it
would be reasonable to assumed that it has a phase of zero, i.e. φh(0) = 0, and can therfor be
removed. Also all calculations in equation 4.97 where either ω1 or ω2 are zero will result in zero
phase, meaning they can also be removed. Furthermore the symmetry conditions for cumulant
spectras, that also applies to the third order moment spectra, (see appendix A.5 for cumulant
sym. cond.). Allows for the removal of redundant component from the third order moment
spectra reduces the number of entries from φ3h(ω1, ω2) nedded to estimate the original phase. If
it is assumed that the size of the Fourier transform have an even number of frequency bins, i.e.
N is even, and all the simplifications are taken into considerations equation 4.97 can on matrix
form be rewritten as equation 4.99.

φ3h(1, 1)
φ3h(1, 2)
φ3h(1, 3)

...

φ3h(1,N − 1)
φ3h(2, 2)

...

φ3h( N
2 ,N −

N
2 )


=



2 −1 0 0 · · · 0 · · · 0
1 1 −1 0 · · · 0 · · · 0
1 0 1 −1 · · · 0 · · · 0
...

...
...

...
...

...
...

...

1 0 0 0 · · · 0 · · · 1
0 2 0 −1 · · · 0 · · · 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 2 · · · 0


·



φh(1)
φh(2)
φh(3)
φh(4)
...

φh( N
2 )
...

φh(N − 1)


(4.99)

φ̄3h = ¯̄Aφ · φ̄h (4.100)
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To find the phase of the filter (φ̄h). Equation 4.101 provides the optimum solution in the least
square sense for solving the phase of the filter.

φ̄h =
( ¯̄AT

φ
¯̄Aφ

)−1 ¯̄AT
φ · φ̄3h (4.101)

There is however one problem with this approach as principal value of the phase in φ̄h lies in
the interval [−π; π[, then from equation 4.98, the principal value of the phase in φ̄3h must lies
in the interval [−3π; 3π[, but when estimated from the third order moment spectrum, it would
only be in the interval [−π; π[. This means that there is a phase ambiguity in 4.101 that must
be addressed to ensure that the result lies in the [−π; π[ interval, which is done by adding a term
that corrects the phase error in φ̄3h. This corrections is also referred to as phase unwrapping.

φ̄3h + 2π · k̄ = ¯̄Aφ · φ̄h (4.102)

Where:
k̄ ⊂ [−1, 0, 1]

The next step is to determine k̄. This can be done by using the less accurate Bartelt-Lohman-
Wirnitzer algorithm, that does not requires phase unwrapping. Accuracy is however not a
problem as the only interest is to use it to estimate k̄ and this allows an error up to π before
accuracy becomes a problem. Based on equation 4.98 the algorithm is as follows:

φ3h(ω1, ω2) = φh(ω1) + φh(ω2) − φh(ω1 + ω2) (4.103)

By setting ω2 = ω2 − ω1 and ω1 = 1 in equation 4.103 yields:

φ3h(1, ω2 − 1) = φh(1) + φh(ω2 − 1) − φh(ω2) (4.104)

Equation 4.104 can be rewritten to equation 4.106, which is a recursive algorithm for estimating
the phase.

φh(ω2) = φh(1) + φh(ω2 − 1) − φ3h(1, ω2 − 1) (4.105)

Compared to equation 4.98 the algorithm only works on the upper part of the moment spectrum
as ω1 is fixed to one. Assuming that the phase of the first component, φh(1), is equal to zero
equation 4.117 is a matrix solution for determining the phase for φh(2) to φh(N):


φ

upper
3h (1, 1)
φ

upper
3h (1, 2)

...

φ
upper
3h (1, N

2 − 1)

 =


−1 0 · · · 0 0
1 −1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 −1

 ·


ˆ̂φh(2)
ˆ̂φh(3)
...

ˆ̂φh( N
2 )


φ̄

upper
3h = ¯̄Gφ ·

ˆ̄̂
φh

ˆ̄̂
φh = ¯̄G−1

φ · φ̄
upper
3h (4.106)
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The error Eφh(1) introduces in equation 4.106 by assuming that φh(1) = 0 would accumulate over
frequency as defined in equations 4.107 to 4.111.

ˆ̂φh(1) = 0 + Eφh(1) = Eφh(1) (4.107)
ˆ̂φh(2) = ˆ̂φh(1) + ˆ̂φh(1) − φupper

3h (1, 1) = ˆ̂φh(2) + 2 · Eφh(1) (4.108)
ˆ̂φh(3) = ˆ̂φh(1) + ˆ̂φh(2) − φupper

3h (1, 2) = ˆ̂φh(3) + 3 · Eφh(1) (4.109)
ˆ̂φh(4) = ˆ̂φh(1) + ˆ̂φh(3) − φupper

3h (1, 3) = ˆ̂φh(4) + 4 · Eφh(1) (4.110)
...

...
...

ˆ̂φh( N
2 ) = ˆ̂φh(1) + ˆ̂φh( N

2 − 1) − φupper
3h (1, N

2 − 1) = ˆ̂φh( N
2 ) + N

2 · Eφh(1) (4.111)

If it is assumed that the last entry in equation 4.107, consists mainly of the error Eφh(1). Dividing
this entry with 1

N/2 would be a better estimate for the error then setting it is zero, which was
the first assumption. Correcting the error in each step can be using equation 4.112


φ̂h(1)
φ̂h(2)
...

φ̂h( N
2 − 1)

 =


0 0 · · · 0 − 1

N/2
1 0 · · · 0 − 2

N/2
...

...
. . .

...
...

0 0 · · · 1 −
N/2−1

N/2

 ·


ˆ̂φh(2)
ˆ̂φh(3)
...

ˆ̂φh( N
2 )

 (4.112)

ˆ̄φh = ¯̄Fφ ·
ˆ̄̂
φh (4.113)

Combining equations 4.106 and 4.112 the phase response of the filter can be written as:

ˆ̄φh = ¯̄Fφ ·
ˆ̄̂
φh

= ¯̄Fφ ·
¯̄G−1
φ · φ̄

upper
3h

=
[ ¯̄Fφ ·

¯̄G−1
φ

¯̄0
]
· φ̄3h

= ¯̄Dφ · φ̄3h (4.114)

From this estimate it is now possible to estimate the phase of bispectrum in the interval [−3π; 3π[
as opposed to [−π; π[ in equation 4.100. Before solving the least squares solution it is necessary
to estimate k̄ which can be done by rewriting equation 4.102 and inserting the estimate of φ̄h:

ˆ̄k = round

 ¯̄Aφ · ˆ̄φh − φ̄3h

2 · π

 (4.115)

Rounding the right hand side ensures that the elements of ˆ̄k are integers. It is now possible to
determine the phase of the filter with the phase ambiguities resolved using least squares:

φ̄h =
( ¯̄AT

φ
¯̄Aφ

)−1 ¯̄AT
φ ·

(
φ̄3h + 2π · ˆ̄k

)
(4.116)

This concludes the estimation of the phase response, the next step is to estimate the magnitude
response.
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4.2.2 Estimation of the Magnitude Response

The procedure for the magnitude response is more or less the same as for the phase response,
but in order to replace the multiplications in equation 4.97 with additions, the logarithm and
the absolute value is taken on both sides of the equation:

ln |C3h(ω1, ω2)| = ln |H(ω1)| · ln |H(ω2)| · ln
∣∣∣H∗(ω1 + ω2)

∣∣∣
µ3h(ω1, ω2) = µh(ω1) + µh(ω2) + µh(ω1 + ω2) (4.117)

Which can be written in matrix form as in equation 4.100:

µ3h(0, 0)
µ3h(0, 1)
µ3h(0, 2)

...

µ3h(0,N − 1)
µ3h(1, 1)

...

µ3h( N
2 − 1, N

2 − 1)


=



3 0 0 · · · 0 · · · 0
1 2 0 · · · 0 · · · 0
1 0 2 · · · 0 · · · 0
...

...
...

...
...

...
...

1 0 0 · · · 0 · · · 2
0 2 1 · · · 0 · · · 0
...

...
...

...
...

0 0 0 · · · 2 · · · 0


·



µh(0)
µh(1)
µh(2)
...

µh( N
2 − 1)
...

µh(N − 1)


µ̄3h = ¯̄Aµ · µ̄h (4.118)

In the least square sense this can be solved as:

µ̄h =
( ¯̄AT

µ
¯̄Aµ

)−1 ¯̄AT
µ · µ̄3h (4.119)

There is on problem with this approach, if the magnitude of one or more of the elements in
µ̄3h are zero. Taking the logarithm of these entries would result in µh being an infinitely large
negative number. This would dominate the results making the calculation in equation 4.119
problematic.

The solution is to remove the zero elements in µ̄3h and corresponding rows in ¯̄Aµ. By doing
so some columns in ¯̄Aµ may contain only zeros. If this is the case these columns should be
removed, as they no longer have any impact on the calculations. Correspondingly the elements
in µ̄h should be also be removed, but a record should be kept of which columns where removed,
as these removed columns would corresponds to an entry in in the µ̄h that should have been
minus infinite. These entries must be reinserted into µ̄h when the other magnitude values in µ̄h

have been determined. The last step is to reconstruct ˆ̄H by combining the results from equations
4.119 and 4.116 in the following equation:

ˆ̄H = exp ( µ̄h ) · exp
(

j ·φ̄h
)

(4.120)

Now that the it is possible to estimate the filters the system model can be reverted in order to
restore the original source signals.
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Chapter 5

Conclusion

This concludes the theory behind the method presented by [8] for doing the BSS on the TITO
model.

The following steps in the BSS process were identified for the method:

• Estimate the DC-gain of the filters.

• Estimate the bispectrum of the filters using HOS and the DC-gain.

• Estimate the filters from the bispectrum.

• Invert the TITO model using the estimated filters.

The theory behind the steps have been presented in the previous chapters. Only the step to
estimate the DC-gain of the filters, also called the ¯̄H(0) estimation, proved to be troublesome.
The problem stems from the two eigenvalue decompositions that give rise to four different es-
timates of the DC-gain. This can, however, be solved if some prior knowledge about the filters
exist, in particular if the DC-gain is greater or smaller than one and it is known which of the
filters have the largest DC-gain. This problem does not pose a problem for running simulations
as the filters used for the TITO mixing are known in advance.

As the steps needed for doing the BSS have been presented, they are now simulated in order to
verify that the described theory works. This is done in next part, Simulation and Verification
of the Blind Source Separation.
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Part III

Simulation and Verification of the
Blind Source Separation
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Chapter 6

Introduction

This part of the report contains a implementation and simulations of the BSS method for solving
the TITO model described in the previous chapter. The method for doing the BSS was divided
into four parts, the inverse filtering described in section 3, the minimum phase filter estimation
and the non-minimum phase filter estimation both described in section 4. Reverse bispectrum
algorithm in section 4.2 and the ¯̄H(0) estimation in section 4.1.

Figure 6.1 illustrates the different parts of the BSS method for the non-minimum filter estima-
tion. If the same model is used for the minimum phase filter estimation the reverse bispectrum
method must be replaced by an inverse Fourier transform and the non-minimum phase filter
estimation is replaced by the minimum phase filter estimation.

x1(t)

x2(t)

s1(t)

s2(t)

Inverse
Filtering

Reverse
3.order Mo-

mentspectrum

Non-min.
phase Filter
Estimation

¯̄H(0)
Estimation

H12(0) H21(0)

MH3
12

MH3
21

h12 h21

Figure 6.1: Illustration of BSS method presented in the theory section for solving the blind source separation

The model with minimum phase filter can only be accepted if both filters are known to be
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minimum phase, as this cannot be known in advance the non-minimum phase filter model is
the correct one to use. However both the non-minimum phase filter estimation part and the
minimum phase filter estimation part are simulated.

Each individual part in the model are simulated separately in their respectively sections and
the last section is a simulations of the entire model. Some simulations depends on other parts
of the BSS model to be working or at least ideal values to be known, also some of the parts can
further be exploded into subparts like the estimation of the trispectra, which is utilized in both
the ¯̄H(0) estimation and the non-minimum filter estimation.

There are some prerequisites concerning the simulation of the above parts.

First the test signals x1(t) and x2(t) for the model needs to be created, as they are used to
simulate several parts in the BSS model. Except the mixing model.

If ideal estimates of the filters are used for the simulation, the inverse filtering does not re-
quire any of the other parts to be working in order to simulate it. So this can be made as the
second section.

In order to simulate the reverse third order moment spectrum, a third order moment estimator
needs to be constructed in order to create the test vectors for this simulation. The third order
moment estimator also needs to be tested to ensure proper functionality. This can be done by
first implementing the minimum phase filter estimator, which uses the bispectrum (which is the
third order moment spectrum without the mean). So by simulating this in the third section,
functionality of the third order moment estimator can be ensured, and the reverse third order mo-
ment spectrum can simulated in the fourth section. One problem with this approach is that the
minimum phase filter estimator needs an estimation of ¯̄H(0) in order to work proper, but as the
simulations uses known filters, ¯̄H(0) is estimated from them instead of using the ¯̄H(0) estimation.

The fourth section is the Non-minimum phase filter estimation all the prerequisites except the
¯̄H(0) estimation and the trispectrum estimation have been meet. For the simulation an ideal

estimation of ¯̄H(0) can by used again as the filters are known, but the trispectrum estimation
needs to implemented for the simulation.

The fifth and sixth section contain the simulation of ¯̄H(0) estimator and the simulation of the
BSS model.
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Chapter 7

Test Signals

This chapter contains the design and implementation of the test signals that are to be used for
the simulation. The TITO system model that was introduced earlier can be seen in figure 7.1
Equations 7.1 and 7.2 for the mixing the two signals x1(t) and x2(t), from the source signals s1(t)

h12

h21

s1(t)
Σ

+

+ x1(t)

s2(t)
Σ

+

+ x2(t)

Figure 7.1: Two-channel version of the signal model presented in [8].

and s2(t) are the mathematically equivalent to figure 7.1.

x1(t) = s1(t) + h12(t) ∗ s2(t) (7.1)
x2(t) = s2(t) + h12(t) ∗ s1(t) (7.2)

In order to create the test signals x1(t) and x2(t), the only thing missing are the source signals,
as the filters would normally be set for the specific simulation. For most of the simulations
the source signals s1 and s2 are supposed to be random variables. When creating these, there
are some considerations that needs to be addressed concerning the stochastic properties. More
precisely the shape of PDF needs to differ from a normal distribution in certain ways.

If the signal x(t) is the convolution between a filter and a random process s(t) (see equation
7.3) and the random process is white to the fourth order e.g. the spectrum is flat. Then the
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bispectrum and trispectrum of x is described by equation 7.4 and 7.5.

x(t) = h(t) ∗ s(t) (7.3)
Cx3(ω1, ω2) = γ3

s · H(ω1) · H(ω2) · H∗(ω1 + ω2) (7.4)
Cx4(ω1, ω2, ω3) = γ4

s · H(ω1) · H(ω2) · H(ω3) · H∗(ω1 + ω2 + ω3) (7.5)

Where:
γ3

S is the skewness of the random variable s
γ4

S is the kurtosis of the random variable s

The reasoning behind these equations are described in appendix A.7.1). But basically it says the
bispectrum and trispectrum becomes a function of the moment spectrum of the filter multiplied
with a constant that depends on the kurtosis or the skewness of the white random process s.
Therefore it is important that the random process has a skewness or kurtosis that is differs from
zero, as this would result in the entire spectrum being zero.

The skewness and the kurtosis is a measurement of how a much a distribution differs from
a normal Gaussian distribution. This means that as a PDF for the spectrum a normal distribu-
tion cannot be used as it is only white to the second order. For a PDF the random variables needs
a skewness different from zero, e.g. the PDF is not allowed to be symmetric around the mean.
It should also have a kurtosis (peak) that is higher (super Gaussian ) or lower (sub Gaussian)
the a normal distribution. One PDF that would satisfies these two conditions is an exponential
distribution. Further more Matlab own random generator supports this distribution, making it
an obvious choice as a PDF for the random processes s1 and s2.

As the source signals are not always white, the source signals are now colored by filtering it
through an AR(2) process. [8, 523] uses two filters with poles located at -0.2 for s1 and -0.3 for
s2, the same coloring filters are used for the test signal. The transfer function is for the test
signal are shown in equation 7.6 and 7.7

s1(t) =
1

1 + 0.2 · z−1 · f1 (7.6)

s2(t) =
1

1 + 0.3 · z−1 · f2 (7.7)

Where:
f1 is a random variable with a exponential distribution.
f2 is a random variable with a exponential distribution.

Magnitude plots of the filters can be seen figure 7.2.
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Figure 7.2: Ideal power spectra’s of the AR(2) Source Signals

To calculate the convolutions the filter function is used in Matlab. For both the coloring and
the mixing of the signals.

Now that the test signals x1(t) and x2(t) have been created, the next step to make a imple-
mentation of the inverse filtering in order to simulate it. Although the mixing model is still used
for this simulation, other source signals then the ones devised here are used to better illustrated
its functionality. An example file on how the signals are created can be found on the accompa-
nying CD as: /Matlab Code/Source Signals/SourceSignals.m.
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Chapter 8

Inverse Filtering

This chapter contains a simulation of the inverse filtering of the TITO model, the simulation and
implementation are performed in MATLAB. In order to make the inverse filtering the assumption
is that the filters h12 and h21 are known or can be estimated. In section 3 on page 11 the theory
behind the inverse filtration is description. Based on this description the following procedure is
implemented and simulated in MATLAB to evaluate the inverse filtering.

1. The input signals x1 and x2 are divided into frames.

2. The frames are zero padded and time shifted to accommodate non-causal filters.

3. The frames are Fourier transformed via an the fft function in MATLAB.

4. The estimated original signal is restored using the equation 8.1 within a for loop for each
value of ω [

Ŝ 1(ω)
Ŝ 2(ω)

]
=

[
1 H12(ω)

H21(ω) 1

]−1

·

[
X1(ω)
X2(ω)

]
(8.1)

5. The estimated original frames (Ŝ 1(ω) and Ŝ 2(ω)) are inverse Fourier transformed using ifft
in MATLAB

6. The frames are added together with an overlap between the frames corresponding to
amount of zero padding performed in step 2.

The MATLAB implementation of the above step by step instructions can be found on the
accompanying CD in /Matlab Code/Inverse Filtration/invfilt.m. To ensure functionality
the above implementations functionality is simulated in MATLAB using know test signals.

8.1 Simulation of the Inverse Filtering

For the simulations the source signals are changed to square signals instead of using the stochastic
signals as this is not needed. The square signals have the ability to spreads out in frequency
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domain, and makes it easier to verify by plots that the source signals are restored. The mixed
signals are generated using the procedure for the TITO model described in chapter 7, the filters
used for this procedure have the following coefficients:

h12 = [0.3, 0.8, 0.4] (8.2)
h21 = [1, 0.5, 0.2] (8.3)

The zero pole plot of these filters can be seen in figure 8.1

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

2

Real Part

Im
ag

in
ar

y 
P

ar
t

H12 filter

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

2

Real Part

Im
ag

in
ar

y 
P

ar
t

H21 filter

Figure 8.1: Zero pole plot of the filters used for the simulation of the Inverse Filtering Algorithm

From the zero pole plots it can be determined that h12 is a non-minimum phase filter, which
facilitates the need for a delay in the processing according to chapter 3. This delay is created
by using a frame length of 256 data points which is delayed by adding 128 data points to the
header of the frame and 128 data point is added to tail of the frame. This results in a frame
length for the Fourier transform of 512, and a overlap of the processed frames of 50 % .

The result from the simulation can be seen in figure 8.2, where the original signals, the mixed
signals and the demixed signals are displayed.
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Figure 8.2: Demixing of the sources using a squared signals as a source

The error is not noticeable in the plot besides for the first frame and the last frame, which are
missing half of the previous and the next frame so this is expected. Figure 8.3 shows a plot
of the original and the demixed signals in the first column and in the right column the power
difference between the two signals are plotted, to remove the known error the first half and last
half frame is removed.
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Figure 8.3: The original signal and the restored signal from the simulation of the inverse filtering, and the error
between them, with first and last half frame removed

The mean squared error in the frame is mostly below 10−15, which would correspond to a signal
to noise ratio (SNR) of around 150 dB if the power of the signal would be around 1. Actually
calculating the SNR gives a SNR for both channel above 300 dB. Matlab operates internally
with double precision floating points. This means that for each numbers, there are 52 bits to
represent a single value. Rounding errors would occur in last bit and from 52 bits it is possible
to create around 4.5 · 1015 values. This means that from the decimal point eventual rounding
errors would occur at the 53’th bit. In the decimal system the rounding error would similarly
occur at 2−53, which is approximately at 10−16 from the decimal point. If the largest number
processed is at around 100 the signal to numerical noise (SNNR) would be around 320 dB. So
the observed noise can be more or less attributed to numerical noise alone. The SNR is so high
that it does not introduce any problems into the system. So the conclusion of the simulation
is that the functionality of the inverse filtering is acceptable and the noise introduced by the
inverse filtering is neglectable . This concludes the simulation of the inverse filtering, the next
step is to simulate the minimum phase filter estimation.
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Minimum Phase Filter Estimation

Section 4 describes two methods for estimating the filters h12 and h21. One using the bispectrum
and one using the trispectrum, as the method using the bispectrum estimates the powerspectrum
of the filters. It serves as a good starting point as the results would be easy to compare to the
actual powerspectrum of the filters, and the method is appropriate to use if the filters are known
to be minimum phase. As the filter estimation only really consist of an bispectrum estimator and
the ¯̄H(0) estimation as ideal values are used for the ¯̄H(0) estimation. The only thing needed is
an estimator for a bispectrum. Therefore this needs to implemented and simulated in MATLAB
before the minimum phase filter estimation can be simulated.

9.1 Bispectrum Estimation

The bispectrum also know as the third order cumulant spectrum is calculated from the third and
lower order moment spectra’s. Appendix A.3 introduces two methods for estimating a moment
spectra’s, referred to as the direct method and the indirect method. These two methods are
essentially the same as the direct method and the indirect method when estimating a power-
spectrum. The direct method for calculating a powerspectrum is done by taking the Fourier
transform of the signal, and then squaring and taking absolute value. In the indirect method for
calculating a powerspectrum, the autocorrelation is first calculated from the signal and Fourier
transform is taken of the autocorrelation to create the powerspectrum.

For higher order moment spectra the procedure is more or less the same. In the direct method
the first step is to calculate the Fourier transform of the inputs signals and the momentspectrum
is then calculated in the frequency domain using equation A.61 on page 175. In the indirect
method the n-th order moment sequence is first calculated and then a (n-1)th dimensional
Fourier transform is performed on the sequence, which create the n-th order moment spectrum.
Both methods should under the same conditions give the same results, therefore both are going
to be implemented for comparison.

On step that is common for both methods are the moment to cumulant transformation as
described in equation A.55 on page 174. But for the bispectrum estimations, this can be done
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by removing the mean from the input signal and calculating the moment spectrum from these
mean free signals instead. Therefore this becomes the first step for both methods, and the fol-
lowing steps becomes the same as for the moment spectrum estimation.

There is however one problem with both methods. Time frequency uncertainty relations in-
troduces an error in the spectrum when a limited frame length is used. This means that the
results becomes increasingly unreliable, when the frequency goes towards zero. The problem can
be seen directly in the way the bispectrum is calculated in the direct method. Because the mean
is subtracted, before a Fourier transform is performed, the first frequency bin is always zero.
This is of course not true as the n-th order white signal the spectrum should always be flat, but
in order to archive this, the frame length should go towards infinite, which is not possible to
implement.

The solution for the direct method is utilizing a smoothing of the bispectrum and similarly
for the indirect method not to use the entire cumulant sequence, when doing the Fourier trans-
form, thereby creating a smoothing effect.

The steps used to implement the two methods in MATLAB are now presented and the two
methods are then evaluated by simulations.

9.1.1 Direct Method for Estimating the Bispectrum

The direct method used for estimating the bispectrum is based [1, pp 124-127] and appendix
A.3.

1. Remove the mean from the input frame, in order to make the transition from moment
spectra to cumulant bispectra.

2. Calculate the discreet Fourier transform (DFT) off the input frame(s).

X(ω) =

N−1∑
t=0

x(t) · exp
(
−

2π j
N

(tω)
)

(9.1)

If cross spectra’s is calculated, then a DFT is performed for each individual input signal.
MATLAB’s own fast Fourier transform (FFT) function is used to performed the DFT.

3. The bispectrum is calculated from equation 9.2. This is made as a general function,
which assumes that all the input signals differs from each other, effectively giving a cross
bispectrum between three different signals.

Cxzy(ω1, ω2) =
1
N

Y(ω1) · Z(ω2) · X∗(ω1 + ω2) (9.2)

Where:
0 ≤ ω1 ≤ π, 0 ≤ ω2 ≤ π, ω1 + ω2 ≤ π

X(ω) = Y(ω) = Z(ω) = 0|ω>π N is the number of samples in x(t).
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4. The last step is the smoothing of the bispectrum, instead of using equation 9.2 in the
previous step, a smoothed version of the bispectrum using equation 9.3 could be used
instead.

ˆCxyz(ω1, ω2) =
1

(2L + 1)2

L∑
k1=−L

L∑
k1=−L

1
N

Y(ω1 + k1) · Z(ω2 + k2) · X∗(ω1 + ω2 + k1 + k2) (9.3)

Where:
L is the number of samples to smooth over.

The implementation for direct method can be found as a MATLAB file on the accompanying
CD in /Matlab Code/Bispectrum Estimation/bispec2.m.

9.1.2 Indirect method for estimating the bispectrum

This method for estimating bispectrum via the indirect method is based on [1, pp 124-127] and
appendix A.3.

1. Remove the mean from the signal, on which the bispectrum is calculated.

2. Calculate the third order cumulant sequence using equation 9.4

cxyz(τ1, τ2) =
1
N

s2∑
t=s1

x(t) · y(t + τ1) · z(t + τ2) (9.4)

Where:
τ1, τ2 = 0,±1,±2, . . . ,± maximum lag
s1 = max(0,−τ1,−τ2)
s2 = min(N − 1, N − 1 − τ1, N − 1 − τ2 )

The maximum lag depends on the assumed system order of the filters, if no priory knowl-
edge exist this would be the length of the input signals, but then the frequency time
uncertainty relations should be taken into account. In this implementation it would typi-
cally be the maximum length of the filters h12 and h21 that is used.

3. Apply a 2 dimensional window function to the cumulants sequence.
This is partly done in the previous step as the restricting τ has the same effect as not re-
stricting it and applying a rectangular window. From appendix A.6 it is noted that window
functions used differ even for rectangular windows (no window) when n-dimensional FFT’s
(with n higher then two) are used. The window function is implemented as described in
appendix A.6.

4. Zero pad to obtain a appropriate Fourier length.
Certain Fourier lengths makes it possible to make more efficient DFT implementations.
The zero padding makes it possible to archive these efficient DFT’s. Zero padding is
normally done by adding zeros to the end of a sequence. This is however not the correct
method when a cumulant sequence is zero padded. The padding should be done so that
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the point with τ = 0 always stays in the center of the matrix. If the array has an even
number of entires (no exact center) the point with τ = 0 should be offset to τ > 0 side of
the array.

5. Apply a 2 dimensional Fourier transform on the cumulant sequence, using equation 9.5.

Cxyz(ω1, ω2) =
∑
τ1

∑
τ2

cxyz(τ1, τ2) · exp ( j(τ1ω1 + τ2ω2)) (9.5)

Instead of implementing equation 9.5 MATLAB’s own fftn function for an n - dimensional
DFT is used. It is more efficient then doing the above calculation, though it should be
noted that fftn assumes a different arrangement of τ1 and τ2, this is corrected by doing
ifftshift on the cumulant sequence, which rearranges the array before the n - dimensional
DFT is applied.

The indirect method can be found as a Matlab m-file on the accompanying CD in /Matlab
Code/Bispectrum Estimation/bispec.m, also a Matlab function that constructs up to three
dimensional window functions is located in /Matlab Code/Bispectrum Estimation/window.m.

Now that the two methods for estimation a bispectrum have been presented, their function-
ality needs to be verified by a MATLAB simulation using know test signals. The first thing
to verify is equality between the direct and indirect method. If the two methods gives similar
results, under the same conditions it does not matter from a functional point, which of the
two methods are used. Therefore it becomes a matter of execution speed when selecting which
method to use.

In chapter 16.2 on page 90 the complexity of the above implementations are listed. As the
filter length is known and is smaller then the length of the signals, then from an execution time
perspective, it would makes most sense to use the indirect method for the simulations, however
both methods are intially simulated to see how they performe.

9.1.3 Simulations of the bispectrum estimators

The first thing to establish is equality between the two methods under the same conditions,
meaning no smoothing. This is done be providing the same test signal to both methods and
comparing the output. If a test vector of length n is used, the maximum number of lags for the
cumulant sequence would contain (2n− 1) times (2n− 1) values. The resulting bispectrum would
contain the same, as both methods are used without smoothing the smoothing parameter in the
direct method is set to 0, so no smoothing is performed.

As the three input vectors a random signal with a exponential distribution is used with a length
of 40 samples. No window function is used so not to interfere with the results and the length of
the Fourier transform should be twice the size of the signal length in each dimension, resulting
in a matrix of size 80x80. The two resulting bispectra’s are compared by calculating the mean
square error (MSE) between the two bispectra’s. This term is used loosely as it is not an actual
error but a difference between the two methods. To calculate the actual MSE one would need
to know the correct bispectrum, without using either of the two preseneted methods. Equation
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9.6 is used to calculate the MSE between the two methods.

MS E =
∑
ω1

∑
ω2

∣∣∣∣∣(CDM
x4 (ω1, ω2) −CIDM

x4 (ω1, ω2)
)2

∣∣∣∣∣ (9.6)

where:
DM is the direct method.
IDM is the indirect method.

To get a better estimate of the difference between the two methods the above simulation is
repeated 100 times and the averaged MSE of these simulations is calculated. The test file can
be found on the accompanying CD as /Matlab Code/Bispectrum Estimation/test2.m

The resulting MSE from the simulation is approximately 3.6 · 10−33 giving a SNR of around
330 dB. Previously the SNNR was established to be around 320 dB Considering the low value
of MSE and that it is below eventual rounding errors, it can be concluded that the two methods
give the same results under the same conditions.

Previously it was noted that of the two methods the indirect method is the fastest, if the
filter length is small compared to the dataset size. Normally large datasets from a stochastic
source is desired as averaging over the results gives better estimates. To test the functionality of
the indirect method a stochastic source Y that is white to the third order is put trough a filter
H, which should give a bispectrum described by equation 9.7.

Cx3(ω1, ω2) = γ3
Y · H(ω1) · H(ω2) · H∗(ω1 + ω2) (9.7)

Where:
γ3

Y is the skewness of the stochastic source Y

The stochastic source Y is generated as described in chapter 7, but the signal is not colored, so it
remains n-th order white. The bispectrum of x is then evaluated at Cx3(ω1, 0), which should be
the same as the powerspectrum of the filter multiplied with the DC- amplification (H(0)) of the
filter and the skewness of the random variable Y. The filter H used for the test has the following
coefficients:

h(t) = [1, .5, .2] (9.8)

For the simulation the length of the stochastic source Y is 4000 samples and τ1 ,τ2 is varied
between ±9 in order to create the smoothing. In order to make it easier to plot the resulting, the
cumulant sequence is zero padded to archive a Fourier length of 24. Also the resulting estimation
of the power spectrum of the filters is averaged over 100 Monte Carlo simulations to get a better
result. The results from this simulation is illustrated in figure 9.1, where both the estimated
and the ideal power spectra’s are scaled so that the largest value equals one.
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Figure 9.1: (a)Standard deviation and mean estimation for a low pass filters magnitude and phase response using
100 Monte Carlo simulations. (b) plot of the 100 estimations

The mean estimation of the filter over 100 simulations is rather close to the original. On plot
(b) it can be seen that the variance decreases towards π, which is expected because of the before
mentioned time frequency uncertainty. The phase show one thing of interest the system has a
linear phase, as the powerspectrum should not contain any phase information, this is also what
was expected. The test file for the simulation can be found on the accompanying CD as /Matlab
Code/Bispectrum Estimation/test1.m

The same test is now performed using the direct method. The frame length is 128 samples
and smoothing is performed over ±10 samples and the averaging is also performed over 100
simulations. The test file can be found on the accompanying CD as /Matlab Code/Bispectrum
Estimation/test5.m. The simulation results can be seen in figure 9.2.
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Figure 9.2: (a) Mean estimation of a low pass filters magnitude and phase response. The direct method is used
for the estimation and it is averaged over 100 Monte Carlo simulations. (b) Plot of the 100 estimations
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From figure 9.2 (b) it is clear that the variance is rather high compared to the indirect method.
This actually means that some averaging over multiple frames is necessary in order to get a
reasonable result. But it should be noted that the dataset used for the estimation in the direct
method is around 30 times smaller, then the dataset used for the direct method. The phase
estimation is very close to a linear phase, which again is expected. But the magnitude plot has
discontinuity at around pi/6, which is caused by the smoothing function. Because of the time
frequency uncertainty the magnitude would drop rather steep to zero when the frequency goes
towards zero. If a smoothing is performed, then this sudden drop would be seen somewhere else
on curve, which is what is seen in figure 9.2(a). Besides this jump the magnitude plot is rather
close to the original and would pass as being acceptable.

The smoothing that is performed in the direct method is actually a 2 dimensional convolu-
tion with rectangular box. Instead of a rectangular box another 2 dimensional window could
be used, this would give smoother transitions and eliminate the sudden drop in the magnitude,
that was seen before. In figure 9.3 the simulations is performed again. But instead of doing
the smoothing the bispectrum is convolved with a two dimensional Parzen window and a two
dimensional optimum window. Constructing these windows are done the same ways as the win-
dows for the indirect method are construceted, which is described in appendix A.6. The test file
can be found on the accompanying CD as /Matlab Code/Bispectrum Estimation/test4.m.
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Figure 9.3: (a) Mean estimation of a low pass filters magnitude when the bispectrum is smoothed with a Parzen
window (a) and a optimum window(b)

Using a Parzen window in figure 9.3 (a) removes the little jump in magnitude that was seen in
figure 9.2 but the overall magnitude estimation became worse. If the optimum window is used
the the overall estimation is better then with the Parzen window but not as good as with the
original smoothing function. However the small jump that was seen in the original method is
gone, instead it transformed to a gentle bump instead.

As both methods have until now only been tested with a low pass filter, which is particular
troublesome, because of the time frequency uncertainty. The same simulations as before are
now repeated with a high pass filter with filter coefficients h(t) = [1,−.9, .14]. The resulting
power spectra for the indirect method can be seen in figure 9.4.
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Figure 9.4: Indirect method for estimating the powerspectrum of a high pass filter via the bispectrum. Figure (a)
displays the standard deviation and mean estimation of the magnitude and the phase response using 100 Monte
Carlo simulations. Figure (b) shows the results of each of 100 simulations for estimating the magnitude.

In figure 9.4 (a) The resulting magnitude spectrum estimating the filter is still acceptable and
the phase is still linear. On plot of the 100 simulations (b) it can be seen that the deviation
around π is smaller then it was for 0 in the low pass filter. This is expected as the frequency time
uncertainty makes it easier to estimate high frequencies then low frequencies, when a limited
frame length is used.

The results for performing the same test with the direct method can be seen in figure 9.5,
where a optimum 2 dimensional window of size ±10(a) and ±15(b) is used for the smoothing
and 128 samples is used for the frame length.
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Figure 9.5: Mean estimation of a high pass filters magnitude when the bispectrum is smoothed with an optimum
window of size ±10(a) and ±15(b)

With a smoothing of ±10 the results are acceptable, but there is a bump around 6
8 pi. If the
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smoothing is increased to ±15 samples this bump disappears, at the cost of less precise, when
estimating the lower frequencies. Until now the indirect method has proves superior to the
direct method, but what happens if the indirect method is moved closer to the direct method
by increased τ to ± 32 and ± 16 and decreasing the frame size to 256 samples. The plots of this
can be seen in figure 9.6, where the low pass filter used is the one from equation 9.8 and the
results are averaged over 100 simulations.
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Figure 9.6: Mean estimation of a low pass filters magnitude using the indirect method with lags at ±32(a) and
±16(b)

From these plots it becomes clear that the indirect method suffers, when the lags moves closer to
the frame length. The Matlab files for performing the above simulations for the indirect method,
can be found on the CD as /Matlab Code/Bispectrum Estimation/test1.m.

In this section several simulations for estimating a powerspectrum of a know filter from the
bispectrum was performed. Two methods where presented for estimating a bispectrum, the
direct method and the indirect method. Both methods where capable of giving good estimates
of the powerspectrum, however one ting became clear. The direct method gives the best re-
sults with a relative long filter compared to the frame length and the indirect method gives the
best results with a short filter length compared to the frame length. Also regarding execution
time the same patter emerges short filter compared to the frames the indirect method is the
most efficient and for a long filter compared to the frames the direct method is the most efficient.

Both methods give the same result, if they are performed under the same conditions (no smooth-
ing), only confirming with the theory in appendix A.3 proved. As the succeeding simulations
are performed on relative short filters, the prudent choice is to use the indirect method for esti-
mation of the filters, as it does give the best results. However this choice has to be reevaluated
in the implementation part, when other parameters becomes an issue.
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9.2 Simulation of Minimum Phase System Identification

Now that a working bispectrum estimator has been implemented in the previous sections, it is
possible, from equation 4.31 and 4.32 on page 22, to estimated the h12 and h21 filters in the
TITO system model, if these filters are minimum phase filters. The equations are listed again
in equation 9.9 and 9.10.

Ch2
12

(ω1) =
Cx2

1 x1
(ω1, 0) − H21(0) ·Cx3

1
(ω1, 0)

Cx3
2
(ω1, 0) − H21(0) ·Cx2

2 x2
(ω1, 0)

(9.9)

Ch2
21

(ω1) =
Cx2

2 x1
(ω1, 0) − H12(0) ·Cx3

2
(ω1, 0)

Cx3
1
(ω1, 0) − H12(0) ·Cx2

1 x2
(ω1, 0)

(9.10)

The above functions are implemented in a for loop for all values of ω. The H12(0) and H21(0)
values are calculted from the known filters, so ideal values are used here. The simulation is
performed using the test signal that was constructed in section 7 and the source signals are now
coloured also described in this section. The filters used for the simulation are listen in equation
9.11 and 9.12

h12 = [1,−.9, .14] (9.11)
h21 = [1, .5, .2] (9.12)

A zero pole plot of these filters can be seen in figure 9.7, and they are both minimum phase.
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Figure 9.7: Zero Pole plots of the filters

To estimate the bispectrum the indirect method described earlier is used with a τ1 and a τ2 that
varies between ±9 and a frame size of 4000 samples. The cumulant sequence is zero padded up
to a length of 24 samples, resulting in a powerspectrum estimatio of the filters that is 24 values
long. For the first simulation no window function, other then the one created from the restricted
lags, is used.

The estimated filters and the true powerspectrum as well as the phase estimation from the
first simulation can be seen in figure 9.8.

The estimation of the powerspectrum in the above plot (a) are not as good as the ones performed
in the previous section. It should however be noted that the source signals in those plots where
white, and in these plot they are coloured, which will affect the estimations. In figure 9.8 (c)
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Figure 9.8: (a) Magnitude Estimation of the two filters, (b)Phase Estimation of the two filters and (c) the 100
estimations

where the 100 estimations of the filters are plotted, there are some large outliers in the plots
and these would also affect the spectrum estimation. One way of removing these outliers could
be by removing filter estimation with large power compared to the other estimations. Another
way is to try using another window functions in the bispectrum estimation.

The simulations is performed again with a Parzen and optimum window to see if this helps,
the phase estimation is dropped as it does not provide any useful information anyway other
than the phase is mostly linear, which it should be.

The outliers becomes smaller when the two other windows are used. But the magnitude esti-
mation of the filters is not acceptable for the Parzen Window, the optimum window however
produces the best results so far. This means that the filter estimation performs best with an
optimum window. As the minimum phase estimation of the TITO model is acceptable, moving
on to the non-minimum phase estimation would be the next step. However the reverse third
order moment spectrum needs to implemented and simulated before this is possible.
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Figure 9.9: Magnitude Estimation of the two filters using (a) an Parzen window and (b) an optimum window.
The 100 estimations of the filters using (c) an Parzen window and (d) an optimum window
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Chapter 10

Reverse Third Order Moment
Spectrum

The non-minimum filter estimation that is simulated in the next section gives the third order
moment spectrum of the filters, but in order to use the results a reverse third order moment
spectrum estimator is needed, to recreate the filters correctly if they are non-minimum phase.
This method takes a moment spectrum and converts it back into the Fourier transform of the
original signal, though with a phase and magnitude ambiguity, that needs to be addressed.

As described in the theory in section 4.2 the Fourier transform of the filter is estimated by
reconstructing the phase and the magnitude from the bispectrum of the signal. This done in
two separate operations in the theory section, therefore this is also implemented as two separate
operations in the implementation. The first step is to estimate the original phase of the filter.

10.1 Estimating the Phase Response of the Filter

The step for estimating the phase response is as follows:

1. Construct the ¯̄Aφ matrix as described in equation 4.100 on page 29. The size of the matrix
depends on the dimension of the moment spectrum. If this is NxN the dimension of ¯̄Aφ is

(N − 1)x
(N

2

)2
if N is even and (N − 1)x

(N − 1)(N + 1)
4

if N is uneven.

2. Construct the φ̄3h vector containing the phase information from the bispectrum as de-

scribed in equation 4.100 on page 29.. The length of φ̄3h vector is
(N

2

)2
if N is even. If

the matrix size is uneven the length is
(N − 1)(N + 1)

4
. To determine the phase the angle

function from Matlab is used on the complex valued entries in the moment spectrum.

3. Determine the phase ambiguity k̂ by doing the following:

• Constructing the matrix ¯̄Gφ as defined in equation 4.106.
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• Constructing the matrix ¯̄Fφ as defined in equation 4.112.

• Calculate the matrix ¯̄Dφ from equation 10.1:

¯̄Dφ =
[ ¯̄Fφ ·

¯̄G−1
φ

¯̄0
]

(10.1)

• From matrix ¯̄Dφ and the φ̄3h it is possible to make an estimate of k̂ using equation
10.2

ˆ̄k = round

 ¯̄Aφ · ¯̄Dφ · φ̄3h − φ̄3h

2 · π

 (10.2)

The result of this is rounded using Matlab round function in order to round to the
nearest integer.

4. Determine the phase of the filter using equation 10.3

φ̄h =
( ¯̄AT

φ
¯̄Aφ

)−1 ¯̄AT
φ ·

(
φ̄3h + 2π · ˆ̄k

)
(10.3)

10.2 Estimating the Magnitude Response of the filter

After the phase is established, the magnitude also needs to be established as well. The procedure
is a little different from the phase estimation as the logarithm must be taken of the bispectrum
as described on page 32. This means that if an entry in the bispectrum has a magnitude of zero,
the resulting value becomes minus infinite. This is bad for the magnitude estimation as all the
values then becomes minus infinite and it not possible to get meaningful results. Therefore any
zeros needs to be handled, which is described in following step for calculating the magnitude.

1. Construct the matrix ¯̄Aµ as described in equation 4.118 on page 32. The dimensions of the

matrix is (N)x
N2 + 2 · N

4
if N is even and (N − 1)x

(N − 1)(N + 1) + 2 · N
4

if N is uneven.

2. Construct the magnitude vector µ̄3h as described in equation 4.118 on page 32. The length

of the vector is
N2 + 2 · N

4
if N is even and

(N − 1)(N + 1) + 2 · N
4

if N is uneven.

3. Take the logarithm of the µ̄3h vector.

4. Copy the µ̄3h magnitude vector into a new vector µ̄3hredux and remove any entries with
negative overflow in the new vector. At the same time create a vector ȳy of ones the same
length as µ̄3h, and negate the current entry to zero each time a entry in µ̄3hredux is removed.

5. The vector ȳy is element wise multiplied with the rows in the matrix ¯̄Aµ. After this the
matrix pruned by remove any columns and rows which sum is zero.

6. Calculate the magnitude response of the filter using least squares as in equation 10.4

µ̄h =
( ¯̄AT

µ
¯̄Aµ

)−1 ¯̄AT
µ · µ̄3hredux (10.4)
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7. Reinsert the missing entries in µ̄h by determining rows in the original (before the pruning)
¯̄Aµ matrix, which sum is zero. The value of the these entries should be negative overflow.

Now that the magnitude and frequency response of the filter have been estimated the last step
is to calculate the Fourier transform of the filter by using equation 10.5.

ˆ̄H(ω) = exp
(
ˆ̄µh

)
· exp

(
j · φ̄h

)
(10.5)

The implementation in MATLAB can be found on the accompanying CD in /Matlab Code/Trispec-
trum Estimation/revbispec.m as an m-file.

10.3 Simulation of the Reverse Third Order Moment Spectrum

This section contains the simulation of the reverse third order moment spectrum which MAT-
LAB is described in the previous section. For this simulation the direct method for creating
a bispectrum that is implemented in section 9.1 is used. However the first step in the direct
method, where the mean is subtracted, is removed from the implementation in order to create
the third order moment spectrum instead of the bispectra. The test consist of creating a third
order moment spectra from a test signal and then using the reverse bispectrum implementation
to recreate this test signal again.

As the input signal does not need a to be a stochastic signal, the input signal is are created
by using the rand function in MATLAB which is taken from a normal distribution, this would
normally be a bad thing as the trispectrum ideally would be zero for this distribution, but as the
input signal used is short chances are that distribution is completly Gaussian for this short se-
quence. A length of 64 samples for the input signal is found to have an acceptable execution time.

The MSE between the input signal and the estimated input signal is calculated and this is
repeated 1000 time with different input signals and the mean MSE of these runs is calculated.
One thing that the test must be able to handle is a circular shift and scaling of the estimated test
signal, this is handled by scaling the largest value in the both the test vector and the estimated
test signal to one and shifting the largest value to the first position in the array. The test m-file
can be found in /Matlab Code/Trispectrum Estimation/RevTest.m.

The resulting MSE from the simulation using a random is 1.7728 · 10−30, which gives a in-
troduces noise around 300 dB. In order to test the ability to handle zeros in the bispectrum.
The random input signal is replaced with a sinus function, and the test file is simulated again.
The resulting MSE goes up a little to 2.9451 · 10−29, with a SNR of around 290 dB. Figure 10.1
show a plot of one of the input signal and the reverse estimation of the input signal for both the
random input vector and the sinus function.

In general the SNR is high regardless if random or sinus signals are used for the reverse third
order moment spectrum. Numerical noise would be around 320 dB so the noise in the algorithm
is not only numerical noise, however it is still so low that it is deemed to have acceptable results.
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Figure 10.1: Plot of input signal and the estimated input signal, when the bispectrum is calculated for the input
signal and the reverse operation is performed, (a) is with sinus input vector, (b) is with random input vector
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Chapter 11

Non-minimum Phase Filter
Estimation

As it is possible to estimate the filters as minimum phase filters and recreate the filters in the
Fourier domain via reverse third order moment spectrum. All the prerequisites for doing the
non-minimum phase filter estimation have been meet. The only thing missing in order to perform
the non-minimum phase filter estimation described by equation 4.29 and 4.30 on page 22, is a
trispectrum estimator. This need to implemented and simulated before the non-minimum phase
filter estimation can be simulated.

11.1 Trispectrum Estimation

This section is the implementation and simulation of a trispectrum estimator in MATLAB. As
a bispectrum estimator already have been and simulated must of the most of the step is merely
a matter of extending the bispectrum estimator with an additional vector. The only real dif-
ference comes form the moment to cumulant transformation, for the bispectrum estimator this
could be done removing the mean from the input vectors. This is however not that simple when
working with the trispectrum, as this transformation is only defined in the ”time” domain. This
present a problem for the direct method as the fourth order moment spectrum must be inverse
three dimensional Fourier transformed into the ”time” domain. Then the moment to cumulant
transformation can be performed and the result must be transformed into the frequency domain
again with a three dimensional Fourier transform. This is very cumbersome as the advantage
with direct approach was that everything could more or less be done in the frequency domain.

The equation for the doing the moment to cumulant transformation for the fourth order is
listed as equation A.56 in appendix A.1.8 on page 174. This equation is listed again in equation
11.1, the transformation is for zero mean signals, so the mean should still be subtracted from the
input signals. If this moment to cumulant transformation could be performed in the frequency
domain, the two consecutive cubic Fourier transformations would be avoided.
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cx y z w(τ1, τ2, τ3) = mx y z w(τ1, τ2, τ3) − mx y(τ1) · mz w(τ3 − τ2)

−mx z(τ2) · my w(τ3 − τ1) − mx w(τ3) · my z(τ2 − τ1) (11.1)

If an Fourier transform is applied to equation 11.1, it would result in equation 11.2

Cx y z w(ω1, ω2, ω3) = Mx y z w(ω1, ω2, ω3)

−F
[
mx y(τ1) · mz w(τ3 − τ2)

]
−F

[
mx z(τ2) · my w(τ3 − τ1)

]
−F

[
mx w(τ3) · my z(τ2 − τ1)

]
(11.2)

This removes the necessity for the inverse cubic Fourier transforms but the number of cubic
Fourier transforms has risen to three. Equation 11.2 can be further reduced as in equation 11.3

Cx y z w(ω1, ω2, ω3) = Mx y z w(ω1, ω2, ω3)

−Mx y(ω1) ∗F
[
mz w(τ3 − τ2)

]
−Mx z(ω2) ∗F

[
my w(τ3 − τ1)

]
−Mx w(ω3) ∗F

[
my z(τ2 − τ1)

]
(11.3)

Already a reduction of the complexity has been achieved as the Fourier transform has gone from
3 dimensions to 2 dimensions and removing the need for a inverse Fourier transform. This new
method is implemented into the direct method for doing the bispectra and the method is also
extended to include one additional input signal.

11.1.1 Direct Method for Estimating the Trispectrum

The direct method used for estimating the trispectrum is based [1, pp 124-127] and appendix
A.3.

1. Remove the mean from the input frames, in order to make part of the transition from
moments to cumulants.

2. Calculate the discreet Fourier transform (DFT) off the input frames.

X(ω) =

N−1∑
t=0

x(t) · exp
(
−

2π j
N

(tω)
)

(11.4)

If cross spectra’s is calculated, then a DFT is performed for each individual input signal.

3. The trispectrum is calculated from equation 11.5. As this is made as a general function
it is assumed that all the input signals differs from each other. Effectively giving a cross
trispectrum between four different signals.

Mxzyw(ω1, ω2, ω3) =
1
N

Y(ω1) · Z(ω2) ·W(ω3) · X∗(ω1 + ω2 + ω3) (11.5)

Where:
0 ≤ ω1 ≤ π, 0 ≤ ω2 ≤ π, ω1 + ω2 ≤ π

X(ω) = Y(ω) = Z(ω) = W(ω) = 0|ω>π N is the length of the frames.
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4. Make the moment to cumulant transformation as described by equation 11.3.

5. The last step is the smoothing of the spectrum using equation 11.6.

Ĉxyz(ω1, ω2) =
1

(2L + 1)3

L∑
k1=−L

L∑
k2=−L

L∑
k3=−L

Mxzyw(ω1 + k1, ω2 + k2, ω3 + k3) (11.6)

Where:
L is the number of samples to smooth over.

As shown in the bispectrum estimation simulations, the last step can be replaced by 3
dimensional convolution with a window instead.

An implementation of direct method can be found as a Matlab on the accompanying CD in
/Matlab Code/Trispectrum Estimation/trispec2.m.

11.1.2 Indirect method for estimating the trispectrum

This method for estimating trispectrum via the indirect method is also based on [1, pp 124-127]
and appendix A.3.

1. Remove the mean from the input vectors.

2. Calculate the fourth order moment sequence using equation 11.7

cxyzw(τ1, τ2, τ3) =
1
N

s2∑
t=s1

x(t) · y(t + τ1) · z(t + τ2) · w(t + τ3) (11.7)

Where:
τ1, τ2, τ3 = 0,±1,±2, . . . ,± maximum lag
s1 = max(0,−τ1,−τ2,−τ3)
s2 = min(N − 1, N − 1 − τ1, N − 1 − τ2 N − 1 − τ3 )

3. Apply the moment to cumulant transformation described by equation 11.1.

4. Apply a 3 dimensional window function to the cumulants sequence.
Agian this is already done partly by using a limited range for τ, however the simulations of
the minimum phase filter estimation showed better performance when using an optimum
window.

5. Zero pad to obtain a appropriate Fourier length.
Certain Fourier lengths makes it possible to make more efficient DFT implementations.
Zero padding is normally done by adding zeros to its ends, this is however not the approach,
when a cumulant sequence is zero padded. The padding should be done so that that the
point with τ = 0 always stays in the center of the matrix. If the array has an even number
of entires (no exact center) the point with τ = 0 should be offset to τ > 0 side of the array.
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6. Apply a three dimensional Fourier transform on the cumulant sequence, using equation
11.8.

Cxyzw(ω1, ω2, ω3) =
∑
τ1

∑
τ2

∑
τ3

cxyz(τ1, τ2) · exp ( j(τ1ω1 + τ2ω2)) (11.8)

Where:
τ1, τ2 = 0,±1,±2, . . . ,± number of filter coefficients

Instead of implementing equation 9.5 MATLAB’s own fftn function for an n - dimen-
sional DFT is used. It is more efficient then doing the above calculation, though it should
be noted that fftn assumes a different arrangement of τ1, τ2 and τ3, this is corrected by
doing ifftshift on the cumulant sequence, which rearranges the array before the three
dimensional DFT is applied.

The indirect method can be found as a Matlab m-file on the accompanying CD in /Matlab
Code/Trispectrum Estimation/trispec.m. Also a Matlab function that constructs the three
dimensional window functions is located on the CD in /Matlab Code/Trispectrum Estima-
tion/window.m.

Equality between the two methods was shown in bispectrum estimator, this will not be simulated
for the trispectrum estimator. The focus would only be on the indirect trispectra estimators
ability to estimate a filter.

11.2 Simulation of the Trispectrum Estimator

A similar equation as 9.7 for the bispectrum can be made for the trispectrum, when a stochastic
signal is sent through a know filter.

Cx4(ω1, ω2, ω3) = γ4
Y · H(ω1) · H(ω2) · H(ω3) · H∗(ω1 + ω2+, ω3) (11.9)

Where:
γ4

Y is the kurtosis of the random variable Y
x is the stochastic signal y convolved with the filter h
H is Fourier transform of a filter h

If the following vector in the trispectrum in equation (see 11.10) is evaluted it, it would contains
the powerspectrum scaled by a factor of H(0)2.

Cx4(ω1, 0, 0) = γ4
Y · H(ω1) · H(0)2 · H∗(ω1) (11.10)

This makes it possible to compare this vector from the trispectrum to the actual powerspectrum
of the filter to ensure the functionality of the trispectrum estimator. The filter used for simulation
is listed in equation 11.11

h(t) = [1, .5, .2] (11.11)

As the result is evaluated as a powerspectrum, no non-minimum phase filters are used for the test.
The signal Y is a stochastic signal with a exponential distribution as in the previous simulations.
Lags are varied over ±9 and an 24 frequency bins are calculated. The resulting powerspectrum is
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averaged over 100 simulations and the mean for the magnitude and phase of the estimated filter
is plotted in figure 11.1. Please note that the two results, the ideal and estimated are scaled to
each other. The MATLAB file for the simulation can be found in /Matlab Code/Trispectrum
Estimation/tritest2.m
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Figure 11.1: (a)Mean estimation for a high pass filters magnitude and phase response using 100 Monte Carlo
simulations (b) The 100 simulations

The magnitude plots are not as good as they where in the bispectra estimation. This is somewhat
expected as an additional dimension is added, without it providing anything useful and it can
be seen from plot (b), that the variance have also risen. But the result is acceptable. Therefore
it is possible to proceed with the non-minimum phase filter estimation.

11.3 Simulation of the Non-Minimum Phase Filter Estimation

From chapter 4 it was found the third order momentspectrum of the filters in the TITO system
model could be solved using equations 11.12 and 11.13.

Mh3
12

(ω1, ω2) =
Cx3

1 x2
(ω1, ω2, 0) − H21(0) ·Cx4

1
(ω1, ω2, 0)

Cx4
2
(ω1, ω2, 0) − H21(0) ·Cx3

2 x1
(ω1, ω2, 0)

(11.12)

Mh3
21

(ω1, ω2) =
Cx3

2 x1
(ω1, ω2, 0) − H12(0) ·Cx4

2
(ω1, ω2, 0)

Cx4
1
(ω1, ω2, 0) − H12(0) ·Cx3

1 x2
(ω1, ω2, 0)

(11.13)

As the reverse third order moment spectrum has been simulated and found working and the
trispectrum estimator was simulated in the previous chapter and found acceptable. The only
thing missing in the equations are estimates of H12(0) and H21(0). But as known filters are used
in this simulation ideal estimates are instead. The equations 11.12 and 11.13 are implemented
in MATLAB as two for loops, where the third order moment spectrum of the filter is calculated
for each frequency bin.
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For this simulation the filters stated in equation 11.14 and 11.15 are used.

h12 = [.3, .8, .4] (11.14)
h21 = [1, .5, .2] (11.15)

Their zero pole plots of the filters can be seen in figure 11.2. And from this it is obvious that
h12 is an non-minimum phase filter, because of the pole located outside the unit circle. The test
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Figure 11.2: Zero Pole plot of the two filters used for the test.

signals are constructed as described in chapter 7 and the indirect method is used to estimated
the trispectrum. An optimum window is used, as the results from the minimum phase filter es-
timation showed better performance when using it. The amount of lags used in the trispectrum
method ranges from ±8 and the number frequency bins used is 20. The test-file can be found on
the CD as /Matlab Code/Trispectrum Estimation/tritest1.m. The original and estimated
filter coefficient, and their phase are illustrated in figure 9.8.
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Figure 11.3: Result of the filter estimation.

The above plots of the estimation of the filter coefficients are deemed acceptable for the minimum
phase filter h21. The phase results would be ignored as one of the priory knowledges about the
model is that only real filters are used. The filter coefficients for the non-minimum phase filter
h12 is not as good. But would pass if the filter order is known to be 3. The last thing to simulate,
before the final simulation of the whole BSS is the estimation of the DC-amplification in the
filters the ¯̄H(0) estimation.
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Chapter 12

H(0) Estimation

This chapter contains an simulation of the ¯̄H(0) estimation. The simulation is performed in
MATLAB and the consequent MATLAB implementation is based on the theory presented in
section 4.1. The ¯̄H(0) estimation presented in chapter 4.1 can be divided into the part which are
shown in figure 12.1

Create Power
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Trispectrum

Eigenvalue
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×

×

x̄(t) ¯̄Cx2(0)

¯̄T
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¯̄Cy4
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(0, 0, 0)

¯̄G(0)

¯̄T−1

¯̄H(0)

Figure 12.1: Illustration of mathematical model for solving the ¯̄H(0) estimation

There are some inherent problem with the first step. The first problem is that the values in the
¯̄Cx(0) matrix are always close to or zero as the mean is subtracted before the power spectrum is

calculated, this is related to the frequency time uncertainty that have been mentioned before.
The second problem is that the eigenvalue decomposition of ¯̄Cx(0) will always give only one
eigenvalue, regardless if ¯̄Cx(1) or ¯̄Cx(2) etc. is used. Making it impossible to make the transfor-
mation matrix ¯̄T .
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The prof of the second problem is shown in equations 12.1 to 12.5

¯̄Cx(ω) =

[
X∗1(ω) · X1(ω) X∗2(ω) · X1(ω)
X∗1(ω) · X2(ω) X∗2(ω) · X2(ω)

]
(12.1)

Eigen( ¯̄Cx) ⇒ det
[

X∗1 · X1 − λ X∗2 · X1
X∗1 · X2 X∗2 · X2 − λ

]
= 0 (12.2)

0 =
(
X∗1 · X1 − λ

)
·
(
X∗2 · X2 − λ

)
−

(
X∗2 · X1

)
·
(
X∗1 · X2

)
(12.3)

0 = λ2 − λ ·
(
X∗1 · X1 + X∗2 · X2

)
(12.4)

λ = X∗1(ω) · X1(ω) + X∗2(ω) · X2(ω) (12.5)

In order to circumvent the first problem another frequency component that is close to the ”DC”-
frequency is used instead. The assumption is that the power level would also be close to that of
the frequency bin representing DC. The amount the frequency component should be shifted is
assess to be five frequency bins when a frame of 4000 samples are used for the powerspectrum.

To circumvent the second problem of one eigenvalue, it is necessary to averaged over several
¯̄Cx(0) estimations, to make a good eigenvalue decomposition. This averaging is also performed

for ¯̄Cy4
avg

(0, 0, 0) in order to improve this eigenvalue decomposition as well. From these con-
siderations and the figure 12.1 the MATLAB implementation is implemented in the following
steps:

1. Create the power and cross -Spectrum matrix ¯̄Cx(4) for 100 frames and calculate the
averaged ˆ̄̄Cx(4)

2. Make an eigenvalue decomposition of ˆ̄̄Cx(4), this is done using MATLAB own functions for
doing a eigenvalue decomposition.

3. Create the Transformation matrix ¯̄T from the eigenvectors and the eigenvalues as in equa-
tion 12.6

¯̄T =

 1√
λ1

0
0 1√

λ2

 · ¯̄UH (12.6)

4. Create ȳ(t) from ¯̄T and x̄(t)

5. Calculate the averaged trispectrum matrix ˆ̄̄Cy(0, 0, 0) using the indirect method for a
trispectrum described earlier and equation 12.7

Cy4
avg

(0, 0, 0) =

 Cy4
1
(0, 0, 0) + Cy2

2y2
1
(0, 0, 0) Cy3

1y2
(0, 0, 0) + Cy2

2y1y2
(0, 0, 0)

Cy2
1y2y1

(0, 0, 0) + Cy3
2y1

(0, 0, 0) Cy2
1y2

2
(0, 0, 0) + Cy4

2
(0, 0, 0)

 (12.7)

6. Make an eigenvalue composition of ˆ̄̄Cy(0, 0, 0) to determine the eigenvectors Ḡ1(0) and Ḡ2(0)

7. Calculate the scaling of Ḡ1(0) and Ḡ2(0) as:

k1 =
1

T−1
11 G11(0) + T−1

21 G21(0)
(12.8)

k2 =
1

T−1
12 G12(0) + T−1

22 G22(0)
(12.9)
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8. Determine the ¯̄H(0) matrix as:

¯̄H(0) = ¯̄T−1 · ¯̄k · ¯̄G(0) (12.10)

The above implementation does not take into account the shuffling of the eigenvectors as de-
scribed in the theory sections. Which gives the possibility that the DC- coefficients is assigned
to the wrong filter and/or is inverted. The implementation in MATLAB, does not include any
precautionary measure to handle this problem. But this is discussed further in the simulation
section. The implementation can be found on the accompanying CD as: /Matlab Code/H(0)
Estimation/Hest.m.

12.1 Simulation

The simulation is performed with frames with a length of 4000 samples the averaging for ˆ̄̄Cx(4)
and ˆ̄̄Cy(0, 0, 0) is performed over 100 frames, with a total of 400.000 samples for one estimation
of H(0). This simulation is performed 100 times and the estimated DC-coefficients for H12(0)
and H21(0) are plotted as a function of the trials. The signals x1(t) and x2(t) are constructed as
described in chapter 7 and the filter coefficients for h12(t) and h21(t) are [.3, .8, .4] and [1, .5, .2].
The results from the simulation can be seen in figure 12.2.
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Figure 12.2: Estimation of the DC-coefficent for H12 and H21 over 100 runs.

The mean and the standard deviation in figure 12.2 is 0.630± 0.094 and 0.628± 0.142 for H12(0)
and H21(0). As it is know that the mean of both filters should be above one all runs, except run
number 87 which has values larger the one, must be inverted and swapped as the eigenvectors
where not assigned correctly to ¯̄G. This is corrected in figure 12.3.
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Figure 12.3: Estimation of the DC-coefficent for H12 and H21 over 100 runs.

The mean and the standard deviation in figure 12.3 is now 1.663 ± 0.111 and 1.622 ± 0.134 for
H12(0) and H21(0). As the ideal H12(0) and H21(0) are know as 1.5 and 1.7, and that assigning the
eigenvectors wrong for the ¯̄T . would result in the values being swapped, the results are swapped
each time that H21(0) < H12(0), which results in figure 12.4.
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Figure 12.4: Estimation of the DC-coefficent for H12 and H21 over 100 runs.

Using priori the priori knowledge that H12(0) and H21(0) > 1 and H21(0) < H12(0). The mean
and the standard deviation in figure 12.3 comes to 1.532 ± 0.058 and 1.722 ± 0.094 for H12(0)
and H21(0). As the ideal values H12(0) and H21(0) are know as 1.5 and 1.7. The results are well
within 5 %. For the above results a dataset of 40,000,000 is used, but using a data set of 400,000
the worst result from the 100 simulations gave a deviation of 20 %. The simulation file can be
found on the accompanying CD as: /Matlab Code/H(0) Estimation/Hesttest.m.

12.2 Conclusion

From a 100 simulations H12(0) and H21(0) could be established within 5 % using priori knowledge
about the filters. But the large dataset also indicates that it needs more data then the other
simulations to give good estimates. The worst result from the 100 simulations gave up to
20 % deviation, it give rise to the question, how sensity the BSS is to these divations in the
¯̄H(0) estimation. Therefore the first thing to establish for the BSS simulation is a sensitivity

simulation for ¯̄H(0), with deviation up to 20 % from the ideal value is simulated. As an working
implementation for the ¯̄H(0) estimation now exists the last thing is to simulate the entire blind
source separation algorithm.
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Chapter 13

Blind Source Separation Simulation

This chapter contains a simulation of the BSS algorithm that was presented in the theory part
of this project. The simulation is conducted in Matlab and includes all the parts, that have been
simulated in the previous chapters.

The simulationg is conducted in two parts:
The first part is using an ideal estimation of ¯̄H(0) and making deviations, it is intially assumed
that the worst case scenario is to subtract from one filter and add to the other filter, so a certain
percentage is subtracted from one of the filters in ¯̄H and the same percentage is added to the
other filter. This would intially give an overview of the sensitivity of this parameter, which
showed a deviation of up to 20 % in the previous simulation.
The second part is a simulation using the implemeted version of the ¯̄H(0) estimator, that was
simulated in the previous section.

In order get some idea what kind of results should be expected the Cramer Rao lower bound
for BSS is calculated as an indicator of maximum obtainable signal to noise ration (SNR). From
[10] a method for calculating this bound based on the TITO systen model is presented.

For this simulation the signal to interference ratio (SIR) is used to calculate the performance of
the blind source separation. The reason for not using the SNR designation is that there is no
added noise to the signal there is only interference from the other signal. But the methods for
calculating the SNR is the same as for the SIR.

Equation 13.1 describes how the SIR is calculated.

SIRi =
E

[
(si(t))2

]
E

[
(si(t) − ŝi(t))2

] (13.1)

where:
si(t) is the i’th source signal
ŝi(t) is the restored i’th signal
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The Cramer Rao lower bound (CRLB) can be calculated for the MSE as:

MSECRLB
i = E

[
(si(t) − ŝi(t))2

]
≥

N
B · T

·
Var [si(t)]

Var [zi(t)] · Var [si(t)]
(13.2)

Where:
N is the number of sources in the system
B is the inverse number of DFT frequencies
T is the number of samples used to estimate the system
zi(t) is defined in equation 13.3.

zi(t) =

d
dsi(t)

PDFsi (si(t))

PDFsi (si(t))
(13.3)

In order to make equation 13.2 comparable to the SIR method described in equation 13.1 it is
rewritten as described by equations 13.4 to 13.6

SIRCRLB
i =

E
[
(si(t))2

]
MSECRLB

i

(13.4)

≤
E

[
(si(t))2

]
N

B·T ·
Var[si(t)]

Var[zi(t)]·Var[si(t)]

(13.5)

≤
B · T · E

[
(si(t))2

]
· Var [zi(t)]

N
(13.6)

All the variables in equation 13.6 are known except zi(t), in order to estimate it, the PDF of the
sources signals needs to be known. In section 7 the source signals where created in MATLAB
using the random function with a expential distribution. The MATLAB documentation describes
that the exponential distribution has a PDF described by equation 13.7. As the PDF of the
source signals have been established the derivative of the PDF can be found as equation 13.8.
This makes it possible to determine zi(t) as equation 13.9

PDFsi (si(t)) =
1

0.7
· exp

{
si(t)
0.7

}
(13.7)

d
dsi(t)

PDFsi (si(t)) =
1

0.49
· exp

{
si(t)
0.7

}
(13.8)

zi(t) =

1
0.49

1
.7

=
1
.7

(13.9)

Var [zi(t)] = 0 (13.10)

From equation 13.9 it becomes clear that because zi(t) is a constant the variance of it would be
zero. This would affect equation 13.6 by making the upper bound infinitly large. It should be
noted that the assumptions for this ”upper” bound for the SIR only make the assumptions ,that
the source signals are mutually independent and that they have the same distribution (PDF),
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which also holds true for the assumptions made about the TITO system model. So the Cramer
Rao upper bound does not give a reference point for how well the BSS method performes. Other
publicized methods for doing BSS show improvement in the SIR from 3.1 dB up to 21 dB [5,
22] and the actual BSS method used in this project should show an improvement around 10 dB
[8, 523] for the TITO model

Because of the reverse third moment spectrum the filter estimations can be circular shifted.
Therefore the filters needs to be corrected in order to have the filter coefficient in a correct
sequence. This problem is however rather difficult one to solve, but as the filters are known
in the simulations, this is corrected manually and the shift is always constant when using the
same filters. One possible solution to this problem would be to shift the filters until the cross
correlation between the sources is minimized, but because of time constraints this solution has
not been explored.

13.1 Simulation Description

This section contain the simulation that was described in the previous chapter. The actual im-
plementation used can be found on the accompanying CD as /Matlab Code/SIR test/SIRtest1.m.
The simulation is performed in MATLAB as an off-line processing, so the data set as processed
as a whole by the individual blocks like the ¯̄H(0) estimation, before the next block starts proc-
cessing the data set. For the trispectrum estimation an optimum window is used, this restrict
to some degree the amount of filter coefficient that can be estimated, but as the lags is set to
supersede the number of filter coefficient with a factor of 3 this is not seen as a problem.

The simulation of the ¯̄H(0) estimation in section 12, showed up to 20 % deviation on this
parameter, when using a dataset of 400.000 samples. Therefore the sensitivity of this paramter
is the first thing to examine . A diviation of 0, .5, 1, 5, 10 , 20 % is applied as positive offset
on h12 and as a negative offset on h21 and the resulting SIR is calculated. The same dataset is
used for all offset SIR calculations in order to make the results comparable.

After the sensitivity estimation an BSS test which includes the ¯̄H(0) estimation is performed,
this is repeated 10 times to see the results, as it is known that ¯̄H(0) estimation would change
from one simulation to the next.

The estimated filters would have a length twice the size of any filters that can be estimated,
because the size of spectrum would always be twice the size of the lags.This means that half of
the filter coefficients can be removed before any scaling of the filter is performed. Also if the
filter length is known only the exact number of filter coefficient from the estimated filter should
be used in order to get a better scaling and demixing. All three methods are tested in the first
test.

The steps in the two simulations are as follows:

1. Create test signals with 400000 samples as described in section 7, the filters used are
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h12 = [1 .5 .2] and h21 = [.3 .8 .4]. When creating the test signals it is assured that the
remain mean free, as this is the most likely scenario.

2. Estimated H(0), this is done by calculating it from the known filters or by using the
MATLAB implementation from the previous test.

3. Estimate the filters moment spectra from 100 frames of 4000 samples using lags of ± 9 and
an fftlength of 20

4. Calculated the filters coefficients using the reverse third order moment spectrum

5. Time shift the filters which is done manually. With the filters used only h21 needs to
be shifted. The scaling is performed either on the whole filter length 20 coefficients, the
largest filter (that can be estimated) with a length of 10 coefficients and the known filter
with 3 coefficient. The scaling is performed from the estimated H(0), by ensuring that the
DC gain is that same as this estimated/ideal value.

6. The resulting 2 times 3 different filters are used for the demixing the signals, by using the
inverse filtering.

7. The SIR is calculated for both signals and for the 3 different filters, as well as the SIR on
the Mixed signal(the before SIR). Where s1 is related to x1 and s2 is related to x2 in order
to document an improvement. When calculating the SIR the first half and last half frame
from the inverse filtering should not be used, because of the overlapping frames.

13.2 Simulation Results

The simulation results from the sensitivity simulation for ¯̄H(0) can be seen in figure 13.1. From
the first column and the second columns it is clear that the reasonable assumption, that the
filterlength is the same as the number of lags used, doubles the SIR improvement. In general
an improvement of around 12 dB can be achived up to an offset of 10 %. At an offset of 20
% the improvement is down to around 7 dB SIR. The last column in figure 13.1 is the SIR
improvement if the filterlength is known to be three coefficients. Here the SIR improvements of
up to 20 dB is achived. As most published method show improvements between 3.1 dB up to 21
dB, the BSS implementation seems to performe as it should. In the last two columns there seem
to be a trend that the SIR improves if the offset is around 5 %, which was not expected. One
likely canditate are that the multilinearity in the non-minimum filter estimation does not hold
as the sources correlated with each other. Another candidate is that the trispectrum estimation
is not good enough. In either cases another ¯̄H(0) estimation, then the correct one seems, to give
better results.

The above test is repeated and the ideal H(0) estimator is replaced by the one implemented
in the previous section. This test is run 10 times and estimated filters DC-coefficient for each
run is displayed in figure 13.2 The resulting SIR for the corresponding runs can be seen in figure
13.3.

In general there would be a SIR around 10 dB improvement of the SIR of the filter length
is assumed to be the number of lags examined. One thing that stands out is that the second
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Figure 13.1: The solid line is the SIR as a function of the deviation of H(0) in percent. The dashed line indicates
the SIR before the BSS
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Figure 13.2: Estimation of the DC-coefficient for the 10 runs, the dashed line is the ideal filter coefficient, and
the dotted lines represents 20 % offset.
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Figure 13.3: The solid line is the SIR at different runs. The dashed line indicates the SIR before the BSS was
applied

run gives significant better results then the others. If this is correlated with figure 13.2, then a
positive offset seems to improve the SIR. Again this is assumed to stem from the before men-
tioned candidates and therefore another ¯̄H(0) would give better results. If the first simulations
is reapeted with the ¯̄H(0) with a positive offset for both filters, the resulting plots in figure 13.4.

This supports the theory that the trispectra is not entirely correct estimated, as a positive
offset of 20 % in ¯̄H(0) improves the resulting SIR of up to 6 dB. This concludes the simulations
of the BSS method, the method gave results that are comparable to other papers conserning
BSS. One interresting thing that was observed was that the ¯̄H(0) estimation does not necessarily
have to be the correct estimate as other values seems to give better results.
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Figure 13.4: The solid line is the SIR as a function of the deviation of ¯̄H(0) in percent both filters have a positive
offset in this plot. The dashed line indicates the SIR before the BSS
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Chapter 14

Conclusion

In this part the BSS method was simulated in MATLAB. The BSS was divided into 4 parts
that were simulated individually. Furthermore a simulation of the bispectrum estimation was
also made to simulate the minimum phase filter estimation. While not used the purpose was to
evaluate the direct method and the indirect method for estimation of cumulant spectra as well
as create test vectors for the reverse third order moment spectra. The last section contained a
simulation of the BSS method as a whole where the improvement in signal to interference ratio
was calculated.

Chapter 8 was the inverse filtering, where the method discussed in chapter 3 was implemented
and simulated. The simulations showed little to no error introduced by this method and the
ability to handle non-minimum phase filters as well as minimum phase filters.

Chapter 9 was a simulation of the bispectrum and the minimum phase filter estimation. In
the bispectrum estimation the direct method and the indirect method were presented and sim-
ulated. The conclusion on the two methods were: If the number of coefficients in the filter is
short compared to the frame length the indirect method should be used. If on the other hand
the number of filter coefficients are close to the frame length the direct method should be used.
As the frames are relatively long compared to the filters the indirect method was used for esti-
mation of the spectra in all the following simulations. The simulations of the minimum phase
filter estimation showed it to be acceptable and the simulations of bispectrum estimation also
showed that it was working to an acceptable degree.

Chapter 10 was the simulation of the method to find the reverse third order moment spec-
trum. The simulation showed that the method only introduced numerical noise. It should be
noted that the error also includes the error from the bispectrum estimation and as such the
method was found to operate well within acceptable limits. There was, however, a problem with
the method as it can introduce scaling and a shift in the original signal. This is handled in the
simulation by scaling and shifting by the largest value. However this presents a problem when
using this method as the original signal is normally not known.

Chapter 11 was the simulation of the non-minimum phase filter estimation. In the simula-
tion of the bispectra it was shown that the indirect method was the best for estimating of the
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trispectrum for the simulations. The non-minimum filter estimation showed acceptable results
especially if the filters length were known.

Chapter 12 was the simulation of the H(0) estimation. Using the same dataset size as the
rest of the simulations the simulations often showed deviations of up to 20 % and in some cases
even more. If the results where averaged over 100 of these simulations the mean was within
acceptable limits. However, this slow convergence rate will affect other parts of BSS method
negatively and finding another method that converges faster would thus be a good choice.

Chapter 13 was the simulation of the entire BSS method. The simulation was divided into
two parts; one to evaluate the sensitivity of the H(0) parameter, because the simulation of the
H(0) estimation showed large deviations and one to simulate the entire BSS method including
the H(0) estimation. The simulation a general improvement in SIR of around 10-12 dB when
the estimated filter order was three times higher than the correct filter order. The simulations
also showed that making a positive offset on both H(0) estimations, would improve the SIR by
up to 5 dB. It was assumed that this is related to the trispectrum estimation not being good
enough or the multilinearity conditions not holding. This would be worth looking further into,
but was not possible within the time frame of this project.

This concludes the MATLAB simulation of the BSS method. Now that a working implementa-
tion in MATLAB has been made the next step is to implement it onto a hardware platform.
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Algorithm Implementation

85





Chapter 15

Introduction

This part concerns the implementation of the blind source separation method onto an architec-
ture. The focus for this implementation is the execution speed as the feasibility of a real time
implementation is investigated. As a reference application for this real time implementation a
scenario with speech is used. The BSS method was presented in the previous parts and the
system model of the BSS in figure 15.1 was also introduced.

x1(t)

x2(t)

s1(t)

s2(t)

Inverse
Filtering

Reverse
3.order Mo-

mentspectrum

Non-min.
phase Filter
Estimation

¯̄H(0)
Estimation

H12(0) H21(0)

MH3
12

MH3
21

h12 h21

Figure 15.1: Illustration of the system model for solving the blind source separation.

Regarding execution speed there are two problematic areas in the BSS method:

The first is the execution speed of the inverse filtering. This is a hard real time problem as
a datasets from x1 and x2 must be processed before the next datasets from x1 and x2 arrives.
The second problem is the time it takes for the filters h12 and h21 to be estimated. The maximum
allowed time for updating the filters is application dependant, but as a speech signals are used
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as a reference application is used, it is possible to make an approximation.

Speech is used as the reference application when evaluating the real time potentials of BSS.
In a scenario with different speakers, one would assume that they are not stationary sources,
as they would probably be moving around. It is assumed that a filter update rate of 25 times
per second is acceptable for such a scenario. In the simulations it was show that around 100
estimation of the filters where necessary to get a good estimate. This would translate into 4
seconds for the filters to be estimated from initialization of the BSS algorithm. However, if the
source moves it as assumed that it would take less than 100 estimations to estimate the filter
for this new location, as the old filter would provide a good enough starting point to handle the
correction in a few iterations.

As the speech scenario is used as a reference application for the optimization, one important
parameter is that the frame length should reflect the quasistationary properties of the speech
signals. For speech and most audio applications this would give a frame length of around 20
milliseconds. Sampling the speech at 8 kHz, which is sufficient for speech signals, would give a
frame size of around 160 samples. In order to get a power of two number, which scales better
on most parallel implementations, this is lowered to 128 samples per frame.

The implementation starts with a complexity analysis of the inverse filtering and the differ-
ent parts of the BSS method. This is done to determine which of these parts are the most
complex and thus will the longest time to execute. After the identification of the most complex
parts these are examined in detail and modified to lower the complexity. The last step is to
implement the parts onto an architechture in order to get measure what the execution would be
in a practical case.

The platform used is a Graphics Processing Unit (GPU) commonly found in PCs and normally
used for accelerating graphical applications. The GPU used is from NVIDIA and supports the
CUDA framework developed by NVIDIA. Some of the advantages of using this platform are:

• Easy to use as the CUDA framework is an extension to the commonly known C program-
ming language.

• No or little management of the underlying hardware - this is managed through the oper-
ating system or the GPU itself.

• Offers tremendous computational power.

• Massively parallel architechture allowing large speedups if the algorithm is parallelizable.

The specific GPU used is the NVIDIA Geforce GTX 285 which is capable of around 1 TFLOPS.
There is 1 GiB global memory available running at 1242 MHz DDR with a bus width of 512
bits. This results in a theoretical memory bandwidth of 2 · 1.242 · 109 · 512/(10243 · 8) = 148.06
GiB/s.
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Complexity analysis

The analysis of the complexity is made on the MATLAB implementation used for the simulations.
To measure the complexity small o-notation is used throughout this chapter. This is mainly used
that the parameters for the reference application are known. For calculating the complexity the
following constants are used for the o-notation in all the calculations.

n number of samples in a frame

f number of Fourier bins in the frequency domain

k number of lags used for the indirect method

L number of samples to smooth over for the direct method

A part from these constants the following simplifications are used when calculating the com-
plexity.

• All arithmetic operations has a complexity of one operation, this includes logarithm, round-
ing operations, etc.

• Memory operations and calculating indexing operations are not included in the complexity
calculations.

• Constant values that are not dependent on the e.g. the frame length are omitted, as they
would appear as overhead and would not scale with the size of the input data.

• No assumptions is made about the operands in the arithmetic operations e.g. multiplying
two complex numbers takes the same time as multiplying two real numbers.

• All Fourier transforms are treated as discreet Fourier transforms (DFT’s), when calculating
the complexity of this operation.

• Arithmetic functions that are independent from the input date e.g. Functions that does
change the results with the input date, are removed as their complexity are only relevant
for the initialization phase of the system and consequently have no subsequent impact on
the execution time.
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In order to compare the different parts in the BSS the complexity is only calculated for processing
one frame of data. All the parts for the doing the non-minimum phase BSS is evaluated in the
following sections. This means the inverse filtering, the reverse third order momentspectrum, the
non-minimum phase estimation and the ¯̄H(0) estimation. This chapter also includes a complexity
analysis of the bispectrum estimation as this complexity analysis is used to evaluate the difference
in complexity for the direct and indirect method in a previous simulation chapter.

16.1 Complexity of Inverse Filtering

The complexity for the inverse filtering is based on the implementation present in section 8 on
page 43. Each step in the implementation is evaluated for its complexity and these are added
together to get an estimate of the total complexity for this part.

1. Dividing the samples into frames has a complicity of 2n memory moves, but is omitted
because of it being memory moves.

2. The zero padding can be solved by indexing, if the time shift and the frame length remains
constant, so the complexity is also zero for this step

3. The Fourier transform has a complexity of f 2 operations. If it is assumed that the number
of Fourier bins is the same as the zero padded frame length.

4. Inverting the matrix has a complexity of 8 operations for inverting the matrix and this has
to be repeated for all values of ω so the total complexity is 8 · f

5. The inverse Fourier transform has a complexity of f 2

6. Adding the overlap with the previous frame to the current depends on the amount of zero
padding added so the number of operations is f − n

The total complexity for inverse filtering comes to: 2 f 2 + 9 f − n operations.

Please note that the frame length and the number of frequency bins are not the same length as
number of frequency bins must be larger to allow for non-minimum filters as described in chap-
ter 3. Assuming that doubling the frame length by zero padding allows for most non-minimum
phase filters, the total complexity for doing the inverse filtering comes to: 4n2 + 17n operations.

16.2 Complexity of the Bispectrum Estimation

This section evaluates the complexity of the direct method and indirect method for estimation
of a bispectrum. This section is only used for the simulation part of the report as it is not part of
the final BSS algorithm. A description of the MATLAB implementation can be found in section
9.1 on page 47.
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16.2.1 Direct Method for calculating the bispectrum

1. The operations needed for removing the mean from the input vectors are n for the subtrac-
tion of the mean plus n operations for the calculations of the mean. So the total complexity
is 3 · 2n for all three input vectors.

2. The 1 dimensional DFT must be performed on the three input vectors in the worst case
these are all different giving a complexity of 3 · f 2 for this step

3. The complexity for estimation of one point in the bispectrum is three multiplication and
one complex conjugate giving a complexity of four operations, doing this for each point in
the bispectrum gives an complexity of 3 · f 2 operations.

4. Smoothing the spectra by convolving with a window the equation (which is not listed in
the simulations) for doing a 2 dimensional convolution is as follows:

CS
xyz(ω1, ω2) =

L∑
τa=−L

L∑
τb=−L

Cxyz(ω1, ω2) · hs(ω1 − τa, ω2 − τb). (16.1)

Where:
hs is a two dimensional window function with size (2L + 1) times (2L + 1). CS

xyz is
the smoothed cumulant spectra. The complexity for doing this smoothing operation is:
4(2L + 1)2 · f 2 additions and 4(2L + 1)2 · f 2 multiplications.

Note that the length of the Fourier transform must be at least the same length as the frame
size so f = n. So the total complexity for the direct method comes to: (6 + 8(2L + 1)2)n2 + 6n
operations.

16.2.2 Indirect Method for calculating the bispectrum

1. The operations needed for removing the mean is n operations for the subtraction of the
mean plus n for the calculations of the mean, which is performed on up to 3 input vectors.
So the total complicity is 6n for the first step in procedure.

2. The operations needed for calculating the cumulants is 3n operations for calculating one
specific cumulants, and this must repeated k times k. So the complexity is 3 · k2 · n

3. Applying the window to the cumulant sequence has a complexity of k2 operations, the
complexity for created the window is not added as this is a one time occurrence.

4. Zero padding this is more or less adding zeros to the array so that the size of the cumulants
matches the wanted size of the Fourier transform. This is minor and is omitted from the
final calculations. Because the initial array can be larger and the step be solved by indexing
in the previous steps.

5. The 2 dimensional DFT, gives a complexity of k2 for calculating a point in the DFT. This
has to be repeated f 2 for the entire spectrum, giving a total complexity of k2 · f 2
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Note that the Fourier transform does not need to be longer then k so k ≈ f

The total complexity for the direct and the indirect method is:
Direct Method: (6 + 8(2L + 1)2)n2 + 6n
Indirect Method: k4 + k2 + 3n · k2 + 6n

The complexity is shown as a function k and n in figure 16.1 with a smoothing parameter
of L = 20 in figure 16.2 the smoothing parameter is set to L = 10

Figure 16.1: Complexity of the direct and indirect method for estimation of the bispectrum with a smoothing
over ± 20 samples in the direct method.
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Figure 16.2: Complexity of the direct and indirect method for estimation of the bispectrum with a smoothing
over ± 10 samples in the direct method.

From figure 16.1 and 16.2 it can be derived that if the number of filter coefficients k are small
compared to the data length n. Then the indirect method is the best performing method. But if
the number of filter coefficients are unknown, which would be the most likely case, then the di-
rect method would be the best performing method. The smoothing factor should decrease when
the frame length is small but it would not change the above observations about the complexity
of the two methods.

16.3 Complexity of Reverse Third Order Momentspectrum

The implementation is presented in section 10 on page 59 the complexity is first calculated for
the phase estimation and then for the magnitude estimation. This implementation contains
many matrices that can be preallocated at the initialization of the system. if the frame length
in does not change.

1. Construction of the matrix ¯̄Aφ has a complexity of ( f − 1) ·
(

f
2

)2

for f being even, which it

is assumed that it is. This matrix is not data dependent so it only needs to be constructed
once, hence its complexity is zero.

2. Under the assumption that f is even. The construction of the φ̄3h vector consists of
(

f
2

)2

angle calculations.

3. Determining the phase ambiguity k̂ has the following complexity.
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• Constructing the matrix ¯̄Gφ has a complexity of ( f−1)2, but as it is not data dependent
its complexity is zero.

• Constructing the matrix ¯̄Fφ has a complexity of ( f−1)2, but as it is not data dependent
its complexity is zero.

• Calculating the matrix ¯̄Dφ has complexity of a matrix inversion, a matrix matrix
multiplication and a zero padding. But as there is no data dependency either it is
only initialization complixity, so the complexity is zero.

• Estimate of k̂ is done using equation 16.2.

ˆ̄k = round

 ¯̄Aφ · ¯̄D · φ̄3h − φ̄3h

2 · π

 (16.2)

The initial thought was to reduce the data depend factors in the equation. But the
¯̄Dφ matrix is zero padded, therefore it could be assumed that the matrix from the
¯̄Aφ ¯̄D multiplication does not have full rang. The illustration in figure 16.3 shows the
presence of non zero elements in this matrix.
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Figure 16.3: Illustration from the result of Matlabs spy function on the ¯̄Aφ ·
¯̄D matrix, where only non-zero elements

are depicted and f = 64.

From figure 16.3 the matrix only contains elements within the f 2

2 x f region. So re-
ducing this matrix with this size and also reducing the φ̄3h vector gives a rather large
reduction in complexity and doing the subsequent subtraction is only a complexity
of n2

2 subtraction operations.

The complexity for the estimation of the phase ambiguity k̄ comes to f 2

2 · f oper-

ations for the ¯̄Aφ · ¯̄D and φ̄3h matrix vector multiplication and 3 · f 2

2 operations for
the subtraction, multiplication with 1

2·π and the round operation. Giving a total of
f 3 + 3

2 f 2 operations
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Total complexity of estimating k̂ is : f 3 + 3
2 f 2

4. The last step in the phase estimation is equation 10.3. The equation consist of a matrix
transposed, a matrix matrix multiplication, a matrix inversion. a matrix matrix multipli-
cation, matrix vector multiplication and a vector vector additions and scaling.

• There is no complexity for transposing the matrix ¯̄Aφ, this can be done by swapping
rows with columns in the indexing. And the matrix is not data dependent, so the
complexity is zero.

• The first matrix multiplication ( ¯̄AT
φ

¯̄Aφ) has a complexity of ( f−1)2·

(
f
2

)2

multiplications

and additions. But it is also not data dependent so the complexity is zero.

• The inversion of the resulting matrix (
( ¯̄AT

φ
¯̄Aφ

)−1
)gives ( f − 1)4 [3, p. 295] arithmetic

operations. But as the matrix that is being inverted is not data dependent the
complexity is zero.

• The following matrix matrix multiplication (
( ¯̄AT

φ
¯̄Aφ

)−1 ¯̄AT
φ ) is also not data dependent

so the complexity is zero.

• Resolving the phase ambiguity of φ̄3h ( φ̄3h + 2π · ˆ̄k) has a complexity of
(

f
2

)2

multipli-

cations and additions.
• The vector matrix multiplication (

( ¯̄AT
φ

¯̄Aφ
)−1

) · ( φ̄3h + 2π · ˆ̄k) has a complexity of

2 · ( f − 1) ·
(

f
2

)2

operations.

That gives a total complexity of: 1
2 f 3 operations

The total complexity for estimating the phase comes to: 1
4 f 2 + f 3 + 3

2 f 2 + 1
2 f 3

Which reduces to: 3
2 f 3 + 7

4 f 2 operations

Now that the complexity for estimating the phase has been established the complexity for each
step in determining the magnitude must be determined as well. The procedure for doing the
pruning to handle negative overflow is done a little different, as the one used in the MATLAB
implementation is not optimal with regards to number of operations used. Instead of removing
values with negative overflow, they are set to zero and the matrix ¯̄Aµ is not resized nor changed.
The control vector still needs to be created the keep track of values that where set to zero.

1. Construct the matrix ¯̄Aµ has a complexity of f ·( 1
4 f 2+ 1

2 f ). But as this is not data dependent
the complexity becomes zero for this step.

2. Construct the magnitude vector µ̄3h by taking the logarithm to the values in the bispectra
has a complexity ( 1

4 f 2 + 1
2 f ) operations, if f is even.

3. The next step is to find values in µ̄3h with negative overflow and set them to zero and
at the same time create a control vector ȳy that contains a one at the indexes in µ̄3h,
where negative overflow occurred and zeros at all other indexes. This step differs from
the previous implemented version in MATLAB and complexity for this step comes to
2 · ( 1

4 f 2 + 1
2 f ) operations.
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4. Pruning of the matrix ¯̄Aµ is no longer necessary, so this step has a complexity of zero.

5. Calculating the magnitude response in equation 10.4 on page 60. The three matrices
used on this operation does not change and are not data dependent anymore, so this step
only contains a matrix vector multiplication. Which has a complexity of f · ( 1

4 f 2 + 1
2 f )

multiplications and additions operations. So total complexity comes to: 1
2 f 3 + f 2)

6. Last step is to find values in the output vector that should be set to negative overflow.
This is done by multiplying the matrix ¯̄Aµ with the control vector ȳy and all the indexes in
the output vector where the value differs from zero, the corresponding index in the output
vector should be set to negative overflow. This step has a complexity of 2 · f · ( 1

4 f 2 + 1
2 f )

operations for the matrix vector operation and f operations for setting negative overflow
in the output vector. This last step is only necessary if there is negative overflow in the
input vector µ̄3h.

The total complexity for the estimation of the magnitude comes to two different scenarios:
If there is no entries in the µ̄3h vector with negative overflow the complexity comes to: 1

2 f 3 +
7
4 f 2 + 3

2 f operations
In the other case when negative overflow occurs at some random entries then the complexity
comes to: f 3 + 11

4 f 2 + 3
2 f . But as it is never know when negative overflow could occur the last

complexity is assumed to be the correct one for the magnitude estimation. The complexity
for combining the phase estimation and the magnitude estimation and performing the inverse
Fourier transform to obtain the filter coefficients has a complexity of 3 f + f 2 operations.

Now that the complexity for both the phase and the magnitude has been estimated as well as
the complexity for obtaining the filter coefficients the total complexity comes to: 5

2 f 3 + 9
2 f 2 + 2 f

operations

This is based on the most cautious approach which handles negative overflow for all input
vectors in the magnitude estimation. The reverse third order momentspectrum needs to per-
formed on both filters, and it is know the fftlength could be the double the length of the frames
size giving the following complexity for the reverse third order momentspectrum: 20n3 +18n2 +4n

16.4 Complexity of Non-minimum Phase Filter Estimation

The largest complicity in the non-minimum phase filter estimation is located in the estimation
of the eight trispectra’s. There is two different methods to calculated the trispectra as there also
where for the bispectrum, so both methods are going to be evaluated before the total complexity
of the algorithm is calculated.

16.4.1 Complexity for Calculating the Trispectrum

Both methods are evaluated for complexity before a decision is made which one to use in the
BSS. Direct Method for calculating the Trispectrum
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The complexity for each step in estimating the trispectrum is listed in this subsection.

1. The operations needed for removing the mean from the four input vectors is n for the
subtraction of the mean plus n for the calculations of the mean. So the total complexity
is 8n for the first step in procedure.

2. The 1 dimensional DFT must be performed on the input vectors in the worst case these
are all different giving a complexity of 4 · f 2 for this step

3. The complexity for estimation of a point in the fourth order moment spectrum is 4 multi-
plication and one complex conjugate giving a complexity of 5, doing this for each point in
the bispectrum gives an complexity of 5 · f 3 operations.

4. The moment to the cumulant transformation is from equation 11.3. Made up of three cross
power spectras Mx y(ω1). convolved with a matrix F

[
mz w(τ3 − τ2)

]
. Creating the cross

power spectras has a complexity of f operations. Creating the moment matrix mz w(τ3 − τ2)
has a complexity of f 2 · n operations. The two dimensional DFT has a complexity of f 4

operations. The convolution with the matrix is not necessary as the cross power spectra
only contains one value in the dimensions, so the matrix is scaled. These operations must
be performed three times. The last step is to do the spectral subtraction in equation 11.8
this operation has a complexity of 6 operations performed f 3 times. The total complexity
can for this step be determined as: 3 · (n + f + f 2 + f 4) + 6 f 3

5. Smoothing the spectra by convolving with a window the equation (which is not listed in
the simulations) for doing a three dimensional convolution is as follows:

CS
xyzw(ω1, ω2, ω3) =

L∑
τa=−L

L∑
τb=−L

L∑
τc=−L

Cxyz(ω1, ω2, ω3) · hs(ω1 − τa, ω2 − τb, ω3 − τc).(16.3)

Where:
hs is a three dimensional window function with size (2L + 1) times (2L + 1). CS

xyzw is
the smoothed cumulant spectra. The complexity for doing this smoothing operation is:
(2L + 1)3 · f 3 additions and (2L + 1)3 · f 3 multiplications.

Total complexity for direct method comes to: 3 f 4 + 11 f 3 + 2 f 3(2L + 1)3 + 7 f 2 + 3 f + 11n. Because
of the cumulant sequence calculations in step 5 the relations becomes f = 2n. so the complexity
is 48n4 + 88n3 + 16n3(2L + 1)3 + 28n2 + 14n

16.4.2 Indirect Method for calculating the Trispectrum

The complexity for each step in estimating the trispectrum listed in this subsection.

1. Removing the mean from four input vectors are n operations for the subtraction of the
mean and n operations for the calculations of the mean. So the total complexity is 8n for
the first step in procedure.

2. Calculating the cumulants is n operations for calculating one specific cumulants, where
4 multiply operations are performed, and this must repeated k times k times k. So the
complexity is 4 · k3 · n
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3. Applying the window to the cumulants, this step has a complexity of k3 with one multiply
operation, the complexity for constructing the window is not added as this is a one time
occurrence.

4. Zero padding this is more or less adding zeros to the array so that the size of the cumulants
matches the wanted size Fourier transform. This is minor and is omitted from the final
calculations, and also this step can be omitted from the algorithm by making the initial
array larger and doing correct indexing in the previous steps.

5. The moment spectrum to the cumulant spectrum transformation, for this up to 6 second
order moment spectrum’s needs to be calculated. The complexity for this is operation is
k · n. The equation in 11.1 gives an complexity of 6 operations performed k3 times.

6. The three dimensional DFT, gives a complexity of k3 for calculating a point in the DFT.
This has to be repeated f 3 times for the entire spectrum, giving a total complexity of k3 · f 3

As it is know that the length Fourier transform would around the same length of the lags the
following holds true k = f . From this the total complexity for doing the indirect method comes
to: k6 + 4n · k3 + 7k3 + 6kn + 8n

Comparing the two methods the complexity comes to:
Direct method: 48n4 + (88 + 16L3)n3 + 28n2 + 17n
Indirect method: k6 + (4n + 7)k3 + 6kn + 8n

The complexity is plotted as a function of k and n where L is set to ±20 in figure 16.4 and
L is set to ±10 in figure 16.5.

Figure 16.4: Complexity of the direct and indirect method for estimation of the bispectrum where the smoothing
L in the direct method is set to ±20
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Figure 16.5: Complexity of the direct and indirect method for estimation of the bispectrum where the smoothing
L in the direct method is set to ±10

The amount of smoothing performed in the direct method has a large impact on the complexity.
If the smoothing parameter is set to ±20, it would only make sense to use the direct method if
the frame length and the assumed size of the filter k are very close. At a smoothing parameter
of ±10 this also holds true, though the filter length goes down to half the length of a frame.
These observations does not take into account how precise the estimations are. The simulations
results however gave the same results long filter compared to the frame the direct method is the
best, short filter the indirect method is the best. So in order to make a general model where no
assumption is made about a short filter the direct method is preferred over the indirect method.

The final step in the non-minimum phase filter estimation is to calculate the third order moment
spectra for the two filters as described by equation 11.12 and 11.13 om page 67. Which consists
of 2 subtractions 2 multiplications and one division for each entry in the bispectrum and for
each estimation 4 trispectrum estimation are needed the complexity for the non-minimum phase
estimation comes to:
2 · 5 · (2n)2 + 8 · (48n4 + (88 + 16(2L + 1)3)n3 + 28n2 + 17n) Which can be reduced to :
384 · n4 + (704 + 128(2L + 1)3)n3 + 264 · n2 + 136 · n

In the non-minimum phase filter estimation all the complexity lies in estimating the eight trispec-
trum’s, so this should be the primary focus if this part are to be optimized.

16.5 Complexity for Calculating H(0) estimation

The implementation for estimating ¯̄H(0) can be found in section 12 on page 69. The implemen-
tation averaged over 100 frames. This is omitted from the complexity evaluation in order to
compare it to the other parts, so only one frame is used for estimating ¯̄H(0). The complexity for
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each step is as follows

1. The complexity for creating the ¯̄Cx2(0) matrix is 2n2 for the two Fourier transforms and 4
multiplications 4 + 2n2 the 4 is omitted as it is a constant.

2. Making an eigenvalue decomposition has a complexity of 4
3 n3 + n2 operations [2, p. 89].

where n is the number of rows and columns in matrix, as this does not change, the com-
plexity is omitted.

3. Creating the Transformation matrix ¯̄T is also of constant size so it is also omitted

4. Creating ȳ(t) from ¯̄T and x̄(t) has a complexity of 2 additions and 4 multiplication for each
entry in the frame so the complexity comes to 6n

5. Calculate the averaged trispectrum matrix, this results in the need for 8 trispectrum ma-
trices to be created, which each has a complexity (for the direct method) of 8 · (48n4 +

(88 + 16(2L + 1)3)n3 + 28n2 + 17n) operations which was established earlier. But as only one
point is needed in the trispectrum it could be a better choice to use the indirect method
here as k would be rather small compared with the frame length. However this needs to
be investigated further.

6. Making an eigenvalue composition of ˆ̄̄Cy(0, 0, 0) has a constant complexity and is omitted

7. Calculating the scaling of Ḡ1(0) and Ḡ2(0) is also a constant and is omitted

8. Calculating the ¯̄H(0) matrix is also omitted

The total complexity for estimating ¯̄H(0) comes to 384n4 + (704 + 128(2L + 1)3)n3 + 226n2 + 142n
all the complexity lies in the eight trispectrum estimation which are performed in order to make
the averaged trispectrum matrix. Optimizing the trispectrum estimation would also improve
this part significantly.

16.6 Complexity of the Blind Source Separation

Now that the complexity for all the parts in the BSS algorithm have been examined the most
complex part can be identified. The complexity for the individual parts found in the previous
sections are:

Inverse filtering 4n2+ 17n
Reverse third order moment spectrum 20n3+ 18n2+ 4n
Non-minimum phase filter estimation 384n4+(704 + 128(2L + 1)3)n3+264n2+136n
¯̄H(0) estimation 384n4+(704 + 128(2L + 1)3)n3+226n2+142n

As mentioned in chapter 15 the target application for the BSS is a scenario with speech signals.
The inverse filtering is the only part with a hard real time exection demand. With a frame
length of 128 samples, a sample rate of 8 kHz and a frame overlap of 50 % there are 125 frames

100



CHAPTER 16. COMPLEXITY ANALYSIS Group 1042

per second. This gives 8.5 · 106 arithmetic operations per second for doing the inverse filtering.

For the filter update of the BSS method, it was assumed that a filter update rate of 25 times
per second would be acceptable. When a frame length of 128 samples is used and a smoothing
parameter L is set to ±10 the number of arithmetic operations amounts to 5.2 · 1012 per update
or 130 · 1012 operations per second with 25 updates per second. Comparing the inverse filtering
it is easy to see that the complexity of this is insignificant to the rest of the BSS method. The
target platform used has a maximum processing capability of 1 · 1012 floating points per seconds
(FLOPS). If it is possible to fully utilize the GPU and the BSS algorithm is not modified, a
speedup of at least 130 times would be needed to be able to run the BSS in real time on this
platform. This is without taking into consideration the simplifications made to the complexity
calculations meaning that a practical number will be even larger larger.

The most complex parts are the non-minimum phase filter estimation and the ¯̄H(0) estima-
tion. In both methods most of the complexity comes from the trispectra estimates. If the
trispectra estimates are removed from the above complexity for the BSS method, the resulting
complexity is stated in the following table:

Reverse third order moment spectrum 20n3+18n2+ 4n
Non-minimum phase filter estimation 40n2

¯̄H(0) estimation 2n2+ 6n

Total complexity 20n3+60n2+10n

The complexity of BSS method without the trispectra estimates is around 1.1 · 109 arithmetic
operations per second using the target application. If the same assumptions about the platform
are made it would be possible to update the filters 900 times faster then it needs to. Because
of this it is obvious that the best course of action is to focus on reducing the complexity of the
trispectrum estimation, in order to evaluate if real time execution can be made possible.

As mentioned, the trispectra estimates are used in the non-minimum phase filter estimation
and the ¯̄H(0) estimation. Both need eight trispectra estimates so the complexity in both are the
same. However, as only the center slices of the trispectra are used for the non-minimum phase
filter estimation, there is already a potential complexity reduction in the trispectra estimates.
Consequently it has been chosen to focus on reducing the complexity in the computation of the
center slice of the trispectra and subsequently implement the reduced version.
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Chapter 17

Complexity reductions

From the complexity calculation in section 16, it was shown that the biggest contribution of arith-
metic complexity was from the trispectrum estimation. Due to this it was chosen to examine
the trispectrum estimation to see if it is possible to reduce this complexity. In the non-minimum
phase filter estimation only the center slice of the trispectrum is used. This in it self gives rise to
reduction in complexity and also only four unique trispectra are used in the estimation, which
was not accounted for in the previous section.

Due to the smoothing of the trispectrum it is, however, still necessary to compute both the
center slice and as many neighbouring slices as required for the smoothing window. Figure 17.1
illustrates this process for estimating the center slice in the trispectrum.

Slice: −L
Cx4(ω1, ω2,−L)

......

Slice: −1
Cx4(ω1, ω2,−1)

Slice: 0
Cx4(ω1, ω2, 0)

Slice: 1
Cx4(ω1, ω2, 1)

...

...

Slice: L
Cx4(ω1, ω2, L)

Smoothing
Slice for

Cx4(ω1, ω2, 0)

Figure 17.1: Computation of the center trispectrum slice used for the non-minimum phase filter estimation. L is
the number of neighbouring slices computed.

Regardless of the value of L the center slice always needs to be computed. As such it is chosen
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to examine if it is possible to optimized the computation for this slice without the smoothing of
the neighbouring slices.

17.1 Project specific preconditions

In the simulation and the complexity analaysis of the BSS method no other assumptions are
made about trispectrum estimation, other than the the mean value of the input signals must
be zero to be able to compute the cumulants. For the implementation, however, it is possible
to introduce a number of simplifications due to the way the trispectra estimates are used in the
BSS method. By examining only the center slice it is also possible to introduce a simplification.
These preconditions are listed below:

1. ω3 = 0 due to examining only the center slice.

2. The input signals are zero-mean or their mean values are subtracted to make them zero-
mean.

3. The input signals are speech signals and thus real-valued.

4. For the general case x(t) , y(t) , z(t) , w(t), but due to the way the trispectrum estimates
are used x(t) = y(t) = z(t) , w(t).

17.2 Block diagram of the trispectrum estimation

The MATLAB implementation to estimate the trispectrum can be divided into a number of
blocks as shown in figure 17.2.

1D FFT

2nd order 
moment 

sequence

Matrix 
expansion 2D FFT

Matrix-
vector 

convolution

Cubic 
addition

x(t), y(t), 
z(t), w(t)

4th order 
moment 
spectrum

2nd order 
moment 
spectrum

Figure 17.2: Block diagram of the MATLAB implementation to estimate the trispectrum.

As a consequence of the preconditions the calculations in each of the blocks can be reduced.
The reductions can not always be confined to one block at a time, as reductions in one block
may affect another block. As such the blocks will not be presented in chronological order, but
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in the order that eases understanding for the reader.

As given in the preconditions only the autotrispectrum and cross-trispectrum with x(t) = y(t) =

z(t) , w(t) will be estimated. These will be referred to as the autospectrum and cross-spectrum
in the following. Unless otherwise stated the reductions apply to both autospectrum and cross-
spectrum calculations.

17.3 MATLAB variables

Symbol Variable Description
τ T Lag.
ω W Frequency.

x(t) x(·) Input signal x(t) in the time domain. Similar variable name for
y(t) etc.

X(ω) X(·) Input signal x(t) in the frequency domain. Similar variable
name for Y(ω) etc.

N N Length of the input signals in samples.
- fftlength Length of the Fourier transform output.

m(τ) m(·) Moment sequence. The symbol is subscripted with the sig-
nal names used to calculate the sequence. For instance mxy(t)
for the second order cross-moment sequence or mx4(t) for the
fourth order automoment sequence. The corresponding vari-
able names are suffixed by the order and signal names, for
instance m2xy.

c(τ) c(·) Cumulant sequence. The symbol and variable names are sub-
scripted and suffixed in the same manner as the moment se-
quence.

M(ω) M(·) Moment spectrum. The symbol and variable names are sub-
scripted and suffixed in the same manner as the moment se-
quence.

C(ω) C(·) Cumulant spectrum. The symbol and variable names are sub-
scripted and suffixed in the same manner as the moment se-
quence.

g g Matrix expansion of 2nd order moment sequence. The symbol
and variable names are subscripted and suffixed in the same
manner as the moment sequence.

G G Fourier transform of the matrix expansion. The symbol and
variable names are subscripted and suffixed in the same manner
as the moment sequence.

17.4 Fourth order moment spectrum

The 4th order moment cross-spectrum with arbitrary input signals is given by:

Mxyzw(ω1, ω2, ω3) = X∗(ω1 + ω2 + ω3) · Y(ω1) · Z(ω2) ·W(ω3)
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The corresponding MATLAB code:

1 for W1 = 0:fftlength−1
2 for W2 = 0:fftlength−1
3 for W3 = 0:fftlength−1
4 M4xyzw(W1+1,W2+1,W3+1) = conj(X(W1+W2+W3+1)) ∗ Y(W1+1) ∗ Z(W2+1) ∗ W(W3

+1)/N;
5 end

6 end

7 end

Using precondition 1 the innermost loop is unnecessary and W3 can be set equal to 0 instead.
This means that only the first value of W(·) will be indexed, i.e. the DC component of W(ω).
Because of precondition 2 the DC component will always be 0 and as this is multiplied to all
values in the slice, the entire slice will be 0. This means the block can be removed from the
implementation, however this would not be valid for any other slice.

17.5 Matrix-vector convolution

The matrix-vector convolutions are given by 11.8:

Mxy(ω1) ∗F
[
mz w(τ3 − τ2)

]
Mxz(ω2) ∗F

[
my w(τ3 − τ1)

]
Mxw(ω3) ∗F

[
my z(τ2 − τ1)

]
The corresponding MATLAB code:

1 for W1 = 0:fftlength−1
2 for W2 = 0:fftlength−1
3 for W3 = 0:fftlength−1
4 Gxyzw(W1+1,W2+1,W3+1) = M2xy(W1+1) ∗ Gzw(W2+1,W3+1);
5 Gxzyw(W1+1,W2+1,W3+1) = M2xz(W2+1) ∗ Gyw(W1+1,W3+1);
6 Gxwyz(W1+1,W2+1,W3+1) = M2xw(W3+1) ∗ Gyz(W1+1,W2+1);
7 end

8 end

9 end

Due to the way the convolution is performed the output is a 3-dimensional array. However,
using the same arguments as in the 4th order moment spectrum block the innermost loop can
be removed and the output will be reduced to one slice of the array. Using the same arguments
it is also possible to show Gxwyz(·) = 0 for all values of W1 and W2 and can thus be removed.
Furthermore it is worth noting that only the first column of the matrices Gzw(·) and Gyw(·)
will be accessed when W3 = 0 and M2xy(·) = M2xz(·) due to precondition 4, x(t) = y(t) = z(t).

Inspecting the definitions of Gzw(·) and Gyw(·) and remembering y(t) = z(t) it is seen that
Gzw(·) and Gyw(·) are the Fourier transforms of the same 2nd order moment sequence ex-
panded into a matrix. As a result of this Gzw(·) = Gyw(·) and only one of them needs to be
calculated.
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For the trispectrum there are several symmetry regions which is also the case for the slices.
Although the output of the matrix-vector convolution block is not the trispectrum the symme-
try regions still make it possible to prune a number of the values in the slice.

In the cross-spectrum four symmetry regions exist and two of them are mirrored around the
diagonal as shown in figure 17.3 (b). This makes it possible to calculate only the upper or lower
triangle of the matrix. If the first row and column of the matrix are ignored the remaining values
are conjugated and mirrored along the anti diagonal as shown in figure 17.3 (b). Using these
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Figure 17.3: Symmetry regions of the cross-spectrum slice. (a) The values are mirrored around the diagonal. (b)
If the first row and column are ignored the remaining values are conjugated and mirrored along the antidiagonal.
(c) Using the symmetry regions from (a) and (b) it is only neccessary to calculate the values in region 1 or 2 while
the remaining values can be obtained by mirroring and conjugating.

symmetry regions it is possible to divide the slice into four regions. To obtain all the values it is
necessary to calculate either region 1 or 2 while the remaining values can be obtained through
mirroring and conjugating. Due to indexing it may be better to calculate either region 1 and 4
or 2 and 3.

The same symmetry regions apply to the autospectrum.

17.6 Second order moment spectrum

The 2nd order moment cross-spectrum with arbitrary input signals is given by:

Mxy(ω) = X∗(ω) · Y(ω)

The corresponding MATLAB code:

1 M2xy = conj(X) .∗ Y/N;
2 M2xz = conj(X) .∗ Z/N;
3 M2xw = conj(X) .∗ W/N;

In the review of the matrix-vector convolution it was found that the cross-moment spectrum
M2xw(·) is not needed and that M2xy(·) = M2xz(·) due to precondition 4. As such it
is only neccessary to calculate one of the cross-moment spectra. Furthermore as a results of
preconditions 4 and 3 M2xy(·) will be an automoment spectrum and half the values will be
mirrored and can thus be pruned.
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17.7 1D FFT

The 1-dimensional DFT is given by:

X(k) =

N−1∑
n=0

e−
2π j
N knx(n)

In MATLAB the FFT is used and the corresponding code becomes:

1 X = fft(x, fftlength);
2 Y = fft(y, fftlength);
3 Z = fft(z, fftlength);
4 W = fft(w, fftlength);

Due to precondition 4 and the review of the 2nd order moment spectrum stating that is is only
necessary to calculate one automoment spectrum, it is not necessary to calculate the Fourier
transform of more than x(t). Furthermore precondition 3 states that x(t) is real and as a result
half the values of the Fourier will be mirrored and can thus be pruned.

17.8 2D FFT

The 2-dimensional DFT is given by:

X(k1, k2) =

N1−1∑
n1=0

e− 2π j
N1

k1n1
N2−1∑
n2=0

e−
2π j
N2

k2n2 x(n1, n2)


In MATLAB the 2D FFT is used and the corresponding code becomes:

1 Gzw = fftn(gzw);
2 Gyw = fftn(gyw);
3 Gyz = fftn(gyz);

In the review of the matrix-vector convolution it was shown that Gyz(·) is not needed and
Gzw(·) = Gyw(·) as well as only the first column of either Gzw(·) or Gyw(·) is needed. If
this is taken into consideration the 2-dimensional DFT can be reduced to:

X(k1, 0) =

N1−1∑
n1=0

e− 2π j
N1

k1n1
N2−1∑
n2=0

1 · x(n1, n2)


Or in other words; the 2-dimensional FFT can be reduced to a 1-dimensional FFT of a column
vector containing the sum of each row of gzw(·) or gyw(·).

17.9 Matrix expansion

The matrix expansion is given by:

gxy(n1, n2) =

{
m2xy(n2 − n1 + N − 1), 0 ≤ n2 − n1 + N − 1 ≤ 2N − 2

0, otherwise
, 0 ≤ n1, n2 ≤ N
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After the expansion the matrix is shifted as shown in figure 17.4 to reorder the elements correctly.
The corresponding MATLAB code:

(a) (b)

Figure 17.4: Illustration of how the elements of the matrices are shifted in the matrix expansion. (a) Odd size of
the matrix. (b) Even size of the matrix.

1 for n1=0:2∗N−2
2 for n2=0:2∗N−2
3 if 0<=sum(n2−n1+N−1) & sum(n2−n1+N−1)<=2∗N−2
4 gzw(n1+1,n2+1)=m2zw(n2−n1+N);
5 gyw(n1+1,n2+1)=m2yw(n2−n1+N);
6 gyz(n1+1,n2+1)=m2yz(n2−n1+N);
7 end

8 end

9 end

10

11 gzw=ifftshift(gzw);
12 gyw=ifftshift(gyw);
13 gyz=ifftshift(gyz);

As shown in the review of the 2-dimensional FFT, it is not necessary to perform the matrix
expansion only calculate the sum of each row in the matrix. The shifting does not affect the row
sums, only the order of the values in the resulting column vector. If the shifting is performed
on the column vector of row sums the result will be equal to the rows sums calculated from the
unchanged MATLAB implementation. As such the column vector of row sums will be calculated
directly and then shifted. Furthermore in the review of the matrix-vector convolution it is shown
that Gzw(·) = Gyw(·) and Gyz(·) is redundant. This translates into only gzw(·) or gyw(·)
being needed for further calculations.

17.10 Second order moment sequence

The second order cross moment sequence is given by:

mxy(τ1) =
1
N

N−1∑
t=−(N−1)

x(t) · y(t + τ1)

The corresponding MATLAB code:

1 ytmp=[zeros(1,N) y zeros(1,N)];
2 ztmp=[zeros(1,N) y zeros(1,N)];
3 wtmp=[zeros(1,N) w zeros(1,N)];
4
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5 for T1 = −(N−1):N−1
6 m2yz(T1+M) = sum(ytmp(1+N+T1:2∗N+T1) .∗ ztmp(1+N+T1:2∗N+T1))/N;
7 m2zw(T1+M) = sum(ztmp(1+N+T1:2∗N+T1) .∗ wtmp(1+N+T1:2∗N+T1))/N;
8 m2yw(T1+M) = sum(ytmp(1+N+T1:2∗N+T1) .∗ wtmp(1+N+T1:2∗N+T1))/N;
9 end

In the review of the matrix-vector convolution it is shown that Gzw(·) = Gyw(·) and Gyz(·) is
redundant. This translates into only m2zw(·) or m2yw(·) being needed for further calculations.

17.11 Cubic addition

The cube terms added are given in:

Cx y z w(ω1, ω2, ω3) = Mx y z w(ω1, ω2, ω3)

−Mx y(ω1) ∗F
[
mz w(τ3 − τ2)

]
−Mx z(ω2) ∗F

[
my w(τ3 − τ1)

]
−Mx w(ω3) ∗F

[
my z(τ2 − τ1)

]
(17.1)

The corresponding MATLAB code:

1 C4xyzw = M4xyzw + Gxyzw + Gxzyw + Gxwyz;

Using the preconditions to perform a number of reductions in the previous blocks it can be shown
that the cubic addition reduces to a matrix addition. If the symmetry regions are used the matrix
addition requires only half or a quarter of the elements depending on indexing and complex
conjugates. Furthermore it has been shown that Mxyzw(ω1, ω2, ω3) and Mxw(ω3)∗F

[
myz(τ2 − τ1)

]
are equal to 0 for all values of ω1, ω2 and ω3 and can thus be removed from the addition.

17.12 Reduced block diagram and MATLAB code

After the reduction of the code the block diagram for the center slice reduces to the diagram
shown in figure 17.5. And the MATLAB code reduces down to:

1D FFT

2nd order 
moment 

sequence

”Row” 
summing 1D FFT

Vector-
vector 

convolution

Matrix 
additionx(t), w(t)

2nd order 
moment 
spectrum

Figure 17.5: Block diagram of the reduced trispectrum MATLAB implementation.
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1 % 1D FFT

2 X = fft(x, fftlength);
3

4 % Second order moment sequence

5 m2xw = zeros(1,K);
6 wtmp=[zeros(1,N−1) w zeros(1,N−1)];
7 for T1 = −(N−1):N−1
8 m2xw(T1+M) = x∗wtmp(N+T1:2∗N+T1−1)’/N; % Sum by vector-vector mul

9 end

10

11 % Row summing

12 g=zeros(1,K);

13 m2xwtmp=[zeros(1,N-1) m2xw zeros(1,N-1)];

14 for k=1:K

15 g(k)=sum(m2xwtmp(2*N-k:2*N+K-k-1));

16 end

17

18 pad = fftlength - K;

19 bpad = ceil(pad/2);

20 fpad = floor(pad/2);

21 g = ifftshift(padarray(padarray(g’,fpad,’post’),bpad,’pre’));
22

23 % 1D FFT

24 G = fft(g);
25

26 % Second order moment spectrum

27 M2xx = X .∗ conj(X)/N;
28

29 % Vector−vector convolution

30 for W1 = 0:fftlength−1
31 for W2 = 0:fftlength−1
32 Gxyzw(W1+1,W2+1) = M2xx(W1+1) ∗ G(W2+1);
33 Gxzyw(W1+1,W2+1) = M2xx(W2+1) ∗ G(W1+1);
34 end

35 end

36

37 % Matrix addition

38 C4xyzw =−Gxyzw − Gxzyw;

17.13 New complexity estimation for the trispectra

The new complexity for each step in estimating the trispectrum is listed in this section. The
added complexity for calculating indexes is not evaluated. The steps corresponds to the step in
figure 17.5. Also the DFT used initially for the Fourier transform is replaced with a fast Fourier
transform (FFT) and symmetry regions are not accounted for.

1. The complexity for removing the mean is 4n operations. n for computing the mean and n
for subtracting the mean from all elements and times two for both x and w. Although not
a part of the actual algorithm it is still a necessary step.

2. The 1-dimensional Fourier transform has a complexity of f · log( f ) operations. As it is
used twice the total complexity for the 1D FFT is 2 f · log( f ) operations.
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3. Only one second order moment spectrum is calculated with a complexity of 2 f operations.

4. The second order moment sequence has a complexity of 4n2 operations.

5. The row summing has a complexity of 4n2

6. The vector-vector convolution has a complexity of f 2 operations. As two vector vector
convolutions are computed the total complexity is 2 f 2.

7. The matrix addition has a complexity of 2 f 2 operations due to inverting the signs of both
matrices.

Remembering that the number frequency bins are twice the size of the frame length the total
complexity for estimating one trispectrum equates to: (24n2 + 4n · log(2n) + 9n).

The original complexity for calculating a trispectrum which contains 2n slices was in chapter 16
found to be:

48n4 + 88n3 + 16n3(2L + 1)3 + 28n2 + 17n (17.2)

Assuming that no smoothing is performed in the trispectra and the frame length is 128 samples,
the number of arithmetic operations for computing the center slice is 398 · 103.It was, however,
shown that the smoothing must be performed and thus the neighbouring 2L slices must also be
computed. In order to find the complexity with smoothing, an estimate of the complexity for
calculating the neighbouring slices is found using the steps in figure 17.2:

1. The operations needed for removing the mean have been done for the center slice and thus
does not need to be performed again.

2. The 1-dimensional FFT of w is not computed for the center slice, but is needed for neigh-
bouring slices in the fourth order moment spectrum. w is the same for all neighbouring
slices and the complexity of the step is then f · log( f ).

3. For the neighbouring slices the fourth order moment spectrum is not zero. It is, however,
only necessary to compute 2L slices of the fourth order moment spectrum each having a
complexity of 16n2 operations giving a total complexity of 2L16n2.

4. The second order moment cross-spectrum between x and w are needed for the matrix
vector convolution and must be computed. Like the Fourier transform this is the same for
all the neighbouring slices and the added complexity is then 2 f operations.

5. The second order auto-moment sequence of x is needed for the matrix expansion and must
be computed. As the Fourier transform of w, only one is needed for all the neighbouring
slices and the added complexity is then 4n2.

6. The matrix expansion is necessary for both the moment sequences as the following FFT can
not be reduced from 2-dimension to 1-dimensional. The matrix expansion does, however,
not require any arithmetic operations, only memory moves/copies and the complexity is
then 0.
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7. Instead of using one column of the Fourier transform of the matrix expansions, 2L columns
are needed for the matrix-vector convolution. These columns can be computed by a 2-
dimensional DFT or the full Fourier transform can be computed by a 2-dimension FFT.
The latter is assumed giving a complexity for each Fourier transform of f 2 · log( f 2) opera-
tions. The total complexity for the step is then 2 f 2 · log( f 2) operations.

8. The matrix-vector convolution must be performed for all 2L neighbouring slices and three
convolutions for each slice. Each slice has a complexity of f 2 operations giving a total
complexity of 2L3 f 2.

9. The cubic addition also contains 2L3 f 2 operations for adding the matrix-vector convolu-
tions and the fourth order moment spectrum.

With the center and neighbouring slices computed the smoothing can be done. For each output
value the smoothing is performed over a cube of values with x-, y- and z-dimensions = 2L + 1.
The cube is multiplied elementwise with the window and all the products summed. For each
output value this gives a complexity of 2 · (2L + 1)3 operations and a total complexity for the
smoothing of 2 · (2L + 1)3 · f 2 operations.

The added complexity for computing the center slice with smoothing is then:

(80L + 8 · (2L + 1)3 + 4) · n2 + 8n2 log 4n2 + 4n + 2n log 2n

With L = 10 the total number of operations for computing the center slice with smoothing is
then 1.23 · 109 + 398 · 103 ≈ 1.23 · 109 arithmetic operations.

Using equation (17.2) for the original trispectrum estimation the number of arithmetic oper-
ations using same L and N is 323 · 109. Comparing this to the reduced complexity the difference
is a factor of 263.

The complexity for the filter update in the BSS method can be now calculated. The operations
required for the inverse filtering, reverse third order moment spectrum and ¯̄H(0) estimation
are unchanged from the previous chapter while the operations for the non-minimum phase fil-
ter estimation can be calculated from the estimated complexity for computing one trispectrum
estimation. Four unique trispectra estimates are needed for the non-minimum phase filter esti-
mation. This gives the total number of operations for one filter update as shown in table 17.1.
The non-minimum phase filter estimation intially had the same complexity as the ¯̄H(0) estima-

Inverse filtering 8.5 · 106 operations
Reverse third order moment spectrum 42 · 106 operations
Non-minimum phase filter estimation 4.92 · 109 operations
¯̄H(0) estimation 2.6 · 1012 operations

Total complexity 2.6 · 1012 operations

Table 17.1: Number of operations for computing one filter update in the TITO model after the complexity of the
non-minimum phase estimation has been reduced.

tion, but a reduction of the complexity of around 500 have been achieved. If it is assumed that a
similar reduction in complexity can be achived for the ¯̄H(0) estimation, the overall reduction for
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a filter update will also be around 500 times or a complexity of about 10 · 109. In the previous
chapter it was stated that a speed up of at least 130 had to be achieved, in order for the algo-
rithm to run in real time on the platform. Using the reduced complexity it should be possible
to run the algorithm four times faster than needed. However, there are other practical concerns
with regard to the implementation that can change this number; added complexity from using
complex numbers, logarithm functions taking more than one operation, memory moves etc. To
get a more accurate estimate how fast a practical application can be executed, the computation
of the center slice without smoothing is implemented on the platform.
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CUDA architecture

In this chapter the hardware platform, the NVIDIA GPU, is described to give an understanding
of how an implementation of the BSS algorithm can be done efficiently. The programming of
the platform is described in appendix B.

In the recent years using GPUs as general purpose processors has become an increasingly popular
topic in the scientific community. The reason behind this is the sheer amount of computational
power and memory bandwidth GPUs can deliver, in fact, GPUs surpassed Central Processing
Units (CPUs) in these fields several years ago, as can be seen in figures 18.1 (a) and (b).

Why have GPUs not been used for general purpose processors previously? There has not
been a lot of focus on GPUs outside video games and as such GPU manufacturers such as
NVIDIA and ATi have not developed their GPUs for this market. Nor have most scientists seen
GPUs as an alternative to the common solutions such as DSPs or FPGAs and thus there have
been no need for GPUs as general purpose processors. Due to this the programming language
and GPUs have not been ideal for general purpose applications, but this did not hold back the
first attempts to use GPUs for scientific purposes. Since then GPUs as general purpose proces-
sors have received more attention and CUDA is a result of that.

CUDA is a programming framework developed by NVIDIA which allows programmers to eas-
ily use NVIDIA GPUs for general purpose applications. The CUDA programming language is
an extension to the well known C language and hides the hardware behind an extra layer of
abstraction. This simplifies the code because programmers do not need to worry about thread
management and also makes the code platform independent as only the underlying layers need
to be changed for different GPUs.

While GPUs offer tremendous computational power they have other downsides more common
solutions do not have. GPUs have to be installed in a fully fledged computer meaning they’ll
take up substantially more space and in most cases the GPU alone uses more power then other
common solutions resulting in an increased need for cooling. Most of the peripherals in a com-
puter may also be redundant for scientific purposes, while in some cases it can be an advantage
to have the these for I/O. Overall GPUs can provide a very large increase in computational
power, but at a cost.
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(a)

(b)

Figure 18.1: (a) Increase in FLOPS performed by NVIDIA GPUs and Intel CPUs since 2003. (b) Increase in
available memory bandwidth of NVIDIA GPUs and Intel CPUs since 2003. [7, p. 2]

18.1 Hardware layer

The reason GPUs have such tremendous computational power compared to CPUs is the applica-
tion they are designed for. 3D applications require very high data throughput for the thousands
of pixel values to be computed. The instructions for the different pixels are, however, usually
the same and conditional branches are less common. As such a large amount of the transistors
are assigned to ALUs and very few to flow control on GPUs compared to CPUs. This is illus-
trated in figure 18.2. From the figure it can also be seen that very few transistors are allocated
for cache on GPUs. While cache could be of use for GPUs, the memory latency introduced
by using external memory is hidden behind the data throughput [7, p. 3]. The small amount
of transistors allocated to flow control means that the programming of the GPUs is somewhat
limited which is explained in further detail in appendix B.

Looking further into the architecture figure 18.3 shows a simplified version of the basic blocks
of current CUDA capable GPUs. The device is the GPU while device memory is on the same
PCB also knows as the graphics card. The GPU itself is built around N streaming multipro-
cessors (SMs) containing M scalar processors (SPs), two special units for transcendentals, an
instruction unit and four types of memory available to the SPs; registers, read only constant
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Figure 18.2: Transistor allocation on GPUs compared to CPUs. [7, p. 3]

Figure 18.3: Hardware architecture of current NVIDIA GPUs capable of running CUDA code. The block diagram
is simplified by leaving out blocks that are unimportant in the understanding of how CUDA is implemented on
the GPU. [7, p. 17]

memory, read only texture memory and shared read-write memory. The current generation of
NVIDIA GPUs feature up to 30 SMs with 8 SPs each for a total of 240 SPs per GPU. For the
current generation each of the SMs can handle up to 1,024 active threads or 128 per SP, while
the maximum number of threads being processed concurrently is equal to the number of SPs.

18.1.1 Registers

Registers are on-chip and the fastest type of memory available to the SPs. For the current
generation there are 16,384 registers available per SM. These are assigned dynamically to the
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SPs depending on the code being executed.

18.1.2 Shared memory

For each SM there is 16 KB shared memory available. The shared memory is on-chip and
organized into 16 banks. All 16 banks can be accessed concurrently and will in the case with no
memory bank conflicts be just as fast as registers.

18.1.3 Constant memory

Constant memory is read only and placed off-chip, but cached. The total amount of constant
memory is 64 KB while 8 KB are cached for each SM. If all threads running on one SM reads the
same address the constant memory is just as fast as the registers due to the caching. If reading
different addresses the accesses will be serialized resulting in a slowdown that scales with the
number of accesses performed.

18.1.4 Texture memory

Texture memory is read only and placed off-chip, but cached. For each SM between 6 and 8 KB
of texture memory is cached. Due to the 2D nature of textures highest performance is obtained
with similar data arrays and can be just as fast as registers.

18.1.5 Non-CUDA specific blocks

Figure 18.3 only shows the small part of the blocks in a GPU that is important to CUDA.
Several other blocks exist, but are transparent to a CUDA programmer. Some of these are the
PCI-Express interface, memory controller for device memory and so on.

To understand how a program is mapped onto this architecture is it is necessary to go to a
higher abstraction level that is closely tied to the CUDA extensions to C.

18.2 Compute capability

As new GPUs are developed their functionality is increased. To specify what each GPU is ca-
pable of it is given a revision number, called the compute capability, consisting of a minor and a
major number. GPUs having the same major revision number have the same core architecture
while the minor revision number specify smaller improvements to the architecture such as new
function support or increased amount of registers/memory.

A list of all current GPUs and their compute capability as well as changes for each revision
can be found in appendix A in [7].
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18.3 Software layer

One of the reasons CUDA is capable of scaling over all CUDA enabled GPUs, regardless of how
many SMs they feature, is the way threads are handled.

18.3.1 Thread hierarchy

Unlike normal C functions that are executed one time when called, a function defined using the
CUDA C extensions, also called a kernel, can be executed an arbitrary number of times when
called. For each of these times a thread is created by the GPU to handle the operations inside
the function. These threads are lightweight and may exist for as short as one clock cycle of the
SPs, but are fully fledged threads in the sense that they each have their own program counter,
stack and assigned memory.

The threads are arranged in thread blocks of up to 3 dimensions so that each thread in a
block can be analog to an element in a vector, matrix or field. A block can at most contain
512 threads and the maximum x-, y- and z-dimensions are 512, 512 and 64, respectively. While
this may not be enough threads for many applications, several block can be grouped together
to form a grid of thread blocks. The grid can be up to 2-dimensions and have a maximum size
of 65,535 blocks for each dimension. This gives a total of more than 2,000 billion threads per
kernel. An illustration of the thread hierarchy can be seen in figure 18.4.

Figure 18.4: Hierarchy of threads created by a CUDA function running on a GPU. The threads are arranged in
blocks of up to 3 dimensions and each block is part of a grid of blocks of up to 2 dimensions. Note that only 2
dimensional blocks are illustrated on the figure. [7, p. 10]
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18.3.2 Block and thread assignment to processors

When a kernel has been defined it is called with two parameters. These define the size of the
blocks and the size of the grid and are the only thread related parameters the programmers are
be exposed to. Any underlying management of the blocks is handled by the GPU and threads
by the SMs.

When a kernel is called the blocks are assigned to the SMs. A block can not be split be-
tween several SMs, but one SM can handle several blocks. The number of blocks assigned to an
SM depends on the number of blocks in the grid and the number of registers and shared memory
necessary to execute one block. If the SMs do not have enough registers and shared memory to
execute at least one block, the kernel will fail. When the blocks have been assigned to the SMs,
these will schedule threads in bundles, called warps, containing 32 threads. Each thread within
a block has a unique ID that can be found using the thread index of the block. The threads are
always ordered with increasing and consecutive IDs, starting with thread 0 in the first warp. If
all threads of a warp follows the same execution path, the threads will be executed in parallel.
If the threads diverge due to data dependent branches, the SM will serialize the execution of the
paths until they all converge.

The ability of CUDA applications to scale from low end GPUs with few SMs to high end
GPUs with tens of SMs is a consequence of the way kernels are split into blocks. Any CUDA
enabled GPU can assign the blocks to an arbitrary number of SMs and let the SMs handle the
threads. It is, however, up to the programmer to determine appropriate sizes of the grid and
blocks to allow applications to scale for future GPUs as well as obtain the best performance.
These considerations are addressed in appendix B.
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CUDA implementation

In this chapter it is described how a CUDA program to estimate the center slice of the trispectrum
estimate is implemented. For users not familiar with the CUDA framework it is recommended
to read appendix B before reading this chapter.

The second order moment sequence kernel is used as an example to display both basic pro-
gramming principles as well as optimization principles in chapter 20. To give the reader a
deeper understanding of both the kernel and the calling process both are described using ab-
stract code followed by the CUDA implementation.

For figures showing how a kernel is designed, memory arrays are illustrated as squares with
a number inside. The number is the address of the array. Threads are illustrated with circles
where the number inside is the thread number.

19.1 Baseline implementation

The implementation described in this chapter is a baseline implementation. This means several
issues that may decrease performance will not be addressed as the functionality of the imple-
mentation is first priority. Issues that may arise include shared memory bank conflicts, complex
and fast versus simple but slow implementations, syncthreads() related slowdowns and loop
unrolling. These issues will be addressed in chapter 20.

19.2 CUDA variables

The MATLAB variable names introduced in chapter 17 are reused in the CUDA implementation
as well as the extensions. Pointers to any variables are prefixed with a p while most important
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variables and functions will be suffixed by either d or h to determine if they are located in
host or device memory. To simplify indexing in the code four variables are introduced:

Variable Description
tx x-index of thread in block.
ty y-index of thread in block.
bx x-index of block in grid.
by y-index of block in grid.

19.3 The cufft and cuComplex types

The NVIDIA complex types are based on the complex type defined in the C99 standard. cu-
Complex is basically a typedef of the complex type, but adapted to suit the CUDA syntax.
Depending on compilation settings cuComplex will be compiled with either float or double
precision. A cuComplex array consists of interleaved real and imaginary values where the real
part is accessed by using variablename[·].x and imaginary part by using variablename[·].y.

For the cufft, the cufftComplex is simply a typedef of cuComplex while cufftReal is a
typedef of float.

As the cufft and cuComplex types are both typedefs of float/double and the implementa-
tion is done with single precision, float1 and float2 will be used for real and complex values,
respectively, instead. For functions requiring either a cufft or cuComplex type as input a
typecast will be used.

19.4 Block overview

The implementation has been done based on the reduced block diagram shown in figure 17.5.
However, a few of the blocks have been split up or combined as described below.

In section 17.9 it was described that the matrix expansion was not necessary and replaceable
by a block calculating the sum of each row in the matrix. This block should also shifted the
row sums before the 1D FFT, but for the sake of simplicity the shifting has been implemented
in a kernel of its own. Furthermore in a practical application it may be desired to use an FFT
length that is larger than the size of the input vector. If this is the case the input must be zero-
padded to obtain the wanted FFT length. This is implemented in the same block as the shifting.

The last two blocks in the trispectrum estimation, vector-vector convolution and matrix ad-
dition, have also been merged into one block. This is due to the fact that the matrix output
of the vector-vector convolution can become quite large, dependant on the input signal length
and the resultant memory moves between the two blocks can be completely avoided by merging
them into one.
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With that in mind the block diagram for the CUDA implementation is illustrated in figure
19.1.

Vector-Vector 
Convolution and 
Matrix Addition

1D FFT

2nd order 
moment 

sequence

”Row” 
summing 1D FFT

VVC_MAx(t), w(t)

2nd order 
moment 
spectrum

Zero-pad 
and shift

Figure 19.1: Block diagram of the CUDA implementation.

19.5 Second order moment sequence

Kernel name Input Input type Output Output type
momSeq2 d x d[·] float2 m2xw d[·] float1

w d[·] float1

19.5.1 Description

The second order moment sequence can be seen as calculating the inner product of several
vectors, i.e. multiply and accumulate for different values of T and lastly divide by N. It can
also be written as the matrix-vector multiplication shown in equation (19.1) which will make it
easier to the understand block partitioning of the kernel.

m2xw d =



0 . . . 0 w d[0]
... . .

.
w d[0] w d[1]

0 . .
.

. .
. ...

w d[0] . .
.

. .
.

w d[N-1]
... . .

.
. .
.

0
... . .

.
. .
. ...

w d[N-1] 0 . . . 0


·


x d[0]
x d[1]

...

x d[N-1]

 ·
1
N

(19.1)

Each row in the matrix corresponds to a value of T, starting with T=-(N-1) and ending with
T=N-1 for a total ot 2·N-1 values of T.

The the kernel is designed such that the multiplications will be performed first followed by
adding all of the products together.

The fastest way, in terms of parallelism, to calculate a sum of values is using a tree struc-
ture as shown in figure 19.2. If the input number of values to be added together is not a power
of two the width of the tree will become odd at some point during the loops. To avoid this
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problem it is chosen to extend the tree with one element containing a zero each time a loop
contains an odd width.

On a block level each thread loads one element from x d and one from w d, multiplies

Figure 19.2: The figure shows the fastest way, in terms of parallelism, to calculate the sum of a number of values.

them and stores the product in shared memory. Half the threads will then each add together
two products from the multiplication and store the result back in shared memory. When all
elements have been summed the result will be divided by N and stored in global memory as
shown in figure 19.3. Depending on which row/column is accessed, the kernel should load zero
to shared memory instead of performing the multiplication of x d and w d. On a grid level it is

1 2 3 4 5 1 2 3 4 5x_d 0 w_d 0

0 1 2 3 4 5

1 2 3 4 5m2xw_s

0 1 2

1 32 0

0 1

1

0

0

First loop, load and
multiply elements

Middle loops, add 
together elements

Last loop, divide by N 
and store element

Zero-padding of odd 
width loop

0

m2xw_s 0

m2xw_s 0

m2xw_s 0

m2xw_d 0

Figure 19.3: The block level operations of the momSeq2 d kernel.

necessary to partition the maxtrix-vector multiplication into several blocks due to the fact that
the input vectors may be longer than the maximum block size. If the y-dimension of the block
is limited to 1 the resulting y-dimension of the grid will be 2·N-1. This introduces redundancy
as x d will be loaded separately by each block, but indexing is simplified.

With a block y-dimension of 1 it is, however, still not always possible for one block to han-
dle one row of the matrix-vector multiplication. As a result of this each row must be split into
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a number of blocks calculating intermediate sums that need to be added together to obtain the
final result. This requires a synchronization of the blocks which can only be achieved if the kernel
calls are used as synchronization points, otherwise dependency issues may become a problem.
The kernel is designed to be able to calculate both intermediate values and add these together
depending on which parameters it is called with. Depending on block and input vector size it
may be necessary to perform several calls or iterations of the kernel.

The grid level design also affects the block level design as it is only necessary to load and
multiply elements from x d and w d in the first iteration while the remaining iterations only
load intermediate results and add these together. Furthermore it is not necessary to divide by
N in each iteration, only the last iteration. The block partitioning is illustrated in figure 19.4.

If the x-dimension of the block times the x-dimension of the grid exceeds N, it is chosen to
zero-pad the input array and have all threads do the same work rather than constructing if
statements to handle both cases, as this would result in divergent warps.

First iteration, x and w are 
loaded and multiplied, 
intermediate result stored

Last iteration, intermediate 
results are loaded and 
added, result divided by N
and stored

Possible middle iterations, 
intermediate results are 
loaded and added, 
intermediate result stored

Figure 19.4: The grid level operations of the momSeq2 d kernel.
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19.5.2 Abstract and CUDA code

The code in the following sections are in most cases self-explanatory in the sense of the work they
do, but many of the lines have been explained in further detailing following the code snippets.
This is to give the reader an insight into some of the concerns in the implementation.

Kernel abstract code

1 momSeq2 kernel(in x, in w, out m2xw, in iteration, in number of elements){
2 if (first iteration){
3 if (thread index corresponds to nonzero entry of w matrix){
4 load x and w from global memory;
5 multiply x and w and store result in shared memory

6 }
7 else {
8 store 0 in shared memory;
9 }

10 }
11 else {
12 if (thread index lower than number of intermediate results){
13 load intermediate result from global memory and store in shared memory;
14 }
15 else {
16 store 0 in shared memory

17 }
18 }
19

20 synchronize threads;
21

22 while (number of elements > 1){
23 if (number of elements is odd){
24 zeropad after last element;
25 increment number of elements by 1;
26 }
27

28 if (thread index < number of elements/2){
29 add from shared memory using indexes: thread index and thread index +

number of elements/2 and store result in shared memory;
30 }
31

32 synchronize threads;
33 number of elements = number of elements/2;
34 }
35

36 if (last iteration) {
37 divide final result from shared memory by N and store in global memory;
38 }
39 else {
40 store intermediate result from shared memory in global memory;
41 }
42 }

Data load, line 2-18:
To take advantage of the fast on-chip memory data is loaded to shared memory from global
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memory. There are two cases, in the case of the first iteration x d and w d are loaded and
multiplied together before storing in shared memory and in the case of the remaining iterations
the intermediate are loaded directly to shared memory.

Data load control during first iteration, line 3 and 7:
The if-then-else statement presented in line 3 and 7 can be split up into three cases. Looking
at the w d matrix in equation (19.1) zeros need to be loaded if the index: Is in the upper left
corner of the matrix, lower right corner of the matrix or outside the matrix. The thread index
will only be outside the matrix in the x-dimension due to choosing the y-dimension of the blocks
equal to 1, i.e. the number of blocks needed to cover all values in the y-dimension is always an
integer number. If this is not possible for the chosen x-dimension of the blocks the last block
will have thread indexes that lie outside the matrix and thus need to load zeros for those threads.

Data load control during remaining iterations, line 12 and 15:
For the if-then-else statement in line 12 and 15 there is only one case. As all the intermediate
results are needed they must all be loaded, but due to the block dimensions as described above
the thread index may exceed the number of intermediate results and thus need to load zeros for
those threads.

Thread synchronization, line 20:
Before starting the tree structure addition of the elements it must be ensured that all elements
are loaded. This is done using the thread synchronization function. If the thread synchronization
was omitted it would be possible for threads to perform the addition before data was available
in shared memory and thus yielding an incorrect result.

Tree structure addition, line 22-34:
The tree structure can be implemented in several ways using while or for loops. Regardless of
how the implementation is done every loop must check that there is an even number of elements
and zero pad if this is not the case (line 24). As the number of elements are needed for indexing
it is important to increment the number of elements variable when a zero-padding is performed
(line 25).

When there is an even number of elements the addition can be performed. Only half as many
threads as there are elements are needed as each thread will load and add two elements from
shared memory and store them back as shown in figure 19.3 (line 29).

When one loop of the tree is finished it is necessary to synchronize the threads again. This
serves the purpose of avoiding one thread advancing to a new step in the tree, before all threads
have finished the previous stop. If omitted the same problem with threads performing additions
on data that is not yet available may arise.

Data store, line 36-41:
The last step in the kernel is to store the result of the tree structure addition. If it is the last
iteration the result will be divided by N otherwise it will be stored in global memory directly.

Kernel CUDA code
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1 __global__ void momSeq2_d(float2 ∗px_d, float1 ∗pw_d, float1 ∗pm2xw_d, int iteration,
int n, float invN){

2 // Register variables
3 int s;
4

5 // Shared variables
6 extern __shared__ char data[];
7 float1 ∗m2xw_s = (float1∗)data;
8

9 // Block index
10 int bx = blockIdx.x;
11 int by = blockIdx.y;
12

13 // Thread index
14 int tx = threadIdx.x;
15

16 // Load x∗w or intermediate results from global memory to shared memory
17 if (iteration == 0){
18 if (tx+bx∗(int)blockDim.x>=n−1−by && tx+bx∗blockDim.x<2∗n−1−by && tx+bx∗

blockDim.x<n)
19 m2xw_s[tx].x = px_d[tx+bx∗blockDim.x].x∗pw_d[tx+bx∗blockDim.x+by−(n−1)].x;
20 else m2xw_s[tx].x = 0;
21 }
22 else {
23 if (tx+bx∗blockDim.x < n) m2xw_s[tx].x = pm2xw_d[tx+bx∗blockDim.x+by∗n].x;
24 else m2xw_s[tx].x = 0;
25 }
26

27 __syncthreads();
28

29 // Perform tree structure addition
30 for (s=blockDim.x; s>1; s>>=1){
31 // Pad with one zero if array is odd size
32 if ((s&1) == 1){
33 if (tx==(s>>1)) m2xw_s[s].x=0;
34 s++;
35 }
36 if (tx<(s>>1)) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+(s>>1)].x;
37 __syncthreads();
38 }
39

40 // Store m2xw or intermediate results in global memory
41 if (tx==0 && gridDim.x>1) pm2xw_d[bx+by∗gridDim.x].x = m2xw_s[tx].x;
42 else if (tx==0 && gridDim.x==1) pm2xw_d[bx+by∗gridDim.x].x = m2xw_s[tx].x∗invN;
43 }

Function parameters, line 1:
The x d array is declared as a float2 although the imaginary part is always 0. This is because
x d is also used as input for the 1D FFT block which requires both real and imaginary parts.
n the number of elements to add together and iteration is used to identify which iteration is
the first. The variable invN will be explained below.

Data load control during first iteration, line 3 and 7:
As mentioned above there are three cases for the first iteration: tx+bx*(int)blockDim.x>=n-
1-by makes sure zeros are loaded in the upper left corner of the w d matrix. blockDim.x is
typecast to int from unsigned int to make sure a comparison to the integer value n-1-by is
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possible as the latter will become negative dependent on by. tx+bx*blockDim.x<2*n-1-by
makes sure zeros are loaded in the lower right corner and tx+bx*blockDim.x<n makes sure
zeros are loaded if the thread index exceeds the matrix.

Data load control during remaining iteraions, line 12 and 15:
For the remaining iterations tx+bx*blockDim.x<n makes sure zeroes are loaded if the thread
index exceeds the number of elements.

Tree structure addition, line 30-38:
The tree structure is implemented as a for loop, but uses the x-dimension of the block rather
than n as the starting value for the loop variable, s. This is due to the block partitioning mean-
ing that only as many elements as the x-dimension of the block will be added together in one
block, rather than n elements. This also means s will only become odd if the x-dimension of the
block is not a power of two rather than n not being a power of two. The for loop will run as
long as s is greater than one, i.e. there is a minimum of two elements to add together.

To determine if s is odd a bitwise comparison of the LSB is performed (line 32). If this evaluates
to true a zero will be padded at the s’th index and s incremented by one. Only one thread will
perform the zero-padding as the padding will be visible to all threads through shared memory
(line 33). By using the same thread that adds the s’th element to zero-pad there will be no
dependency issues and no need to synchronize the threads. All threads will, however, need to
increment s as this is a register variable and thus not shared among the threads in the block.

As opposed to the abstract code all divisions by two have been replaced by the equivalent
bitwise operation to improve speed.

Data store, line 41-42:
Like the zero-padding only one thread needs to store the result from the tree structure addi-
tion in global memory. As the result is always store in the 0’th index in shared memory the
thread with index 0 is chosen. To determine whether or not the kernel call is the last of the
iterations the x-dimension of the grid is compared to one. If the x-dimension is larger there are
more intermediate values to add together and one or more kernel calls will be needed. If the
x-dimension is one it is the last iteration and the result should be divided by N before storing
in global memory. Rather than dividing by N the inverse of N, invN, is multiplied to improve
speed.

Calling process abstract code

1 allocate memory space for x, w and m2xw on device;
2 copy x and w to device;
3

4 set start value of n = N;
5 set start value of iteration = 0;
6

7 set block size;
8 set grid size (y−dimension);
9 while (n>1) {

10 calc grid size (x−dimension);
11
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12 call kernel;
13

14 increment iteration by 1;
15 calc new n;
16 }
17

18 free allocated memory on device;

No data is copied back from the device as the output of the kernel will only be used as input
for the following block.

Memory allocation, line 1:
Allocating memory for x d and w d is straightforward as both vectors have length N and a size
dependent on their type. For m2xw d it is necessary to allocate memory for both the output
vector and intermediate values.

Kernel loop, line 9-16:
The x-dimension of the grid size is calculated using the value of n and the x-dimension of the
blocks. There must be enough blocks to cover all n elements.

For the kernel call the block and grid sizes are input as well as the amount of dynamically
allocated shared memory used by each block.

A new n value must be calculated after each loop. The number of elements is always reduced
by a factor equal to the x-dimension of the blocks rounding up.

Calling process CUDA code

1 // Allocate memory on device
2 cudaMalloc((void∗∗)&px_d, N∗sizeof(float2));
3 cudaMalloc((void∗∗)&pw_d, N∗sizeof(float1));
4 cudaMalloc((void∗∗)&pm2xw_d, ceil((float)N/64.0)∗(2∗N−1)∗sizeof(float1));
5

6 // Copy data to device
7 cudaMemcpy(px_d, px_h, N∗sizeof(float2), cudaMemcpyHostToDevice);
8 cudaMemcpy(pw_d, pw_h, N∗sizeof(float1), cudaMemcpyHostToDevice);
9

10 // Second order moment sequence
11 iteration = 0;
12 dimBlock.x = 64; dimBlock.y = 1;
13 dimGrid.y = 2∗N−1;
14 for (n=N; n>1; n=(int)ceil((float)n/(float)dimBlock.x)){
15 dimGrid.x = (int)ceil((float)n/(float)dimBlock.x);
16 momSeq2_d <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d, pm2xw_d,

iteration, n, 1.0/(float)N);
17 iteration++;
18 }
19

20 // Free allocated memory on device
21 cudaFree(px_d);
22 cudaFree(pw_d);
23 cudaFree(pm2xw_d);
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Memory allocation, line 1-3:
For m2xw d it will be necessary to allocate space for intermediate results. For each block in the
y-dimension there will be as many intermediate results as there are blocks in the x-dimension, i.e.
the grid size for the first iteration. The y-dimension of the grid is 2*N-1 while the x-dimension
of the grid is N/x-dimension of block rounded up. An x-dimension of the block equal to 64 is
used in the code snippet.

Grid and block dimensions, line 12-13:
The x-dimension of the blocks is determined at compile time, in the code snippet 64 is used. The
y-dimension of the blocks is chosen to one resulting in an y-dimension of the grid equal to 2*N-1.

Kernel loop, line 14-18:
The kernel loop is implemented as a for loop. As described in the abstract code, the loop vari-
able n is set equal to N in the first iteration and subsequently divided by the block dimension
rounded up each iteration. The loop will keep running as long as there is more than one element
left. The typecasts are necessary due to the use of the ceil() function

The x-dimension of the grid is determined from the number of elements and the x-dimension of
the block, i.e. N/x-dimension of block rounded up.

The kernel is called using the specified grid and block size. The shared memory used is de-
termined to be equal to the x-dimension of the blocks. The kernel only loads as many elements
into shared memory as there are threads.

19.6 Row summing

Kernel name Input Input type Output Output type
rowSum d m2xw d[·] float1 g d[·] float1

19.6.1 Description

Because the row sum kernel performs the same function as the momSeq2 d kernel without
the multiplications and division by N, both the block level and grid level designs are almost
identical. The row sum kernel still adds the values together in a tree structure, zero-pads the
array on both a grid and block level and each row sum is equal to one output in g d. Other than
the multiplications and division by N the only difference is the input matrix, shown in equation
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19.2, of which the rows sums are calculated.

m2xw d[N-1] m2xw d[N] . . . m2xw d[2*N-2] 0 . . . 0

m2xw d[N-2] m2xw d[N-1]
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

m2xw d[0]
. . .

. . .
. . .

. . .
. . . m2xw d[2*N-2]

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 m2xw d[0] . . . . . . m2xw d[N-1]


(19.2)

This results in a different indexing and zero-loads compared to the momSeq2 d kernel, but has
no effects on the inner loops adding together the values.

19.7 Zero-pad and shift

Host function name Input Input type Output Output type
padShift d g d[·] float1 gpadshift d[·] float2

19.7.1 Description

Due to the way the following 1D FFT block is implemented gpadshift d needs to be complex
valued.

The input array g d always has a length of 2·N-1 values. For the real part of gpadshift d
the kernel shifts the upper and lower part of g d and zero-pads if the wanted FFT length is
larger than 2·N-1. The last N values of g d are put in the beginning of gpadshift d followed
by FFT length - (2·N-1) zeroes and lastly the N-1 first values of g d. Depending on the index
of each thread it will load either a value from g d in global memory or a zero and store the value
in gpadshift d also in global memory.

For the imaginary part each thread stores a zero on in gpadshift d. This is illustrated in
figure 19.5. With regard to block partitioning the kernel is straightforward. The y-dimension of
both block and grid should both be one while the x-dimension of the block times the x-dimension
of the grid should just be large enough to cover all values in gpadshift d. If the number of
threads exceed the number of values in gpadshift d these threads should do no work.

19.8 1D FFT

Host function name Input Input type Output Output type
FFT1 h x d[·] cufftComplex X d[·] cufftComplex

gpadshift d[·] cufftComplex G d[·] cufftComplex
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19.8.1 Description

Performs Fourier transform of a 1-dimensional array of values. The 1D FFT is used two times
in the CUDA implementation and both times a real to complex Fourier transform is calculated.
The FFT is, however, calculated as a complex to complex transform as this arranges output data
to be used without changes in the following blocks. The FFT used is from NVIDIAs CUFFT
library which is based on FFTW (www.fftw.org). The FFT output is ordered starting with
the DC component at index 0 and the normalized π frequency at the center index. N can be
anything below 8 million elements, but the FFT algorithm performs best when N is a power of
2, 4, 8 or similarly small primes.

There is no need to make any considerations about memory management or execution con-
figuration as this is all hidden in the library and already optimized. It is, however, neccesary to
zero-pad the input array if an FFT length longer than N is needed.

19.9 Second order moment spectrum

Host function name Input Input type Output Output type
momSpec2 d X d[·] float2 M2xx d[·] float1

19.9.1 Description

The second order moment spectrum is calculated by multiplying each element of the output of
the Fourier transform of x d with its conjugate. The input array is complex valued while the
output array will be real valued. With the complex input array being represented as a float2

1 2 3 4 5g_d 0 6

N = 4,   FFT length = 10

1 2 3 4 5gpadshift_d, 
real part 0 6 7 8 9

0 1 2 3 4 5 6 7 8 9

000

1 2 3 4 5gpadshift_d, 
imaginary part 0 6 7 8 9

0 1 2 3 4 5 6 7 8 9

000 000000 0

Figure 19.5: The operations of the padShift d kernel.

133



Group 1042 CHAPTER 19. CUDA IMPLEMENTATION

type the output value can be calculated as the square of the real and imaginary part added
together and divided by N. The kernel is designed such that one thread will load both real and
imaginary parts of one element to shared memory, square them, add them together, divide by N
and store the result in global memory. This is illustrated in figure 19.6. The block partitioning

1 2 3 4 5X_d,
real part 0 6 7 1 2 3 4 5X_d,

imaginary part 0 6 7

1 2 3 4 5X_s,
real part 0 6 7

0 1 2 3 4 5 6 7

1 2 3 4 5X_s, 
imaginary part 0 6 7

0 1 2 3 4 5 6 7

1 2 3 4 5M2xx_d 0 6 7

0 1 2 3 4 5 6 7
Square real and 
imaginary parts, 
divide sum by N

Figure 19.6: The operations of the momSpec2 d kernel.

is identical to the one used in the padShift d kernel, i.e. grid and block y-dimension of one,
x-dimension of grid times x-dimension of block should be large enough to cover all values and
any threads exceeding the number of values should do no work.

19.10 Vector-vector convolution and matrix addition

Host function name Input Input type Output Output type
VVC MA d X d[·] float2 C4 d[·] float1

G d[·] float2

19.10.1 Description

Technically the vector-vector convolution is identical to a column vector-row vector multiplica-
tion yielding a matrix output. The entire expression for both blocks is the sum of two column
vector-row vector multiplications, each one with the vectors swapped around, i.e. a*b’ + b*a’.
The sum is performed with the signs of both matrices inverted following the multiplications.

On a block level one thread is assigned to each element in the output matrix. Every thread
performs the corresponding multiplications and adds together the products to obtain the final
result in trispectrum slice, C4 d. The input vectors are loaded to shared memory by only the
first column and row of threads in a thread block to avoid unnecessary loads.

On a grid level the dimensions of the blocks times the dimensions of the grid must cover all
values of the output matrix and any threads exceeding the matrix size should do no work.
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Figure 19.7: The operations of the VVC MA d kernel.
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19.11 Verification of the implementation

To verify that the implemented kernels compute the correct output they are tested. A sequence
of floating point numbers are generated in C and used as input vectors to the kernels. The
outputs are compared to outputs from C implementations of the kernels to see if there are any
differences. The FFT1 h block is not tested, as it is only a wrapper function to the NVIDIA
CUFFT library kernel.

Each kernel is tested using several values of N and different execution configurations. The
results can be seen in table 19.1 For all kernels the mean error is less than 10−7 which can be

Kernel: momSeq2 d rowSum d padShift d momSpec2 d VVC MA d

Mean error: < 10−7 < 10−7 0 < 10−7 < 10−6

Max error: < 10−6 < 10−3 0 < 10−6 < 10−6

Table 19.1: Results from the verification of the implementation. The mean error between the output from each
kernel and equivalent CPU implementations has been calculated and the maximum error has been found.

explained by rounding mode differences in the CUDA implementation and in C. The maximum
error was less than 10−3 and found in the rowSum d kernel. The maximum error scaled with
N. This is due to the fact that the rowSum d kernel accumulates a large amount of values and
thus the error accumulates equivalently. Only the padShift d produced a mean error of zero
due to performing no arithmetic operations.

The combined implementation was also tested and compared to results from MATLAB. The
input x and w vectors were of size N = 4096 and generated by the randn function with mean
value subtracted. The results can be seen in table 19.2. Comparing the single precision float-

Mean error Mean square error Max error
9.38·10−6 8.90·10−9 0.0307

Table 19.2: Results from the verification of the implementation. The mean error, mean square error and maximum
error between MATLAB output and CUDA implementation output have been recorded.

ing point representation of the CUDA implementation to the double precision of MATLAB the
mean and mean square errors are low. The maximum error can, however, be quite large due to
rounding errors being accumulated in several steps. For further calculations this has small effect
as long large errors are limited, which is the case as shown by the mean error.

19.12 Test of execution configuration and scalability

To show what impact the execution configuration can have on the performance of a kernel, each
is tested using different block sizes and thus different grid sizes. To accurately measure the
execution times a for loop has been inserted in each kernel such that data loads, arithmetic
operations and data stores can be repeated an arbitrary number of times. This also means
kernel launch overhead becomes less significant when the number of loops is large. Results for
all the kernels can be found on the enclosed CD while only selected plots are shown in this
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section. The plots can be seen in figures 19.8-19.10 For the momSeq2 d, rowSum d and
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Figure 19.8: Plots of execution time as a function of block x-dimension and N for the momSeq2 d kernel.

padShift d kernels the general tendency shows a block x-dimension of 64 to be the fastest and
larger block dimensions to be slower. A block x-dimension of 32 proved to be slowest for the
before mentioned kernels as well as the momSpec2 d kernel. This can be explained by the
notion about registers performing best with block sizes that are multiples of 64 [7, p. 69]. The
block sizes 192 and 384 showed worse performance than larger block sizes that would otherwise
have been expected to be slower in the momSeq2 d and rowSum d kernels. This is due to
these block sizes requiring 0-insertion to maintain an even number of elements during the tree
structure addition. For the VVC MA d kernel using a block size that had a small x-dimension
dimension compared to the y-dimension executed considerably slower than when the opposite
was true. When a smaller x-dimension is used the elements loaded from global memory are more
spread out compared to using a larger x-dimension. This makes it harder for the GPU to coalesce
memory accesses and as a result the execution time increases for blocks with smaller x-dimension

With regard to the scalability of the kernels it is easy to see that the momSpec2 d kernel
scales linearly with N, which was also the case for the padShift d kernel. For the momSeq2 d
kernel the number of arithmetic operations are N ·(2·N-1)+(N-1)·(2·N-1) translating into a com-
plexity of 4·N2-4·N. It can be shown in MATLAB that the measured execution times for the
momSeq2 d kernel are best approximated by second order polynomials, i.e. the kernel exhibits
a square growth as a function of N as would be expected from the complexity. This behavior is
also exhibited by the rowSum d and VVC MA d kernels.
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Figure 19.9: Plots of execution time as a function of block x-dimension and N for the momSpec d kernel.
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Figure 19.10: Plots of execution time as a function of block dimensions for the momSeq2 d kernel.
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Chapter 20

Optimization of the CUDA
implementation

In this chapter the momSeq2 d kernel described in section 19.5 is reviewed and optimized with
regard to execution time. To optimize execution time there are two paramters to consider:

• FLOPS: If the kernel requires many operations per element loaded.

• Bandwidth: If the kernel requires few operations per element loaded.

For the momSeq2 d kernel there is N multiplications and N-1 additions per 2N (x d[n]·w d[n]
+ x d[n+1]·w d[n+1]) elements loaded. Even without including storing and loading interme-
diate results this indicates a low number of operations per element loaded, i.e. bandwidth is the
bottleneck and should be the parameter to optimize.

After each step in the optimization the bandwidth and resulting speedup will be calculated.
When calculating the bandwidth it is worth noting that storing and loading of intermediate
results must be included. N = 16384 and 20 loops will be used for all execution time tests.
The tests have been run with several block sizes to see if the speedup for each block size is
significantly different.

20.1 Baseline implementation

In the baseline implementation shared memory bank conflicts are avoided as a result of two
design choices. The first choice is performing the multiplication of x d and w d during the load
in the first iteration and thus storing the N’th product in the N’th bank modulo 16. This means
that each half-warp in the first loop of the tree structure will access two strides of 16 elements
that will all be in different banks. The second choice is how the results of each step in the tree
structure are stored. By having each half-warp read the lower half of the values added together
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and store them at the same address the stride structure will be maintained and conflicts avoided.
To illustrate the difference between this structure and a structure resulting in shared memory
bank conflicts see figure 20.1. The bandwidth of the baseline implementation is shown in table

x_d w_d1 2 3 0 1

0 1 0

1 0

0 1

1

0

0 2 3

1

1

m2xw_s
shared bank #

Thread 
executed
on SP #
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1 0

0 1

1
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0 10

Bank conflict, 2 
threads accessing 

same bank

Figure 20.1: Tree structure and use of shared memory. For the shared memory the number shows which bank
the element is stored in and for the threads the number shows what scalar processor the thread is executed on.
For the sake of simplicity only two shared memory banks and scalar processors are assumed. Left figure shows
the baseline implementation of momSeq2 d with no conflicts and right shows an example that would result in
conflicts after the first step of the tree structure addition.

20.1.

Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
Baseline 32 190.92 10.48

64 161.60 12.38
128 165.51 12.08
192 185.75 10.77
256 180.97 11.05
384 208.48 9.59
512 203.88 9.81

Table 20.1: Bandwidth of the baseline version of the momSeq2 d kernel.

20.2 Unroll last warp

As explained in the design of the kernel it is required to synchronize after each loop of the tree
structure addition and this was implemented in CUDA:

1 // Perform tree structure addition
2 for (s=blockDim.x; s>1; s>>=1){
3 // Pad with one zero if array is odd size
4 if ((s&1) == 1){
5 if (tx==(s>>1)) m2xw_s[s].x=0;
6 s++;
7 }
8 if (tx<(s>>1)) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+(s>>1)].x;
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9 __syncthreads();
10 }

Recalling that the SMs execute a warp at a time it is not necessary to synchronize the threads
if there is less than one warp of threads doing work left. The ”synchronization” will happen
automatically as the same warp of threads will be executed in each loop and thus executed in
a sequential manner. This eliminates the need for an explicit thread synchronization and the
loops for the last warp can also be unrolled:

1 // Perform tree structure addition
2 for (s=blockDim.x; s>64; s>>=1){
3 if (tx<(s>>1)) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+(s>>1)].x;
4 __syncthreads();
5 }
6

7 if (blockDim.x>32) // Skip if N<64
8 if (tx<32)
9 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+32].x;

10 if (tx < 32){
11 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+16].x;
12 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+8].x;
13 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+4].x;
14 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+2].x;
15 m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+1].x;
16 }

The zero-padding is still possible to perform in the unrolled loop, but not practical and is instead
removed. This means block sizes that are not a power of two can not be used, but these block
sizes have already been shown to be inferior in performance due to the zero-padding. The
resulting bandwidth and speedups are shown in table 20.2.

Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
Unrolled 32 126.63 15.79 1.51x 1.51x
last warp 64 92.60 21.60 1.64x 1.72x

128 92.57 21.61 1.79x 1.79x
256 105.35 18.98 1.72x 1.71x
512 124.01 16.13 1.64x 1.64x

Table 20.2: Bandwidth and speedup of the momSeq2 d kernel after unroll of last warp in inner loop has been
implemented.

20.3 Completely unrolled

Unrolling the last warp to and removing the thread synchronization yielding a speedup of as
much 1.79x. Unrolling the remaining loops should decrease the execution time as well. There
is, however, a problem with this approach as the loop is dependent on the block size which is
not known at compile time. One way to solve this is by creating a kernel for each block size - in
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C++ this is done by the use of templates:

1 template <unsigned int blockSize>
2 __global__ void momSeq2_d(float2 ∗px_d, float1 ∗pw_d, float1 ∗pm2xw_d, int iteration,

int n, float invN)

1 // Perform tree structure addition
2 if (blockSize==512){
3 if (tx < 256) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+256].x;
4 __syncthreads();
5 }
6 if (blockSize>=256){
7 if (tx < 128) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+128].x;
8 __syncthreads();
9 }

10 if (blockSize>=128){
11 if (tx < 64) m2xw_s[tx].x = m2xw_s[tx].x + m2xw_s[tx+64].x;
12 __syncthreads();
13 }
14 if (tx < 32){
15 if (blockSize>=64) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+32+ty∗blockDim.x].x;
16 if (blockSize>=32) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+16+ty∗blockDim.x].x;
17 if (blockSize>=16) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+8+ty∗blockDim.x].x;
18 if (blockSize>=8) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+4+ty∗blockDim.x].x;
19 if (blockSize>=4) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+2+ty∗blockDim.x].x;
20 if (blockSize>=2) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+1+ty∗blockDim.x].x;}

All the if statements using the template parameter blockSize is then evaluated at compile time
and the compiler will create a kernel for each value of the template parameter. For this to be
possible the template parameter must be known at compile time and as such the calling process
must be changed from:

1 // Second order moment sequence
2 iteration = 0;
3 dimBlock.x = 64; dimBlock.y = 1;
4 dimGrid.y = 2∗N−1;
5 for (n=N; n>1; n=(int)ceil((float)n/(float)dimBlock.x)){
6 dimGrid.x = (int)ceil((float)n/(float)dimBlock.x);
7 momSeq2_d <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d, pm2xw_d,

iteration, n, 1.0/(float)N);
8 iteration++;
9 }

To:

1 // Second order moment sequence
2 iteration = 0;
3 dimBlock.x = 64; dimBlock.y = 1;
4 dimGrid.y = 2∗N−1;
5 for (n=N; n>1; n=(int)ceil((float)n/(float)dimBlock.x)){
6 dimGrid.x = (int)ceil((float)n/(float)dimBlock.x);
7 if (dimBlock.x==32)
8 momSeq2_d <32> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, iteration, n, 1.0/(float)N);
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9 if (dimBlock.x==64)
10 momSeq2_d <64> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, iteration, n, 1.0/(float)N);
11 if (dimBlock.x==128)
12 momSeq2_d <128> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d,

pw_d, pm2xw_d, iteration, n, 1.0/(float)N);
13 if (dimBlock.x==256)
14 momSeq2_d <256> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d,

pw_d, pm2xw_d, iteration, n, 1.0/(float)N);
15 if (dimBlock.x==512)
16 momSeq2_d <512> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d,

pw_d, pm2xw_d, iteration, n, 1.0/(float)N);
17 iteration++;
18 }

The resulting bandwidth and speedups are shown in table 20.3. Unlike unrolling the last warp

Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
Completely 32 115.10 17.38 1.10x 1.66x

unrolled 64 88.88 22.50 1.04x 1.82x
128 83.48 23.96 1.11x 1.98x
256 90.49 22.10 1.16x 2.00x
512 103.79 19.27 1.19x 1.96x

Table 20.3: Bandwidth and speedup of the momSeq2 d kernel after complete unroll of inner loop has been
implemented.

the complete unrolling of the loop yields only a small decrease in execution time. This is due to
the fact that the threads still have to be synchronized and this is the most time consuming part
of the loop.

20.4 First add during load

For all the iterations following the first, one thread loads one element and one thread adds
together two elements in the first step of the tree structure. This means half the threads are
doing no work in the first loop! To utilize the threads a bit better the first add can be performed
during the load, i.e. one thread loads two elements, adds them together and store them in shared
memory. This changes the code from:

1 // Load x∗w or intermediate results from global memory to shared memory
2 if (iteration == 0){
3 if (tx+bx∗(int)blockDim.x>=n−1−by && tx+bx∗blockDim.x<2∗n−1−by && tx+bx∗

blockDim.x<n)
4 m2xw_s[tx].x = px_d[tx+bx∗blockDim.x].x∗pw_d[tx+bx∗blockDim.x+by−(n−1)].x;
5 else m2xw_s[tx].x = 0;
6 }
7 else {
8 if (tx+bx∗blockDim.x < n) m2xw_s[tx].x = pm2xw_d[tx+bx∗blockDim.x+by∗n].x;
9 else m2xw_s[tx].x = 0;

10 }
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To:

1 // Load x∗w or intermediate results from global memory to shared memory
2 if (iteration == 0){
3 if ((int)(tx+bx∗blockDim.x)>=n−1−by && tx+bx∗blockDim.x<2∗n−1−by && tx+bx∗

blockDim.x<n)
4 m2xw_s[tx].x = px_d[tx+bx∗blockDim.x].x∗pw_d[tx+bx∗blockDim.x+by−(n−1)].x;
5 else m2xw_s[tx].x = 0;
6 }
7 else {
8 if (tx+bx∗blockDim.x∗2+blockDim.x<n)
9 m2xw_s[tx].x = pm2xw_d[tx+bx∗blockDim.x∗2+by∗n].x + pm2xw_d[tx+bx∗blockDim.x

∗2+blockDim.x+by∗n].x;
10 else if (tx+bx∗blockDim.x∗2<n)
11 m2xw_s[tx].x = pm2xw_d[tx+bx∗blockDim.x∗2+by∗n].x;
12 else
13 m2xw_s[tx].x = 0;
14 }

The resulting bandwidth and speedups are shown in table 20.4. While performing the first add

Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
First add 32 109.53 18.26 1.05x 1.74x

during load 64 83.35 24.00 1.07x 1.92x
128 78.57 25.46 1.06x 2.11x
256 86.59 23.10 1.05x 2.09x
512 100.65 19.87 1.03x 2.03x

Table 20.4: Bandwidth and speedup of the momSeq2 d kernel after first add during load has been implemented.

during the load does the decrease in execution time, the decrease is very small. This is due to the
fact that most work is done in the first iteration and this optimization only affects the following
iterations, where the number of elements to be added together has already been reduced by a
factor equal to the block size.

20.5 Several adds during load

Using the block size with x-dimension equal to 128 yields a bandwidth of 24 GiB/s after the
previous optimizations. This is far from the theoretical bandwidth of 148.06 GiB/s and an in-
dication that something can be done much more efficiently.

Looking closely at the tree structure addition it becomes clear that this way of adding to-
gether the elements only proves to be the fastest solution, if all adds in each step of the tree
can be performed in parallel. For the CUDA implementation this is not the case as each step is
split into smaller blocks performing their own tree structure addition. This would, however, still
be efficient if there was only as many blocks as there are SMs (possibly twice as many blocks
as SMs to hide overhead) so they could all run in parallel. As there are 2·N-1 blocks in the
y-dimension of the grid and several blocks in the x-dimension the number of blocks far exceeds
the number of SMs resulting in an inefficient implementation. Furthermore in each block many
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threads are idle due to the tree structure - only half the number of threads as there are elements
left to add together can do any work.

One way to avoid these idle threads is by avoiding the tree structure until there are less el-
ements than 2x the number of threads that can run in parallel. This can be achieved by letting
all threads add together elements in a sequential manner and adding together the last elements
using the tree structure as shown in figure 20.2. For the CUDA implementation this translates
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0
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Figure 20.2: Left: Full tree structure addition using four threads. Because the eight elements have to be added
together four elements at a time in the tree structure the utilization of some of the threads will be low. Right:
Sequential addition of the elements until the tree structure addition can be performed resulting in a higher
utilization of the threads and thus faster execution.

into using less blocks in the x-dimension, but each block performing a number of sequential
adds before finishing with the tree structure addition. As there are already 2·N-1 blocks in the
y-dimension, i.e. more than the number of SMs, the best utilization of each thread will occur
with only one block in the x-dimension, such that the number of blocks is kept low. This way the
number of blocks performing tree structure additions will be minimized while still having enough
blocks to utilize all SMs. A side bonus to this solution is the elimination of any intermediate
results and it will not be neccessary to call the kernel several times to add these together. This
results in the following calling process code:

1 // Second order moment sequence
2 dimBlock.x = 64; dimBlock.y = 1;
3 dimGrid.x = 1; dimGrid.y = 2∗N−1;
4 if (dimBlock.x==32)
5 momSeq2_d <32> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
6 if (dimBlock.x==64)
7 momSeq2_d <64> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
8 if (dimBlock.x==128)
9 momSeq2_d <128> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
10 if (dimBlock.x==256)
11 momSeq2_d <256> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
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12 if (dimBlock.x==512)
13 momSeq2_d <512> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);

And the kernel code loading elements from global memory is replaced with:

1 // Load x∗w from global memory and add to shared memory
2 m2xw_s[tx].x = 0;
3 for (int i=0; tx+i<n; i+=blockDim.x){
4 if (tx+i>=n−1−by && tx+i<2∗n−1−by)
5 m2xw_s[tx].x += px_d[tx+i].x∗pw_d[tx+i+by−(n−1)].x;
6 }

The resulting bandwidth and speedups are shown in table 20.5.

Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
Several 32 33.27 60.11 3.29x 5.73x

adds during 64 29.08 68.78 2.87x 5.56x
load 128 29.08 68.78 2.70x 5.69x

256 29.13 68.66 2.97x 6.21x
512 29.93 66.82 3.36x 6.81x

Table 20.5: Bandwidth and speedup of the momSeq2 d kernel after severals adds during load have been imple-
mented.

20.6 2-dimensional block size

As described in the previous kernel the tree structure addition is ineffective if not all blocks can
run in parallel - even when performing sequential adds during load. As there are 2·N-1 blocks
in the y-dimension of the grid there will be more blocks than SMs except for very small values
of N. The number of blocks can be reduced by allowing the y-dimension of the blocks to be
larger than one. The y-dimension of the grid will then be calculated from the y-dimension of
the blocks in the calling proces:

1 // Second order moment sequence
2 dimBlock.x = 32; dimBlock.y = 4;
3 dimGrid.x = 1; dimGrid.y = (int)ceil((float)N/(float)dimBlock.y);
4 if (dimBlock.x==32)
5 momSeq2_d <32> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
6 if (dimBlock.x==64)
7 momSeq2_d <64> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
8 if (dimBlock.x==128)
9 momSeq2_d <128> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
10 if (dimBlock.x==256)
11 momSeq2_d <256> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);
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12 if (dimBlock.x==512)
13 momSeq2_d <512> <<<dimGrid, dimBlock, dimBlock.x∗sizeof(float)>>> (px_d, pw_d,

pm2xw_d, n, 1.0/(float)N);

While the basic structure of the kernel can be left unchanged the indexing throughtout the kernel
must be adapted to the 2-dimensional block size:

1 // Load x∗w from global memory and add to shared memory
2 m2xw_s[tx+ty∗blockDim.x].x = 0;
3 for (int i=0; tx+i<n; i+=blockDim.x){
4 if (tx+i>=n−1−ty−by∗(int)blockDim.y && tx+i<2∗n−1−ty−by∗blockDim.y)
5 m2xw_s[tx+ty∗blockDim.x].x += px_d[tx+i].x∗pw_d[tx+i+ty+by∗blockDim.y−(n−1)].

x;
6 }
7

8 __syncthreads();
9

10 // Perform tree structure addition
11 if (blockSize==512){
12 if (tx < 256) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+256+ty∗blockDim.x].x;
13 __syncthreads();
14 }
15 if (blockSize>=256){
16 if (tx < 128) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+128+ty∗blockDim.x].x;
17 __syncthreads();
18 }
19 if (blockSize>=128){
20 if (tx < 64) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+64+ty∗blockDim.x].x;
21 __syncthreads();
22 }
23 if (tx < 32){
24 if (blockSize>=64) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+32+ty∗blockDim.x].x;
25 if (blockSize>=32) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+16+ty∗blockDim.x].x;
26 if (blockSize>=16) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+8+ty∗blockDim.x].x;
27 if (blockSize>=8) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+4+ty∗blockDim.x].x;
28 if (blockSize>=4) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+2+ty∗blockDim.x].x;
29 if (blockSize>=2) m2xw_s[tx+ty∗blockDim.x].x += m2xw_s[tx+1+ty∗blockDim.x].x;
30 }
31

32 // Store m2xw in global memory
33 if (tx==0 && ty+by∗blockDim.y<2∗n−1) pm2xw_d[ty+by∗blockDim.y].x = m2xw_s[ty∗

blockDim.x].x∗invN;

As there are a multitude of combinations of x- and y-dimensions of the blocks only the slowest
and fastest combination are listed in the table. The full table of results can be found on the
enclosed CD. The resulting bandwidth and speedups are shown in table 20.6.

20.7 Coalesced memory access

As described in appendix B memory coalescing is needed when accessing global memory to maxi-
mize memory bandwidth. For devices of compute capability 1.2 and higher memory accesses will
be coalesced when the addresses accessed lie within segments of 32, 64 or 128 bytes and aligned
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Kernel Block size Time (ms) Bandwidth (GiB/s) Step speedup Total speedup
2-dimensional x=16 33.41 59.86 0.87x 4.84x

block size y=2

x=4 20.96 95.42 1.39x 7.71x
y=32

Table 20.6: Bandwidth and speedup of the momSeq2 d kernel after 2-dimension block sizes have been imple-
mented. The step and total speedup for the chosen block sizes are calculated compared to the fastest block sizes
of the previous kernel and baseline kernel, respectively.

to these segments. The alignment is automatic if the built-in variables are used and memory is
allocated using one of the allocation routines from the CUDA driver API, hence the use of float2
for x d and float1 for w d and m2xw d. x d is packed into the float2 type due to it being
used in the 1D FFT. This is, however, not optimal as this also means x d will take up twice
as much memory where the imaginary values are 0. For coalesced transfers bandwidth will be
wasted on loading those zeros and using the float1 type for x d will increase memory bandwidth.

When accessing the w d vector there is also coalescing problems due to the way w d is in-
dexed:

1 m2xw_s[tx+ty∗blockDim.x].x += px_d[tx+i].x∗pw_d[tx+i+ty+by∗blockDim.y−(n−1)].x;

The by*blockDim.y-(n-1) part of the w d index means that the part of w d that is accessed
for each output in m2xw d will be very likely to be split between two memory segments and
thus can not be coalesced.

For the sake of showing how high memory bandwidth can be attained, x d is packed into the
float1 type and the above mentioned part of the w d index removed. This will yield incorrect
results and is not used in the actual implementation.

Using a block size with x-dimension = 8 and y-dimension = 16 yielded the lowest execution
time of 16.67 ms. This translates into a memory bandwidth of 119.98 GiB/s which is 81% of
the maximum theoretical bandwidth.

As there are still more blocks than multiprocessors there are still a number of idle threads
in each block due to the tree structure addition. If the block partitioning or indexing could be
done in a smarter way to thus utilize the last idle threads, it would be possible to push the
bandwidth even closer to the theoretical max.
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Execution time test of the CUDA
implementation

In this chapter the combined CUDA implementation is tested to determine the execution time
with N = 128. This value is derived from the target application and used to determine if the
implementation is fast enough for real time execution. Other reasonable values of N for the
target application are 160 and 256 and the test is run for each of these as well. Each block in
the implementation have also been tested individually to determine which take the longest to
execute. The execution configuration yielding the lowest execution time is used for each block
in the test and the optimized momSeq2 d kernel has been used in the test.

21.1 Results

The results from the test are listed in table 21.1 and plottet in figure 21.1. For N = 128 the

Block� N 128 160 256
momSeq2 d (ms) 0.0034 0.0045 0.0107

rowSum d (ms) 0.0213 0.0337 0.0799
padShift d (ms) 0.0009 0.0009 0.0009
FFT1 h x2 (ms) 2·0.0122 2·0.0320 2·0.0154

momSpec2 d (ms) 0.0006 0.0006 0.0006
VVC MA d (ms) 0.0104 0.0144 0.0368

Sum (ms) 0.0610 0.1181 0.1597
Combined (ms) 0.0786 0.1699 0.2382

Table 21.1: Execution time results for both combined and block test of the CUDA implementation. N = 128,
160 and 256 has been used. The sum value is for the blocks tested one by one while the combined value is with
overhead from kernel launch.

combined execution time is measured to 0.0786 ms and the overhead compared to running the
blocks separately is 0.0176 ms. For higher N the overhead increases.
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Figure 21.1: Plot of the results from combined and block test of the CUDA implementation.. The sum value is
for the blocks tested one by one while the combined value is with overhead from kernel launch.

The most time consuming blocks are rowSum d, FFT1 h and VVC MA d while the op-
timized momSeq2 d has been reduced to be less significant. The execution time for the pad-
Shift d and momSpec2 d blocks are insignificant for all used values of N. For the FFT1 h
block it is also worth nothing that it performs significantly worse for N = 160 as this is not a
power of two.

In section 17.13 it was shown that the number of arithmetic operations for calculating the
center slice is 398·103 when N = 128. With the combined execution time this translates into
5.06 GFLOPS.
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Conclusion

The intial complexity analysis gave a complexity of 5.2 · 1012 arithmetric operations per filter
update. If this is used for the reference application it would result in 130 · 1012 arithmetric
operations per second. The largest complexity was caused by the trispectra estimations which
accounted for more then 99 % of the total complexity. If the application was implemented on the
target platform without any modifications, a speedup of at least 130 times would be needed to
run the application with a filter update rate of 25 in real time. In a practical case this number
would be even higher, as the simplifications made when calculating the complexity have not
been taken into account.

To reduce the complexity the part with the highest complexity, i.e. the trispectrum estimation,
was examined. The total complexity for estimating one trispectrum using the direct method
was 323 · 109 arithmetric operations. This included a smoothing over the entire spectrum. An
optimization was performed on the center slice of the trispectrum, which is the only slice of the
trispectrum that is used in the non-minimum phase filter estimation. In the optimization the
smoothing was not intially included and the complexity could thus be reduced to 398 · 103 oper-
ations. However, as it is known that the smoothing is necessary, the complexity for calculating
the neighbouring slices and performing the smoothing was found. The complexity for this was
estimated to be 1.23 · 109 arithmetic operations or a reduction of 263 times compared to the
unmodified algorithm.

In order to evaluate what number of FLOPS can be achieved in a practical case, the calcu-
lation of the center slice without smoothing was implemented. The calculation was split up
into smaller blocks and a baseline implementation of each was done in the CUDA programming
language. The overall structure of each block was described while the functionality of the block
calculating the second order moment sequence was explained in detail through abstract code
followed by an explanation of the CUDA code.

A verification of the blocks showed that rounding errors between the CUDA implementation
and equivalent C implementations were less than 10−6 on average and the maximum error was
less than 10−3. Compared to MATLAB the error in the calculated center slice was smaller than
10−5 and 10−8 for mean and mean square error, respectively. The maximum error was 0.0307
which was acceptable due to the low mean and mean square error. From these numbers it was
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concluded that the implementation works as expected.

As the implementation was a baseline implementation, several issues that impact performance
was not considered. The block calculating the second order moment sequence was optimized
to handle some of these issues and tested after each optimization. The final version showed
a speedup up 7.71 times compared to the baseline implementation. It was also shown that a
memory bandwidth usage of 81 % could be achieved.

After the optimization the implementation was tested to find the overall execution time for
computing the center slice. When using parameters derived from the target application the
measured execution time was 0.0768 ms. It was also shown that after optimization the second
order moment sequence block did not take a significant amount of time to execute compared to
three other blocks. As one of these blocks is an FFT function implemented by NVIDIA it can
not be optimized, but if it is assumed that the two other blocks can be sped up by the same
factor of 7.71 through optimization, the execution time would be lowered to 0.0334 ms.

With the estimated execution time and the number of arithmetic operations for computing
the center slice without smoothing, the number of FLOPS is 11.916 GFLOPS. If it is assumed
that the trispectra estimates in the ¯̄H(0) estimation can be reduced similarily in complexity, the
total number of arithmetic operations for estimating the filters would be 10 · 109. This results
in a filter update rate of around 1.19 per second.

This concludes the implementation of the algorithm.
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Chapter 23

Conclusion

This report is an investigation of blind source separation (BSS) on two signals mixed using a two
input two output (TITO) mixing model and a study of real time implementation aspects of the
BSS. The target application for the implementation is the cocktail party scenario, where multiple
people are talking at the same time and the objective is to separate the voices of these people.
This application is reduced to fit the TITO model so that only two people are talking and two
sensors (microphones) are used. The BSS method works by estimating the two filters in the
TITO model and inverting the model. An algorithm was developed based on previous work and
the complexity evaluated. The part of the algorithm with the highest complexity was modified
to lower the complexity and implemented on a platform using a graphics processing unit (GPU).

The theory behind the separation is based on the method presented in [8] for solving the separa-
tion problem. The method uses higher order statistics (HOS) which have a high computational
complexity and thus poses a problem for a real time implementation. The method for the BSS
only gives estimated bispectra of the filters in the TITO model. As such the filters had to be
recovered from the bispectra. In [8] it is suggested to use the method presented in [4] to recover
the filters and this was also done for this project. The BSS method presented in [8] focuses
mostly on estimating the filters in the TITO model, while the inversion of the model is devel-
oped by the project group. If the filters in the TITO model are non-minimum phase the inverse
model will be unstable. The developed method handles this by introducing delay filters in the
inverse model to make the system stable.

To verify the BSS method it was split into blocks and an initial implementation and simu-
lation of these blocks were made in MATLAB. A combined simulation of all the blocks showed
that the BSS method worked and could achieve up to 10 dB signal to interference ratio (SIR)
for the separated sources compared to the mixed signal with -5 dB SIR. This was comparable
to results seen in [8]. The BSS method requires the DC-gain of the filters, ¯̄H(0), in the TITO
model to be known and a method for doing this is also presented in [8]. However, simulations of
this method showed that it required longer time to be estimated compared to the other blocks
in the BSS. It was shown that if a better estimator can be found the achieved SIR will be up
to 3 dB higher. Another observation in the simulations was that adding a positive offset to the
correct ¯̄H(0) would produce better results. It was argued that a possible explanation to this
problem was that the trispectra estimates can be improved. However, the results achieved are
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relatively good compared to the results produced in most published methods for BSS, which
show improvements in SIR between 3.1 and 21 dB.

The HOS part in the BSS consists of estimation of the trispectra which is used for both the ¯̄H(0)
estimation and for the estimation of the bispectra of the filters. Two methods are described
for computing the trispectrum estimation; the direct method and the indirect method. If the
number of filter coefficients is close to the frame length used for the trispectrum, the direct
method would be the preferred one to use. If the number of filter coefficient is small compared
to the frame length then the indirect method should be used instead.

As the simulations of the BSS proved that the method produced acceptable results, it was
suitable for implementation on a platform. A complexity analysis of the BSS method used for
the simulation was conducted to identify the parts with the highest complexity. The analysis
showed that more then 99 % of the arithmetic operations were used in estimating the trispectra,
which supported the intial assumption of HOS being the part with the highest complexity.

With the target application in mind, the complexity analysis showed that target platform would
be able to update the filters in the TITO model every 5.2 seconds if fully utilized. For the
target application a filter update rate of 25 times per second is assumed and as such the com-
plexity of the method was far too high for a real time implementation without any modifications.

In order to reduce the complexity of the trispectrum estimation the way the estimates are used
in the algorithm were analyzed. The trispectrum estimation is used in both the ¯̄H(0) estimation
and the filter estimation, but only the way that it is used in the filter estimation was analyzed.
For the center trispectrum slice it was shown that the complexity could be reduced to 398 · 103

without smoothing, while it was estimated that the complexity could be reduced to 1.23 · 109 or
by a factor of 263 with smoothing. For the implementation on the target platform it was chosen
to implement only the estimation of the center slice of the trispectrum using no smoothing.

The GPU target platform used was an NVIDIA Geforce GTX 285. For high performance com-
putation NVIDIA provides a framework called Compute Unified Device Architecture (CUDA)
which is an extension to the C programming language. Through a description of the underlying
hardware architecture it was shown that the the GPU is capable of massive parallel execution
of threads.

A baseline implementation was written in CUDA and it was verified that each kernel com-
puted the correct results with rounding errors compared to MATLAB and C. Following the
verification one of the kernels was selected for optimization. Two optimizations principles gave
the largest memory bandwidth speedups for the chosen kernel: Increasing the thread utilization
and unrolling of the last warp. The step speedups achieved was at most a factor of 3.36 and
1.79, respectively. Compared to the baseline implementation the final optimized kernel yielded a
memory bandwidth speedup factor of 7.71. With this speedup the memory bandwidth achieved
was 65 % of the theoretical limit. It was also shown that 81 % could be achieved with a change
to the indexing and data arrangement, however, this was not practical for the kernel implemen-
tation.

A final test of the combined implementation was conducted with the target application in mind

156



CHAPTER 23. CONCLUSION Group 1042

and the execution time for computing the center slice is measured to be 0.0786 ms. If it was
assumed that a similar speedup could be achieved for the remaining kernels the execution time
would be around 0.0334 ms, which equates to 11.916 GFLOPS. As the algorithm was estimated
to require around 10 · 109 arithmetic operations for one filter update, the expected update rate
would be 1.19 updates per second.

The intial goal was to investigate if it is possible to make a BSS on speech signals using HOS that
can run in real time on an NVIDIA GPU. With the used platform platform and implementation
it is not feasible to run the target application in real time, as the required update rate of the
filters of 25 times per second can not be reached unless the implementation can be sped up by
a factor of 21. However, the BSS method can still be used in other application areas where the
requirements for the update rate of the filters are lower.
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Future work

Several topics discussed in this project can be developed or explored further. A few of these are
summarized below:

The first thing would be to implement more parts of the BSS algorithm to further substan-
tiate the claim that a speed up of around 18 times would indeed allow for real time execution on
the platform. Also the requirement for a filter update rate of 25 per second should be further
investigated. The requirement is established on what the project group found to be acceptable,
but for a practical application the enviroment will have a large impact on the update rate. As
the target application is a scenario involving speech signals, an acceptable degree of separation
between the signals may also vary significantly from one listener to another. As such a more
realistic estimate could be found, based on a number of tests with both different listeners and
in different enviroments requiring different update rates, for instance a conference where people
are mostly stationary for longer periods of time compared to the cocktail party scenario.

Another topic that is important for a practical application is the averaging over multiple es-
timates of the filters as well as H(0). The simulations showed that the averaging was necessary
to get good results and thus it must be implemented in the BSS model. This averaging can,
for instance, be done by using a recursive filter. However, as the filters and H(0) depend on the
enviroment and how this changes, on could argue that it is possible to make a qualified guess
on how the filters and H(0) change. As such, it could be better to use a Kalman filter to predict
the estimates based on previous values rather than the recursive filter. A proposed model of a
system using Kalman filters can be seen in figure 24.1. As most system are not limited to just
two sources it is relevent to extended the system to allow for more sources. This would result
in a drop in performance and problems with uniquely identifying different sources would arise,
but it would be necessary step to make the model useful for more application.

If the processing speed was drastically increased, a scenario where the filters are updated faster
than it takes for a new frame of sampled data to arrive to the system would be possible. In this
case it would be interesting to allow the filter and H(0) estimation to use overlapping frames
and examine how fast the estimates would converge to the correct values.

Another interesting result was the simulations that showed that the correct value of H(0) does
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Figure 24.1: Illustration of a practical implementation of the BSS using Kalman filter to predict the estimates of
the filters in the TITO model and H(0) rather than averaging over several estimates.

not necessarily give the best SIR. Another way of finding H(0) could be a system that iter-
ates over H(0) to find the value that yields the highest decorrelation between the sources. This
method could also be used on other parts of the algorithm to improve the results, for instance the
problem with shifts from the reverse third order moment spectrum estimation could be solved,
if the decorrelation is calculated for several shift values and then picking the one that yields the
best result.

Also other methods for doing the smoothing in the trispectrum estimation would be worth
looking at. As the problem that the smoothing fixes is localized around DC, one could argue
that only a smoothing around DC would be necessary. Improving this could also help bring
down complexity for the trispectra estimation.

In general wireless system using time multiplexing in the frequency band might benefit from
using BSS, as it would allow sources to communicate while occupying the same time slots and
frequency bands. This would increase the throughput of the entire system as all users could
communicate at full speed. Also in wireless communication BSS could be used to improve the
SIR in a channel where the interference could be other sources or reflections of the signal. For
instance sources with a slow communication type that are more robust towards interference,
could be changed to a faster communication form as the SIR improves.
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Appendix A

Higher Order Statistics

This appendix contains a description Higher Order Statistics (HOS), the main area of interest
are higher order spectra’s, or polyspectra, which they are also known as. There is in general two
different kinds of spectra when working with HOS:

Cumulant spectra: which are commonly used to analyze stochastic signals.
Moment spectra: which are commonly used to analyze deterministic signals.

The moment spectra’s are mostly used when deterministic (known) signals are used, as mo-
ment spectra’s maintain all information about the signal, so it is possible to reconstruct the
original signal. If the signals are stochastic in nature normally a specific characteristic of the
PDF is interest, like the mean or the variance e.g. Here the cumulant spectra is normally used
as it only provide information about a specific characteristic in the PDF of the stochastic signal.
There are two important features of HOS [1]:

• HOS conserves the true phase of the system as opposed to minimum phase in normal
statistics.

• Gaussian noise is eliminated in HOS.

Using the normal Gaussian distribution as point of reference the polyspectra gives an indication
of how much a given stochastic variable diverts from this distribution. In the following tchapters
the theory behind HOS is presented as well as some examples about how it can be used in different
scenarios. There are allot of different areas where HOS can be applied, but the main focus of
this appendix is to clarify the mathematics behind HOS and give a deep enough insight into
HOS to use in the practice, and understand the HOS theory used in the main report.

A.1 Moments and Cumulants

This section describes moments and cumulants, that are the main components in HOS. The
moments and the cumulants are mainly used for describing the PDF of stochastic signals, they
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can also be used for determining dependencies between stochastic signals by determining cross-
moments or cross-cumulants. First the moments are defined for the continuous case as well as
for the discreet case. Then the cumulants are presented for the continuous and the discreet case
as well. The first step for defining the moments one must first look at the characteristic function
for defining a PDF.

A.1.1 The Characteristic Function

Equation A.1 describes how to calculate the probability of some given outcomes from a stochastic
variable x by using the cumulative density function (CDF) of this stochastic variable.

Pr(a ≤ x ≤ b) =

∫ b

a
F(x) (A.1)

Where:
F(x) is the CDF of x
a, b is the interval of the outcome which probability is calculated.

If the derivative of the CDF exists then this can also be expressed as a function of the PDF of
the stochastic variable x. The relation between the PDF and the CDF is described by equation
A.2.

f (x) =
d
dx

F(x) (A.2)

Where:
f (x) is the PDF of the stochastic variable x.

Because of the relation between the CDF and PDF equation A.1 can rewritten as a function of
the PDF as described by equation A.3.

Pr(a ≤ x ≤ b) =

∫ b

a
f (x) d x (A.3)

The expectation of a function (g(x)) of x is defined as:

E
[
g(x)

]
=

∫ ∞

−∞

g(x) · f (x) d x (A.4)

If ϕ(g(x)) is the characteristic function of g(x) with a distribution function f (x) defined as real
numbers, then the expected value can be defined as:

ϕ(g(x)) = E
[
e j·g(x)·x

]
(A.5)

For easier notation and because it is used as standard notation for indexes in the characteristic
function g(x) in equation A.5 is replaces by ω:

ϕ(ω) = E
[
e j·ω·x

]
=

∫ ∞

−∞

e j·ω·x · f (x) d x (A.6)
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If equation A.6 is expanded into a Taylor series something interesting can be seen:

ϕ(ω) =

∫ ∞

−∞

f (x) d x (A.7)

+ j · ω
∫ ∞

−∞

x · f (x) d x (A.8)

+
1
2

( j · ω)2 ·

∫ ∞

−∞

x2 · f (x) d x (A.9)

+
1
6

( j · ω)3 . . . (A.10)

=

n∑
k=0

( j · ω)k

k!
·

∫ ∞

−∞

xk · f (x) d x (A.11)

The only things that changes in equation A.11 is the
∫ ∞
−∞

xk · f (x) d x term, as it is dependent on

the PDF of the random variable. The rest of the equation ( j·ω)k

k! is constant regardless of which
random variable is examinde.

If the first term in the Taylor series A.7 is examined, it would give a one. The second term
A.8 in contains that mean of the PDF multiplied with j · ω. The third term A.9 contains the
variance of the PDF multiplied with 1

2 ( j · ω)2. Which all (except the first term) gives a descrip-
tion of the PDF of random variable x.

What has been done is actually a kind of Fourier transform of the PDF, where information
about the mean variance etc. has been extracted from a function of x. So by taking the inverse
Fourier transform of ϕ(ω) the PDF is obtained as:

f (x) =
1

2π

∫ ∞

−∞

e− j·ω·x · ϕ(ω) dω (A.12)

To summerize what can be derived for the characteristic function in equation A.11. The following
properties of the characteristic function hold true [9, 27-29].

1. If E[x] is finite, then ∂ϕ(ω)
∂ω

∣∣∣∣
ω=0

= − j E[x]

2. If Var[x] is finite, then ∂2ϕ(ω)
∂2ω

∣∣∣∣
ω=0

= −E[x2]

3. In general E[xp] is finite for a positive integer, then ∂pϕ(ω)
∂pω

∣∣∣∣
ω=0

= (−1)
p
2 E[xp]

A.1.2 Moments

In the previous section it was show that the PDF can be approximated by the characteristic func-
tion equation A.11. The moments are defined from this characteristic function. The definition
for the nth order moment of x is:

µ′xn = (− j)n ∂
nϕω
∂nω

∣∣∣∣∣
ω=0

(A.13)
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From equation A.13 it can be concluded that the moments are related to the characteristic
function by the characteristic function real derivatives. So from the properties (3) for the char-
acteristic function equation A.14 holds true for the moments.

µ′xn = (− j)n ∂
nϕω
∂nω

∣∣∣∣∣
ω=0

= E[xn] (A.14)

The give an example the first order moment of the random variable x is calculated in equations
A.15. Which should result in the mean of x.

µ′x1 = (− j)
∂ϕω
∂ω

∣∣∣∣∣
ω=0

= (− j)
∂
∫ ∞
−∞

(
e j·ω·x

)
· f (x) dx

∂ω

∣∣∣∣∣∣∣∣
ω=0

= (− j)
∫ ∞

−∞

∂
(
e j·ω·x

)
∂ω

∣∣∣∣∣∣∣∣
ω=0

· f (x) dx

= (− j)
∫ ∞

−∞

j · x · e j·ω·x
∣∣∣
ω=0 · f (x) dx

= (− j)
∫ ∞

−∞

j · x · f (x) dx

=

∫ ∞

−∞

x · f (x) dx = E [x] (A.15)

Which is in accordance with equation A.14. These calculations for the first order moment can
be extended to the n-th order moment giving the general function as:

µ′xn =

∫ ∞

−∞

xn · f (x) dx = E
[
xn] (A.16)

Equation A.16 describes all the moments op to order n. But it should be noted that it is
not always necessary to have infinitely high order to describe a PDF. The maximum order of
moments needed to describe a random variable is given by equation A.17.

E
[
|x|n

]
=

∫ ∞

−∞

|xn| · f (x) dx (A.17)

If equation A.17 converges to a value then the moment at that given order exists and all the
moment of a lesser order then n also exist. On the other hand if it converges to infinite the
moment of that given order does not exist, and all moments higher the n does not exist either
as they would include lower order moments.

Equation A.6 is normally rewritten so it does not contain the imaginary part, this gives equation
A.18, which is referred to as the moment generating function (MGF) for a random variable x
and is normally used to derive the moments of x.

Mxn(ω) =

∫ ∞

−∞

ex·ω · f (x) dx (A.18)

This can be proven by a Taylor expansion of the MGF function, with the same procedure used
to get to equation A.11:

Mxn(ω) =

∫ ∞

−∞

(
1 + x · ω +

x2 ω2

2!
+ · · · +

xn ωn

n!

)
f (x) dx (A.19)

166



APPENDIX A. HIGHER ORDER STATISTICS Group 1042

By expanding the integral using equation A.16 for the moments the following can be obtained:

Mxn(ω) = 1 + µ′1 · ω +
µ′2 · ω

2

2!
+ · · · = 1 +

∞∑
n=1

µ′nω
n

n!
(A.20)

The moment generating function contains all the moments from 1 to n. If the moment generating
function is differentiated once with regards to ω and setting ω to zero the result would be the
first moment, differentiating a second time would give the second moment, etc. Which was the
same as for the characteristic function but the complex part is removed from the equations.

A.1.3 Central Moment

The central moment is mainly defined as it makes the computations of the cumulants easier.
The idea is to remove the mean from the random variable x, before the moments are calculated.

The central moment is defined as:
µxn = E

[
(x − µ′x1)n

]
(A.21)

The first order central moment is always zero as:

µx1 = E
[
(x − µ′x1)1

]
= E [x] − E

[
µ′x1

]
= µ′x1 − µ

′

x1 = 0 (A.22)

The second order central moment is the same as the variance of the random variable x:

µx2 = E
[
(x − µ′x1)2

]
= E

[
x2 + µ′x1

2
− 2xµ′x1

]
= E

[
x2

]
+ µ′x1

2 (A.23)

The third order central moment gives information about the ”skewness” of the PDF of x, if this
moment is zero the pdf would have a normal Gaussian distribution. Therefore the third order
central moment gives information about the skewness deviation from a normal distribution as
illustrated in figure A.1

Figure A.1: Illustration of a PDF with positive skewness and negative skewness

It should be noted here that every distribution that is symmetrical e.g uniform distribution
would have an identically skewness as a normal Gaussian distribution.
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The fourth order central moment describes the ”Kurtosis” of the PDF for x, this a measure for
how spiky or flatter a distribution is compared to a normal distribution. There are a disagree-
ment in the literature whether the Kurtosis is calculated via the central moments or whether is
calculated via cumulants, the difference between these two calculations are 3, which means that
a normal Gaussian distribution with a variance of one, would have a kurtosis of 3 if calculated
via central moments, or it would have a kurtosis of 0 if it was calculated via its cumulants. There
are also some terms connected with the kurtosis if the it is lower then the normal distribution.
It is referred to as having sub Gaussian kurtosis. If it has a higher kurtosis, it is referred to
as super Gaussian. Figure A.2 illustrates how the deviation is from super and sub Gaussian
distributions [1].

Figure A.2: Illustration of a super Gaussian and a sub Gaussian PDF

A.1.4 Joint Moments

Until now the focus has been on the PDF from one random variable, but is it also interesting to
look on the joint PDF between two random variables. The previous theory also holds for cross
moments to describe this joint PDF. The joint moment between the second order moment of
two random variables, actually gives the cross correlation between these two random variables.
If given a two random variables x and y. Their joint moment for an order of n would be given
by:

µ′xc yz = E
[
xc · yz] =

∫ +∞

−∞

xc · yz · f (x) · f (y) d x d y (A.24)

where: n = c + z

168



APPENDIX A. HIGHER ORDER STATISTICS Group 1042

The joint moment can also be written as a function of the MGF.

µ′xc yz =
∂cMx(ω1) ∂zMy(ω2)

∂cω1 ∂zω2

∣∣∣∣∣∣
ω1=ω2=0

(A.25)

=
∂n E

[
eω1·x+ω2·y]

∂cω1 ∂zω2

∣∣∣∣∣∣
ω1=ω2=0

This can be extended to k random variables {x1, x2, ....., xk} of order n = c1 + c2 + . . . + ck

µ′
xc1

1 xc2
2 ... x

ck
k

=
∂n E

[
eω1·x1+ω2·x2+···+ωk ·xk

]
∂c1ω1 ∂c2ω2 · · · ∂ckωk

∣∣∣∣∣∣
ω1=ω2=...=ωk=0

(A.26)

A.1.5 Discrete Moments

As the most DSP system cannot work with continuous system it necessary to work with discrete
systems instead. The moments therefore needs to be defined for the discrete case as well in order
to use HOS on a DSP system. If x(t) is observations at time indexes t = 0,±1,±2 · · · from a real
stationary random process x with moments up to the order of n, then equation A.16 would only
depend on the time difference τ

µ′x(t) x(t+τ1) ... x(t+τn−1) = E [x(t) · x(t + τ1) · · · x(t + τn−1)] (A.27)

It is therefore possible to write the moments of a random stationary process in the discreet
domain as:

m′xn(τ1, . . . , τn−1) = E [x(t) · x(t + τ1) · · · x(t + τn−1)] (A.28)

The n’th order discreet moment of a real signal x(t) can from A.16 be written as.

m′xn(τ1, . . . , τn−1) =

∞∑
t=−∞

x(t) · x(t + τ1) · · · x(t + τn−1) (A.29)

If the mean is subtracted from x(t) (central moment), then the second order central moment
becomes the discrete autocorrelation function of x.

mx2(τ) =

∞∑
t=−∞

x(t) · x(t + τ) (A.30)

In general it is not practical to sum from minus infinity to infinity. However if the random
variable x is ergodic in the most general form and all moments can be determined from a single
observation sequence x(t), then the expected value in equation A.28 can be replaced by a time
averaging.

m′xn(τ1, · · · , τn−1) = lim
M→inf

1
(M − (−M)) + 1

M∑
t=−M

x(t) · x(t + τ1) · · · x(tτn−1) (A.31)

If a sample size of N is available from x(t) then an biased estimate of equation A.31 can be made
as:

m′xn(τ1, · · · , τn−1) =
1

(N − (1)) + 1

N∑
t=1

x(t) · x(t + τ1) · · · x(tτn−1)

=
1
N

N∑
t=1

x(t) · x(t + τ1) · · · x(t + τn−1) (A.32)
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A.1.6 Discrete Joint Moments

The discrete joint moments between random variables can be made in the same way as for the
discrete moments. The same conditions that the random variables must be ergodic also applies.
The n’th order joint central moments of the real signals x(t) and y(t) is defined as:

mxc yz(τ1, . . . , τn−1) =

∞∑
t=−∞

x(t) · · · x(t + τc−1) · y(t + τc) · · · y(t + τn−1) (A.33)

where:
n = c + z

As in the discrete moments it also possible to make a biased estimation of the moment from a
sample set of size N:

mxc yz(τ1, · · · , τn−1) =
1
N

N∑
t=0

x(t) · · · x(t + τc−1) · y(t + τc) · · · y(t + τn−1) (A.34)

A.1.7 Cumulants

At a normal (Gaussian) distribution all the information about it is contained in the first two
moments. But this does not mean that the higher moments are zero all though they don’t
contains any new information. This is because that higher order moments actually contains
information about the lower order moments as well. In order to remove this dependencies with
lower order moments the cumulants are introduced. From this a cumulant of order n is a sum
moments from order of n to zero. So if a cumulant generating function (CGF) is defined as
for the moments each cumulant would be a sum of lower order moments. This would lead to
a exponential relation between the MGF and the CGF, do from this the following relations
between the MGF and CGF is defined as:

Gxn(ω) = ln
(
Mxn(ω)

)
(A.35)

The CGF is defined in the same way as the MGF, as a sum of cumulants at different order up
to the order n:

Gxn(ω) =

∞∑
n=1

κn
ωn

n!
(A.36)

where:
κn is the cumulant of order n

Equation A.35 can from equation A.36 can be rewritten as:

Mxn(ω) = eG(ω) = 1 +

∞∑
n=1

µ′nω
n

n!
= e

∑∞
n=1

κnωn
n! (A.37)
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To find the relations between moments and cumulants the last two terms in equation A.37 is
explored by making a Taylor expansion of the last term.

1 +

∞∑
n=1

µ′nω
n

n!
= e

∑∞
n=1

κnωn
n!

=

∞∑
i=0

(∑∞
n=1

κnω
n

n!

)i

i!

= 1 +

∞∑
n=1

κnω
n

n!
+

1
2

∞∑
n=1

κnω
n

n!

2

+

1
6

∞∑
n=1

κnω
n

n!

3

+ . . .

= 1 +

(
κ1 · ω + κ2 ·

ω2

2
+ κ3 ·

ω3

6
+ . . .

)
+

1
2

(
κ1 · ω + κ2 ·

ω2

2
+ κ3 ·

ω3

6
+ . . .

)2

+
1
6

(
κ1 · ω + κ2 ·

ω2

2
+ κ3 ·

ω3

6
+ . . .

)3

+ . . . (A.38)

To find the first order moment the MGF is differentiated once with regard to ω

µ′1 =
∂M

x1(ω)

∂ω

∣∣∣∣∣∣
ω=0

=
∂1 +

∑∞
n=1

µ′nω
n

n!

∂ω

∣∣∣∣∣∣∣
ω=0

(A.39)

If equation A.38 is differentiated once as in A.39 the only terms that survies is:

µ′1 = κ1 (A.40)

If equation A.38 is differentiated two, three and four times gives the following relations between
the moments and the cumulants.

µ′2 = κ2 + κ2
1 (A.41)

µ′3 = κ3 + 3κ2κ1 + κ3
1 (A.42)

µ′4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 (A.43)

From equations A.40 to A.43 it is possible to create equation A.44, which describes the relation
between cumulants and moments.

κn = µ′n −
∑n−1

k=1

(
n − 1
k − 1

)
κkµ
′
n−k (A.44)

Replacing the moment in equations A.40 to A.43 with the central moment reduces the equations
to the following

µ1 = 0 (A.45)
µ2 = κ2 (A.46)
µ3 = κ3 (A.47)
µ4 = κ4 + 3 · κ2

2 (A.48)
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From this it can be concluded that κ1 is the mean value, κ2 and κ3 is the variance and the ”Skew-
ness” respectively, as was the same for the central moments in section A.1.3 The fourth order
cumulant minus the variance this is sometimes also referred to as the normalized kurtosis, but
there are some disagreement in the literature whether the kurtosis is the fourth order cumulant
or the fourth order central moment.

Discrete Cumulants

The relations between the moments and the cumulants described in equation A.40 to A.43 is
used to calculate the discrete cumulants from the discrete moments.

For this project only cumulants up to the 4th order are of interest therefore they are the only
ones described here. And because it makes the calculations easier the central moments are used
as described in the relation in equations A.45 to A.48

The first order cumulants are the same as the first order moment so:

cx = m′x (A.49)

As described before the cumulants are calculated from the central moment therefore the cumu-
lants can be written in the following way using the expected operator.

cx2(τ1) = E
[(

x(t) − m′x
)
·
(
x(t − τ1) − m′x

)]
= E [x(t) · x(t − τ1)] − E [x(t)] · m′x − E [x(t − τ1)] · m′x + m′x · m

′
x

= m′x2 −
(
m′x

)2

= mx2(τ1) (A.50)

The third order discreet cumulants can from the same procedure as equation A.50 be established
as:

cx3(τ1, τ2) = E
[(

x(t) − m′x
)
·
(
x(t − τ1) − m′x

)
·
(
x(t − τ2) − m′x

)]
= E [x(t) · x(t − τ1) · x(t − τ2)] − E [x(t) · x(t − τ1)] · m′x −

E [x(t) · x(t − τ2)] · m′x + E [x(t)] · m′x
2

+ E [x(t − τ1)] m′x
2

+

E [x(t − τ2)] · m′x
2

+ m′x
3

= m′x3(τ1, τ2) − m′x ·
(
m′x2(τ1) + m′x2(τ2) + m′x2(τ2 − τ1)

)
+ 2 · (m′x)3

= mx3(τ1, τ2) (A.51)

The last conversion of discreet moments to cumulants of interest is the fourth order cumulants,
using the same procedure as in the previous examples the following result can be obtained.
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cx4(τ1, τ2, τ3) = E
[(

x(t) − m′x
)
·
(
x(t − τ1) − m′x

)
·
(
x(t − τ2) − m′x

)
·
(
x(t − τ3) − m′x

)]
⇓

= m′x4(τ1, τ2, τ3) − m′x2(τ1) · m′x2(τ3 − τ2) − m′x2(τ2) · m′x2(τ3 − τ1)

−m′x2(τ3) · m′x2(τ2 − τ1) − m′x · m
′

x3(τ2 − τ1, τ3 − τ1) − m′x · m
′

x3(τ2, τ1)

−m′x · m
′

x3(τ1, τ2) − m′x · m
′

x3(τ2, τ3) + m′x
2
· m′x2(τ1)

+m′x
2
· m′x2(τ2) + m′x

2
· m′x2(τ3) + m′x

2
· m′x2(τ3 − τ1)

+m′x
2
· m′x2(τ3 − τ2) + m′x

2
· m′x2(τ2 − τ1) + 6 · m′x

4

= mx4(τ1, τ2, τ3) − mx2(τ1) · mx2(τ3 − τ2)

−mx2(τ2) · mx2(τ3 − τ1) − mx2(τ3) · mx2(τ2 − τ1) (A.52)

This concludes how to transform the discreet moments into the discreet cumulants the next step
is to do the same for joint cumulants between two random variables.

A.1.8 Joint Cumulants

This is more less the function of the Joint MGF where the logarithm is applied in order to arrive
to the Joint CGF. So the equation for the joint cumulants becomes the following.

C
xc1

1 ,xc2
2 ,...,x

ck
k

=
ln

(
∂n E

[
eω1·x1+ω2·x2+...+ωk ·xk

])
∂ωc1

1 ∂ωc2
2 . . . , ∂ωck

k

∣∣∣∣∣∣
ω1=ω2=...=ωk=0

(A.53)

Where: n = c1 + c2 + . . . + ck

Discrete Estimator Joint Cumulants

The discreet joint cumulants are more or less the same as for the if we have zero mean on the
output from the random variables. This is the same theory as in section A.1.7 but the random
variable x is replaced by x, y, z,w to get the joint cumulants. As the derivations are the same, they
are not repeated here, but the results are as follows, for the joint moments to joint cumulants:
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cx y(τ1) = mx y(τ1) − mx · my

= mx2(τ1) (A.54)
cx y z(τ1, τ2) = mx y z(τ1, τ2) − mx · my z(τ1) − my · mx z(τ2)

−mz · mx y(τ2 − τ1) + 2 · mx · my · mz

= mx y z(τ1, τ2) (A.55)
cx y z w(τ1, τ2, τ3) = mx y z w(τ1, τ2, τ3) − mx y(τ1) · mz w(τ1)

−mx z(τ1) · my w(τ1) − mx w(τ1) · my z(τ1)

−mx · my z w(τ1, τ2) − my · mx z w(τ1, τ2)

−mz · mx y w(τ1, τ2) − mw · mx y z(τ1, τ2)

+2 · mx y(τ1) · mz · mw + 2 · mx z(τ1) · my · mw

+2 · mx w(τ1) · my · mz + 2 · my w(τ1) · mx · mz

+2 · mz w(τ1) · mx · my + 2 · my z(τ1) · mx · mw

−6 · mx · my · mz · mw

= mx y z w(τ1, τ2, τ3) − mx y(τ1) · mz w(τ3 − τ2)

−mx z(τ2) · my w(τ3 − τ1) − mx w(τ3) · my z(τ2 − τ1) (A.56)

A.2 Properties of Moments and Cumulants

There are some interesting properties of moments and cumulants, the properties present in this
section are based on the properties from [1, pp. 12-14] and [6, p. 17]

• Scaling by a constant:
ca·x = a · cx and ma·x = a · mx

this applies for the continuous case as well as the discreet case.

• Symmetric functions:
Moments and cumulants are symmetric functions in their arguments
cx3(τ1, τ2, τ3) = cx3(τ3, τ2, τ1) = . . . and cx3(τ1, τ2, τ3) = cx3(τ2, τ1, τ3) = . . .

• Independent random variables:
If the random variable x is independent of the random variable y then:
cx+y = cx + cy this does in general hold for moments as:
mx+y = E

[
(x + y)

]
, mx + my

• Gaussian distribution:
If a set of or one random variable has a Gaussian distribution then all the information about
the distribution is contained in the moments of order lower then 3 so higher order moments
do not give additional information (higher order moments also contains information about
lower order). This then leads to the fact that all cumulants for a Gaussian distribution of
higher order then 2 are zero. Therefore one could argue that the cumulants higher then
order 2 gives an measure of the non-Gaussian nature of the distribution.

174



APPENDIX A. HIGHER ORDER STATISTICS Group 1042

• Cumulants are additive in their arguments eg.
cx+y,z2(τ1, τ2, τ3) = cx,z2(τ1, τ2, τ3) + cy,z2(τ1, τ2, τ3)

• Cumulants are blind to additive constants. This is because lower order moments are
removed from the cumulant sequence
ck·x,z2(τ1, τ2, τ3) = cx,z2(τ1, τ2, τ3)

• The random variable x is independent from the rest of the random variables then.
cx,z2(τ1, τ2, τ3) = 0

A.3 Moment spectra

The section contains the theory behind the moment spectra which is a useful tool for the analysis
of time series in the Fourier domain. This section is mainly inspired from [1, pp. 71-121]. It is
defined as the Fourier transform of the moments, which was defined earlier.

For the n-th order moment spectra the following discreet Fourier transform is performed on
the n-th order moment.

Mxn(ω1, · · · , ωn−1) =

∞∑
τ1=−∞

. . .

∞∑
τn−1=−∞

m′xn(τ1, . . . , τn−1) · e− j(ω1τ1+···+ωn−1τn−1) (A.57)

Inserting the expression for the moment given in equation A.32 and rewriting yields:

Mxn(ω1, · · · , ωn−1) =

∞∑
τ1=−∞

. . .

∞∑
τn−1=−∞

∞∑
t=−∞

x(t) · x(t + τ1) · · · x(t + τn−1) · e− j(ω1τ1+···+ωn−1τn−1)

=

∞∑
t=−∞

x(t) ·
n−1∏
i=1

∞∑
τi=−∞

x(t + τi)e− jωiτi (A.58)

The last term in equation A.58 can be rewritten into:

∞∑
τi=−∞

x(t + τi)e− jωiτi =

∞∑
τi=−∞

x(t + τi)e− jωiτi · e− jωite jωit

=

∞∑
τi=−∞

x(t + τi)e− jωi(t+τi) · e jωit

= X(ωi) · e jωit (A.59)

Inserting this in equation A.58 yields:

Mxn(ω1, . . . , ωn−1) =

∞∑
t=−∞

x(t)
n−1∏
i=1

X(ωi) · e jωit (A.60)

Which can be rewritten to:

Mxn(ω1, . . . , ωn−1) = X∗(ω1 + . . . + ωn−1) ·
n−1∏
i=1

X(ωi) (A.61)
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Equation A.61 shows that it is possible to calculate the moment spectra in the frequency domain
as the Fourier transform of the time sequence x(t), as there is two possible ways to calculate
the moment spectra either with A.58 or A.60. Figure A.3 summarizes this relation between the
time domain and the Fourier domain.

Time domain
Energy Signal: x(t)

Moment domain
n’th order Moments: mxn(τ1, . . . , τn−1)

Fourier domain
Fourier Transform: X(ω)

Moment spectrum domain

n’th order spectrum domain: Mxn(ω1, . . . , ωn−1) =

X∗(ω1 + . . . + ωn−1) ·
∏n−1

i=1 X(ωi) =∑∞
τ1=−∞ · · ·

∑∞
τn−1=−∞mxn(τ1, . . . , τn−1)e− j(ω1τ1+...+ωn−1τn−1)

Eqn : A.32IDFT
DFT

Eqn : A.61

Eqn : A.57 (DFT)
IDFT

Figure A.3: Illustration of the relations between the time domain the frequency domain for the moment spectras

A.4 Moment Cross Spectra

Similarly as in the moments and cross moments, it is also possible to create a cross moment
spectra. An example with four random variable is used here, for the fourth order cross moment
spectra between x, y, z and w.

Mxyzw(ω1, ω2, ω3) =

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

m′x4(τ1, τ2, τ3) · e− j(ω1τ1+ω2τ2+ω3τ3) (A.62)

Inserting the expression for the fourth order cross moment and rewriting yields:

Mxyzw(ω1, ω2, ω3) =

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

∞∑
t=−∞

x(t) · y(t + τ1)

·z(t + τ2) · w(t + τ3) · e− j(ω1τ1+ω2τ2+ω3τ3) (A.63)

By redoing the same steps as in equation A.59 and A.60 gives:

Mxyzw(ω1, ω2, ω3) = X∗(ω1 + ω2 + ω3) · Y(ω1) · Z(ω2) ·W(ω3) (A.64)

It should be noted if discreet moments are used then a factor of 1
N should be multiplied with

the spectra, where N is the size of the sample data. This concludes the moment spectras now
the cumulants sectras needs be defined.
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A.5 Cumulant Spectra

The reason for using cumulant spectra compared to moment spectra, is that the ”cumulant
provides suitable means to detect statistical dependencies in time series”. Furthermore the sum
of two random, nonzero mean independent processes equal the sum of their cumulant spectra
which does not hold for their moment spectra making it easier to work with combined spectra’s
cumulant spectra’s. The procedure for calculating the cumulants spectra’s is the same as for the
moment spectra take the n-1 dimensional FFT of the cumulants.

The n’th order cumulant spectra is defined as a DFT:

Cxn(ω1, ω2, . . . , ωn−1) =

∞∑
τ1=−∞

· · ·

∞∑
τn−1−∞

cxn(τ1, . . . , τn−1) · e− j(ω1τ1+ω2τ2+...+ωn−1τn−1) (A.65)

The cumulant spectra for n = 2 of a random variable (x) is normally know as the power spectrum
of x with x having zero mean. The equation is as follows:

Cx2(ω) =

∞∑
τ=−∞

cx2(τ) · e− j(ωτ) (A.66)

Where:
|ω| ≤ π

The following symmetry conditions apply for the time domain :

cx2(τ) = cx2(−τ) (A.67)

Therefore the condition in equation A.68 must also hold.

Cx2(ω) = Cx2(−ω) (A.68)

And because equation A.61 also can be used for the power spectrum if x is zero mean (see
equation A.54) then the following two conditions must also be true for the powerspectrum.

Cx2(ω) ≥ 0 (A.69)
Cx2(ω) ⊂ < (A.70)

From this it can be concluded that the spectrum is mirrored around ω = 0 if x only contains
real signals.

Another important spectrum is the bispectrum for n = 3. Equations A.71 is the bispetrum
for the random variable x

Cx3(ω1, ω2) =

∞∑
τ1=−∞

∞∑
τ2=−∞

cx3(τ1, τ2) · e− j(ω1·τ1+ω2·τ2) (A.71)

Where:
|ω1| ≤ π

|ω2| ≤ π

177



Group 1042 APPENDIX A. HIGHER ORDER STATISTICS

|ω1 + ω2| ≤ π

If the random variable x has zero mean the bispectrum can also be calculated using A.61. From
this equation it can be seen why the bispectrum contains information about the phase whereas
the powerspectrum does not contain any information about the phase. Any power spectrum of
a complex signal would become absolute value of these to reconstruct the real and imaginary
parts from the power spectrum, one must assume minimum or maximum phase. But as the
bispectrum still contains information about the phase it is possible to reconstruct the correct
phase from the signal.

The following symmetry conditions apply for the third order cumulants:

cx3(τ1, τ2) = cx3(τ2, τ1)

= cx3(−τ2, τ1 − τ2)

= cx3(τ2 − τ1,−τ1)

= cx3(tτ − τ2,−τ2)

= cx3(−τ1, τ2 − τ1) (A.72)

This gives rise to 6 symmetry regions for the third order cumulants. The symmetry regions
would therefore transfer onto the the bispectrum resulting in 12 symmetry regions for real
signals (x ⊂ <) and 6 symmetry regions for complex signals.

Cx3(ω1, ω2) = Cx3(ω2, ω1)

= C∗x3(−ω2,−ω1)

= Cx3(−ω1 − ω2, ω2)

= Cx3(ω1,−ω1 − ω2)

= Cx3(−ω1 − ω2, ω1)

= Cx3(ω2,−ω1 − ω2) (A.73)

These symmetry regions for the bispectrum is illustrated in figure A.4.

Figure A.4: Symmetry regions for the moment sequence and the moment spectra.

The last spectrum of interest is the trispectrum (n = 4), the equation for the trispectrum is as
follows:

Cx4(ω1, ω2, ω3) =

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

cx3τ1, τ2, τ3) · e− j(ω1·τ1+ω2·τ2+ω3·τ3) (A.74)
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Where:
|ω1| ≤ π

|ω2| ≤ π

|ω3| ≤ π

|ω1 + ω2 + ω3| ≤ π

As for the bispectrum and the power spectrum the trispectrum also have allot of symmetry
regions:

Cx4(ω1, ω2, ω3) = Cx4(ω2, ω1, ω3) = Cx4(ω1, ω3, ω2) = Cx4(ω2, ω3, ω1) = etc. (A.75)

The total amount of symmetry regions are by [1, p. 23] given as 96 for real signals. It is not
possible to illustrate all these regions, mainly because they are in a 3 dimensional plot, but it is
worth noticing that there is a lot of redundant regions in the plots.

As for the moment spectra it is possible to make a representation of the relations between
the Fourier domain and the time domain, this is more or less the same figure as in A.3 but here
the cumulants are used instead of the moments. Now that the spectra’s for both the cumulants

Time domain
Energy Signal: x(t)

Moment domain
n’th order Moments: mxn(τ1, . . . , τn−1)

Cumulant domain
n’th order Cumulants: cxn(τ1, . . . , τn−1)

Cumulant spectrum domain

n’th order spectrum domain: Cxn(ω1, . . . , ωn−1) =∑∞
τ1=−∞ · · ·

∑∞
τn−1=−∞ cxn(τ1, . . . , τn−1)e− j(ω1τ1+...+ωn−1τn−1)

Eqn : A.49 to A.52

Eqn : A.32

Eqn : A.65 (DFT)IDFT

Figure A.5: Illustration of the relations between the time domain the frequency domain for the cumulant spectra’s,
please note that the that the moment to cumulant transformation is only defined up to the fourth order

and moments are defined, the next part is windowing of these functions

A.6 Windowing of the Fourier transform

This section contains details about the windowing of the moment or cumulant sequence. Nor-
mally a window function would be used to reduce spectral leakage for the same reason a window
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is added for estimation of the power spectra

The window is normally applied to the n-dimensional cumulant sequences before the Fourier
transformation, therefore the window also needs to be n-dimensional. Function A.76 describes
how to construct a n-dimensional window from a 1-dimensional window [1, p.126].

wn(τ1, . . . , τn−1) = w1(τ1 + . . . + τn−1) · w1(τ1) · · ·w1(τn−1) (A.76)

Where:
wn is the n-dimensional window
w1 is a normal one dimensional window

There are several window types that are available to reduce the spectral leakage two good
choices for windows are the optimum window presented in equation A.78 and a Parzen window
present in equation A.77 [6, p.21].

w1(τ) =


1 − 6

(
|τ|
L

)2
+ 6

(
|τ|
L

)3
, |τ| ≤ L

2

2(1 −
(
|τ|
L

)3
) , L

2 < |τ| ≤ L
0 , 1 < |τ|

(A.77)

Where:
L is the length of the window.

w1(τ) =

 1
π

∣∣∣∣sin
(
πτ
L

)∣∣∣∣ +
(
1 − |τ|L

)
· cos

(
πτ
L

)
, |τ| ≤ L

0 , L < |τ|
(A.78)

A.7 Properties of Cumulant Spectra’s

This chapter contains some general properties of cumulants spectra’s as well as some examples
on how to use them.

A.7.1 Multilinearity of cumulant spectra’s and cross cumulant spectra’s

This section gives an example of the multilinearity properties of cumulant spectra’s, the example
is based on how multiliniarity is used in the main report.
Consider a signal z in the time domain which contains the variables x and the random variable
y convolved with a filter h x and y have zero mean and are independent of each other

z = x + h ∗ y (A.79)
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The third order moment of z can be expressed as:

mz3(τ1, τ2) = E [z(t) · z(t − τ1) · z(t − τ2)]

= E
[
(x(t) + h ∗ y(t)) · (x(t − τ1) + h ∗ y(t − τ1)) · (x(t − τ2) + h ∗ y(t − τ2))

]
= E [ x(t) · x(t − τ1) · x(t − τ2) + h ∗ y(t) · h ∗ y(t − τ1) · h ∗ y(t − τ2) +

x(t) · h ∗ y(t − τ1) · x(t − τ2) + h ∗ y(t) · x(t − τ1) · x(t − τ2) +

x(t) · h ∗ y(t − τ1) · h ∗ y(t − τ2) + h ∗ y(t) · x(t − τ1) · h ∗ y(t − τ2) ] (A.80)

If x and y are uncorrelated then the last four terms in equation A.80 can be removed

mz3(τ1, τ2) = E [x(t) · x(t − τ1) · x(t − τ2)] + E
[
h ∗ y(t) · h ∗ y(t − τ1) · h ∗ y(t − τ2)

]
= mx3(τ1, τ2) + m(h∗y)3(τ1, τ2) (A.81)

So the moment spectra of z is actually the moment spectra of y and x added together if they are
uncorrelated. Making the same calculations for higher order gives the same results so in general
the following equation apply.

mzn(τ1, τ2) = mxn(τ1, τ2) + m(h∗y)n(τ1, τ2) (A.82)

This can be extended to cumulants as well as it only removes the lower order moments contri-
bution so in general for cumulants the following also holds.

czn(τ1, τ2) = cxn(τ1, τ2) + c(h∗y)n(τ1, τ2) (A.83)

The condition is of course that the n-th order cumulant spectra exist for either x or y.

Looking closer on the filter h convolved with the random variable y, the convolution can be
written as.

h ∗ y =

∞∑
τh=−∞

h(τh − t) · y(t) (A.84)

If equation A.84 is applied to third order moment of the convolution gives the following.

m(h∗y)3(τ1, τ2) = E

 ∞∑
τh1=−∞

h(τh1 − t) · y(t) ·
∞∑

τh2=−∞

h(τh2 − t − τ1) · y(t − τ1)

·

∞∑
τh3=−∞

h(τh3 − t − τ2) · y(t − τ2)


= E

 ∞∑
τh1=−∞

∞∑
τh2=−∞

∞∑
τh3=−∞

h(τh1 − t) · h(τh2 − t − τ1) · h(τh3 − t − τ2)·

y(t) · y(t − τ1) · y(t − τ2)
]

= E
[
(h(t) · h(t − τ1) · h(t − τ2)) ∗ (y(t) · y(t − τ1) · y(t − τ2))

]
= E [(h(t) · h(t − τ1) · h(t − τ2))] ∗ E

[
(y(t) · y(t − τ1) · y(t − τ2))

]
= mh3(τ1, τ2) ∗ my3(τ1, τ2) (A.85)
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If the random process y is uncorrelated from one time instants to the next, it would normally be
referred to as a random white process, and would manifest it self by its power spectrum being
flat. If a spectrum of order n is flat. Then the random variable would be referred to as being
n’th-order white. If both random variables in equation A.85 are third order white noise process.
Their spectrum’s would be flat e.i. it would have the same value all over. So if equation A.85
is Fourier transformed the spectrum would be a function of the filter as the random variables
would be constant γ which is also known as the skewness for the third order cumulants [1, pp.
37-40].

C(h∗y)3(τ1, τ2) = Mh3(τ1, τ2) · γy3 (A.86)

This can also be extended into n-th order case. If the random variables x and y are n-th order
white noise, then equation A.83 can be written as:

Czn(ω1, ω2) = γxn + Mhn(ω1, ω2) · γyn (A.87)

A.8 Example of system identification using HOS

This example is thought up, but gives a good example how HOS can be used for system iden-
tification, the example here is based on an example given by [1, pp. 53-56]. Figure A.6 show a
system where the filters A(z) B(z) and C(z) are to be determined.

The following things are known about the system:

1
A(z)

B(z)

1
C(z)

Σ

E(k)

N(k)

W(k)

X(k)

Y(k)

Z(k)

S (k)

Figure A.6: Example of system where the filters A, B and C are to be identified.

• The sources E(k) , N(k) and W(k) are independent white noise processes.

• E(k) is a zero mean, white Gaussian Process with a variance larger then zero.

• N(k) is a zero mean, white non-Gaussian Process with a variance, skewness and kurtosis
larger then zero.

• W(k) is a zero mean, white non-Gaussian Process with a variance and kurtosis larger then
zero. But the skewness is zero.
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• X(k) is an Gaussian AR process generated from:

X(k) = −

pi∑
i=1

ai · X(k − i) + E(k) (A.88)

• Y(k) is a non-Gaussian MA process generated from:

Y(k) =

qi∑
i=1

bi · N(k − i) (A.89)

• Z(k) is a non-Gaussian AR process generated from:

Z(k) = −

pi∑
i=1

ci · Z(k − i) + W(k) (A.90)

If the powerspectrum of S (k) is examined, then because the sources E(k) , N(k) and W(k) are
independent then it can be expressed as a sum of the power spectra’s of X(k) , Y(k) and Z(k).

CS 2(ω) = CX2(ω) + CY2(ω) + CZ2(ω) (A.91)

As the sources are white their cumulant spectra’s becomes a function of the filter they are
convolved with so:

CX2(ω) = γE2
1

A(ω) · A∗(ω)
(A.92)

CY2(ω) = γN2 B(ω) · B∗(ω) (A.93)

CZ2(ω) = γW2
1

C(ω) ·C∗(ω)
(A.94)

If the bispectrum of S (k) is examined, then it can be expressed as the bispectrum of Y(k). The
bispectrum of X(k) and Z(k) are zero as their sources have a skewness of zero so:

CS 3(ω1, ω2) = CY3(ω1, ω2) (A.95)

The bispectra of Y(k) can be expressed as:

CY3(ω1, ω2) = γN2 B(ω1) · B(ω2) · B∗(ω1 + ω2) (A.96)

From this it is possible to estimate the filter B with some unknown scale factor

The last thing to examine is the trispectrum of S (k). The trispectrum can be expressed as
a function of the trispectrum of Y(k) and Z(k), as the source signal for X(k) is Gaussian its
kurtosis is zero this means that trispectrum of X(k) is also zero.

CS 4(ω1, ω2, ω3) = CY4(ω1, ω2, ω3) + CZ4(ω1, ω2, ω3) (A.97)

The trispectra of Y(k) and Z(k) can be expressed as a function of their source signal multiplied
with their respective filters.

CY3(ω1, ω2, ω3) = γN2 B(ω1) · B(ω2) · B(ω3) · B∗(ω1 + ω2 + ω3) (A.98)
CZ3(ω1, ω2, ω3) = γW2C(ω1) ·C(ω2) ·C(ω3) ·C∗(ω1 + ω2 + ω3) (A.99)

183



Group 1042 APPENDIX A. HIGHER ORDER STATISTICS

As the filter B could be determined in bispectrum (with some scale error) it should be possible to
estimate the filters C from the trispectrum and finally the filter A from the powerspectrum. This
here was short example on how higher order statistics could be used for system identification.
This concludes the appendix on higher order statistics.

1
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Appendix B

CUDA programming

In this appendix the programming of a Compute Unified Device Architecture (CUDA) capable
GPU is described. The appendix is divided into two sections; the first focusing on the C aspect
of the CUDA programming language and the second focusing on how to achive the best perfor-
mance. The reader is expected to have knowledge about the underlying hardware architechture
and related basic terms such as threads, blocks or compute capability. The appendix is based
on [7].

B.1 C for CUDA

The CUDA programming language is designed to allow programmers to easily write code for
NVIDIA GPUs, provided they are familiar with the C programming language. As such CUDA
is merely a set of extensions to C with similar syntax.

The following only describes the basics of CUDA programming. For more in depth informa-
tion it is recommended to read [7].

B.1.1 Extensions

The CUDA extensions to C can be divided into five subcategories: Function type qualifiers,
variable type qualifiers, a new directive to specify how kernels are executed on the GPU, four
built-in variables that specify the dimensions of blocks and grid and indices of threads and blocks
and a set of built-in vector types.

Function type qualifiers

There are three types of function qualifiers that describes where functions are executed and how
they are called[7, p. 20]:
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• global : Executed on the device and called by the host. This is the kernel function.

• device : Executed on the device and called by the device. Can only be used as a
subroutine in a kernel function.

• host : Executed on the host and called by the host. This is equivalent to a standard C
function. The qualifier can be omitted or used in combination with device to compile
the function for both host and device.

The programming of the GPUs is somewhat limited due to the small amount of flow control
logic. This results in the following restrictions to the functions (full list in [7, pp. 20-21]):

• device and global functions do not support recursion.

• device and global functions cannot declare static variables inside their body.

• global functions must have void return type.

• A call to a global function is asynchronous, meaning it returns before the device has
completed its execution.

Variable type qualifiers

There are three types of variable qualifier that describes where the variable resides in memory,
the lifetime and accessibility.

• device : Resides in device global memory, has the lifetime of an application and can
be accessed from all threads in the grid as well as the host.

• constant : Resides in constant memory space, has the lifetime of an applicatio and
can be accessed from all threads in the grid as well as the host.

• shared : Resides in shared memory of a thread block, has the lifetime of the block and
can be accessed from all threads within the block.

Like the function type qualifiers there are also a number of restrictions to variables, the full list
can be found in [7, p. 22]:

• Neither of the qualifiers are allowed on struct and union members, on formal parameters
and on local variables within a function that executes on the host.

• device and constant variables are only allowed at file scope.

• The address obtained by taking the address of a device , shared or constant
variable can only be used in device code. The address of a device or constant
variable obtained through cudaGetSymbolAddress() can only be used in host code.

• constant variables cannot be assigned to from the device, only from the host through
host runtime functions.
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• Pointers in code that is executed on the device are supported as long as the compiler is
able to resolve whether they point to either the shared memory space or the global memory
space, otherwise they are restricted to only point to memory allocated or declared in the
global memory space.

Built-in vector types

Like threads can be ordered in vectors, matrices or fields inside blocks, so can most numerical
values by using the built-in vector types [7, p. 25]:

char1, uchar1, char2, uchar2, char3, uchar3, char4, uchar4, short1, ushort1, short2,
ushort2, short3, ushort3, short4, ushort4, int1, uint1, int2, uint2, int3, uint3, int4,
uint4, long1, ulong1, long2, ulong2, long3, ulong3, long4, ulong4, float1, float2,
float3, float4, double2.

The built-in vector types are derived from the corresponding basic C types. All of the vec-
tor types are defined as structs containing up to four members depending on the number in
the type name, specifying the number of dimension. The members can be accessed using the
member names x, y, z and w for the 1st, 2nd, 3rd and 4th dimension, respectively.

The built-in vector types uses special constructors of the form make <type name>, for in-
stance:

1 int2 make_int2(int x, int y);

The dim3 type is a special vector type based on the unit3 type where any unspecified members
is initialized to 1. The dim3 is used to specify the dimensions of the grid and thread blocks of
a kernel.

Built-in variables

Instead of using for or while to index large arrays CUDA uses the blocks and threads for the
indexing. Regular loops can still be used, but this does not create a thread for each loop and
thus lowers performance. For this purpose there are five built-in variables [7, pp. 23-24]:

• gridDim: This variable is of type dim3 and contains the dimensions of the grid.

• blockIdx: This variable is of type uint3 and contains the block index within the grid.

• blockDim: This variable is of type dim3 and contains the dimensions ofthe block.

• threadIdx: This variable is of type uint3 and contains the thread index within the block.

• warpSize: This variable is of type int and contains the warp size in threads.

A few restrictions are related to the built-in variables [7, p. 24]:
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• It is not allowed to take the address of any of the built-in variables.

• It is not allowed to assign values to any of the built-in variables.

Execution configuration

When a global function is called the execution configuration must be specificied. The
execution configuration is a set of four parameters that are put in special <<<...>>> brackets
and inserted between the function name and argument paranthesis. The four paramters are [7,
p. 23]:

• Dg: Is of type dim3 and specifies the dimension of the grid. The x and y dimensions can
be specified while the z dimension must be equal to 1.

• Db: Is of type dim3 and specifies the dimension of the block.

• Ns: Is of type size t and specifies the number of bytes in shared memory that is dy-
namically allocated per block for this call in addition to the statically allocated memory.
Defaults to 0 and can be omitted.

• S: Is of type cudaStream t and specifies the associated stream. Defaults to 0 and can
be omitted.

For instance, a function declared as:

1 __global__ void function(int∗ paramter){}

Must be called as:

1 function<<< Dg, Db, Ns, S >>>(parameter);

B.1.2 Thread synchronization

While all scheduling of the threads are handled by the SMs the programmers can synchronize
threads using the intrinsic function syncthreads(). Threads are synchronized on kernel level
meaning all threads in all blocks execute up to the same point in the code before any further
execution. syncthreads() is typically used to synchronize memory transfers between blocks.

B.1.3 Example of matrix-matrix addition

The following example has been included to show basic principles of CUDA programming. Both
kernel and calling code has been included. Explanatory comments have been included in the
code:
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The block partitioning is done so each block handles a small part of the matrix addition and
shared memory equal to 3 times the number of elements per block is allocated dynamically.

1 // Matrix−matrix addition of matrices A and B = C
2

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <cuda.h>
6

7 #define h 128 // Rows in the matrix
8 #define w 256 // Columns in the matrix
9

10 // Forward declarations
11 __global__ void MatrixAdd(int ∗Ap, int ∗Bp, int ∗Cp);
12

13 // Main function
14 int main(int argc, char∗∗ argv){
15 int m, n, size, A[h ][w ], B[h ][w ], C[h ][w ];
16 int ∗Ap,∗Bp,∗Cp; // Pointers to the matrices
17 float error=0;
18

19 // Insert numbers in A and B
20 for (m=0; m<h; m++){
21 for (n=0; n<w; n++){
22 A[m ][n]=n+m∗w;
23 B[m ][n]=h∗w−(n+m∗w);
24 }
25 }
26

27 // Allocate memory for A, B and C on device
28 size=h∗w∗sizeof(int);
29 cudaMalloc((void∗∗)&Ap, size);
30 cudaMalloc((void∗∗)&Bp, size);
31 cudaMalloc((void∗∗)&Cp, size);
32

33 // Copy A and B to device
34 cudaMemcpy(Ap, A, size, cudaMemcpyHostToDevice);
35 cudaMemcpy(Bp, B, size, cudaMemcpyHostToDevice);
36

37 // Set block and grid size
38 dim3 dimBlock(8,8);
39 dim3 dimGrid(w/dimBlock.x,h/dimBlock.y);
40

41 // Call MatrixAdd kernel to calculate C=A+B, dynamic allocation of shared
memory

42 MatrixAdd<<<dimGrid, dimBlock, dimBlock.x∗dimBlock.y∗sizeof(int)>>>(Ap, Bp, Cp);
43

44 // Copy C from device
45 cudaMemcpy(C, Cp, size, cudaMemcpyDeviceToHost);
46

47 // Free allocated memory on device
48 cudaFree(Ap);
49 cudaFree(Bp);
50 cudaFree(Cp);
51

52 // Compare values of C calculated by CPU and GPU and sum the error
53 for (m=0; m<h; m++){
54 for (n=0; n<w; n++){
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55 error+=C[m][n]−(A[m][n]+B[m][n ]) ;
56 }
57 }
58 error=error/(float)(m∗n); // Divide by number of elements to obtain mean error
59

60 // Print error
61 printf("Mean error between CPU and GPU result: %10.4f",error);
62

63 return(0);
64 }
65

66 // Kernel functions
67 __global__ void MatrixAdd(int ∗Ap, int ∗Bp, int ∗Cp){
68 // Shared variables, dynamic allocation allocated
69 extern __shared__ int shared[];
70 int ∗As = (int∗)shared;
71 int ∗Bs = (int∗)&shared[blockDim.x∗blockDim.y];
72 int ∗Cs = (int∗)&shared[2∗blockDim.x∗blockDim.y];
73

74 // Block index
75 int bx = blockIdx.x;
76 int by = blockIdx.y;
77

78 // Thread index
79 int tx = threadIdx.x;
80 int ty = threadIdx.y;
81

82 // Global memory index
83 int idx = tx + bx∗blockDim.x + ty∗blockDim.x∗gridDim.x + by∗blockDim.x∗gridDim.x∗

blockDim.y;
84

85 // Load elements for corresponding block from global memory to shared memory
86 As[tx+ty∗blockDim.x] = Ap[idx];
87 Bs[tx+ty∗blockDim.x] = Bp[idx];
88

89 // Calculated C = A + B
90 Cs[tx+ty∗blockDim.x] = As[tx+ty∗blockDim.x]+Bs[tx+ty∗blockDim.x];
91

92 // Store elements for corresponding block from shared memory to global memory
93 Cp[idx] = Cs[tx+ty∗blockDim.x];
94 }

B.2 Performance guidelines

Optimizing CUDA code for execution on the GPUs can roughly be divided into three subcate-
gories: Choice of instructions, memory management and execution configuration.
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B.2.1 Instruction performance

Arithmetic instructions

Most of the considerations with regard to arithmetic instruction performance is a consideration of
speed versus precision. Many of the math functions are implemented as two functions where the
faster, but less precise, version uses the same function name prefixed with , for instance sinf(x)
and sinf(x). A number of the fast functions also have a suffix inserted between the function
name and argument paranthesis specifying the rounding mode, for instance fadd rn(x,y) and

fadd rz(x,y). There are four different rounding modes [7, p. 90]:

• Functions suffixed with rn operate using the round-to-nearest-even rounding mode.

• Functions suffixed with rz operate using the round-towards-zero rounding mode.

• Functions suffixed with ru operate using the round-up (to positive infinity) rounding
mode.

• Functions suffixed with rz operate using the round-down (to negative infinity) rounding
mode.

A full list of the fast functions and their error bounds can be found in appendix B of [7].

Like most architechtures division and modulo operations are very costly and should be avoided
if possible. If not the programmer should try and replace these operations with their respective
bitwise operations, for instance right shifting if dividing with a number that is a power of 2.

Control flow instructions

Threads in a warp that diverges due to control flow instructions, for/while/do/if/switch, will
be executed in serial rather than in parallel. This will significantly impact performance and
should be avoided. It is, however, possible to use control flow instructions without serializing
the execution of threads, if the conditions are constructed with the warp size in mind. A simple
example of this could be using (threadIdx / warpSize) as the condition. In this example the
condition would be aligned with the warp size resulting in whole warps diverging rather than
threads of a warp. If a whole warp diverges the threads in it will still be executed in parallel
without any impact on performance.

Special attention must be paid to loops because the compiler may unroll these to increase
performance. This only happens for small loops with a known trip count, but can be controlled
using the #pragma unroll <num> directive where <num> determines how many times the
loop should be unrolled. The directive is inserted directly before the loop and only affects the
following loop, for instance:

1 #pragma unroll 5
2 for (int n = 0; n < N; n++){}
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This will force the compiler to unroll the loop five times regardless of the value of N. In some
cases this behavior may affect the correctness of the program and it is up to the programmer to
ensure it does not. If no number is specified the loop will always be unrolled if the trip count
is constant and never unrolled if it is variable. #pragma unroll 1 will prevent the compiler
from unrolling the loop regardless of the trip count.

B.2.2 Memory management

Memory management is an important issue while optimizing CUDA applications because there
are very large differences in access time depending on which type of memory is accessed. Access
to uncached device memory takes as long as 400 to 600 clock cycles compared to less than 10
clock cycles for on-chip memory. Transfers between host and device memory is even slower and
can thus impact performance significantly.

Global memory

Global memory resides in device memory and thus off-chip. Global memory is not cached and
as such one of the slowest types of memory the GPU can access. This means the number of
accesses to global memory should be reduced, which can be done in two ways.

Firstly, data can be arranged in memory such that it is read into registers in a single load
instruction. To do this the data must be aligned with the memory addresses, such that the
addresses of the elements are multiples of the size of their type in bytes. Furthermore the size of
the type must be 4, 8 or 16 bytes. The alignment can be achieved automatically if the built-in
vector types are used. For structures a special alignment specifier should be used as described
in [7, p. 56].

Secondly, memory accesses of threads of a half-warp can be coalesced into a single memory
transaction if a number of requirements are fulfilled. Devices of compute capability of 1.2 or
higher have much looser requirements than devices of lower compute capability. Only coalescing
for devices of compute capability 1.2 or higher is described in this report while coalescing for
devices of lower compute capability can be found in [7, p. 57].

For devices of compute capability of 1.2 or higher the global memory is partitioned into segments
of 32, 64 or 128 bytes. Any memory access of a half-warp is coalesced into a single transac-
tion if all of the requested addresses lie within the same segment, regardless of multiple threads
accessing the same address or the threads accessing the addresses in a random pattern. If a
half-warp accesses adresses in n segments n transactions will be performed. The GPU reads
a whole segment at a time, meaning unused addresses will be wasting bandwidth. To avoid
this the GPU will automatically choose the smallest segment size containing all of the addresses
accessed by the half-warp. This is illustrated in figure B.1.
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Local memory

Local memory resides in device memory and is not cached, but always coalesced. Variables are
only placed in local memory by choice of the compiler and can be avoided by using any of the
variable type qualifiers. To identify if a kernel uses local memory the total local memory usage
can be reported by compiling with the –ptxas-options=-v option.

Figure B.1: Left: Random float memory access within a 64B segment, resulting in one memory transaction.
Center: Misaligned float memory access, resulting in one transaction. Right: Misaligned float memory access,
resulting in two transactions. [7, p. 62]
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Constant memory

Constant memory resides in device memory, but is cached and will only read from device memory
on a cache miss. If all threads of a half-warp reads from the same address the access will be
as fast as access to a register. If several addresses are accessed the cost scales linearly with the
number of different addresses accessed. For future generations it is recommended to have all
threads of a warp read from the same address rather than only a half-warp.

Texture memory

Constant memory resides in device memory, but is cached and will only read from device memory
on a cache miss. Accesses to the texture cache achieve best performance if the threads of the
half-warp access data with similar localization as texture, i.e. 2D spatial locality. Using texture
memory is not as straight forward as using constant or global memory, but provides several
benefits over both. For more info the reader is referred to pages 26, 29, 72 and appendix D of
[7].

Shared memory

Shared memory resides on-chip and is divided into n banks. For current generation GPUs n = 16
which is very convenient as this is also the size of a half-warp. All threads of a half-warp can
read from shared memory simultaneously if no bank conflicts occur. Bank conflicts occur when
two or more threads of a half-warp access adresses in the same bank. If this is the case, the SM
will split the memory accesses causing bank conflicts into as many separate conflict free accesses
as neccessary. If the number of separate accesses is called m, the memory access is said to have
caused an m-way bank conflict and the resulting bandwidth reduction is proportional to m. If
no bank conflicts occur shared memory access is as fast as accessing registers. To avoid bank
conflicts it is neccessary to understand how data is arranged in shared memory.

When data is assigned to shared memory consecutive 32 bit words are stored in successive
banks, i.e. the first 32 bit word goes into bank 0, the second 32 bit word goes into bank 1 and
so forth. When a 32 bit word has been stored in the 16th bank the pattern is repeated and the
following 32 bit goes into bank 0. Special attention must be paid to data types that do not have
a size of 32 bits. For instance an array of 8 bit chars will have the first four consecutive chars
stored in bank 0, the next four consecutive chars in bank 1 and so forth. The programmer must
either rearrange the chars before storing them in shared memory or avoid accessing consecutive
chars belonging to the same bank. doubles by nature cause a 2-way bank conflict due to their
size of 64 bits. One way to avoid bank conflicts with doubles is to split them into a high
and a low part and store them separately. This may not always improve performance and will
be slower on future architectures. Structs also require special attention as described in [7, p.
65]. Figure B.2 shows examples of shared memory access both with and without bank conflicts.
Having several threads read from the same adress does not always cause a bank conflict. This is
due to a feature called the broadcast mechanism. This allows one bank to broadcast to several
threads while other threads can read from other banks simultaneously. If for instance all threads
of a half-warp read the same address this can be broadcast to all threads rather than causing a
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16-way bank conflict. Two examples using the broadcast mechanism are shown in figure B.3.

Registers

Registers require 0 extra clock cycles to access per instruction, but may introduce delays due
to read-after-write dependencies and bank conflicts. To delays introduced by read-after-write
dependencies can be ignored if there are at least 192 active threads per SM and bank conflicts
are minimized if the block size is a multiple of 64. Bank conflicts are minimized at compile and
thread scheduling time and can not be modified by any other means than the above mentioned.

Host memory

Transferring data between the host memory and device memory is by far the most time con-
suming memory operation. As such any transfers between host memory and device memory
should be avoided where possible, even if it means running code that is not suitable for parallel
execution on the GPU. When needed transfers between host memory and device memory should
also be grouped into as few large transfers as possible.

Figure B.2: Left: Consecutive threads accessing consecutive banks causing no bank conflicts.. Center: Random
memory access causing no bank conflicts. Right: Memory access causing a 2-way bank conflict. [7, pp. 68-69]
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B.2.3 Execution configuration

In the execution configuration two parameters are of very big importance to the performance
of a kernel: The block size, Db, and the grid size, Dg. Which values of block and grid size
maximizes the performance is usually dependant on the kernel, but a number of general rules
can be followed.

Before considering how to maximize performance by tuning the execution configuration the
programmer must ensure that the kernel can be launched. For this to be true one block must
be able to execute on an SM without exceeding the constraints: Number of threads per block,
available registers and available shared memory. The maximum number of threads per block
and maximum number of registers and shared memory per SM is given in appendix A of [7].
The number of threads per block is only dependant on the execution configuration while the
number of registers for a block can be calculated as:

ceil
(
R · ceil(T, 32),

Rmax

32

)
(B.1)

Where:
R is the number of registers required for the kernel.

Figure B.3: Left: All threads of a half-warp accessing the same bank. Using broadcast no bank conflicts occur.
Right: Severals threads accessing bank 5 and simultaneous accesses to other banks. If bank 5 is broadcast no
bank conflicts occur. [7, pp. 70]
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Rmax is the total number of registers per SM.
T is the number of threads per block.
ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The shared memory for a block is equal to the sum of the dynamically and statically allocated
shared memory and the shared memory used to pass arguments to the kernel. The number of
registers, R, as well as local, shared and constant memory used by a kernel can be reported by
the compiler by using the option –ptxas-options=-v. When these constraints are followed the
kernel can be launched and the execution configuration can be optimized.

The grid should at least contain as many blocks as there are SMs on the GPU or ideally several
blocks per SM. If not an SM may run idle due to having no blocks assigned or synchronization
issues. If there are several blocks per SM, it will be possible to schedule another block to be
executed on the SM during idle time. Blocks are also executed in a pipeline fashion meaning that
several blocks being executed on one SM will not only reduce the idle time, but also overhead.
Increasing the number of blocks in the grid does, however, not ensure this is the case, if the
blocks assigned to an SM are not all active. For several block to be active there must be enough
registers and shared memory available on the SM for all of the blocks. If performance on future
generations of GPUs is a concern, the grid size should be in the proximity of 100 blocks to scale
to future devices or 1,000 to scale over several generations. Due to the scheduling and execution
of a warp at a time the block size should be chosen such that the number of threads is a multiple
of the warp size. This will ensure warps are not underpopulated and the SPs will not run idle. If
possible the block size should be chosen as a multiple of 64 due to register memory bank issues.
Larger block size will be more efficient due to time slicing, however. The maximum block size
must not exceed the above mentioned limit, but should be chosen such that at least two blocks
can be active on one SM. The limiting factor is still the available registers and shared memory,
but there is also a maximum number of active threads per SM given in appendix A of [7]. This
sets another limit to how large the blocks can be while still allowing several blocks to be active.
As such the minimum size of a block should be 64 threads while the maximum size is dependant
on available registers and shared memory as well as the maximum number of active threads per
SM.

Overall the programmer must consider several tradeoffs between grid size, block size, active
threads and blocks, register usage and shared memory usage. To sum up the following state-
ments are recommended for optimizing performance:

• The grid size should allow for at least 2 blocks per SM, ideally several. 100 or 1,000 to
scale to future devices and generations, respectively.

• The block size should be multiple of the warp size or ideally a multiple of 64. Larger than
64 to achieve better time slicing.

• There should be at least 2 active blocks per SM, ideally several - not to be confused with
grid size. For several blocks to be active the following limits must not be exceeded:

– The total number of threads in the active blocks must not exceed the maximum
number of active threads on an SM.

– The total number of registers used by the active blocks must not exceed the number
of registers available to an SM.
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– The total amount of shared memory used by the active blocks must not exceed the
amount of shared memory available to an SM.

In other words the programmer should try and make many lightweight threads. If the threads
are lightweight they use few resources and the block size can be chosen large to obtain better
time slicing. The number of threads must, however, not be so high that the number of active
blocks is reduced, be it due to the maximum number of active threads or available registers and
shared memory. The data sets in the application should also be large enough for a large grid
size allowing several blocks per SM. Using current GPUs with up to 30 SMs and the minimum
values for block size and active blocks per SM, 64 and 2 respectively, there will be 3,840 threads.
This makes it quite clear that best performance is obtained when the data sets are large and
also easier for the programmer to choose a suitable execution configuration.
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Notation

Hermetisk transposed: AH

Matrix transposed: AT

Matrix conjugated (without transposed): A∗

Frequency Domain: H(w), uppercase
Time Domain: h(t), lowercase
(w) can (t) be omitted.

Matrix: ¯̄A
Vector: Ā

Subscript: Indexing or naming.
Superscripts: Operator.

j = imaginary unit.
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Abbreviations

SIR : Signal to Interference Ratio
SNR : Signal to Noise Ratio
TITO : Two Input Two Output
GPU : Graphic Processing Unit
MATLAB : MATrix LABoratory
FLOP : FLoating point OPerations
FLOPS : FLoating point Operations Per Second
BSS : Blind Source Separation
SOS : Second Order Statistics
HOS : Higher Order Statistics
PDF : Probability Density Function
DFT : Discreet Fourier Transform
FFT : Fast Fourier Transform
SM : Streaming Multiprocessors
SP : Scalar Processor
CUDA : Cumpute Unified Device Architechture

201


	I Introduction
	Introduction
	Motivation

	Scope of the Project
	Assumptions and Limitations of the system model


	II Theory behind the Blind Source Separation
	Inverting the TITO model
	Estimating the Filters in the TITO model
	Estimation of (0)
	Reconstruction of the Filter

	Conclusion

	III Simulation and Verification of the Blind Source Separation
	Introduction
	Test Signals
	Inverse Filtering
	Simulation of the Inverse Filtering

	Minimum Phase Filter Estimation
	Bispectrum Estimation
	Simulation of Minimum Phase System Identification

	Reverse Third Order Moment Spectrum
	Estimating the Phase Response of the Filter
	Estimating the Magnitude Response of the filter
	Simulation of the Reverse Third Order Moment Spectrum

	Non-minimum Phase Filter Estimation
	Trispectrum Estimation
	Simulation of the Trispectrum Estimator
	Simulation of the Non-Minimum Phase Filter Estimation

	H(0) Estimation
	Simulation
	Conclusion

	Blind Source Separation Simulation
	Simulation Description
	Simulation Results

	Conclusion

	IV Algorithm Implementation
	Introduction
	Complexity analysis
	Complexity of Inverse Filtering
	Complexity of the Bispectrum Estimation
	Complexity of Reverse Third Order Momentspectrum
	Complexity of Non-minimum Phase Filter Estimation
	Complexity for Calculating H(0) estimation
	Complexity of the Blind Source Separation

	Complexity reductions
	Project specific preconditions
	Block diagram of the trispectrum estimation
	MATLAB variables
	Fourth order moment spectrum
	Matrix-vector convolution
	Second order moment spectrum
	1D FFT
	2D FFT
	Matrix expansion
	Second order moment sequence
	Cubic addition
	Reduced block diagram and MATLAB code
	New complexity estimation for the trispectra

	CUDA architecture
	Hardware layer
	Compute capability
	Software layer

	CUDA implementation
	Baseline implementation
	CUDA variables
	The cufft and cuComplex types
	Block overview
	Second order moment sequence
	Row summing
	Zero-pad and shift
	1D FFT
	Second order moment spectrum
	Vector-vector convolution and matrix addition
	Verification of the implementation
	Test of execution configuration and scalability

	Optimization of the CUDA implementation
	Baseline implementation
	Unroll last warp
	Completely unrolled
	First add during load
	Several adds during load
	2-dimensional block size
	Coalesced memory access

	Execution time test of the CUDA implementation
	Results

	Conclusion

	V Conclusion and Appendices
	Conclusion
	Future work
	Bibliography
	Higher Order Statistics
	Moments and Cumulants
	Properties of Moments and Cumulants
	Moment spectra
	Moment Cross Spectra
	Cumulant Spectra
	Windowing of the Fourier transform
	Properties of Cumulant Spectra's
	Example of system identification using HOS

	CUDA programming
	C for CUDA
	Performance guidelines

	Notation
	Abbreviations


