Evaluating Retransmission as Technique
to Improve Streaming of TV Audio on a
Wireless Network

Kim Hgjgaard-Hansen

Kristian Engh Lundgreen

[

AALBORG UNIVERSITY

10th Semester Project, June 2009
The Faculties of Engineering, Science and Medicine
Department of Electronic Systems

(3

AALBORG UNIVERSITET

Institute of Electronic Systems
Fredrik Bajers Vej 7

9220 Aalborg Jst

Telephone: 99 40 86 00

http://www.ies.aau.dk/

Title:
Evaluating Retransmission as Technique
to Improve Streaming of TV Audio on a
Wireless Network

Theme:
Performance Analysis and Network Plan
ning

Project period:
10th Semester, Spring 2009

Project group:
Group 1005

Group members:
Kim Hgjgaard-Hansen
Kristian Engh Lundgreen

Supervisor:
Anders Nickelsen
Tatiana K. Madsen

Number printed:
5

Number of pages:
Report: 78
Total: 80 Appendix: One CD-ROM

Abstract:

This work investigates the use-case of stream
audio from a TV to a number of headset usi
WLAN. During this investigation two requirement
are identified: Lip synchronization between audio
-and video requires a maximum skew of 80ms. An
acceptable audio experience requires a maximum
packet loss of 1.8%

ing
ng
S

Initial experiments showed that packet loss is
main problem. An analysis is made to find teg
nigues for packet loss recovery, and retransmissi
is chosen as the packet loss recovery technique to
be investigated.

A new method of measuring whether the sk
requirement is fulfilled is proposed. 802.11 MA
retransmission, UDP, TCP and a developed sim
application level retransmission protocol were
evaluated in terms of their performance regard

W
C

ple
all

the skew requirement, the ability to recover frgm

packet loss and the bandwidth usage.

It is concluded that there is no significant gain |i
using more than 802.11 MAC retransmission to
cover from packet loss when transmitting unic

streams with high delay requirements.

Completed:
June 3rd, 2009

Frontpage photo:

Creative Commons, Copyright: http://www.instructabtesn

Preface

This report is written during the 10th semester of Netwonkd Bistributed Systems (NDS) studies at
the department of Electronic Systems at Aalborg Univer3ibe primary purpose of this semester is to
document that the student independently or in a small grewapable of planning and completing a
project at a technically high level. The final thesis mustudnent the students ability to apply scientific
theories and methods. The project started February 2th 28@@nded June 3rd 2009.

This project is based on a proposal constructed in cooperatith DoréDevelopment Aps, Hadsund,
Denmark. The proposal asked for an evaluation on whethepibssible to use a Wireless Local Area
Network (WLAN) as carrying media for a live audio stream frartelevision, with strict requirements

in time. The wireless medium is influenced by noise and otbetrrounicating nodes, and is thereby
considered unreliable. This led to the main objective of tigiport; an evaluation of retransmission
techniques to improve live streaming of TV audio on such oeka.

References to source material are indicated as [1] whidrsed the numbered list of references found
at the end of the report. Figures, tables, equations andsestions are referred to by the number
corresponding to the object. Acronyms are written in fuligéh when they are introduced e.g. Line Of
Sight (LOS) and a list of acronyms can be found next to thadgipaphy.

A CD is enclosed with the report which contains the sourcedodthe data processing of the measure-
ment results as well as an electronic copy of this report iff Ridmat.

Definitions

Throughout the report a phrase ’inter packet delay’ is uasdanother therm for inter packet arrival.
This is defined as the time difference between two successdgived packets. The terms ’inter packet
delay’ and 'inter packet arrival’ is used interchangeable.

Contents of the CD-ROM

e This reportin PDF format/(r eport . pdf)
e Python scripts used for calculations

e Experimental data

Acknowledgments

The group would like to thank Mads Doré, Mads Lange, EsberbEliadal and all other employees
at DoréDevelopment for their help and cooperation durirgfoject. A special acknowledgement is
given to our two supervisors: Anders Nickelsen and Tatiankl&dsen.

Author Signatures

Aalborg East, June 3th 2009

Kim Hgjgaard-Hansen

Aalborg East, June 3th 2009

Kristian Engh Lundgreen

Introduction

1.1 Use-case. i

Preliminary Analysis

2.1 Live streamingoverview
2.2 Synchronization Requirement
2.3 PacketLossRequirement
2.4 Initial Experiment
2.5 Packet Loss Recovery Techniques
2.6 Conclusion

Problem Statement

3.1 Problem Statement

3.2 Delimitation

Requirement Analysis

4.1 Audio Stream Properties
4.2 Skew Requirement Checking Method
4.3 Buffer Calculation SpecialCase

4.4 Summary ... e

Performance Evaluation of 802.11 MAC retransmission

5.1 ExperimentSetup
52 Results.
5.3 Conclusion

Contents

CONTENTS

6 Performance Evaluation of Transport Layer Protocols

6.1 UDP Performance Evaluation.

6.2 TCP Performance Evaluation

7 A Simple Retransmission Protocol

7.1 Design
7.2 Retransmission algorithmo oL
7.3 Implementation L
7.4 Performance Evaluation.

8 Conclusion

8.1 Discussion of main Assumption L.

8.2 ProjectConclusion

9 Project perspectives

9.1 FutureWork
9.2 Expandingtheuse-case
9.3 Alternative Approaches

Bibliography

56

............ 56
............. 57
........... 59
............. 62

72

............. 73
............. 73

74

........... 74
.............. 75
............. 76

77

Introduction

Open office environments are more and more in use by compaiegpractise working in project
groups. Placing people who works on the same project nearaher, without delimiting walls, in-
creases the knowledge sharing and possible the efficierttye déam.

However, this type of open office environmentintroducesepnoblems with light, noise and other dis-
turbances. People working in such an environment has differeeds, such as telephony conversations
and informal meetings in order to do their jobs. Many peofaets listening to music or radio stations
using headphones to reduce the noise from people around them

Bl [p——

O
O
Q

o—
T

| |

Figure 1.1: The figure shows an overview of the open office environmenh wie flat screen TV at one wall.
Desks are spread around the office, and each of these dedéiheaupotential receiver of the streamed audio.

In an open office environment a large flat screen TV can patintie shared among the employees,
watching the news or other relevant shows, sometimes eviinspiit-screen of two different shows.
This sharing does however create a problem when it come®tsahnd from the TV. An open office
environment is very sensitive to disturbance hence it isnshful to have the volume from the TV set

8 1.1. USE-CASE

high enough that everybody can listen to it. This project feitus on how it is possible for a company
to give their employees the opportunity without disturbihgir colleagues.

An example of such a company is DoreDevelopment which wilthee case study throughout this
project.

1.1 Use-case

DoreDevelopment is a small firm developing and managing eledse software solutions. Their open
office environment has room for 7 people, where a 40 inchepdlatl screen let the employees watch
the news trough the working day. DoreDevelopment need disnlfor streaming the sound of the TV
channel to the employees that are watching, but withoubdhtcing noise to the other colleagues. This
project proposes an audio streaming solution, which captilire audio from the TV and streamsiitto a
number of employees using wireless technology. By stregrfia audio to a number of headsets, the
disturbance from the TV is removed. The concept is illustiah Figure 1.1.

DoreDevelopment would like to reuse their existing WirsleaN infrastructure, to avoid establishing

a whole new network to transport the audio stream. Streaorrggunreliable wireless link, affected by
noise, introduces some interesting aspects due to medisatime and packet loss caused by the use
of a shared medium. This leads to the initial problem stateme

e How can the audio from a TV be distributed to a number of resrsiusing WLAN without affecting
the TV watching experience?

The following chapter will give an overview of the live straing scenario and the requirements used
throughout the project. The chapter will furthermore dibgecthe initial experiment performed.

Preliminary Analysis

Section 2.1 will introduce the concept of streaming andbiditice some important definitions and terms
in order to describe the synchronization problem in detail.

2.1 Live streaming overview

Main source: [1]

Live streaming in it is most abstracted form can be seen inr€ig.1. A recording is made consisting of
either audio or video or both and this is fed into the sourakadrthe stream. The source is connected
to the sink end, possibly by a network, and at the sink endttkarm is played.

S Possible network -
. --n--l ¢

y =T ey)

Recording Playback

Figure 2.1: The figure shows how live streaming works. A recording is maith either audio, video or both,
which is fed into the source. The source is connected to tileissible via a network. At the sink the recording
is played live.

A stream of either audio or video or both is characterizedras-tlependant since the media objects
which constitutes the stream are dependant on each otheretéition to time. An example could be
video and audio objects both recorded at a concert. Thesetsbjave a time-dependant relationship
when they are recorded, and this relationship has to beezseshen the objects are played again.

A recorded stream is usually split up into a sequence of madformation units. From now on the

term Logical Data Unit (LDU) will be used about these infotioa units. The size of these LDUs is

dependant on the type of stream and the application cretitamy e.g. for CD-quality music, Pulse Code
Modulation (PCM) coding without compression is used withaeple rate of 44100Hz, two channels
and 16bit resolution per channel, which are combined tokslad 7—15$econds duration. LDUs can be
classified as either closed LDUs or as open LDUs. A closed LB¢la predictable duration e.g. from
continuous media like audio and video. The duration of opPtJg are not predictable and could be
media objects that include user interaction. Examplesasfed LDUs for video can be seen in Figure
2.2 where each picture/frame is packaged into one LDU.

10 2.1. LIVE STREAMING OVERVIEW

[Pic. 1 [Pic. 2 [pic. 3 [pic.4] [Fien],
It |
1730 s

-y

Figure 2.2: The figure shows an example of a video LDU. Each sample (@ifftame) is put into one LDU of
1/30s duration.

Since audio samples are much smaller than video sampleksDite for an audio stream usually con-
tains a number of samples. Figure 2.3 shows an example whi&rasd@mples is packaged into one

LDU.

Physical frame duration = I/sample frequencies (e.g. 1/8000 s)
o | -

AL A

T

Lt

Duration of a Logical Data Unit of 512 Bytes (e.g. = 0.064 s)

Figure 2.3: The Figure shows an example of an audio LDU. Since audio sk small compared to video
samples it is normal to package a number of these in each LRUoke sample is 1/8000s of audio, and 512 of

these are packaged into one LDU.

A more detailed view of how the project use case streamindesviarillustrated in Figure 2.4. The TV
broadcast can be viewed as a kind of streaming which endsiithtuner as sink. From the TV to
the headsets another streaming is performed with the TVeald#hsource and the audio capturing and
transmitting device as the stream source. The audio stresasesit to the headsets which becomes the

stream sinks.

TV studio TV Broadcast TV antenna streaming WLAN
board Headset
\7%] audio
Source > Sink Source »| Source

Figure 2.4: The figure shows a more detailed view of how the project use sagaming is done. A show is
recorder or played from a TV studio and broadcast using thérbddcast network to the project use case TV. This
could be seen as one live stream. The TV tuner decodes thett@ahs' and the picture is shown on the TV while
the audio is streamed using WLAN to a number of headsets.

The next sections will derive a set of requirements to theasir solution.

2.2. SYNCHRONIZATION REQUIREMENT 11

2.2 Synchronization Requirement

Splitting a TV signal/stream into two separate streams aiittio and video, set up a requirement about
the synchronization between these. This is called "Lip 8ywmwization" and refers to the temporal
relationship between audio and video for the particulae afshuman speaking. The time difference
between the audio and video LDUs is called skew. If the steeama perfectly in sync there is no skew
(Oms difference). When the streams are not in perfect spmiation this can become a problem to the
user experience, hence it is necessary to know how much skilerable.

It is the human perception of the synchronization which ésrtteasurement of whether two streams are
"in-sync" or "out-of-sync". This is not an objective measment because the perception of synchro-
nization varies from person to person. Instead a heuristier@ is needed. Experiments conducted at
the IBM European Networking Center[13] gave the resultswshio Figure 2.5. The region from -80ms
(audio behind video) to 80ms was concluded to be the in-sygion since most of the subjects did not
notice synchronization errors there. The region below ri$@nd above 160ms was concluded to be
out-of-sync since nearly all the subjects detected erfmet The area between -160ms and -80ms as
well as between 80ms and 160ms was named the transientiacedtse subjects started to detect errors
there. It was noted that when the resolution of the picture be&tter or the closer the speaker was to
the camera, the easier it was to detect the errors. It wasalsa that video ahead of audio could be
tolerated better than audio ahead of video. The latter caxplained by the fact that this is a situation
which is not unusual to humans since light travels fastan aund.

Detected Errors [%]
T i a4
80 1

i ‘{ §

60 -1

TR)

20
0 : il
-320 -260 -240 -200-160 120 80 40 O 40 80 120 160 200 240 280 320

[B owtView W SvouderView IR BodyVew | Skew [msec]

Figure 2.5: The figure shows how the skew between audio and video wageétegcthe subjects in the experiment.
The area between -80ms and 80ms was concluded to be thedrassa The are beyond -160ms and 160ms was
concluded to be out-of-sync and the are between in-sync andfesync was called the transient area.

It is chosen to use the requirement of no more than -80ms te &blew between the video and audio
streams as the performance requirement for this project.

12 2.3. PACKET LOSS REQUIREMENT

Fill Algorithm | Sex of Talker | Detect or Object | Loss Rate (%)
Silence Male Detect 151
Silence Male Object 0.67
Silence Female Detect 1.80
Silence Female Object 0.90
Noise Male Detect 3.58
Noise Male Object 1.87
Noise Female Detect 2.84
Noise Female Object 0.76
Repeat Male Detect 1.63
Repeat Male Object 0.33
Repeat Female Detect 3.43
Repeat Female Object 0.76

Table 2.1: The table shows the packet loss rates for detection andtaijday the listener. The results er presented
for each of the three different filling algorithms.

2.3 Packet Loss Requirement

Another parameter that needs consideration is the amoyuataldet loss a wireless link will experience
during the transfer of the audio stream. A requirement idiggipacket loss must be conducted to give a
view of the quality of the transmission. In the ideal worlé facket loss would be zero, but the wireless
medium will always experience erroneous frames and packbtsrequirement must thereby define the
limit of which packet loss can be tolerated before the listesf the stream becomes unsatisfied.

An subjective analysis and evaluation of the listeners g&pee of voice in a telephone handset, when
different fill algorithms are used and the transport streaenexposed to different means of packets
loss were done by British Telecom Research Labs[15]. Thé/sisaare done using a test processed
with trained listeners. All listeners are told to mark thexperience as high quality, detectable qual-
ity degradation or non acceptable quality degradation. rEsalts of the experiment are presented in
table 2.1.

The results from this experiment is used as an indicatiohefadlerated packet loss in an audio stream.
It has been decided to use the silence fill algorithm as reéeresince this seems to be the simple to
implement and is widely used. This raises a requirementitiegtacket loss must not exceed 1.51 % for
male talkers and 1.80 % for female talkers. For the rest efréport the requirement used is maximum
1.80 % uniformly distributed packet loss.

2.4. INITIAL EXPERIMENT 13

2.4 Initial Experiment

It is chosen to conduct a set of initial experiments in ordeget an understanding of the issues which
arises when trying to stream the TV audio to a number of hegsd#e initial approach for streaming
the audio from a TV could be to just record the audio at the@uodiput of the TV, and stream this to
the clients.

This is illustrated in Figure 2.6, where a computing devEednnected to a TV via a analog audio
cable feeding the audio into the audio input device. Hereatiedog audio is sampled to digital audio
and streamed over Wireless Local Area Network (WLAN) to a hanof headsets. This setup can be
emulated using two computers with one of them acting as arsteerver streaming audio from a stored
audio file, and the other acting as a streaming client (héads=eiving and playing the audio. Doing
this would remove the delay from the TV audio output to the pating device audio input, but this
delay is considered to be insignificant. This leaves the odtwnd to end delay as the expected pitfall,
together with a possible loss of packets due to the unrétyabf the wireless medium. An experimental
setup is created to try out these ideas.

()

N

WLAN headset devices
(©)

%

Streaming
device

Analog audio cable

Figure 2.6: The figure shows how the streaming of audio could be doneclaitig a WLAN and audio recording
capable computing device to the TV and record the audio fl@T¥ audio output port. The audio is then streamed
to a number of clients using WLAN.

The overview of the experimental setup is shown in Figure li2ach scenario a MP3 file containing

approximately 4 minutes of music is played on the streameserVhe stream server is connected to
a wired Ethernet network, which includes the Access Poim)(f infrastructure mode. The audio

track is streamed onto the network using PulseAtididhich streams the raw 16 bit PCM audio using
Real-Time Protocol (RTP) to the receiving node.

http://www.pulseaudio.org/

14 2.4. INITIAL EXPERIMENT

The experiment consists of five scenarios on respectivelys.AN and Wireless LAN. The scenarios
are named as follows:

e lan: is the scenario where the stream server and client are lgficentnected trough the wired Ether-
net switch

e no-disturbance: is the scenario where the audio is streamed through theesgeletwork without
disturbance

e 2mbit: another run of the wireless scenario, this time with 2mbitRUdisturbance traffic on the AP

e 10mbit: another run of the wireless scenario, this time with 10miPUdisturbance traffic on the
AP

e 20mbit: final run of the wireless scenario with 20mbit UDP disturbatraffic on the AP

Independent
AP

()

Disturbance server Stream server Stream client Disturbance client

Figure 2.7: The figure shows the network and setup used for the initiatexpents. The setup consists of three
wireless laptops and a stream server. Two of the laptopsmesfdisturbance to the wireless network, while the
stream server and client handles the actual audio streashihg scenario.

The RTP stream will in all scenarios, excluding the LAN refeze scenario, traverse the wireless
802.11g link between the nodes. In parallel, two other wselnodes are connected to the infras-
tructure AP. These two nodes are used to add a controlledrrd@iurbance traffic to the WLAN, in
order to yield results that shows the influence from havirmgy thaffic in.

At first the stream client is connected to the Local Area Nekwa AN) network by use of wired Eth-
ernet. This is done to create a reference scenario for tredess tests, since this scenario is considered
as ideal. The scenario is repeated 5 times to increase sami# of the results. When this scenario is
finished, the Ethernet cable is disconnected and all foligvtests will use WLAN technology.

2.4. INITIAL EXPERIMENT 15

Network Delay (mean) Samples| Confidence| Standard Deviatior
[ms] [] [ms] [ms]
lan 0,12 300 +/- 0,00 0,01
no-disturbance 2,35 300 +/- 0,20 1,62
2mbit 2,90 300 +/- 0,32 2,57
10mbit 20,27 270 +/- 2,02 15,55
20mbit 37,33 174 +/-1,91 11,80

Table 2.2: The table shows the measured network end-to-end delay. €asurements are performed as a RTT
Ping test, while the scenario is running. The table show 8ieRT T times, in order to give a meassure of the one
way end-to-end delay.

The WLAN tests are performed with different levels of ditance. The two disturbance nodes uses
IPerf as a traffic generator, to create an UDP stream between ther serd the client. UDP is chosen
to ensure that the rate of the disturbance is fixed, and urmso¥a.g. sliding window mechanisms that
controls the bandwidth. The IPerf server loads the netwattk 2 10 or 20 Mbit per second of random
data. This disturbance will likely affect the contentionllisions and processing times in the network.
If this is true, it will lead to measurable degraded qualitytbe PCM audio stream. Each of these tests
are, as with LAN, performed 5 times to gain higher confidendabeé results.

2.4.1 Results

The results of the experiment are obtained by use of a Wirkdh@AP capturefile on each of the
participating nodes, in combination with a simple ICMP pilogmeasure the network transmission
delay. A set of five different scenarios are defined, eacharhttvith different means of disturbance.

At first the mean network delay is considered, where the t®sué presented in table 2.2 and on fig-
ure 2.8 on the following page. Each result is obtained by isgntl00 Ping packets from the stream
client to the stream server during the scenario. It can be een the results in figure 2.8 on the next
page that the network mean delay increases with the amouigtofbance traffic loading the wireless
network, but it stays well below the 80 ms requirement. Ingpecial case running on wired Ethenet
LAN the network end-to-end delay is very near zero.

The results shown on figure 2.8 on the following page, remtsse RTP analysis of the inbound stream
of the receiving node. The RTP analysis is performed usiay¥hreshark Network Analyzer todl The
following descriptions are used in the figure:

2http://sourceforge.net/projects/iperf
Shttp://www.wireshark.org/

16 2.4. INITIAL EXPERIMENT

. T
= 190 T E Max Deltalms)
£ 1o : B Max Jitter{ms)
E lgg O ean Jitter(ms)
= a0 - O Mean Delay(ms)

lan no-disturbance 2rnbit 10rmbit 20rmbit

Figure 2.8: The figures shows the results of a Wireshark RTP analysiseofrthound stream on the receiving
laptop node. For each of the five scenarios three differemtsorements are derived regarding the timing: Max
Delta, Max Jitter and Mean Jitter. The RTP analysis resuépbtted together with the results for mean network
delay from Table 2.2. The errorbars indicates the 95% coméielénterval of the dataset.

e Max Delta, is the maximum time between two successfuly vecigpackets in the RTP stream
e Max Jitter, is calculated according to RFC3550 which déssithe RTP protocbl
e Mean lJitter, is the mean of the jitter in the stream

e Mean Delay, is the mean of the delay extracted from the hali@Round-Trip-Time in the network

From the maximum inter arrival time (max delta) between tAd RPackets is it possible to see the
unreliability of the wireless medium. Comparing the LAN sa&o, with the no-disturbance scenario it
is clear that the inter arrival time increases, togethehn wismall increase in jitter. The results obtained
from the 2mbit disturbance scenario shows that a small atrafuraffic on the network, together with
the stream, do not affect the quality of the stream remaekaBlut if this is compared to the LAN
scenario, there is a considerable difference.

There seems to be a tendency in the results for 10mbit andidoases, which indicates that the Max
Delta inter arrival time increases with higher loads, eveugh it cannot be concluded with this level
of significance.

Figure 2.9 on the next page shows the packet count of trateshaihd lost packets respectively, in each
of the five test scenarios. Itis seen that the LAN scenarieggivnear ideal transmission, without packet

4Basically, the max jitter is a smoothed derivative of theiirarrival delta.

2.4. INITIAL EXPERIMENT 17

120%
100%
B0%

60%

mPkts Lost
m Pkts Revd

Packets Recieved/L oxt [%]

40%

20%

0%

lan no-disturbance 2mbit 10mbit 20mbit

Figure 2.9: The figure shows the amount of transmitted and lost packetséh of the five test scenarios with
different amounts of interference. The LAN scenario is thly @ne without any packet loss.

No Disturbance 2Mbit Disturbance
3000 3000
(%3 (%3
8 8
£ 2500 £ 2500
3 3
g g
» 2000 » 2000
I I
3 3
g 1500 g 1500
k7] k7]
S 1000 S 1000
ks ks
S 500 S 500
o o
o o
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Lost Packets in Sequence Number of Lost Packets in Sequence
10Mbit Disturbance 20Mbit Disturbance
5000 4000
(%3 (%3
g g
S 4000 5}
=l 2 3000
ko Lol
2] 7]
‘© 3000 °
3 3
g g 2000
‘® 2000 =
o o
- -
S S 1000
‘€ 1000 =
3 =]
o =3
o o
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Lost Packets in Sequence Number of Lost Packets in Sequence

Figure 2.10: The figure shows a histogram of the lost packet sequencesébr & the four wireless scenarios.
The LAN scenario is excluded since there was no packet l@esspnt.

18 2.5. PACKET LOSS RECOVERY TECHNIQUES

loss and a high level of significance. Moving the stream towvtireless medium, increases the RTP
packet loss from O pct. to 4,8 pct. at average. Comparing theisturbance case with the results of
2mbit disturbance traffic, it is seen that the differencedMeein them is almost not existing. Actually,
the packet loss for the 2mbit case is lower. Raising the diance to 10mbit and 20 mbit increases the
packet loss essentially, even though the significance fev&lOmbit is low.

2.4.2 Discussion

It is noticeable that the maximum inter arrival time (maxtdgis very high compared to the actual
network delay in each scenario. Even in the LAN case wherdéhay is very low, the inter arrival time
is near the 80 ms limit. This is assumed to be coursed by chetkdfloading in the wired Ethernet
card. The Max Delta inter arrival time is in the RTP analyzdcualated as the difference in time between
two successful packet arrivals. The Max Delta inter arriivak is therefore increasing with the packet
loss shown in figure 2.9 on the preceding page.

The confidence intervals of the RTP analyzer results ard teaks quite good, except for the 10 mbit
case. Itis from the dataset concluded that this must be dtieetbeavy packet loss in one of the test
runs.

It it surprising that even with a clear wireless channel withany clients contenting, a packet loss of
5 pct. is achieved. This is of course due to the unreliabdftthe wireless medium, but a much lower
value was expected in this ideal setup.

2.4.3 Conclusions

The results of this experiment has shown that the transomisiélay between the nodes is not really a
problem. The largest network delay is seen for the 20mbitidiance case, but still with a value of
37msi itis not near the 80ms limit. On the other hand, the Btéval time (max delta) of the individual
RTP packets introduces a problem.

This is coursed by the heavy packet loss, when loading theanktwith disturbance traffic. To solve
those packet loss problems a more reliable transmissioadd.nThis will consequently introduce a
delay due to buffering, and add more complexity to the pnobé®lution. These alternatives will be
discussed further in the following section.

2.5 Packet Loss Recovery Techniques

Main source: [3]

Based on the conclusion on the initial experiment, the maialify of Service (QoS) problem when
trying to stream the audio from the TV directly is that of patloss. This section will give an overview
of possible solutions to this problem, detailing pros andscior each solution.

2.5. PACKET LOSS RECOVERY TECHNIQUES 19

In general packet loss recovery techniques can be splittwicoverall groups. There are the sender
driven techniques and there are the receiver based te@swehich should both be used to gain the best
possible performance.

2.5.1 Sender driven

Sender driven repair

Active Passive
l 1
| 1
Retransmission Interleaving Forward Error Correction
|
| |
Media-independent Media-specific

Figure 2.11: The Figure shows a taxonomy of the different sender basekepaass recovery techniques.
Source:[3]

Figure 2.11 shows a taxonomy of the sender driven technipugmcket loss recovery. There are two
major classes being Active Retransmission (AR) and Pas3iannel Coding (PCC), where retrans-
mission is the only active one. The passive ones are intenigand Forward Error Correction (FEC)

where forward error correction can be either media-inddpathor media-specific.

Forward Error Correction

Forward Error Correction (FEC) works by adding extra infation to the stream in order to be able
to recover lost packets. This can be done using a numberfefelitt techniques which can be either
media-independent, meaning it acts below the applicatwal] or media-specific which acts at the
application level.

Media-independent FEC takes a codewordiaflata packets and generates- k additional check
packets for the transmission nfdata packets over the network. Examples of media-indepe deC
block code schemes are parity coding[12] and Reed-Soldéijdd] coding. Reed-Solomon codes are
renowned for their excellent error correcting propertied a particular their resilience against burst
losses. The advantages of the media-independent FEC isttaes not depend on the contents of
the packet and the repair is an exact replacement for a lokepand that the computation required to
derive the error correction packets is relatively smalle Gisadvantages are additional delay, increased
bandwidth usage and difficult decoder implementations.

Media specific FEC in the simplest form works by transmittagh unit of the application stream data
(e.g. audio) in multiple packets. If one packet is lost arotfacket containing the same unit will be able
to cover the loss. The first transmitted copy of the streara @atalled the primary encoding and the

20 2.5. PACKET LOSS RECOVERY TECHNIQUES

subsequent transmissions are called the secondary egsodihe sender can choose it the secondary
encoding scheme should be another than the primary onellyuadawer quality and thereby lower
bandwidth encoding is used, which depends on the bandwadghirements and encoding complexity
trade-off. The advantage of media-specific FEC comparelgartedia-independent is that the trans-
mission overhead can be reduced without affecting the nuofdesses which can be repaired. It also
has the advantage that it only adds a single packet delayng&kideal where large end-to-end delays
cannot be tolerated. If larger end-to-end delays can beat®le it is possible to delay the redundant
copy of the packet making it more robust to burst losses.

One problem of using FEC to protect against packet losséthis reason for the packet loss is conges-
tion in the network. Adding more data to the streams in thevagk will worsen the problem instead of
preventing the packet loss, which again will add more FE@ ttathe streams etc.

Interleaving

When the stream data unit size is smaller than the netwollgpaize interleaving can be used to reduce

the effect of packet loss. The stream data units are re-segqddefore the transmission on the network,

such that the originally adjacent units are separated wgtheaianteed time distance. This means that if a
packet is lost, there will only be small holes in the recamnsied stream instead of a larger hole because
several adjacent data units are lost. The technique isrdites! in Figure 2.12.

Figure 2.12: The Figure shows how interleaving works. The data units efdtiginal stream is shuffled to the
interleaved stream. If a packet is lost, only small datasunitl be lost in the reconstructed stream. Source:[3]

The smaller gaps in the streamed data means that the losseadsguch that only small parts of e.g.
the phonemes in human speech is lost instead of loosing sevdtmneme. This makes it easier for
the human listener to mentally "patch over" this loss[7$uténg in improved perceived quality. The
majority of speech and audio coding schemes can have thipiuointerleaved and may be modified to
improve the effectiveness of interleaving. The advantddeterleaving is that it does not increase the
bandwidth requirements while the disadvantage is thatieiases latency.

2.5. PACKET LOSS RECOVERY TECHNIQUES 21

Retransmission

In the experiment conducted in Section 2.4 on page 13 Usergbah Protocol (UDP) is used as trans-
port protocol for the network communication. This is an Uialde protocol meaning packets can be
dropped at lower layer resulting in missing data at the apfitin layer. Changing the transport protocol
to a reliable protocol can solve the problem of lost packetsthere are a number of different protocols
to choose from. Most reliable protocols works as a unicastiggol meaning that it has a stream of data
from the server to each client in the network, but reliabldtitast and broadcast protocols also exists.

Transport Control Protocol The most widely used reliable transport protocol is Traigsion Con-
trol Protocol (TCP) which is used as transport protocol anlttiernet. Using TCP at the transport level
of the protocol stack gives a much lower probability for logsusing a 16bit field in the TCP header for
calculating a checksum and by sending acknowledgemengefsafiiom the receiver to the transmitter
informing about successfully transmitted packets. Usi@P&s transport protocol between the stream
server and the stream clients would remove the problem bplxskets, but at a certain cost. As TCP is
a connection oriented protocol, a unicast stream of dalebeitreated from the stream server to every
stream client, which would add to the bandwidth usage fonsaeam client. Furthermore the acknowl-
edgements sent for each TCP will take up bandwidth as welking higher delays as contention for the
channel will increase at the data-link layer meaning tha® BCales poorly to larger streaming networks
compared to UDP. To be able to actually resend lost packeffgring of packets has to be enabled at
both the transmitting and receiving side of the communacetvhich will add additional delay to the
traffic dependent on how large the buffers are chosen to bel O%sis a more complex protocol than
UDP it will also add to the network processing time needechaherode especially at the server since
it has to handle a connection for each stream client.

Using TCP over a wireless link where packet loss is presesibkan shown to be a problem. TCP uses
Acknowledgement (ACK) packets to decide when packets atednd many TCP implementations as-
sumes that a packet loss is due to congestion somewherepathef the connection. This assumption
is made since the Internet consisted of wired links only whéR was invented. When packets are lost
due to a unreliable wireless link, this means many TCP implaation incorrectly will try to avoid con-
gestion by slowing down, instead of re-transmitting thelqegsinstantly. Many different proposals have
been made to solve this issue ranging from changing TCP fadittie packet loss by re-transmitting
lost packets in lower layers.

The required bandwidth for the audio stream can be made entall the usage of audio codecs to
compress the audio. The experiment in Section 2.4 on pagé&danss the audio in the "raw" PCM
format. Instead the audio could be encoded e.g. with the lpoiP3 format which would require
less bandwidth for a single stream. This would make it pdss$ddhave more nodes using unicast TCP
streams.

22 2.5. PACKET LOSS RECOVERY TECHNIQUES

Reliable Multicast In order to save bandwidth compared to using unicast strédmesften possible
to use multicast instead. This is also used in the streamipgrament in Section 2.4 on page 13, but
since the 802.11 channel is a shared medium the traffic senntalticast group will reach all nodes in
the network anyway.

Reliable Broadcast It is also possible to use reliable broadcasting, where @eledgement pack-
ets are sent from the receiver to the transmitter. The ingtigblem with such solution is the significant
overhead which is added when all packets to all nodes areadkdged. The HIDENETS projetpro-
posed an algorithm combining different enhancement tegtas for lowering the overhead[10, p.203]
which through simulations was found to significantly redtlee acknowledgement as well as retrans-
mission overhead in multi-hop ad-hoc wireless networkswith any other reliable protocol this will
add to the delay of the streamed audio since packets losta@r layers needs to be retransmitted.

Retransmission summary Retransmission is typically not used for latency sensdpplications like
streaming audio, since the retransmission of a packet ddll@nsiderably to the end-to-end delay, but
depending on the specific requirements it can be a posgibilite main disadvantage of most reliable
protocols e.g. TCP is that they do not bound the amount cdmemissions leading to an unbounded
delay of the transmission of packets in the presence of paogs. It is however possible to define
retransmission schemes which bound the number of retras&ms, but these works best when the loss
rates are relatively small. As the loss rates increase teghead due to retransmission increases leading
to a cross-over point where the use of FEC becomes moreieffeBtetransmission could also be used
as a supplemental technique for recovering losses whiatotde repaired by FEC, or in a combination
with FEC where a retransmission consist of a FEC packet wdaalrepair multiple losses|[8].

2.5.2 Receiver based

If the sender-based techniques cannot repair all losséthersender of a stream is unable to participate
in the recovery, there exist a number of error concealmehtigues which can be implemented by the
receiver of the stream. An overview of the different receb@sed techniques is given in Figure 2.13.

| Receiver based repair |

1
| Interpolation | Regeneration |
I

[| 1 [1

| Interpolation of transmitted state

| Model based recovery

| Splicing | Silence substitution | Packet repetition

| Waveform substitution | | Pitch waveform replication

| Time scale modification |

Figure 2.13: The figure shows an overview of the receiver based techniipugscket loss recovery. Source:[3]

Shitp://www.hidenets.aau.dk/

2.5. PACKET LOSS RECOVERY TECHNIQUES 23

The three classes of receiver based error concealmenideesrare insertion, interpolation and regen-
eration. The error concealment schemes rely on producieglacgement data unit to replace the lost
packet, which can be done since audio signals exhibit largriats of short-term self-similarity. These
techniques works well for relatively small loss ratesx 15%) and small packet§! — 40msaudio).
When the loss length approaches the length of the phonentecheiques break down since whole
phonemes can be missed.

Insertion

The insertion based techniques works by deriving a replacéfor a lost packet by inserting a simple
fill-in. These techniques does not use the signal charatiteyito aid the reconstruction makes them
simple to implement but which also make them perform poorly.

Splicing In splicing the lost data units in the stream are simply diarded and the stream is instead
spliced together from both sides of the missing data. Thiana¢here are no longer a gap in the stream
but the timing of the stream is disrupted. The performandkisttechnique is intolerable with loss rates
above 3%][4]. A disadvantage to this technique is that it ca@rfere with the playout buffer, which

is used to allow re-ordering of packets, removal of netwarlirtg jitter and retransmission, by step
reducing the amount of data available in the buffer.

Silence substitution With silence substitution the lost data is replaced withrgik in order to maintain
the timing relationship in the stream. It is effective withost packetg< 4ms) and low loss rates
(< 2%)[5] with performance degrading rapidly as packet sizessase. The advantage of the solutions
is the simple implementation which also means it is in widead use of applications.

Noise substituion Instead of inserting silence into the stream, it is possiblasert noise/random

stream data into the stream. It has been shown that the huraamib capable of subconsciously
repair segments with random noise in speech data[9] whildeing able to do it with silence substi-
tution. The use of white noise has been shown to give botlestigly better quality[7] and improved

intelligibility[9].

Repetition Another way of doing insertion based repair is to replaceldseunits with a repetition
of the last received unit. This has a low implementation clexity and performs reasonably well. The
subjective quality of repetition can be improved by grafjuialding the repeated units which is used by
the Global System for Mobile communications (GSM) system.

24 2.5. PACKET LOSS RECOVERY TECHNIQUES

Interpolation

Interpolation techniques attempt to interpolate from thekets surrounding a loss in order to produce a
replacement. The advantage of these techniques compateslitsertion based techniques is that they
account for the changing characteristics of the signal.

Waveform Substitution By using the audio before and optionally after the loss, taies can be used
to locate suitable pitch patterns. This is used to generststitution signal to place instead of the lost
packets. Two-sided schemes works better than one-sidetngshin terms of quality and both works
better than silence substitution and repetition.

Pitch Waveform Replication A refinement on waveform substitution is pitch waveform iegtion
which utilizes a pitch waveform detection algorithm on bsithes of the loss. Losses during unvoiced
speech segments are repaired using packet repetition vaided losses are repaired using a waveform
of appropriate pitch length. The technique works margjnaditter than waveform substitution.

Time Scale Modification Itis also possible to stretch the audio on both sides of adoek that it fills
the gap. The technique is computationally demanding bu¢aspto work better than both waveform
substitution and pitch waveform replication.

Regeneration

Itis also possible to use knowledge of the audio compresdgorithm to derive codec parameters such
that the audio in lost packets can be synthesized. Theseitgrs perform well due to the large amount
of state information used for the repair. A disadvantagén&se techniques is that they are typically
computationally intensive.

Interpolation of Transmitted State For codecs based on transform coding or linear predictium, t
decoder can possibly interpolate between states. The tdy@of codecs using this technique compared
to recoding on both sides of the loss is that there are no layredfects due to changing codecs and
the computational load remains almost constant. The codkese interpolation may be applied does
however typically require more computational power.

Model-Based Recovery In model-based recovery a model is fitted to the speech on Obetlo sides
of the loss, which is then used to generate speech to covpetiw loss.

2.6. CONCLUSION 25

2.6 Conclusion

In the preliminary analysis a streaming experiment was gotatl to get initial experience with the
problems associated with streaming audio over a wireleksTihe results from the experimentindicates
that the main problem to be solved is that of packet loss dtfestanreliable nature of the wireless link,
while the delay requirement is satisfied.

A number of techniques for solving the packet loss problerms described, both sender driven and re-
ceiver based techniques. Each technique has advantagdsaddantages, which is listed in Table 2.6.
The techniques does not need to be used independently, acti@ly best used in combinations|[3].

Sender driven

FEC low delay increased bandwidth
transparency congestion
complexity
Retransmissior transparency latency

congestion control

Interleaving bandwidth latency
Receiver based

Insertion simple implementation | poor performance (quality

Interpolation performance (quality) | implementation complexity

Regeneration | good performance (quality) computational complexity

implementation complexity

Table 2.3: The table shows a comparison of advantages and disadvaniaing different techniques for solving
the packet loss problem.

One technique which is evaluated to work poorly in multices¢narios on the Internet is that of

retransmission[3]. The reason it performs poorly is thatdelay sensitive applications, transmitting

data over the Internet involves a relatively high end-td-delay, since the data travels through a num-
ber of links and routers. This large end-to-end delay is ne$gnt in this project, since there is only one
link the data should travel. This makes retransmission aiplysusable technique to use for this project
why it is chosen to delimit the rest of the project to retraission.

Problem Statement

The preliminary analysis concluded that one possible tigctenfor solving the packet loss problem
could be retransmission. It has therefore been chosen tofandher with this technique in order to try
to find an optimal retransmission protocol to use for thegubjise case.

3.1 Problem Statement

How is it possible to reduce the performance degradatiosezhhy packet loss, in audio streaming over
a wireless network using retransmission, within the 80 meg tbound of synchronization?

The objective of the rest of the project will be to evaluatiéetlent retransmission protocols in terms of
their performance when used in the project use-case. Thasisnevaluating each protocol according to
the following metrics in hierarchical order:

1. Delay
e The specified delay requirement of maximum 80ms skew muagilfiked.
2. Robustness

e The retransmission protocol has to be able to fulfil the sjgetpacket loss requirement of max-
imum 1.80% [15]. However, if other reciever based technéqare used in combination with
retransmission the stream could possible survive a higekai loss.

3. Bandwidth scalability

e Since the use-case specifies that a number of clients nebdsitue to receive the streamed audio,
the retransmission protocol must be able to scale in terrbsuodwidth. Using the most scalable
protocol will also make the solution most cost effectivecsim maximum number of clients can
be served from one device.

In order to be able to evaluate the performance of differemansmission protocols a set of measure-
ments will be done using a varying set of parameters. Thessuements will make it possible to
conclude whether an existing retransmission protocol @uaded to fulfil the requirements. If this is
not the case, the conclusions should give the tools for cactétg a new protocol that could possible
increase the performance using the existing wireless mktwo

Since it is beyond the scope of this project to work with aumimpression and recording techniques a
delimitation needed.

3.2. DELIMITATION 27

3.2 Delimitation

It is chosen to use an of the shelf audio stream codec foraeéer, and use the properties of this codec
as input to the model of the system. The codec used from tliig [3oPCM, since this equals the one
used in the initial experiment and do not use compressiois. Witl give a pure view of worst situation
achievable, and keeps the focus on the retransmissiongmnobl

The use-case poses the possibility to watch individual cllsnby use of split screen technologies,
therefore it is chosen to keep the focus on unicast streamthédorest of the project. The project is

thereby delimited from multicast and broadcast scenavitgch will be considered as future work in

the view of this project.

Requirement Analysis

The requirements to the audio stream system which has beed through the preliminary analysis
should be used to evaluate the performance of a set of retissien techniques. One of these require-
ments are specifying the maximum skew which can be toleragddeen the TV video and the TV
audio.

This chapter proposes a new method of evaluating whetheskive requirement is fulfilled. The new
method is needed since the traditional method of measunegkew would be to measure the time
difference directly on the network packets from transmoig4o reception. In order to measure the time
difference, the clocks on the transmitting and receivingaeneed to be synchronized. Using standard
equipment it is difficult to guaranteems accuracy, and trying to achieve it by using e.g. a tool like
ntpdaté could result in wrong results since it causes a high systaahidhen it is pushed to the accuracy
limit.

4.1 Audio Stream Properties

This section will derive a set of properties of the audioatnaised in the initial experiment which can
be used to propose a method of measuring the skew given thesiic properties.

The codec used in the initial experiment in Section 2.4 orefda&js 16bit stereo Pulse Code Modulation
(PCM) which means an application bitrate of:

l bit
44100245 o chanmels - 16bit = 1411200- (4.1)
S S

The packet size used in the initial experiment is 1300Byfég. number of packets per second generated
from the stream is then:

141120042 packets
— 5~ 135. 4.2
1300 Byte - 8 bit 35.7 S (4.2)
The length of the audio stream in each packet is:
1s S ms
—— =~ 0.0074 =74 4.3
135.7packets packet packet (4.3)

Using this information it is possible to model the audio atméng system as a queue system as illustrated

Ihttp://linux.die.net/man/1/ntpdate

4.2. SKEW REQUIREMENT CHECKING METHOD 29

in Figure 4.1. There is a recording process which generatéi® avith a constant bitrate of 1411200
bit/s. The service rate of the recorder process is the arate of the TCP/IP stack at the transmitter.
The service rate of the TCP/IP stack is not known by exactevalit can be assumed to be approximate
constant and much higher than the arrival rate. The serdt af the TCP/IP stack becomes the
arrival rate of the 802.11 MAC layer which has an unknown aaiiable service rate. This service rate
becomes the arrival rate of the TCP/IP stack on the receivenghich again can be assumed to have an
approximate constant service rate. At last the servicefrabe TCP/IP becomes the arrival rate to the
audio stream player.

Recorder process

Player process

'>\, = 1411200 bits/s

1
'>\/ ~= constant @

2

X = varying

3

TCP/IP

elle

TCP/IP

802.11 MAC @

Figure 4.1: The figure illustrates a simplified queue model of the audieeshing use case.

The service rate which can become the bottleneck in thisoastdéam scenario is that of the 802.11
MAC layer. If the disturbance of the 802.11 link gets to higiviée, other traffic etc.) packets are
dropped and delayed. These packet drops and delays cam@aWemake it impossible to fulfill the
requirements.

4.2 Skew Requirement Checking Method

In this section a method to measure if the skew requireméulfited is proposed. Instead of measuring
the skew directly by recording the transmission time andréeeption time for each packet, the skew

30 4.2. SKEW REQUIREMENT CHECKING METHOD

can be evaluated indirectly by controlling if the requireris fulfilled and measuring how many times
it is not fulfilled. To be able to explain the method some ex®pf how the audio stream would be
played under different circumstances are presented.

If the audio stream player starts playing the audio as sodheafirst packet arrives, the skew will be
minimal, but if the delay of the transmission varies too mitds not possible to retain the required
arrival rate. This is illustrated in Figure 4.2. If a packatiaes too late to meet the service deadline it
will mean information was lost in the audio stream.

play play play I 6 I play I 8 I play play

nothing nothing . nothing nothing nothing nothing
stream playing ll I] ‘] || ‘ l|

g

Packet reception ll

N e === ==
W = == m -
UV e e e o]
o N, N
[R ——
e el L

O == mmmmmmm——a

1

Figure 4.2: The figure shows an example of how the audio stream would fdtblk iplayer starts playing the audio
stream as soon as the first packet arrives and the network eeli@s too much.

If the application instead uses a packet buffer to queue #ogis in before the stream client starts
playing, the network jitter can be averaged away. If two p#slare buffered before the playing is
started the stream from Figure 4.2 will instead look as shiovkigure 4.3

L+ 1 2 [3 | s« | s | 6 [7 | 8 |
stream 1] | |] |] |
playing | I |)]) I)

; : : ; : - : :

: : : : : : : :

: : : : : : : :

1 2 i3 14 's5 61 ''7 g '9 '10
Packet | i | | L | [' 1
reception | 1 I ol L 3 o ' H i

: o S T v 8] R

= M OE E LA E e
buffer | 1] ANE [{3 [{4 5 [e[6] 7] 1E 1B

Figure 4.3: The figure shows an example of how the stream would be playtbdatiuffer to smoothen the network
jitter. The stream is first started when there are two padketse buffer which creates an initial delay.

Even with the buffer in the application, data exhaustion stilhhappen. This is illustrated in Figure
4.4 where the average delay of the packets gets so largevéraually the buffer will be empty when a
packet is needed to play the stream.

4.2. SKEW REQUIREMENT CHECKING METHOD 31

[1 T 2 3] 4 | 5]| s 7 | s |

stream 1 | 1 l l l l 1
playing ! : ! ' ' ! ! !
! ' : ' : ' ' '
: : ' : ! !
T S S R SR QS

1 2 i3 V4 ' 5 ! 6 ! 74 18 P9

Packet | | ‘ [R R B L ' |

reception | 1 I v L L I A v

: : ' ' - Vo " v

: b : : = E P

' 2 3 v 14 ' 5] 5] 7 W Voo
BlE 5[] : :

buffer |T| 1] |2 EBNoiniain m 7 e [5]

Figure 4.4: The Figure shows an example of what happens when the packaiererally delayed in the network.
At some point there will not be a packet available in the buffe

The example of buffer exhaustion in Figure 4.4 could be plytprevented, if the network jitter does
not continue to be too large, by having a larger amount of gclk the buffer before starting to play
the stream. The amount of packets that can be buffered tedeiathe skew requirement of 80ms, since
the playback can not be delayed more than 80ms. This mearth¢hangth of the audio data buffered
before the playback is started can not exceed 80ms.

The 80ms maximum skew includes the initial transmissiortimgenerate and receive the first packet,
which means this delay have to be subtracted from the 80mslar to get the right buffer size. In order
to get an idea of how this could be estimated Figure 4.5 ithtes the recording and transmission of one
packet.

32 4.2. SKEW REQUIREMENT CHECKING METHOD

I Initial packet delay I

O , ,

Start send receive
recording packet packet
network ms ms network
stack (approximate constant delay) Stackl
processing processing
\/ hand over to receive from \/
802.11 MAC 802.11 MAC

\ ?

Figure 4.5: The figure shows an overview of the delay imposed on one atidiara packet. First the recording is
started, and after 7.4ms enough audio data is availablenergie one 1300Byte packet. The packet is processed
by the transmitters network stack adding an approximatsteahdelay and handed over to the 802.11 MAC layer
which will add an unknown variable delay to the packet. WHengacket is recieved the receivers network stack
processing will add an approximate constant delay aftechvtiie application receives the packet.

First the recording is started, and after 7.4ms enough alatiis available to generate one 1300Byte
packet. The packetis processed by the transmitters nestexck adding an approximate constant delay
and handed over to the 802.11 MAC layer which will add an umkmeariable delay to the packet.
When the packet is recieved the receivers network stackepsirg will add an approximate constant
delay after which the application receives the packet. Hnene on it is up to the receiving application
to chose the strategy after receiving the first audio stremrhet.

If the application chooses to start the playback of the astteam immidiately after receiving the first
packet, only the initial delay (see Figure 4.5 will be addedhe audio stream, but it also means that
the next audio stream packet has to be available exactly/a#tens when there is no more audio to play
from the first packet. If the network link from the transmitte the receiver was ideal it would only add
a constant delay to each packet, meaning the packets caivd tar meet the required deadline. With
WLAN this is not the case, and the application will have todiara varying network delay.

If the wireless link is not saturated with traffic and estimaf the experienced delay is found in Sec-
tion 2.4 on page 13 to be approximately 2ms. Adding this to/tdens to create the packet and some
processing time in the network stack approximately 10mgitiéi delay is chosen. This means approx-
imately 70ms of audio data can be buffered before the pldyisastarted. The number of packets which
can be buffered then becomes:

70
Tnnz |9packets] (4.4)

4.3. BUFFER CALCULATION SPECIAL CASE 33

This means that by requiring 9 packeds,1300Bytes or9 - 7.4ms of audio have to be received before
the audio stream starts playing, and within no more than 70rwgal, this amount of data can be used
to determine when the skew requirementis not fulfilled. Bifiaially introducing an application buffer
to keep these packets in and evaluating iffwhen/how ofteretlare no packets left in this buffer, it
will be known if/when/how often the skew requirement is naffifled. This calculation will be used
to evaluate the performance of the different retransmisgiotocols, and will from here on be named
"buffer calculation”.

A choice has to be made regarding what happens if the buffeegepty in order to evaluate the different
protocols from the same set of criteria. It is chosen thatié&n this happens, the stream will have to be
restarted.

If it is possible for the audio streaming application to @ttehen there has been a packet loss, it
becomes a possibility to use recovery methods. This williarice how the buffer calculation should be
performed and is therefore the subject of the next section.

4.3 Buffer Calculation Special Case

If the retransmission mechanism have to give up it can hapipena packet is lost. If there are no
sequence numbers or other means, to let the applicatiotifidérat a packet is lost, the application will
not be able to react on this. This situation is illustrateéigure 4.6 where the 5th packet is lost. The
application will only notice that no packets arrive in a largime span which influences the amount of
available data in the buffer.

/- problem

7 8

stream
playing

Packet
reception

- ——)

I---——)

S ——]

6]
3 |T| 6

ol !

Figure 4.6: The figure shows how a packet loss affects the audio streaybgitk when there are no sequence
numbers. Since the application can not tell that a packessis it will just (wrongly) continue the stream from the
next packet.

T

~

If sequence numbers are available in the network packetsphlication can detect that a packet was
missing when it gets the next packet. Instead of playing theng packet instead of the lost one, the

34 4.4. SUMMARY

application will be able to use some of the recovery mechmasidiscussed in Section 2.5.2 on page 22.
This situation is illustrated in Figure 4.7 where the reggyvs done by inserting silence into the stream.
By doing this, the amount of stream data available in thedvugf not affected by the lost packet.

playing nothing

L+ [2 1] 3 1 & | [6 [7 8
stream 1 1 1 1 1 1 1]
playing | ! ! | ! | ! !

; : : ; : ; : :

TN R D R R R B

' 1 ' 1 ' 1 :

1 2 3 54 : 61 Y ‘g 110
packet l 1 | 1 ' L : 1 It . 1 . 1
reception | { 1 il i] L Ir i i
: P ¥ ! 1 R = N ¥
= 10 I I R i
buffer [1] 1] |2 EE 7] [6 7] [[e 1B

Figure 4.7: The figure shows how the application is able to react to a pidoke when it can detect this through
sequence numbers. Note that the stream data available utfee is not affected by the loss since the lost packet
is replaced.

In the example illustrated in Figure 4.6 the available dataé buffer will be reduced by a whole packet,
while in the example illustrated in Figure 4.7 the availadéea in the buffer will not be affected by the
packet loss. This means that when packet losses can beatklscthe application, it will be easier to
fulfill the skew requirement.

4.4 Summary

Instead of measuring the skew on the audio packets directthar method of checking whether the
skew requirement of 80ms is fulfilled was proposed. The numbeed in this chapter is of course
bound to the codec which is used, but replacing the audioccadte another codec will only change
the bitrate delivered to the transport layer. The size oftiléer used to check if the requirement is
fulfilled is specified in terms of time, which can be transthteto a number of packets for any given
codec. Even though the method proposed assumes an initicétpdelay it is believed that it will give
a good indication of how the different transport protocats able to fulfill the skew requirement.

Performance Evaluation of

802.11 MAC retransmission

In the experiment described in Section 2.4 on page 13 tharstdata is transmitted from the stream

server to the stream client using multicast. Multicastficak transmitted as broadcast traffic on a

WLAN without any retransmission using the basic accessqaore and at the defined basic rate(a rate
which must be supported by all WLAN clients in the network)j268,p.281]. The missing retransmis-

sion at the data-link layer has an impact on the experienaekigt error rate at the transport layer. The

experienced packet error rate should be higher when thergeretransmissions. In order to understand
the impact of the data link layer retransmissions it has lebesen to conduct an experiment where this
mechanism is switched on and off.

5.1 Experiment Setup

In the Linux operating system some WLAN drivers allow theruseonfigure the maximum number of
data-link layer retransmissions through the wirelessresitan interface. In theory this is also possible
with the access point used in the experiment in Section 2phge 13, but trial experiments showed that
this does not work as intended another experiment setug osily Linux laptops was chosen instead.
As shown in Figure 5.1 four laptops equipped with WLAN ingexés where configured in Ad-Hoc mode
in the same Independent Basic Service Set (IBSS). Two lapt@g genereting disturbance traffic, and
two laptops emulated the audio stream from the experieme3ection 2.4 on page 13 by sending UDP
traffic with the same properties.

The packet delay is calculated at the receiver side of themaamication only, since UDP packets does
not contain any sequence numbers to differentiate packdtsiace this delay is what the delay require-
ment specifies. Calculating it like this neglects the deldgeal by the network before the first packet is
received, which should be taken into account as well howamegstimate of this delay is given in the
experiment in Section 2.4 on page 13 to be 20ms with 10Mbiticiance traffic. The delay is the inter
packet delay between two correctly received packets whieans lost packets will result in a larger
delay. This is illustrated in Figure 5.2

36 5.2. RESULTS

Stream server

Disturbance server

Ad-Hoc network
same ESSID
same channel

Stream client Disturbance client

Figure 5.1: The figure shows the experimental setup for the data-linlansmission experiment. Four laptops
are connected in an Ad-Hoc WLAN on the same channel with threedaSSID. Two laptops generates disturbance
traffic by sending UDP packets from the server to the clienteathe other two laptops emulate the audio stream
from the inital experiment using a packet generator.

Inter-packet delays
1 1 | 1 1

Receiver

Sender 7Z 7Z
1 2 3 4 5

Figure 5.2: The figure shows how the packet delay is calculated. The delhg inter packet delay at the receiver
side of the communication, where lost packets will resul inigher delay e.g. between packet 1 and 4.

Network

5.2 Results

It is expected that the mean inter-packet delay is smallemwhe data-link retransmission mechanism
is disabled, but because of the way the delays are calculdtechigher loss rate experienced when
retransmission is disabled will increase the mean deléyalso expected that the loss rate will decrease,

5.2. RESULTS 37

with a factor approximately the same as the maximum numbeilofved retransmissions, when the
retransmission is enabled.

The emulated audio stream was transmitted 30 times with anmem retransmission value of 0 and
30 times with a maximum retransmission value of 7 (the défealue) while the disturbing nodes
transmitted UDP packets at a rate of 10Mbit/s. The resultiegn inter-packet delays, maximum inter-

packet delays is shown in Figure 5.3.

Inter—packet max delay for UDP stream — 10 Mbit disturbance

I Vax Delay

Inter—packet mean delay for UDP stream - 10 Mbit disturbance

x10”°
8r 251

Delay [sec]
Delay [sec]

0
7 retransmissions 0 retransmissions 7 retransmissions
MAC retrans [.]

0 retransmissions
MAC retrans [.]

Figure 5.3: The Figure shows the mean and maximum delay for a maximum ofi07aretransmissions at the
data-link layer with a disturbance of 10Mbit UDP traffic

With data-link retransmission disabled (0 retransmissj¢ime mean inter-packet delay is 7.6ms and with
maximum 7 retransmissions the mean inter-packet delayieg.. For 0 retransmissions the maximum
inter-packet delay is 2010.3ms and for 7 retransmissiomsrtaximum inter-packet delay is 723.3ms.
This is as expected since the lost packets adds to the mearsd&he mean and maximum percentage
packet loss is shown in Figure 5.4

The mean packet loss is 2.6063% for maximum 0 retransmssiad 0.3927% for maximum 7 re-
transmissions while the maximum loss for maximum O retrassions is 3.4699% and 0.6316% for

maximum 7 retransmissions.

38 5.3. CONCLUSION

Mean Packetloss for UDP stream — 10 Mbit disturbance Max Packetloss for UDP stream — 10 Mbit disturbance
3r 4

Packetloss [%)]
Packetloss [%]

0 retransmissions 7 retransmissions

0 retransmissions 7 retransmissions
MAC retrans [.]

MAC retrans [.]

Figure 5.4: The Figure shows the mean and maximum packet loss in pex@amgximum 0 and 7 re-ransmissions
at the data-link layer with a disturbance of 10Mbit UDP tiaffi

5.3 Conclusion

The results show that with a disturbance traffic rate of 1aMbhe 802.11 MAC retransmission mech-
anism in the default setting (7 retransmissions) is exteglaihd packets is lost. This means that it can
be assumed that the 802.11 MAC retransmission mechaniesttrire-transmit as many times as it is
allowed to, and still the mean inter-packet delay is noteasing significantly. With a mean inter-packet
delay ofx 7.4ms there is still time to make either more retransmissions ai8®2.11 MAC layer or
make retransmissions at higher levels in order to overcbmexperienced packet loss.

Performance Evaluation of

Transport Layer Protocols

Instead of, or in combination with, using the 802.11 MAC aesmission mechanism to prevent packet
loss, higher layer protocols can be used as well. This chaptduates the performance of the well
known reliable transport layer protocol TCP in terms of tléag imposed to the transferred traffic and
the ability to handle packet loss at lower layers. In orddra@ble to evaluate the performance of TCP,
it is chosen to evaluate the performance of UDP unicasfidrafid use this as a performance reference.
This is mainly done since going directly from multicast UDEffic to unicast TCP traffic will change
the properties of the 802.11 MAC layer as described in Chi&poa page 35. Using unicast UDP keeps
the 802.11 MAC retransmission active, and should therelry gibetter performance in terms of packet

loss.

It is chosen to emulate the properties of the audio strearmh inste initial experiment in Section 2.4
on page 13 in order to be able to relate the obtained resudts &ztual audio stream. The experimental
setup is shown in Figure 6.1

Independent
AP

()

Disturbance server Stream server Stream client Disturbance client

Figure 6.1: The figure shows the experimental setup used to evaluatetfmance of UDP and TCP. The stream
server is connected to an AP via LAN while both the streammtkend the two disturbance nodes are associated to
the AP.

The stream server is connected via LAN to an AP while the strd&ent and two disturbance laptops are
associated with the AP. The audio stream is emulated usiaglkepgenerator tool called "PackGén"

Lhttp:/raa.ruby-lang.org/project/packgen/

40 6.1. UDP PERFORMANCE EVALUATION

which can generate TCP and UDP traffic with different bandwéchd packet sizes. Itis thereby possible
to reconstruct the properties of the PCM audio stream usdétlise Audio in the initial experiment.

6.1 UDP Performance Evaluation

UDP is a simple transport layer protocol which provides liabée, and unordered delivery of packets
(or datagrams) between applications. This means that.ifrelgability is a concern, this needs to be
handled by higher layer protocols, but also means that tleehead of error checking is not added
at the transport level. Since there is some reliability adole the 802.11 MAC layer, evaluating the
performance of UDP should reveal the best achievable dedafpymance from a transport protocol
point of view, but also the worst performance in terms of $gort protocol reliability. This should
make it possible to make a better evaluation of the perfoomafa reliable transport protocol.

6.1.1 UDP - Experimental Setup

An emulated audio stream is sent from the stream serverdhrthe access point to the stream client
using PackGen. The size of the UDP packets is chosen to beBy@88 (UDP payload) and the transfer
rate to be 1.4 Mbit/s, these values equals the ones measutied initial experiment done with Pulse

Audio. PackGen adds 8 bytes of information to the packetgtbee the configuration value must be
1292 Bytes to achieve 1300 Bytes UDP payload.

The bit stream is transfered in 3 minutes and 40 secondsder éo emulate the stream length of the
MP3 sound file played in the initial experiment. In parallgbtlaptops acts as disturbance nodes, by
sending UDP traffic at different rates using the same acagigs. prhis is done to force a packet loss,
even with the 802.11 MAC retransmission active. The conéion file to construct this scenario in
PackGen is shown in listing 6.1. The keyword DSCP describe®ifferentiated Services Code Point
of the flow, which is needed in case of prioritization. Thisa@ used in this scenario, but is required to
be set. The "from..to:" specifies for duration that PackGeyukl run.

SEND:
udp:

name: AudioTestStreamUDP
host: 10.8.12.137:5002
bandwidth: 1.4Mb
packet_size: 1292B
dscp: cs4
from..to: !ruby/range 0.0..230.0

Listing 6.1: PackGen UDP Configuration file

6.1. UDP PERFORMANCE EVALUATION 41

6.1.2 UDP - Results

The emulated UDP audio stream was transferred 30 times vdtbrdance rates from 0 to 20Mbit/s
UDRP traffic in steps of 2Mbit/s. It is assumed that the 30 ruinthe test are statistically independent,
and thereby normal distribution can be assumed. The nettaffic was captured at both the stream
server and stream client using Wireskairkorder to be able to calculate inter packet delays and packe
loss. The mean inter packet delay was calculated at thensizBant with each disturbance rate with a
95% confidence interval. The results of the calculationshosvn in Figure 6.2 and table 6.1.

Packet Inter—arrival times for UDP stream
0.035
I Vean Delay

0.03

T

0.025

0.02f

0.015}

0.01fF
o 2 4 & 8 16 18 20

10 12 14
Disturbance [Mbit]

Delay [sec]

T

Figure 6.2: The Figure shows the mean inter packet delays for UDP wiflerdifit disturbance rates with a 95%
confidence interval (normal distribution)

2http://www.wireshark.org/

42 6.1. UDP PERFORMANCE EVALUATION

Disturb. [Mbit/s] 0 2 4 6 8
Mean Delay [s] 0,0074| 0,0074| 0,0074| 0,0074| 0,0074
95% Conf. +/-[.] | 0,0000| 0,0000| 0,0000| 0,0000| 0,0000
10 12 14 16 18 20
0,0074| 0,0076| 0,0134| 0,0165| 0,0205| 0,0282
0,0000| 0,0001| 0,0011| 0,0009| 0,0012| 0,0028

Table 6.1: The table shows the values used to produce the graph in Fég2ire

The mean maximum inter packet delays and the absolute maximter packet delays was calculated,
using the data from the stream client, for each disturbaatee rThe results of these calculations are

shown in Figure 6.3 and Table 6.2.

Packet Inter—arrival times for UDP stream
18
I Vean Max Delay

| I Max Delay

14

16

12+

Delay [sec]
=
© o
T T

0 2 4 6 8 10 12 14 16 18 20
Disturbance [Mbit]

Figure 6.3: The Figure shows the mean of the maximum inter packet delagisttee absolute maximum inter
packet delays for UDP with XMbit/s disturbance with a 95%fience interval (normal distribution).

6.1. UDP PERFORMANCE EVALUATION 43

Disturb. [Mbit/s] 0 2 4 6 8

Mean Max Delay [s] | 0,1310| 0,0907| 0,1163| 0,1249| 0,0882
95 % Conf. +/- [g] 0,0201| 0,0246| 0,0243| 0,0253| 0,0229
Max Delay [s] 0,2132| 0,2081| 0,2136]| 0,2173| 0,2129
10 12 14 16 18 20

0,1301| 0,1398| 0,6351| 1,2574| 2,0656| 4,8700
0,0246| 0,0228| 0,3828| 0,8974| 0,9692| 1,7992
0,2128| 0,2287| 4,8648| 13,080| 13,126| 17,454

Table 6.2: The table shows the values used to produce the graph in FégBire

The graphsin Figure 6.2 on page 41 and Figure 6.3 on the fpeigg shows that the stream is unaffected
of the disturbance, when the disturbance is below 12 MHbit/the average the packet inter-arrival time

will be approximately 0.0074 seconds, when the link are ggpeing no packet loss. This value is as

expected from the calculations of the audio content of eachet, performed in chapter 4 on page 28.
When the disturbance traffic exceeds 12 Mbit/s the packet artival times increases due to packet loss
on the link. It must be noticed that when a packet is lost, teasared time, is the time between two

consecutive successful received packets. A lost packétheiteby increase the average inter arrival
time significantly.

The mean packet loss was also calculated for the 30 samplleslifferent disturbances with a 95%
confidence interval. The results from these calculatioashown in Figure 6.4 and Table 6.3.

44 6.1. UDP PERFORMANCE EVALUATION

Packetloss in percent for UDP stream

[or]
o

[Mean packetloss

Packets lost [%)]
N w B ul [o2] ~
o o o o o o

[
o

0 2 4 6 8 10 12 14 16 18 20
Disturbance [Mbit]

Figure 6.4: The Figure shows the mean packet loss for UDP with X Mbit/s WiaHic as disturbance and a 95%
confidence interval (Normal distribution).

It can be seen from the results in Figure 6.4 that the packstdd the stream increases with the dis-
turbance, even though the link seems unaffected until 12/8bisturbance. This is due to the active
802.11 MAC retransmission. When the quality of the link delgs, the 802.11 MAC layer starts re-
transmitting up to 7 times. When the disturbance raisesah0wWbit/s, the MAC layer retransmission
is exhausted.

Disturb. [Mbit/s] 0 2 4 6 8

Mean Packet Loss [%] | 0,0082| 0,0032| 0,0035| 0,0046| 0,0132

95 % Conf. +/- [.] 0,0018| 0,0000| 0,0004| 0,0008| 0,0056
10 12 14 16 18 20

0,0350| 1,9792| 41,369| 53,836| 62,716| 70,989
0,0101| 0,6945| 3,7101| 1,7242| 1,4345| 2,1527

Table 6.3: The table shows the values used to produce the graph in Fégdire

6.1. UDP PERFORMANCE EVALUATION 45

The retransmission technique adds a delay from an end to erspgrtive. The number of packets
which is delayed more than the requirement limit of 80ms vedsutated for each level of disturbance,
with a 95% confidence interval and is shown in Figure 6.5 aruderé.4.

Packets exceeding the 80 ms time—bound
600
I Packets above 80ms

500

400

300

Packets [.]

200

100

~100 L
0 2 4 6 8 10 12 14 16 18 20

Disturbance [Mbit]

Figure 6.5: The Figure shows the mean number of packets above the rewritdimit of 80ms for UDP with X
Mbit/s UDP traffic as disturbance and a 95% confidence intéN@rmal distribution).

Disturb. [Mbit/s] 0 2 4 6 8
Above Threshold [.] | 1,0667| 0,5333| 0,6667| 1,8333| 0,4667
95% Conf. +/-[.] 0,2474| 0,1816| 0,1716| 2,3155| 0,2045
10 12 14 16 18 20
0,7667| 1,0667| 71,6 113,9667| 249,233| 480,0333
0,1804| 0,3246| 20,292| 28,1163 | 51,0421| 97,0125

Table 6.4: The table shows the values used to produce the graph in Fégbire

46 6.2. TCP PERFORMANCE EVALUATION

The results show that when the disturbance traffic exceedbit/8 the skew requirement can no longer
be fulfilled.

6.1.3 UDP - Conclusion

From the experiments it is concluded that the 802.11 MACGaretmission is exhausted when the dis-
turbance traffic exceeds 10 Mbit/s. The graphs gives a dehcation of retransmission in the range
between no disturbance and 12 Mbit/s of disturbance, sh@theconstant delay in both mean and
maximum case as well as almost no packet loss.

It can furthermore from the results be concluded that thé>doss, and thereby the inter arrival time
of the packets, grows as the disturbance traffic increase42 Mbit/s the packet loss requirement is
exceeded, with a measurement value of 1,97%. Overall thisledes that UDP cannot be used with
disturbances larger than 12 Mbit/s.

6.2 TCP Performance Evaluation

When UDP has been evaluated it is possible to make an evatuaftiTCP. TCP is in contrast to UDP

a reliable transport protocol which means it guarantegsaliel, in order, integrity checked delivery
of data. The important aspect of TCP related to this progthé reliable delivery mechanism. TCP
uses sequence numbers in the packet header as well as aelgewlent packets to ensure that packets
are received correct and keeps retransmitting the packesihot. Retransmitting a packet introduces
additional delay from an end to end perspective, and thiasydes well as the robustness to the properties
of the WLAN network will be investigated with a series of exipgents.

6.2.1 TCP - Experimental Setup

The physical setup is the same as shown in Figure 6.1 on pag€&t@PackGen packet generator is
setup to send TCP traffic with a packet payload size of 13088gnd a rate of 1.4Mbit/s. This is

done with the PackGen configuration show in Listing 6.2. TI®CP option describes the DiffServ
prioritizing, which is not used in the scenario but has to pecfied. The "from..to" range tells the

packet generator to start at time zero and proceed until 280nsls has elapsed.

SEND:
tcp:

name: AudioTestStreamTCP
host: 10.8.12.137:5002
bandwidth: 1.4Mb
packet_size: 1300B
dscp: cs4
from..to: !ruby/range 0.0..230.0

6.2. TCP PERFORMANCE EVALUATION 47

Listing 6.2: PackGen TCP Configuration file

6.2.2 TCP - Calculations

Calculating the packet delay for TCP is different from th&tUDP in a number of ways. First of all
TCP makes the data available to the receiving applicati@saiseam of bytes instead of packets as with
UDP. The data does however still arrive as packets, but {hedests can and will vary in size. Another
aspect of TCP is that it will continue to retransmit lost petskuntil they arrive at the receiver or until
some maximum time-out is reached. When the maximum timdsogtached the connection is seen
as broken and the connection will have to be set up againeSi@#® hand over the received data as a
stream of bytes, the order of bytes has to be preserved. Tdassithat some bytes which have already
arrived can not necessarily be handed over to the applicdtimme bytes are missing which are being
retransmitted. These aspects has to be taken into accoent iivis calculated what the delay on the
data is.

The packets transmitted was captured at the stream cliersandple of the packet trace run through
TShark and filtered to only shown the packets going from tteast server to the stream client is shown
in Listing 6.3

918719 7046.264921 10.8.12.59> 10.8.12.137 TCP 42338 > rfe [ACK] Seq=43641 Ack=
Win=92 Len=1448

918721 7046.304293 10.8.12.59> 10.8.12.137 TCP 42338 > rfe [ACK] Seq=45089 Ack=[l
Win=92 Len=1448

918722 7046.304669 10.8.12.59> 10.8.12.137 TCP 42338 > rfe [ACK] Seq=46537 Ack=
Win=92 Len=1448

918724 7046.324624 10.8.12.59> 10.8.12.137 TCP 42338 > rfe [ACK] Seq=50881 Ack=[l
Win=92 Len=1448

=Y

=Y

Listing 6.3: The listing shows the output from the TShark applicationPTgackets are sent from the stream server
to the stream client. The first number is the packet numbdvys@&Shark, then the reception timestamp. The next
fields are the IP address of the transmitter and the recelteen there is a protocol flag and a transmission and
reception port number. At last there are TCP specific optikessequence numbers and length information.

The first number is the packet number set by the packet captageam (TShark), followed by a times-
tamp in seconds. Next is the transmitter IP address and¢kee/ez IP address, then a protocol identifier,
the source port number and the destination port number. adtdi¢lds shows the TCP packet specific
information e.g. whether the acknowledgementflag is sedtwquence number this packet starts with,
the current windows size and the length of the payload. Amgtea of how the seg/ack mechanism of
TCP is shown in Figure 6.6 on the next page[14].

48 6.2. TCP PERFORMANCE EVALUATION

Sender Receiver Receiver's
Application buffer
doesa 2K ——» 0 4K
write
\
E
ACK = 2048 WIN = 2048
Application
does a 2K ——
write [K[SEg=20s8
Sender is -0 Application
blocked AOK= 2096 W reads 2K
=2048
— 2006 W
ACK= 409
[T=]
Sender may
send up to 2K —»
m SEQ=
i T2]

Figure 6.6: The figure shows how the sequence numbers and acknowledgeomabers are used by the TCP
protocol. The sequence number is the first byte in the pdtkep. 544]

The sequence number informs of the first byte present in tteiwed packet, while the length informs
about how many bytes are in one packet. In the snippet sholisting 6.3 some packets are lost. This
can be seen from the fact that the sequence number plus i leihthe second-last packet does not
equal the sequence number of the last packet. When sometpackdost there will usually be other
packets arriving before these lost packet are retrangiitid finally arrives. The packets which arrives
in between can be marked with an inter packet delay of zekedimey will be immediately available
when the lost packets finally arrive.

A python script was used to calculate the delay of each padkefctivity diagram showing how the
script works is illustrated in Figure 6.7

6.2. TCP PERFORMANCE EVALUATION 49

sort packet list
by seq

read packet from
packet list

[a packet was lost]

save delay
and len to output
file

set 0 delay
for packet

read line from
trace file

[packet time <
lost packet time]

save seq
len and time as packet

set lost
packet time

add to packet list

packet no
longer lost

[more lines in trace file]

set found
lost packet

[packet time >
next packet time]

Figure 6.7: The figure shows an activity diagram of the tcp inter packédydealculation script. First the data
for each packet is saved in a list. Then this list is sorteddyusnce numbers. Then for each packet a packet
delay is calculated and saved with the length of the packetphcket is received while another packet was being

retransmitted it will get a zero delay.

6.2.3 TCP - Results

The emulated audio stream was transferred 30 times usingaB@Rinsport protocol with disturbance
rates from 0 to 12Mbit/s UDP traffic in steps of 2Mbit/s. Thavmerk traffic was captured at both the
stream server and stream client using Wireshark in ordes ttblbe to calculate packet delays and packet
loss. The mean inter packet delay was calculated at thexsthant with X Mbit/s of disturbance with

a 95% confidence interval and the results are shown in Fig8te 6

50 6.2. TCP PERFORMANCE EVALUATION

Packet Inter—arrival times for TCP stream

0.025
I \Viean Delay
0.02r
. 0.015
Q
[0}
9,
B
[4)
a
0.01r
: J I I I I I
0
0 2 4 6 8 10 12

Disturbance [Mbit]

Figure 6.8: The figure shows the mean inter packet delays of the emulattid atream packets when using TCP
as transport protocol with disturbance rates from 0 to 12/&kJDP traffic in steps of 2Mbit/s. The results are
plotted with 95% confidence interval (normal distribution)

When the disturbance rate was set to 14Mbit/s and above tiRecb@nection would be reset at some
point in the stream, probably since the maximum TCP time@lties is reached. Since it was not
possible to run the full set of samples it was chosen to leavéhe higher disturbance rates from the

TCP experiment.

Disturb. [Mbit/s] 0 2 4 6 8 10 12
Mean Delay [s] 0,0074| 0,0074| 0,0074| 0,0074| 0,0074| 0,0075| 0,0151
95% Conf. +/- [s] | 0,0000| 0,0000| 0,0000| 0,0000| 0,0000| 0,0000| 0,0050

Table 6.5: The table shows the values used to produce the graph in Féggire

6.2. TCP PERFORMANCE EVALUATION 51

The mean maximum inter packet delay and the absolute inbepdelays were calculated at the stream
client with X Mbit/s of disturbance with a 95% confidence ivid. The results from the calculations

are shown in Figure 6.9.

Packet Inter-arrival times for TCP stream

250 -
I Viean Max Delay
I ~bsolute Max Delay
200 -
— 150
[&]
[}
2,
>
K]
[
)
100
50
0 L L 1 L L P —
0 2 4 6 8 10 12

Disturbance [Mbit]

Figure 6.9: The figure shows the mean and absolute maximum inter paclkastsdef the emulated audio stream
packets when using TCP as transport protocol with disturbaates from 0 to 12Mbit/s UDP traffic in steps of
2Mbit/s. The results are plotted with 95% confidence intefivarmal distribution).

Disturb. [Mbit/s] 0 2 4 6 8 10 12
Mean Max Delay [s] | 0,1241| 0,1048| 0,1367 | 0,1238| 0,1228| 0,2168| 76,6501
95% Conf. +/-[s] | 0,0252| 0,0234| 0,0248| 0,0225| 0,0218| 0,0387| 36,0229
Max Delay [s] 0,2131| 0,2077| 0,2125| 0,2127| 0,2129| 0,5861| 226,7051

Table 6.6: The table shows the values used to produce the graph in Fég@ire

52 6.2. TCP PERFORMANCE EVALUATION

The results show that when the disturbance exceeds 10MHs can no longer transmit with the
required rate. The maximum delays gives an idea about hog itotakes to continue to retransmit
every packet until it is received correctly like TCP does.

The mean number of inter packet delays exceeding 80ms (dvergquirement) was calculated to get a
first impression of whether the skew requirement is fulfillé¢hen the inter packet delay exceeds 80ms
the requirement is not fulfilled and as shown in Figure 6.1 @able 6.7 this happens for TCP when
the disturbance rate becomes 10Mbit/s.

Packets exceeding the 80 ms time—bound

141
[Packets above 80ms

Packets exceeding per 1000 packets [.]

0 2 4 6 8 10 12
Disturbance [Mbit]

Figure 6.10: The figure shows the mean number of inter packet delays eixgp86ms with disturbance rates
from 0 to 12Mbit/s UDP traffic in steps of 2Mbit/s.When theanpacket delay exceeds 80ms the skew requirement
can not be fulfilled. The results are plotted with 95% confideimterval assuming normal distribution.

Disturb. [Mbit/s] 0 2 4 6 8 10 12
Above Threshold [.] | 0,0204| 0,0162| 0,0247| 0,0247| 0,0279| 0,1395| 10,043
95% Conf. +/-] 0,0061| 0,0063| 0,0054| 0,0063| 0,0097| 0,0386| 3,2133

Table 6.7: The table shows the values used to produce the graph in FégLoe

6.2. TCP PERFORMANCE EVALUATION 53

Finally an application buffer was simulated (as describe€hapter 4 on page 28) using a Python
script to evaluate exactly how many times the skew requirgnvas not fulfilled. Figure 6.11 shows an
activity diagram of the script. The input to the script is tadculated inter packet delays and the length
of the received packets in bytes. For each packet the tinue\aald the length is read. The time value is
added to the overall time and the length is added to the buffdre stream is starting up it is checked
if the overall time value is larger than 70ms since that waoné&hn the skew requirement is not fulfilled.
If the overall time value is larger than 70ms the stream itarésd. Otherwise it is checked if the buffer
is full, and if it is the stream playing can be started, by rgmg the first packet and setting the next
deadline.

When the stream is playing it is checked whether there wasleaglines since last packet reception. If
there were, then packets are removed and the deadline &neated until it is higher than the overall
time value. If the buffer gets below 0 Bytes, it means a deadibuld not be reached, and the stream is
restarted meaning the skew requirement was not fulfilled.

read line
get packet time
get packet len
add packet time to time
add packet lengt Bytes to buffer

[no more
lines in file]

set "start stream"
increment buffer empty
time =0
buffer = 0

[buffer < 0]

remove 1300Byte
from buffer
increment deadline 7.4ms

[playing stream] [deadline <= time] [deadline < time]
3, ». 3

> > L
["start stream" Y
set]

increment buffer not filled
set "start stream"

time =0

buffer = 0

set
"start stream"

[buffer >= 11700Bytes]

start playing
remove 1300Byte from buffer
deadline = time + 7.4ms

I

[time > 70ms]

Figure 6.11: The figure shows an activity diagram of the script used to @ddthiffer calculations. Two incidents
are important. If the buffer cannot be filled within 70ms tlream is restarted, and if the buffer becomes empty the
stream is restarted. These incidents happen when the skeiement is not fulfilled.

The results are shown in Figure 6.10 on the preceding pagéatiid 6.8.

Disturb. [Mbit/s] 0 2 4 6 8 10 12

Buffer Empty [.] 0,0000| 0,0000| 0,0000| 0,0000(0,0000| 0,0000| 0,9918
95% Conf. +/-[.] | 0,0000| 0,0000| 0,0000| 0,0000| 0,0000| 0,0000| 0,5074
Buffer Not Full [.] | 0,0086| 0,0000| 0,0000| 0,0000| 0,0000| 0,0064| 7,1392
95% Conf. +/-[.] | 0,0052| 0,0000| 0,0000| 0,0000| 0,0000| 0,0063| 4,1841

Table 6.8: The table shows values used to produce the graphs in figi2e 6.1

54 6.2. TCP PERFORMANCE EVALUATION

Buffer Usage
I Buffer Empty _

I suffer Not Full

[any
o

Buffer events per 1000 packets [.]

I I I I 1

6 8 10 12
Disturbance [Mbit]

or
N
D

Figure 6.12: The figure shows how many times the simulated applicatiofebb&came empty or did not become
full, which leads to a skew above 80 ms.

The results shows that the number of times the skew requirecoeld not be fulfilled is approximate 8
times (buffer not filled and buffer empty) per 1000 packetemwthe disturbance rate becomes 12Mbit/s.
Compared to the number of packets exceeding 80ms in intéepdelay, which is approximately 10
times per 1000 packets, it becomes clear that the exact nunfilhienes the skew requirement is not
fulfilled is higher than what the packets exceeding 80mg jpaeket delays shows.

6.2.4 TCP - Conclusion

When the disturbance rate becomes 10Mbit/s and above th& BRAC retransmission becomes ex-
hausted and packets are lost which TCP needs to retransihén e number of lost packets are low
TCP is able to retransmit the packets fast enough to be ahl#itthe skew requirement of 80ms, but as
the disturbance rate increases to 12Mbit/s TCP can no layejehe packets retransmitted fast enough.
When the disturbance rates become more than 14 Mbit/s TCBtisven capable of maintaining the
connection.

There are a number of possible reasons for why TCP does nfatrpevery well. First of all TCP
uses rate control algorithms to avoid congestion in the ogtwand these algorithms uses packet loss
as an indication of congestion in the network. This is a reabte assumption on wired links where

6.2. TCP PERFORMANCE EVALUATION 55

the bottleneck in the network most often is the routers fodivey the traffic, but this is not the case
for a wireless link. When packets are lost, TCP will slow dawstead of retransmitting the packet
immediately which means it will be harder to meet the deadliBecondly TCP delivers an ordered
byte stream of data to the application. This means thatifgne byte is lost, this byte will have to be
retransmitted and correctly received before the followdytes can be handed over to the application.
In situations where it would be possible to fulfil the skewuizgment by not waiting for a retransmit of
a relative small amount of data, TCP will not be able to sinaill either deliver the data in order or
break the connection when the maximum time-out is reached.

Using TCP instead of UDP as a transport protocol removesabkeh loss experienced by UDR %

for 12Mbit/s disturbance) but since the skew requiremenoidulfilled, it would probably give a better
user experience to accept the loss of UDP than having tortéilséastream numerous times. Based on
this and the fact that TCP does not even work at higher dishabrates it has been concluded that TCP
is not usable for the project use-case.

It is assumed that the first packet of the stream is receivédavilelay of exactly 10ms. This will not
reflect reality especially for high disturbance rates whieeemean delay will be higher. This means that
for high disturbance rates the buffer calculations willeattly yield results in favor of TCP. This impact
is however not considered large enough to influence the asiocl.

A Simple Retransmission Protocol

The previous chapters has evaluated the performance of BO2AC retransmission as well as TCP
and UDP transport protocols in terms of inter packet delay packet loss. Throughout the perfor-
mance evaluation several observations and considerdiembeen made, from which the design and
implementation of a simple retransmission protocol is\@&ti This chapter describes the design and
implementation of this simple retransmission protocol analuates the performance of this compared
to the results for TCP.

7.1 Design

Implementing a complete transport protocol in e.g. Linuxuldomean programming at the kernel
level of the operating system. To avoid the difficulties ofrliing at that level it is instead chosen
to implement a retransmission protocol at the applicatewell This means using a already existing
transport protocol and implement a retransmission prdteadop of this. UDP has been chosen since
this is most widely available low overhead transport protticere is. UDP only handles the addressing
of the service running at the receiving side of the commuitingalso called application multiplexing)
as well as integrity verification of packet header and payloa

7.1.1 Reliability

In order to be able to detect if a packet is lost, some kind adjus packet identification has to be

embedded into the packets. Usually this is done by havingjaesee number in the packet which can
be used by the receiver to send back a packet which acknoesdeldgt the packetis correctly received. It
has been chosen to use a simple sequence number schemehetfast packet is numbered 1, the next
is number 2 etc. This continues as long as the communicagigning on.This sequence number will

be embedded in each transmitted packet as the UDP payldadéal by the audio stream data. When
a packet is received, an acknowledgement packet contaamilygthis sequence number is returned to
the transmitter.

It is chosen to specify in the design, that the sequence numbst be implemented as a sequence of
characters instead of e.g. one XByte binary value. Embedtiia sequence number in the packet as a
string, allows the use of the TShark application to parsdib® payload data and read the sequence
number. This is illustrated in Listing 7.1 where the outpuainfi TShark on a UDP packet capture is
shown.

7.2. RETRANSMISSION ALGORITHM 57

935 3.455356 10.8.5.165> 10.8.5.160 UDP Source port: 60209 Destination porf:
commplex-main

0000 00 19 cb 85 fd a2 00 11 25 4b 7b 20 08 00 45 00 UK{ ..E.
0010 05 30 aa 8a 40 00 40 11 6b de Oa 08 05 a5 0Oa 08 0.@.@.k......
0020 05 a0 eb 31 13 88 05 1c 2a 8b 73 65 71 3a 34 36 ...k.seq:46
0030 38 20 50 41 59 4c 4f 41 44 3a 8 PAYLOAD:

936 3.455422 10.8.5.160-> 10.8.5.165 UDP Source port: commplermain
Destination port: 60209

0000 00 11 25 4b 7b 20 00 19 cb 85 fd a2 08 00 45 00 DUK{ L E.
0010 00 23 00 00 40 00 40 11 1b 76 Oa 08 05 a0 Oa 08#..@.@..v......
0020 05 a5 13 88 eb 31 00 Of a8 ed 61 63 6b 3a 34 36 1....a6k:4
0030 38 8

Listing 7.1: The Listing shows output from the Tshark application whepaitses the UDP payload. The first
packet shows the sequence number 468 in the second colullomeid by a string "PAYLOAD:". The next packet
is the acknowledgement packet returned to the transméitknowledging the received sequence number.

Having the sequence number available to the applicatiar lags a positive effect on the streaming use
case because the ordering can be handled by the applicayien IThis is an advantage in the sense
that if packets are missing in between received packetswitii not force the player to stop playing.
Instead it can just choose to ignore packets that are natedet in time or otherwise try to repair the
missing data. As described in chapter 4 on page 28 this mbarskéw requirement can be fulfilled by
e.g. playing silence, as long as the packet loss requireisistill fulfilled.

7.2 Retransmission algorithm

There are different methods to decide whether and when apslekuld be retransmitted. One possibil-
ity is to consider a packet as lost when an acknowledgementisessfully received for the next packet
in the sequence. The drawback is that this retransmissitmigue has to wait for the next packet to be
recorded, transmitted and acknowledged before a retrasimiof the first packet can take place. This
introduces a potentially avoidable delay making it harddutfill the skew requirement.

Another solution for deciding whether a packet is lost isetward the time when a packet is transmitted.
Itis then possible to evaluate the time elapsed and compigrota timeout value. This timeout must be
set to a value near two times the expected end-to-end detég dfansmission path. The receiving end
of the transmission must, in this scenario as well, ackndgdethe received packet immediately after
reception. If this acknowledge is not received by the sendigiin the timeout range, a retransmission
initiates. This solution does not affect the timing of thégoral packets and thereby introduces no
extra delay to the stream. It does however introduce a batidwisage overhead since packets can be
retransmitted if the acknowledgement is delayed too mubis Will result in duplicate packets received
which means unnecessary bandwidth usage.

58 7.2. RETRANSMISSION ALGORITHM

The audio stream use case for this project has a hard reakkave requirement. If a packet does not
arrive at the application layer within the maximum allowé&eéw bound of 80 ms, there is no need for
retransmitting it, since it will be considered lost anywhys therefore chosen to use the first algorithm
for retransmission only since this potentially yields tlestresults in terms of delay.

A set of parameter values for the retransmission algoritagtbd be chosen. This is a maximum timeout
value for a packet after which no more retransmissions wifpérformed and the retransmission timeout
value which decides how often a retransmission is perfornieis decided to use a retransmission

timeout of 20ms and let the maximum timeout value be decidwd the amount of data buffered at the

receiver. Since 70ms are buffered at the receiver this iath@unt of time it is possible to retransmit a

packet until it will be declared lost anyway. With the chosetransmission timeout of 20ms this gives

the ability of 3 retransmissions.

The transmitter side of the chosen retransmission alguarighillustrated in Figure 7.1 as an activity
diagram. To simplify the implementation it is chosen to refflihe emulated stream in the design as
well.

Send first packet,
set max timeout to 60
set timeout to 20
save in "retransmission list"

Read packet in
"Retransmission list"

A

[packets left in
“Retransmission list"]

[current time >= timeout]

Re-transmit packet
decrement max timeout

Initialize timer

>

Send new packet
set max timeout to 60
set timeout to 20
save in "retransmission list"

/\ [packets in queue]

time elapsed >= 0.0074 [packets left in "Retransmission list"]

A

[max timeout
= timeout]

« [read incoming
packet

Remove packet from
"Retransmission list"

[ack recieved]

»a

) \
A [stream playing]

@<«

[packets in queue]

Remove packet from
"retransmission list"

[packets left in "Retransmission list"]

Figure 7.1: The figure an activity diagram of the chosen algorithm for sireple retransmission protocol. A
retransmission list is used in combination with a timer tegk&rack of which packets are not correctly received.This
list is looped through to decide whether it is time to retrait® packet. If a packet is retransmitted the maximum
timeout value is decremented to keep track of then a packetidtpe taken out of the list. If the elapsed time
is more than or equal to 0.0074s a new packet is transmittée. ifcoming queue is then emptied for received
acknowledgements and the retransmissions list is updataddingly.

A retransmission list is used in combination with a timer &ef track of which packets have to be
retransmitted, as well as when it is time to send a new stresokgp. First the timer is started and the
first stream packet is sent. Information about the first peiskeedded to the retransmission list, which is
the sequence number, acting as the unique packet iderttigemaximum timeout value and the value
of the next timeout. The the main loop of the algorithm is ezde

7.3. IMPLEMENTATION 59

The retransmission list is looped through to decide whatlieetime to retransmit a packet. If a packetis
retransmitted the maximum timeout value is decrementedep krack of then a packet should be taken
out of the list. If the maximum timeout becomes lower thantthreeout value the packet is removed
from the retransmission list.

If the elapsed time is more than or equal to 0.0074s a new pé&keansmitted to emulate the rate
of the audio stream. The incoming queue is then emptied foeived acknowledgements and the
retransmissions list is updated accordingly. The main lommtinues as long as there are more audio
stream data.

The receiver side of the chosen retransmission algorittshasvn in Figure 7.2 as an activity diagram.

[no user termination] /\)@

Read packet Extract sequence send ack
number packet

Figure 7.2: The Figure shows an activity diagram of the receiver siddefsimple reliable protocol. The receiver
enters a loop which is only terminated on user request. Wipatket is received the sequence number is extracted
and an acknowledgement packet is constructed an returribd tcansmitter.

create response
acknowledgement
packet

The receiver enters a loop which is only terminated on usguast. When a packet is received the
sequence number is extracted and an acknowledgement packetstructed an returned to the trans-
mitter.

7.3 Implementation

It is chosen to use Python to implement the simple retrarssanigrotocol since this is well suited for
rapid prototyping and has solid support for network prograng through a socket library which wraps
around the UNIX socket API.

It is chosen to describe the implementation by showing theshcode in snippets and explaining how
it works, since the implementation is not very many linesade. Listing 7.3 shows how the needed
python libraries are imported and the variables neededritraidhe timing of the retransmission is set.
Mt | isintroduced as an easier way of keeping track of when to typnsmitting a packet. When
theM t | value reaches 1 the packet is removed from the retransmikisio The next set of variables
is used to control the timer for emulating the correct stregate and to use for checking if packets
timeout values have been reached. Then some packet paydtadscconstructed as a string. At last
an empty dictionargi r Packet s is created which becomes the retransmission list. A dietipis
chosen since it stores key,value pairs allowing easy lodkyugsing the sequence number as key to look
up the necessary packet information.

60 7.3. IMPLEMENTATION

#!/usr/bin/python
import socket,sys,time

tur = 0.020 # Time Until Re—transmit — 20 milliseconds
maxTimeout = 0.060

Mttl = int(maxTimeout/tur) #Max Time To Live — how many retransmission we can do
oldTime = 0
timeVal = time.time ()

elapsed =0

payload=" PAYLOAD:: 'x130 # 1 char 1 Byte #Create some payload data for packets
airPackets = {}

In Listing 7.2 a non-blocking UDP socke3@QCK_DGRAM is created by setting a timeout for the socket.
This means that when data is read from the socket it will natkblonger than maximum 1ms before
it will continue if there is not enough data available. Ciegtthe socket like this makes it possible
to implement both the retransmission and the emulatedmstasaone loop. The first commandline
argument is used as IP address to send data to, while thedseconmandline argument is used as the
port number. By calling connect on a UDP socket, even thotighriot connection oriented, it is not
necessary to specify the destination host and port eachetipaeket is transmitted. The stream packet
sequence number is controlled by the loop variablend converted to a string in the varialdeq.
Finally the first packet is transmitted by appending payldaia to the sequence string until a 1300Byte
packet is created. Then the packet is saved in the retragsismibst with the timeout value and the
maximum time-to-live value.

s = socket.socket(socket.AF_INET, socket.SOCK DGRAM)
s.settimeout (0.001)

host = sys.argv[1l]# server address from cmdline

port = int(sys.argv[2])# server port from cmdline
s.connect ((host, port))

i =1
seqnr = ’'seq:’'+str(i)

#send first packet and save info for retransmission
s.send(seqnr+payload[:(1300len (seqnr))])
airPackets[i] = ((timeVal+tur) ,B Mttl)

Listing 7.2: Initialize non blocking socket,loop control and retranssion list and send the first packet

When the initialization is done the main loop is entered aswhin Listing 7.3. This loop controls how

long the emulated audio stream should be transmitted, heaéua of 4055 packets is approximately
30s. First the timer information is updated before the resnaission list is traversed to look for possible
retransmissions. The timeout value of each packet in thanmsmission list is evaluated against the
current time and the packet is retransmitted if the timesueached. If a packet is retransmitted its

7.3. IMPLEMENTATION 61

time-to-live value is decremented and if this value readesit is removed from the retransmission
list.

while (i < 4055):
oldTime = timeVal
timeVal = time.time ()
diff = timeVal—oldTime
elapsed += diff

for packet in airPackets[:]:

timeout , ttl = airPackets[packet]
if (timeVal >= timeout): #re—transmit
seqnr = ’'seq:’'+str(packet)

s.send(seqnr+payload[:(1360len (seqnr))])
if (ttl == 1):
airPackets .pop(packetjdon’t re—transmit this again
else:
airPackets[packet] = ((timeout+tur) ,(ttH1l)) #update packet

Listing 7.3: Enter the transmission loop until the stream ends. Update tralues and loop through the
retransmission list to check for retransmissions.

The last part of the implementation controls the rate of thalated stream by sending a packet if/when
7.4ms have elapsed as shown in Listing 7.4. Finally it igltteeread an ack packet from the socket and
if an acknowledgement packet is received this packet is vexhfrom the retransmission list.

if (elapsed >= 0.0074) #send next packet according to rate
i +=1
seqnr = 'seq:’'+str(i)
s.send(seqnr+payload[:(1300len(seqnr))])
airPackets[i] = ((timeVal+tur),h Mttl)#save info for retransmission
elapsed = 0

try :
data ,addr = s.recvfrom (1500# try to read ACK

except socket.error, msg:
continue

if (data):
ack = int(dataf[4:])
if ack in airPackets:#remove from retransmission Iist

airPackets .pop(ack)
s.close ()

Listing 7.4: The emulated stream rate is controlled with the elapsed, tiereding a packet for each 7.4ms. The
last part reads in acknowledgement

Since the implementation of the receiver is very simple, denbop that read packets and returns the
sequence number in an acknowledgement packet, it is chaden imclude the code from that in the
report.

62 7.4. PERFORMANCE EVALUATION

7.4 Performance Evaluation

This section describes the performance evaluation donthéosimple retransmission protocol. The
protocol is evaluated by using the same calculations as @® Tn order to be able to compare the
results.

The experimental setup used to perform measurements omtpkegetransmission protocol is the same
as shown in Figure 6.1 on page 39. The transmitter side ofitiy@e retransmission protocol is used to
emulate the stream server and the receiver side to emutastrdam client. A series of experiments was
conducted with UDP disturbance traffic from 6 to 20 Mbit/s Mldt/s intervals, where the emulated
audio stream was transmitted from the stream server to tharstclient. It was chosen to cut down the
audio stream time from 3minutes and 40seconds in the ieXjpériment to 30 seconds in order to keep
the computational time of the calculations at a tolerablelland since it is believed that 30 seconds
for each sample is enough to show the important results. dtaks chosen to not conduct experiments
for disturbances below 6Mbit/s since these experimentsldheot add new information because the
disturbance is too low to trigger the simple retransmisgiarocol. For each interval 30 samples where
recorded in order to be able to assume normal distributioenvdalculating the confidence intervals.

7.4.1 Results

Since the simple retransmission protocol is specificallyigleed with the audio stream use case in
mind, it is expected that it will outperform TCP in terms offiiling the skew requirement. Since it
does not retransmit packets more than maximum 3 times, kgeaed that more packets will be lost
as a tradeoff with performing better for the skew. Sincedlae no bandwidth control in the simple
retransmission protocol, it will not back off to reduce tlendwidth usage but resend packets whenever
they are concluded to be lost. This will most likely resulirtonsiderable increase in the bandwidth
used to transmit the audio stream when the disturbanceneresises.

The first calculations done for the simple retransmissiatqmol concerns the mean inter packet delays
experienced while UDP disturbance traffic was transmittechf6 to 20Mbit/s in 2Mbit/s intervals. The
results are shown in Figure 7.3 and Table 7.1 with a 95% camfelenterval.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20
Mean Delay [s] | 0,0076| 0,0076| 0,0075| 0,0096| 0,2698| 3,5883| 2,8666| 3,6917
95% Conf. [s] 0,0001| 0,0002| 0,0000| 0,0001| 0,5044| 1,3920| 1,3639| 1,4293

Table 7.1: The table shows the values used to produce the graph in Figdire

7.4. PERFORMANCE EVALUATION 63

Packet Inter—arrival Times for Simple Retransmission

|

18

I Vean Delay

5k

Delay [sec]

12 14 16 20

Disturbance [Mbit]

Figure 7.3: The figure shows the mean inter packet delays of the emulai#id atream packets when using the
developed simple retransmission protocol with disturlearates from 6 to 20Mbit/s UDP traffic in steps of 2Mbit/s.
The results are plotted with 95% confidence interval assgmarmal distribution.

Calculations was also done for the mean and absolute maximtenpacket delays experienced while
UDP disturbance traffic was transmitted from 6 to 20Mbit/2bit/s intervals. The results are shown
in Figure 7.4 and Table 7.2 with a 95% confidence interval.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20

Mean Max Delay [s] | 0,6632| 0,0879| 0,0195| 0,3317| 1,7696| 14,821| 11,840| 15,187
95% Conf. +/- [s] 0,3323| 0,1267| 0,0020| 0,2206| 1,9955| 5,4503| 5,3675| 5,5066
Max Delay [s] 1,9738| 1,9608| 0,0386| 1,9676| 30,901 | 31,234 | 31,299| 31,564

Table 7.2: The table shows the values used to produce the graph in Figlire

64 7.4. PERFORMANCE EVALUATION

Packet Inter—arrival Times for Simple Retransmission
35-
I Mean Max Delay

301 I Absolute Max Delay

Delay [sec]
= N N
ol o 6]
T T T

[any
o
T

6 8 10 12 14 16 18 20
Disturbance [Mbit]

Figure 7.4: The figure shows the maximum inter packet delays of the eeudllatidio stream packets when using
the developed simple retransmission protocol with distode rates from 6 to 20Mbit/s UDP traffic in steps of
2Mbit/s. The results are plotted with 95% confidence inteagauming normal distribution.

The mean delay becomes more than 7.4ms when the disturbanoebs 12Mbit/s and above. For
12Mbit/s it is only slightly higher than the expected averad 7.4ms. These results needs to be com-
pared to the packet loss percentage since each lost padkedmiribute to the mean inter packet delay.
The results indicates that the simple retransmission pobteecomes exhausted around 14Mbit/s since
the maximum delay increases a lot and the mean delay alsonescsignificantly larger.

The amount of inter packet delays exceeding 80ms was alsolatdd with a 95% confidence interval
in order to get a first impression of how many times the skewiregqent is not fulfilled. The results
for these calculations are shown in Figure 7.5 and Table 7.3.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20
Above Threshold [s] | 0,0822| 0,0658| 0,0000| 1,2662| 37,4198| 432,4371| 335,1916| 399,5971
95% Conf. +/- [s] 0,0423| 0,1009| 0,0000| 0,2461| 63,4082| 164,1487| 150,7542| 142,1308

Table 7.3: The table shows the values used to produce the graph in Fighire

7.4. PERFORMANCE EVALUATION 65

Packets exceeding 80 ms time—bound for Simple Retransmission
600

| I Packets above 80ms
500
400 F
300+
200+
100
0

_100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 8 10 12 14 16 18 20

Disturbance [Mbit]

Packets exceeding per 1000 packets [.]

Figure 7.5: The figure shows the mean number of inter packet delays exge8dms with disturbance rates from
6 to 20Mbit/s UDP traffic in steps of 2Mbit/s. When the intecket delay exceeds 80ms the skew requirement can
not be fulfilled. The results are plotted with 95% confidenterival assuming normal distribution.

The results show that at 12Mbit/s disturbance the skew remant is not fulfilled at least 5 times and
at higher disturbances it gets worse.

The buffer calculation, as explained in Chapter 4 on pageva8,also made to determine whether the
skew requirement was fulfilled. Figure 7.6 shows an actidiagram of how the calculations was done
for the simple retransmission protocol. The input to themewtations is the calculated inter packet
delays with packet sequence numbers.

66 7.4. PERFORMANCE EVALUATION

[seq < last seq in buffer]

set "start stream”
increment buffer empty
time = 0
buffer = 0

[no more lines in file]

add 1300
Byte to buffer
last seq in buffer = seq

[next seq]

remove 1300Byte
from buffer
increment deadline 7.4ms

read line
get packet time
get packet seq

add packet time to time

X = seq - last seq in buffer

Y [deadline <=
time]

add X * 1300Byte "empty" data
and 1300Byte date to buffer
last seq in buffer = seq

set
"start stream"

[playing stream] [buffer >= 11700Bytes]

start playing
remove 1300Byte from buffer
last seq in buffer = seq
deadline = time + 7.4ms

increment buffer not filled
set "start stream”

time = 0

buffer = 0

["start stream" set] [time > 70ms]
A AN
> >
add 1300Bytes
to buffer

Figure 7.6: The figure shows an activity diagram of how the script to maleshuffer calculations works.

The data for a received packet is read from the input file aadnter packet delay is added to the time
variable. If the audio stream is starting up 9 packets or OBytes of data has to be in the buffer before
70ms has passed otherwise the stream is restarted. If ther betomes full in time the stream can
start playing and the first packet is removed from the buffeilehe deadline is updated to be 7.4ms
later than the time variable. When the stream is playing #tggience number is compared to the last
sequence number in the buffer in order to determine if emptkets should be placed in the buffer. If
the received sequence number is one higher than the lagtrssgaumber in the buffer, 1300Bytes is
added to the buffer and the last sequence number in the lisiffezremented. If the received sequence
number is smaller than the last sequence number in the paffetready added empty packet s replaced
by a real packet which means nothing gets added to the bifffee received sequence number is higher
than the last sequence number plus one, the difference 1i8t8Bytes plus 1300Bytes is added to the
buffer since the gap in sequence number can be filled with yagta and the last sequence number
in the buffer is updated. When the data has been added to ffex the time is checked against the
deadline. If the deadline is less than the time, 1300Bytesn®ved from the buffer and the deadline
is incremented with 7.4ms. This is repeated until the deadt higher than the current time. After
packets have been removed from the buffer to fulfill the dead| it is checked whether more data has
been taken from the buffer than there was available. If thjgdens the skew requirement is no longer
fulfilled and the stream is restarted with time and deadlelaes reset.

The results from the calculations are shown in Figure 7.7Tatde 7.4.

7.4. PERFORMANCE EVALUATION 67

Buffer events per 1000 packets [.]

120

100

80

60

40

20

-20

Buffer Usage for Simple Retransmission

I Buffer Empty
+ I Buffer Not Full i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 8 10 12 14 16 18 20

Disturbance [Mbit]

Figure 7.7: The figure shows how many times the simulated applicatiofebekceeded the limit per 1000 trans-
mitted application packets, which leads to a skew above 80rimsresults are plotted with 95% confidence interval
assuming normal distribution.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20

Buffer Empty [.] 0,3371| 0,8633| 0,6331| 25,1850| 38,0858| 49,5889 47,2126| 43,5290
95% Conf. +/-[.] | 0,1818]| 1,1292| 0,0721| 0,6480 | 1,8670 | 3,4514 | 3,5741 | 3,1912

Buffer Not Full [.] 0 0 0 0 5,9119 | 76,7061| 57,8770| 67,9905
95% Conf. +/- [.] 0 0 0 0 11,5872 29,9509| 27,7199 26,4655

Table 7.4: The table shows the values used to produce Figure 7.7

When the disturbance exceeds 10Mbit/s the skew requirdseatonger fulfilled. The number of times
the requirement is not fulfilled seems to settle at maximurtire@s per 1000 audio stream application
packets. The results also show that for disturbances ak@Mbitl/s it gets difficult to even restart the
audio stream, since this fails 6 times at 14Mbit/s and mordifgher disturbances.

The number of duplicate packets received at the streant elgewell as the number of packets received
out of order was also calculated. The results are shown wr€ig.8 and Table 7.5.

68 7.4. PERFORMANCE EVALUATION

Duplicate Packets for Simple Retransmission Reordered Packets for Simple Retransmission
8000 4500
[Mean Duplicate I Viean Reordered
7000 - 4000 -

6000 - 3500

3000
5000

2500
4000 -
2000

3000
1500 -

Duplicate Packets [.]
Reordered Packets [.]

2000 -
1000 -

1000+ 500k

0 ﬁ &

g S 0 ||

_1000 \\\\\\\\\\\\\\\ _500 \\\\\\\\\\\\\\\
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20

Disturbance [Mbit] Disturbance [Mbit]

Figure 7.8: The right side of the figure shows the amount of duplicate picteceived when using the developed
simple retransmission protocol as transport protocol. [Efteside of the figure shows the amount of reordered
packets at varying disturbance rates from 6 to 20 Mbit/s. fEsellts are plotted with 95% confidence interval
assuming normal distribution.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20

Dup. Packets[.] | 26,700| 253,20| 8,5000| 7042,7| 5514,8| 3930,9| 2935,3| 2035,3
95% Conf. +/-[.] | 16,543| 330,05| 10,273| 124,23| 66,428| 73,870| 29,814| 33,895
Reord. Packets [.]| 2,2000| 41,200| 0,5000| 1144,8| 1843,5| 3706,5| 3391,3| 3309,1
95% Conf. +/-[.] | 0,0000| 0,0711| 0,0000| 0,2375| 6,9438| 4,8596| 6,1688| 10,732

Table 7.5: The table shows the values used to produce the graphs ineFiggir

The number of duplicate packets received gives informadioout how much network bandwidth is
wasted using the simple retransmission protocol, sincéichip packets are packets which are retrans-
mitted even though the packet were already received. Thdauai packets transmitted to emulate the
audio stream was 4055. The results shows that when the sietpd@smission protocol starts retrans-
mitting packets £= 10Mbit/s) almost twice the amount of packets are transmitseduplicates. The
amount of duplicate packets decrease when the disturba&woartes higher which is expected since the
packet loss gets higher.

The number of packets which was received out of order (reedjendicates how many successful
retransmissions was done by the simple retransmissiongobtWhen the disturbance becomes more
than 10Mbit/s approximately 25% of the original packetssarecessfully retransmitted and the number

7.4. PERFORMANCE EVALUATION

increases until the disturbance becomes so high that mmaasenissions are lost.

The amount of packets which never arrives at the streamtelidirbe the packet loss experienced even
with the simple retransmission enabled. This was also ttketiand the results are shown in Figure 7.9

and Table 7.6.

Packetloss in percent for Simple Retransmission
25

[Mean Packetloss

20

15-

10r

| I
P

_5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 8 10 12 14 16 18 20
Disturbance [Mbit]

Packets lost [%]

Figure 7.9: The figure shows the mean packet loss for UDP with X Mbit/s URit as disturbance. The results

are plotted with 95% confidence interval assuming normaifitigion.

Disturb. [Mbit/s] 6 8 10 12 14 16 18 20
Lost Packets [%] 1,2503| 0,2532| 0,0140| 1,0727| 4,3436| 8,9930| 13,833| 22,36
95% Conf. +/- [%] | 0,8249| 0,3994| 0,0274| 0,6071| 0,9196| 1,0605| 0,8140| 0,948

Table 7.6: The table shows the values used to produce the graph in Figlire

70 7.4. PERFORMANCE EVALUATION

The results show that for disturbances above 12Mbit/s tiekgidoss requirement can not be fulfilled.
The packet loss is high for 6Mbit/s disturbance compareti¢oldDP experiments, which probably is
due to some WLAN interference in that experiment. When cargbto the UDP experiment the simple
retransmission protocol performs almost 100% better at HifMand considerably more for higher
disturbance rates. TCP does not have any packet loss buindb@sork for higher disturbance rates
than 12Mbit/s.

7.4.2 Discussion

The results from the experiments conducted for the simpglamemission protocol was expected to
show an increased performance in terms of fulfilling the skeguirement when compared to TCP. TCP
performs worse in terms of times where the streams failstantgbuffer can not be filled), but performs
much better in terms of times the stream gets out of syncg€bbfcomes empty). The requirementis not
fulfilled which means the audio stream use case could not tmessafully executed with a disturbance
rate higher than 10Mbit/s. Comparing this result to the ltssar UDP it is clear that disturbance rates
above 10Mbit/s is where the 802.11 MAC layer retransmisgiets exhausted.

In order to try to maximize the retransmission performandeiims of the skew requirement it was cho-
sen to try to retransmit based on timeouts alone. The reshubis that the number of duplicates packets
received at the stream client is high which means a lot of adtlwandwidth is wasted. This could be
a result of using a too low timeout value, since this would misat a packet could be retransmitted
before the acknowledgement packet was received. The timedue setting then becomes a tradeof
between how much network bandwidth that is wasted and hawafpacket is being retransmitted. It
is clear from the bandwidth usage calculations for TCP tleat/ery much extra bandwidth is used for
retransmissions. This is also due to the fact that TCP toieslfust the transmission rate to the capacity
in the network.

Another possible improvement to the protocol concernsaheption of acknowledgement packets from
the stream client. Since all the protocol and audio streamaion capability is solved in one large loop
itis possible that some acknowledgement packets are nbfrn@a the incoming queue fast enough and
therefore packets are wrongly retransmitted. The largebmuraf duplicate packets received could be
an indication of such a problem, but further experimentsldidiave to be made to determine whether
this holds.

Itis also possible, that since the simple retransmissiotoppl is implemented in a high level language
like Python and is executed through the Python interprigteecomes difficult to keep the timers running
fast enough. If the loop does not execute fast enough, theritdm will not work as expected. It is
however not believed to be an issue with the equipment thatused for the experiment, but in order to
determine this for sure, further experiments are needed.

The direct comparison between the simple retransmissioto@ol and TCP is not completely correct
since TCP is located at the transport layer and implememtéidei operating system kernel in Linux.

7.4. PERFORMANCE EVALUATION 71

This means TCP has timing advantages since it avoids exgessheduling of processes and other
disturbances from the application level.

The simple retransmission protocol will use more bandwidtien packet losses occurs, since it will
retransmit packets only based on timeouts. This becomesdadf since using more bandwidth for
retransmissions will have an impact on the contention a8tii211 MAC level, which again would
cause more packet losses. Since it seems that using moreidéméor retransmissions doesn't even
improve the performance in terms of the skew requiremeisthiirdly worth to waste the bandwidth.

7.4.3 Conclusion

The simple retransmission protocol does not perform bétem TCP since TCP is better at fulfilling
the skew requirement at 12Mbit/s disturbance. This meaaistiie skew requirement still can not be
fulfilled at 12Mbit/s disturbance rate, which means it does seem to be a solution to the packet
loss experienced when the 802.11 MAC retransmission méxais exhausted. Since the simple
retransmission protocol probably can be improved, it issids that it could be able to fulfill the skew
requirement eventually. It is therefore not possible tocbate that a simple retransmission protocol
can not be used to improve the performance of the audio stresntase described in this project.
It is however believed that it will be difficult to improve th@otocol enough to be able to fulfill the
requirement, especially at higher disturbance rates tBbit/s.

Conclusion

This project considers using Wireless LAN as transport nmedor live audio streaming, while keeping
the lip synchronization between a television picture areddbrresponding audio track. The use-case
of the project deals with people working in open office eminents, watching the news during the
working day. The preliminary analysis investigated reguients for synchronization and packet loss
on an audio stream, in order to conclude when the listenes fimel skew between audio and video non
satisfying.

An initial experiment was conducted, using a stream sermdraastream client running Pulse Audio,
together with two disturbance nodes. This was done to ggierence with streaming audio over
Wireless LAN and UDP multi-casting. Analysis of the netwarkce was performed using Wireshark,
and showed that the packet loss increasing with the distedaas the primary problem to solve.

A set of packet loss recovering techniques were describpdssible solutions to reduce the impact of
the packet loss. Two possible directions were found, aetivépassive recovering techniques. It was
chosen to focus on the active sender driven repair of theoaidtam, which introduces retransmission
of lost segments as the method.

It was not possible to measure the skew of the audio streaectljir Therefore a new method for
measuring whether the skew requirement is fulfiled was dgesl, as a simulation of a fictive buffer at
the application layer. It is concluded that measurementisefoad of the buffer will give the ability to
decide whether the skew requirement of 80 ms is fulfilled dr no

Experiments with adjusting the maximum retransmissiontlfior 802.11 MAC, showed that MAC-
layer retransmission can handle 10 Mbit/s of disturbaraffi¢rtraversing the access point, when the
MAC retransmission is active. If the MAC layer retransnossis turned off, the performance of the
network is degraded remarkable.

A performance evaluation of two transport layer protoctl®P and TCP, has been performed. It
is concluded that UDP protocol exceeds the packet lossnemgent of 1,80%, when the disturbance
traffic raises above 12 Mbit/s and the MAC retransmissioxlgested. The results shows furthermore,
that the UDP protocol keeps an almost constant packet inigaktime, when the MAC retransmission
is active. Overall it is concluded, that UDP can not be usel disturbances above 12 Mbit/s.

In the TCP performance evaluation, the MAC layer retransioisis exhausted at 10 Mbit/s disturbance,
and the TCP retransmission starts reacting. Itis seen fnerreisults that TCP is able to survive a packet
loss of 2% at 12 Mbit/s disturbance, but at 14 Mbit/s distad#the connection closes down due to
timeout. TCP was not able to fulfil the skew requirement foMliit/s disturbance.

A simple application layer retransmission protocol hasnbéeveloped, introducing reliability on top

8.1. DISCUSSION OF MAIN ASSUMPTION 73

of the UDP protocol, in order to combine the best of the twovjmesly evaluated protocols, with an
expectation of a performance gain. The implementation waspared to the results of the TCP and
UDP experiments, which showed that tSenple Retransmission Protocol implementation performs
worse than TCP at fulfilling the requirements at 12 Mbit/dutisance. It is thereby concluded that the
simple retransmission protocol can not fulfill the requigss in its current implementation. There is
still room for improvement though, which will be discussedther in the project perspectives.

8.1 Discussion of main Assumption

The disturbance traffic was used to make sure that packetslagrin order to test how the different
protocols react to this mechanism. The generated distaeb@nhowever not necessarily a perfect
emulation of the disturbance on a WLAN network in general. eWhhe disturbance is created by
sending traffic through the same AP as the audio stream, sherldance will have a high influence on
the 802.11 MAC scheduling mechanism while e.g. neighbaungtworks on different channels could
also cause packet losses, but would not result in more ctioiesn the channel. The chosen disturbance
does however, at least partially, emulate the contentioshwould arise on an WLAN network when
a number of unicast streams are transmitted at the same simg tiansport level retransmission. Since
every client will send back acknowledgement packets, tt#IB0MAC contention will become higher
and the number of collisions will become higher.

It is believed that the assumption that the disturbancé@drafmulates near real behaviour of the distur-
bance experienced when multiple unicast streams are titiedrat the same WLAN network holds.

8.2 Project Conclusion

Itis concluded that 802.11 MAC alone is the best techniqudding the retransmissions, when dealing

with delay sensitive unicast streams. The gain in perfogadrom using higher level retransmissions

are not significant enough to make a difference. When tharthahce on the wireless channel becomes
so high that 802.11 MAC retransmission becomes exhausthdy techniques than retransmissions
should be used e.g. using different WLAN channels for défeitraffic.

Project perspectives

This chapter describes the project perspectives. The éicsiosis discuss the future work on the simple
retransmission protocol, followed by a section that discihe possibilities of expanding the project
use-case. The last section discuss the possibilities mgulse experience gained in this project to try to
design an audio stream solution which incorporates statieecdrt techniques for avoiding packet loss
as well as using multicast to make the solution scale better.

9.1 Future Work

In order to be able make a more final conclusion about whetligipossible to construct a simple re-

transmission protocol which achieves good performancering of the skew requirement more work is
needed. First it is necessary to conduct experiments tarétbe timer used to control the retransmis-

sion mechanism is able to achieve the required precisianglfthere is too much jitter on the detection
of timeouts this can have a large impact on the performanteecdimple retransmission protocol, and
it is possible that this happens since the Python scriptrighitough the Python interpreter as a single
operating system process meaning e.g. scheduling evemtgergrate significant jitter in the timer

values.

The next possible enhancement concerns the use of ackrgeneht packets. The number of duplicate
packets received is high which means either acknowledgtsnaes lost, they do not get read in time or
the setting of the retransmission timeout value is wrongstlawknowledgements is difficult to handle
without wasting even more bandwidth, while the other protdeould be improved. Conducting exper-
iments to tell where the problem lies specifically would mékaossible to adjust the implementation
and hopefully make it perform better.

The current simple retransmission protocol only retranpaiikets based on timeouts. It is also possible
to use the incoming acknowledgment packets do decide whattetransmission should be performed.
If an acknowledgement is received for a sequence numbeehthhn expected, it either means that a
packet was lost before reaching the receiver, or that ancadkalgement was lost. It could happen that
this next acknowledgement could be received before theotinealue was triggered, making it possible
to achieve better performance regarding the skew requitemehe simple retransmission protocol
could also be changed to only use the acknowledgementsfanseissions to get and idea of how this
strategy would perform.

Since the value of the retransmission timeout could be arefas worse performance, different strate-
gies for choosing this value could be investigated. Perhiapsuld be beneficial if this value was not a
fixed value, but could be adjusted according to the ongoimgnconication. Doing this would increase

9.2. EXPANDING THE USE-CASE 75

the complexity of the protocol considerably though, bubitiid be worth the trade-off if it yields better
performance.

The currentimplementation of the simple retransmissiatquool has been made as an application level
retransmission mechanism, which potentially yields pesutts regarding the ability to respond quickly
to timing incidents. If the implementation was instead dathe transport level, the comparison to TCP
would be more fair. This would however loose the gain of hg\dequence numbers available at the
application level, requiring the application to solve timstead.

The 802.11 MAC retransmission was investigated to isolaeperformance gains of the different re-
transmission mechanisms, however more experiments fiegatds mechanism would be interesting.
Experiments could be made to answer; what happens to therpenfice of the simple retransmission
protocol if 802.11 MAC retransmission is disabled? |s itgibke to force the 802.11 MAC retransmis-
sion mechanism to do even more retransmission? How woulé 8@%.11 MAC retransmissions affect
the performance regarding the skew requirement?

9.2 Expanding the use-case

This project has worked primarily with a unicast stream sotuto the specified project use-case, which
can work as long as the number of stream clients is not toa highe project use-case is expanded to
cover other areas where streaming audio from a central focind like e.g. a cinema or a university

lecture, the number of clients would becomes too large tohibe ta support using a unicast solution,
without using more WLAN networks. Instead of using unicastams to the clients, multicast/broad-
cast streaming could be used as in the initial experimentndthis means loosing the 802.11 MAC

retransmission which makes transport level and highet fetnsmissions more interesting.

The use-case could also be expanded by utilizing more thametwork technology for the streaming.
In the project use-case only WLAN is used, but by using bothAN| Bluetooth, LAN etc. a greater
flexibilty could be offered to the users of the stream sotutiosing e.g. LAN the audio stream could
be of higher quality while using Bluetooth could perhapauliem longer battery life on a headset.
Using more than one network technology at once sets up a wieglearea of possible problems, since
the performance requirements for the streaming devicerbesdigher, and the different technologies
could interfere with each other.

Traditional audio in e.g. a cinema can broughtto the audiéydnstalling one set of speakers physically
in the cinema which then distributes an approximately equdio experience to the whole audience.
New trends regarding cinema audio could make the streansi@gase more interesting, like the use of
3D audio. In order to enable a better 3D audio experienceuiddoe better to have equipment for each
individual in the cinema.

76 9.3. ALTERNATIVE APPROACHES

9.3 Alternative Approaches

As described in Chapter 2.5 on page 18, retransmissions ie@only method to prevent packet loss. It
could be possible to combine different methods of packatiesovery to perform better than just using
retransmission alone.

If retransmission is used in a multicast/broadcast scemtffierent problems arises, one of them being
that retransmitting a packet that perhaps was receive@adtyrby some clients will waste network

bandwidth. If different clients are missing different patd it is possible to use a technique called
network coding to construct special packets which can rapaltiple packets at different clients. This

would make the retransmission much more effective for a icadt/broadcast scenario but will also
require more computational performance to construct ardhese special network packets.

One interesting aspect that has not been analyzed in thecpamncerns the relatively new QoS mech-
anisms standardized for 802.11. These were originally ddehe 802.11e amendment but are now a
part of the official standard. Using 802.11e it is possiblprioritize different types of traffic in order to
make QoS guarantees for traffic which needs this. This coailoine way of making the audio stream-
ing perform better when other types of traffic causes proble@92.11e will not be able to solve the
problems arising from multiple stream clients sending haaksport level acknowledgements though,
since this traffic should have the same priority.

Another approach to enhancing the packet loss problem jprdject use-case could be to sample/record
and stream both the audio and the video before it is transtnitt the TV. Doing this would make it
possible to have a much larger buffer and still fulfill theesiming requirement. It could perhaps even
be possible to adjust the speed of the video stream when thie stveam experiences problems. This
would however mean that the synchronization between theovahd audio stream would have to be
controlled and adjusted to make sure the skew requireméufiled.

Bibliography

[1] Gerold Blakowski and Ralf Steinmetz. A media synchrattizn survey: Reference model, speci-
fication, and case studieSelected Areasin Communications, |EEE Journal on, 14:5-35, 1996.

[2] IEEE-SA Standards Board. leee standard for informati@hnology-telecommunications and in-
formation exchange between systems-local and metrop@itea networks-specific requirements
part 11: Wireless lan medium access control (mac) and pahlsiger (phy) specifications.

[3] Orion Hodson Colin Perkins and Vicky Hardman. A surveyatket loss recovery techniques for
streaming audioNetwork, IEEE Journal on, 12:40 — 48, 1998.

[4] J.G. Gruber and L. Strawczynski. Subjective effectsarfable delay and clipping in dynamically
managed voice systemdEEE Trans. Commun., COM 33:801-808, 1985.

[5] N. Jayant and S. Christensen. Effects of packet lossesireform coded speech and improve-
ments due to an odd-even sample-interpolation procedboeimunications, | EEE Transactions
on, 29:101- 109, 1981.

[6] H.F. Mattson and G. Solomon. A new treatment of bose-dhau codes.Journal of the Society
for Industrial and Applied Mathematics, 9:654 — 659, 1961.

[7] G.A. Miller and J.C.R. Licklider. The intelligibility 6interrupted speechAcoust. Soc. Amer.,
22:167-173,1950.

[8] J. Nonnenmacher and L. Strawczynski. Parity-basedriessvery for reliable multicast transmis-
sion. Proceedings of the ACM SSGCOMM, pages 289 — 300, 1997.

[9] Jen Hay Paul Warren and Brynmor Thomasiditory Perception. Pergamon Press, 1982.
10] HIDENETS project. Hidenets tutorial.
proj

[11] I.S. Reed and G. Solomon. Polynomial codes over cefiite fields. Journal of the Society for
Industrial and Applied Mathematics, 8:300-304, 1960.

[12] J. Rosenberg. Reliability enhancements to nevot. 1996

[13] Ralf Steinmetz. Human perception of jitter and mediacdyonization.Selected Areas in Com-
munications, |EEE Journal on, 14:61-72, 1996.

78 BIBLIOGRAPHY

[14] Andrew S. TanenbaunComputer Networks 4th Edition. Pearson Education, 2003.

[15] R. Voelcker. Subjective effects of transmitting speewver packet networkgntegrated Multiser-
vice Communication Networks, |EE Colloquiumon, 21:3/1 — 3/4, 1985.

BIBLIOGRAPHY

AAU

ACK

AP

API

AR

BER

CBR

DCF

FCC

FDM

FEC

FHSS

FIFO

FLAC

FTP

GFSK

GSM

HCF

Aalborg University

Acknowledgement

Access Point

Application Programming Interface
Active Retransmission

Bit Error Rate

Constant Bit Rate

Distributed Coordination Function
Federal Communications Commission
Frequency Division Multiplexing

Forward Error Correction

Frequency Hopping Spread Spectrum
First In First Out

Free Lossless Audio Codec

File Transfer Protocol

Gaussian shaped Frequency Shift Keying
Global System for Mobile communications

Hybrid Coordination Function

HR-DSSS High Rate Direct Sequence Spread Spectrum

IBSS

IEEE

IPC

ISM

IP

LAN

LDU

Independent Basic Service Set

Institute of Electrical and Electronics Engineers
Inter Process Communication

Industrial, Scientific, Medical bands

Internet Protocol

Local Area Network

Logical Data Unit

80 BIBLIOGRAPHY

LOS Line of Sight

MAC Medium Access Control

MD Mobile Device

oS Operating System

OSI Open Systems Interconnection
PCC Passive Channel Coding
PCF Point Coordination Function
PCM Pulse Code Modulation
PER Packet Error Rate

PHY Physical Layer

QoS Quality of Service

RSS Received Signal Strength
RTP Real-Time Protocol

RTT Round Trip Time

SCP Secure Copy

STA Station

TCP Transmission Control Protocol
TS Traffic Stream

TTL Time To Live

UDP User Datagram Protocol
UML Unified Modeling Language
USB Universal Serial Bus

VoIP Voice over IP

WAN Wide Area Network

WAV Waveform Audio Format

WLAN Wireless Local Area Network

