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SYNOPSIS:
In this Master of Science Thesis the basic
theory of Gaussian and non-Gaussian state
space models is outlined, with an application
in modelling seasonal variation of incident
cardiovascular diseases in the Danish popu-
lation from 1980 to 2008, identified using the
Danish National Registry of Patients.
The thesis consists of three parts. The
first part comprises crude analyses of daily
incidence rates of incident cardiovascular
diseases, i.e. acute coronary syndrome,
stroke and venous thromboembolism, mod-
elling seasonal variation characterised by a
single cycle during a year and the secular
trend as a cubic spline. Furthermore, strat-
ified analyses according to gender and age
groups (20-49, 50+) are performed, mod-
elling seasonal variation characterised by four
cycles during a year, the secular trend as
a cubic spline and the effect of the day of
week as unstructured seasonality. All anal-
yses are modelled by a non-Gaussian state
space model and residual analyses are per-
formed. Results indicate that incident car-
diovascular diseases exhibit gradually chang-
ing seasonal variation during the study pe-
riod.
The second part consists of an article based
on a simulation study comparing geometri-
cal models and Poisson regression when mod-
elling seasonal variation. Results of the simu-
lation study indicate that Poisson regression
is superior in modelling seasonal variation,
when data sets are small.
The third part consists of the basic theory of
Gaussian and non-Gaussian state space mod-
els. Furthermore, implementation of Kalman
forecasting and the EM algorithm is per-
formed, and formulation of state space mod-
els modelling seasonal variation in sspir is
outlined. Several residuals are proposed as
model diagnostics.





Preface

This Master of Science Thesis is written by Anette Luther Christensen in the
period from February 2009 to May 2009. Parts of Chapter 2 were developed
during the ninth semester from September 2008 to December 2008. The thesis
is developed at Department of Mathematical Sciences, Aalborg University, in
cooperation with Center for Cardiovascular Research, Aalborg Hospital, Aarhus
University Hospital. It is assumed, that, as a minimum, the reader possesses
the mathematical qualifications corresponding to completion of the bachelor
education of Mathematical Sciences at Aalborg University.
The aim of the thesis is to model seasonal variation exhibited by incident car-
diovascular diseases in the Danish population from 1980 to 2008 featuring state
space models. In addition, the thesis provides a methodological development
of modelling seasonal variation, taking as a starting point the results obtained
during the ninth semester. The thesis consists of three parts. The first part
provides an analysis of seasonal variation of daily frequencies of cardiovascular
diseases in the Danish population from 1980 to 2008, applying state space mod-
els. During the ninth semester a simulation study comparing geometrical models
and Poisson regression when modelling seasonal variation was performed, result-
ing in an article, which was submitted to Computer Methods and Programs in
Biomedicine, in April, 2009, and which composes the second part of this thesis.
Finally, the third part comprises the basic theory of Gaussian and non-Gaussian
state space models, including implementation of Kalman forecasting and the EM
algorithm. The code is available by request to lutherstatistiker@hotmail.com.
Citation is given by, e.g. (Joensen et al., 2009) or Joensen et al. (2009). The
bibliography is found at the end of the thesis. Scalars are interpreted as 1 × 1
matrices and vectors of dimension p as p × 1 matrices. Hence no notational
differentiation between scalars, vectors or matrices is applied. A list of the
notation employed in the thesis is found on page 123.
The author wishes to thank Center for Cardiovascular Research for providing
data as well as computer equipment, and her supervisor, Claus Dethlefsen, for
his supervision. Furthermore, the author wants to thank all personnel at Center
for Cardiovascular Research, especially the team of statisticians, comprised of
Claus Dethlefsen, Søren Lundbye-Christensen, Tina Obel and Martin Bøgsted.
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Dansk Resumé

I dette speciale skrevet ved Institut for Matematiske Fag, Aalborg Universitet
i samarbejde med Kardiovaskulært Forskningscenter, Aalborg Sygehus, Aarhus
Universitets Hospital, beskrives den basale teori for Gaussiske og ikke-Gaussiske
state space modeller. Desuden indeholder specialet en applikation af denne teori,
omhandlende modellering af sæsonvariation udvist af incidente kardiovaskulære
sygdomme i den danske befolkning fra 1980 til 2008, identificeret ved hjælp af
det Danske Landspatientregister.
Specialet best̊ar er tre dele. Den første del omhandler anvendelsen af state space
modeller. Materialet, der ligger til grund for anvendelsen, inklusiv datakilder,
samt kardiovaskulære sygdomme, beskrives. Endvidere skitseres analysestrate-
gien, der opdeles i to dele. Initielt foretages overordnede analyser af sæson-
variationen af daglige incidens rater af kardiovaskulære sygdomme, nærmere
bestemt ved akut koronar syndrom, slagtilfælde og venetromboser, beskrevet
ved en enkelt svingning per år, samt en sekulær trend i form af en kubisk
spline. Dernæst foretages analyser stratificerede p̊a køn og aldersgrupper (20-
49, 50+), for hvilke sæsonvariationen er beskrevet ved fire svingninger per år,
en sekulær trend i form af en kubisk spline, samt en ugedagseffekt karakteriseret
som ustrukturet sæsonvariation. Alle analyser modelleres som ikke-Gaussiske
state space modeller, og endvidere verificeres modellerne ved hjælp af residual
analyse. Analyserne viser, at incidente kardiovaskulære sygdomme udviser en
sæsonvariation der gradvist ændre sig i løbet af studieperioden.
Den anden del af specialet best̊ar af et artikeludkast omhandlende et simula-
tionsstudie, i hvilket der udføres en sammenligning af geometriske modeller og
Poisson regression til at modellere sæsonvariation. Resultaterne indikerer, at
Poisson regression er at foretrække til at modellere sæsonvariation, n̊ar datama-
terialet er begrænset. Artiklen er submittet til tidsskriftet Computer Methods
and Programs in Biomedicine i April, 2009, og er per dags dato under review.
Den trejde del best̊ar af den basale teori for Gaussiske og ikke-Gaussiske state
space modeller. Implementering af Kalman prediktion og EM algoritmen er ud-
ført og beskrevet. Endvidere skitseres formuleringen af state space modeller i
programpakken sspir i R med fokus p̊a modellering af sæsonvariation. Resid-
ualer udledes og foresl̊as anvendt i forbindelse med modelkontrol. Afslutningsvis
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eksemplificeres formuleringen af state space modeller med fokus p̊a modellering
af sæsonvariation ved hjælp af simulerede data. Desuden foretages et simula-
tionsstudie af EM algoritmen p̊a de simulerede data, efterfulgt af modelkontrol
i form af residual analyse.
Appendiks, hørende til specialet, best̊ar af tre dele, hvor første del indeholder
diverse teoremer og definitioner anvendt i teoridelen. Anden del best̊ar af hen-
holdsvis figurer vedrørende det afsluttende eksempel i teoridelen af specialet,
samt illustrationer af udvalgte resultater fra analyserne i anvendelsesdelen af
specialet. Tredje og sidste del best̊ar af en nomenklaturliste. Specialet afsluttes
med en litteraturliste.
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Introduction

In Denmark cardiovascular diseases, i.e. diseases related to the heart and blood
vessels, are some of the most serious and resource demanding diseases. In fact,
cardiovascular diseases are the most frequent cause of death. During the last
20-30 years the relative number of subjects dying from cardiovascular diseases
have decreased remarkably for both genders, due to reduction of exposure to
risk factors and improvements of treatment.
In 2005, the total expenses for hospitalisations of cardiovascular diseases were
nearly five billions Danish kroner. On average, the expenses were higher for
men. The expenses of cardiovascular medicine increased from approximately
one billion Danish kroner in 2004 to approximately two billions in 2005.
Risk factors of cardiovascular diseases are manifold, and are represented by both
biological and genetical factors, as well as the social background. Fatty diet,
smoking, alcohol consumption, physical inactivity and working conditions are
known risk factors. Exposure to risk factors are dependent on gender, age, level
of education and area of living (Nissen and Rasmussen, 2008).

Multiple studies report that the occurrence of incident cardiovascular diseases,
i.e. the first time occurrence, varies within the year. This association is re-
ported in both Danish and foreign studies (Frost et al., 2006; Ornato et al.,
1996). The majority of reported results indicate, that the frequency of occur-
rence is higher during the winter than the summer, however some studies report
the opposite. The conflicting results may indicate, that the association varies
between climatic areas (Ku et al., 1998), and may arise from the fact, that there
is a disagreement of which statistical models to be used, along with few cases
in each study. Furthermore, there have been reported higher occurrences of
incident cardiovascular diseases and higher mortality of cardiovascular diseases
during holidays (Phillips et al., 2004; Zubaid et al., 2006).
This reported association of the occurrence of incident cardiovascular diseases
and the time of year is commonly called seasonal variation. In epidemiol-
ogy (Manfredini et al., 2004; Fischer et al., 2004; Dowell and Ho, 2004; Altizer
et al., 2006; Fisman, 2007; Eilers et al., 2008; Wallis et al., 2008) and eco-
nomics (Findley et al., 1998) the hypotheses may concern seasonal variation
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of events. The period of seasonal variation may vary dependent on the
context. Studies, investigating seasonal variation during twenty-four hours, a
week or a year, are found (Spielberg et al., 1996; Sharma et al., 2001; Spengos
et al., 2003; Stein et al., 2004). Commonly, the seasonal variation regardless of
the period is described by a single maximum during the period (Frost et al.,
2006; Fischer et al., 2005), however studies describing the seasonal variation
with multiple locally maxima and a single globally maxima exist (Fischer et al.,
2004). Furthermore, seasonal variation is commonly assumed being constant
during consecutive periods. However, it is plausible that the seasonal variation
changes over time concurrently with progression in treatments and awareness of
risk factors (Lundbye-Christensen et al., 2009). Globally, seasonal variation of
cardiovascular diseases is an acknowledged feature (Gerber et al., 2006), how-
ever studies reporting no seasonal variation of cardiovascular diseases, are also
found (Bounameaux et al., 1996).
In Denmark multiple registries exist, which facilitate historically epidemiological
cohort studies. The usage of this resource is manifold, and is ideal when investi-
gating diseases for seasonal variation, e.g. cardiovascular diseases. The Danish
National Registry of Patients holds information on 99.4% of all non-psychiatric
hospitalisations in Denmark from 1977 till 2009, which makes it a valuable re-
source in epidemiological studies (Andersen et al., 1999). Studies show that
the positive predictive values of specific cardiovascular diseases within the Dan-
ish National Registry of Patients are estimated to be in the range 58%-80%
(Johnsen et al., 2002; Joensen et al., 2009; Severinsen et al., 2008). Preliminary
results indicate, that specific incident cardiovascular diseases exhibit seasonal
variation described by a single cycle during the year and with highest frequency
in January (Christensen, 2008).

Statistically Modelling Seasonal Variation

There exists several statistical models for modelling seasonal variation, including
parametrical and non-parametrical models. However in some studies such statis-
tical models are not applied to investigate data, instead subjective conclusions
are made based on tabulations and graphical representations. Furthermore,
when statistical models are in fact applied, the conclusions are based on simple
χ2 tests (Elwood and Little, 1992).
In 1961, Edwards published his work regarding a statistical model for modelling
seasonal variation, commonly referred to as a geometrical model (Edwards,
1961; Frangakis and Varadhan, 2002; Brookhart and Rothman, 2008). The basic
idea of the geometrical model is to visualise the period of seasonal variation
as a circle divided into an appropriate number of time intervals, dependent
on frequency by which data are observed, e.g. when the period of seasonal
variation is a single year and we have monthly data, the circle may be divided
into twelve time intervals. A given weight is assigned to each month according
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to the number of events in that specific month and the center of gravity of these
twelve weights is determined and exploited to fit an appropriate single cycle
sinusoidal curve to data. This model has been considered as standard (Roger,
1977), and seems intuitive and the interpretation is simple. However, the model
has several limitations and consequently conclusions based on this model may
be incorrect (Wehrung and Hay, 1970; Hewitt et al., 1971; Pocock, 1974; Walter
and Elwood, 1975; Roger, 1977).
The assumption of the model is, the time intervals being of equal sizes. This
assumption is not fulfilled, when the time intervals represent e.g. months or
quarters. An additional assumption is, the population at risk, i.e. the collection
of subjects in risk of developing a specific disease, being constant during the
period of seasonal variation (Edwards, 1961). Improvements of the geometrical
model regarding the assumption of constant time intervals and constant popula-
tion at risk were introduced in 1975 (Walter and Elwood, 1975). In common for
both geometrical models is, that adjustment for an overall trend in data, called
the secular trend, is not possible. Furthermore, the models rely on a Gaussian
approximation, which becomes poor in case of few events in each time interval,
hence conclusions may be incorrect (Gao et al., 2006).
Adjusting for explanatory variables is not explicitly possible, when applying ge-
ometrical models, however, by stratification on given variables and performing
analysis on each strata, adjusting for explanatory variables is performed implic-
itly. As a consequence the number of observations in each strata may be too
small, hence the Gaussian approximation becomes poor and conclusions may be
unreliable.
The generalised linear models introduced by Nelder and Wedderburn (1972)
enable modelling of events as being Poisson distributed, and additionally, it is
possible to adjust for the secular trend and perform regression on explanatory
variables (Nelder and Wedderburn, 1972). Results show, that Poisson regression
provides reliable conclusions, when the number of observations are small, as op-
posed to the geometrical models (Christensen et al., 2009a). Seasonal variation
modelled by Poisson regression is seen in some epidemiological studies (Fischer
et al., 2004, 2005; Thorpe et al., 2004; Eilers et al., 2008).
Both geometrical models and generalised linear models do not allow parameters
of the model to vary over time, hence the models are static models. However,
it is plausible that the seasonal variation may vary over time, i.e. the amount
of fluctuation and time for extrema may change (Lundbye-Christensen et al.,
2009).
Harrison and Stevens (1976) introduced a new class of statistical models called
state space models, which are dynamic models, hence allowing parameters
of the model to change over time (Harrison and Stevens, 1976). The model
consists of two processes, a latent process and an observation process, the latter
being considered as indirect observations of the latent process. Assessment of
the latent process is performed by filtering the observations.
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The concept of filtering was first introduced by Thiele (1880), however, it was
not until Kalman published his work in 1960 and 1963 the application of the
filter became clear, consequently the filter is named after Kalman (Thiele, 1880;
Kalman, 1960, 1963). Generalised linear models are special cases of state space
models, since it is possible to parameterise a generalised linear model as a state
space model, hence all distributions belonging to an exponential family may be
modelled by a state space model. Additionally, distributions specified only by
the first and second moments may be modelled by a state space model (West
et al., 1985).
Modelling seasonal variation using a state space model, the seasonal variation is
allowed to evolve over time, and we may include the secular trend and regression
on explanatory variables also with evolving parameters. Hence, applying state
space models in epidemiological studies concerning seasonal variation of events,
may provide a more clarifying description of the seasonal variation.

In this thesis we investigate data of incident cardiovascular diseases among the
Danish population, since 1980 for gradually changing seasonal variation. Prelim-
inary studies in which data are analysed using Poisson regression indicate that
incident cardiovascular diseases exhibit seasonal variation (Christensen, 2008).
By analysing the same data, featuring state space models, we may clarify the
seasonal variation by allowing the parameters to evolve over time.

Structure of the Thesis

The thesis is organised in three parts, starting with an application of state
space models consisting of an analysis of seasonal variation exhibited by incident
cardiovascular diseases. The second part consists of a manuscript of an article
based on a simulation study performed by the author during autumn 2008 as a
part of the ninth semesters project, and the manuscript was submitted in April,
2009 (Christensen, 2008; Christensen et al., 2009a). The third part provides the
basic theory of state space models. The chapters are outlined as follows

Chapter 1 Description of data on incident cardiovascular diseases in Denmark
from 1980 until 2008 to be analysed, including a description of data sources
and data preparation. The study design and analysis strategy are outlined.

Chapter 2 Results of analyses regarding seasonal variation of incident cardio-
vascular diseases are presented, including residual analyses.

Chapter 3 Manuscript of article regarding simulation study of geometrical
models and Poisson regression in modelling seasonal variation.

Chapter 4 Basic theory concerning Gaussian state space models. Kalman fil-
tering, forecasting and smoothing are derived, along with disturbance fil-
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tering and smoothing. Estimation of variance matrices, based on the EM
algorithm, is derived.

Chapter 5 Basic theory concerning non-Gaussian state space models. Filter-
ing, conjugate filtering, forecasting and smoothing are derived. Iterated
extended Kalman smoothing is outlined, as well as estimation of variance
matrices, based on the adjusted Pearson algorithm.

Chapter 6 Model diagnostics for Gaussian state space models are derived.

Chapter 7 Formulation of state space models in R using the package sspir
including formulation of secular trend as a cubic spline, harmonic and
unstructured seasonal variation and regression on explanatory variable.
Ending with an example illustrating the formulation of a Gaussian state
space model, estimation of variance matrices, and residual analysis of sim-
ulated data.





Part I

Analysis of Gradually
Changing Seasonal

Variation of Incident
Cardiovascular Diseases
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Chapter 1

Materials and Methods

This chapter concerns the materials and methods of the analyses. The employed
data sources are described, which include the Danish National Registry of Pa-
tients and the Central Person Registry. A description of chosen cardiovascular
diseases is given and specific cardiovascular diseases are selected to be investi-
gated for seasonal variation. An outline of data preparation is given, followed
by a specification of the study design along with an analysis strategy.

1.1 The Danish National Registry of Patients

The Danish National Registry of Patients was established January, 1977, and
holds 99.4% of all hospital non-psychiatric records in Denmark (Andersen et al.,
1999). The registry includes among other information, the civil registry number,
dates of admission and discharge, one or several diagnoses classified according
to the Danish version of the International Classification of Diseases, 8th Revi-
sion (ICD8) until the beginning of 1994 and afterwards according to the Danish
version of the 10th Revision (ICD10) and surgical procedures performed. Fur-
thermore, the registry specifies the hospital and ward of discharge diagnosis, as
well as the type of patient and diagnosis. Since 1995 not only hospital admissions
are recorded also emergency room- and outpatient contacts are recorded.
The general health and hospital systems in Denmark are non-profit and non-
charging systems, that are financed through taxes. Further information about
the Danish National Registry of Patients is available at http://www.sst.dk.

1.2 The Central Person Registry

The Central Person Registry includes vital status for every resident in Den-
mark, since April, 1968. Changes in vital status are recorded in the registry.
Furthermore, the registry includes, among other information, the civil registry

9
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10 1. Materials and Methods

number and possible change of this, information about civil status, date of
possible change, residence and emigration, date of possible change and date
of birth. More information about the Central Person Registry is available at
http://www.cpr.dk.

1.3 Selection of Cardiovascular Diagnoses

Cardiovascular diseases are related to the heart and blood vessels. Among
others, these diseases include aneurysm, angina, atherosclerosis, strokes, heart
failure, coronary artery diseases, acute myocardial infarction and thromboem-
bolism.
An aneurysm is a pathological dilation of a blood vessel. Angina is characterised
by severe chest pain caused by lack of blood supply to the heart and is an
ischemic disease, i.e. diseases caused by a reduced blood flow, hence reduced
oxygen supply. Atherosclerosis is a slowly progressed hardening of a blood vessel
caused by storing of macrophages due to a chronic inflammation in the blood
vessel. If a rupture of the atherosclerosis occurs it may lead to narrowing, called
stenosis, of the blood vessel or an aneurysm. Strokes are rapidly developing
loss of brain functions due to either lack of blood supply, i.e. ischemia, or a
haemorrhage, i.e. a bleeding, in the brain.
The coronary arteries, the left and the right, provides the heart muscle with
oxygen-rich blood, this is also called the coronary circulation. Coronary artery
diseases are the final result of atherosclerosis within the coronary arteries. This
may lead to acute myocardial infarction. Myocardium is the heart muscle tissue
and infarction means death, hence acute myocardial infarction is characterised
by acute damage or death of a part of the heart muscle. Damage of the heart
muscle tissue is caused by lack of oxygen supply, hence acute myocardial infarc-
tion is an ischemic disease.
Thrombos is the Greek word for coagulation of the blood, hence thrombosis
is the formation of a blood clot on the blood vessel and occurs when a blood
vessel is injured to prevent loss of blood. When the blood clot dislodge from
the blood vessel it is called a thrombus, whereas an embolus is a foreign object,
e.g. a thrombus, within a blood vessel, lead through the circulation, embodying
risk of blockage of a blood vessel. Hence, thromboembolism is a formation of
a blood clot, that is lead through the circulation causing a blockage in a blood
vessel in another part of the body (Andersen et al., 2002).
In this study we focus on acute coronary syndrome (ACS), i.e. symptoms
related to the heart, stroke, i.e. symptoms related to the brain and venous
thromboembolism (VTE), i.e. thromboembolism in the veins. Each of the
diagnoses can be divided into several subdiagnoses. Acute coronary syndrome
is divided into acute myocardial infarction (AMI), unstable angina pectoris and
cardiac arrest as proposed by Joensen et al. (2009). The latter is characterised
by an abrupt stop of heart beat leading to arrest of the circulation, which leads

http://www.cpr.dk
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to oxygen deficiency in the whole body. This is different from an AMI, since in
that case the blood flow, to a still beating heart, is reduced.
Stroke is divided into four subdiagnoses as proposed by Johnsen et al. (2002),
subarachnoid haemorrhage (SAH), intracerebral haemorrhage (ICH), ischemic
stroke and unspecified stroke. A subarachnoid haemorrhage is located right
outside the brain in the so-called subarachnoid space separated from the cerebral
cortex by a membrane called pia matter, whereas an intracerebral haemorrhage
is located inside the brain, hence the terms subarachnoid and intracerebral refer
to the location of the haemorrhage (Andersen et al., 2002).
Venous thromboembolism diagnoses are divided into deep vein thrombosis (DVT)
and pulmonary embolism (PE) as proposed by Severinsen et al. (2008). The first
representing the formation of a blood clot, thrombus, in a deep-lying vein often
in the legs, which may lead to a pulmonary embolism, i.e. a thrombus dislodge
from a vein and lead through the veins and lungs causing a blockage of the
artery that leads blood from the heart to the lungs, called the pulmonary artery
(Andersen et al., 2002).

1.4 Validation of Selected Diagnoses

The three studies Joensen et al. (2009), Johnsen et al. (2002) and Severinsen
et al. (2008) reports estimated positive predictive values (PPV) of discharge
diagnoses in the Danish National Registry of Patients of ACS, stroke and VTE,
respectively. All studies are based on the Danish prospective cohort called Diet,
Cancer and Health, see Tjønneland et al. (2007) for a detailed description. Sub-
jects born in Denmark, living in the urban areas of Aarhus and Copenhagen,
aged 50-64 years and not registered with a diagnosis of cancer were invited dur-
ing December, 1993, until May, 1997, to participate in the cohort. A total of
80, 996 males and 79, 729 females were invited, whereas 27, 179 males and 29, 876
females accepted. Based on the three studies certain criteria were selected for
each disease, ACS, stroke and VTE, in order to obtain high reliability of di-
agnoses. In Table 1.1, the selected diagnoses to be included in the study are
listed with corresponding ICD8 and ICD10 codes along with the corresponding
estimated PPV.

1.4.1 Validation of Acute Coronary Syndrome

In the study Joensen et al. (2009) medical records, retrieved from 54 different
hospitals, were reviewed by one of three reviewers. In total, 1, 654 patients were
identified with an incident discharge diagnosis of ACS in the Danish National
Registry of Patients among the participants in the cohort, Diet, Cancer and
Health. Of these, 96 were not characterised either because the medical records
were not retrievable (n = 77), or because the medical records included insuffi-
cient data to classify the patients (n = 19).
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Disease ICD8, ICD10 PPV
Acute coronary syndrome (ACS) 410, 427.27, I21, I46 65.5%
Stroke 430-434, 436, I60, I61, I62, I63, I64 79.3%
Venous thromboembolism (VTE) I26, I80 58.5%

Table 1.1: Selected cardiovascular diseases with corresponding diagnoses codes (ICD8,
ICD10) based on the studies Joensen et al. (2009), Johnsen et al. (2002), Frost et al.
(2006) and Severinsen et al. (2008).

After exclusion of missing medical records the PPV of ACS was 65.5% (95%
CI [63.1, 67.9]). When stratifying on subdiagnoses, the PPV of AMI was 81.9%
(95% CI [79.47, 8.2]), unstable angina pectoris was 27.5% (95% CI [23.4, 31.9])
and cardiac arrest was 50.0% (95% CI [34.2, 65.8]). Stratifying on type of de-
partment of discharge, i.e. ward, emergency room or outpatient, the PPV for a
discharge diagnosis on a ward was 80.1% (95% CI [77.7, 82.3]) and the PPV for
discharge diagnoses from emergency room or as outpatient was 16.1% (95% CI
[12.4, 20.4]). Furthermore, it is reported that stratifying on the type of discharge
diagnosis, i.e. primary or secondary, the PPVs are 67.1% (95% CI [64.6, 69.5])
and 47.0% (95% CI [37.6, 56.5]), respectively (Joensen et al., 2009).
Hence, the PPVs differ substantially for the specific subdiagnoses, discharge de-
partment and type of diagnosis, furthermore, the study reports a gender specific
PPV, males having a significantly higher value for all diagnoses than women.
Based on these reports we chose in this study to only include diagnoses of AMI
and cardiac arrest discharged from a ward, preferring a high PPVs rather than
a large sample size.

1.4.2 Validation of Stroke

In the study Johnsen et al. (2002) medical records were retrieved and validated
by one reviewer. In total, 389 patients were identified with an incident discharge
diagnosis of stroke in the Danish National Registry of Patients among the par-
ticipants in the cohort, Diet, Cancer and Health. Of these, 377 (96.9%) medical
records were retrievable and validated. The PPV of stroke was 79.3% (95% CI
[74.9, 83.3]). Stratifying on subdiagnoses the PPV of SAH was 48.3% (95% CI
[29.5, 67.5]), ICH 65.7% (95% CI [47.8, 80.9]), ischemic stroke 87.7% (95% CI
[80.1, 93.1]) and unspecified stroke 76.0% (95% CI [69.5, 81.7]). Stratifying on
department of discharge diagnosis the PPV of stroke from emergency room was
48.8% (95% CI [39.9, 57.8]), whereas from non-speciality departments the PPV
was 68.8% (95% CI [61.3, 75.5]) and speciality departments the PPV was 77.9%
(95% CI [72.3, 82.7]). It is reported that this characteristic is the same within all
subdiagnoses. The study does not find differences in the PPVs, when stratifying
on gender or age (Johnsen et al., 2002).
As noted in the study the PPVs are based on a relatively small sample size,
hence, making them rather imprecise. However, based on these reports, we chose
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to include discharge diagnoses of SAH, ICH, ischemic stroke and unspecified
strokes, and addition, as proposed by Frost et al. (2006) also discharge diagnoses
identified by I62 (ICD10) are included in this study. Only discharge diagnoses
from a ward or outpatient are included.

1.4.3 Validation of Venous Thromboembolism

In the study Severinsen et al. (2008) medical records were retrieved and reviewed
by one reviewer. In total, 1, 135 patients were identified with an incident dis-
charge diagnosis of VTE in the Danish National Registry of Patients among the
participants in the cohort, Diet, Cancer and Health. Of these, 1, 100 (96.9%)
medical records were retrieved and validated. The PPV of VTE was 58.5% (95%
CI [55.5, 61.4]). Stratifying on subdiagnoses the PPV of PE was 66.5% (95% CI
[62.3, 72.3]) and DVT was 54.6% (95% CI [50.9, 58.2]). Stratifying on depart-
ment of discharge diagnoses the PPV of VTE diagnosed on a ward was 75.0%
(95% CI [71.9, 77.9]) and VTE discharge diagnoses from an emergency room was
31.3% (95% CI [27.0, 35.8]). Stratifying on types of diagnoses, i.e. primary or
secondary, the PPVs for VTE are 77.0% (95% CI [73.7, 80.1]) and 66.5% (95%
CI [58.4, 73.8]), respectively. The study does not report a significantly difference
of PPV stratifying on gender or age for VTE.
Hence, for this study we chose to include both DVT and PE discharge diagnoses
from a ward or outpatient and both primary and secondary diagnoses.

1.5 Data Preparation

The data were received as four separated SAS files. Using StatTransfer version
9 all data were transferred to Stata files (StataCorp, 2007). Data preparation
was performed in Stata version 10. The statistical analyses were performed in
R version 2.9.0 (R Development Core Team, 2008).
Two of the received data sets contained data from the Danish National Registry
of Patients, one with primary diagnoses and appurtenant information, contain-
ing more than 1.3 million subjects, and the other with the additional diagnoses
corresponding to each primary diagnoses. The two data sets were merged using a
record number identifying one primary diagnosis with corresponding additional
diagnoses. Using a self-written function in Stata subjects having an incident
discharge diagnosis of ACS, stroke or VTE were identified, as well as date of
diagnosis. Three data sets were created containing subjects identified with ACS,
stroke or VTE, respectively. Notice that a subject may be represented in more
than one data set. By merging each data set with the Central Person Registry
information of gender and birthdate were linked to each subject, as well as date
of possible death. Age at time of diagnosis was extracted using birthdate, and
grouped into two age groups, 20-49, and 50+.
The Danish population size stratified on gender and age determined January first
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every year was extracted as Excel files from http://www.statistikbanken.dk
and transferred to Stata using StatTransfer. In Stata the data were adequately
reshaped and the population size was linearly interpolated in order to obtain
data for each day, since January first, 1977. Information of the Danish popu-
lation size is merged with each data set containing subjects with either ACS,
stroke or VTE.

1.6 Study Design

The study is a historical cohort study, i.e. a group of selected individuals
observed over a given period of time (Rothman, 2002). Furthermore, the cohort
study is a prospective observational study, i.e. no exposure is assigned
to any individual, merely observed through registries. The selected individuals
to be observed, i.e. the study population or cohort, are all inhabitants in
Denmark, and the period of time in which the study population is observed,
i.e. the study period, is January, 1980, until August, 2008. To be included
in the study, the subjects must fulfill predefined criteria, which are dependent
on the hypothesis of the study, i.e. the inclusion criteria. In this study the
first criterion to be fulfilled, is subjects being aged 20 or more. This criterion is
stated to avoid interference of possible different pathology in children compared
with adults.
During the study period the total Danish population increased from approxi-
mately 5.12 million to 5.48 million inhabitants, whereas the population restricted
to be aged 20 or more, increased from approximately 3.65 million to 4.13 million.
In 1980, the population in Denmark consisted of approximately 1.87 million fe-
male aged 20 or more. This number increased to approximately 2.11 million in
2008. The number of males aged 20 or more increased from 1.78 million in 1980
to 2.02 in 2008 (Statistik, 2008). An additional characteristic of the cohort is,
that the study population may change during the study period, which is referred
to as being an open cohort.
The primary endpoint of the study is the daily frequency of incident diagnoses
of cardiovascular diseases, i.e. the daily frequency of first time occurrences of a
cardiovascular disease identified using the Danish National Registry of Patients.
Consequently subjects with previous diagnosis of a cardiovascular disease are
excluded from the study, which leads to a second inclusion criterion, which is,
subjects being required to have no previous diagnosis of a cardiovascular disease.
Since the Danish National Registry of Patients includes only hospitalisations
from January, 1977, information of diagnoses of cardiovascular diseases prior to
January, 1977 are not obtainable, hence identified subjects may have a prevalent
diagnosis, i.e. at least one previous occurrence of cardiovascular disease. To
overcome this circumstance, we provide an exclusion criterion, which is to
exclude subjects with a diagnosis of a cardiovascular disease from January, 1977
until December, 1979 (Frost et al., 2006).

http://www.statistikbanken.dk
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The daily frequency of incident cardiovascular diseases is determined and the
daily incidence rate (IR) is calculated according to

IR =
number of cases
total time of risk

.

The numerator represents the cumulated time at risk of developing an incident
cardiovascular disease for all subjects and ensures that the issue of competing
risk is addressed (Rothman, 2002). Say, we observe 10 occurrences of incident
cardiovascular diseases in a population of 100 during a single year. The risk
of developing an incident cardiovascular diseases within a year is the number
of cases divided by the total population during the observation time, hence the
risk is 0.1. However, it may happen that some subjects, not developing an
incident cardiovascular disease, die from other diseases during the observation
time, hence the risk is underestimated. This is the concept of competing risk.
The influence of competing risk becomes more pronounced as the study pe-
riod becomes longer. As for the incidence rate we compare the daily frequency
of incident cardiovascular diseases with the total population at risk, hence
the number of subjects alive except from subjects with previous diagnosis of
cardiovascular diseases.
As an effect measure of the seasonal variation we introduce the incidence
rate difference (IRD). By calculating the difference between the highest
incidence rate and the smallest, i.e. the incidence rate difference, we obtain an
estimate of the peak-to-trough measure, which is independent of the underlying
frequency level. In comparison, the incidence rate ratio (IRR) determined
by the ratio of the highest and smallest incidence rates is dependent on the
underlying frequency level.

1.7 Analysis Strategy

For each of the endpoints, ACS, stroke and VTE, the following analyses are
performed. Initially, a crude analysis on the daily incidence rates of the disease
per 100, 000 is performed by modelling the secular trend as a cubic spline, see
Section 6.1, and harmonic seasonal variation described by a single cycle during
the year, see Section 6.2.
This analysis is followed by an analysis stratified according to gender and age
groups. Hence we perform four analyses for each group of disease, hence allowing
the seasonal variation having different levels and shapes for each gender and age
group. Furthermore, the harmonic seasonal variation is altered to be described
by four cycles during the year, and the effect of the day of week modelled as
unstructured seasonality, see Section 6.3, is included in the model (Spielberg
et al., 1996; Fischer et al., 2004; Lundbye-Christensen et al., 2009).
Additionally, we analyse a fourth endpoint defined by the daily incidence rates
of the first occurrence of an incident diagnosis of either ACS, stroke or VTE,
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hence all cardiovascular diseases, this endpoint is denoted cardio. Preliminary
results suggest that the overall level of the incidence rates of incident ACS is
decreasing during the study period, whereas the level of both stroke and VTE
are increasing, in particular the latter (Christensen, 2008). This may suggest
that instead of developing an incident ACS, subjects develop an incident VTE,
hence the slope of the secular trend, estimated for cardio, may be approximately
zero.
Since the daily incidence rates, Yt, are based on daily observed frequencies, i.e.
possibly serially correlated count data, we assume that the incidence rates are
Poisson distributed with intensity parameter (µt/mt)100, 000, where mt denotes
the total time at risk. The subscript, t, emphasises the dynamic evolvement of
the intensity parameter during the study period. Furthermore, we assume the
latent process, {θt}, being Gaussian with constant evolution variance matrix,
W . This holds for all analyses.
Due to the dynamic nature of the parameters of the model, the effect measure
inherits this characteristic. The estimate of the incidence rate difference at time
t may be interpreted as the peak-to-trough measure of a window of the size
equaling one year, beginning at time t. In the simple case of a single cycle, the
incidence rate difference is directly determined by

IRDt = exp(At)− exp(−At),

where At =
√
α2
t + β2

t and αt and βt are the coefficients of the harmonic sea-
sonality. When the harmonic seasonal variation is characterised by four cycles
during a year, the incidence rate difference may be determined by evaluating
the seasonal component at an appropriate grid of time points, e.g. daily, in a
window of size equaling one year starting at time t in order to identify the max-
imum and minimum incidence rates, denoted IRt,max and IRt,min, respectively,
and determine

IRDt = exp(IRt,max)− exp(IRt,min)

(Lundbye-Christensen et al., 2009).

1.7.1 Model Structure

Each of the analyses, the crude and stratified analyses, are described in the
following and the model formulations are outlined. The formulated model for
the crude analysis is denoted Model 1, and the formulated model of the strati-
fied analysis is denoted Model 2. Formally mathematical descriptions of model
structure and formulation of state space models are given in Chapter 6.

Model 1 - Crude Analyses

Parallel analyses are performed for each of the four endpoints, ACS, stroke, VTE
and cardio. The secular trend is modelled by a cubic spline and the seasonal
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variation is modelled as a harmonic seasonal variation with a single cycle. Hence
we obtain the non-Gaussian state space model

p(Yt|µt) = exp (Yt log(µt)− µt + Yt!)

log(µt) = λt = F>t θt

θt = Gtθt−1 + ωt, ωt ∼ N4 (0 , W (φ))
θ0 ∼ N4 (m0 , C0) ,

where we have

Ft =



1
0

cos
(

2πt
365

)
sin
(

2πt
365

)


, θt =


q(t)
q′(t)
αt
βt

 , Gt =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and

W (φ) =



φ1

3
φ1

2
0 0

φ1

2
φ1 0 0

0 0 φ2 0
0 0 0 φ2

 .

The hyper parameters, φ> =
[
φ1 φ2

]
, each represents a feature of the model,

where the first hyper parameter, φ1, represents the variance of the secular trend,
and the second, φ2, represents the variance of the harmonic seasonality.
This model is comparable with traditional models modelling seasonal variation,
since we model the seasonal variation by a harmonic seasonality with a single
cycle (Christensen et al., 2009a). Each analysis is subsequently comparable with
results reported in Christensen (2008).

Model 2 - Stratified Analyses

We have for each endpoint, ACS, stroke, VTE and cardio, four strata. The first
strata is characterised by subjects being females and aged 20-49, the second
by subjects being females and aged 50+. The third strata is characterised by
subjects being males and aged 20-49, whereas the fourth and final strata is
characterised by subjects being males and aged 50+. Hence we perform sixteen
parallel analyses, one for each endpoint and each strata.
For each strata the secular trend is still modelled as a cubic spline, whereas the
harmonic seasonality is described by four cycles during the year. In addition,
we model the effect of the day of week as an unstructured seasonality with a
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period of seven. We obtain the non-Gaussian state space model

p(Yt|µt) = exp (Yt log(µt)− µt + Yt!)

log(µt) = λt = F>t θt

θt = Gtθt−1 + ωt, ωt ∼ N16 (0 , W (φ))
θ0 ∼ N16 (m0 , C0) ,

where

F>t =
[
1 0 cos

(
2πt
365

)
sin
(

2πt
365

)
· · · cos

(
4 2πt

365

)
sin
(
4 2πt

365

)
1 0 · · · 0

]
1×16

,

θ>t =
[
q(t) q′(t) α1,t β1,t · · · α4,t β4,t γt · · · γt−6

]
1×16

,

and the evolution transfer matrix, Gt, is block diagonal consisting of the three
block matrices, G1, G2, and G3, given by

G1 =
[
1 1
0 1

]
, G2 = I8, G3 =


−1 −1 · · · −1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


6×6

,

each representing a feature of the model, i.e. the secular trend, the harmonic
seasonality and the unstructured seasonality, respectively.
The evolution variance matrix is block diagonal consisting of three block ma-
trices, denoted W1, W2, and W3. The first block matrix, W1, represents the
secular trend, the second, W2, represents the harmonic seasonality, and finally,
the third, W3, represents the unstructured seasonality. Having three hyper pa-
rameters φ> =

[
φ1 φ2 φ3

]
, the first, φ1, represents the variance of the secular

trend, the second, φ2, represents the variance of the harmonic seasonality, as-
suming equal variances for all four cycles, and finally, the third, φ3, represents
the variance of the effect of the day of week. Hence, we have

W1 =


φ1

3
φ1

2
φ1

2
φ1

 , W2 = φ2I8, W3 = diag(φ3, 0, . . . , 0)6×6.

The secular trend is parameterised by the level, denoted q, and the slope, de-
noted q′. The harmonic seasonality is parameterised by four pairs of coefficients,
denoted αi and βi, where the subscript i denotes which of the four cycles the
coefficients parameterise, hence i = 1, . . . , 4. Finally, the unstructured season-
ality, i.e. the effect of the day of week, is parameterised by a single coefficient,
denoted γ. From this point on, the dependency of the hyper parameters, φ, is
suppressed, hence the evolution variance matrix is merely denoted W .
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1.7.2 Estimation of the Evolution Variance Matrix

In order to obtain a reasonable initial value of the evolution variance matrix, W ,
we perform a square root transformation of the observed frequencies. The daily
incidence rates based on the transformed data, denoted Y̆t, are approximately
Gaussian, hence we may estimate the corresponding variance matrices, V̆ and
W̆ , using the EM algorithm assuming that, as well as the evolution variance
matrix, the observation variance matrix is constant. The EM algorithm provides
the variance estimates of the approximated Gaussian state space model, specified
by

{Ft, Gt, V̆ , W̆}, (1.1)

denoted V̂ (0) and Ŵ (0), respectively. Hence, the EM algorithm maximises the
likelihood function, Ltrue(φ|Y̆t), of (1.1).
Defining the non-Gaussian state space model given by

{Ft, Gt, Ṽ (0), Ŵ (0)}, (1.2)

where Ṽ (0) denotes the initial value of the observation variance matrix. Notice,
that we do not use V̂ (0) as an initial value, since this matrix is the estimate
of the observation variance for model (1.1) of the daily incidence rates based
on the transformed observations, however, we use the estimate of the evolution
variance matrix, Ŵ (0), provided by the EM algorithm.
Applying the iterated extended Kalman smoother to model (1.2), we obtain an
approximated Gaussian state space model specified by Ỹ

(1)
t and Ṽ

(1)
t with the

property that upon convergence the mode of the likelihood function, Ltrue(θ|Y ),
of model (1.2) equals the mode of the likelihood function, Lapprox(θ|Ỹ (1)), of
the approximated Gaussian model. Specifying this approximated Gaussian state
space model by

{Ft, Gt, Ṽ (1)
t , Ŵ (0)}, (1.3)

we apply the EM algorithm to model (1.3), hence maximising the likelihood
function, Lapprox(φ|Ỹ (1)), to obtain a new estimate of the evolution variance
matrix, W , denoted Ŵ (1) assuming the observation variance matrix, Ṽ (1)

t , be-
ing known, hence not to be estimated. This may be performed iteratively by
initialising a non-Gaussian state space model by (1.2) and apply the iterative
extended Kalman smoother. In each iteration we perform the following two
steps.

IEKS-step : Apply the iterative extended Kalman smoother on the non-Gaussian
state space model

{Ft, Gt, Ṽ (m−1), Ŵ (m−1)},

which provides the approximated Gaussian model specified by Ỹ
(m)
t and

Ṽ
(m)
t , denoted

{Ft, Gt, Ṽ (m)
t , Ŵ (m−1)}.
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EM-step : Apply the EM algorithm on the approximated Gaussian model from
the IEKS-step, assuming Ṽ (m)

t being known, which provides Ŵ (m).

Iterations are performed until convergence is reached, which is defined as(
Ŵ (m−1)

)−1 ∣∣∣Ŵ (m) − Ŵ (m−1)
∣∣∣ < ε, (1.4)

where ε is chosen to equal 10−3.
As for Model 2, the stratified analyses, we only estimate the evolution variance
matrix based on the transformed observed frequencies for the specific strata
consisting of subjects being males and aged 50+ with incident ACS, according
to the outlined strategy. This estimated evolution variance matrix, Ŵ (0), is
applied as the initial variance matrix in the first IEKS-step in the remaining
fifteen strata.



Chapter 2

Results

This chapter contains the results of the analyses of daily incidence rates per
100, 000 of incident discharge diagnoses of ACS, stroke, VTE and cardio, re-
spectively. Only the results of the analyses regarding incident ACS are thor-
oughly outlined, including illustrations and residual analysis, whereas only the
comprised results of the analysis regarding stroke, VTE and cardio are given,
and corresponding illustration are to be found in the Appendix.

We identified in total 274, 965 primary discharge diagnoses of incident ACS
from a ward, and 349, 099 primary or secondary discharge diagnoses of incident
stroke from a ward or as outpatient contacts, and finally, 130, 929 primary or
secondary discharge diagnoses of incident VTE from a ward or as outpatient
contacts, using the Danish National Registry of Patients.
Of these identified subjects, 37, 869 were having an incident discharge diagnosis
of both ACS and stroke, 10, 526 were having an incident discharge diagnosis of
both ACS and VTE, whereas 15, 387 were identified having an incident discharge
diagnosis of both stroke and VTE. A total of 2, 538 subjects were identified
having an incident discharge diagnosis of both ACS, stroke and VTE.
Well over every third of ACS are females, whereas approximately every second
of stroke and VTE are female. In general, females are older, when developing an
incident cardiovascular disease, than males. In addition, we identified 686, 135
cases of first occurrences of either ACS, stroke or VTE. See Table 2.1 for a
demographic description of identified subjects.

2.1 Acute Coronary Syndrome

Daily incidence rates of incident ACS per 100, 000 were fitted by the non-
Gaussian state space model specified by Model 1, which include a secular trend,
modelled as a cubic spline and a harmonic seasonal variation with a single cycle

21
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Age∗

Total Female Female Male
ACS 274, 965 100, 009 (36.37%) 75 (66-82) 67 (58-76)
Stroke 349, 099 173, 742 (49.77%) 76 (67-83) 71 (61-79)
VTE 130, 929 69, 495 (53.08%) 70 (55-80) 66 (54-75)
Cardio 686, 135 313, 886 (45.75%) 74 (64-87) 68 (58-77)

Table 2.1: Demographic description of identified subjects using the Danish National
Registry of Patients. Cardio represents the first occurrences of either ACS, stroke or
VTE. ∗ Median along with first and third quartile in brackets.
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Figure 2.1: Residual analysis of the approximated Gaussian state space model of daily
incidence rates based on the square root transformed observed frequencies. Time plots
and histogram of filter residual of origin Y . The latter time plot shows the residuals
for the year 2007.

during the year. The initial evolution variance matrix, W , of the first IEKS-
step was estimated by fitting a Gaussian state space model to the daily incidence
rates of incident ACS per 100, 000 based on the square root transformed daily
frequencies.

2.1.1 Square Root Transformed Daily Frequencies

Applying the EM algorithm on the Gaussian state space model of the trans-
formed daily frequencies with initial values

V (0) =
1
n

n∑
t=1

100, 000
√
Yt/mt = 0.13, φ(0) =

[
10−9

10−9

]
,

and initial distribution specified by

m0 =


0.05
0.05
0.03
0.03

 , C0 = 10I4,
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Figure 2.2: Estimated components of Model 1. (a) Secular trend. (b) Seasonal
variation component determined by January first for 1980 (grey curve) and 2008 (black
curve). (c) Daily incidence rate differences.

we obtain the estimates of the observation variance matrix and the hyper pa-
rameters given by

V̂ (0) = 2.13 · 10−4, φ̂(0) =
[
3.921399 · 10−10

9.787605 · 10−10

]
.

The algorithm converged after 260 iterations with epsilon equaling 10−3.
Residual analysis is performed for the approximated Gaussian state space model
specified by

{Ft, Gt, V̂ (0), Ŵ (0)},

in order to verify the assumption that the daily incidence rates based on the
transformed frequencies are Gaussian. In Figure 2.1, two time plots and a
histogram of the filter residual with origin Y are shown. Neither of the time
plots indicate misspecification of the observation model, and the histogram may
indicate that the daily incidence rates based on the transformed frequencies may
reasonably be modelled by a Gaussian state space model.

2.1.2 Crude Analysis

Applying recursively the iterated extended Kalman smoother, with default max-
imum number of iterations to run equaling 50 and epsilon equaling 10−6, fol-
lowed by the EM algorithm, with maximum number of iterations to run equaling
1, 000 and epsilon equaling 10−3, until convergence given by (1.4) on page 20,
we obtain estimates of the hyper parameters given by

φ̂ =
[
3.920857 · 10−10

9.787546 · 10−10

]
.

Notice, that the estimates have not altered notably from the initial values, hence,
indicating that the iterated extended Kalman smoothing may be redundant.
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Figure 2.3: Residual analysis of Model 1. Time- and autocorrelation plots of the
filter residual with origin Y .

The estimated secular trend of Model 1 is shown in Figure 2.2(a), which is super-
imposed on the observed daily incidence rates per 100, 000. In Figure 2.2(b) the
seasonal component is shown for 1980 and 2008. Due to the dynamic nature of
state space models, the seasonal component alters every day, hence the seasonal
component is determined by the estimated coefficients at January first for each
year. From this point and on, all estimated measures, e.g. incidence rates or
incidence rate differences, are determined by the estimated coefficients at Jan-
uary first the corresponding year. The amplitudes of the seasonal component
for each year do not seem to differ. According to Figure 2.2(c), the estimated
incidence rate differences vary between 10.537% and 10.544%. In addition, we
see that the amplitude of the seasonal variation increases from 1980 until ap-
proximately 2004 and decreases afterwards, however, the differences from 1980
to 2004 may not be of any clinically relevance, and too small to be visualised in
Figure 2.2(b).
In 1980, the average daily incidence rate of incident ACS is 0.89 per 100, 000.
The estimated incidence rate difference is approximately 10.537% with a peak
in February, hence the daily incidence rate in February is approximately 0.93
per 100, 000, whereas in August it is only 0.84 per 100, 000. In 2008, the av-
erage daily incidence rate is approximately 0.53 per 100, 000. During January,
the daily incidence rate is 0.56 per 100, 000 and in July it is 0.51 per 100, 000,
since the estimated incidence rate difference is approximately 10.543%. Hence,
although the estimated incidence rate difference increases during the study pe-
riod, the fluctuation in absolute values of the daily incidence rates becomes
smaller.
Residual analysis is performed on the resulting non-Gaussian state space model
after applying recursively the iterated extended Kalman smoother and the EM
algorithm. Time plots of the filter residual for the entire study period and from
the years 2006 and 2007 with origin Y are given in Figure 2.3, along with the
autocorrelation plot. As seen in the time plots, especially the second, the residu-
als lie on parallel bands, which is to be expected due to the discreteness of data.
The time plot of the residuals from 2006-2007 may indicate a misspecification
of the observation model, since the residuals seem to lie on curved bands with
a shape, that is repeated in both years. Furthermore, the autocorrelation plot
indicates the existence of an effect of the day of week, since every seventh lag
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Figure 2.4: Residual analysis of Model 1. Time plots of the components, q, q′, α and
β, of the filter residuals with origin θ.

peaks.
In Figure 2.4, time plots of the components of the filter residuals with origin θ
are shown. All four plots indicates that the assumption of constant evolution
variance matrix may be verified. The time plots of residuals from 2006-2007 of
the components q and q′ also exhibit the repeated curved bands as the filter
residual with origin Y , whereas for the components α and β this pattern is not
as pronounced.
The autocorrelation plots of the components q and q′ also indicate that an
effect of the day of week exists, and in addition, the autocorrelation plots of the
components, α and β, both indicate, that the seasonal variation of the observed
daily incidence rates may not be explained exclusively be a harmonic seasonality
with a single cycle.

2.1.3 Stratified Analyses

Daily incidence rates of incident ACS per 100, 000 stratified according to gender
and age groups were fitted by the non-Gaussian state space model specified by
Model 2, which include a secular trend, modelled as a cubic spline, a harmonic
seasonal variation with four cycles during the year and adjustments of the effect
of the day of week modelled as unstructured seasonality of period seven.
The evolution variance matrix is estimated by fitting a Gaussian state space
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model to daily incidence rates based on the square root transformed observed
frequencies of males aged 50+ with incident ACS and applying the EM algo-
rithm. Initialising the hyper parameters of the Gaussian state space model as

φ(0) =

10−9

10−5

10−7

 ,
and applying the EM algorithm, we obtain the estimates of the hyper parameters
given by

φ̂(0) =

1.75946 · 10−10

7.577474 · 10−7

9.176332 · 10−8

 .
These estimates of the hyper parameters, φ, are applied as initial values in the
iterated extended Kalman smoother for each strata. The final estimates of the
hyper parameters for females aged 20-49, and 50+, along with males aged 20-49,
and 50+ are

φ̂females, 20-49 =

1.758898 · 10−10

7.577311 · 10−7

9.176317 · 10−8

 , φ̂females, 50+ =

1.760734 · 10−10

7.575716 · 10−7

9.176022 · 10−8

 ,

φ̂males, 20-49 =

1.758747 · 10−10

7.576994 · 10−7

9.176276 · 10−8

 , φ̂males, 50+ =

1.757109 · 10−10

7.572185 · 10−7

9.175041 · 10−8

 ,
respectively. We see, that the estimates are not notably different between the
four strata, and in fact, the estimates have not altered notably from the initial
values, which may indicate the iterated extended Kalman smoothing may be
redundant, as in the crude analysis.

Females, aged 20-49

The estimated secular trend of Model 2 is shown in Figure 2.5(a) superimposed
on the observed daily incidence rates. In general, the secular trend does not
change notably during the study period. Figure 2.5(b) shows the seasonal com-
ponent for 1980 and 2008. The estimated seasonal component indicates that in
1980 two distinct peaks exist, which occur in May and November, whereas the
global peak occur in November. The amplitudes of the two peaks seem to be
nearly equal in 2008. A small peak occurs during September and is followed
immediately by a trough in both years. In addition, two distinct troughs occur
during February and July, in both 1980 and 2008. In general, the shape of
the seasonal component does not alter notably during the study period. Only
three peaks and troughs are immediately visible, indicating that the harmonic
seasonality may appropriately be modelled by only three cycles during the year.
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The estimated incidence difference rate decreases from 1980 to 2005, afterwards
is increases until 2007, where it seems to stagnate, see Figure 2.5(c).
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Figure 2.5: Estimated components of Model 2 for females aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.

In 1980, the daily incidence rate is approximately 0.038 per 100, 000 and the
estimated incidence rate difference is 26.97%. The global peak occurs during
November with a maximum daily incidence rate of 0.043 per 100, 000, whereas
the global trough occurs in February with a minimum incidence rate of 0.033 per
100, 000. In 2008, the estimated incidence rate difference decreases to 24.28%
and the average daily incidence rate is 0.046 per 100, 000, hence, during Novem-
ber, in which the global peak occurs, the daily incidence rate is approximately
0.051 per 100, 000 and during February the lowest daily incidence rate is esti-
mated and equals 0.040 per 100, 000. Due to the relatively low observed daily
incidence rates in this strata, the seasonal component may be influenced by
noise, hence the actual seasonality may be concealed by noise.
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Figure 2.6: Residual analysis of Model 2 for females aged 20-49. Time- and auto-
correlation plots of the filter residual with origin Y of the non-Gaussian state space
model. The latter time plot shows the residuals for the year 2007.

Time plots of the filter residual with origin Y clearly show the discreteness of
data, and in addition, the residuals seem to lie on curved bands throughout
the entire study period, see Figure 2.6. However, the autocorrelation plot does
not indicate any systematic time dependence. Notice, that the peaks in every
seventh lag in the autocorrelation plot from the crude analysis, see Figure 2.3,
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have been eliminated, possibly due to the modelled effect of the day of week.
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Figure 2.7: Residual analysis of Model 2 for females aged 20-49. Time- and auto-
correlation plots of the components, q, α1, β1 and γ, of the filter residual with origin
θ of the non-Gaussian state space model. The time plots in the second column shows
the residuals for the years 2006 and 2007.

In Figure 2.7, time- and autocorrelation plots of the components, q, α1, β1 and
γ, of the filter residuals with origin θ are given. We see, that the plots of the
component q are similar to the plots of the filter residual with origin Y , hence the
residuals lie on curved bands, whereas the autocorrelation plots do not indicate
any time dependence. Again notice that the distinct peaks in every seventh lag in
the autocorrelation plot in Figure 2.4 are now eliminated. The time plots of the
components α1 and β1 exhibit a characteristic behavior, since the residuals lie on
curved bands, this behavior becomes less distinct at the end of the study period.
The residuals from 2006 and 2007 clearly show a curved behavior, however, the
autocorrelation plots do not indicate any systematic time dependence. Neither
residual plots of the component γ indicate any misspecification of the effect of
the day of week, hence the effect may reasonably be modelled by an unstructured
seasonality with period seven.

Females, aged 50+

The estimated secular trend of Model 2 is given in Figure 2.8(a) superimposed
on the observed incidence rates and is, in general, decreasing during the study
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period, however, with three humps in 1986, 1992 and 2002. The shape of the
secular trend is similar with the estimated secular trend of the crude analysis,
see Figure 2.2(a). The shape of the seasonal component seems to alter notably
as time goes, see Figure 2.8(b). In 1980, the seasonality is described by three
distinct peaks during March, October and December and a fourth less distinct
peak during June. Similarly, three distinct troughs occur during February, Au-
gust and November, and a fourth less distinct trough during May. The global
peak occurs in October and the global trough occurs in August. As time goes
the less distinct peak which occur in June and trough in May becomes more
pronounced and in addition, in 2008 the global peak occurs in December. The
estimated incidence rate difference decreases from 1980 to 1987, afterwards it
increases until 1993, whereas it decreases until 2008 with a peak in 2002, see
Figure 2.8(c).
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Figure 2.8: Estimated component of Model 2 for females aged 50+. (a) Secular trend.
(b) Seasonal variation component determined by January first for 1980 (grey curve)
and 2008 (black curve). (c) Daily incidence rate differences.

The average daily incidence rate of 1980 is approximately 1.23 per 100, 000.
The estimated incidence rate difference is 18.39%, hence during October the
daily incidence rate is 1.31 per 100, 000 and during August the daily incidence
rate is 1.08 per 100, 000. This changes during the study period and in 2008
the average daily incidence rate is only 0.72 per 100, 000. During December
the daily incidence rate is 0.76 per 100, 000 and during August it is 0.65 per
100, 000, and the estimated incidence rate difference is approximately 16.19%.
Residual analysis indicates no obvious misspecification of the model. Time plots
of the filter residual with origin from both Y and θ do not indicate any mis-
specification and the autocorrelation plots do not exhibit any time dependence.
The plots have been inspected, however, are not provided in the thesis.

Males, aged 20-49

The estimated secular trend of Model 2 is given in Figure 2.9(a) superimposed
on the observed incidence rates, and decreases from 1980 to 2000, and afterwards
it increases until 2004, where it seems to stagnate. The seasonal component is
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given in Figure 2.9(b) for 1980 and 2008. In 1980, the global peak occurs in May
followed immediately by the global trough in August. An additional peak occurs
in December. All four peaks and troughs are visible. As time goes the peaks
and troughs shift back in time, and in 2008, the global peak occurs in November.
The global trough still occurs during summer, however it has shifted back to
June. Now only three peaks and troughs are immediately visible, with two
distinct peaks and troughs. The estimated incidence rate difference decreases
from 1980 until 1985, and afterwards, it increases for the rest of the study
period, see Figure 2.9(c). As with females aged 20-49 the daily incidence rates
are relatively small, hence the actual seasonality may be concealed by noise.
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Figure 2.9: Estimated components of Model 2 for males aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.

In general, the observed daily incidence rates of male aged 20-49 with incident
ACS are higher than females of same age. In 1980, the average daily incidence
rate is 0.17 per 100, 000, whereas during May the daily incidence rate is 0.18
per 100, 000 and during August it is 0.15 per 100, 000. The estimated incidence
rate difference is 14.62%. In 2008, the average daily incidence rate is 0.14 per
100, 000 and the incidence rate difference is approximately 20.94%. The highest
daily incidence rate is 0.16 per 100, 000 and the lowest is 0.13 per 100, 000.
Residual analysis does not indicate any immediately misspecifications of the
model. The time- and autocorrelation plots of the filter residuals are similar
with the corresponding plots in Figure 2.6 and Figure 2.7, hence not provided
in the thesis.

Males, aged 50+

The observed frequencies of male aged 50+ with incident ACS, are square root
transformed and the daily incidence rates based on the transformed frequencies
are fitted by a Gaussian state space model, in order to estimate the evolution
variance matrix using the EM algorithm. This estimate is applied as the initial
evolution variance matrix for the first IEKS step, in order to estimate the cor-
responding variance matrix of the daily incidence rates based on the observed
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frequencies fitted by a non-Gaussian state space model.
In Figure 2.10, two time plots and a histogram of the filter residual with origin
Y of the Gaussian state space model are given. All three plots may verify that
the daily incidence rates based on the transformed observed frequencies may
reasonably be modelled by a Gaussian state space model.
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Figure 2.10: Residual analysis of the approximated Gaussian state space model of the
daily incidence rates based on the square root transformed observed frequencies. Time
plot and histogram of filter residual with origin Y of the Gaussian state space model.
The latter time plot shows the residuals for the year 2007.

The estimated secular trend of Model 2 is given in Figure 2.11(a) superimposed
on the daily observed incidence rates. The shape of secular trend is similar
with the estimated secular trend of both Model 1 and Model 2 for females aged
50+, see Figure 2.2(a) and Figure 2.8(a). Hence, in general, the secular trend
is decreasing throughout the entire study period. The seasonal component is
given in Figure 2.11(b) for 1980 and 2008. In general, the seasonal component is
characterised by only three immediately visible peaks and troughs. In 1980, the
global peak occurs in April, and the global trough occurs in August. In 2008,
the global peak occurs in March and the global trough in July, hence the peaks
and troughs seem to have been shifted back in time during the study period.
The estimated incidence rate difference increases during the entire study period
with three notably peaks in 1982, 1988 and 2001.
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Figure 2.11: Estimated components of Model 2 for males aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.

In 1980, the daily incidence rate is approximately 2.81 per 100, 000, and the



32 2. Results

estimated incidence rate difference is 14.80%. The global peak occurs during
April with a maximum daily incidence rate of 2.98 per 100, 000, whereas the
global trough occurs in August with a minimum daily incidence rate of 2.56 per
100, 000. In 2008, the estimated incidence rate difference increases to 16.44%
and the average daily incidence rate is 1.40 per 100, 000, hence during March
the daily incidence rate is approximately 1.50 per 100, 000 and during July the
lowest daily incidence rate is estimated and equals 1.27 per 100, 000.
Residual analysis does not indicate any misspecifications of the model. Time-
and autocorrelation plots of the filter residual with origin from both Y and θ
have been inspected, however are not provided in the thesis.

2.2 Stroke

The estimated secular trend of Model 1 is increasing from 1980 to 2003, and
decreasing from 2003 to 2008. The seasonal component is characterised by a
peak in January, and a trough in July. The estimated incidence rate difference
is decreasing in the entire study period, from approximately 9.403% to 9.387%.
In 1980, the average daily incidence rate is approximately 0.74 per 100, 000,
which increases to 0.89 per 100, 000 in 2008. The estimated incidence rate
differences in 1980 and 2008 are approximately 9.40% and 9.39%, respectively.
During January, in 1980, the daily incidence rate is approximately 0.77 per
100, 000, whereas during July it is 0.70 per 100, 000. This changes in 2008, since
the daily incidence rate is approximately 0.94 per 100, 000 during January, and
only 0.85 per 100, 000 in July.
Residual plots indicate that the daily incidence rates based on the transformed
observed frequencies may reasonably be modelled by a Gaussian state space
model. Furthermore, time plots of the filter residual with origin θ of Model
1 indicate that the evolution variance matrix is constant. The autocorrelation
plots indicate an effect of the day of week exists along with indication that not
all seasonality is modelled. These plots are, however, not provided in the thesis.

The estimated secular trend of Model 2 for females aged 20-49 increases during
the entire study period. In 1980, the average daily incidence rate is 0.07 per
100, 000 and the estimated incidence rate difference is 26.85%. The highest
daily incidence rate occurs in November and equals 0.08 per 100, 000, whereas
the lowest occurs in July and equals 0.06 per 100, 000. In 2008, the average
daily incidence rate increases to 0.14 per 100, 000, whereas the incidence rate
difference decreases to 22.73%. The highest daily incidence rate still occurs in
November and equals 0.16 per 100, 000, and the lowest occurs in July and equals
0.13 per 100, 000. The estimated incidence rate difference decreases during the
study period.
Considering females aged 50+ the estimated secular trend of Model 2 is similar
with the estimated secular trend of Model 1. In average, the daily incidence rate,
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in 1980, is 1.46 per 100, 000 and the incidence rate difference is 18.68%, hence
during February the daily incidence rate is 1.58 per 100, 000 and during July
the daily incidence rate is 1.30 per 100, 000. In 2008, the average daily incidence
rate is 1.61 per 100, 000. The estimated incidence rate difference decreases to
13.76%. During December the daily incidence rate is 1.68 per 100, 000, which
is the highest, whereas during July it is 1.46 per 100, 000 as the lowest. The
incidence rate difference is in general decreasing during the study period with
peaks in 1990, 1998 and 2008.
The estimated secular trend of Model 2 for males aged 20-49 seems to increase
during the study period. In 1980, the average daily incidence rate is 0.071 per
100, 000 and the estimated incidence rate difference is 17.32%. During November
the daily incidence rate is 0.078 per 100, 000 and during July it is 0.066 per
100, 000. In 2008, the average daily incidence rate increases to 0.15 and the
incidence rate difference increases to 20.79%. The global peak now occurs in
December with a daily incidence rate of 0.16 per 100, 000, and the global trough
is still in July with a daily incidence rate of 0.13 per 100, 000. The incidence rate
difference is increasing during the study period with a notably peak starting in
1997.
For males aged 50+ the estimated secular trend of Model 2 seems to be constant
with three peak occurring in 1983, 1991 and 2008. In 1980, the average daily
incidence rate is 1.78 per 100, 000, and in 2008, it is 1.87 per 100, 000. The
incidence rate differences were 13.15% in 1980 and 13.27% in 2008. The global
peak occurs in December, in 1980, and the daily incidence rate is 1.89 per
100, 000, whereas the global trough occurs in July, in which the daily incidence
rate is 1.66 per 100, 000. In 2008, the global peak still occurs in December with
a daily incidence rate of 1.95 per 100, 000, and the global trough occurs in July,
with a daily incidence rate of 1.70 per 100, 000. The estimated incidence rate
difference alters notably during the entire study period.
The estimated components of Model 1 and Model 2 are illustrated in figures
provided in Section B.2. Furthermore, by inspection of time- and autocorrelation
plots of the filter residuals with origin from both Y and θ, misspecification of
the model is not suspected. The residual plots are not provided in the thesis.

2.3 Venous Thromboembolism

The estimated secular trend or Model 1 is decreasing from 1980 to 1992, whereas
it is increasing from 1992 to 2008. The seasonal component is characterised by
a peak in January followed by a trough in July. The estimated incidence rate
difference decreases from approximately 14.352% in 1980 to 14.329% in 2008.
See figures in Section B.3.
In average, the daily incidence rate is 0.37 per 100, 000 in 1980, whereas in 2008,
the average daily incidence rate is 0.45 per 100, 000. During January, the daily
incidence rate is approximately 0.39 per 100, 000 and during July it is 0.34 per
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100, 000, and the estimated incidence rate difference is 14.35%. In 2008, the peak
still occurs during January in which the daily incidence rate is approximately
0.48 per 100, 000 and only 0.41 per 100, 000 in July with an estimated incidence
rate difference equaling 14.33%.
Indicated by a histogram, the distribution of the daily incidence rates based on
the transformed observed frequencies seems skewed compared with a Gaussian
distribution and in fact the histogram may indicate that the actual distribution
is bimodal. Nonetheless the variance matrices are initially estimated by the
EM algorithm, since treatment of such distribution is beyond the scope of this
thesis. Residual plots of Model 2 indicate a misspecification of the state model,
since the residuals are more concentrated around zero in the period from 1990
to 1993 than before and after, hence the evolution variance matrix may not be
constant. This is, in fact, indicated by the time plot of the estimated secular
trend, by inspecting the observed daily incidence rates, which seem to vary more
pronounced in the beginning and end of the study period. Autocorrelation plots
indicate that an effect of the day of week and additional seasonality are present.
These residual plots are provided in Section B.3.

The estimated secular trend of Model 2 for females aged 20-49 is increasing
during the study period. In 1980, the average daily incidence rate is 0.082 per
100, 000 and the incidence rate difference is 12.26%. The highest daily incidence
rate occurs in November and equals 0.087 per 100, 000, whereas the lowest occurs
in April and equals 0.077 per 100, 000. In 2008, the average daily incidence rate
increases to 0.20 per 100, 000, and the incidence rate difference increases to
13.76%. The highest daily incidence rate occurs in October and equals 0.21
per 100, 000, and the lowest occurs in April and equals 0.19 per 100, 000. The
estimated incidence rate difference increases during the entire study period.
For females aged 50+ the estimated secular trend of Model 2 is decreasing
from 1980 to 1992 and increasing from 1992 to 2008. In average, the daily
incidence rate, in 1980, is 0.65 per 100, 000 and the incidence rate difference
is 27.69%, hence during January the daily incidence rate is 0.74 per 100, 000
and during July the daily incidence rate is 0.56 per 100, 000. In 2008, the
average daily incidence rate is 0.70 per 100, 000. The estimated incidence rate
difference decreases to 17.96%. During February, the daily incidence rate is 0.76
per 100, 000, whereas during August it is 0.63 per 100, 000. The incidence rate
difference is in general decreasing during the study period with a peak in 1994.
The estimated secular trend of Model 2 for males aged 20-49 increases during
the entire study period. In 1980, the average daily incidence rate is 0.073 per
100, 000 and the estimated incidence rate difference is 18.50%. During Septem-
ber, the daily incidence rate is 0.079 per 100, 000, and during December, it is
0.066 per 100, 000. In 2008, the average daily incidence rate increases to 0.15
and the incidence rate difference decreases to 17.29%. The global peak still oc-
curs in September with a daily incidence rate of 0.14 per 100, 000, and the global
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trough is still in December with a daily incidence rate of 0.12 per 100, 000. No-
tice, that the behavior of the seasonal component seems opposite of the seasonal
component for all other strata and from ACS and stroke, since the trough oc-
curs during winter. The incidence rate difference is decreasing during the study
period.
For males aged 50+ the estimated secular trend of Model 2 is similar with the
estimated secular trend of Model 2 for females aged 50+. In 1980, the average
daily incidence rate is 0.73 per 100, 000 with a global peak during February of
0.85 per 100, 000 and a global trough during July of 0.63 per 100, 000. The
estimated incidence rate difference is 30.27%. In 2008, the incidence rate dif-
ference is only 19.66% and the average daily incidence rate is 0.68 per 100, 000.
During January, the highest daily incidence rate occurs and equals 0.75 per
100, 000, whereas the lowest occurs during May and equals 0.62 per 100, 000.
The estimated incidence rate difference decreases during the entire study period.
The estimate components of Model 1 and Model 2 are illustrated in figures pro-
vided in Section B.3. Furthermore, time- and autocorrelation plots of the filter
residuals with origin from both Y and θ, are inspected and indicate that assump-
tion of constant evolution variance matrix may not be verified as recognised in
the crude analysis. The residual plots are not provided in the thesis.

2.4 Cardio

In general, the estimated secular trend of Model 1 is decreasing during the entire
study period, however with humps in 1994 and 2004. Hence, the suggested
behavior, that subjects in stead of developing an incident ACS, develop an
incident stroke or VTE, does not immediately show. The seasonal component
is characterised by a peak in January. The estimated incidence rate difference
is decreasing from approximately 10.670%, in 1980, to 10.636%, in 2008.
In 1980, the average daily incidence rate is 1.92 per 100, 000 and the estimated
incidence rate difference is 10.67%, hence, during January, the daily incidence
rate is approximately 2.02 per 100, 000, whereas in July it is 1.81 per 100, 000.
The average daily incidence rate decreases to 1.70 per 100, 000, in 2008 and
the incidence rate difference decreases to 10.64%. In 2008, the peak occurs in
January and the daily incidence rate is approximately 1.79 per 100, 000, and, in
July, it is 1.61 per 100, 000.
The daily incidence rates based on the transformed observed frequencies may
reasonably be modelled by a Gaussian state space model. Residual plots of
Model 1 indicate that the assumption of constant evolution variance matrix
may be verified. As seen in ACS, stroke and VTE autocorrelation plots indi-
cates that the effect of day of week and additional seasonality is present. The
plots are not provided on the thesis.

The estimated secular trend of Model 2 for females aged 20-49 is increasing
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during the entire study period. In 1980, the average daily incidence rate is
0.19 per 100, 000 and the estimated incidence rate difference is 20.46%. The
highest daily incidence rate occurs in November and equals 0.21 per 100, 000,
whereas the lowest occurs in July and equals 0.17 per 100, 000. In 2008, the
average daily incidence rate increases to 0.39 per 100, 000, whereas the incidence
rate difference decreases to 13.00%. The highest daily incidence rate occurs in
November and equals 0.42 per 100, 000, and the lowest occurs in July and equals
0.37 per 100, 000. In general, the estimated incidence rate difference decreases
during the study period.
Considering females aged 50+ the estimated secular trend of Model 2 is decreas-
ing during the study period. In average, the daily incidence rate, in 1980, is 3.26
per 100, 000 and the incidence rate difference is 19.78%, hence during December
the daily incidence rate is 3.50 per 100, 000 and during July the daily incidence
rate is 2.86 per 100, 000. In 2008, the average daily incidence rate is 2.79 per
100, 000. The estimated incidence rate difference decreases to 13.76%. During
December the daily incidence rate is 2.92 per 100, 000, whereas during July it is
2.54 per 100, 000. The incidence rate difference is in general decreasing during
the entire study period with a peak in 1990.
The estimated secular trend of Model 2 for males aged 20-49 seems to increase
during the study period. In 1980, the average daily incidence rate is 0.30 per
100, 000 and the estimated incidence rate difference is 8.67%. During November
the daily incidence rate is 0.31 per 100, 000 and during July it is 0.28 per 100, 000.
In 2008, the average daily incidence rate increases to 0.41 and the incidence rate
difference has increased to 14.68%. The global peak still occurs in November
with a daily incidence rate of 0.44 per 100, 000, and the global trough is still
in July with a daily incidence rate of 0.38 per 100, 000. The incidence rate
difference is increasing during the study period.
For males aged 50+ the estimated secular trend of Model 2 is decreasing during
the study period. In 1980, the average daily incidence rate is 5.22 per 100, 000,
and in 2008, 3.65 per 100, 000. The incidence rate differences were 14.90% in
1980 and 14.79% in 2008. The global peak occurs during December, in 1980, and
the daily incidence rate is 5.53 per 100, 000, whereas the global trough occurs
in August in which the daily incidence rate is 4.76 per 100, 000. In 2008, the
global peak occurs in March with a daily incidence rate of 3.88 per 100, 000, and
the global trough occurs in July, with a daily incidence rate of 3.34 per 100, 000.
The estimated incidence rate difference alters notably during the entire study
period.
The estimated components of Model 1 and Model 2 are illustrated in figures
provided in Section B.4. Furthermore, time- and autocorrelation plots of the
filter residuals with origin from both Y and θ, of Model 2 for females and males
aged 20-49 may indicate non-constant evolution variance matrix, whereas for
females and males aged 50+ no indication of misspecification is revealed. See
figures in Section B.4.
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2.5 Summary of Results

To summarise the results, we notice that when not stratifying on gender and
age groups, the daily highest incidence rates occur during the winter for all
cardiovascular diseases, hence the results are in accordance with other reported
results (Christensen, 2008). In addition, we notice that the seasonal component
does not alter notably during the study period, hence the evolution of the in-
cidence rate difference from the beginning of the study period to the end may
not be of any clinically relevance. Commonly, residual analysis indicates that
the seasonality may not be exclusively modelled by a harmonic seasonality with
a single cycle, furthermore, autocorrelation plots indicate that an effect of the
day of week exists.
When stratifying on both gender and age groups, we notice, that subjects aged
50+ more frequently develop an incident cardiovascular disease in comparison
with subjects aged 20-49. In general, the global trough occurs during sum-
mer, whereas several peaks occur during winter. The seasonal component alters
notably during the study period, hence the evolution of the incidence rate dif-
ference becomes more pronounced compared with the crude analyses. Most
commonly, the estimated incidence rate difference decreases during the study
period for subjects aged 50+, except from males with incident ACS or stroke.
This behavior also holds for females of any aged and disease, except from females
aged 20-49 with incident VTE.
Residual analyses indicate that the seasonal variation of cardiovascular diseases
may reasonably be modelled by a harmonic seasonality with four cycles during
the year, the secular trend as a cubic spline and the effect of the day of week,
indicated by the crude analyses, as unstructured seasonality with period seven.





Discussion

In order to assess the seasonal variation during a year, we have analysed daily
incidence rates per 100, 000 of incident cardiovascular diseases. Analyses were
performed on four endpoints, i.e. ACS, stroke and VTE, as well as the first
occurrence of these three diseases. The incidences were identified using the
Danish National Registry of Patients. For each endpoint a crude analysis was
performed, i.e. a non-Gaussian state space model was fitted to data, modelling
the secular trend as a cubic spline and the seasonal variation as a harmonic
seasonality with a single cycle during the year. In addition, each of the four
endpoints were analysed stratified on gender and age groups. For each strata
a stratified analysis was performed, i.e. a non-Gaussian state space model was
fitted to data, modelling the secular trend as a cubic spline and the seasonal
variation as a harmonic seasonality with four cycles during the year, and the
effect of the day of week as unstructured seasonality.
Estimation of the latent process, θ, and the evolution variance matrix, W , was
performed by iteratively applying the iterated extended Kalman smoother and
the EM algorithm. At first, the data was square root transformed, hence ob-
taining an approximated Gaussian state space model, in order to estimate the
evolution variance matrix using the EM algorithm. This estimate was applied as
the initial evolution variance matrix in the iterated extended Kalman smoother.
After convergence of the iterated extended Kalman smoother, we obtained an
approximated Gaussian state space model, having likelihood function with same
mode as the likelihood function of the non-Gaussian state space model. Iter-
atively, the iterated extended Kalman smoother and the EM algorithm were
applied until convergence was reached.

The present study is essential, since it contributes in clarifying the etiology of
cardiovascular diseases, which may improve treatment and preventive strategies.
By clarifying the changes of the seasonal component over time, we may evaluate
the efficiency of preventive strategies, e.g. the new legislation on smoking, which
became effective in 2007, as well as changes in definitions of specific diseases,
e.g. a new definition of acute myocardial infarction was introduced in 2000 and
implemented during the following years (Nissen and Rasmussen, 2008).

39



40 2. Results

In Denmark, several administrative registries exist and are linked through the
civil registration number, which make the present study possible. However,
when analysing data obtained from such registries, several sources of errors oc-
cur. In the Danish National Registry of Patients hospitalisations from the entire
country are registered, hence numerous individuals take part in the updating
procedure. Consequently, registrations may be performed in numerous ways,
whereas some variables in such registries rely on subjective considerations, e.g.
the actual diagnoses. Although, definitions of diseases exist, registrations of the
diagnoses are not consistently correct, and are highly dependent on the ward
from which the registrations originate (Johnsen et al., 2002; Severinsen et al.,
2008; Joensen et al., 2009).
The seasonal variation exhibited by incident cardiovascular diseases is charac-
terised by a notably trough during the summer, as seen in both the crude and
stratified analyses. This may indicate a possible association between the devel-
opment of an incident cardiovascular disease and weather. However, in general,
the distinct trough occur during July, in which the regular personnel might take
their annual leave. The consequence may be that registrations are performed
differently in comparison with the rest of the year. In addition, residual anal-
yses of the crude analyses indicated that an effect of the day of week exist.
The present study indicate that Monday is the day of week with the highest
frequency of hospitalisations, which is recognised by other studies (Spielberg
et al., 1996; Christensen, 2008). This characteristic may be an administrative
consequence, rather than a pathological consequence.
In addition, residual analyses of the crude analyses indicated that the seasonal
variation exhibited by incident cardiovascular diseases may not exclusively be
explained by a single harmonic cycle during the year. By modelling the harmonic
seasonality with four cycles during the year, and by including the effect of the
day of week, residual analyses of the stratified analyses, show a better fit of the
model to the observed daily incidence rates. When applying the geometrical
model, which have been considered standard (Roger, 1977), this characteristic
was not revealed. Hence state space models may be superior, when modelling
seasonal variation, since such model are adaptable to simple seasonality with a
single cycle during the period of seasonality, as well as more complex patterns,
including several cycles, secular trend, effect of the day of week, and regression
on several explanatory variables.
When performing analyses on stratified data according to age groups, we assume
that the seasonal variation may be different in each strata. This means that,
when subjects relocate to a higher age group, the seasonal variation changes
abrupt. However, this strong assumption may seem implausible. When strat-
ifying only on gender, and merely adjust for age as a continuous explanatory
variable, the issue still holds, and in addition the shape of the seasonal variation
is assumed being identical for all ages, unless interaction between time and age
are modelled.
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We have restricted ourselves to only focus on the explanatory variables, gender
and age, whereas other available adjustments are straightforward, e.g. adjusting
for co-morbid diseases, such as diabetes or cancer (Charlson et al., 1987). In
fact, when determining the incidence rates, we indirectly adjust for co-morbidity,
by determining the total time at risk, hence subjects dying from other diseases,
than cardiovascular diseases, are censored. However, it is plausible that subjects
having a co-morbid disease, may have higher risk in developing an incident car-
diovascular disease. Hence, having a co-morbid disease may have a confounding
influence on the seasonality exhibited by incident cardiovascular diseases. Pre-
liminary results indicate that this, in fact, is plausible, since the amplitude of the
seasonal variation exhibited by incident unprovoked VTE, i.e. subjects with in-
cident VTE having no previous diagnosis of cancer, or any diagnosis within three
months before the diagnosis of incident VTE, with none co-morbid diseases was
notably higher, than corresponding subjects with a least one co-morbid disease,
for which the amplitude was nearly zero (Christensen et al., 2009b).
In the present study we define a fourth endpoint, as the occurrence of either
ACS, stroke or VTE, on which we perform the crude analysis as well as the
stratified analyses. It must be noted, that this endpoint consists of an accumu-
lation of two diseases occurring in the arteries, ACS and stroke, and one disease
occurring in the veins, VTE. This may rise a question wether these diseases are
comparable, however, since the majority of risk factors coincide it may be in
order to perform the analyses. The daily incidence rates of ACS seems to be
decreasing during the study period, whereas for stroke and VTE the daily in-
cidence rates are increasing, indicating that subjects develop incident stroke or
VTE rather than ACS, which should be exhibited by the fourth endpoint. How-
ever, results of the analyses of the fourth endpoint do not exhibit this behaviour.

In order to estimate the latent process and the evolution variance matrix, we
iteratively apply the iterated extended Kalman smoother, which maximises the
likelihood function, Lapprox(θ|Ỹ ), of the approximated Gaussian state space
model, followed by applying the EM algorithm, which maximises the likelihood
function, Lapprox(φ|Ỹ ), of the same approximated Gaussian state space model,
where φ denotes the hyper parameters. Hence, we have an ad hoc estimation
procedure, since we have not derived, that the maxima of the likelihood func-
tions of the two algorithms are identical. This may be derived analytically or
verified by an appropriately designed simulation study. In fact, the estimates
obtained upon convergence, do not differ notably from the initial values provided
by the EM algorithm applied on the daily incidence rates based on the square
root transformed observed frequencies. This may indicate that applying the it-
erated extended Kalman smoother is redundant, however, further investigations
of this issue must be performed, since the actual values of the hyper parameters
are small. Simulations may clarify the consequences of applying the iterated
extended Kalman smoother, when the values of the evolution variance matrix
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are higher. In addition, estimation of the observation variance matrix was not
performed, when applying the EM algorithm on the approximated Gaussian
state space model provided by the iterated extended Kalman smoother. The
sufficiency of estimation of the observation variance matrix, when applying the
iterated extended Kalman smoother, may as well by clarified by simulations.
No general derivation of confidence intervals of the peak-to-trough measure is
available. Attempts of providing confidence intervals of the peak-to-trough ra-
tio in a static setting, assuming the seasonal variation may be modelled a single
cycle sinusoidal curve, e.g. geometrical models, have been published (Frangakis
and Varadhan, 2002; Brookhart and Rothman, 2008). Commonly, the esti-
mators of the peak-to-trough ratio rely on the assumption of the square root
transformed data being Gaussian, hence the estimators may be influenced by
bias in case of small data sets (Christensen et al., 2009a). In constructing con-
fidence intervals for the peak-to-trough measure, the lower limit is restricted
to be non-negative, hence complicating the derivations, when maintaining the
coverage of the confidence interval to equal e.g. 95% (Frangakis and Varadhan,
2002). No derivations of confidence intervals of the peak-to-trough measure in
the dynamic setting are available.
Furthermore, no formal test exists to determine wether an explanatory variable
is time varying or static during a given study period. Hence, we can not de-
termine if the seasonal variation exhibited by incident cardiovascular diseases
changes significantly during the study period. In case, an explanatory vari-
able is static, the corresponding variance component of the evolution variance
matrix equals zero (Dethlefsen and Lundbye-Christensen, 2006), hence the vari-
ance component is not to be estimated. As a consequence the computational
calculations are reduced and estimation of the evolution variance matrix may
be performed faster, which is preferred. However, when no formal tests exist to
determine wether an explanatory variable is time varying or static, such deci-
sions rely on subjective considerations, which may require some sort of expert
knowledge.

Future work may include analyses of the association between development of
incident cardiovascular diseases and the weather conditions, e.g. humidity, pre-
cipitation and temperature. Also we want to be able to model gradually chang-
ing seasonal variation as subjects becomes older, as we have modelled gradually
changing seasonal variation over time. Derivations of a verified estimation pro-
cedure, as well as confidence intervals of peak-to-trough measures and formal
tests of explanatory variables being time varying or static, are desirable.
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Abstract

Seasonal variation is when part of the variation in a time series is described by a repeated temporal cyclic pattern. This is recognized
in several epidemiological and economical studies. Geometrical models and Poisson regression are applicable in modelling seasonal
variation. In this study we compare two geometrical models and Poisson regression using stochastic simulations. Each model is
fitted to simulated data sets consisting of 12 counts of events representing the months of the year, with a total number of events,
referred to as the sample size, ranging from 25 to 100, 000. The probability of type I error is simulated for each sample size for
significance levels ranging from 1% to 20%. The power is simulated for each sample size for amplitudes of seasonal variation
ranging from 1% to 20%. Results show that geometrical models too often detect false seasonal variation for sample sizes less than
500, whereas Poisson regression detects false seasonal variation at a frequency equaling the significance level for all sample sizes.
The simulated power equals for all three models for sample sizes larger than 500. Based on this simulation study Poisson regression
is preferable, when modelling seasonal variation, for small sample sizes in comparison with geometrical models.

Key words: Seasonal variation, Poisson regression, geometrical model, simulation, epidemiology

1. Introduction

In several contexts events are more frequent observed at
specific times during a given period of time, e.g. the year or
week. This repeated temporal cyclic pattern is commonly re-
ferred to as seasonal variation, and is often recognized in epi-
demiology [1, 2, 3, 4, 5, 6, 7] and economics [8]. Elucidation
of seasonal variation of events provides essential knowledge in
understanding the nature of the underlying system generating
the events.

Edwards (1961) derived a geometrical model to detect sea-
sonal variation of events [9, 10, 11]. This model was considered
as the standard in epidemiological studies [12]. However no-
tably critique regarding the model has been published, such as
inaccuracies due to small number of events, and neglecting the
difference between the absolute count of events and the count
relative to both the size of population at risk and length of time
interval, e.g. months or quarters [12, 13, 14, 15, 16, 17]. Walter
and Elwood proposed a refinement of Edwards’ model by han-
dling a varying population at risk and true length of month in
1975. The refined model, however was still not able to handle
small number of events [15].

The models are lacking the ability to adjust for covariates.
The behaviour of a given system of events may differ according
to specific conditions. In epidemiological studies such condi-
tions may be gender, age, time and interventions whereas in
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economics the state of the market may change behaviour of
the system. Stratification on conditions is a solution, however,
when several conditions are present, the number of events in
each strata may becomes to small. Present in some systems is
the secular trend, the overall trend describing the average be-
haviour of the system.

The generalized linear models of Nelder and Wedderburn
(1972) [18] provides models which are applicable to Poisson
distributed observations, furthermore seasonal variation, secu-
lar trend and regression on covariates may be modelled, hence
the models overcome the limitations of the existing geometrical
models. Seasonal variation studies using Poisson regression are
published by [2], [6], [19], and [20].

In this study we investigate by stochastic simulations the
performance of three models in order to estimate seasonal vari-
ation quantified by the peak-to-trough ratio. The three models
are, first, the model derived by Edwards, second, the refined
model derived by Walter and Elwood, and third, Poisson regres-
sion. For each model the probability of type I error and power
are simulated for sample sizes ranging from 25 to 100, 000.
Probability of type I errors are simulated for significance lev-
els, 1%, 2%, 5%, 10% and 20%, whereas powers are simulated
at a significance level of 5% with seasonal variation of ampli-
tudes 1%, 2%, 5%, 10% and 20%.

2. Modelling Seasonal Variation

Geometrical models are based on the assumption of sea-
sonal variation being characterised by a single cycle sinusoidal
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curve. The basic idea of the model derived by Edwards is to rep-
resent the period of time under investigating for seasonal varia-
tion by a unit circle [9]. The circle is divided into k equally sized
sectors, representing k time intervals. Each sector is weighted
by the square root of the number of events happening in the
corresponding time interval.

The number of events in sector i is denoted ni, and the dis-
tribution is assumed being proportional with

P1(Ni = ni) ∝ 1 + α1 cos
(
(θi − θ

∗) −
π

k

)
, (1)

where θi = 2πi
k , i = 1, . . . , k, and θ∗ corresponds to the time

interval with highest number of events and α1 is the amplitude
of the curve, hence the relative risk, RR1, is estimated by the
peak-to-through ratio

R̂R1 =
1 + α1

1 − α1
. (2)

The center of gravity of the observed counts, denoted (xs, ys), is
given by

(xs, ys) =



k∑
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√
ni cos
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π

k

)
k∑

i=1

√
ni

,

k∑
i=1

√
ni sin

(
θi −

π

k

)
k∑

i=1

√
ni


,(3)

where ni is the observed number of events in the i’th time in-
terval. Denote by d, the distance from origo to (xs, ys), then
d =

√
x2

s + y2
s . Define a test statistic, Te, as

Te = 8Nd (4)

where N is the sample size, i.e. the summation of all events
in the k time intervals. Assuming that xs and ys are indepen-
dent and Gaussian, the test statistic, Te, is approximately χ2

distributed with two degrees of freedom. An estimate of the
amplitude, α1, is α̂1 = 4d.

The refined model proposed by Walter and Elwood [15] is
based on the same idea as Edwards, however instead of dividing
the circle into k equally sized sectors they model the possible
difference in length of time intervals. Additionally, the model
incorporates a varying population at risk. Denote by mi the size
of population at risk in the ith time interval and let M =

∑k
i=1 mi.

The distribution of the number of events, ni, are assumed being
proportional with

P2(Ni = ni) ∝ mi

{
1 + α2 cos

[(
θ̃i − θ

∗
)
−
π

k

]}
, (5)

where i = 1, . . . , k, and θ̃i represents the true angles of the
endpoints of the k time intervals, hence the estimated peak-to-
trough ratio is

R2 =
1 + α2

1 − α2
. (6)

Define a test statistic, Tw, as

Tw =

(
xs − µxs

σxs

)2

+

(
ys − µys

σys

)2

,

where
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mi cos
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, (7)

and
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2 . (8)

Assuming that xs and ys are approximately Gaussian distributed,
the test statistic, Te, is approximately χ2 distributed with two
degrees of freedom. An estimate of the amplitude, α2, is

α̂2 =

2

d
√

kM −
k∑

i=1

√
mi cos

[(
θ̃i − θ

∗
)
−
π

k

]
k∑

i=1

√
mi cos2

[(
θ̃i − θ

∗
)
−
π

k

] , (9)

where d =
√

(xs − µxs )2 + (ys − µys )2.
Notice, when θ̃i = θi and mi is constant for all time intervals,

the model (1) is a special case of the refined model (5).

2.1. Poisson Regression
Assuming, the number of events for each time interval is

Poisson distributed and mutually independent, the number of
events may be described by a Poisson regression with intensity
parameter λi, denoted ni ∼ Poisson( λi

mi
). Using log link function

the linear predictor, ηi, may be

log(λi) = ηi = Ψseason. (10)

The distribution of the number of events, ni, is assumed to
be proportional to

P3(Ni = ni) ∝ mi exp
{
α3 cos

[
(θ̃i − θ

∗) −
π

k

]}
, (11)

hence the seasonal variation is specified by

Ψseason = γ1 sin(θ̃i − θ
∗) + γ2 cos(θ̃i − θ

∗), (12)

where α3 =

√
γ2

1 + γ2
2. Notice that in general the seasonal vari-

ation is not restricted to be characterised by a single cycle sinu-
soidal curve. The relative risk, estimated by the peak-to-trough
ratio, is

R̂R3 = exp (2α3) . (13)

Furthermore, the linear predictor is given by

ηi = log(mi) + Ψseason, (14)

where the coefficient of mi is restricted to be unity, hence the
size of population at risk at time interval i is treated as a covari-
ate with coefficient restricted to equal unity. A simultaneous
test for γ1 = 0 and γ2 = 0, corresponding to no seasonal varia-
tion, may be performed by a deviance test, which is χ2(2).
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Model Deficits Features

(1)
Small sample sizes
Varying time intervals
Varying population at risk

(5) Small sample sizes Varying time intervals
Varying population at risk

(11)
Small sample sizes
Varying time intervals
Varying population at risk

Table 1: Deficits and features of the three models.

3. Design of Simulation Study

The deficits and features of the three models are summarised
in Table 1. On the basis of these deficits and features, the design
of the simulation study is created.

For each of the models (1), (5) and (11), the probability of
type I error and power are simulated using test for seasonal-
ity. The probability of type I error are simulated for thirteen
sample sizes ranging from 25-100, 000 and five values of sig-
nificance levels, 1%, 2%, 5%, 10% and 20%, altogether 25 sit-
uations. The powers are likewise simulated for thirteen sample
sizes ranging from 25-100, 000 and five values of seasonal vari-
ation amplitude, 1%, 2%, 5%, 10% and 20%, all 25 situations at
a significance level of 5%. Each situation is based on 100, 000
simulated data sets, where the test statistics, Te and Tw, for each
of the models (1) and (5) are compared with a χ2(2) distribu-
tion. For the model (11), the test is performed with the χ2(2)
distributed deviance test.

For the model (1) results are based on two simulated data
sets, one appropriate to the model assumptions in (1) and one
with events proportional with (5). Results based on the second
simulated data set describe the inaccuracies of the model (1).
Results for the model (5) is based only on a data set simulated
according to (5). Results for the model (11) is based on data
sets simulated according to (11) for constant length of month,
hence θ̃i = θi and constant population at risk, as well as true
length of month and varying population at risk.

To summarise we have the two following simulated data
sets,

• True length of months and constant population at risk

• Varying length of months and varying population at risk

where each of the two types of data set is simulated for all thir-
teen sample sizes.

All simulations are performed in R version 2.8.1 [21] using
an Intel Pentium 4 3.2GHz processor with Microsoft Windows
XP, version 2002, Service Pack 2.

4. Results

Simulations with constant length of month and constant pop-
ulation at risk show, that the simulated probability of type I er-
ror of the model (1) equals the significance level for sample
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Figure 1: Simulated probability of type I error of the model (5) (solid line)
compared with the model (11) (dashed line) for sample sizes in the range 25-
250. Results are based on the number of events simulated with true length of
month and varying population at risk.

sizes larger than 500. For smaller sample sizes the simulated
probability of type I error is notably higher than the signifi-
cance level, hence the model too often detects false seasonal
variation. The simulated type I error of the model (11) equals
the significance level for all sample sizes.

Simulations with true length of month and varying popu-
lation at risk show, that the probabilities of type I error of the
model (11) equal the significance level for all sample sizes and
significance levels, whereas for the model (5) the probability
of type I error is notably higher than the significance level for
sample sizes smaller than 250, see Figure 1. For larger sam-
ple sizes, the probability of type I error equals the significance
level, hence equals the probability of type I error of the model
(11).

The simulated powers of the model (11) equal the powers
of both the models (1) and (5) for all amplitudes of seasonal
variation and for sample sizes larger than 500. The power for
sample sizes smaller than 250 of the model (5) is higher, than
the model (11) as a consequence of the high probability of type
I error of the model (5).
As for the model (1) the probability of type I errors are notably

larger than the significance level and the profile of the proba-
bility of type I error for increasing sample size is described by
a ’u’-shaped curve for small sample sizes and a monotonically
increasing curve for larger sample sizes, which is illustrated in
Figure 2.

The simulated type I error for each model for selected sam-
ple sizes, 25, 1, 000 and 100, 000, and significance levels, 0.01,
0.05 and 0.10, are shown in Table 2 as well as the simulated
powers for selected sample sizes, 25, 1, 000 and 100, 000, and
amplitudes, 0.01, 0.05 and 0.20.

5. Discussion

In this study three models to model seasonal variation were
evaluated according to the simulated probability of type I er-
ror and simulated power for several sample sizes and signifi-
cance levels, two geometrical models and a regression model.
The two geometrical models performed poorly for small sample
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(a) Simulated probability of type I error for sample sizes ranging from
25-2, 500 illustrating the ’u’-shape of the curve for small sample sizes.
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(b) Simulated probability of type I error for sample sizes ranging from
25-100, 000.

Figure 2: Simulated probability of type I error of the model (1). Results are
based on the number of events proportional with (5). Notice, that the simulated
probability of type I error increases as the sample sizes increases.

Simulated probability of
type I error

Simulated power

Significance level Amplitude
N 0.01 0.05 0.10 0.01 0.05 0.20

25
10.25 21.45 30.05 25.71 25.95 31.78

9.88 21.10 29.66 25.69 25.97 31.31
1.10 5.26 10.34 5.31 5.54 9.38

1, 000
2.43 9.43 16.53 9.81 20.83 97.79
1.08 5.11 10.28 5.62 15.55 98.62
0.98 4.99 10.22 5.36 15.52 98.50

100, 000
99.99 100.00 100.00 99.96 99.71 100.00

0.98 5.00 9.82 50.48 100.00 100.00
1.00 5.13 10.06 50.35 100.00 100.00

Table 2: Simulated probability of type I error and power the models (1), (5) and
(11), respectively. N represents the sample size.

sizes, whereas the regression model performed well for all sam-
ple sizes. For larger sample sizes all three models performed
well, when data were simulated accordingly to the given model.

Statistical models may only be viewed as an attempt to model
the reality, since no models are correct in describing the reality.
One model may be appropriate in a given context, whereas to
fail in another. Hence a model is neither correct or wrong, how-
ever a model may be more appropriate to model a given asso-
ciation than another. It is crucial to pay attention to the reality,
which a given model attempts to model, since violations of the
assumptions of the model may result in incorrect conclusions.

Using the model derived by Edwards to model seasonal
variation it is assumed that the time intervals in which the num-
ber of events is observed are constant, further it is assumed that
in each time interval the maximum number of events possible
is constant, hence the population at risk is constant. The latter
assumption may not be fulfilled, and the assumption of constant
time intervals depends on the given seasonal variation of inter-
est. Seasonal variation during a week provides constant time
intervals as well as during a single day, whereas monthly sea-
sonal variation provides time intervals of length 28 to 31. It is
shown in this study, that attempting to model seasonal variation
with the model derived by Edwards, when the assumptions are
not fulfilled results in a high probability of type I error, hence
too often a false seasonal variation is detected.

The refined model compensate these assumption by allow-
ing varying length of time intervals as well as varying popu-
lation at risk. In fact the probability of type I error equals the
significance level for large sample sizes. However for small
sample sizes the probability of type I error is higher than the
significance level.

Neither the model derived by Edwards or the refined model
are appropriate for small sample sizes, due to high probabil-
ity of type I error, however results show that Poisson regression
performs acceptable for small sample sizes as well as large sam-
ple sizes, based on the probability of type I error, which equals
the significance level for all significance levels. The Poisson
regression allows varying length of time intervals and varying
population at risk.

An additional assumption of the two geometrical models is
that the possible seasonal variation must be described be a sin-
gle cycle sinusoidal curve during the period of seasonal varia-
tion. It is plausible that in some context this assumption can not
be fulfilled, hence the models are not appropriate even though
all other assumptions are accommodated.

Using a regression model the seasonal variation may be
specified in several ways, including multiple cycles sinusoidal
curves and polynomials. Additionally, secular trend and regres-
sion on covariates may be modelled, hence providing a more
complex model that may explain data more appropriately.

The model derived by Edwards is easy to interpret and com-
pute. The output from the model is an estimate of the relative
risk and the corresponding test statistic, hence the model per-
forms the test of significantly seasonal variation. In the statisti-
cal software Stata [22] the model is implemented and further an
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implementation on the internet is available. However as shown
in this study, when the assumptions of the model are violated,
the conclusions may be wrong.

An advantage of the Poisson regression model is that in
the majority of statistical software an implementation of gen-
eralized linear models, of which Poisson regression is a spe-
cial case, exists. Hence this model is also available to the re-
searcher using statistical software, like Stata or R [21]. How-
ever the interpretation of this model may be more advanced to a
researcher, since the model provides estimates of the regression
coefficient, and do not perform a test of significantly seasonal
variation, which must manually performed by a deviance test.

Often a researcher wants to compare his result with other
studies. The model derived by Edwards provides a comparable
output, in the sense that the relative risk is based on only the
data representing the number of events for each time interval,
no other information is used. As for the Poisson regression, the
secular trend and regression on several covariates may be mod-
elled to estimate the relative risk, hence making a comparison
fragile, in the sense that all covariates may not be obtainable in
all studies. Hence comparisons of results provided by Poisson
regression must be performed with caution.

However when only the linear predictor in the Poisson re-
gression consists of the seasonal variation term and the offset,
the result is not only comparable with other such specified Pois-
son regression, but also with the result provided by the model
derived by Edwards.

This study shows that when the assumptions of the model
derived by Edwards are not accommodated, the model tends to
detect false seasonal variation for small sample sizes, hence for
rare events and small studies. The model is highly available to
the researcher and it provides comparable results. Poisson re-
gression provides a model of seasonal variation that performs
acceptable for all sample sizes. This model is also highly avail-
able, whereas comparisons of results must be performed with
caution. In conclusion, based on the simulations in this study
Poisson regression is preferable to model seasonal variation in
comparison with the geometrical models.
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Chapter 3

Gaussian State Space
Models

This chapter provides the basic theory of Gaussian state space models, which
forms the basis for the non-Gaussian state models in the consecutive chapters.
The definition of Gaussian state space models is stated and the Kalman filter,
-forecaster and -smoother are derived. Furthermore, the EM algorithm is de-
rived for Gaussian state space models to estimate the variance matrices.

Establishing some introductive terminology we define a time series as a col-
lection of random variables {Ykt

| t = 1, . . . , n}, measuring a single response of
a single subject at times kt. In case, several responses for a single subject are
measured, data is referred to as a multivariate time series. Longitudinal
data consists of a collection of univariate or multivariate time series measur-
ing the same response or responses, respectively, over time, for several subjects.
The subscript of k indicates that observations of the random variables Ykt are
not necessarily observed at constant time intervals, hence observations are not
necessarily equidistant. However, to avoid heavy notation, observations of the
random variable Ykt

over time are denoted merely Yt in case of both equidistant
and non-equidistant observations.
State space models are dynamic models. Thus state space models are adapt-
able to changes in parameters, and, in fact, to a reduction or expansion of the
dimension of parameters. They apply to multivariate time series and longitudi-
nal data.
The observations of the random variables {Yt | t = 1, . . . , n} are considered as
indirect measurements of the latent process, {θt | t = 1, . . . , n}. The latent
process is assumed being a Markov process with parameters varying over time. A
state space model is specified by the distribution of the observations conditional
on the latent process. As observations arrive the distributional parameters are
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updated.
Regarding inference, concerning state space models, we distinguish between
three terms, assessment, prediction and forecasting. The first term con-
cerns inference of the latent process, whereas the term prediction concerns in-
ference of future states of the latent process, and finally, forecasting referrers to
inference concerning future observations.
At each time t, all information available is defined formally as follows.

Definition 3.1 (Information sets)
Let Yt be a (d× 1) vector observed at times t = 1, . . . , n. At time t, the infor-
mation set, Dt, is recursively defined by

Dt = {Dt−1, Yt}.

Especially, at time t = 0, the information set D0 is called the initial infor-
mation set and contains all available and relevant prior information at time
t = 0. �

As a consequence of Definition 3.1 all past information is contained in the in-
formation set, Dt, at time t.

3.1 Definition

Gaussian state space models are defined formally as follows.

Definition 3.2 (Gaussian state space model)
Let Yt be a (d × 1) vector observed at times t = 1, . . . , n. Yt is described by a
Gaussian state space model if, given a set of quadruples

{Ft, Gt, Vt,Wt} = {F,G, V,W}t

for each t, where

Ft is a known (p× d) matrix
Gt is a known (p× p) matrix
Vt is a known (d× d) matrix
Wt is a known (p× p) matrix,

the relations between Yt and a (p× 1) parameter vector, θt, at time t, as well as
the relation between θt and the sequence of θt through time are determined by
the conditional distributions

Observation model : Yt|θt, Dt−1 ∼ Nd
(
F>t θt , Vt

)
(3.1)

State model : θt|θt−1, Dt−1 ∼ Np (Gtθt−1 , Wt) (3.2)
Initial distribution : θ0|D0 ∼ Np (m0 , C0) , (3.3)
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hence

Observation equation : Yt = F>t θt + νt, νt ∼ Nd (0 , Vt) (3.4)
State equation : θt = Gtθt−1 + ωt, ωt ∼ Np (0 , Wt) , (3.5)

where the sequences {νt} and {ωt} are internally and mutually independent, and
independent of θ0 conditional on D0. �

In Figure 3.1, the conditional independence structure of a state space model is
illustrated.

t t t
t t

θ0 θ1 θ2

. . .

. . .

t t t
t t t

θt−1 θt θt+1

. . .

. . .

t t
t t

θn−1 θn

Y1 Y2 Yt−1 Yt Yt+1 Yn−1 Yn

Figure 3.1: Illustration of the conditional independence structure of the latent process
and the observations in a state space model.

It follows from Definition 3.2, and is illustrated in Figure 3.1, that

Yt ⊥⊥ Dt−1 | θt, ∀t
Yt+k ⊥⊥ Dt−1 | Dt, ∀k > 0
θt ⊥⊥ Dt−1 | θt−1, ∀t.

The matrix Ft is called the design matrix and contains all the observed ex-
planatory variables, the vector θt is called the state vector, and the quan-
tity λt = F>t θt is called the signal. For Gaussian state space models the
signal equals the mean of the observations conditional on the latent process,
µt = E[Yt | θt], however, this is not a general result. The matrix Gt is the de-
sign matrix of the state model, and is called the evolution transfer matrix.
Usually, the evolution transfer matrix is block diagonal, each block representing
a feature of the model, e.g. secular trend and seasonal variation. Occasionally,
the state model may be referred to as the evolution model, emphasising the
dynamics of the latent process.
The variance matrices Vt and Wt determines the uncertainty associated with the
observation- and state models, respectively, and are called the observation- and
evolution variance matrix, respectively. The vectors νt and ωt are called the
observation- and evolution errors, respectively. All the matrices, Ft, Gt,
Vt and Wt, may depend on an unknown parameter vector φ> =

[
φ1 · · · φl

]
,
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called hyper parameters, denoted e.g. Wt(φ). The dependency of the hyper
parameters is suppressed in the notation.
The vector of all observations is denoted Y > =

[
Y >1 · · · Y >n

]
, hence Y con-

tains all information except for the initial information, and, in fact, Y is an
ordered version of the information set, Dn. Similar the vector of all state vec-
tors is denoted θ> =

[
θ>1 · · · θ>n

]
.

3.2 Kalman Filtering

We are often interested in assessing the latent process based on past observa-
tions. Using the Kalman filter, knowledge of the latent process is updated,
whenever a new observation becomes available. This estimation procedure
was first derived by Thiele (1880), however, it was not until the works by
Kalman, (Kalman, 1960) and (Kalman, 1963), were published the applications
became clear, therefore the estimation procedure is named after Kalman. The
Kalman filter is a recursive updating scheme and calculates the best linear un-
biased predictor of the mean, E[θt | Dt], and the corresponding variance matrix,
Var[θt | Dt], of the posterior distribution of θt conditional on Dt (Klein, 2003),
and is stated as follows.

Theorem 3.1 (Kalman filter)
Let Y1, . . . , Yn be described by a Gaussian state space model. For each t, the
updating of the state vector is performed according to the following conditional
distributions,

Prior : θt|Dt−1 ∼ Np

Gtmt−1︸ ︷︷ ︸
at

, GtCt−1G
>
t +Wt︸ ︷︷ ︸

Rt


One-step forecast : Yt|Dt−1 ∼ Nd

F>t Gtmt−1︸ ︷︷ ︸
ft

, F>t RtFt + Vt︸ ︷︷ ︸
Qt


Posterior : θt|Dt ∼ Np (mt , Ct) ,

with mt = at +RtFtQ
−1
t (Yt − ft) and Ct = Rt −RtFtQ−1

t F>t Rt.

Proof The theorem is proofed by induction on t. The basis step follows from
(3.3) in Definition 3.2. Now assume it holds that,

θt−1|Dt−1 ∼ Np (mt−1 , Ct−1) .

Since all variables are Gaussian as will their sums. From the state equation,
(3.5), we have, conditional on Dt−1, that

θt = Gtθt−1 + ωt,
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hence θt is Gaussian with mean at = Gtmt−1, due to linearity of the mean
operator, and variance matrix Rt = GtCt−1G

>
t + Wt, due to independence

between θt−1 and ωt conditional on Dt−1. Hence

θt|Dt−1 ∼ Np (at , Rt) . (3.6)

Using (3.6) and the observation equation, (3.4), we have, conditional on Dt−1,
that

Yt = F>t θt + νt,

hence, Yt is Gaussian with mean ft = F>t at, and variance matrixQt = F>t RtFt+
Vt, due to independence between θt and νt conditional on Dt−1. Hence,

Yt|Dt−1 ∼ Np (ft , Qt) . (3.7)

The covariance of θt and Yt is

Cov [θt , Yt | Dt−1] = Cov
[
θt , F

>
t θt + νt | Dt−1

]
= Cov

[
θt , F

>
t θt | Dt−1

]
+ Cov [θt , νt | Dt−1]

= Var[θt | Dt−1]Ft = RtFt.

From multivariate Gaussian theory, we have that[
θt
Yt

]
|Dt−1 ∼ Nn+r

([
at
ft

]
,

[
Rt RtFt

F>t Rt Qt

])
,

and conditional on Yt, it holds, from Definition 3.1, that

θt|Dt ∼ Np (mt , Ct) , (3.8)

hence, θt is Gaussian with mean mt = at+RtFtQ−1
t (Yt−ft) and variance matrix

Ct = Rt −RtFtQ−1
t F>t Rt, completing the proof. �

When using the Kalman filter, we obtain the mean vector and variance matrix
based on the observations, which are updated for each new observation. The
mean vector mt is called the filtered mean and the variance matrix Ct is called
the filtered variance. The mean vector ft is called the one-step forecast
mean and the variance matrix Qt is the corresponding one-step forecast
variance. Letting et = Yt − ft denote the one-step forecasting error, the
posterior mean of θt is a linear combination of the prior mean, at, and the one-
step forecasting error, hence mt = at +Atet, where At = RtFtQ

−1
t is called the

adaptive matrix.

3.3 Disturbance Filtering

The disturbance filter is a mathematical equivalent to the Kalman filter and the
outputs of the disturbance filter are the one-step forecast errors, et, the inverses
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of the one-step forecast variances, Q−1
t , and the so-called scaled adaptive

coefficient matrices, Kt.
The disturbance filter is initialised by

a1 = G1m0, and R1 = G1C0G
>
1 +W1.

For t = 1, . . . , n the outputs are updated recursively by the equations

et = Yt − F>t at
Qt = F>t RtFt + Vt

Kt = Gt+1At

at+1 = Gt+1mt

= Gt+1(at +Atet)
= Gt+1at +Ktet

Rt+1 = Gt+1CtG
>
t+1Wt+1

= Gt+1(Rt −AtQtA>t )G>t+1 +Wt+1

= Gt+1RtG
>
t+1 −KtQtK

>
t +Wt+1

= Gt+1Rt(Gt+1 −KtF
>
t )> +Wt+1.

Upon filtering, only et, Q−1
t and Kt are stored, hence, dependent on the sizes

of p and d, the disturbance filter uses less computer storage and may be faster
than the Kalman filter (Dethlefsen, 2001).

3.4 Kalman Forecasting

Prediction of the latent process and forecasting of observations after observing
Yn, may be of interest. To simplify the notation we denote the time n+k merely
as k. Hence the distributions θk|Dn and Yk|Dn, k ∈ N, respectively, must be
determined. This requires knowledge of Gk, Fk, Vk and Wk for all k of interest.

Theorem 3.2 (Kalman forecaster)
Let Y1, . . . , Yn be described by a Gaussian state space model. For each k ∈ Z+

the k-step forecasting distributions are

θk|Dn ∼ Np
(
~mk , ~Ck

)
Yk|Dn ∼ Nd

(
~fk , ~Qk

)
,



3.4 Kalman Forecasting 59

where

~mk = Gk ~mk−1

~Ck = Gk ~Ck−1G
>
k +Wk

~fk = F>k ~mk

~Qk = F>k
~CkFk + Vk,

with starting values ~m0 = mn and ~C0 = Cn.

Proof The theorem is proofed by induction on k. The basis steps for both
distributions follow from Theorem 3.1. Now assume that

θk−1|Dn ∼ Nn
(
~mk−1 , ~Ck−1

)
,

and
Yk−1|Dn ∼ Nd

(
~fk−1 , ~Qk−1

)
.

From the state equation, we have that θk = Gkθk−1 +ωk, hence, θk is Gaussian
with mean ~mk = Gk ~mk−1, and variance matrix ~Ck = Gk ~Ck−1G

>
k + Wk, since

both θk−1 and ωk are Gaussian and independent conditional on Dn. Hence

θk ∼ Np
(
~mk , ~Ck

)
.

From the observation equation, we have that Yk = F>k θk + νk. Since θk and
νk are Gaussian, it follows, that Yk is Gaussian with mean ~fk = F>k ~mk and
variance matrix ~Qk = F>k

~CkFk + Vk, due to the independence between θk and
νk conditional on Dn. Hence,

Yk ∼ Nd
(
~fk , ~Qk

)
,

completing the proof. �

The mean vector, ~mk, is the k-step forecasted mean of θk and the variance
matrix, ~Ck, is the k-step forecasted variance of θk. Furthermore, the mean
vector, ~fk, is the k-step forecast mean of Yk and the variance matrix, ~Qk, is
the k-step forecast variance of Yk.

3.4.1 Implementation

The Kalman forecaster is implemented as a function in the package sspir in R
(Dethlefsen and Lundbye-Christensen, 2006; R Development Core Team, 2008).

Description

Forecasted distributions of observations and predicted distributions of latent
states in a state space model.
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Usage

forecast(ss,k=10)

Arguments

ss an object of class SS or ssm.

k a positive integer giving the time for forecasting and prediction.

Details

Forecasting of observations and prediction of the latent process are performed
according to the input state space model ss by estimating the distributions of the
observation and latent process, respectively. The integer k defines the number
of future forecasts and predictions to be estimated, hence having observed n
observations, the forecasted observations and predicted latent states at times
n+ 1, . . . , n+ 10 (as default) is estimated.
The distribution of the predicted latent states are given by

θk|Dn ∼ N(~mk, ~Ck),

where ~mk = Gk ~mk−1 and ~Ck = Gk ~Ck−1G
>
k + Wk and the distribution of the

forecasted observations are given by

Yk|Dn ∼ N(~fk, ~Qk),

where ~fk = F>k ~mk and ~Qk = F>k
~CkFk + Vk.

Value

The returned value from either smoother (Gaussian case) or extended. An
object containing the forecasted distributions of the observations specified by
forecast$f and forecast$Q and the predicted distributions of the latent states
specified by forecast$m and forecast$C.

3.5 Kalman Smoothing

The Kalman filter assess the latent process based on past observations. Suppose
that all n observations are available, assessment of the latent process based
on the entire information at time n, Dn, is the objective of smoothing. The
Kalman smoother provides the mean, denoted m̃t, and variance, denoted C̃t,
of θt conditional on Dn, t = 1, . . . , n, which are referred to as the smoothed
mean and the smoothed variance, respectively.
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Theorem 3.3 (Kalman smoother)
Let Y1, . . . , Yn be described by a Gaussian state space model. For each t =
1, . . . , n, the smoothed conditional distribution is

θt|Dn ∼ Np
(
m̃t , C̃t

)
,

where

m̃t = mt +Bt[m̃t+1 − at+1]

C̃t = Ct +Bt[C̃t+1 −Rt+1]B>t
Bt = CtG

>
t+1R

−1
t+1,

with starting values m̃n = mn and C̃n = Cn.

Proof The theorem if proofed by backwards induction on t, starting with
t = n. The basis step follows from Theorem 3.1. Assume that

θt+1|Dn ∼ Np
(
m̃t+1 , C̃t+1

)
.

From the state- and observation equations, we have that

θt+1|Dt ∼ Np (at+1 , Rt+1)
θt|Dt ∼ Np (mt , Ct) .

The covariance matrix of θt+1 and θt conditional on Dt is

Cov [θt , θt+1 | Dt] = Cov [θt , Gt+1θt + ωt+1 | Dt]

= Var[θt | Dt]G>t+1 + Cov [θt , ωt+1 | Dt]

= CtG
>
t+1,

due to independence between θt and ωt+1 conditional on Dt. Hence, we have
that [

θt
θt+1

]
|Dt ∼ N2p

([
at+1

mt

]
,

[
Rt+1 CtG

>
t+1

Gt+1Ct Ct

])
.

Conditional on θt+1, we obtain from multivariate Gaussian theory, that

E[θt | Dt, θt+1] = mt + CtG
>
t+1R

−1
t+1[θt+1 − at+1] = mt +Bt[θt+1 − at+1],

and

Var[θt | Dt, θt+1] = Ct − CtG>t+1R
−1
t+1Gt+1C

>
t = Ct −BtRt+1B

>
t .
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Hence,

θt|Dt, θt+1 ∼ Np
(
mt +Bt[θt+1 − at+1] , Ct −BtRt+1B

>
t

)
. (3.9)

Since θt ⊥⊥ Dn \Dt|θt+1, the distribution of θt|Dt, θt+1 equals the distribution
of θt|Dn, θt+1. We now obtain, that

E[θt | Dn] = E[E[θt | Dn, θt+1] | Dn]
= E[mt +Bt[θt+1 − at+1] | Dn]
= mt +Bt[m̃t−1 − at+1],

and

Var[θt | Dn] = Var[E[θt | Dn, θt+1] | Dn] + E[Var[θt | Dn, θt+1] | Dn]
= Var[mt +Bt[θt+1 − at+1] | Dn]

+ E
[
Ct −Bt[C̃t+1 −Rt+1]B>t | Dn

]
= Bt[Ct+1 − at+1]B>t + Ct −Bt[C̃t+1 −Rt+1]B>t
= Ct −Bt[C̃t+1 −Rt+1]B>1 .

Hence,
θt|Dn ∼ Np

(
m̃t , C̃t

)
,

completing the proof. �

The conditional means obtained from the Kalman smoother, denoted

m̃> =
[
m̃>1 · · · m̃>n

]
,

maximise the posterior, p(θ|Y ), since mean equals mode when observations are
Gaussian. From the definition of conditional densities, we have

p(θ|Y ) ∝ p(θ, Y ),

and it follows that m̃ also maximises p(θ, Y ). Consequently, m̃ also maximises

log(p(θ, Y )) = log(p(Y |θ)) + log(p(θ))

=
n∑
t=1

log(p(Yt|θt)) +
n∑
t=1

log(p(θt|θt−1)) + log(p(θ0)).

Differentiating with respect to θt and equating to zero, yields

∂ log(p(Yt, θt))
∂θt

=
∂ log(p(Yt|θt))

∂θt
+
∂ log(p(θt|θt−1))

∂θt
+
∂ log(p(θt+1|θt))

∂θt
1[t 6= n] = 0,

(3.10)
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which are solved by m̃. Hence, we may interpret the Kalman smoother as an
algorithm to solve equations like (3.10) efficiently. According to (3.4) and (3.5),
the equations (3.10) gives

FtV
−1
t (Yt − µt)−W−1

t (θt −Gtθt−1) +G>t+1W
−1
t+1(θt+1 −Gt+1θt)1[t 6= n] = 0.

(3.11)

3.6 Disturbance Smoothing

Using the outputs of the disturbance filter, et, Q−1
t , and Kt, for t = 1, . . . , n, we

are able to estimate the disturbances, ωt and νt, instead of focusing on the states
(Koopman, 1993). Hence, we estimate ω̃t = E[ωt | Dn] and ν̃t = E[νt | Dn] for
t = 1, . . . , n. Letting rt be a (p×1) vector and εt a (d×1) vector, the smoothed
disturbances are backwards recursively determined by the equations

rn = 0

εt = Q−1
t et −K>t rt

ω̃t = Wtrt

ν̃t = Vtεt

rt−1 = Ftεt +G>t+1rt.

Notice that in comparison with the Kalman smoother no matrix inversion is
needed, since the disturbance filter provides the inverted one-step forecast vari-
ances, Qt. The smoothed means of the states are recursively determined by

m̃t = Gtm̃t−1 + ω̃t,

initialised by m̃1 = G1m0 + ω̃1.

3.7 Estimation of Parameters

Until now we have assumed the matrices, Ft, Gt, Vt and Wt, being known for all
t, and the dependency of the hyper parameters, φ, has been suppressed. This
section describes two methods to obtain the maximum likelihood estimate of
the hyper parameters.

3.7.1 Direct Maximum Likelihood Estimation

The likelihood function of the hyper parameters conditional on the observations
is L(φ|Y ) = p(Y |φ), hence, we have the decomposition

log(L(φ|Y )) =
n∑
t=1

log(p(Yt|φ,Dt−1))
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of the log likelihood function due to the independence structure of the Gaussian
state space model. From the one-step forecast distribution provided by the
Kalman filter we have

Yt|φ,Dt−1 ∼ Nd (ft , Qt) .

Hence the log likelihood function is

log(L(φ|Y )) = −nd
2

log(2π)− 1
2

n∑
t=1

(log |Qt|+ (Yt − ft)>Q−1
t (Yt − ft)).

(3.12)

For a given φ the log likelihood function can be obtained from the Kalman
filter and (3.12) can be maximised numerically with respect to φ, providing a
maximum likelihood estimate, denoted φ̂.

3.7.2 EM Algorithm

The Expectation-Maximisation (EM) algorithm is a two-step, iterative estima-
tion algorithm used to estimate unknown parameters by maximum likelihood
estimation (Dempster et al., 1977). Let Y be the observed Gaussian data with
likelihood function L(ψ|Y ) = p(Y |ψ), which is dependent on the parameter vec-
tor ψ ∈ Ψ ⊆ Rp to be estimated. Furthermore, we extent data by some latent
Gaussian data, denoted Z ∈ Rk, so that the augmented data (Y,Z) have the
joint likelihood function L(ψ|Y, Z) = p(Y, Z|ψ). The likelihood function of ψ
can be expressed as

L(ψ|Y ) =
p(Y,Z|ψ)
p(Z|Y, ψ)

.

Maximisation of L(ψ|Y ) is equivalent to maximisation of the log likelihood func-
tion, i.e.

log(L(ψ|Y )) = log(p(Y, Z|ψ))− log(p(Z|Y, ψ)).

Letting ψ∗ ∈ Ψ be a temporary value of ψ, we have

log(L(ψ|Y ))

=
∫

log(p(Y, Z|ψ))p(Z|Y, ψ∗)dZ −
∫

log(p(Z|Y, ψ))p(Z|Y, ψ∗)dZ

= Q(ψ,ψ∗)−H(ψ,ψ∗),

where

Q(ψ,ψ∗) =
∫

log(p(Y, Z|ψ))p(Z|Y, ψ∗)dZ = E[log(p(Y,Z|ψ)) | Y, ψ∗],

H(ψ,ψ∗) =
∫

log(p(Z|Y, ψ))p(Z|Y, ψ∗)dZ = E[log(p(Z|Y, ψ)) | Y, ψ∗].

Letting ψ(m−1) be the (m−1)th estimate of ψ, the two steps in the EM algorithm
are
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E-step : Calculate the conditional expectation

Q
(
ψ,ψ(m−1)

)
= E

[
log(p(Y,Z|ψ)) | Y, ψ(m−1)

]
(3.13)

as a function of ψ.

M-step : Determine ψ(m) by maximise (3.13) with respect to ψ so

Q
(
ψ(m), ψ(m−1)

)
≥ Q

(
ψ,ψ(m−1)

)
. (3.14)

The algorithm alternates between these two steps until a predefined convergence
criterion is reached. Notice, the algorithm only focuses on Q(·, ·) and not H(·, ·),
since H(·, ·) is non-decreasing for each iteration, which is stated in the following
theorem.

Theorem 3.4
Let ψ(m) be the current estimate of ψ and choose ψ(m+1) according to the EM
algorithm so that (3.14) is fulfilled. Then

log
(
L
(
ψ(m+1)

∣∣Y )) ≥ log
(
L
(
ψ(m)

∣∣Y )) ,
with equality if and only if

Q
(
ψ(m+1), ψ(m)

)
= Q

(
ψ(m), ψ(m)

)
and

H
(
ψ(m+1), ψ(m)

)
= H

(
ψ(m), ψ(m)

)
.

Proof Consider

log
(
L
(
ψ(m+1)

∣∣Y ))− log
(
L
(
ψ(m)

∣∣Y ))
= Q

(
ψ(m+1), ψ(m)

)
−Q

(
ψ(m), ψ(m)

)
︸ ︷︷ ︸

(∗)

+H
(
ψ(m+1), ψ(m)

)
−H

(
ψ(m), ψ(m)

)
︸ ︷︷ ︸

(∗∗)

.

The choice of ψ(m+1) implies that (∗) is non-negative, hence Q(·, ·) is non-
decreasing for each iteration. Since the logarithmic function is concave, we may
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use Jensen’s inequality, see A.5, and we have

H
(
ψ(m+1), ψ(m)

)
−H

(
ψ(m), ψ(m)

)
= −E

[
log

(
p
(
Z|Y, ψ(m+1)

)
p
(
Z|Y, ψ(m)

) ) | Y, ψ(m)

]

≥ − log

(
E

[
p
(
Z|Y, ψ(m+1)

)
p
(
Z|Y, ψ(m)

) | Y, ψ(m)

])

= − log

(∫
p
(
Z|Y, ψ(m+1)

)
p
(
Z|Y, ψ(m)

) p
(
Z|Y, ψ(m)

)
dZ

)
= 0.

Hence, (∗∗) is non-negative, and thereby H(·, ·) is non-decreasing for each iter-
ation, which completes the proof. �

In the following, the EM algorithm is applied to estimate the variance matrices
Vt = V and Wt = W , which are assumed being constant in a Gaussian state
space model.
Assuming Y has been observed and θ is the latent data, the joint likelihood
function of the augmented data (Y, θ) is p (Y, θ|V,W ), which is Gaussian and
the joint log likelihood function is

log (p (Y, θ|V,W )) ∝
n∑
t=1

log (p (Yt|θt, V )) (3.15)

+
n∑
t=1

log (p (θt|θt−1,W )) , (3.16)

since the initial values m0 and C0 are assumed being known.
The two steps in the EM algorithm may be formulated as maximising the ex-
pectation of the log likelihood function of the augmented data conditional of the
observed data and the previous estimates of V and W , yielding new estimates
for the next iteration. Letting V (0) and W (0) denote the initial estimates, the
two steps in the mth iteration are

E-step : Calculate the conditional expectation

Q
(
V,W, V (m−1),W (m−1)

)
= E

[
log (p (Y, θ|V,W )) | Y, V (m−1),W (m−1)

]
(3.17)

as a function of V and W .

M-step : Maximise (3.17) with respect to V and W so

Q
(
V (m),W (m), V (m−1),W (m−1)

)
≥ Q

(
V,W, V (m−1),W (m−1)

)
.
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Hence, V (m) and W (m) are the mth estimates to be used in the E-step in the
(m+ 1)th iteration.
Due to the decomposition of the joint likelihood function the estimation of V
and W may be performed separately by using the EM algorithm for each of
(3.15) and (3.16). Assume in the following that the smoothed mean, m̃t, and
variance matrix, C̃t, are obtained from the Kalman smoother by replacing V
and W with their current estimates, V (m) and W (m), respectively.

Estimation of V

Maximising the expectation of log (p (Yt|θt, V )) conditional on Dn is equivalent
to minimising the expectation of

log |V |+ 1
n

n∑
t=1

‖Yt − µt‖2V −1

conditional on Dn. Using Theorem A.2, where Z = µt and ε = Yt, we have

E
[
‖Yt − µt‖2V −1 | Dn

]
= trace

(
V −1F>t C̃tFt

)
+ ‖Yt − F>t m̃t‖2V −1 .

This yields

E

[
log |V |+ 1

n

n∑
t=1

‖Yt − µt‖2V −1 | Dn

]

= log |V |+ 1
n

n∑
t=1

(
trace(V −1F>t C̃tFt) + ‖Yt − F>t m̃t‖2V −1

)
= log |V |+ trace

[
V −1 1

n

n∑
t=1

(
F>t C̃tFt +

(
Yt − F>t m̃t

) (
Yt − F>t m̃t

)>)]
.

This is minimised for V = V (m+1) according to Theorem A.3, where

V (m+1) =
1
n

n∑
t=1

(
F>t C̃tFt +

(
Yt − F>t m̃t

) (
Yt − F>t m̃t

)>)
. (3.18)

Estimation of W

Similarly maximising the expectation of log(p(θt|θt−1,W )) conditional on Dn is
equivalent to minimising the expectation of

log |W |+ 1
n
‖θt −Gtθt−1‖2W−1
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conditional on Dn. First notice that

Cov [θt , θt−1 | Dn]
= E[Cov [θt , θt−1 | θt, Dn] | Dn] + Cov [E[θt | θt, Dn] , E[θt−1 | θt, Dn] | Dn]
= Cov [θt , E[θt−1 | θt, Dn] | Dn]
= Cov [θt , mt−1 +Bt−1(θt − at) | Dn]
= Cov [θt , Bt−1θt | Dn]

= C̃tB
>
t−1,

where the third equality follows from (3.9) on page 62. Furthermore, we have

E[θt −Gtθt−1 | Dn] = m̃t −Gtm̃t−1

and

Var[θt −Gtθt−1 | Dn] = C̃t +GtC̃t−1G
>
t − C̃tB>t−1G

>
t −GtBt−1C̃t = Lt.

(3.19)

Using Theorem A.2, where Z = θt −Gtθt−1 and ε = 0, we have

E

[
log |W |+ 1

n
‖θt −Gtθt−1‖2W−1 | Dn

]
= log |W |+ 1

n

n∑
t=1

(
trace(W−1Lt) + ‖m̃t −Gtm̃t−1‖2W−1

)
= log |W |+ trace

[
W−1 1

n

n∑
t=1

(
Lt + [m̃t −Gtm̃t−1] [m̃t −Gtm̃t−1]>

)]
,

(3.20)

which is minimised for W = W (m+1), where

W (m+1) =
1
n

n∑
t=1

(
Lt + [m̃t −Gtm̃t−1] [m̃t −Gtm̃t−1]>

)
, (3.21)

according to Theorem A.3.
Hence, with initial values V (0) and W (0), we apply the Kalman filter and
smoother with current estimates V (m) and W (m) and calculate new estimates
V (m+1) and W (m+1) according to (3.18) and (3.21) with the components pro-
vided by the Kalman smoother. This is repeated until convergence is reached.

Structure of Variance Matrices

Occasionally, the structure of the variance matrices, V and W , is known. This
knowledge may be employed in the EM algorithm by parameterising the vari-
ances as functions of the hyper parameters, φ, hence V = V (φ) and W = W (φ).
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Dependent on the structure of the variance matrices, the formulaes (3.18) and
(3.21) are altered.
The following applies for both the observation variance matrix and the evolution
variance matrix, letting

Kt = F>t C̃tFt +
(
Yt − F>t m̃t

) (
Yt − F>t m̃t

)>
,

or
Kt = Lt + (m̃t −Gtm̃t−1) (m̃t −Gtm̃t−1)> ,

respectively.
Assume that the components of the state vector, θt, are mutually independent,
i.e. the evolution variance matrix becomes

W (φ) = φIp.

By substituting W with φIp in (3.20), we have that the E-step is

log |φIp|+
1
n

n∑
t=1

trace((φIp)−1Kt) = d log(φ) +
1
φn

n∑
t=1

trace(Kt),

which is minimised for

φ̂ =
1
dn

n∑
t=1

trace(Kt).

Hence, the M-step is

φ̂(m) =
1
dn

n∑
t=1

trace(Lt + (m̃t −Gtm̃t−1) (m̃t −Gtm̃t−1)>).

This result implies that estimation of the evolution variance matrix may be
performed as if no knowledge of the structure is available, and after the M-step,
the average of the diagonal elements of the current estimate, is determined,
which equals the estimate of φ̂(m), and themth estimate of the evolution variance
matrix is then Ŵ (m) = φ̂(m)Ip.
Now assume we have a two dimensional state vector and the evolution variance
matrix has the structure

W (φ) = φW ∗ = φ

[
1
3

1
2

1
2 1

]
.

The E-step is

log |φW ∗|+ 1
n

n∑
t=1

trace((φW ∗)−1Kt) = 2 log
(
φ

12

)
+

1
φn

n∑
t=1

trace((W ∗)−1Kt),
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which is maximised for

φ̂ =
1

2n

n∑
t=1

trace((W ∗)−1Kt).

Hence the M-step is

φ̂(m) =
1

2n

n∑
t=1

trace
[
(W ∗)−1

(
Lt + (m̃t −Gtm̃t−1) (m̃t −Gtm̃t−1)>

)]
.

Commonly, the evolution variance matrix is block diagonal, since the features of
the model, e.g. secular trend and seasonal variation, are mutually independent.
Assume the evolution transfer matrix, Gt, is block diagonal consisting of two
independent features of the model, consequently the state vector and evolution
variance matrix may be denoted

θt =

[
θ

(1)
t

θ
(2)
t

]
, W =

[
W (1) 0

0 W (2)

]
,

respectively. The log likelihood function becomes

log [p (θt|θt−1,W )] = log
[
p
(
θ

(1)
t |θ

(1)
t−1,W

(1)
)]

+ log
[
p
(
θ

(2)
t |θ

(2)
t−1,W

(2)
)]
,

hence the two block variance matrices may be estimated independently, and
knowledge of the structure of each block may be exploited.

3.7.3 Implementation

The EM algorithm is implemented as a function in the package sspir in R and
uses the functions kfilter and smoother, which implement Theorem 3.1 and
3.3, respectively (R Development Core Team, 2008).

Description

Estimates variance matrices of the observation- and latent process in a Gaussian
state space model given as input, using the EM algorithm.

Usage

EMalgo(ss, maxiter = 50, epsilon = 1e-06, Vstruc=NA, Wstruc=NA)

Arguments

ss an object of class SS.

maxiter a positive integer giving the maximum number of iterations to run.
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epsilon a (small) positive numeric giving the tolerance of the maximum relative
differences of Vmat and Wmat between iterations.

Vstruc a function specifying the structure of the variance matrix of the obser-
vation model if such structure is known.

Wstruc a function specifying the structure of the variance matrix of the state
model if such structure is known.

Details

The initial variance matrices are to be specified in the model specification and
structures of the variance matrices may be specified by the user by the functions
Vstruc and Wstruc. As default these are assigned NA, and if not specified,
the variance matrices are not estimated, hence it is possible to estimate only
the observation variance matrix or the evolution variance matrix assuming the
other being known. The EM algorithm requires that the variance matrices to
be estimated are constant, however if a variance matrix is not be estimated it
may be non-constant.
The output provided by the function is the smoothed Gaussian model along with
the estimated variance matrices, maximum values of the log likelihood function
for each iteration and the number of iterations upon convergence.

Value

ss the value from smoother.

Vmat.est the estimate of the observation variance matrix, which is provided if
the input of Vstruc is of class function, otherwise as input of Vmat.

Wmat.est the estimate of the observation variance matrix, which is provided if
the input of Wstruc is of class function, otherwise as input of Wmat.

loglik maximum value of log likelihood function for each iteration.

iteration number of iterations upon convergence.





Chapter 4

Non-Gaussian State Space
Models

This chapter provides the basic theory of non-Gaussian state space models, in-
cluding partially specified-, exponential family- and general non-Gaussian state
space models. The adjusted Pearson estimation algorithm is derived, and fur-
thermore, assessment of the latent process using conjugate filtering and iterated
extended Kalman smoothing are outlined. Finally, the chapter provides an ex-
ample of assessing the latent process of a Poisson time series.
Initially, we note that, according to Bayes’ Theorem a step in the Kalman filter
may be described by

p(θt|Dt) ∝ p(θt|Dt−1)p(Yt|θt),

hence the Kalman filter may be considered as a Bayesian updating scheme
(Lee, 2004). The prior distribution, p(θt|Dt−1), contains all the prior infor-
mation upon observing Yt and is determined by the state equation, whereas the
likelihood function, p(Yt|θt), is determined by the observation equation. The
posterior distribution, p(θt|Dt), is obtained by the prior distribution and the
likelihood function.
In the following non-Gaussian state space models are considered, hence the
observation model and the latent process may both be non-Gaussian. Several
special cases are handled each with different relaxed distributional assumptions.

4.1 Partially Specified non-Gaussian State Space
Models

Distributions may be specified only by the first and second order moments. This
may be the case for both the observation- and the state model, which leads to

73
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the following definition.

Definition 4.1 (Partially specified non-Gaussian state space model)
Let Yt be a (d × 1) vector observed at times t = 1, . . . , n. Yt is described by a
partially specified non-Gaussian state space model if given {F,G,W, V }t
for each t, the relations between Yt and a (p×1) state vector, θt, at time t, as well
as the relation between θt and the sequence of θt through time are determined by
the conditional distributions specified by the first and second moments, given by

Observation model : Yt|θt, Dt−1 ∼ [F>t θt, Vt] (4.1)
State model : θt|θt−1, Dt−1 ∼ [Gtθt−1,Wt] (4.2)

Initial distribution : θ0|D0 ∼ [m0, C0], (4.3)

hence,

Observation equation : Yt = F>t θt + νt, νt ∼ [0, Vt] (4.4)
State equation : θt = Gtθt−1 + ωt, ωt ∼ [0,Wt], (4.5)

where the sequences {νt} and {ωt} are internally and mutually uncorrelated, and
uncorrelated of θ0 conditional on D0. �

4.1.1 Linear Bayes’ Estimator

In order to assess the latent process of a partially specified non-Gaussian state
space model we introduce the linear Bayes’ estimator. Suppose θ̂ is an esti-
mate of the stochastic variable θ with support Ω for which Y > =

[
Y1 · · · Yn

]
,

Yt ∼ f(Yt|θ) are observed. Given a function L, for which the expectation,

E
[
L(θ, θ̂)

]
=
∫

Ω

L(θ, θ̂)p(θ)dθ

is to minimised, the function, L, is called a loss function. A quadratic loss
function may be given by

L(θ, θ̂) = (θ − θ̂)>(θ − θ̂) = trace
[
(θ − θ̂)(θ − θ̂)>

]
.

The overall risk function is given by

r(θ̂) = E
[
L(θ, θ̂)

]
= trace

(
E
[
(θ − θ̂)(θ − θ̂)>

])
.

An estimate, θ̂∗(Y ), of the linear form θ̂∗(Y ) = h + HY , where h is an appro-
priate vector and H is an appropriate matrix, which fulfils

E
[
L(θ, θ̂∗(Y ))

]
= min

θ̂
E
[
L(θ, θ̂)

]
,

is called a linear Bayes’ estimate.
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Lemma 4.1
Let the distribution of Y > =

[
Y >1 Y >2

]
be specified by its first and second

moments, [
Y1

Y2

]
∼
[[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

]]
.

Then the linear Bayes’ estimate of Y1 is

θ̂∗(Y2) = µ1 + Σ12Σ−1
22 (Y2 − µ2),

using a quadratic loss function. The covariance matrix of the estimate, called
the risk matrix, is

RM = E

[[
Y1 − θ̂∗(Y2)

] [
Y1 − θ̂∗(Y2)

]>]
= Σ11 − Σ12Σ−1

22 Σ21.

Proof For θ̂ = h+HY2, define R(θ̂) = E
[
(Y1 − θ̂)(Y1 − θ̂)>

]
. It follows that

R(θ̂) = E
[
Y1Y

>
1

]
+ E

[
(h+HY2)(h+HY2)>

]
− E

[
(h+HY2)Y >1

]
− E

[
Y1(h+HY2)>

]
= Σ11 + µ1µ

>
1 +HΣ22H

> + (h+Hµ2)(h+Hµ2)> −HΣ21

− µ1(h+Hµ2)> − Σ12H
> − (h+Hµ2)µ>1

= Σ11 − Σ12Σ−1
22 Σ21 + (H − Σ12Σ−1

22 )Σ22(H − Σ12Σ−1
22 )>

+ (µ1 − h−HY2)(µ1 − h−HY2)>.

Hence, the overall risk function is a sum of three terms, the first term,

trace
(
Σ11 − Σ12Σ−1

22 Σ21

)
being independent of Y1, the second term,

trace
[
(H − Σ12Σ−1

22 )Σ22(H − Σ12Σ−1
22 )>

]
having a minimum value of zero, when H = Σ12Σ−1

22 , and the third term,

trace
[
(µ1 − h−HY2)(µ1 − h−HY2)>

]
having a minimum value of zero, when µ1 = h + Hµ2. Consequently, the risk
function is minimised, when H = Σ12Σ−1

22 and h = µ1 − Σ12Σ−1
22 µ2, hence the

linear Bayes’ estimate is θ̂∗ = µ1 + Σ12Σ−1
22 (Y2 − µ2).

The risk matrix is

RM = E
[{
Y1 − [µ1 + Σ12Σ−1

22 (Y2 − µ2)]
}{

Y1 − [µ1 + Σ12Σ−1
22 (Y2 − µ2)]

}>]
= Σ11 − Σ12Σ−1

22 Cov [Y2 , Y1]− Cov [Y1 , Y2] Σ>22Σ21

+ Σ12Σ−1
22 Var[Y2](Σ−1

22 )>Σ21

= Σ11 − Σ12Σ−1
22 Σ21,

completing the proof. �
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Using Lemma 4.1 we can derive the Kalman filter for a partially specified non-
Gaussian state space model. When distributions are determined using Lemma
4.1, we denote it by ∼̂ to emphasise the approximative nature of the distribu-
tions.

Theorem 4.2
Let Yt be described by a partially specified non-Gaussian state space model. For
each t, the updating of the state vector is performed according to the following
conditional distributions specified by the first and second moments,

Prior : θt|Dt−1 ∼̂ [Gtmt−1︸ ︷︷ ︸
at

, GtCt−1G
>
t +Wt︸ ︷︷ ︸

Rt

]

One-step forecast : Yt|Dt−1 ∼̂ [F>t Gtmt−1︸ ︷︷ ︸
ft

, F>t (GtCt−1G
>
t +Wt)Ft + Vt︸ ︷︷ ︸
Qt

]

Posterior : θt|Dt ∼̂ [mt, Ct],

with mt = at +RtFtQ
−1
t (Yt − ft) and Ct = Rt −RtFtQtF>t R>t .

Proof The proof follows the proof of Theorem 3.1, using Lemma 4.1 as argu-
ment instead of results from multivariate Gaussian theory. �

The smoothing equations equal the corresponding equations of Gaussian state
space models and are derived by using Lemma 4.1, where the components of the
Kalman smoother are given by the Kalman filter.

4.2 Adjusted Pearson Algorithm

Assuming the variance matrices of the observation- and state models, V and W ,
are constant over time, however unknown, in model (4.1)-(4.3). As proposed by
Jørgensen et al. (1996) estimation of the variance matrices may be performed
by the adjusted Pearson algorithm, which is an iterative ad-hoc estimation
algorithm. The vector θt − m̃t is independent of the vector Yt − F>t m̃t, hence
by definition we have

V = Var
[
Yt − F>t θt

]
= Var

[
Yt − F>t m̃t − F>t (θt − m̃t)

]
= Var

[
Yt − F>t m̃t

]
+ F>t Var[(θt − m̃t)]Ft

= Var
[
Yt − F>t m̃t

]
+ F>t C̃tFt

= E
[
(Yt − F>t m̃t)(Yt − F>t m̃t)>

]
+ F>t C̃tFt,

provided the model is correct, hence E
[
Yt − F>t m̃t

]
= 0. This derivation is

only valid if the Kalman filter and smoother have been applied to the model
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with correct variance matrices. In that case we may estimate the observation
variance matrix by

V̂ =
1
n

n∑
t=1

(Yt − F>t m̃t)(Yt − F>t m̃t)>︸ ︷︷ ︸
Pearson estimate

+
1
n

n∑
t=1

F>t C̃tFt︸ ︷︷ ︸
Adjustment

. (4.6)

According to Jørgensen et al. (1996) the Pearson estimates are downwards bi-
ased due to substitution of the smoothed components, whereas the bias may be
corrected for by the adjustment in (4.6).
Similarly, we have

W = Var[θt −Gtθt−1]
= Var[m̃t −Gtm̃t−1 + θt − m̃t −Gt(θt−1 − m̃t−1)]
= Var[m̃t −Gtm̃t−1] +Var[θt − m̃t −Gt(θt−1 − m̃t−1)]

= E
[
(m̃t −Gtm̃t−1)(m̃t −Gtm̃t−1)>

]
+ Lt,

where the matrix Lt is given by (3.19) on page 68. This derivation is only valid
if the model is correct, hence, E[m̃t −Gtm̃t−1] = 0. Assuming that the model
is correctly specified, we may estimate the evolution variance matrix by

Ŵ =
1
n

n∑
t=1

(m̃t −Gtm̃t−1)(m̃t −Gtm̃t−1)>︸ ︷︷ ︸
Pearson estimate

+
1
n

n∑
t=1

Lt︸ ︷︷ ︸
Adjustment

. (4.7)

Hence, with initial values V (0) and W (0), we apply the Kalman filter and
smoother with current estimates V (m) and W (m) and calculate new estimates
V (m+1) and W (m+1) according to (4.6) and (4.7) with the components provided
by the Kalman smoother. This is repeated until convergence is reached.
As noted by Dethlefsen et al. (1997), the adjusted Pearson algorithm is equiva-
lent to the EM algorithm, provided the distributions of both the observation and
state models are Gaussian, hence convergence result for the EM algorithm ap-
plies to the adjusted Pearson algorithm in this case. Otherwise no convergence
results are shown for the adjusted Pearson algorithm (Klein, 2003).

4.3 Exponential Family State Space Models

Establishing the notation, we define the natural exponential families to be all
distributions with log density functions of the form

log(p(Y |η)) = Y >η − b(η) + c(Y ),

where η is called the natural parameter, the function b is convex and twice
differentiable and c is a suitable function only dependent on the observations.
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From the theory of exponential families we have that

E[Y | η] = µ =
∂b(η)
∂η

= b′(η) = τ(η)

Var[Y | η] = Σ =
∂2b(η)
∂η∂η>

= b′′(η),

where the function τ is called the mean value mapping.
The natural exponential families are special cases of the generalised linear mod-
els, which are specified by three steps, i.e. the random- and systematic com-
ponents and the link between these two components. Given a sample of n
independent observations Yt with corresponding explanatory variables, xt, the
random component is that each Yt belonging to the same exponential fam-
ily with possibly differing natural parameters. The systematic component
is the linear predictor, which specifies the relation between the explanatory
variables and the observations through

λt = F>t θt,

where F>t is the (d × p) design matrix consisting of known function of the
explanatory variables and θ is the (p × 1) state vector. As usual we refer to
λt as the signal. The link between the random- and systematic component
is determined by the relation between the mean, µt = τ(ηt), and the linear
predictor, λt, and is specified by a response function

µt = b′(ηt) = h(λt).

The inverse of the response function is the link function

g(µt) = λt.

The relation between the linear predictor and the natural parameter is deter-
mined by a function

v(λt) = ηt = τ−1(h(λt)).

If g = τ−1, we say that g is a canonical link, since then ηt = λt. A canonical
link implies that h = τ .
Now suppose the observation model is a natural exponential family and let the
latent process be specified only by its first and second moments. The natural
exponential family state space model of a one dimensional observation
process {Yt} with partially specified state vector may be described by

p(Yt|ηt) = exp (Ytηt − b(ηt) + c(Yt)) (4.8)

ηt = v(λt) = v(F>t θt) (4.9)
θt = Gtθt−1 + ωt, ωt ∼ [0,Wt] (4.10)
θ0 ∼ [m0, C0]. (4.11)
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The same conditional independence structure from Gaussian state space models
is assumed and the process {ωt} is assumed being serially uncorrelated.
Assessment of the latent process is performed using the following theorem.

Theorem 4.3 (Conjugate filtering)
Let Yt be described by the model in (4.8)-(4.11). For each t, the updating of the
state vector is performed according to the following approximated conditional
distributions specified by the first and second moments,

Prior : θt|Dt−1 ∼ [Gtmt−1︸ ︷︷ ︸
at

, GtCt−1G
>
t +Wt︸ ︷︷ ︸

Rt

]

Posterior : θt|Dt ∼̂ [mt, Ct]

with mt = at +RtFt(f∗t − ft)/qt and Ct = Rt −
(

1− q∗t
qt

)
RtFtF

>
t Rr/qt.

Proof The theorem is proofed by induction on t. The basis step follows from
(4.11). Assume that

θt−1|Dt−1 ∼̂ [mt−1, Ct−1]. (4.12)

We have from (4.10), that the prior distribution of θt conditional on Dt−1 is

θt|Dt−1 ∼ [Gtmt−1︸ ︷︷ ︸
at

, GtCt−1G
>
t +Wt︸ ︷︷ ︸

Rt

].

This leads to the prior distribution of λt conditional on Dt−1 using (4.9),

λt|Dt−1 ∼ [F>t at︸ ︷︷ ︸
ft

, F>t RtFt︸ ︷︷ ︸
qt

].

The covariance matrix of θt and λt conditional on Dt−1 is

Cov [θt , λt | Dt−1] = Cov
[
θt , F

>
t θt | Dt−1

]
= Var[θt | Dt−1]Ft
= RtFt.

Hence, the joint distribution of θt and λt conditional on Dt−1 is[
θt
λt

]
|Dt−1 ∼

[[
at
ft

]
,

[
Rt RtFt

F>t Rt qt

]]
.

From Lemma 4.1 the approximated distribution of θt conditional on λt and Dt−1

is specified as

θt|λt, Dt−1 ∼̂
[
at +RtFt(λt − ft)

qt
,
Rt −RtFtF>t Rt

qt

]
.
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We choose a conjugate prior on the natural parameter ηt, hence

p(ηt|Dt−1) = c(rt, st) exp (rtηt − stb(ηt)) , (4.13)

where rt and st are given so E[g(τ(ηt)) | Dt−1] = ft and Var[g(τ(ηt)) | Dt−1] =
qt and c(rt, st) is the normalising constant ensuring p(ηt|Dt−1) being a density
(Lee, 2004). It follows that the one-step forecast of Yt is

p(Yt|Dt−1) =
∫
p(Yt, ηt|Dt−1)dηt

=
∫
p(Yt|ηt, Dt−1)p(ηt|Dt−1)dηt

= c(rt, st)
∫

exp
[
(Yt + rt︸ ︷︷ ︸

r∗t

)ηt − (1 + st︸ ︷︷ ︸
s∗t

)b(ηt)
]
dηt

=
c(rt, st)
c(r∗t , s∗t )

.

This leads to the posterior of ηt conditional on Dt by

p(ηt|Dt) = p(ηt|Dt−1)p(Yt|ηt, Dt−1)
1

p(Yt|Dt−1)

= p(ηt|Dt−1)
dp(Yt|Dt−1)

dηt
1

p(ηt|Dt−1)p(Yt|Dt−1)
= c(r∗t , s

∗
t ) exp(r∗t ηt − s∗t b(ηt)). (4.14)

We see that the updating scheme of the natural parameter, ηt, is a conjugate
updating scheme, since the prior and posterior distribution belong to the same
family.
Hence, the posterior distribution of λt conditional on Dt is

λt|Dt ∼
[
E[g(τ(ηt)) | Dt]︸ ︷︷ ︸

f∗t

,Var[g(τ(ηt)) | Dt]︸ ︷︷ ︸
q∗t

]
.

The posterior distribution of θt conditional on Dt is obtained by the joint dis-
tribution of λt and θt conditional on Dt, which is, using Bayes’ Theorem,

p(λt, θt|Dt) = p(λt, θt|Dt−1)p(Yt|λt, Dt−1)p(Yt|Dt−1)
∝ p(λt, θt|Dt−1)p(Yt|λt)
= p(θt|λt, Dt−1)p(λt|Dt−1)p(Yt|λt)
∝ p(θt|λt, Dt−1)p(λt|Dt).

Hence,

p(θt|Dt) =
∫
p(θt|λt, Dt−1)p(λt|Dt−1)dηt. (4.15)
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The first and second moments of θt conditional on Dt are

mt = E[θt | Dt] = E[E[θt | λt, Dt−1] | Dt] = at +RtFt(f∗t − ft)/qt (4.16)
Ct = Var[θt | Dt] = Var[E[θt | λt, Dt−1] | Dt] + E[Var[θt | λt, Dt−1] | Dt]

= Rt −
(

1− q∗t
qt

)
RtFtF

>
t Rt/qt. (4.17)

Hence
θt|Dt ∼̂ [mt, Ct],

completing the proof. �

The smoothing equations equal the corresponding equations of Gaussian state
space models and are derived by using Lemma 4.1, where the components of the
Kalman smoother are given by the conjugate filter.
Notice, letting xt = rt/st the prior of the natural parameter, ηt, can be written
as

p(ηt|Dt−1) = c(rt, st) exp[st(xtηt − b(ηt))].

Since b is convex, the prior is unimodal with mode xt = b′(ηt), hence xt is a
location parameter and st is the precision. The posterior can be rewritten as

p(ηt|Dt) = c(r∗t , s
∗
t ) exp[s∗t (x

∗
t ηt − b(ηt))],

where

r∗t = rt + Yt (4.18)
s∗t = st + 1 (4.19)

x∗t =
rt + Yt
st + 1

=
stxt + Yt
st + 1

=
st

st + 1
xt +

(
1− st

st + 1

)
Yt.

Hence, upon observing Yt, we obtain a gain in the posterior precision and we
see that the posterior location is a weighted average between the prior location
parameter and the observation. Given a high prior precision, the observation
is weighted low in the posterior precision and vice versa. Using a conjugate
updating scheme simplifies the updating, since only the posterior parameters,
(4.18) and (4.19) are to be updated and the prior determines the posterior dis-
tribution. Notice, that the conjugate prior is specific according to the sampling
distribution.
As proposed by West et al. (1985) the parameters of the conjugate prior, rt and
st, may be chosen such that ft and qt equal other quantities than the first and
second moments of the natural parameter, which may provide more convenient
values. They propose ft to equal the mode and q−1

t to equal the curvature at
the mode. By this West et al. emphasise that the link between τ(ηt) and λt is
merely a guide to form the prior of ηt (West et al., 1985).
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4.3.1 Conjugate Filtering for Poisson Time Series

To illustrate the conjugate filtering, assume we have a time series of serially
correlated count data. Choosing the canonical link for the Poisson distribution,
the log link, we have

λt = ηt = log(µt) = F>t θt.

The conjugate prior for Poisson distributed observations, Yt, with intensities,
µt, is the gamma distribution,

p(µt|αt, βt) =
βαt
t µαt−1

t exp(−βtµt)
Γ(αt)

(DeGroot, 1989). Hence, the conjugate prior of the natural parameter, ηt =
log(µt), is

p(ηt|αt, βt) =
βαt
t

Γ(αt)
exp(αtηt − βt exp(ηt)).

According to (4.13) we have rt = αt and st = βt. Notice, that the moment
generating function of ηt, denoted M(s), is

M(s) =
∫

exp(sηt)p(ηt|αt, βt)dηt

=
βαt
t

Γ(αt)

∫
exp[(αt + s)ηt − βt exp(ηt)]dηt

=
βαt
t

Γ(αt)
Γ(αt + s)
βαt+s
t

= β−st
Γ(αt + s)

Γ(αt)
,

hence, the mean of the prior is

ft = M ′(s)|s=0 =
Γ′(αt)
Γ(αt)

− log(βt),

and the variance is

qt = M ′′(s)|s=0 − (M ′(s)|s=0)2 =
(

Γ′(αt)
Γ(αt)

)′
,

which both may be solved numerically to obtain rt and st (West et al., 1985;
DeGroot, 1989).
Upon observing Yt, it follows that the posterior of the natural parameter is of
the form (4.14) with parameters r∗ = rt + Yt and s∗ = st + 1, hence we have

f∗t =
Γ′(αt + Yt)
Γ(αt + Yt)

− log(βt + 1),

and

q∗t =
(

Γ′(αt + Yt)
Γ(αt + Yt)

)′
.

By insertion in (4.16) and (4.17), the filtered moments, mt and Ct, are obtained,
and smoothing may be performed.
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4.4 General non-Gaussian State Space Models

This section generalises the exponential family state space models with partially
specified state vector, by not restricting the observation model to be a natural
exponential family. The state model is modelled as a first order Markov process
and is in general non-Gaussian, and furthermore, the process {ωt} is serially
uncorrelated and uncorrelated of the observations. Formally, the general non-
Gaussian state space model is denoted

Observation model : p(Yt|λt) (4.20)
State model : θt = Gtθt−1 + ωt, ωt ∼ p(ωt), (4.21)

where λt = F>t θt is the signal. We aim to maximise the posterior, p(θ|Y ), with
respect to θ, which is equivalent to maximise the joint density, p(Y, θ), hence,
we must solve the equations

∂ log(p(Y, θ))
∂θt

=

∂ log(p(Yt|θt))
∂θt

+
∂ log(p(θt|θt−1))

∂θt
+
∂ log(p(θt+1|θt))

∂θt
1[t 6= n] = 0.

The first term is determined by

∂ log(p(Yt|θt))
∂θt

=
(
∂ log(p(Yt|λt))

∂λt

)>
∂λt
∂θt

= Ft
∂ log(p(Yt|λt))

∂λt
. (4.22)

From the definition of the distribution function we have

Fθt|θt−1(x) = P (θt < x|θt−1)

= P (θt −Gtθt−1 < x−Gtθt−1)
= P (ωt < x−Gtθt−1) = Fωt

(x−Gtθt−1),

hence pθt|θt−1(θt) = pωt
(θt −Gtθt−1) = p(ωt). This yields

∂ log(p(θt|θt−1))
∂θt

=
(
∂ log(p(ωt))

∂ωt

)>
∂ωt
∂θt

=
∂ log(p(ωt))

∂ωt
. (4.23)

The equations to solve become

∂ log(p(Y, θ))
∂θt

=

Ft
∂ log(p(Yt|λt))

∂λt
+
∂ log(p(ωt))

∂ωt
−G>t+1

∂ log(p(ωt+1))
∂ωt+1

1[t 6= n] = 0.

(4.24)
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In order to solve the equations, the strategy is to obtain an approximation of
the state space model by linearising the non-linear terms and identifying Ỹt, Ṽt
and W̃t by comparing (4.24) with (3.11) on page 63. We then obtain a linearised
approximated Gaussian state space model specified by Ỹt, Ṽt and W̃t with the
property that the posterior, p(θ|Ỹ ), of this model has the same mode as the
posterior, p(θ|Y ), of the state space model, (4.20)-(4.21).

4.5 Iterated Extended Kalman Smoothing

Assuming the second derivative of log(p(Yt|λt)) is positive definite, we may
linearise the first term of (4.24), the observation term, with a first order Taylor
expansion about an initial value of θt, denoted θ̃t, hence, λ̃t = F>t θ̃t. The first
order Taylor expansion around λ̃t is given by

∂ log(p(Yt|λt))
∂λt

≈ ∂ log(p(Yt|λt))
∂λt

∣∣∣∣
λt=λ̃t

+
∂2 log(p(Yt|λt))

∂λt∂λ>t

∣∣∣∣
λt=λ̃t

(λt−λ̃t). (4.25)

Letting,

Ṽ −1
t = −∂

2 log(p(Yt|λt))
∂λt∂λ>t

∣∣∣∣
λt=λ̃t

,

and

Ỹt = λ̃t + Ṽt
∂ log(p(Yt|λt))

∂λt

∣∣∣∣
λt=λ̃t

,

we have
∂ log(p(Yt|λt))

∂λt
≈ Ṽ −1

t (Ỹt − λt), (4.26)

which is of the same form as the first term of (3.11) on page 63. However, if the
second derivative of log(p(Yt|λt)) is not positive definite, the following method
may be used.
Assume, that the densities p(Yt|λt) and p(ωt) both are functions of a quadratic
form of the arguments, denoted (Yt − λt)2 and (ωt)2, respectively. Notice that

∂ log(p(Yt|λt))
∂λt

=
∂ log(p(Yt|λt))
∂(Yt − λt)2

∂(Yt − λt)2

∂λt
= −2

∂ log(p(Yt|λt))
∂(Yt − λt)2

(Yt − λt),

(4.27)
and

∂ log(p(ωt))
∂ωt

=
∂ log(p(ωt))
∂(ωt)2

∂(ωt)2

∂ωt
= 2

∂ log(p(ωt))
∂(ωt)2

(θt −Gtθt−1). (4.28)

Hence, (4.24) is approximated by

∂ log(p(Y, θ))
∂θt

≈ −2Ft
∂ log(p(Yt|λt))
∂(Yt − λt)2

(Yt − λt) + 2
∂ log(p(ωt))
∂(ωt)2

(θt −Gtθt−1)

− 2G>t+1

∂ log(p(ωt+1))
∂(ωt+1)2

(θt+1 −Gt+1θt)1[t 6= n].
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By comparison with (3.11) we have

Ṽ −1
t = −2

∂ log(p(Yt|λt))
∂(Yt − λt)2

∣∣∣∣
λt=λ̃t

,

and

W̃−1
t = −2

∂ log(p(ωt))
∂(ωt)2

∣∣∣∣
ωt=ω̃t

,

where ω̃t = θ̃t −Gtθ̃t−1.
Letting λ̃(0)

t = F>t at and apply the Kalman filter and smoother on the approx-
imated model specified by Ỹt, Ṽt and W̃t to obtain m̃

(0)
t , we have recursively

λ̃
(m)
t = F>t m̃

(m−1)
t . Hence, the approximated Gaussian state space model is

iteratively improved and upon convergence this has the same mode as the non-
Gaussian state space model, (4.20)-(4.21). A convergence criterion, proposed
by Dethlefsen (2001), is, when all values fulfill(

Ỹ
(m−1)
t

)−1 ∣∣∣(Ỹ (m)
t − Ỹ (m−1)

t

)∣∣∣ < ε,(
Ṽ

(m−1)
t

)−1 ∣∣∣(Ṽ (m)
t − Ṽ (m−1)

t

)∣∣∣ < ε,

and (
W̃

(m−1)
t

)−1 ∣∣∣(W̃ (m)
t − W̃ (m−1)

t

)∣∣∣ < ε,

for t = 1, . . . , n, where ε is a small positive number. Furthermore, if the number
of iterations exceeds a predefined number, before the convergence criterion is
reached, the algorithm may be stopped and the final estimates of Ỹt, Ṽt and W̃t

specify the approximating model. This procedure is called iterated extended
Kalman smoothing.

4.5.1 Example

Assume we have a time series of serially correlated count data. In case of
canonical link function we have

p(Yt|λt) = exp(Y >t λt − b(λt) + c(Yt))

λt = F>t θt = log(µt).

Furthermore, assume the state process is first order Markov with tr-distributed
evolution error, i.e.

θt = Gtθt−1 + ωt

p(ωt) =
Γ( r+1

2 )
√
rπΓ( r2 )

(
1 +

ω2
t

r

)− r+1
2

.
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We linearise the observation model according to (4.25) and we obtain

Ṽ −1
t = b′′(λ̃t) = exp(F>t θ̃t)

Ỹt = λ̃t − b′′(λ̃t)
[
Yt − b′(λ̃t)

]
= F>t θ̃t − exp(F>t θ̃t)

[
Yt − exp(F>t θ̃t)

]
.

The state model is linearised according to (4.28) and we obtain

W̃t =
r + ω̃2

t

r + 1
.

Let λ̃(0)
t = F>t at and ω̃

(0)
t = at − Gtat−1. Apply the Kalman filter stated in

Theorem 4.2 and Kalman smoother on the approximated Gaussian state space
model

Observation model : Yt|θt ∼
[
exp

(
λ̃

(0)
t

)
, exp

(
λ̃

(0)
t

)]
,

State model : θt|θt−1 ∼

Gtat−1,
r +

(
ω̃

(0)
t

)2

r + 1

 ,
to obtain m̃

(0)
t . Now λ̃

(0)
t and ω̃

(0)
t are updated, hence λ̃

(1)
t = F>t m̃

(0)
t and

ω̃
(1)
t = m̃

(0)
t − Gtm̃

(0)
t−1. Applying the Kalman filter and the Kalman smoother

on the approximated Gaussian state space model

Observation model : Yt|θt ∼
[
exp

(
λ̃

(m)
t

)
, exp

(
λ̃

(m)
t

)]
State model : θt|θt−1 ∼

Gtm̃(m−1)
t−1 ,

r +
(
ω̃

(m)
t

)2

r + 1

 ,
we obtain the (m + 1)th estimates of λ̃(m+1)

t and ω̃
(m+1)
t . Iterations are per-

formed until convergence is reached.



Chapter 5

Model Diagnostics

Having formulated and applied a given model to data, it is important to evaluate
the adequacy of the model, that is investigate if the model assumptions are
fulfilled. This may be performed by residual analysis, as proposed by Jørgensen
et al. (1999), where diagnostics, in form of residuals for a non-Gaussian state
space model for longitudinal Poisson data driven by a gamma distributed latent
process, are outlined. This chapter is mainly inspired by Dethlefsen (2001).

5.1 Residuals for Gaussian State Space Models

The residuals are based on the Kalman filter, the Kalman smoother and the one-
step forecasts. Each residual origins from either the observation model or the
state model, denoted Y and θ, respectively, giving rise to six types of residuals
listed in Table 5.1. The residuals are all Gaussian distributed with zero mean,
assuming both the observation- and the state model are Gaussian.
From the Kalman filter, Theorem 3.1, we have at = Gt(at−1 +At−1et−1), which

Type Origin Definition Variance matrix
Filter Y vt = Yt − F>t mt (I − F>t At)Qt(I − F>t At)>

θ wt = mt −Gtmt−1 AtQtA
>
t

Smoother Y ṽt = Yt − F>t m̃t Vt − F>t C̃tFt
θ w̃t = m̃t −Gtm̃t−1 Wt − Lt

Forecast Y ~vt = Yt − ft Qt
θ ~wt = at −Gtat−1 GtAt−1Qt−1(GtAt−1)>

Table 5.1: Residuals based on Kalman filter, the Kalman smoother and the one-
step forecasts, which origin from either the observation model, denoted Y , or the state
model, denoted θ.
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yields ~wt = GtAt−1~vt. Now we can rewrite the filter residuals as

vt = Yt − F>t mt = Yt − F>t at − F>t At~vt = (I − F>t At)~vt,

and

wt = mt −Gtmt−1 = at +At~vt −Gtat−1 −GtAt−1~vt−1 = At~vt.

Derivation of the variance matrices for the filter- and forecast residuals is trivial.
The variance matrices for the smoother residuals are derived by noticing from
Theorem A.4, that θt − m̃t is uncorrelated, hence independent, of Y . Then,

Vt = Var
[
Yt − F>t θt

]
= Var

[
Yt − F>t m̃t − F>t (θt − m̃t)

]
= Var

[
Yt − F>t m̃t

]
+ F>t (Var[θt − m̃t])Ft

= Var
[
Yt − F>t m̃t

]
+ F>t C̃tFt,

which yields
Var[ṽt] = Var

[
Yt − F>t m̃t

]
= Vt − F>t C̃tFt.

Furthermore,

Wt = Var[θt −Gtθt−1]
= Var[m̃t −Gtm̃t−1 + θt − m̃t −Gt(θt−1 − m̃t−1)]

= Var[m̃t −Gtm̃t−1] +Var[θt − m̃t] +GtVar[θt−1 − m̃t−1]G>t
− Cov [θt − m̃t , θt−1 − m̃t−1]G>t −GtCov [θt−1 − m̃t−1 , θt − m̃t]

= Var[m̃t −Gtm̃t−1] + Lt,

where Lt is as given in (3.19) on page 68. This yields that

Var[w̃t] = Var[m̃t −Gtm̃t−1] = Wt − Lt.

Notice, that in the univariate case the residuals ~wt, vt and wt is proportional
to ~vt, hence, no additional information about the adequacy of the model is
revealed from these residuals. However, in the multivariate case they are all
linear transformations of ~vt, hence, inadequacies not revealed by ~vt may be
revealed by ~wt, vt and wt.
Letting Y t =

[
Y >1 . . . Y >t

]>, we notice, that

Cov
[
Yt − ft , Y t−1

]
= Cov

[
E
[
Yt − ft | Y t−1

]
, Y t−1

]
= 0,

since E
[
Yt − ft | Y t−1

]
= 0. This means, that the one-step forecast residual,

~vt, at time t is independent of the previous observations. Since ~vt−s, s ≥ 1
is a linear function of Y t−s, we have that the one-step forecast residuals are
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mutually independent over time, i.e. ~vt ⊥⊥ ~vt−s, s ≥ 1. It follows, since ~wt, vt
and wt are all linear transformations of ~vt, that the arguments of independence
hold for these residuals as well. Using this property we may investigate the
independence structure of the model by inspection of these residuals.
The smoother residuals are not independent over time, hence, a large resid-
ual due to an outlier, causes succeeding residuals to be large as well, due to
the serially correlation. Hence, these residuals must be used with caution and
consequently can not be used to investigate the independence structure of the
model. However, the residuals may be used to reveal misspecifications of the
observation model, as well as the state model.
To obtain standardised residuals, we multiply the residuals in Table 5.1 with
the appropriate inverse variance matrix, e.g.

r~vt
t = Q−

1
2~vt,

introducing the notation r•t for the standardised residuals.

5.1.1 Independence Structure

To investigate the independence structure of the model we consider the auto-
covariance function defined by

γ(t, s) = E
[
(Yt − µt)(Ys − µs)>

]
= Cov [Yt , Ys] .

The error sequences, {νt} and {ωt}, are both serially uncorrelated, and in ad-
dition, assuming the sequences being Gaussian with zero mean and variance
σ2, they are serially independent. Such sequences are commonly referred to as
white noise processes. The autocovariance function of a white noise process is

γ(t, s) = γ(|∆t|) = E[νtνs] =
{
σ2, t = s
0, t 6= s,

hence, only dependent on the time difference |∆t| = |t−s|. White noise processes
are characterised as being second order or weak stationary, for which the
autocovariance function only dependents on the time difference, |∆t| (Diggle,
1990). On the contrary, a random walk process, e.g. the process {Zt} recursively
defined by Zt = Zt−1 +νt, is not second order stationary, since, firstly, the mean
value of the process is not constant for all t, unless assuming Z0 = 0. Secondly,
even in case of constant zero mean, the variance of the process is

Var[Zt] = E
[
Z2
t

]
= Var[Zt−1] + σ2 = tσ2.

In fact, the forecast residuals interpreted as a process, {~vt}, is a white noise
process, as well as the processes {~wt}, {vt} and {wt}.
The autocorrelation function is defined as

ρ(|∆t|) =
γ(|∆t|)
γ(0)

.
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This function may be estimated from the observations Y1, . . . , Yn be the kth
sample autocovariance coefficient defined by

gk =
1
n

n∑
t=k+1

(Yt − Ȳ )(Yt−k − Ȳ ), k = 0, 1, . . . , n− 1,

where Ȳ is the sample mean. The kth autocorrelation coefficient is now
defined as

rk =
gk
g0
.

The plot of rk against k is called an autocorrelation plot and may be exploited
to justify the independence structure of the state space model (Diggle, 1990).
Autocorrelation plots of the components of the residuals based on the filter and
the one-step forecast with origin from the observation- or the latent process
may be used to investigate the independence structure of both the observation-
and state models. Autocorrelation plots of the residuals vt and ~vt reveal the
dependence structure of the observation model, whereas the residuals wt and ~wt
reveal the dependence structure of the state model.

5.1.2 Observation Model

Plots of the components of the residuals with origin from the observation model
against time are investigated for any systematic time dependence, which may
reveal a possible misspecification of the observation model. Plots of the com-
ponents of the residuals with origin from the observation model against the
corresponding components of at, mt and m̃t are investigated to reveal misspec-
ifications of the explanatory variables in the observation equation.

5.1.3 State Model

Plots of the components of the residuals with origin from the state model against
time are investigated for any systematic time dependence, which may reveal a
possible misspecification of the state model. Furthermore, plots of the compo-
nents of the residuals with origin from the state model against the corresponding
components of at, mt and m̃t may also reveal a possible misspecification of the
state model.



Chapter 6

Formulating State Space
Models In sspir

In this chapter we derive a formulation of state space models for a time series
consisting of serially correlated data exhibiting seasonal variation, which applies
to the package sspir implemented i R (Dethlefsen and Lundbye-Christensen,
2006; R Development Core Team, 2008). An example illustrating formulation,
estimation of variance matrices and residual analysis follows. We assume that
data are equidistant and the distribution of data is a natural exponential family.
Let {Yt} denote the time series, the model is described by

p(Yt|ηt) = exp (Ytηt − b(ηt) + c(Yt)) (6.1)

g(b′(ηt)) = λt = F>t θt (6.2)
θt = Gtθt−1 + ωt, ωt ∼ [0,Wt] (6.3)
θ0 ∼ [m0, C0]. (6.4)

The linear predictor may be decomposed into four components, Tt, Ht, St and
Rt, describing the secular trend, harmonic seasonality, unstructured seasonality
and regression with possibly time varying explanatory variables, respectively,
i.e.

λt = T>t θ
(1)
t +H>t θ

(2)
t + S>t θ

(3)
t +R>t θ

(4)
t .

The block diagonal evolution transfer matrix, Gt, has the form

G =


G

(1)
t 0 0 0
0 G

(2)
t 0 0

0 0 G
(3)
t 0

0 0 0 G
(4)
t

 ,
91
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and the design matrix, Ft, is of the form

F>t =
[
T>t H>t S>t R>t

]
.

Each component of the evolution transfer matrix, Gt, is derived in the following.

6.1 Secular Trend

The secular trend of the observations, Yt, may be modelled by a sufficiently
smooth function. In a dynamic setting a low degree polynomial with time vary-
ing coefficients may suffice, whereas in a static setting a sufficiently smooth
function is provided by e.g. a high degree polynomial or splines (Dethlefsen
and Lundbye-Christensen, 2006). A local polynomial growth secular trend
is when the latent process evolves smoothly in time according to a polynomial
of order p, i.e.

θ
(1)
t = q(t) = εt,0 + εt,1t+ . . .+ εt,pt

p. (6.5)

The coefficients of the polynomial, εt,i, are allowed to vary in time as emphasised
by the subscript. Assuming equidistant observations we may approximate θt by
a Taylor expansion of order p around the previous state at time t− 1, hence,

q(t) ≈ q(t− 1) + q′(t− 1) +
1
2
q′′(t− 1) + . . .+

1
p!
q(p)(t− 1). (6.6)

The evolution transfer matrix becomes

G
(1)
t =


1 1 · · · 1

p!

0 1 · · · 1
(p−1)!

...
...

. . .
...

0 0 · · · 1


(p+1)×(p+1)

,

and the (p+ 1) state vector is θ(1)
t =

[
q(t) q′(t) · · · q(p)(t)

]>
, hence

θ
(1)
t = G

(1)
t θ

(1)
t−1 + ω

(1)
t , ω

(1)
t ∼ [0,W (1)

t ].

Since the secular trend component is the first element in the state vector, we
have

T>t θ
(1)
t =

[
1 0 . . . 0

]
θ

(1)
t .

Formulaes for non-equidistant observations are derived trivially.
In case p = 1 and the evolution variance matrix is of the form

W (1) = ω(1)

[
1
3

1
2

1
2 1

]
(6.7)

the secular trend is modelled by a cubic spline (Carter and Kohn, 1994).
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6.2 Harmonic Seasonality

Harmonic seasonal variation is characterised by a cyclic behavior during a given
period, hence the same behavior is repeated through consecutive periods. For-
mally, this can be described by a real-valued function g(t), t ∈ Z+, where t is a
time index. The function g(t) is called cyclical, if, for some integer ∆ > 1 and
for all integers t, d ≥ 0, it holds that

g(t+ d∆) = g(t). (6.8)

The smallest integer ∆ such that (6.8) holds is called the period. Hence, the
function g exhibit a full cycle in any time interval of length [t, t+ ∆− 1] for all
t. The seasonal factors are the ∆ values taken at any full cycle. Decompose
the seasonal factors into one deseasonalised level, and ∆ deviations from this
level, these ∆ seasonal deviations are called the seasonal effects.
Such seasonal effects pattern may be modelled by a dth degree trigonometrical
polynomial

H>t θ
(2)
t =

d∑
i=1

{
αt,i cos

(
i
2π
∆
t

)
+ βt,i sin

(
i
2π
∆
t

)}

=
[
ct,1 · · · ct,d st,1 · · · st,d

]


αt,1
...

αt,d
βt,1

...
βt,d


,

where ct,i = cos(i2πt/∆) and st,i = sin(i2πt/∆) (Dethlefsen and Lundbye-
Christensen, 2006).
The dynamic structure of this component is modelled in the state model by
letting the seasonal effects follow a first order random walk, hence

θ
(2)
t = θ

(2)
t−1 + ω

(2)
t =



αt−1,1

...
αt−1,d

βt−1,1

...
βt−1,d


+ ω

(2)
t , ω

(2)
t ∼ [0,W (2)

t ],

and we see that G(2)
t = I2d.
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6.3 Unstructured Seasonality

Seasonal patterns not explained by a harmonic seasonality may be modelled
by an unstructured seasonality. This seasonality may be parameterised by
letting the seasonal effects sum to an uncorrelated zero-mean error sequence in
a dynamic setting, whereas the seasonal effects sum to zero in a static setting.
Let ∆ denote the period, then the constraint in the dynamic setting can be
expressed as

∆−1∑
i=0

γt−i = ω
∗(3)
t , ω

∗(3)
t ∼ [0,W ∗(3)

t ],

yielding
γt = −γt−1 − γt−2 − . . .− γt−∆+1 + ω

∗(3)
t .

In matrix notation we have

θ
(3)
t = G

(3)
t θ

(3)
t−1 + ω

(3)
t

=


−1 −1 · · · −1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0



γt−1

γt−2

...
γt−∆+1

+


ω
∗(3)
t

0
...
0

 ,
where G(3)

t is a (∆− 1)× (∆− 1) matrix, θ(3)
t is a (∆− 1) vector and W

(3)
t =

diag(W ∗(3)
t , 0, . . . , 0) (Kitagawa and Gersch, 1984; Dethlefsen and Lundbye-

Christensen, 2006). Since the first term in θ
(3)
t is γt, we have

S>t θ
(3)
t =

[
1 0 · · · 0

]
θ

(3)
t .

6.4 Regression on Explanatory Variables

Observed, possibly time varying, explanatory variables, represented by the ma-
trix Rt, are modelled by the usual regression term

R>t θ
(4)
t ,

where the regression coefficients are allowed to evolve over time according to a
random walk, hence θ(4)

t = θ
(4)
t−1 + ω

(4)
t , where ω(4)

t ∼ [0,W (4)
t ]. Furthermore,

the regression component is specified by the usual Wilkinson-Rogers formula
notation in R (Dethlefsen and Lundbye-Christensen, 2006).
The variance structures of all the components are specified by the modeller and
reflect the dependence internally in each component. The variance structure
may be known to the modeller, however, the exact variance may be unknown. In
estimation of unknown variances, these structures may be exploited as described
in Section 3.7.3.
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6.5 Example - Simulation Study

To illustrate the formulation of a state space model in sspir we provide a
hypothetical example of Gaussian observations exhibiting seasonal variation.
Estimation of variance matrices using the EM algorithm is performed, and model
verification using residual analysis is outlined.

6.5.1 Formulation of Model

Assume the secular trend is described by a local polynomial growth curve with
p = 1 and variance structure giving by (6.7), hence a cubic spline and the
seasonality exhibited by data is described by harmonic seasonality of degree
one, hence a single cycle. The period of seasonality, ∆, is dependent on the
frequency of which data are observed, say we have daily observations and we
want to asses the seasonal variation during a year, the period may be ∆ = 365.
In matrix notation the model is

Yt =
[
1 0 cos

(
2πt
365

)
sin
(

2πt
365

)] 
q(t)
q′(t)
αt
βt

+ νt, νt ∼ N (0 , V ) (6.9)

θt =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



q(t− 1)
q′(t− 1)
αt−1

βt−1

+ ωt, ωt ∼ N4 (0 , W (φ)) , (6.10)

assuming the variance matrices V and W (φ) are constant.
Using the function recursion implemented in sspir, we may simulate observa-
tions according to the model (6.9)-(6.10) with prespecified variance matrices and
initial distribution of the latent process. Let the observation variance matrix,
V , and the evolution variance matrix, W (φ), be given by

V = 10, W (φ) =



φ1

3
φ1

2
0 0

φ1

2
φ1 0 0

0 0 φ2 0
0 0 0 φ2

 , φ =
[
10−6

1

]
, (6.11)

and the initial distribution of the latent process be specified by

m0 =


1

10−4

5
5

 and C0 =


3 · 10−4 0 0 0

0 3 · 10−6 0 0
0 0 10−5 0
0 0 0 10−5

 . (6.12)

The model is defined in sspir as
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(a) Simulated observations and true latent process.
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(b) Kalman filter applied to simulated ob-
servations.
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(c) Kalman smoother applied to simulated
observations.
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Figure 6.1: The first plot shows simulated observations from model (6.9)-(6.10) with
constant variance matrices given as (6.11), represented by dots, and the solid line
represents the true latent process. The second plot shows the filtered estimates of
the latent process, {mt}, with 95% confidence limits, whereas the third plot shows
the smoothed estimates of the latent process, {m̃t}, with 95% confidence limits. The
fourth plot illustrates the filtered and smoothed secular trend component by the solid and
dashed lines, respectively. The last plot illustrates the filtered and smoothed harmonic
seasonal variation component by the solid and dashed lines, respectively.
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(a) Filtered estimates, {mt}.
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(b) Smoothed estimates, {m̃t}.

Figure 6.2: The first plot illustrates the filtered latent process for the first 50 observa-
tions (solid line) with 95% confidence limits, and the true latent process (dashed line).
The second plot illustrates the smoothed latent process for the first 50 observations
(solid line) with 95% confidence limits, and the true latent process (dashed line).

m1 <- SS(

Fmat = function(tt,x,phi) {

Fmat <- matrix(0,4,1)

Fmat[1,1] <- 1

Fmat[3,1] <- cos(2*pi*tt/365)

Fmat[4,1] <- sin(2*pi*tt/365)

return(Fmat) },

Gmat = function(tt,x,phi) {

return(matrix(c(1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1),nrow=4)) },

Wmat = function(tt,x,phi) {

return( matrix(c(phi[1]/3,phi[1]/2,0,0,

phi[1]/2,phi[1],0,0,

0,0,phi[2],0,

0,0,0,phi[2]),nrow=4)) },

Vmat = matrix(10),

phi = c(1e-6,1),

m0 = matrix(c(1,1e-3,5,5),nrow=1),

C0 = matrix(c(3e-3,0,0,0,0,3e-5,0,0,0,0,1e-4,0,0,0,0,1e-4),

nrow=4,ncol=4)

)

Daily observations are simulated by the function recursion(model,n). This
function provides observations simulated according to the defined model m1 and
returns the entire model including the simulated observations. Furthermore, the
function also provides the values of the true latent process. Letting n = 365, we
simulate observations from a single year, setting a seed provides reproducible
results, hence,

set.seed(51885273)

m1 <- recursion(m1,365)

The simulated observations are plotted in Figure 6.1(a) represented by grey
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dots, whereas the true latent process is represented by the solid line. When the
observation variance matrix, V , has small values the observations are closer to
the latent process than in case of large values of V . Similarly, the latent process
fluctuates less, when the evolution variance matrix, W (φ), has small values,
than for large values.

6.5.2 Estimation of Variance Matrices

In order to estimate the variance matrices, V and W (φ), we apply the EM
algorithm. Choosing different initial values and convergence criterion, epsilon,
we obtain different estimates. Letting m0, C0, V and φ be given as (6.11)
and (6.12), in Table 6.1 the different initial values are listed together with the
corresponding estimates and the number of iterations upon convergence, where
the maximum number of iterations to run is 10, 000, along with the maximum
value of the log likelihood function determined by the model with the estimated
variance matrices. Furthermore, the structure of the evolution variance matrix
is ensured being block diagonal with W (φ)(1), given in (6.7), as the first block,
and W (φ)(2) = I2 as the second, see Section 3.7.3.
When using the true values as initial values the estimates of V and W (φ) are
slightly underestimated in comparison with true values, especially V and φ2.
We see that estimation initialised by a misspecified initial mean, 0.05m0, to-
gether with a relatively weak initial variance matrix, 10C0, results in estimates
of V and W (φ) relatively close to the true values, whereas a misspecified initial
mean, 10m0, together with a relatively strong initial variance, 0.05C0, results
in estimates far from the true values, except from the estimate of φ1.
Furthermore, initialising the observation variance, V , as relatively weak, 10V ,
or strong, 0.05V , results in estimates close to the true value, whereas a weak
initial variance of the evolution variance matrix, 10φ, results in a relatively large
overestimate of the variance of the secular trend, W (1)(φ), and a relatively large
underestimate, when initialising with a strong variance, 0.05φ. The estimate of
the harmonic seasonality, W (2)(φ), is relatively close to the true value regardless
of the initialising.
In this example, estimation initialised by a relatively strong initial observation
variance matrix along with a relatively weak evolution variance matrix produces
the highest maximum value of the log likelihood function, whereas the lowest
are produced, when the initial mean is misspecified by 10m0, along with a
strong initial variance, 0.05C0. Furthermore, we see that, in general, as epsilon
decreases, the maximum value of the log likelihood increases along with the
number of iterations upon convergence.
In Figure 6.1(b), the Kalman filter is applied to the simulated observations and
the estimated variance matrices V̂ and W (φ̂) provided by the EM algorithm
initialised by m0, C0, 0.05V and 10φ along with epsilon= 10−3, obtaining the
estimates {mt} of the latent process with 95% confidence limits, whereas in
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Figure 6.1(c), the Kalman smoother is applied to obtain {m̃t} and corresponding
95% confidence limits. We see that the estimates mt fluctuates more than m̃t,
hence the estimates of the latent process becomes more smooth, when applying
the Kalman smoother. Furthermore, the elements of the filtered variance matrix,
Ct, are larger than the elements of the smoothed variance matrix, C̃t. This is
illustrated in Figure 6.2.
In Figure 6.2(a), the filtered estimates of the latent process for the first fifty
observations are plotted with 95% confidence limits, solid lines, and the true
latent process superimposed, dashed line and similarly in Figure 6.2(b) with
the smoothed estimates. Although the confidence intervals for the smoothed
estimates are more narrow, than for the filtered estimates, the true latent process
is surrounded by the limits, hence the smoothed values do fit the latent process
rather well.

6.5.3 Residual Analysis

The following residual analysis is performed using the estimates of V and W (φ)
obtained with the EM algorithm initialised by m0, C0, 0.05V and 10φ along
with epsilon= 10−5, hence

V̂ = 9.2542, φ̂ =
[
2.7744 · 10−6 0.6102

]>
.

The Kalman filter and smoother are applied to the simulated observations and
the estimated variance matrices to obtain the standardised residuals as specified
in Section 5.1. Due to computational problems we were not able to standardise
the residuals with origin from θ, since the corresponding variance matrices were
computationally singular, however each component of the residuals were divided
by the square root of the corresponding diagonal entry of the variance matrix.
In Figure 6.3, plots of estimated components of the latent process, q, q′, α and β
are given. For each component the filtered and smoothed estimates are plotted,
with solid and dashed lines, respectively. Furthermore, the approximated 95%
confidence limits are provided for q and q′, due to serially correlation of q and q′,
whereas the 95% confidence limits for α and β are exact, since the two compo-
nents are mutually independent and independent of q and q′. The components,
q and q′, indicate that the secular trend seems to be decreasing during the year
of simulation with a decreasing slope during the first half of year, whereas it
becomes approximately constant, see Figure 6.3(a) and 6.3(b).
The harmonic seasonal variation component is seen in Figure 6.1(e). The coef-
ficients, αt and βt are both modelled by random walks, which is recognised in
Figures 6.3(c) and 6.3(d). It seems that the coefficient αt fluctuates more than
βt and take values in a broader range.
Autocorrelation plots of each component of the standardised forecast and filter
residuals with origin from both Y and θ are given in Figure 6.4. These plots
may be exploited to verify the independence structure of the model. None of
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Figure 6.3: The filtered (solid lines) and smoothed (dashed lines) estimates of the
components of the latent process with approximated 95% confidence limits for q and q′

and exact 95% confidence limits for α and β.

the plots indicates systematic serially correlation of the components, hence the
independence structure may be verified.
Time plots of the standardised filter, smoother and forecast residuals with ori-
gin from Y are given in Figure 6.5. Misspecification of the observation model
may be revealed by these plots. Both the filter and smoother residuals do not
reveal any misspecification, however, the forecast residuals include few extreme
outliers making the time plot different from the two others. Time plot of the
forecast residual without the most extreme outliers shows no indication of mis-
specification.
Furthermore, time plots of the components of the standardised filter, smoother
and forecast residuals with origin from θ are given in Figure 6.6. Misspecification
of the state model may be revealed by these plots. No components of the
filter and forecast residuals give rise to concern about misspecification of the
state model, whereas the components of the smoother residuals clearly show the
serially correlation of the components of the residuals, especially the components
q and q′.
In order to illustrate the consequence of applying estimates provided by mis-
specified initial mean m0 and a strong initial variance, C0, residual analysis is
performed for the model specified by the estimates

V̂ = 4.6373, φ̂ =
[
1.0102 · 10−6 17.8510

]>
.
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As a consequence of the relatively small observation variance, the filtered and
smoothed latent process follow the observations extensively compared to the
true latent process, see Figure 6.1(a) and Figure B.1. The estimated secular
trend seems to be increasing and the estimated harmonic seasonal variation
characterised by a single cycle, seems to be drowning in noise, as a consequence of
the relatively high estimated φ2, see Figure B.2. Autocorrelation plots indicate
misspecification of both the observation- and the state models, in this case the
variance matrices are misspecified, see Figure B.4. Additional plots are shown
in Appendix B.
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(a) Forecast residual, r~v .
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(b) Filter residual, rv .
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(c) Forecast residual, r ~w, q.
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(d) Filter residual, rw, q.
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(e) Forecast residual, r ~w, q′.
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(f) Filter residual, rw, q′.
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(g) Forecast residual, r ~w, α.
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(h) Filter residual, rw, α.
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(i) Forecast residual, r ~w, β.
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(j) Filter residual, rw, β.

Figure 6.4: Autocorrelation plots of each component of the standardised residuals
with origin from Y and θ.
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(a) Filter residual, rv .
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(b) Smoother residual, rṽ .
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Figure 6.5: Time plots of the standardised residuals with origin from Y .
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(a) Filter residual, rw, q.
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(b) Smoother residual, rw̃, q.
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(c) Forecast residual, r ~w, q.
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(d) Filter residual, rw, q′.
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(e) Smoother residual, rw̃, q′.
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(f) Forecast residual, r ~w, q′.
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(g) Filter residual, rw, α.
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(h) Smoother residual, rw̃, α.
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(i) Forecast residual, r ~w, α.
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(j) Filter residual, rw, β.

●●●●●
●
●
●●●●

●
●
●
●

●
●

●●

●

●

●
●

●
●●

●
●
●

●

●●●●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●●
●

●

●

●

●●

●●
●
●●
●

●

●
●

●●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●
●

●

●●

●
●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●
●●
●●●●●●●●

●●●
●●●
●●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●
●

●

●●
●●

●

●

●●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●

●●
●

●

●
●

●
●

●●

●

●●

●

●
●●
●

●
●

●

●

●

●

●

●●

●
●

●

●

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−
2

−
1

0
1

2
3

(k) Smoother residual, rw̃, β.
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(l) Forecast residual, r ~w, β.

Figure 6.6: Time plots of the components of the standardised residuals with origin θ.
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Appendix A

Miscellaneous Results

This appendix contains several results to be used in the thesis.

E[g(X)] = E[E[g(X) | Z]]
E[X] = E[E[X | Z]]

Var[X] = Var[E[X | Z]] + E[Var[X | Z]]
Cov [X , Z] = E[Cov [X , Z | X]] + Cov [E[X | X] , E[Z | X]]

Definition A.1 (Multivariate Normal Distribution)
Let Z> =

[
Z1 . . . Zd

]
be a vector of random variables. The vector Z is said

to have a multivariate normal distribution with mean vector µ and a positive
definite variance matrix Σ if its density function is given by

p(Z) = (2π)−
d
2 |Σ|− 1

2 exp
[
−1

2
(Z − µ)> Σ−1 (Z − µ)

]
.

This is denoted
Z ∼ Nd (µ , Σ) .

�

Theorem A.1 (Azzalini (1996))
Suppose Z ∼ Nd (µ , Σ) and let

Z =
[
Z(1)

Z(2)

]
, µ =

[
µ(1)

µ(2)

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where, for i = 1, 2, Z(i) and µ(i) are di× 1 vectors, Σii are di× di matrices and
d1 + d2 = d, then

Z1|Z(2) ∼ Nd1
(
µ(1) + Σ12Σ−1

22 (Z(2) − µ(2)) , Σ11 − Σ12Σ−1
22 Σ21

)
.
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108 A. Miscellaneous Results

Theorem A.2
Suppose Z ∼ Nd (µ , Σ), where Σ is a positive definite (p × p) matrix, A is a
positive definite (p× p) matrix and ε is a (p× 1) constant vector, then

E
[
‖Z − ε‖2A−1

]
= trace(A−1Σ) + ‖µ− ε‖2A−1 .

Proof

E
[
‖Z − ε‖2A−1

]
= E

[
trace

(
‖Z − ε‖2A−1

)]
= E

[
trace

(
A−1(Z − ε)(Z − ε)>

)]
= trace

(
A−1E

[
(Z − ε)(Z − ε)>

])
= trace

(
A−1(Σ + µµ> − µε> − εµ> + εε>)

)
= trace

(
A−1Σ

)
+ trace

(
A−1(Z − ε)(Z − ε)>

)
= trace

(
A−1Σ

)
+ ‖µ− ε‖2A−1 .

�

Theorem A.3
Consider the matrix function

f(Σ) = log |Σ|+ trace
(
Σ−1A

)
.

If A and Σ both are positive definite, then, with respect to Σ, f(Σ) is minimised
uniquely at Σ = A.

Proof Note that Σ−1A has the same eigenvalues, denoted λ1, . . . , λd, as
Σ−

1
2AΣ−

1
2 . The latter matrix is positive definite, since both A and Σ are

positive definite, and hence all eigenvalues are positive. Instead of minimising
f(Σ) directly, we minimise f(Σ)− f(A). Hence

f(Σ)− f(A) = log |Σ|+ trace
(
Σ−1A

)
− log |A| − trace

(
A−1A

)
= log |ΣA−1|+ trace

(
Σ−1A

)
− d

= − log |Σ−1A|+ trace
(
Σ−1A

)
− d

= − log

(
d∏
i=1

λi

)
+

d∑
i=1

λi − d

=
d∑
i=1

(− log(λi) + λi − 1)

≥ 0,

since log(λi) ≤ λi − 1 for positive eigenvalues, equality holds when λi = 1 for
all i, thus f(Σ)− f(A) and thereby f(Σ) is minimised, when Σ = A. �
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Theorem A.4
Let X and Z be random vectors. It holds that X−E[X | Z] is uncorrelated with
Z.

Theorem A.5 (Jensen’s inequality, (Azzalini, 1996))
Let f(X) be a convex function, i.e. ρf(X) + (1 − ρ)f(Z) ≥ f(ρX + (1 − ρ)Z)
for all ρ ∈ (0, 1). It holds that

E[f(X)] ≥ f(E[X]).





Appendix B

Figures

This chapter provides additional residual plots supporting statements in Section
6.5.3, and figures of results supporting statements of the analyses in Chapter 2.

B.1 Example - Simulation Study

Residual plots for the model specified by

φ̂ =
[
1.0102 · 10−6

17.8510

]

and V̂ = 4.6373 provided by the EM algorithm with initial values 10m0, 0.05C0,
V and φ, see Table 6.1 on page 99.
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(a) Kalman filter applied to simulated ob-
servations.
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(b) Kalman smoother applied to simu-
lated observations.

Figure B.1: The first plot shows the filtered estimates of the latent process, {mt},
whereas the second plot shows the smoothed estimates of the latent process, {m̃t}.
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(a) Secular trend.
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(b) Harmonic seasonal variation.

Figure B.2: The first plot illustrates the filtered and smoothed secular trend compo-
nent by the solid and dashed lines, respectively. The second plot illustrates the filtered
and smoothed harmonic seasonal variation component by the solid and dashed lines,
respectively.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−
10

−
5

0
5

10

(a) Estimation of {q(t)}.
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(b) Estimation of {q′(t)}.
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(d) Estimation of {βt}.

Figure B.3: The filtered (solid lines) and smoothed (dashed lines) estimates of the
components of the latent process with approximated 95% confidence limits for q and q′

and exact 95% confidence limits for α and β.
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(a) Forecast residual, r~v .
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(b) Filter residual, rv .
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(c) Forecast residual, r ~w, q.
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(d) Filter residual, rw, q.
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(e) Forecast residual, r ~w, q′.
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(f) Filter residual, rw, q′.
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(g) Forecast residual, r ~w, α.
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(h) Filter residual, rw, α.
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(i) Forecast residual, r ~w, β.
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(j) Filter residual, rw, β.

Figure B.4: Autocorrelation plots of each component of the standardised residuals
with origin from Y and θ.
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(a) Filter residual, rv .
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(b) Smoother residual, rṽ .
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(c) Forecast residual, r~v .

Figure B.5: Time plots of the standardised residuals with origin from Y .
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(a) Filter residual, rw, q.
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(b) Smoother residual, rw̃, q.
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(c) Forecast residual, r ~w, q.
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(d) Filter residual, rw, q′.
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(e) Smoother residual, rw̃, q′.
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(f) Forecast residual, r ~w, q′.
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(g) Filter residual, rw, α.
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(h) Smoother residual, rw̃, α.
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(i) Forecast residual, r ~w, α.
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(j) Filter residual, rw, β.
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(k) Smoother residual, rw̃, β.
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(l) Forecast residual, r ~w, β.

Figure B.6: Time plots of each component of the standardised residuals with origin
θ.
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Figure B.7: Estimated components of Model 1. (a) Secular trend. (b) Seasonal
variation component determined by January first for 1980 (grey curve) and 2008 (black
curve). (c) Daily incidence rate differences.
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Figure B.8: Estimated components of Model 2 for females aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.9: Estimated components of Model 2 for females aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.10: Estimated components of Model 2 for males aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.11: Estimated components of Model 2 for males aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.12: Estimated components of Model 1. (a) Secular trend. (b) Seasonal
variation component determined by January first for 1980 (grey curve) and 2008 (black
curve). (c) Daily incidence rate differences.
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Figure B.13: Residual analysis of the approximated Gaussian state space model of
daily incidence rates based on the square root transformed observed frequencies. Time
plot and histogram of the filter residual of origin Y . The latter time plot shows the
residuals for the year 2007.
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Figure B.14: Residual analysis of Model 1. Time- and autocorrelation plots of the
filter residual with origin Y .
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Figure B.15: Residual analysis of Model 1. Time plots of the components, q, q′, α
and β, of the filter residual with origin θ.
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Figure B.16: Residual analysis of Model 1. Autocorrelation plots of the components,
q, q′, α and β, of the filter residual with origin θ.
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Figure B.17: Estimated components of Model 2 for female aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.18: Estimated components of Model 2 for females aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.19: Estimated components of Model 2 for males aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.20: Estimated components of Model 2 for males aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.21: Estimated components of Model 1. (a) Secular trend. (b) Seasonal
variation component determined by January first for 1980 (grey curve) and 2008 (black
curve). (c) Daily incidence rate differences.
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Figure B.22: Estimated components of Model 2 for female aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.23: Estimated components of Model 2 for females aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.24: Estimated components of Model 2 for males aged 20-49. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.25: Estimated components of Model 2 for males aged 50+. (a) Secular
trend. (b) Seasonal variation component determined by January first for 1980 (grey
curve) and 2008 (black curve). (c) Daily incidence rate differences.
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Figure B.26: Residual analysis of Model 2 for females aged 20-49. Time- and au-
tocorrelation plots of the components, q, α1 and β1, and γ, of the filter residual with
origin θ.





Appendix C

Nomenclature

1[t = n] Indicator function taking value 1 when expression is true and 0 when
false

0 Matrix of zeros
1 Matrix of ones
Ip (p× p) identity matrix
R Real numbers
Rn Real vector space of n-dimensional real vectors
Z Integers
Z+ Positive integers including zero
N Natural numbers, 1, 2, . . .
A> Transpose of a real matrix A
A−1 Inverse of a real matrix A
trace(A) Trace of a real matrix A
diag(a)p×d (p × d) matrix with the elements of a at the diagonal and zeros at

the off-diagonal
|A| Determinant of a real matrix A
f ′(x) Differentiation of f with respect to x
Z̄ Sample mean
γ(t, s) Autocovariance function
ρ(|∆t|) Autocorrelation function
gk kth sample autocovariance coefficient
rk kth autocorrelation coefficient
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124 C. Nomenclature

State Space Models

Dt Information set at time t
θt Latent state at time t
Yt Observation at time t
νt Observation error at time t
ωt Evolution error at time t
Ft Design matrix at time t
Vt Observation variance matrix at time t
Gt Evolution transfer matrix at time t
Wt Evolution variance matrix at time t
ft One-step forecast mean at time t
Qt One-step forecast variance matrix at time t
et One-step forecast error at time t
At Adaptive matrix at time t
Kt Scaled adaptive coefficient matrix at time t
mt Filtered mean at time t
Ct Filtered variance matrix at time t
{F,G, V,W}t Quardruple defining a state space model at time t
~mk k-step forecast mean of θn+k at time n+ k
~Ck k-step forecast variance matrix of θn+k at time n+ k
~fk k-step forecast mean of Yn+k at time n+ k
~Qk k-step forecast variance matrix of Yn+k at time n+ k
m̃t Smoothed mean of θt at time t
C̃t Smoothed variance matrix of θt at time t
ω̃t Smoothed evolution disturbance at time t
ν̃t Smoothed observation disturbance at time t
vt Filter residual with origin Y at time t
wt Filter residual with origin θ at time t
ṽt Smoother residual with origin Y at time t
w̃t Smoother residual with origin θ at time t
~vt Forecast residual with origin Y at time t
~wt Forecast residual with origin θ at time t
r•t Standardised residual at time t
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Distributions

p(·) Generic notation for the density- or probability function of ar-
guments

p(·|·) Generic notation for conditional density function
[µ, V ] Partially specified distribution with mean vector µ and variance

matrix V
Nn (µ , Σ) Multivariate normal distribution of dimension n with mean vec-

tor µ and variance matrix Σ
χ2(n) Chi square distribution with n degrees of freedom
L(·) Generic notation for likelihood function
l(·) Generic notation for log likelihood function
∼ Distributed as
.∼ Approximately distributed as
∼̂ Partial distributed derived by using Linear Bayes’ estimate with

respect to a quadratic loss function
A ⊥⊥ B A is independent of B
A ⊥⊥ B|C Conditional on C, A is independent of B
E[·] Expected value of argument
E[· | ·] Conditional expected value of argument
Var[·] Variance of argument
Var[· | ·] Conditional variance of argument
Cov [· , ·] Covariance of arguments
Cov [· , · | ·] Conditional covariance of arguments
∀ For all
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