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Preface

This thesis was prepared at the Computer Vision and Machine Intelligence Lab under

the Department of Media Technology and Engineering Science of Aalborg University

Copenhagen as a partial fulfillment of the requirements for aacquiring the degree

Master of Science in Enginnering, M.Sc.Eng.

The thesis deals with aspects of 3D facial motion capture. It introduces a means

of acquiring 3D face shape data for statistical model training, a method capable of

synthesizing 3D facial geometry from images has been developed, together with an

animation scheme visualizing the captured facial data.

It is assumed that the reader has a basic knowledge in the area of statistics, image

analysis and computer graphics.

Copenhagen, October 2008

Esben Plenge
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Abstract

This thesis presents a framework for markerless 3D facial motion capture. In par-

ticular it considers, if emotions can be conveyed by 3D facial motion capture from

sparse geometry. A method dubbed 2D-to-3D Active Appearance Models has been

developed for retrieving sparse 3D geometry from 2D images.

The established motion capture framework is modular. In its current implementa-

tion it includes a tool, developed in Matlab, for acquiring 3D facial geometry data

for training a statistical model, a method for synthesizing 3D facial geometry from

2D images has been written in C++, and a 3D animation front end, that visualizes

the captured face data, also written in C++. The AAM-API, an open source C++

implementation of Active Appearance Models, has been used in this work. A thor-

ough description of the theory behind the framework is given in the thesis, and its

implementation is discussed in detail.

The emotion conveyance capability of the framework implementation is tested, and it

is shown, that the emotions embedded in the captured and animated facial expressions

can be interpreted correctly.

Keywords: Facial Motion Capture, Stereopis, Facial Animation, 3D Geomety Syn-

thesis, Active Appearance Models, Human-Computer Interfaces.
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Chapter 1

Introduction

”My approach to computer vision is best characterized as inverse

computer graphics. In computer graphics, the world is represented in

sufficient detail so that the image forming process can be numerically

simulated to generate synthetic television images; in the inverse, per-

ceived television pictures are analyzed to compute detailed geometric

models.”

- Bruce G. Baumgart [1].

A fundamental problem in computer graphics is the construction of 3D geometric

models consistent with the real world. In computer vision the same problem can

be formulated as that of constructing consistent 3D geometric models from two

dimensional images.

This thesis considers how to synthesize the 3D geometry of human facial expressions

from two dimensional images.

The problem of capturing facial expressions has been thoroughly studied by computer

vision researchers through the last part of the 20th century and up until today. A early

landmark in this effort was the 1985 animation short Tony de Peltrie [2]. For the first

time 3d facial animation was based on motion capture, also called performance-based

animation.

If the ”Turing test of facial animation” is the test, where a person is to judge

whether an animated face is that of a real person or that of an avatar, it seems

to be close to passable today. Most recently, the company Image Metrics spe-

cializing in performance-based facial animation presented The Emily Project at SIG-

1



2 CHAPTER 1. INTRODUCTION

GRAPH 2008∗. By applying proprietaty software to a video of an actress, the actress’

face was synthesized with close-to-none visible difference between the actress and her

graphical alter ego.

Image Metrics is a good example of the state of the facial motion capture industry.

Their technology is providing realistic facial animation to the latest triple A game

titles like Grand Theft Auto IV and Unreal Tournament 3, to feature films like The

Mummy: Tomb of the Dragon Emperor, and to commercials and music videos.

One of the subfields of facial motion capture that has received attention from the

academic research community is that of markerless tracking. The research conducted

can be accounted under the general computer vision problem of segmentation of non-

rigid objects. A family of approaches to this called deformable template models has

been developed. Among the most notable are the active appearance models (AAM)

method [6] and the morphable model scheme [3].

Thanks to the well documented state of the AAM method [7], [6], [21] it is a con-

venient choice when applying deformable templates to facial motion capture. In this

work the AAM algorithm contitutes the core motion capture engine.

Being a model-based method, deformable template methods rely on training data.

The company Cyberware started providing three dimensional laser scans in the start

1990’s and much of the development of face motion capture and synthesis in those

years can be ascribed to their pioneering technology. However, for the un-funded parts

of the research community this type of data is not available. Thus, a major part of

this thesis is dedicated to describing the process of generating three dimensional face

data.

1.1 Motivation and Objectives

An increasing number of laptops ship with webcam and everyday applications such

as video telephony and V-logging are based on the web camera as interface. As the

processing power of the household laptop keeps increasing as well, this suggests that

the camera as a human-computer interface has great potential in a not so distant

future. It is therefore of great relevance that technologies and methods based on the

camera as a human-computer interface (HCI) are being explored and matured.

An obvious application of the webcam as an HCI is in virtual worlds. An increasing

number of hours of peoples’ lives are lived as avatars in online 3D universes like World

of Warcraft and Second Life. A main attribute of these worlds is their function as

social fora. People cooperate and communicate about solving tasks or simply to

gain friendship. The communication is in most cases restricted to instant messaging

∗Special Interest Group on GRAPHics and Interactive Techniques
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and headsets. A natural extension of the communication in the virtual worlds is the

animation of the avatar. In this context methods of markerless face motion capture

are called for.

While the active appearance models method has been extensively applied in segmen-

tation and tracking of objects in 2D images, and to some extent in modeling and

synthesis in the 3D domain, the approach persued in this work differs from previous

efforts, by attempting to train a model from sparse 3D face shape data and corre-

sponding 2D textures, thus being capable of synthesizing sparse geometric 3D face

structures from mono-view 2D textures. The approach adopts its name from exactly

this capability and is in this thesis called sparse 2D-to-3D active appearance models.

A such approach is sensible in the application context outlined above, since conveying

emotions via an avatar does not necessarily require a high geometric resolution on

the side of the motion capture. One of the reasons to this is that the avatar face

typically will be constrained by a physically based muscle model, and therefore possible

to configure in considerable detail from a relatively sparse set of face control points.

Thus, the objectives of this thesis are:

• To discuss and summarize the process of facial motion capture

• To describe a means of acquiring 3D face data.

• To describe in particular the application of the proposed sparse 2D-to-3D AAM

method in facial motion capture.

• To show that facial expressions can be captured and conveyed by the method

of sparse 2D-to-3D AAM.

An additional aim of this project is to implement a modular framework for further

research and exploration of sparse geometry 3D facial motion capture.

While motion capture in general can be described as the task of capturing the position

and orientation of the more or less rigid structures of the human body, facial motion

capture is in this project defined as the process of capturing human facial expressions.

The position and orientation of the face as a whole is not considered.

1.2 Thesis Overview

This thesis is structured into three parts. The content of each part is summarized

here.
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Part I Theory

This part provides a theoretical background for appreciating the work of this thesis.

Stereopsis, active appearance models, and animation techiques are presented.

Part II Implementation

The implementation part is is constituted by detailed descriptions of the contributions

of the thesis. These are:

• a stereo face image database

• a stereo annotation tool

• the 2D-to-3D extension of the AAM approach to geometry synthesis

• an animation front end to the motion capture framework

The part is concluded by a test section.

Part III Discussion

In this part the contributions of the thesis are discussed and propositions for future

work are presented.

1.3 Mathematical Notation

Unless other is specified, the following mathematical notation conventions are used

throughout this thesis:

Scalar values are denoted ny lower-case Latin or Greek letters:

x

Vectors are denoted by lower-case, non-italic bold Latin or Greek letters.

x = [x1, x2, ..., xN ]

Matrices are denoted by capital, non-italic, bold Latin or Greek Letters:
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X =

[
a b

c d

]

The mean vector of a specific data set is denoted by lower-case, non-italic, bold Latin

or Greek letters with a bar:

x





Chapter 2

Related Work

Facial motion capture is an area that exists in the nexus of computer vision and

animation. Combining expertice and techniques from both domains the synthesis of

3D facial geometry from images has become increasingly realistic over the last few

decades.

Already Charles Darwin dealt with the human facial expressions in his publication The

expression of emotions of man and animals from 1872 [8]. More than 100 years later,

in 1978, Ekman and Friesen published their work on the Facial Action Coding System

(FACS) [9], which decomposed all facial expressions into a set of primitives or action

units. The work has been of profound importance to the human facial expression

analysis and synthesis methods developed since, and hence, to facial animation.

Also during the 1970’s, Frederic I. Parke did his pioneering work in the area of 3D

computer facial animation. Among other things, he produced the first parametric

facial 3D model in 1974 [16].

In 1980, a master thesis [18] published that included one of the first descriptions of

physically based muscle controlled facial animation. Muscle simulation in animation

has later been further developed (e.g.[22]) and has become one of the standard

animation methods used today.

The animation short film Tony de Peltrie from 1985 was a landmark in 3D facial

animation. The 3D facial animation in it, was based on photogrammetric digitization

of human facial expressions, i.e. multiple view photos were used to determine the 3D

surfaces of human actors’ faces. Other landmarks in 3D facial animation has been

Tin Toy(1988) from Pixar animation studio and Casper the Friendly Ghost(1995),

and more recently The Matrix Trilogy.

7
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As it appears, technology has been a key driver in the development of 3D animation

techniques. In 1990, Cyberware Laboratory introduced their optical laser scanner,

which made high resolution 3D data sets of human faces available on a commercial

basis. This technology has since been a corner stone of face synthesis in the movie

as well as in the game industry.

Laser scans from Cyberware was used in Blanz and Vetter’s work on 3D morphable

models (3DMM) from 1999 [3]. The morphable models method relies on parameter-

ized 3D shape and texture models to synthesize faces, either from image examples

of existing faces, or by controlling the model parameters to create entirely new face

instances.

Blanz and Vetters method belongs to the family of deformable template models. This

family includes the active appearance model method (AAM) developed by Cootes and

Edwards [6]. The method carries a large resemblance to the 3DMM but makes the

parameterization more compact by combining the shape and model parameters into a

single appearance model. Though the AAM algorithm in principle is applicable in an

arbitrary number of dimensions, it is designed for 2D and has mainly been explored

in the context of 2D segmentation in images [7], [21].

One of the efforts to extend AAM to 3D was done in [23]. The approach is called

combined 2D+3D AAM and uses a non-rigid structure-from-motion algorithm to

extract 3D information from the 2D training shapes. It is shown that the combined

2D+3D AAM can represent anything that the 3DMM can.

A very interesting approach that combines computer vision and animation methods

was developed in [13]. By aligning a graphical 3D face puppet controlled by muscle

and anthropometric parameters to training face images, a correspondance between

the image domain and the 3D puppet domain is built into the AAM.

For a further introduction to motion capture and animation’s hand-in-hand develop-

ment, refer to [5].
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Chapter 3

Stereo Imaging

3.1 Overview

Stereopsis allows humans to perceive depth in a scene. This ability is mimiced in

computer vision by a variety of algorithms and mathematical methods. In this chapter

the geometrical framework of stereopsis is established. In that process the camera

model, perspective projection and epipolar geometry is explained. It is shown how

3D coordinate data can be derived from a calibrated stereo camera.

3.2 The Camera Model

3.2.1 The Pinhole Camera

In its most simplified form, a camera can be described as a box with an infinitely

small hole, called a pinhole, in it on the one side and a translucent plate on the

opposite side. The image is formed by light rays emitted from the scene, entering

the pinhole, and passing the translucent plate. As the light rays in this ideal and

constrained scenerio are not bent by any forces, it is assumed that the rays propagate

along straight lines. The image will display only the part of the scene that is placed

within a view cone extending from the pinhole and out into the scene. The conical

angle is determined by the size of the translucent plate and by the distance between

the translucent plate and the pinhole. This distance is called the focal length of the

camera. The translucent plate is from hereon referred to as the image plane. In

Figure 3.1 the pinhole camera model is depicted.

11



12 CHAPTER 3. STEREO IMAGING

The formulation of the pinhole camera is extended geometrically as follows. A co-

ordinate system (O, i, j,k) is attached to the pinhole model. O is the origin of the

coordinate system and coincides with the pinhole. The basis vectors i, j, k form

the 3D space in which the camera is located, where i and j form a plane parallel

to the image plane, R. The image plane is located at a positive distance, f , from

the pinhole. The line perpendiclur to the image plane and passing through the pin-

hole is called the optical axis, and the point, C, where the optical axis pierces the

image plane is called the image center and is often used as the origin of the image

coordinate system.

f

j

k

i

R

C

P

p

O

Figure 3.1: Pinhole camera model.

3.2.2 Perspective Projection

It is well known that on an image of two parallel lines extending towards the horizon,

the lines will appear to intersect at the horizon. Put in another way, distances seem

smaller, the further away they are from the spectator. This is what we call perspective.

A set of equations expresses the perspective projection of 3D points onto a 2D image.

Let P = (x, y, z) be a point in the scene, and p = (x′, y′, z′) be a point in the image.

The depth, z′, of the image plane is uniform and equal to the focal length, f . Since

P , O and p are colinear,
−→
Op =

−−→
λOp for some number λ. Hence, the projected point

in the image is

x′ = λx

y′ = λy

z′ = f = λz

⇐⇒ λ =
x′

x
=

y′

y
=

f

z
(3.1)

and therefore
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x′ = f
x

z

y′ = f
y

z

(3.2)

3.2.3 Intrinsic Parameters

Since the pinhole is a point, exactly one light ray will pass through it and hit the

translucent plate for each scene point within the camera view. However, no such thing

as a hole the size of a point exists, and in the world beyond that of mathematics, we

are forced to replace the non-existing point hole with an optical lens. Not surprisingly,

this introduces various sources of imperfection.

For digital cameras the image plane is partitioned into pixels. In the following this

plane is referred to as the digital image.

The pixels are generally rectangular but not necessarily square. Therefore a set of

scale parameters, k and l, one for each image dimension, is introduced. The unit of

the scale parameters is pixel
meter .

Let a pixel have the digital image coordinates (u, v) in pixel units. Considering the

scale parameters, the image coordinates can be transformed from the (x′, y′) positions

of the pinhole camera into pixel units.

u = kf
x

z

v = lf
y

z

(3.3)

Generally, the origin of a digital image coordinate system is the top or bottom left

corner, and not the image center as defined for the pinhole camera above. In addition

to being scaled, the image coordinates therefore need to be translated by a value

corresponding to the digital image center. If the digital image center is C = (uc, vc),
then the digital image coordinates in pixels units become

u = kf
x

z
+ uc

v = lf
y

z
+ vc

(3.4)
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The final intrinsic parameter to consider, when disregarding lens distortion, is skew.

The skew, S, is defined as cosine to the angle between the digital image axes, which

due to manufacturing errors is not always 90◦.

u = kf
x

z
− kf cot(θ)

y

z
+ uc

v =
lf

sin(θ)
y

z
+ vc

(3.5)

Now, if a point in a normalized image plane, parallel to the pinhole camera image

plane but with unit focal length, is defined as follows

û =
x

z

v̂ =
y

z

(3.6)

and the homogenous vector p̂ = (û, v̂, 1)T , then Eq. (3.5) can be expressed as a

linear transformation between the normalized image and the digital image.

p = Kp̂, where p =




û

v̂

1


 and K =




kf −kf cot(θ) uc

0 lf
sin(θ) vc

0 0 1


 (3.7)

Next, consider how the normalized image point p̂ can be expressed in terms of the

scene point P = (x, y, z)T .

p̂ =
1
z

(
Id 0

)(
P

1

)
(3.8)

Combining Eq. (3.7) and Eq. (3.8) allows for a system describing the entire transfor-

mation from scene point to digital image point

p =
1
z

(
K 0

)(
P

1

)
(3.9)

In homogenous coordinates the perspective projection matrix is
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M =
(

K 0
)

=




kf −kf cot(θ) uc 0
0 lf

sin(θ) vc 0
0 0 1 0


 (3.10)

3.2.4 Extrinsic Parameters

Having established the notion of a perspective projection matrix we are ready to

extend this to involve extrinsic parameters as well. The extrinsic parameters H are,

as the name suggests, a set of parameters describing to the camera’s relation to the

world outside itself, to be more exact, the camera’s position in the world.

H =

(
R t
0 1

)
(3.11)

where R is the rotation matrix aligning the camera’s coordinate system with the

world’s coordinate system, and t is the translation vector that moves the optical

center of the camera to the world origin.

Combining M and H leads to the general formulation of the perspective projection

matrix, M.

M = M·H (3.12)

3.3 Stereopsis

Obtaining 3D data from images requires several images taken from more than one

position. No depth information is available from a single image, but with at least two

images taken from different positions depth information becomes available through

triangulation. Multiple images from different positions will constrain the 3D structure

of the pictured scene. In the case of stereo vision the contraint is called the epipolar

constraint (see Section 3.3.2). The epipolar constraint is used in the calibration of a

stereo view.

3.3.1 Calibration

The goal of calibration is here to estimate both cameras’ positions and orientations

in the world and their internal distortion parameters, which is exactly the extrinsic
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and intrinsic parameters described in Section 3.2.4 and 3.2.3.

Calibration of a camera is essentially an optimization process, that minimizes the

difference between the observed image features and their predicted positions, with

respect to the intrinsic and extrinsic parameters. It is not in the scope of this thesis

to go into the details of calibration, which is a vast field of research that has resulted

in a myriad of different methods. For an introduction to calibration approaches refer

to [10].

Having a calibrated stereo camera it is possible to obtain 3D information about

the scene points that are included in both images. A common approach to this is

rectification. Rectification can be understood as the warping of one image into the

coordinate frame of the other. The purpose is to align the image data such that

corresponding scene points are placed on the same row in the pixel matrix. In the

following section rectification and its basis in epipolar geometry is introduced.

3.3.2 Epipolar Geometry

Consider a stereo rig composed by two pinhole cameras as shown in Figure 3.2. Cleft

and Cright are the optical centers of the left and right cameras, respectively. A scene

point P is projected onto both image planes, to points pleft and pright. The points

pleft and pright are said to constitute a conjugate pair.

P

Cleft Cright

pright

pleft

Eleft
Eright

H

Figure 3.2: Epipolar geometry.
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The optical ray of pleft is the halfline going from Cleft through P . It is clear that

pleft may be the 2D projection of any scene point along the optical ray of pleft.

However, the optical ray of pleft helps constrain the position of its conjugate point

on the right image in the following way: If a plane, H, is formed by the optical ray

of pleft and the baseline, B, which is the line going from Cleft to Cright, then the

intersection of this plane and the right image is called the epipolar line of pleft. The

conjugate point of pleft in the right image, pright, is constrained to lie on the epipolar

line of pleft.

All the epipolar lines in one image plane pass through a common point, E, called the

epipole. The epipole of an image plane is the projection of the optical center of the

other camera onto the image plane.

3.3.3 Rectification

The focal plane of a camera is the virtual plane parallel to the image plane that

contains the optical center. When Cleft is in the focal plane of the right camera, the

right epipole is at infinity, and the epipolar lines form a bundle of parallel lines in the

right image.

A special case is when both epipoles are at infinity. That happens when the baseline,

Cleft Cright, is contained in both focal planes, i.e., the image planes are parallel to

the baseline. Epipolar lines then form a bundle of parallel lines in both images. Any

pair of images can be transformed such that epipolar lines are parallel and horizontal

in each image. This transformation is called rectification [11].

Having a calibrated stereo rig, that is, knowing the perspective projection matrices

Pold1 and Pold2 of the two cameras, rectification is basically the process of defining

two new projection matrices Pnew1 and Pnew2 . The new projection matrices are

obtained by rotating the old ones around their optical centers until the focal planes

becomes coplanar, thereby containing the baseline. This ensures that the epipoles

are at infinity and epipolar lines are parallel.

To align the epipolar lines horizontally, the baseline must be parallel to the new x-axis

of both cameras. In addition, conjugate points must have the same vertical coordi-

nate. This is obtained by requiring that the new projection matrices have the same

intrinsic parameters. For an algorithmic mathematical description of rectification

refer to [11].

3.3.4 Triangulation

On a pair of rectified stereo images, the depth of a scene point, P , can be calculated

by triangulation, if the conjugate pair {pleft, pright} of P ’s projection onto the two
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image planes, is known. In the following section the triangluation equation is derived.

Remember, that the optical ray of an image point is the halfline starting at the

camera’s optical center, C, and going through P . The linear extrapolation of the

optical ray in the opposite direction of P will pass through the image point itself.

Hence, two points on each linear extrapolation of the optical rays are known: the

optical center and the image point.

P

C rightC left

B
f

x-axis

z-axis

p left p right

Figure 3.3: Triangulation coordinate system.

Since it is known that the left and right image points are horizontally aligned (due to

rectification), the y-dimension can be disregarded. Thus, the points can be considered

as being two dimensional, with an x- and a z-component.

By convention the optical center of the left camera is set as the origin of the triangu-

lation coordinate system, with the optical axis aligned to the z-axis. The translation

between the optical centers of the two cameras is denoted B, and is one dimensional

(along x-axis only).

Since the images are rectified they have identical intrinsic parameters, including focal

lengths. The z-components of the image points are equal to the focal length, f , of

the cameras.

If dleft and dright are the distances between the optical centers and the projections

of P in the left and right image, respectively, then the disparity of a rectified stereo

view is defined by d = dleft − dright. Now the two points on each optical ray can be

defined:
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Cleft = (0, 0) pleft = (dleft,−f).
Cright = (B, 0) pright = (B + dright,−f).

(3.13)

As a straight line is fully defined by two points on the line, we can find the optical

rays of the two cameras:

aleft =
−f − 0
dleft − 0

bleft = 0 (3.14)

aright =
−f − 0

(B + dright)−B
bright =

f

dright
B (3.15)

The two optical rays in the xz-plane are thus given by:

z =
−f

dleft
·x (3.16)

z =
−f

dright
·x +

f

dright
B (3.17)

Now, the depth of P can be obtained by calculating the crossing point of the two

optical rays. Setting the two expressions equal yields:

z =
−f

dleft
x =

−f

dright
x +

f

dright
B ⇔

x·
(
−f

dleft
+

f

dright

)
=

f

dright
B ⇔

x·
(
−f · dright

dleft· dright
+

f · dleft

dleft· dright

)
=

f

dright
B ⇔

x·
(
−f · dright + f · dleft

dleft· dright

)
=

f

dright
B ⇔

f
dright

·B· dleft· dright

−f · dright + f · dleft
= x ⇔

f ·B· dleft

f · dleft − f · dright
=

B· dleft

dleft − dright
= x

(3.18)

The result of (3.18) is inserted into the equation for the left line (3.16):
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z =
−f

dleft
· B· dleft

dleft − dright
=
−f ·B

d
(3.19)

It is instructive in this way to understand the relationship between the image points

and the scene point. The result derived in Eq.(3.19) for z can, together with simular

results for the x- and y-coordinates of P , be collected in a so-called reprojection

matrix.

3.3.5 Reprojection

An image point, p, of the left image can be reprojected out into 3D space if the

disparity d is known. The reprojection matrix is defined by Q.

Q =




1 0 0 Cx

0 1 0 Cy

0 0 0 f

0 0 − 1
B 0


 (3.20)

If the image point is arranged in a homogenous vector together with the disparity,

the 3D point is

P =




X

Y

Z

W


 =




1 0 0 −Cx

0 1 0 −Cy

0 0 0 f

0 0 − 1
B 0


 ·




x

y

d

1


 (3.21)

where the actual 3D point is X/W , Y/W , Z/W .

3.4 Facial Features

A prerequisite for calculating the 3D position of an image point is of course to find

the conjugate point in the other stereo image. This problem is known in stereopsis

as the correspondance problem [10]. As described in above the epipolar geometry

constrains the search for a conjugate point. A point in the second image will be

located on the epipolar line of its conjugate point in the first image, and vice versa.

In the special case of rectified images where the epipolar lines are aligned with the

image baseline and conjugate point pairs have the same y-coordinate, the correspon-

dance problem is reduced to a template matching problem in the second image along

the row of the point in the first image. To accomdate template matching, points
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of high curvature, or texturedness, are preferrable as feature points [20]. See Figure

3.4.

Figure 3.4: Four typical feature points around an eye. The points are of relatively
high curvature compared with surroundings.





Chapter 4

Active Appearance Models

4.1 Overview

AAM is a statistical learning method, trained on instances of a certain class of non-

rigid (or rigid) objects, here faces. It works by fitting a parameterized model to an

image of certain type of object by an optimization search. The goal of the search

is to reach a parameterized description of the object in the image. AAM belongs to

the family of deformable template models, and can be understood as a method of

advanced template matching.

After a brief introduction to the concepts of shapes, this chapter explains AAM in

three sections of the method’s overall steps:

1. Alignment of shape data

2. Generation of a statistical parameterized model from the data

3. AAM search, the actual ”template matching” procedure.

The AAM method is designed for the purpose of image segmentation and its general

formulation therefore applies to two dimensions. But though the method here is

described for 2D face modelling, it should be noted that it, at least in principle, is

valid for in any type of object, in any number of dimensions [7].

23
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4.2 Shapes

A 2D shape is defined, in this work, as the 2D vertices and edges that describe

the spatial structure of an object. In theory, the number of vertices and edges may

be infinite, while practically, vertices are chosen such that they optimally, by some

measure, at some level of resolution, describe the shape.

Dealing with shape classes, in this thesis human faces, landmarks are introduced. In

general, landmarks, or feature points as they are often called, are points of high cur-

vature, as described in Section 3.4. Furthermore, landmarks correspond semantically

over all instances of the class. For triangles landmarks might be the triangle corners,

for faces they could be eye corners, mouth corners, points along the eye brows and

so on.

Note here, that shapes thus can describe both rigid and non-rigid objects as long as

the landmarks are consistent within the shape class. In the framework of AAM this

implies, that a model trained on frontal face shapes are capable of describing faces

where all frontal face landmarks are visible but not, say, profile face shapes.

Figure 4.1: A face image with landmarks and shape plotted onto it.

Mathematically, a 2D shape can be described by a vector, xi, concatenating the x-

and y-coordinates of the landmark point data:

xi = [x1, x2, · · · , xN , y1, y2, · · · , yN ] (4.1)

where N is the number of landmarks in the shape.
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4.3 Shape Alignment

In geometry shapes are usually considered to be independent of translation, rotation

and scale [4]. That is, two shapes are the same, if one of them, by any combination

of translation, rotation and scaling, can be transformed into the other. To obtain a

model from a set of shapes some normalization is initially called for. For this, AAM

adopts the method of Procrustes analysis.

Procrustes analysis is a method of statistical shape analysis that can be used to align

shapes. It does so by removing the translation, rotation and scaling components.

Aligning two shapes using the Procrustes metric takes the following steps:

• 1. Translate each shape by subtracting the shape’s center of gravity (COG)

from all N points i in shape.

(x′i, y
′
i) =

(
(xi − x), (yi − y)

)
(4.2)

where

(x, y) =
(

1
N

∑

i

xi,
1
N

∑

i

yi

)
(4.3)

• 2. Scale each shape, xk, to unit size by L2-norm.

(x′′i , y
′′
i ) =

1
|xk|(x

′
i, y

′
i) (4.4)

where

|xk| =
√∑

i

(
x2

i + y2
i

)
(4.5)

Removing the rotation component between two shapes is a bit more complex. The

following technique, using singular value decomposition (SVD), was suggested by [4]:

• 3.1. Arrange two shapes, x1 and x2 , normalized as described in step 1 and 2,

in two N x 2 matrices.

• 3.2. Calculate the SVD of xT
1 x2,VDUT

• 3.3. The rotation matrix that optimally superimposes x1 upon x2 is then:
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VUT =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.6)

To align a set of shapes the following iterative approach was suggested by [21]:

• 1. Choose a shape arbitrarily to be an estimate of the mean shape.

• 2. Align each remaining shape to the mean shape by the steps described above.

• 3. Re-calculate the mean estimate from the aligned shapes.

• 4. If first iteration, then the orientation of the new mean estimate is corrected,

such that the rotation of the training shapes in order to be aligned with the

new mean estimate is on average zero.

• 5. Subtract the new mean estimate from the old mean estimate. If difference

is above threshold go to 2.

4.4 Statistical modeling

The AAM method relies on a parameter model that can describe intra-class shape

and texture variations. The core part of building an appearance model is principal

component analysis (PCA). The PCA performs an Eigen-analysis of the covariance

matrices of the aligned training shape vectors and of the textures defined by the

shapes in the training images. The Eigenvectors obtained in the analysis thus describe

the shape and texture variations. Distinct PCA’s are performed on shape and texture

data, followed by yet a PCA on the combined shape and texture models.

4.4.1 Shape Model

If xk is a shape vector of length N and M is the number of shape samples from a

class, then this set, or collection, of training shapes can be described by an N x M

matrix

S =
[
(x1 − x)(x2 − x) · · · (xM − x)

]
, where x =

1
M

M∑

k=0

xk is the mean shape

The covariance of the shape data set is then expressed by the N x N matrix Σs =
1
N SST . Eigen-analysis of Σs concludes the principal component analysis:
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ΣsΦs = Φsλs (4.7)

Φs and λs are the shape collection’s Eigenvectors, organized as columns in a ma-

trix, and Eigenvalues, placed on the diagonal of a diagonal matrix, respectively. The

Eigenvectors represent a new N -dimensional orthogonal basis for the shape data,

where the variance is maximized. Each dimension in the new basis optimally repre-

sents the modes of shape variation within the training set. The Eigenvalues quantify

the variance and thus the significance of their corresponding Eigenvectors.

As a shape belongs to a certain class of objects a great degree of redundancy can be

expected. By ordering the set of Eigenvectors according to their respective Eigenval-

ues and discarding Eigenvectors with close to zero significance, the dimensionality of

the new space is likely to be substantially reduced. This dimensionality reduction is

treated further in the section 4.4.2. For now, consider how a new shape instance, x,

can be generated by applying an N -dimensional parameter vector, bs:

x = x + Φsbs (4.8)

The parameters, bs, can be interpreted as weights determining how much each of

the shape modes should be present in a new instance of the model.

4.4.2 Texture Model

In the framework of AAM, a texture is defined as the set of pixel intensity values

across the object framed by the shape landmarks. As with the shape, the texture

variations can also be modeled using PCA. The steps towards obtaining a vector

describing the texture of an object are somewhat more intricate than for shapes,

since such a vector must be spatially consistent over all training images. For this

purpose warping is used.

Warping is basically a transformation of one spatial configuration into another. One

way of establishing a spatial reference between the training samples is by Delaunay

triangulation of the landmark points in each image. By superimposing a mesh of

triangles upon the texture, the position of each pixel can be described as a weighted

linear combination of the three landmarks that constitute the triangle that surrounds

the pixel.

By warping the textures of all objects into one reference mesh, a set of spatially

consistent, shape-normalized, textures is obtained. This allows calculating the mean

and variance statistics. For more on warping refer to [21].
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Figure 4.2: Two Delaunay triangulated meshes used for texture warping. (Note
that, the example here is based on a different point annotation model than the
one generally used in this project).

Each texture is organized in a vector of size K, where K is the number of pixels

inside the area covered by the reference shape. By subtracting mean and inserting all

texture vectors into a K x M matrix, G, where M is the number of texture samples,

PCA can be applied in a straight forward manner as described for the shapes, refer to

Section 4.2. The result is an orthogonal basis matrix, Φg, of texture intensity modes

that can be controlled by a parameter vector, bg:

g = g + Φgbg (4.9)

where g is the mean texture.

As the number of pixels in a detailed texture will not be small, the dimensionality of

the texture space is often considerably higher than the number of sample textures. In

this case the Eckart-Young theorem can be applied, to greatly reduce the dimension-

ality. The trick of the Eckart-Young theorem lies in the calculation of the covariance

matrix Σg. Having a matrix, G, of dimensions K x M , Σglarge
= 1

M GGT will be

of dimension K x K. Instead one can calculate Σgsmall
= 1

M GTG, of dimension M

x M . The Eckart-Young theorem then shows that

Σglarge
= GΣgsmall

(4.10)

4.4.3 Combined Model

To further remove redundancy and to combine the shape and texture models into one

compact parameterized appearance model, yet a PCA is applied. This time the PCA

is performed on the parameter vectors, bs and bg, describing the training objects. A
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new orthogonal basis, Φc, that can be controlled by a parameter vector, c, is thus

obtained:

b = Φc· c (4.11)

To compensate for the difference in units between the parameter vectors (one being

in 2D coordinates, the other in grayscale intensity values), a weight matrix, Ws is

multiplied with the shape parameters, bs. The complete model can be described in

the following fashion:

b =

(
Wsbs

bg

)
=

(
WsΦT

s (x− x)
ΦT

g (g − g)

)
=

(
Φcs

Φcg

)
· c = Φc· c (4.12)

A straight forward way of estimating the weight, Ws, is proposed by [21]. The weight

should normalize the ranges of the pixel coordinate values and the pixel intensity val-

ues. This range information is described by the variances, which is already calculated

above, as the Eigenvalues of the shape and texture data. Hence, we have

Ws = r· I, where r =
λg

λs
, λg =

∑

i

λgi , λs =
∑

i

λsi (4.13)

For any given set of model parameters, c, the shape and texture can now be generated

by

x = x + ΦsW
−1
s Φc,s · c (4.14)

and

g = g + ΦgΦc,g · c (4.15)

Where

Φc =

(
Φc,s

Φc,g

)
(4.16)

This completes the AAM model description. In the next section the AAM optimiza-

tion search is considered.

4.5 AAM Optimization

Finding a shape of a certain class in a new image is an optimization problem. The

objective is to minimize the difference between the input image and the texture
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instance synthesized by the AAM model. To accomodate this, a difference vector is

defined:

δg = gi − gm (4.17)

Here gi is the vector of grayscale intensity values of the region in the input image that

is covered by the current model shape, and gm is the vector of grayscale intensity

values of the current model texture. See Figure 4.3.

Figure 4.3: An AAM model instance. The goal of the AAM optimization is to
minimize the difference between the model texture and the image texture covered
by the model shape.

Since each attempt to fit the AAM model to a new input image follows the same

optimization procedure, Cootes [7] proposes that a prediction model that governs

the adjustments applied to the AAM model parameters for a better fit, can be built

offline from the training data.

4.5.1 Offline Parameter Prediction Optimization

Fitting a model to an object in an image, it is assumed that a linear relationship

exists between the needed adjustments in model parameters, δc, and the error, δg.

Cootes show in [7] how this is a valid assumption. The relationship is expressed by
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δc = R· δg (4.18)

As an AAM model instance is composed of both its model parameters, c, and its

pose, t, including position, scale and rotation, the above assumption of linearity is

extended to both these domains.

Hence, two models must be built: One, describing the relationship between the

change in pose parameters of the model instance, δt, and δg. This model is denoted

Rt. The other, describing the relationship between the change in model parameters,

δc, and δg. Thi model is denoted Rc.

To build the Rt and Rc prediction models, a set of experiments is conducted. Each

experiment consists of displacing and deforming the AAM model by applying known

changes to the pose and model parameters. An in-depth treatment of the generation

of the prediction model [21] .

4.5.2 Iterative Model Refinement

Applying the AAM model on an input image stream will return an estimate of the

shape and texture parameters for each frame. The procedure is described in the

following.

Given an input image and some prior initialization step, an estimate of a model

instance, c0, is found in the image. By applying Eq. (4.14) and Eq. (4.15) a the

shape and texture of c0 are calculated. The image is then sampled over the area in

the image covered by the shape of c0. By subtracting the sampled texture by the

texture of c0, the difference vector, δg0, is calculated. Using δg0 and the prediction

model, Rc and Rt, we can predict the displacements, δc and δt, that will optimize

the model fitness to the image.

Below, a sequence of steps summarize how the optimization is done for the model

parameters. A simular sequence applies to the pose parameters.

1. Evaluate the difference vector δg0 = gs − gm

2. Evaluate the current error E0 = |δg0|2

3. Compute the predicted displacement, δc = Rcδg0

4. Set k = 1

5. Let c1 = c0kδc

6. Sample the image at this new prediction, and calculate a new difference vector,

δg1
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7. If |δg1|2 < E0, then accept the new estimate, c1

8. Otherwise try at k = 1 : 5, k = 0 : 5, k = 0 : 25 etc.

The above steps are performed iteratively until no improvement is observed in the

model fit.

In Figure 4.4 an example of an AAM search is shown. It is seen how the textured

shape is fitted to an input face image over several iterations.

Figure 4.4: Six iterations of an AAM search.



Chapter 5

3D Facial Animation

5.1 Overview

The goal of facial animation is to manipulate the surface of a graphic face represen-

tation over time, such that desired facial expressions appear. This chapter gives a

brief introduction to the basics of facial surface modeling and introduces a group of

facial animation techniques known as performance animation, where face animations

are directly or indirectly are controlled by human actors.

5.2 Face Modeling

The geometry of a 3D face model and the models animation capabilities are insepara-

bly intertwined. The actions that a model must perform determines the face models

geometric structure. The most common representation of 3D graphic objects is by

Polygonal surfaces. Other ways of describing graphical surfaces include implicit and

parametric surfaces.

The polygonal topology refers to the way the polygons of a surface are connected.

The topology may be either in the form of a regular mesh or as an arbitrary network,

see Figure 5.1. In a regular mesh the polygon vertices are aligned in rectangular

arrays, in an arbitrary network the polygons are connected as needed for a given

modeling or animation purpose.

Developing a face topology, one must consider the following [15]:

• Polygon structure must allow natural face-like flexibility

33
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Figure 5.1: Example of a polygonal surface. The topology is an arbitrary mesh
structure.

• Areas of high curvature need high density of polygons to define the surface

• Areas that communicate emotional information, especially mouth and eye sur-

roundings, must be carefully structured to allow detail

• Polygon edges must coincide with natural creases and color boundaries of face

• Polygon structure must be symmetric

• Use the smallest number of polygons consistent with a satisfying result

5.3 Facial Animation

Animation of a face is the process of, directly or indirectly, manipulating the position

of the polygons’ vertices over time. Several methods exists for this purpose.

In parameterized animation, a set of parameters control the facial expressions. The

tools that implement this type of animation will often represent the parameters as

a set of sliders, that can be adjusted by the animator to obtain the wanted expres-

sion. Another commonly used approach is muscle based animation, where a physical

model describes the relation between muscles and the face surface. Specifying how

each muscle expand and contract, the vertices of the skin can be manipulated. The
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probably most widely used method used in animation is interpolation between key-

expressions. The positions of all vertices are specified for a set of key-frames. After

that, a facial expression can be generated by interpolating the key-frames, i.e. inter-

polating the positions of the vertices in the key-frames.

5.3.1 Performance Animation

In this project a fourth method called performance animation is considered. Per-

formance animation relies on information obtained by measuring human actions, for

instance via a camera. The information retrieved is then used to control the graphic

character. The method is also referred to as digital puppetry.

By making a correspondance between the neutral expression of a human puppeteer

face and the neutral expression of a graphic puppet face, the graphic face can be

controlled. In 11.3 a such correspondance can be seen.

A mapping of extracted human face landmarks to corresponding points in the graphic

face can be set up. However, as the number of landmarks retrieved from the human

face is likely to be much smaller than the number of vertices comprising the graphic

face, a 1-to-many correspondance is established. A damping factor can be applied

to the vertices associated to a certain feature point, based on their distance to the

vertex directly corresponding to the feature point [15].

Now, to capture the performance of the human actor, the displacements of the

human face landmarks relative to their neutral starting points can be recorded. These

displacements are used to perform corresponding displacements of the vertices in the

graphic face.

Performance animation techniques have merged into the field more generally known

as motion capture. Motion capture is increasingly applied in the animation and com-

puter game industry, mainly because it saves production time. The motion capture

animation techniques often relies on physical models of muscles and skin to both

constrain and provide the proper degree of realism/exaggeration in the facial expres-

sion. Physically based muscle controlled animation has not been considered in this

project. For a classic article on the subject, refer to [22].
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Figure 6.1: Face motion capture pipeline. Entities marked by a red outline either
part of the motion capture framework software, or produced by it

In this part of the thesis, the implementational details of the face motion capture

39



40 CHAPTER 6. INTRODUCTION

framework established are treated in detail. The description is partitioned into a series

chapters describing the framework pipeline. Ths pipeling is illustrated in Figure 6.1.

Three distinct pieces of software have been produced to establish a complete motion

capture framework. First, an annotation tool by which 3D data can be obtained from

stereo images has been implemented in Matlab. Second, to build a parameterized

model from the 3D data for the purpose of 3D face motion capture, an implementa-

tion of the proposed sparse 2D-to-3D AAM method was realized as a modification of

the open source AAM-API project [21] written in C++. Finally, to visualize and test

the output of the motion capture, an animation program was written in C++ with

the use of OpenGL. To communicate between these modules a file format containing

3D shape information has been defined. The file format is named .asf3d and is based

on the .asf format of the AAM-API.

In Figure 6.1 the the overall pipeline of the motion capture framework can be appreci-

ated. Entities in the diagram that are marked by red are either part of the framework

software, or produced by it. The four main entities are a stereo annotation tool,

a statistical model building program, a 2D-to-3D AAM geometry synthesizer, and

finally, a 3D face animation front end.

The main entities receive inputs external to the framework (image, video, and face

puppet data) as well as inputs internal to the framework (i.e. files produced by com-

ponents of the framework itself). To communicate between the framework entities

two file formats are used. Before going into the details of the implementation of the

main entities, it is appropriate to describe the how they are interfaced by the two file

formats.

However, the first chapter of this part concerns the stereo face image database built

to provide the data needed for a 2D-to-3D AAM model construction.



Chapter 7

The Stereo Face Image database

7.1 Overview
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Figure 7.1: Context diagram of face database

In the computer vision research community a variety of face databases has been

built over the years. Their purpose has been to support research in a range of areas

such as face recognition, pose estimation, face synthesis and emotion analysis. From

these databases statistical models can be built and tested, within certain constrained

scenarios.

To build a statistical model capable of describing 3D facial expressions one needs a

set of training data containing the variation that needs to be synthesized. Currently

a few 3D datasets exists, but none of them provide sufficient variation in the facial

expressions to be usable in this project. It has therefore been decided to enrich the

world of computer vision with yet a face database, be it a pretty small one of the

kind.
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7.2 Description of the Image Data

The stereo images used for this project are captured using a 640 x 480 pixel stereo

camera of type STH-DCSG-STOC-C from Videre Design. The camera has no zoom-

ing capability but focus can be adjusted manually for each of the two camera lenses.

A stereo image consists of a pair of images, conveniently called a stereo image pair,

see Figure 7.2. The two images are refered to as the left view and right view image.

For many purposes one of the images is defined as the reference image, conventionally

this is the left view image.

Figure 7.2: An example pair of stereo images from the database.

The stereo images have been captured over several sessions where no effort was done

in optimizing lighting conditions. Three human face models were used, all male

and of age 20-30 years. The face models were positioned with their face fronting

the stereo camera at a distance of 40-50 cm. They were asked to perform a series

of six facial configurations, expressing joy, sadness, fear, anger, surprise, disgust,

plus a seventh neutral facial expression. The six former expressions are defined

in psychological research as the six universal facial expressions [9], i.e. they are

consistent and recognizable across cultures. They were chosen for this database

because of this property.

As the most expressive parts of the human face are eyes, mouth and eyebrows, it

was important to have substantial variation in these face regions over the series of

expressions. The face models were therefore asked to interpret the six emotions in

exaggerated facial expressions. The face models should ideally be actors, trained

in conveying emotions through their face. Unfortunately, resources for this project

allowed only models recruited from nearby laboratories.

With Videre Design’s stereo cameras comes a software tool called Small Vision Sys-

tem (SVS). SVS provides GUI interfaces for calibration and image capture. It per-

forms rectification and outputs an .ini file with the calibration parameters, including

projection and rectification matrices. The .ini files are included in the face database.



7.2. DESCRIPTION OF THE IMAGE DATA 43

Figure 7.3: Three interpretations of surprise.





Chapter 8

Interface Formats

8.1 Overview

This chapter introduces the two file formats, .amf and .asf3d, that are used to

interface the main entities of the implemented motion capture framework.

8.2 The .amf file format
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Figure 8.1: Context diagram of .amf file.

The .amf file is a binary file that carries the information produced by the model-

ing program that is needed to synthesize a model instances during tracking. This

information includes the model eigenspace, parameterized mean shape and texture,

parameter prediction matrices and more.
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Figure 8.2: Context diagrams of .asf3d training and control files.

8.3 The .asf3d file format

The .asf3d file is a text file defining the interface between the annotation tool and

the AAM model building entities, and between the AAM tracking and the animation

entities. In doing so the .asf3d file constitutes a cornerstone of the framework, and

the entities are designed to comply with the data format defined by the file.

The format is a 3D extension of the 2D .asf format defined in the AAM-API [21]. The

normalized x- and y-coordinates and the un-normalized z-coordinates of a shape’s

feature points are written to this file together with information of the points’ con-

nectivity and the image file association. A 1-to-1 relationship exits between .asf3d

files and images.

Figure 8.3: Example of .asf3d file.
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As seen in Figure 6.1 the file format carries two types of information: training shape

data from the annotation tool to the AAM model building component, and control

shape data from the AAM video tracking to the animation program. In the former

case, one .asf3d file is associated with one of the training images. In the latter case,

one .asf3d file is generated per frame in the video of the human face actor.





Chapter 9

The Stereo Annotation Tool

9.1 Overview
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Figure 9.1: Context diagram of 3D shape data acquisition

An annotation tool has been developed in Matlab. The tool consists of a GUI interface

with access to a directory of stereo image pairs and their calibration parameters. A

point-and-click functionality allows the user to annotate feature points of choice in

one of the stereo images. Subsequently, the corresponding points will automatically

be found in the other stereo image and the 3D points calculated by reprojection and

output to an .asf3d file.

In this project the objective is to build a sparse model that allows control of a virtual

puppet face in order to convey emotions in a more or less abstract fashion. The

assumption is, that the facial expressions embedding the emotions can be encoded,

transmitted and decoded using relatively few data points. As the eye, mouth, and

eyebrows are the most expressive parts of the buman face, these are the regions that

must be modelled by this system.
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Figure 9.2: Screenshot of annotation tool GUI.

Figure 9.3: Image with feature points.

9.2 Feature point correspondance

Feature points are, as described in Section 3.4, points of high curvature. This property

is helpful in stereo vision when one wishes to find conjugate points in a stereo image

pair.
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One approach to finding conjugate points is to cut out a template window around

the feature point in the reference image (by convention chosen as the left image) and

simply move the window along the points’ epipolar line in the right image, looking for

a best match by some similarity measure. Remember that, for horizontally aligned

rectified images, the epipolar line of a point is the row of the point in the other image.

Another approach, that was found to work better than the above, was to perform

the matching in the gradient domain instead of the grayscale intensity domain. One

graycal image produces two gradient images, one for each image dimension. The

best match is then the one that minimizes the dissimilarity, ε, over the compared

image region, over both gradient images:

ε =
∑

W

(Tgx − Igx) +
∑

W

(Tgy − Igy) (9.1)

Here W is the template window. Matrices Tgx, Tgy are the gradient images of the

template cut out from the left image. The matrices Igx and Igy are gradient images

of the entire right image where the conjugate point is searched.

An important question in the case of template matching is how large the template

window should be. Using a larger window yields a more expensive matching procedure

but at the same time it seems intuitive that the robustness of the matching increases

with the window size. In Figure 9.4 it can be seen that this assumption is in general

not true.

Figure 9.4: Two perspectives of the same face image. The area enclosed by the
red square in the left image is used as a template to find the corresponding point
in the right image. The problem is obvious.

The two images of the stereo pair show the face from two different perspectives, not

very different, but still different. Therefore the distances between conjugate scene

features can vary considerably between the two images. This is exemplified in Figure

9.4, where the template window is cut out around a landmark in the left reference
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image. In the right image, at the conjugate point, the template partially covers the

image background. Therefore the landmark in the right image is not likely to be

found.

Some trial-and-error experimentation with the template size, under considerations

such as image resolution and camera-to-object distance, is therefore necessary. For

the particular image material used in this project a template size of 21 x 21 pixels

was found to give the best results.

However, as the matching is by no means perfect, a functionality has been added to

the annotation tool that allows for manual point-and-drag correction of misplaced

correspondance points.

After having obtained conjugate points in both stereo images the points’ 3D position

is calculated by reprojection (see Section 3.3.5). The annotation tool GUI visualizes

these points in its 3D view.

Figure 9.5: Screenshot of 3D view of annotation tool GUI.

Finally, the 3D points are written to an .asf3f file.
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9.3 Assumption of Preserved Aspect Ratio after Projec-

tion

At this point an assumption is introduced, that will simplify the implementation of

the 2D-to-3D AAM. The assumption concerns the training images, which is the left

view subset of the stereo images on which annotations are performed.

The assumption is that the faces in the training images preserve their aspect ratios

in the xy-plane after projection. That is in other words, that the face images are

perfectly frontal and the optical axis passes the face’s center of gravity.

The assumption is made to be able to express the 2D shape coordinates as a subset

of the 3D shape coordinates, namely as the x- and y-components. The reason why

we want the 2D coordinates readily available to the AAM model builder is that they

define which part of the training image to use for the texture model.

The steps of obtaining a 3D shape that contains the annotated 2D shape in its

xy-components are given below:

• Append an extra dimension of zeros to the annotated 2D shape of the left view

training image, making it a flat pseudo 3D shape.

• align the real 3D shape to the pseudo 3D shape using Procrustes alignment.

• Copy the z-component of the aligned real 3D shape into the zero-column of

the pseudo 3D shape.

• Normalize x- and y-components of the updated 3D shape according to left

image width and height.

• Leave new z-component of new 3D shape un-normalized.

Note that the z-component is not immediately normalizable since its range is not

defined.

However, the face images are not perfectly frontal and the aspect ratios are not

preserved after projection. This can be seen in Figure 9.6, where the blue shape is

the 2D shape found by annotating the left view of a pair of stereo images, while the

red shape is the xy-component of the 3D shape found from the same pair of stereo

images. The shapes have been aligned.

The question therefore remains, if the assumption of preserved aspect ratio in the

projected faces is valid by some measure. Since face proportions are likely to vary

substantially over a population, the assumption could be tested by calculating the

likelihoods of the aspect ratios of the 2D shapes within a distribution of aspect ratios
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Figure 9.6: The figure shows an annotated left view stereo image. The annotated
point are shown in blue color. The red color points are those of the 3D shape
which was reprojected from the blue points (and their corresponding points in
the right view image). The 3D shape has in the image been aligned to the 2D
shape, so it can be seen how the aspect ratios of the two shapes differ slightly.

of 3D shapes. This test has been performed and the assumption has been validated

as described in section 12.4.
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Sparse 2D-to-3D Active

Appearance Models

10.1 Overview

The goal of the active appearance model in the context of this project is to synthesize

sparse 3D geometry from 2D images. The approach described in this section develops

the traditional 2D AAM method to deal with exactly this problem. By combining a

statistical shape model from 3D data, and a corresponding statistical texture model

from 2D textures, the appearance model embeds the relationship between 2D face

images and their 3D geometry.

As a platform for exploring active appearance models, Denmarks Technical University

(DTU) provides a free and open source 2D AAM implementation called the AAM-API

[21]. The AAM-API is a very well-structured and well-documented object oriented

application programming interface (API), that implements the AAM method for 2D

shapes in more than 15,000 lines of C++ code. However, using it to model and

synthesize 3D shapes is not an option. Therefore, it has constituted a major part of

this thesis work to add 3D shape modelling functionality to the AAM-API.

The rest of this section describes how, based on the algorithmic implementations of

the AAM-API, the sparse 2D-to-3D AAM method has been implemented.
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10.2 Statistical Model Building

This subection deals with the construction of a sparse 2D-to-3D appearance model.

The process takes a set of training images and their associated 3D shapes as input,

and returns a parameterized statistical model, capable of synthesizing 3D geometry

and 2D texture.
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Figure 10.1: Context diagram of the 2D-to-3D AAM model building process.

A shape in 3D is mathetically described by simply adding a dimension to the 2D

description.

xi = [x1, x2, · · · , xN , y1, y2, · · · , yN , , z1, z2, · · · , zN ] (10.1)

After aligning the training shapes by applying Procrustes alignment (Section 4.3)

to 3D, a statistical model describing the shapes’ 3D variations is built by principal

component analysis (PCA).

The 2D-to-3D AAM model building procedure is very simular to the process described

for 2D AAM in Section 4.4. However, a few subtle differences must be noted.

As explained in Section 9.3 the 3D training shapes arrive in a format where the

x- and y-coordinates are coinciding with the landmark annotations of the training

images, while the z-coordinates are those of the original 3D shape after alignment

to the landmarks. The reason the effort was made to reach this format, is that

projection of the 3D shape onto the face image is now simply a matter of removing

the z-component from the shape.

This property comes in handy when retrieving the textures from the training images.

The texture that is sampled from from a training image is the region covered by the

2D projection of the associated 3D training shape. A statistical texture model can

then built from the sampled 2D textures exactly as described in Section 4.4.2.

Now, by combining the 3D shape model and the 2D texture model a compact repre-

sentation, embedding the statistical relationsship between the texture of a mono-view

face image and 3D face geometry, is obtained.
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10.3 Parameter Prediction Optimization

As described in Section 4.5.1 a linear model is trained to predict changes in model

parameters that will optimize the fitting of the model to an input image.

Since face rotations that occlude landmarks are illegal under AAM, the offline pa-

rameter prediction optimization trains the pose predictions model from translation,

scaling and rotation in the xy-plane only. Actually, rotations in the xz- and yz-planes

can be modelled to the degree that all feature points were visible in the training data.

But since this thesis deals with facial expressions and not pose, this opporunity has

not been considered.

Thus, the pose parameters are trained for displacements in the xy-plane only. The

model parameters however, embedding the 3D shape and 2D texture models, are

trained from displacements according to the parameters’ variance in the model space,

which is the Eigenspace constructed by the PCA and cannot be understood in terms

of neither the 2D space of the textures nor the 3D space of the shapes.

10.4 Texture-to-Geometry Synthesis

The process of synthesizing 3D geometry from face images takes the parameter model

as well as the optimization model described above, as its input. This information

is read from the .amf file. For each frame in an input video, the the 2D-to-3D

AAM optimally fits the model by adjusting the model parameters. In this section, an

algorithmic description explaining this process is given.
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Figure 10.2: Context diagram of 3D shape synthesis process

The goal of the 2D-to-3D AAM optimization is, like that of the 2D AAM, to minimize

the error between a texture sample from the input image and the texture instance

generated from the appearance model. The texture instance is generated from the

model by Eq. (4.15), together with a 3D shape instance, by Eq. (4.14), as shown in

Section 4.4.3.

After projecting the 3D shape onto a 2D input frame, the frame is sampled in the
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region covered by the projection shape. This sample is compared to the texture

instance generated from the model parameters. From the difference between the two

textures, the model paramters can be adjusted to minimize this difference, by the

help of the parameter prediction model.

The process was implemented by the following algorithm in the 2D-to-3D AAM:

1. Initialize the model within the reach of the parameter model’s prediction range.

2. Generate the normalized texture and normalized 3D shape instances, gm and

x3Dm , from current model parameters

3. Project x3Dm into x2Dm on the xy-plane

4. Sample the image region covered by x2Dm into gimage

5. Normalize gimage into gi

6. Evaluate the error vector, δg0 = gi − gm

7. Evaluate the error, E0 = |δg0|

8. Predict the displacements in pose parameters, δt = Rtδg0.

9. Predict the displacements in model parameters, δc = Rcδg0.

10. Set i = 1

11. Update model parameters, c = c − kiδc, where k is a damping/attenuation

factor.

12. Transform the shape to invert the δt transformation

13. Repeat steps 3-6 to form a new error Ei

14. If Ei > E0 set i = i + 1 and go to step 10

15. Save the resulting error E = Ei

16. If no improvement in E from the last iteration, declare convergence. Else go

to step 3.

By this, the description of the sparse 2D-to-3D AAM method is concluded. In the

emotion conveyance test in Section 12.3 it can be seen how well this method, in

conjunction with the animation program presented in next chapter, lives up to its

intentions of modeling facial expressions in 3D.
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The 3D Facial Animation Front

End

11.1 Overview
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Figure 11.1: Context diagram of the animation front end

This section describes how the motion capture framework front end, where 3D shapes,

synthesized by the sparse 2D-to-3D AAM geometry synthesis, are employed in digital

puppetry. The term digital puppetry is an analogy to real world puppetry, where a

puppet is controlled by a human via a set of strings attached to expressive parts of

the puppet. In this section the vocabulary of puppetry is adapted to help the reader

visualize the concepts described.

• Puppet is used here to describe the 3D graphic face model to be animated by

the captured data.
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• String denotes an association between corresponding human and puppet face

landmarks. The set of strings is thus the set of associations between .asf3d

points and corresponding vertices of the puppet.

• Controls refer to the .asf3d files that specifies the 3D landmark positions of

the human face over time.

The animation procedure takes as input a sequence of .asf3d control files, each

specifying the 3D positions of the facial landmarks in one frame of a face video.

Thus, from the control files the translations of the landmarks can be calculated

on a per frame basis. The translation information retrieved is used to control the

translation of the puppet vertices over time and thus animate the puppet. This

process is explained in detail below.

11.2 The Puppet Face Model

The test face puppet used in this project is a polygon surface consisting of 6344

triangles. The test puppet is shown in Figure 11.2. It was determined by Parke

in [17] that approximating the surface of a face with a polygonal skin containing

approximately 250 polygons defined by about 400 vertices, is sufficient to achieve a

realistic face.

Since efficiency is not in the scope of this project and that the animation methods

applied are scalable to both higher and lower mesh resolution, no effort has been put

into reducing the polygon count. The test puppet face was found and downloaded

for free as a Wavefront .obj file from http://www.turbosquid.com.

The only modification to the original downloaded object has been the deletion of

polygons between the upper and lower lip of the face, to enable opening of the

mouth.

In face puppetry where the puppet is controlled by virtual strings consisting of associ-

ations between the human face landmarks and puppet face landmarks, it is natural to

use a polygonal geometry. In polygon geometry direct associations can be established

between human face landmarks and corresponding puppet vertices. This is opposed

to e.g. parametric surfaces such as B-splines or NURBS [15].

As outlined in section Section 5.2, the topology of a polygonal face model should

comply with certain rules depending on its usage.

The topology of the test puppet can be classified as an arbitrary mesh. However,

the term arbitrary might seem somewhat inappropriate in this case: if the triangles

are paired into quads, it is be seen how the polygonal structure is both symmetric
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Figure 11.2: Test puppet face, with smooth shading and as wireframe model.

Figure 11.3: Left : Face image with annotated landmark points. Right : Face
puppet with highlighted control points.

and contains edge loops. In Figure 5.1 the test puppet is shown composed of quads

instead of triangles. In edge loops, polygons are organized into structures looping

around face cavaties such as mouth and eyes. This structure supports expansion

and subtration of the cavaties and thereby supports animation. It is also seen in

Figure 5.1 how the areas of high curvature around e.g. the eyes are described by

a higher number of polygons than low curvature areas as cheeks and forehead, to

enable more detail.

The test puppet model does not embed any form of physically based muscle or skin

model constraining the translation of its vertices during animation. In the following

the animation scheme developed is described.
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11.3 Attaching Strings to the Puppet

An animation scheme has been implemented in C++ using an OpenGL graphics

library. It takes a set of .asf3d files, each file associated with a frame in the face

recording used for motion capture, as input and produces an animation. The basic

idea is to retrieve the point translation information from the set of .asf3d files and

use it to translate the vertices of the puppet.

First, speaking in puppetry terms, strings must be attached to the puppet. This is

done manually by annotating landmark points in the neutral expression puppet face

corresponding to those originally annotated in the human face training images.

Marking a point in 3D space is not as trivial as in the 2D case. When a point is

clicked in the viewport of a 3D scene, the point actually represents a ray stretching

infinitely behind it. However, the vector describing this ray can be found, and the

vertex nearest to the ray can be saved as the annotated landmark vertex. In puppetry

terms, a string is now attached to this vertex. Note here that the ray will pass several

polygons of the puppet. E.g. it will hit the marked polygon in the face, and as the

ray continues through the model it will hit a polygon in the back of the head. In this

case one has to choose the vertex of the nearest polygon to be the landmark point.

11.4 Controlling the Puppet

After setting up the set of strings, i.e. after establishing an association between .asf3d

control points and puppet vertices, a weighting scheme is applied, see Figure 11.4.

The weights determine how all the vertices that are not landmark vertices shall move

relative to the landmark vertices. Again, to put it in puppet terminology, the weights

determine the influence of each string on puppet surface points where no strings are

attached.

For each vertex, vi, in the puppet model, the four nearest landmark vertices, lik,

are found, where k ∈ {1, 2, 3, 4} indexes the four landmarks. Based on the four

landmarks’ euclidean distances from the vertex, d(vi, lik), a normalized weight wik is

associated with the each of four landmarks. The weights are found according to the

inverse distance weighting scheme [19].

wik =

{
1

d(vi,lik) ·
∑

k d(vi, lik)p, if vi 6= lik

1, if vi = lik
(11.1)

The weights are to be applied during animation, to interpolate translation of vertices

that are not landmark vertices.
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Figure 11.4: Weighting scheme. Each vertex is associated with its four closest
landmarks. Each of the four landmarks is assigned a weight inverse proportional
to its distance from the vertex.

Next, a neutral expression 3D shape, Sbase, is chosen from the set of .asf3d shape

files. This base shape is aligned in scale, translation and rotation with Lbase, which

is the shape formed by the neutral landmark vertices of the puppet, see Figure 11.5.

The aligned shape is denoted the base control shape, Cbase.

In Figure 11.5, the white control shape is aligned to the shape formed by the red test

puppet landmarks (to avoid occlusion by the puppet the control shape is translated

a bit in the image, along the z-axis, towards the camera). It is seen from the figure

is how the aspect ratios of the two shapes differ.

As a last initialization step before the runtime animation can be started, the height,

width and depth ratios, describing the size of Lbase relative to Cbase, are found. The

ratios are denoted rwidth, rheight and rdepth, and they ensure a proportionally correct

vertex translations during animation.

Now everything is set up for the runtime animation algorithm, which runs over all

.asf3d input files. As each file contains the shape information corresponding to the

facial expression of one frame in a face video, these files should be processed at the

frame rate of the video.
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Figure 11.5: Puppet controls. The test puppet is shown in neutral expression
with its landmark points, Lbase, highlighted in red. The white shape is the base
control shape, Lbase, also in a neutral state. (Imagine a set of invisible strings
going from the white to the red points).

11.5 The Runtime Animation Algorithm

The first step of the algorithm is to align the shape contained in the currently pro-

cessed .asf3d file to the neutral expression landmarks of the puppet. This way, shape

size variations are neutralized. Such variations would originate from the actor in the

face video moving his/her head towards or away from the camera.

Next, the translations for the current shape are found relative to an aligned refer-

ence shape, above called Cbase. The translations of the input shape are then used

to calculate the translations of the face puppet landmark vertices, also relative to a

reference shape, Lbase. Knowing the translations of the landmark vertices, the trans-

lations of the remaining puppet vertices can be calculated by interpolation, applying

the weights found earlier.

In pseudo code the algorithm looks like this:

• For all input 3D shapes from the face recording, do:

– Align the current 3D shape, S, with the base puppet landmark shape,

Lbase, into the current control shape, C

– For each point, cj , in C, do:
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∗ Find the translation, t(cj), which is the euclidean distance from cj

to the jth point in the base control shape, Cbase.

∗ Multiply the x-, y- and z-components of tcj with the size relation

ratios, rwidth, rheight and rdepth, respectively.

∗ Insert tcj into the jth column of the vector tc.

– For each vertex, vi, in the puppet head, do:

∗ Retrieve vi’s four associated landmark vertices, li, with weights wi.

∗ Retrieve the translations of the four control shape points, tc(li), from

tc. Insert tc(li) into vector t̂i
∗ Interpolate translation of vi: tvi =

∑4
k=1(̂ti(k) ·wi(k))

∗ Translate vi according to tvi

• Wait, to align animation pace to frame rate of face recording

11.6 Special Case: Mouth Region

In the animation scheme described above the mouth region poses a problem since

vertices on the upper lip are because of short distances associated with landmarks on

the lower lip and vice versa. To fix this problem upper and lower lip vertices must

be constrained to be associated with upper and lower lip landmarks, respectively.

This is done by adding further initialization functionallity to be performed before the

assignment of landmark points and weights to the vertices.

The first method is called point-in-polygon [14]. It is a method from graph theory

that cleverly finds out if a vertex’ xy-component is within the 2D polygon created

by connecting the xy-components of the mouth landmarks.

Figure 11.6: Mouth polygons and vertices. Pink lines are drawn between mouth
landmarks.

Secondly, to determine if a vertex, that is classified to be within the mouth region,

is within the upper or lower lip, a graph distance measuring function is applied. The

method is breadth first search or simply BFS [12].
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In this case, BFS is used to measure the shortest distance, along the puppet mesh

edges, from a mouth vertex to each of the mouth landmarks. Since no edges connect

the upper and lower lips in between the mouth corners, the distance along edges

from, say, a vertex on the upper lip to a landmark on the lower lip is generally longer

than the distance to an upper lip landmark. By comparing the sum of the vertex’

distance to the upper lip landmarks with the sum of the vertex’ distances to the lower

lip landmarks, the vertex ”lip association” can be determined.

The nearest landmark association and weight assignment of an upper lip vertex, can

thus be limited to include upper lip landmarks and mouth corners.

11.7 Summary of 3D Facial Animation

The animation scheme described in this section has been implemented and results in

smooth and recognizable facial expressions. Though the method is highly customized

to the problem at hand, several parts, e.g. the weighting and vertex translation

schemes are generally applicable in animation of polygonal face models.



Chapter 12

Tests

12.1 Overview

This chapter describes the tests performed in relation to this thesis. Two performance

tests have been conducted. Each of them quantify to which degree two of the thesis

objectives stated in Section 1.1 are fulfilled. A third test investigates if the assumption

proposed in Section 9.3 is valid. The concerns of the tests are summarized here:

• Precision of the annotation tool

• Overall emotion conveyance quality

• The assumption of preserved aspect ratio

In the following the purpose, method, results and conclusion of each test are given.

12.2 Annotation Tool Precision

12.2.1 Purpose of Test

This test was performed to measure how well the 3D data obtained from the anno-

tation tool reflects the annotated objects geometry.

12.2.2 Test Method

The precision of the annotation tool was measured by the following setup:

67



68 CHAPTER 12. TESTS

A stereo image was taken of a chessboard pattern wrapped around a right angle

corner. The distance between the camera and the corner was approximately 40 cm

at the top of the corner, which corresponds to the distance from camera to the human

models in the facial expression footage for the face database. The chessboard pattern

consisted of 7 x 9 square tiles each of 27 x 27 mm.

Figure 12.1: Chessboard wrapped around a right angle. Used for testing precision
of annotation tool.

The chessboard corner was used as a ground truth object of the test. In addition, a

virtual model of the chessboard corner was generated in Matlab.

The test was performed by 10 instances of manual annotations of 48 points on the

chessboard corner, see Figure 12.1. Using the Procrustes alignment method, the

datapoint set from the annotation was aligned to the virtual model w.r.t. translation

and rotation, see Figure 12.2.

12.2.3 Test Results

The euclidean distances between the virtual shape and the 10 annotated shapes were

measured in mm for each of the 48 points per shape. The sum of errors over each

of the 10 annotated shapes were (in unit mm), the results are seen in Table 12.1

The average error of all 48 points in the shape over the 10 annotation instances was

58.66 mm. Per point that corresponds to an average error of 1.22 mm.
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Figure 12.2: Matlab visualization of chessboard corner grid constructed from
annotation (blue) compared to the ideal chessboard corner grid (red). Buttom
image is top view.

12.2.4 Conclusion

The test shows that a point is on average 1.22 mm off its intended position. The

source of the error is most likely imprecision on the side of the human doing the

annotation.

In any case, for this project such an error is acceptable, taking the size of a human

face into account. However, it should be noted, that the same level of accuracy
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1 2 3 4 5 6 7 8 9 10
60.85 60.57 57.18 57.42 60.49 57.37 58.07 57.86 57.80 59.00

Table 12.1: Table of average sums of errors of all annotated points shown for the
10 test shapes, unit is mm.

cannot be expected when annotating a human face, due to much weaker landmark

points, than those of a chessboard.

12.3 Overall Emotion Conveyance Quality

12.3.1 Purpose of Test

The purpose of this test is to document how well the motion capture framework

developed in this project conveys emotions.

12.3.2 Test Method

Four groups of test images were created. Each of the image groups contained exactly

one image of each of the six universal facial expression. The groups were frontal face

photos, near-profile face photos, frontal face puppet image, and near-profile face

puppet image. The four test image groups are shown in Figures 12.3, 12.4, 12.5 and

12.6.

10 test subjects where each presented for the test images, one image group at a time,

in the sequence of presentation above. The images within each group were randomly

permutated such that no correlation of facial expressions could be made between the

groups in that aspect. For each image the test subjects were asked to tell which one

of the six universal facial expressions the face on the test image was imposing. Lines

connecting the eyebrow landmark vertices of the test puppet were added to the face

puppet, to take advantage of the expressiveness of eyebrows.

The test subjects were one male of age 40-50, French national, and one male and 8

females, all age 20-30 and all Danish nationals.

12.3.3 Test Results

The results of the tests are shown in Tables 12.2, 12.3, 12.4, and 12.5.
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Image/Emotion Sadness Fear Happiness Disgust Anger Surprise
Sadness 10 0 0 0 0 0

Fear 0 6 0 2 0 2
Happiness 0 0 10 0 0 0

Disgust 0 0 0 6 4 0
Anger 0 0 0 4 6 0

Surprise 0 0 1 0 0 9

Table 12.2: Frontal face images, test results.

Image/Emotion Sadness Fear Happiness Disgust Anger Surprise
Sadness 10 0 0 0 0 0

Fear 1 1 0 0 0 8
Happiness 0 0 10 0 0 0

Disgust 0 0 0 9 1 0
Anger 0 0 0 0 10 0

Surprise 0 0 1 0 0 9

Table 12.3: Face images from side, test results.

Image/Emotion Sadness Fear Happiness Disgust Anger Surprise
Sadness 9 0 0 0 0 1

Fear 6 4 0 0 0 0
Happiness 0 1 9 0 0 0

Disgust 0 0 0 4 5 1
Anger 0 0 0 0 5 5

Surprise 0 0 3 0 0 7

Table 12.4: Frontal puppet images, test results.

Image/Emotion Sadness Fear Happiness Disgust Anger Surprise
Sadness 9 0 0 1 0 0

Fear 9 0 0 0 0 1
Happiness 1 0 6 0 0 3

Disgust 2 0 0 1 7 0
Anger 0 0 3 2 3 2

Surprise 1 1 4 0 0 4

Table 12.5: Puppet images from side, test results.
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Figure 12.3: Face images, frontal view

Figure 12.4: Face images, near-profile view

12.3.4 Conclusion

Discussion of Emotion Estimation from Photographies

It is seen in Table 12.2 and Table 12.3 that people generally recognize the emotions

expressed in the face photos. However, some expressions, like disgust and anger,

showed hard to distinguish in the frontal view, but easier in profile view. Fear was
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Figure 12.5: Puppet images, frontal view

also hard for the test subjects to recognize, especially from profile view, where it

generally was confused with surprise. Sadness and happiness were recognized on

both views by all test subjects, and surprise was recognized by all test subjects but

one in both views.

Discussion of Emotion Estimation from Graphic Faces

In Table 12.4 and Table 12.5 the recognition result of the graphic facial expressions

are seen. Again, sadness and happiness are the most recognizable expressions. The

results are not as clear-cut as for the photographies, though. Fear is for example

confused with sadness in most cases in both views.

However, it is seen that there is a certain degree of consistency to the confusion. In

the frontal view fear is recognized by around half the test subjects as fear, while the

other half all classifies it as sadness. The same type of consistent confusion applies to

disgust and anger, and to anger and surprise. This can be interpreted as being due

to the expressions resemblance. For example both anger and surprise are expressed

by faces with mouth slightly open, and both fear and sadness expressions have raised

the inner part of the eyebrows.

A possible source of confusion is that the emotions expressd by the actor, who is not

trainied in this discipline, contains levels of other emotions in them. For example

Anger contains disgust, and surprise contains happiness (in some cases), etc.
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Figure 12.6: Puppet images, near-profile view

Summary of Discussion

Though the results of the test are far from equivocal, it can be concluded that

emotions are conveyed by the graphic face, and in many cases the intended ones.

12.4 Assumption of Preserved Aspect Ratio

12.4.1 Purpose of Test

This test investigates whether or not the assumption of preserved aspect ratio pro-

posed in Section 9.3 is a valid one.

12.4.2 Test Method

Two sets of shapes are in scope for this test: a set of 2D shapes of the annotations

on the left view stereo image, and a corresponding set of 3D shapes, calculated by

reprojections based on the 2D annotations. Since it is known that the left view stereo

images are taken slightly from the left side, it is expected that the 2D shapes, due to

perspective projection, are are narrower than the 3D shapes. Or to put in in terms

of the aspect ratio: the 2D shapes are expected to have a higher height/width ratio.

See Figure 12.7 for an example of the difference in aspect ratio.
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Figure 12.7: The figure shows a plot of a 2D shape (blue) and the xy component
of an aligned corresponding 3D shape (red). It can be seen how the aspect ratios
differ.

After aligning the 3D shapes to the 2D shapes using Procrustes alignment to maxi-

mize their span in the xy-plane, we can obtain two distributions of aspect ratios, one

for each set.

The goal of the test is to see if the height/width ratios, r2d, of the 2D shape

annotations are ”likely enough” to the distribution determined by the height/width

ratios, r3d, of the 3D shapes found by re-projection. The distance measure used is

Mahalanobis distance DM .

The term ”likely enough” is very vaque. However, the properties of Mahalanobis

distance provide a reference in this matter: For a univariate point, x1, that is at a dis-

tance of one standard deviation from a distributions mean, the Mahalanobis distance

is DM (x1) = 1, and for a univariate point, x2, that is at a distance of two standard

deviations form a distributions mean, the Mahalanobis distance is DM (x1) = 4. So

for this test, a point in r2d having a DM < 1 will definitely be ”likely enough”.

12.4.3 Test Results

In Table 12.6 the Mahalanobis distances of the 22 2D shape ratios can be seen.

16 out of 22 ratios have a distance lower than 1. The average distance of 22 2D

shape ratios was 1.0442, with a few outliers influencing this value substantially.
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1 2 3 4 5 6 7 8 9 10 11
0.865 0.496 1.355 1.372 0.221 0.099 0.496 0.018 0.452 0.439 0.004

12 13 14 15 16 17 18 19 20 21 22
0.010 1.178 0.274 0.220 0.937 0.945 0.521 2.420 5.698 0.256 4.697

Table 12.6: Mahalanobis distances for the 22 2D shape ratios to the 3D shape
distribution.

12.4.4 Conclusion

From the test it is seen that shape with aspect ratios simular to the 2D shape are likely

to occur in the 3D hape distribution. In this light, it is decided that the assumption

of preserved aspect ratio is valid.



Part III

Discussion
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Chapter 13

Future Work

As a consequence of the modular structure of the motion capture framework described

in this thesis, modifications, extentions and improvements can be applied at the level

of the individual modules or to the framework as a whole. Following proposition to

future work:

13.1 Data Acquisition

The framework is currently reliant on the Videre Small Vision System for stereo face

images. It would improve the frameworks application as a DIY face motion capture

framework to make it camera platform independent by adding a stereo calibration

functionality.

13.2 Motion Capture

As it has been noted at several occasions in the thesis, AAM has no way of dealing

with occlusion of landmarks. It would be of great interest and application to develop

a method that would allow for larger degree of rotation, than can be accomplished

under the no-occlusion constraint.
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13.3 Animation

It would be very interesing to see how the sparse 2D-to-3D AAM method works in

conjunction with a physically based muscle controlled animation model. In such a

model local deformations propagate to the rest of the face according to the mucle

model. Thus, a method could be devised that would allow a sparse set of control

points to animate the face in considerable detail and constrains the vertex translations

in the model to realistic facial expressions (or at least physically possible).



Chapter 14

Discussion

14.1 Summary of Main Contributions

The following sections summarize the main contributions of this thesis to the field of

facial motion capture research.

14.2 Stereo Face Image Database

A small stereo face image database has been built. Besides the face images, the

database includes a set of .asf3d 3D shape data files, and .ini files containing the

stereo calibration parameters. Thus, the database can be readily applied for model

training, or be extended with data of identical format.

14.3 Stereo Annotation Tool

A stereo annotation tool has been developed in Matlab. The tool retrieves 3D shape

data wiht relativly high (considering the application domain) precision.

14.4 Sparse 2D-to-3D AAM

The sparse 2D-to-3D AAM method has been described and implemented. The

method has shown capable of synthesing the 3D geometry of facial expressions from

2D face images.
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14.5 3D Face Motion Capture Framework

A motion capture framework has been established to accomodate future exploration

and research in 3D face motion capture. It can be argued that establishing a frame-

work is nothing more than defining a set of interfaces for the framework’s modules

to communicate by. However, for a framework to be appealing for anyone to use, it

must implement, at some level, the intended functionality and be able to succefully

perform a set of tasks defined under the framework. For the framework described in

this thesis these tasks are stereo image annotation, synthesis of 3D facial geometry

from 2D images, and conveyance of emotions via an animation front end. In this

sense the framework is complete.

14.6 Conclusion

The objectives of this thesis were: to discuss and summarize the process of facial

motion capture,to describe a means of acquiring 3D face data, to describe in partic-

ular the application of the proposed sparse 2D-to-3D AAM method in facial motion

capture, to show that facial expressions can be captured and conveyed by the method

of sparse 2D-to-3D AAM. It has been argued in the previous sections that the objec-

tives have been fulfilled. In doing so, this thesis constitutes a significant contribution

to the research 3D facial motion capture and thereby the area of human-computer

camera interfaces.
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